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ABSTRACT 

The localized uniform conditioning (LUC) technique converts conventional Uniform 

Conditioning (UC) grade-tonnage curves into single grade values attached to each 

smallest mining unit (SMU). This is achieved by ranking the SMUs within a panel in 

increasing order of their grade based on the local grade patterns predicted by direct 

kriging of the SMUs.  However, the quality of this localization process will depend 

heavily on the validity of the predicted grade patterns.  A study was undertaken to 

determine how valid the predicted grade patterns of a typical Birimian-style gold 

deposit (with high nugget effect and strong short-range variability) might be expected to 

be. The direct SMU kriging rankings (based on sparse data) were compared with the 

grade control model ranking (based on close-spaced data and the best available estimate 

of the deposit). The results showed a satisfactory correlation and relationship between 

these rankings. It was concluded that the application of the LUC technique is still useful 

and appropriate for this style of deposit. 
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1 INTRODUCTION 

For adequate technical and financial evaluation of a project, attempts should be made to 

estimate the recoverable resources – the portion of the in-situ resource that can be 

economically extracted by mining.  To achieve this, the estimates of the tonnage and 

grade of the mineralisation should be produced above a given economic cut-off and 

should take into consideration the proposed mining selectivity.   

 

At the early stages of exploration, we often only have broad spaced sample data to 

estimate with.  Ordinary Kriging (OK), a commonly used linear interpolator, may be 

used to estimate grades into larger panels (estimation into smaller panels that are not 

adequately supported by dense data may result in smoothed and conditionally biased 

estimates).  These larger panels, that are suitable for the broadly spaced data, often do 

not adequately represent the selectivity expected at the time of mining.  The mining 

selectivity (represented by the Smallest Mining Unit or SMU) is based on the deposit 

type and the chosen mining equipment.   

 

Non-linear techniques, such as Uniform Conditioning (UC) and Multiple Indicator 

Kriging (MIK), are used to generate estimates at SMU scale reflecting the proposed 

mining selectivity.  With these techniques, the portion of the mineralisation that can be 

economically extracted is estimated by determining the distribution of SMUs within 

each panel based on a change of support model.  Estimates of the grades and 

proportions extractable above a given cut-off are provided for each panel without 

specifying precise spatial locations for this recoverable mineralisation.  Having a better 

understanding of the actual spatial locations of the SMUs would significantly simplify 

the handling of the results for Mine Planning purposes and would simplify and 

potentially enhance the technical and financial evaluation of the project. 

 

In 2006, Marat Abzalov (2006) proposed a method called Localised Uniform 

Conditioning for predicting the spatial locations of the economically extractable 

mineralisation by assigning a single grade to each SMU sized block.  LUC enhances the 

conventional UC approach by localising the model results.  The grades of the SMUs are 

derived from the conventional UC grade-tonnage relationships.  For each panel, the UC 
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grade-tonnage function is divided into grade classes and the mean grades of the grade 

classes are assigned to the SMUs in the panel.  The method of mean grade assignment is 

based on a predicted grade pattern within each panel.  The grade pattern is determined 

by an Ordinary Kriging of the SMUs from the sparse dataset and is used to rank the 

SMUs within each panel in increasing order of their grade before assigning the mean 

grades of the UC grade classes.   

 

Abzalov (2006) noted that spatial grade distribution patterns are often recognised by 

geoscientists in deposits even when drill spacing is still too broad for direct accurate 

modelling of small block grades, but sufficient for identification of the major 

distribution trends.  He suggested that, even when drill spacing is too broad to avoid a 

smoothed SMU grade estimate, direct kriging of the small blocks can be used to obtain 

reliable grade patterns and resultant SMU ranking within the panels. Abzalov deemed 

that this was particularly applicable to continuous mineralisation characterised by a low 

nugget effect, such as disseminated base-metal sulphides, bauxites and iron-oxide 

deposits.  He cautioned that where the data is sparse and not close to a panel, or their 

distribution is characterised by strong short-range variability, there could be less of a 

meaningful pattern.  Accordingly, if the predictions of the SMU rankings by Ordinary 

Kriging (or any other technique) are inadequate, the advantages of using the LUC 

approach will be more limited or even entirely unsuitable.  A basic assumption of the 

conventional UC approach is that the locations of ore and waste within the panels are 

unknown (the SMUs are distributed randomly within the panels).  The LUC method 

aims to overcome this theoretical constraint by attempting to predict the spatial 

locations of the SMUs, but the quality of the localisation process will depend heavily on 

the validity of the grade patterns predicted by the direct kriging of the SMUs. The 

concern is that the use of the LUC technique may be inappropriate for deposits with 

high nugget and strong short range variability.  Strong short range variability, i.e. a high 

Nugget Effect, might result in poor prediction of the local grade patterns which are used 

to rank the SMUs within the panels.  In addition, drill spacing also plays an important 

role in the quality of the localisation achieved – the closer the distances between 

drillholes, the better the quality of the ranking is expected to be.   
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As a result of this background, a study was undertaken to test the appropriateness of the 

application of the LUC technique to a typical Birimian-style gold deposit with a high 

nugget effect and strong short range continuity (typically around 25-30 m in the main 

direction of continuity).  The LUC technique was applied using the sparse drillhole 

dataset (early stage/exploration) which followed a 25 m x 25 m x 2 m drilling grid.  

This grid was used for the classification of Mineral Resources of the Indicated category 

for the chosen deposit. 

 

The research aimed to determine whether or not the use of the LUC technique is 

appropriate for deposits exhibiting high nugget and strong short-range variability.  The 

validity of the predicted grade patterns was measured by comparing the direct SMU 

kriging ranking (based on sparse data) with the Grade Control model ranking (based on 

close spaced data and the “best available estimate” of the deposit).   

 

The methodology that was used to complete the research was as follows: 

 Exploratory Data Analyses: Two datasets were compiled for the study: one 

including all exploration data and one including both exploration and grade control 

data.  These datasets were composited to 2 m intervals and domained into 

mineralised and un-mineralised samples according to the mineralisation 

interpretation.  Grade capping was performed to control the effect of outliers and the 

two datasets were de-clustered. Finally, the statistical grade distributions and 

summary statistics for the two domains of the two datasets were described.   

 Boundary Analysis: To determine whether the use of hard or soft boundaries during 

grade estimation would be appropriate, the grade variation across the mineralisation 

boundary was investigated.   

 Generated an Ordinary Kriging panel estimate for a panel size of 30 mN by 30 mE 

by 10 mRL using the exploration dataset: Modelled semi-variograms; completed a 

Kriging Neighbourhood Analysis to determine the optimal set of estimation 

parameters and generated an Ordinary Kriging panel estimate from the exploration 

data. 

 Generated an Ordinary Kriging SMU estimate for SMU ranking using the 

exploration dataset: Used the same set of estimation parameters to generate an 
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Ordinary Kriging SMU estimate from the exploration data (used for the LUC 

ranking).  The SMU size was 10 mN by 10 mE by 3.33 mRL. 

 Generated a recoverable LUC estimate: Transformed the de-clustered point data of 

the exploration dataset to Gaussian space; performed change of support from point 

to SMU; completed Uniform Conditioning (UC); localised the UC results with the 

LUC approach and validated the results. 

 Determined the quality of the localisation: The quality of the LUC localisation is 

dependent on the meaningfulness of the grade pattern predicted by the direct kriging 

of the SMU.  This was measured by comparing the rankings of the “true” SMU 

grades with the LUC rankings and determining if there was a positive correlation 

between the actual and predicted rankings.  If there was a positive correlation, then 

it could be said that there was some confidence in the local positioning achieved by 

the LUC technique – that it was not random, but that it showed a positive correlation 

with the true positioning.  The “true” SMU grades were estimated using the 

exploration plus grade control dataset. 

This methodology was applied to a real example of a typical Birimian style gold 

deposit.  These types of deposits are good examples of data with high nugget and strong 

short-range continuity.   
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2 THE THEORY OF LOCALISED UNIFORM CONDITIONING 

In this section the theory of LUC is presented.  LUC is derived from the conventional 

UC technique which is a non-linear geostatistical method used for the estimation of 

recoverable resources. 

 

2.1 Non-linear geostatistics 

Linear geostatistics makes use of linear combinations of weighted data to provide an 

estimate of a regionalized variable (such as gold grade or thickness of a layer).  

Ordinary Kriging is an example of a linear estimation technique and it is widely known 

and used by resource practitioners in industry.  It is an estimator that generates estimates 

by minimising estimation variance.   

 

However, where data spacing is broad in comparison with the desired estimation block 

size, a linear estimation based technique will be unsuitable.   When estimating into 

small blocks - which are not supported by adequately dense data - it will typically 

produce an overly smoothed and conditionally biased assessment of the recoverable 

resource.  Hence, an adequately larger block/panel will need to be reverted to, given the 

broad data spacing.  For many deposits, estimates of these larger panels will be 

unsuitable for technical and financial valuation of a mining project as it is necessary to 

estimate tonnage and grade of mineralisation above a given economic cut-off grade 

taking into account a proposed mining selectivity.  The mining selectivity may be much 

smaller than the estimated panels and the panel estimates will therefore not be 

representative of the recoverable resource (Abzalov, 2006).   

 

The mining selectivity is defined by the Smallest Mining Unit (SMU).  The SMU is the 

smallest block at which ore-waste selection can be made during mining and it is 

generally a function of the selected mining equipment and the nature of the orebody. 

 

Non-linear geostatistics allows the practitioner to not just estimate the value of a 

variable, but also a non-linear function of it.  Being able to derive the non-linear 

function of a grade variable allows the estimation of tonnage and grade of 

mineralisation above a given economic cut-off grade taking into account a proposed 
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mining selectivity.  This is commonly achieved by modelling the grade-tonnage 

relationships for a given mining selectivity by using change-of-support techniques.  

Given a particular mining selectivity, the proportion of mineralisation that can be 

economically extracted from a particular panel is predicted without attempting to 

provide precise spatial locations for the recoverable resources within the panels.  This is 

achieved by calculating the grade-tonnage relationships of the selectively minable units 

from the available sample distribution using a suitable non-linear geostatistical method 

(Abzalov, 2006). 

 

The work on non-linear geostatistics commenced in the sixties by Sichel and Krige.  

Sichel proposed an estimator and gave confidence intervals for the mean assuming the 

sample values were independent and distributed according to lognormal law. Danie 

Krige proposed a lognormal regression, which later led to lognormal kriging.  Non-

linear techniques were further developed in the seventies in trying to solve the problem 

of selectivity during mining.   

 

In 1990, Rivoirard described non-linear geostatistics in more detail in a book which 

provided an introduction to disjunctive kriging and non-linear geostatistics (Rivoirard, 

1990).   

 

Since Rivoirard’s book was published, various authors have shown that non-linear 

estimators can be used to correct for smoothing and numerous publications covering 

these topics are available.   

 

In 1992, Ravenscroft published a paper in which he proposed the use of the conditional 

simulation method for the estimation of recoverable reserves (Ravenscroft, 1992).   

 

In 1998, Vann and Guibal (1998) provided an overview of non-linear estimation.  They 

compared linear and non-linear estimation and provided the motivations for non-linear 

approaches.  A summary of the main non-linear estimators was included in the paper.    
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Vann, Guibal and Harley also described the Multiple Indicator Kriging (MIK) approach 

in 2000 and showed how to determine whether MIK is suitable for a deposit.  The 

technique was described in the paper and a number of theoretical and practical 

implementation issues were examined (Vann et al, 2000).   

 

Krige and Assibey-Bonsu in 2001 compared a number of techniques for the estimation 

of recoverable resources and analysed the results to rate the relative efficiencies and 

uncertainties of the different techniques (Krige et al, 2001).   

 

A number of other authors ok the use of various non-linear techniques with practical 

case studies such as Abzalov and Humphreys in 2002 who estimated a recoverable 

resource for a mesothermal gold deposit using non-linear Geostatistics (Abzalov et al, 

2002) and De-Vitry, Vann and Arvindson in 2007 who showed how to select the 

optimal method of resource estimation for multivariate iron ore deposits (De-Vitry et al, 

2007). 

 

In conclusion, the understanding and practical application of non-linear geostatistics to 

estimate recoverable resources have progressed significantly since its inception in the 

1960s and it is now well understood and applied in practice. 

 

2.2 Uniform Conditioning 

UC is one of the more common non-linear geostatistical methods used for the 

estimation of recoverable resources.  This approach has been around since the 1970s 

and 1980s and it is also extensively covered in literature.   

 

The second part of Rivoirards 1990 book “Introduction to disjunctive kriging and 

nonlinear geostatistics” deals with Change of Support and UC and was written to 

provide understanding and guidance for the use of non-linear techniques.   

 

An easy to understand study on the UC technique was completed by Chad Neufeld of 

the University of Alberta in 2005.  The general idea of the project was to dive into the 

details of UC and present UC in an easy to understand format.   Neufeld determined that 
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the workflow for UC could be summarised in five steps which are discussed in further 

detail below (Neufeld, 2005). 

2.2.1 Estimation of the panel grade 

UC relies on a robust estimate of the panel grade denominated by Z*(u).  This panel 

grade is estimated as follows by the linear combinations of the samples denoted by z(uα) 

and the OK weights (λα): 

 

The OK system of equations (or “kriging system”) is used with the kriging estimator 

(Eq. 1) to minimise estimation variance.  This “kriging system” is expressed in Eq. (2) 

and it provides a system of (n+1) linear equations which includes the weights λ, the 

Lagrange parameter µ, the covariance function C and the mean value of the covariance 

function C.  The λβ weights should sum to 1 (Journel, 1978). 

 

2.2.2 Fitting the Discrete Gaussian Model (DGM) to the data 

The sample distribution is at point scale (not representative of block or panel scale).  

The sample distribution is fit using a Hermite polynomial expansion.   

 

This function maps point variable Z to Gaussian variable Y in order to work further in 

Gaussian space.  The equation is referred to as the Gaussian anamorphosis function 

where np is the highest order term in the polynomial expansion, φn is a fitted coefficient 

for each term, and Hn[Y(u)] is the hermite polynomial value defined by the term of the 

expansion and the Y value.  The φ coefficients must be calculated for the anamorphosis 

function. The first coefficient is: 



20 

 

 

or the expected value of Z(u). Higher order coefficients can be calculated using: 

 

The higher order coefficients of Eq. (5) can be estimated as a finite summation as 

follows: 

 

The fitted coefficients must satisfy the following equality: 

 

where Var{Z(u)} is the variance of Z at the point support (Neufeld, 2005). 

2.2.3 Determine the change of support coefficients 

The Discrete Gaussian Model is used for calculating the change of support. It controls 

the shape and variability of the distribution at the larger scale. The anamorphosis 

function in Eq. (3) can be modified to account for the change of support from point data 

to block data by the addition of a change of support coefficient r: 

 

The distribution of grades for large volumes can be determined by calculating r, which 

requires the variance of the larger support volumes. Neufeld noted that “typically, there 

is not enough data available to do this explicitly”. The dispersion variance of the larger 

blocks can be estimated using the modelled variogram of the point data: 

 

where V is the SMU support volume, σv
2 is the variance of the SMU sized blocks, σu

2 is 

the variance of the point data, and  is the average variogram value for the SMU. This 

equality is true for the point support and the block support: 
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where Var{ZV} is the variance of Z at the SMU support. The only unknown parameter 

is r and the value of r that satisfies the equality can be determined.  The panel 

anamorphosis function is shown in Eq. (11) and the change of support parameter r ' can 

be estimated by solving the equation. 

 

The panel variance should be estimated from the variance of the panels.  The panel 

change of support coefficient can be calculated by solving the following equation: 

 

2.2.4 Transformation of the panel estimates and cut-offs to Gaussian units 

If the panel estimation was done in original grade units, each estimate will need to be 

transformed to Gaussian units using the panel anamorphosis function from Eq. (11). 

Each cut-off grade also needs to be transformed to Gaussian units. The cut-off grades 

should be transformed using the SMU anamorphosis from Eq. (8). 

2.2.5 Calculation of the proportion and quantity of metal above each cut-off 

Given that the panel grade is known, the distribution of the SMUs within that panel can 

be calculated. By definition, the average of the SMUs within the panel is the panel 

grade, and the variance is based on the change of support model.  

 

The recoverable reserves are defined by the proportion P (zc) and quantity Q (zc) of 

metal above the cut-off grade which can be derived from the distribution of the SMUs 

within the panels.  Lastly, the mean grade above cut-off M (zc) is calculated from these 

(i.e. the quantity of metal and the proportion above the cut-off): 
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2.2.6 Discussion 

The focus of Neufeld’s work described above was on the theory for UC, but various 

other publications covered the practical application.   

 

In 1998, Humpreys completed a practical case study for the estimation of the large, low 

grade Wandoo Deposit at Boddington Gold Mine using the UC technique.  Ordinary 

kriging was performed, but this could not be used to give a resource reflecting the real 

mining selectivity. Kriging of smaller blocks would seriously understate the true variability. 

Therefore, UC was applied to obtain a more realistic resource estimate corresponding to the 

intended mining selectivity (Humphreys, 1998).   

 

Another example of later case studies included a case study in UC of local recoverable 

reserves estimation for Jelsava Magnesite deposit in Slovakia – Level 220.  The case 

study discussed the results of UC which was implemented for the first time on the 

deposit in question.  This methodology (i.e. UC) was necessitated by a change to the 

exploitation method of the deposit from chamber-pillar to slicing bench with emphasis 

on selectivity and recoverability for more effective exploitation of the deposit.  They 

reported that the application of UC resulted in quicker comparisons between the 

estimates and the real extraction results and allowing for more frequent resource model 

updates, subsequent estimation and scheduling (Vizi, 2008). 

 

A Recoverable Uranium Resource was estimated for the Mkuju River Uranium Project, 

Tanzania using UC.  The authors noted that the use of a non-linear estimation method 

increased the reliability of the grade-tonnage curves and UC was the method chosen for 

estimation of the recoverable resource.  The case study showed how UC could be used 

to convert the panel grade tonnage curves into SMU grade tonnage curves for use in pit 

optimisation and detailed mine planning studies (O’Connor et al, 2012). 

 

 

(13) 
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2.3 Localised Uniform Conditioning 

The main disadvantage of the conventional UC method is its inability to predict a 

spatial location of the economically extractable mineralisation.  In addition to knowing 

which portion of a panel contains mineralisation exceeding the cut-off, it would 

practically be useful to have a better understanding of the precise spatial distribution of 

the recoverable resources within the panels.   

 

In 2006, Marat Abzalov proposed the LUC method for predicting the spatial locations 

of the economically extractable mineralisation by assigning a single grade to each SMU 

sized block.  LUC enhances the UC approach by localising the model results.  The 

grades of the SMUs are derived from the conventional UC grade-tonnage relationships 

(Abzalov, 2006).   

 

The key steps involved in generating an LUC estimate include: 

1. Estimate the panel grades using Ordinary Kriging (as per Section 2.2.1). 

2. Fit the Discrete Gaussian Model to the data (as per Section 2.2.2). 

3. Determine the change of support (as per Section 2.2.3).  The Discrete Gaussian 

Model is used for calculating the change of support. 

4. Transformation of the panel estimates and cut-off grades to Gaussian units (as per 

Section 2.2.4). 

5. Perform Uniform Conditioning (i.e. calculate the proportion and quantity of metal 

above cut-off as per Section 2.2.5). 

6. Estimate the SMU grades using an appropriate estimation technique such as 

Ordinary Kriging (used for ranking of the SMUs within the panels). 

7. Run the LUC step to localise the conventional UC grade-tonnage relationships 

(assign a single grade to each SMU sized block). 

Compared with conventional UC estimation (steps 1 to 5), the additional steps to 

generate an LUC model includes steps 6 and 7 - generation of an Ordinary Kriging 

model at SMU scale and the localisation of the UC results (LUC). 
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Abazalov describes the concept and theory of the LUC method in his paper of 2006.  

The concept is outlined by Abzalov as follows: “The conventional UC method estimates 

a tonnage and grade of mineralisation which can be recovered using SMU of size (v) at 

the chosen cut-off value. A set of grade tonnage distributions is constructed for each 

studied panel by applying several cut-off values (zCN). The LUC algorithm then 

estimates the mean grades of the grade classes in each panel at the given SMU support. 

The grade class is the portion of the panel whose grade is higher than a given cut-off 

(zCi ), but lower than the next cut-off (zCi+1). The next step is to rank the SMU blocks 

distributed in each panel in their grade increasing order. Finally, the mean grades of 

the grade class which have been deduced from the UC model are assigned to the SMU 

blocks whose rank matches the grade class.  Thus, the key features of the LUC 

approach are the ability to calculate the mean grade of the grade class and assign these 

means grades to the SMU size blocks which have been ranked in each panel in 

increasing order of their grade.” 

 

The underlying idea of the LUC method is the ranking of the SMU blocks in increasing 

order of their grade.  It is deemed that reasonably accurate ranks of SMU blocks within 

the panels can be derived from the spatial distribution patterns predicted by the direct 

kriging of the SMU from sparse data (Abzalov, 2006).  The accuracy of these predicted 

rankings is expected to be better for more continuous mineralisation (characterised by a 

low nugget effect such as bauxites or iron oxide deposits) than for discontinuous 

mineralisation (deposits with a high nugget effect such as orogenic gold deposits).  In 

addition, the drill spacing relative to the spatial variance plays an important role – the 

closer the distances between drillholes, the better the quality of the ranking is expected 

to be (Abzalov, 2006). 

 

The outputs of the UC method forms the basis of LUC and includes the grade-tonnage 

relationships of the recoverable resources distributed within a panel.  The LUC 

procedure is illustrated on the process map of Figure 1 (Abzalov, 2006).  In the 

example, there are 16 SMUs (v) within a panel (V) and six different cut-off grades (zC) 

are applied.  The SMUs within each panel are ranked in increasing order of their grade 

based on a direct kriging of the SMUs.   
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Once the SMU ranks (SMUK) for each panel have been determined, grade classes (GCi) 

are then defined.  The grade class (GCi ) represents a proportion of a panel which grade 

is above the given cut-off (zCi ) and less than the next cut-off value (zCi+1) – see Figure 

1A.  The SMU ranks (SMUK) are then converted to the grade classes. The grade class 

(GCi) can be determined for each SMUK by comparing its (TK, TK+1) intervals with the 

intervals of the grade classes (Ti (zCi ), Ti+1(zCi+1)).  SMUK will be assigned grade class 

(GCi) if (TK–T K+1) ⊂ (Ti–Ti+1). 

 

The mean grades (Mi) of each grade class (GCi) can then be derived from the UC grade 

vs cut-off curve by separating the grade curve into the various grade classes – see 

Figure 1 B. 

 

Figure 1 C demonstrates how the mean grade (Mi) of each class can then be transferred 

to the SMUK blocks by matching their grade class indexes MGCi and TGCi.  This is 

done in an “opposite” fashion in that high grades are assigned to the lower ranks and 

vice versa (as the SMUs are ranked in increasing order of their grade). 

 

An important aspect to take note of is that the abovementioned procedure assumes an 

exact match between the grade class intervals and intervals of SMU blocks.  Practically, 

this will rarely be the case and this can be dealt with by weighting grades of the classes 

to their proportions of the SMU to estimate the mean SMU grade (Abzalov, 2006).  
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(A) This figure shows the cut-off 

grades on the x-axis (Zc) and the 

tonnage proportions (Ti) of 

mineralisation above cut-off on 

the y-axis (derived from the UC 

results). The GCi values (shown 

on the x-axis) are the grade 

classes signifying the portion of 

the mineralisation distributed in 

the panel which grade lies within 

the range of ≥zCi and <zCi+1. The 

TGCi values (shown on the y-axis) 

signifies the grade class indexes 

assigned to the SMU blocks 

falling within the range from Ti to 

Ti+1. 

 

(B) This figure shows the cut-off 

grades on the x-axis (Zc) and the 

definition of the mean grades (Mi) 

of the grade class (GCi ) on the y-

axis. 

 

(C) The mean grades (Mi) of the 

grade class (GCi) are transferred 

to the SMU blocks which index 

(TGCi ) is matching the grade 

class (GCi ) as illustrated on the 

figure. 

 

 

Figure 1. Sketch explaining the definition of the grade classes and assigning the grade values to 

the SMU blocks (Abzalov, 2006) 
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Since Abzalov developed the LUC method in 2006, compared to other non-linear 

techniques (such as conventional UC and MIK), relatively few papers and case studies 

have been published describing and demonstrating the use of the LUC technique.  In 

2011, Assibey-Bonsu and Deraisme published a paper which provided a brief review of 

the multivariate uniform conditioning and the localised multivariate uniform 

conditioning techniques and presented a case study based on a porphyry copper gold 

deposit in Peru.  The study showed that, in the multivariate case, Gaussian models used 

for calculating recoverable resources provide consistent results in modelling the change 

of support and the information effect.  The UC method met the goal of reproducing the 

correlation existing between the different grade elements at the panel scale.  The study 

further showed that, the Localised Multivariate Uniform Conditioning (LMUC) 

technique provided adequate initial individual post-processed localised multivariate 

SMU recoverable estimates (Deraisme et al, 2011).   

 

The authors followed this work up with another paper published in 2012 wherein they 

tested further techniques on the same porphyry copper gold deposit in an attempt to 

improve the LMUC estimates through multivariate block simulations which incorporate 

all the correlations of the secondary and main elements.  The technique is referred to as 

Localised Multivariate Simulated Estimates (LMSE) and its results were compared with 

that of LMUC.  The study showed that both approaches led to similar results, but the 

LMUC approach is straightforward and less time consuming whilst the LMSE approach 

provides access to the quantification of the uncertainty in the estimates (Deraisme et al, 

2012).   

 

In 2014, Abzalov published a paper on LUC in which two case studies were presented – 

one for an iron ore deposit and one for a bauxite deposit.  The case studies were used to 

illustrate the results of several years of study on the LUC method and its application to 

different geological environments.  It allowed identification of the strengths and 

weaknesses of the method.  The strengths identified included that the method produced 

accurate grade-tonnage functions; that the method can be useful even at the early stages 

of exploration and that block ranking can be improved with auxiliary data such as 

geophysical or geochemical information.  The weaknesses included that block ranks 
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produced by kriging can significantly differ from their “true” distribution if the 

variogram is characterised by a high nugget effect (Abzalov, 2014).   

 

In the same year, Millad and Zammit implemented the LUC technique for the 

recoverable resource estimation of the Kipoi Copper Project located in the DRC.  The 

paper discussed the implementation of an estimate using LUC and compared the results 

based on resource definition drilling to those obtained by close spaced grade control 

drilling and actual mill production.  The authors concluded that the LUC method was 

able to generate quantifiably more accurate predictions than a linear method such as 

Ordinary Kriging (Millad et al, 2014). 

 

In her Masters dissertation of 2015, Kathleen Hansmann applied the LUC technique to 

two hypothetical datasets representing two types of distributions – the first a 

symmetrical distribution (approaching normality) with a low nugget and well defined 

continuity and the second, an approximate log-normal distribution with high nugget 

effect and short range continuity.  The LUC technique was implemented to produce 

localised SMU estimates for the two datasets.  The resultant estimates were compared 

with the “actual” grade-tonnage curves (i.e. the close spaced hypothetical data) to 

determine the success of LUC for the two datasets.  The results showed that LUC 

performed well when there was an underlying normal distribution and there was 

sufficient data falling within the range of the variogram model, but there was only a 

slight benefit offered by UC for global grade tonnage (GT) predictions (the estimated 

results from the linear estimator OK were also reasonable).  However, when predicting 

the grades and tonnage of log-normally distributed data with poor data coverage in the 

ranges of the variograms, LUC performed better than OK. In these circumstances OK 

performed poorly due to conditional bias which may have been amplified by a high 

nugget effect and/or small blocks. The author concluded that when there is poor data 

coverage within the ranges of the variogram, UC is better at predicting the grades and 

tonnage of material above cut-off than the linear estimator OK (Hansmann, 2015).  
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2.4 Contribution to knowledge 

The validity of the LUC approach depends greatly on the ability to generate meaningful 

grade patterns to inform the ranking of the SMUs within the panels.  Abzalov cautioned 

that where the data is sparse and not close to a panel, or their distribution is 

characterised by strong short-range variability, there could be less of a meaningful 

pattern.  Accordingly, if the predictions of the SMU rankings by Ordinary Kriging (or 

any other technique) are inadequate, the advantages of using the LUC approach will be 

more limited or even entirely unsuitable as there will be low confidence in the spatial 

positioning of the SMUs (Abzalov, 2006).   

 

During the review of current research on the topic, it was found that few of the existing 

publications focused on demonstrating the validity of the predicted local grade patterns 

for real world deposits exhibiting high nugget and strong short range variability.   There 

therefore appeared to be a need to complete more research around this aspect of the 

LUC technique.  The research presented in this dissertation attempts to address this 

shortfall in current research.  In addition to this, the presented research will also help 

practitioners to understand and correctly apply the LUC technique. 
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3 CASE STUDY LOCATION AND GEOLOGY 

In this chapter, the case study dataset is introduced.  It comprises a real world gold 

deposit exhibiting high nugget and strong short range variability.   

 

The Tambali gold deposit was chosen for the study and it forms part of the Sadiola Gold 

Mine located in Mali close to the border with Senegal and approximately 440km north-

west of the capital Bamako (Figure 2).   

 

 

Figure 2. Locality map of the Sadiola Gold Mine located in Mali 

 

Two pits have been mined at Tambali - the north and south pits.  Data from the mined 

out portion of the north pit was selected for the study and represented about two to three 

month’s production (Figure 3). 
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Figure 3. Isometric view looking approximately North showing the case study area with respect 

to the north and south pits; the drilling and mineralisation model 

 

The Sadiola gold deposits geologically lie within the Kenieba Kedougou Birimian 

greenstone belt of south-western Mali (± 2.2 Ga).  The deposits are hosted by the Kofi 

Formation – a dominantly meta-sedimentary unit.  At Tambali, the host rocks comprise 

of moderately-sorted meta-sandstone with minor meta-siltstone interbeds and a finely-

bedded siltstone-shale unit with minor sandstone interbeds.  These meta-sedimentary 

units are north trending, but are intruded by numerous NNE-trending QFP dykes and 

plugs.  The weathering profile is deep and extends to depths of about 80-90 m.   

 

A simplified geological map of the Tambali north pit is shown in Figure 4. 
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Figure 4. Simplified geological map of the Tambali north pit (Masurel et al, 2014) 
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The mineralisation is developed in all host rocks and the mineralisation trends are 

associated with north-east trending shear zones marked by veining and alteration.   

The dominant ore mineral is arsenopyrite although pyrite, and in lesser extent 

pyrrhotite, have also been observed in core.  Antimony-bearing minerals are present in 

traces to minor amounts. The pathfinder element association of the ore typically 

comprise As-Au-Sb ± Ag-Bi-Mo (Masurel et al, 2014). 
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4 GEOLOGICAL INTERPRETATION AND DATA ANALYSES 

Having introduced the location and geology of the case study in the previous chapter, 

this chapter describes the sampling techniques and geological modelling method 

employed.  It is followed by descriptions of the mineralisation’s sample distribution; 

statistical characteristics and the behaviour of grades along the mineralisation 

boundaries. 

 

4.1 Mineralisation model and sample data 

Gold grade and structural trends were used to interpret the mineralisation using 

Leapfrog© software.  The interpretation was generated using the implicit Leapfrog© 

Grade Interpolation technique which involves the 3D contouring of grades whilst taking 

into account a chosen grade threshold and defined structural trends.  The output 

envelope based on a threshold (or lower grade limit) of 0.35 g/t was selected as it was 

deemed to best represent the mineralisation.  Before finalising, it was adjusted by a few 

manual edits where required.   

 

All available exploration and grade control data from the mined out portion of the 

Tambali North pit informed the study.  The exploration drillhole spacing was 

approximately 25 mE by 25 mN and the grade control drillhole spacing approximately 

6.25 mE by 12.5 mN (Figure 5). 

 

 

Figure 5.  Plan view showing (A) all samples and (B) exploration samples in the study area 
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Exploration samples were collected by Reverse Circulation (RC) or Diamond Core 

(DD) drilling techniques: 

 Diamond core drilling was by conventional wireline method with HQ (63.5 mm) 

or NQ (47.6 mm) sized drill bits.  Double and triple tube core barrels were used 

to capture the soft, friable saprolite material.  The core samples were cut in half 

using a diamond saw. The half core was sampled (generally over 1 m intervals 

honouring geological contacts) and submitted to the laboratory for further 

preparation and analysis. 

 RC drilling was undertaken using either 90 mm or 125 mm dual tube drill rods 

fitted with a tungsten carbide drag bit.  Chip samples were collected over 2 m 

intervals down the hole and split using a stacked riffle splitter for exploration 

samples and an automatic rotary cone splitter for grade control samples. Samples 

of approximately 3 kg were submitted to the laboratory for further preparation 

and analysis. 

 

All collar locations were surveyed with Differential GPS and downhole surveys were 

completed with a Reflex survey tool which provided azimuth, dip and magnetic 

readings for each sample point. Surveys were collected about every 30 m down the hole.  

Sample recoveries were generally acceptable (in excess of 90%) for both diamond core 

and RC drilling.  

 

All grade control drilling was by RC technique.  Routine grade control drilling was 

carried out with Drilltech D45KS rigs which provided a 146 mm hole whilst the deeper 

advanced grade control holes were drilled with the Schramm 685s or KWL 1600 using 

4 1/2 to 5 inch hammer bit sizes varying from 124 mm to 133 mm for the 4 1/2 inch 

hammer and 133mm to 140mm for the 5 inch hammer. 

 

Samples were dispatched to the analytical laboratory for analysis.  At the laboratory 

both drill core and RC samples were placed in an oven until dry (typically for 8 hours), 

then passed through a jaw crusher which reduced the maximum size to <6 mm.  A riffle 

splitter was used to reduce the sample size to 500 g, which was then pulverized for a 

minimum of 3 minutes in a Labtech LM2 chrome steel pulveriser.  The gold 
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concentration was determined using Fire Assay (for a 50 g aliquot) with Atomic 

Absorption Spectrometry (AAS) finish.  The minimum detection limit was 0.005 g/t Au. 

 

4.2 Compositing and bias 

The majority of the Tambali sampling was at either 1 m or 2 m intervals.  The samples 

were therefore composited to 2 m intervals within the interpreted mineralisation model 

to ensure equal sample support.  Datamine© software was used for compositing and 

mode 1 was selected.  This mode forces most samples to be included during 

compositing by slightly adjusting the composite length, whilst keeping it as close as 

possible to the specified composite interval. For instance, if the use of mode 0 (fixed 

composite interval) would have result in three 2 m composites and a 30 cm residual 

(which would have been discarded) for a particular drillhole and zone, use of mode 1 

(for the same interval) would have resulted in three 2.1 m intervals (three slightly larger 

composites, but no residual or sample discarding). 

 

Two different composite datasets were compiled – the first containing all available data 

(exploration plus grade control – the dense dataset) and the second containing only the 

exploration samples (i.e. the sparse dataset).  The summary statistics for the two 

datasets are shown in Figure 5.  In total, there were 4,851 composited drillhole samples 

in the dense dataset and 806 composited exploration samples in the sparse dataset. 

 

 

Figure 6.  Histograms of gold grade – All data (A) vs. Exploration data (B) 
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A bias test was completed to check for bias between the grade control (GC) and 

exploration (EX) grades. The selected bias test area (Figure 7) was well informed by 

both datasets down to an elevation of about 90 mRL (formed the lower elevation limit 

of the bias test area).  The selected bias test area occurred in the north pit and was a 

well-informed subset of the study area. 

 

 

Figure 7.  Bias test area 

 

The basic statistics of the two datasets (after top capping) compared well with the means 

within 2% of each other (Figure 8). 
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Figure 8.  Log Histograms – GC vs. EX 

 

A QQ Plot (Figure 9) further supported the observation that there was no significant 

bias between grade control and exploration sample grades. 

 

 

Figure 9.  QQ Plot – GC vs. EX 
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4.3 Grade capping 

A grade capping exercise showed that, within the study area, capping the exploration 

dataset to 15 g/t and the total dataset to 25 g/t would be appropriate for estimation.  The 

investigation of histograms, log probability plots and mean and variance plots were used 

to determine suitable grade cap values.  A total of four values were capped for the 

exploration dataset (representing about 0.5% of the dataset) and eleven values for the 

total dataset (representing about 0.2% of the total dataset).  The two datasets were de-

clustered with the ISATIS© software which makes use of a moving window to assign 

de-clustered weights to the samples.  The moving window dimensions were set to the 

approximate sample spacings of 25 mE by 25 mN by 2 mRL for exploration and 6.25 

mE by 12.5 mN by 2 mRL for the total dataset. 

 

The de-clustered statistics of the two datasets were found to be similar (Figure 10) with 

the mean grade of the total dataset (1.4 g/t) comparing well with that of the exploration 

dataset (1.46 g/t). 

 

 

Figure 10.  Histograms of de-clustered and top capped gold grade – All data (A) vs. 

Exploration data (B)  

 

4.4 Boundary analysis 

To determine whether the use of hard or soft boundaries during grade estimation would 

be appropriate, the grade variation across the mineralisation boundary was investigated.  
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A hard boundary refers to a situation where no samples outside of the mineralisation 

envelope is seen during estimation (the grade variation across the boundary is sharp).  A 

“soft boundary” refers to a gradational change of the grade across the boundary and 

includes the distance from the boundary that samples, falling outside of a particular 

domain, will still be seen when estimating the domain.   

 

The result of the boundary analysis across the mineralisation model contact is shown in 

Figure 11.  The distance from the boundary is plotted on the y-axis and the grade on the 

x-axis.  The mineralisation contact is at zero distance with negative distances occurring 

outside of the mineralisation model and positive distances inside of it.   

 

 

Figure 11.  Boundary analysis across mineralisation model contact 

 

The plot shows that the grade change across the boundary is reasonably sharp and 

hence, a hard boundary (including no samples outside of the mineralisation model) was 

selected for estimation. 
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5 ORDINARY KRIGING ESTIMATION 

This chapter deals with the process followed to generate the Ordinary Kriging estimates.  

These form inputs into the LUC process and the quality of the LUC estimates are 

dependent on them.  The methods used to derive the estimation parameters are 

described and include variogram modelling and Kriging Neighbourhood Analysis 

(Vann et al, 2003). 

 

The Tambali mining equipment supports a Selective Mining Unit (SMU) of 10 mN by 

10 mE by 3.33 mRL (mining takes place on 10 m benches in 3.33 m flitches).  As a 

result, a total of 27 SMUs (10x10x3.33) fits within each panel (30x30x10).  

 

Three different Ordinary Kriging estimates were produced for the study: 

 An Ordinary Kriging panel estimate from the sparse/exploration data: this estimate 

informed and conditioned the non-linear conventional UC estimate. 

 An Ordinary Kriging SMU estimate from the sparse/exploration data: this estimate 

was used to predict the local grade patterns for localisation (LUC).   

 An Ordinary Kriging SMU estimate from the dense dataset (grade control plus 

exploration): this estimate was considered the “truth” or best available estimate of 

the deposit.  It was ultimately used to evaluate the quality of the LUC estimate from 

sparse data. 

A summary of the estimation parameters used for producing these various Ordinary 

Kriging estimates are shown in Table 1.  The parameters for panel and SMU estimation 

from sparse data were the same whereas the parameters for estimation of the “truth” (i.e. 

SMU estimate from dense data) used fewer samples and a smaller search. 

Parameter 
OK panels: sparse 

data 

OK SMU: sparse 

data 

OK SMU: all data 

(‘truth’) 

Minimum number of composites 10 10 10 

Maximum number of composites 80 80 40 

Search Ellipsoid Rotation 

Azimuth: 35 Dip: 

75 

Dip Direction: 125 

Azimuth: 35 Dip: 

75 

Dip Direction: 125 

Azimuth: 35 Dip: 

75 

Dip Direction: 125 

Search Ellipse Dimensions 70x50x20 70x50x20 35x25x15 

Discretisation 5x5x5 5x5x5 5x5x5 

Table 1.   Estimation parameters for Ordinary Kriging estimation 
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In the following sections, the process to derive these parameters and the resultant 

estimates are described. 

 

5.1 Semi-variogram modelling  

Experimental semi-variograms of gold (Au) grade values distributed in the study area 

were calculated using all available drillhole samples.  The semi-variograms showed 

distinct anisotropy with the main direction of continuity being along an azimuth of 35 

degrees representing the strike direction (or dominant NNE-trending shear fabric).  

Across this strike direction (azimuth of 125 degrees with a 75 degree dip) a semi-major 

axis of continuity was defined.  The largest variability occurred in the third direction 

(perpendicular to the major and semi-major plane).  The experimental semi-variogram 

was modelled with a nugget effect and 2 spherical structures (Figure 12).   

 

 

Figure 12.  Directional semi-variograms of gold composite grades along the major (A), semi-

major (B) and minor (C) directions of continuity  
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The relative nugget effect of this semi-variogram (calculated as a ratio of nugget to the 

global sill) is approximately 33%.  This semi-variogram model has been used further in 

this study for all the block grade estimation using Ordinary Kriging (OK) or UC 

techniques. 

 

5.2 Optimising the estimation parameters 

The optimal set of estimation parameters to use was determined by a Kriging 

Neighbourhood Analysis (KNA).  During a KNA, kriging efficiency and slope of 

regression are used to investigate conditional bias for a given set of estimation 

parameters.  Kriging efficiency compares kriging variance against block variance.  If the 

kriging variance is low compared to the block variance, the degree of smoothing is 

minimised and the grade tonnage relationship is best reflected.  The slope of regression 

statistic describes the linear relationship between actual and estimated grades.  If the 

slope statistic is close to one, then an unbiased relationship is expected.   

 

For the block size optimisation, a discretisation of 5x5x5 and a minimum of 4 and 

maximum of 100 samples were used.  The semi-variogram model presented in the 

previous section was used.  Search ellipses were oriented according to the approximate 

orientation of the mineralisation with search distances set to approximate the variogram 

ranges.  The block sizes were then varied and the results for each block size recorded 

and graphed (Figure 13).  The optimal blocks size is considered to be the one with best 

Slope of Regression and Kriging Efficiency and consequently, 30x30x10 was selected 

as the block size for estimation. 

 

For the number of composites optimisation, the block size was fixed to the optimal one 

(i.e. 30x30x10); the maximum number of composites were varied and the result for each 

recorded and graphed (Figure 13). The maximum number of samples to use was 

considered to be 80 - the point at which the slope of regression and kriging efficiency 

graphs flattened out (beyond which point the use of more samples would only increase 

processing time, but would give no benefit in terms of estimation quality).  Usually, one 

would also consider the amount of negative kriging weights, but none were encountered 

for these tests.  At the chosen block size of 30 mN by 30 mE by 10 mRL and a 
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maximum number of composites of 80, the Slope of Regression and Kriging Efficiency 

were satisfactory at about 0.95 and 0.82 respectively.    

 

 

Figure 13.  Slope of Regression and Kriging Efficiency for block size and number of composites 

 

5.3 Ordinary Kriging estimation 

The sparse dataset (early stage/exploration) was used for kriging both the SMUs and the 

panels.  The same variogram model and the same search neighbourhoods were used for 

both (as per Table 1).  The distributions of these two estimates are compared in Figure 

14 together with a visual representation (typical plan views of the block estimates).   
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Figure 14.  Panel (A) and SMU (B) grades estimated by Ordinary Kriging with sparse 

exploration data 

 

Ordinary Kriging estimates of the SMUs based on all available data (dense dataset: 

grade control plus exploration samples) were also generated and were considered to 

represent the best available estimate of the SMU grades.  For the purposes of this study; 

they were referred to as the ‘true’ SMU grades.  The SMU estimates from sparse data 

were excessively smoothed in comparison with these ‘true’ SMU grades shown by a 

comparison in Figure 15.   
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Figure 15.  SMU grades estimated by Ordinary Kriging with (A) sparse exploration data and 

(B) dense exploration plus grade control data (‘true’ grades)  

 

The global mean grades were found to be similar, but the variances differed markedly 

with the ‘true’ grade standard deviation of 0.75 much greater than the standard deviation 

of the sparse data estimates (0.52).  As noted by Abzalov (2006), an attempt to use 

SMU grades obtained by kriging with the sparsely distributed data can lead to very 

inaccurate assumptions regarding the optimal mining scenarios. 
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6 LUC ESTIMATION 

The previous chapter covered the generation of the following Ordinary Kriging 

estimates: 

 An Ordinary Kriging panel estimate from the sparse/exploration data: to inform and 

condition the non-linear conventional UC estimate. 

 An Ordinary Kriging SMU estimate from the sparse/exploration data: to predict the 

local grade patterns for localisation of the UC results (LUC).   

 An Ordinary Kriging SMU estimate from the dense dataset (grade control plus 

exploration): this estimate was considered the “truth” or best available estimate of 

the deposit.  It was ultimately used to evaluate the quality of the estimates from 

sparse data. 

 

The current chapter describes the process followed to generate the LUC estimate – from 

the anamorphosis modelling and change of support to the UC and its localisation 

(LUC).  At the end of the chapter, the resultant LUC estimate is visually compared with 

the Ordinary Kriging estimates and the “truth”. 

 

6.1 LUC estimation 

ISATIS© software was used to model the recoverable resources from the sparse data 

using the conventional UC method.  The steps in the process included the following: 

 the de-clustered point data was transformed to Gaussian space (Gaussian 

Anamorphosis modelling) 

 change of support from point to SMU was performed using the Discrete 

Gaussian Model for change of support 

 UC was applied and 

 the UC results were localised with the LUC approach. 

 

Correction for the information effect was made during the Change of Support 

procedure.  The information effect makes provision for the fact that the SMUs will 

ultimately still be selected on an estimated grade (based on the Grade Control samples) 

instead of the real grade.  Hence, some ore blocks will be misclassified as waste and 
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some waste blocks as ore.  In order to get a more realistic recoverable estimate that 

takes account of this misclassification, a correction for the information effect was made 

by assuming that the final sampling mesh will be 6.25 mE by 12.5 mN by 2 mRL (i.e. 

the production or grade control sample spacing).  Even at the production stage, a 

difference between the estimated values of the mining blocks and the real grades can be 

expected (the estimates are still not based on “perfect” information).  As a result, we 

will still misclassify some of our mining blocks (i.e. actual ore blocks predicted to be 

waste or actual waste blocks predicted to be ore).  The information effect quantifies the 

amount and effect of misclassification of SMU blocks and a correction for it can then be 

made during estimation.  

 

6.2 Results 

The grade-tonnage curves of the OK panel grades; the block anamorphosis function (at 

SMU support) and the UC grades are compared in Figure 16.  Compared with the panel 

estimate, the block anamorphosis and the UC estimate showed greater selectivity (initial 

lower tonnes at higher grade). 

 

 

Figure 16.  Mean Grade and Total Tonnage curves: Panel Kriging vs. UC 

 

The conventional UC grade-tonnage relationships corresponded significantly better with 

the grade-tonnage relationships of the ‘true’ SMU grades than that obtained with the 
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OK estimates from sparse data (Figure 17).  The UC model represents a significant 

improvement in comparison with the ‘unconditioned’ OK estimates from sparse data.  

 

 

Figure 17.  Mean Grade and Total Tonnage curves: “true” grades vs. UC and OK grades 

 

The conventional UC results were localised by the LUC technique which involved 

ranking the SMU blocks within each panel (based on the OK SMU grades from sparse 

data) and deriving the grades of the SMU ranks from the UC model and assigning them 

to the corresponding SMU blocks (Figure 18).   

 

 

Figure 18.  SMU grades estimated by the LUC technique with sparse data 
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The grade-tonnage curves of the LUC estimate were very similar to that of the UC 

estimate (Figure 19).  The good match between the grade–tonnage curves derived from 

UC and LUC is expected as the LUC algorithm simply localises the UC results 

maintaining the grade–tonnage relationships predicted by the conventional UC model. 

 

 

Figure 19.  Mean Grade and Total Tonnage curves: “true” grades vs. UC, LUC and OK grades 

 

The grade distribution of the LUC estimates was less smoothed than that of the sparse 

data OK estimates and compared with the ‘true’ SMU grades; it better represented the 

variability of the deposit (Figure 20).  The standard deviation of the SMU grades 

modelled by the LUC method (SD = 0.80) was also closer to that of the ‘true’ grades 

(SD = 0.75) and significantly larger than that obtained by direct kriging from a sparse 

data grid (SD = 0.52). 
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Figure 20.  Plan view comparison of the panel kriging (A), the direct SMU kriging with sparse 

data (B), the LUC model (C) and the “true” grades (D) 

 

Compared with the OK estimates from sparse data, the LUC estimate better represents 

the variability expected at the time of mining.  The LUC estimate is still noticeably 

different from the ‘true’ grades.  The technique itself does not make up for the lack of 

data at the early stages (the LUC estimate is still based on sparse data and the LUC 

result depends heavily on the grade pattern predicted by the direct kriging of the SMU  - 

also from sparse data).   

 

A reconciliation of the LUC estimate with the Grade Control model over the study area 

is presented in Section 7.3 of this document.   

 

  



52 

 

7 THE QUALITY OF THE LOCALISATION 

The previous chapter described the process followed to generate the LUC estimate and 

concluded with a visual comparison of the LUC estimates with the “truth”.  The quality 

of the localisation is dependent on the meaningfulness of the grade pattern predicted by 

the direct kriging of the SMU (Abzalov, 2006).  This grade pattern is used for ranking 

of the SMUs into increasing order of their grade which determines the order in which 

the mean grades of the UC grade classes are assigned to the SMUs.   

 

In this chapter, the quality of the localisation was quantitatively assessed by comparing 

the rankings of the ‘true’ grades with the LUC rankings and determining if there is a 

relationship between the actual and predicted rankings.  If there was a relationship, then 

it could be said that there was some confidence in the local positioning achieved by the 

LUC technique – that it was not random, but that it showed a convincing relationship 

with the true positioning.  In addition to this, it was determined how often the ore-waste 

prediction of the LUC estimate was correct.  This provided another measure of the 

“success” of the local positioning of the SMUs achieved by the LUC technique.  

Finally, the LUC estimate was reconciled against the Grade Control model over the 

study area. 

 

7.1 True versus predicted ranking 

For both datasets, the 27 SMUs within each panel were sorted in increasing order of 

their grade.  Thus, each SMU was assigned a ‘true’ ranking as well as a ‘predicted’ (or 

LUC) ranking between 1 and 27.  The SMUs that fell outside of the estimation domain 

were disregarded (the affected panels therefore had fever ranking pairs).  A Scatter Plot 

showed a reasonable correlation between the ‘true’ and LUC rankings with a correlation 

coefficient of 0.6 (Figure 21). 
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Figure 21  Scatter Plot of LUC vs. True rankings  

 

The number of occurrences of each ranking combination (‘true’ vs. LUC) was 

subsequently counted across all panels.  For example, counting the number of instances 

where the actual and predicted ranks were both 1; then the number of instances where 

the actual rank was 1, but the predicted rank was 2; and so forth.  The result is presented 

in Figure 22 and shows all possible ranking combinations for up to 27 SMUs.  The 

actual (or ‘true’) ranking is shown on the X-axis and the predicted (or LUC) ranking on 

the Y-axis.  The colouring is based on the number of instances that a rank pair occurred. 
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Figure 22.  Plot of the number of occurrences of “true” vs. LUC rankings shown in (A) plan 

and (B) 3-Dimensional view  

 

Overall, the results showed a reasonable relationship between the actual and predicted 

rankings with a significantly greater amount of predicted SMU rankings being closer to 

the actual rankings than further away.  It can be concluded that, even though we are 

dealing with a deposit exhibiting high nugget and strong short range variability, there 

nevertheless appears to be some confidence in the local positioning achieved by the 

LUC technique i.e. it does not appear to be random, but shows a convincing relationship 

with the ‘true’ positioning.   

 

The LUC technique was applied using the sparse drillhole dataset (early 

stage/exploration) which followed a 25x25x2 m drilling grid.  This grid is 

conventionally used for classification of Mineral Resources of the Indicated category 

for this deposit.  Drill spacing plays an important role in the quality of the localisation 

achieved – the closer the distances between drillholes, the better the quality of the 

ranking is expected to be.  Conversely, wider drillhole spacing would be expected to 

reduce the quality of the localisation achieved. 
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7.2 Accuracy of LUC ore-waste prediction 

Another check on the quality of the localisation achieved by the LUC technique 

involved determining how often the ore-waste prediction of the LUC estimate was 

correct.  A particular SMU was deemed to be waste if it was below the cut-off grade and 

ore if it was above the cut-off grade.  To achieve this, the following was determined 

over all the SMUs within the study area: 

 A correct classification: the number of SMUs that were predicted to be waste by the 

LUC estimate and were actually waste as measured against the ‘true’ grades. 

 A misclassification: the number of SMUs that were predicted to be waste by the 

LUC estimate, but that turned out to be ore as measured by the ‘true’ grades. 

 A correct classification: the number of SMUs that were predicted to be ore by the 

LUC estimate and were actually ore as measured against the ‘true’ grades. 

 A misclassification: the number of SMUs that were predicted to be ore by the LUC 

estimate and were actually waste as measured against the ‘true’ grades. 

 

This exercise was undertaken for three different cut-off grades.  In order of increasing 

cut-off grade it included the Mineralised Waste (MW) cut-off grade of 0.65 g/t; the 

Marginal Grade Ore (MGO) cut-off grade of 1 g/t and the Full Grade Ore (FGO) cut-off 

grade of 1.2 g/t.  The MGO and FGO material are mined and stockpiled separately, but 

blended and fed to the plant as scheduled (blending gives flexibility in terms of 

delivered grade).  MW material is stockpiled separately, but generally forms part of 

only the Mineral Resource, not the declared Ore Reserve (stockpiled for potential 

processing at the end of the life of the mine).  This MW material may become an Ore 

Reserve and be fed to the plant at any time should the economics (for example gold 

price or costs) improve to such an extent, that they become economically viable.   

 

The result of the study is shown in Table 2 and is separated by the MW, MGO and FGO 

cut-off grades.   
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Actual 
Predictio

n 
Number 

Percentage of 

total 
Comment 

Mineralised Waste cut-off grade – 0.65 g/t 

Waste Waste 26 1% Correct classification 

Waste Ore 88 4% Misclassification 

Ore Waste 251 12% Misclassification 

Ore Ore 1778 83% Correct classification 

 

Total correct 84%  
Total incorrect 16% 

 

Marginal Grade Ore cut-off grade – 1 g/t 

Waste Waste 407 19% Correct classification 

Waste Ore 337 16% Misclassification 

Ore Waste 384 18% Misclassification 

Ore Ore 1015 47% Correct classification 

 

Total correct 66%  
Total incorrect 34% 

 

Full Grade Ore cut-off grade – 1.2 g/t 

Waste Waste 684 32% Correct classification 

Waste Ore 398 19% Misclassification 

Ore Waste 379 18% Misclassification 

Ore Ore 682 32% Correct classification 

 

Total correct 64%  
Total incorrect 36% 

Table 2.   Tonnes, grade and metal comparisons of Grade Control and LUC within the study 

area 

 

At the lower MW cut-off grade, the ore-waste prediction achieved by the LUC estimate 

was very good at about 84% accuracy.  This reduced to 66% and 64% accuracy for the 

higher MGO and FGO cut-off grades respectively.  For the level of information that the 

LUC estimate is based on (i.e. sparse exploration data) and considering what it will be 

used for (i.e. the technical and financial valuation of the project and/or long term mine 

planning and scheduling) the achieved LUC prediction is considered very good. 
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7.3 Reconciliation with the Grade Control model 

Finally, the LUC estimate was reconciled against the Grade Control model over the 

entire study area (Table 3).  The short term mine plans are based on the Grade Control 

model and it is used for designing the shapes for mining. 

   

Cut-off 

grade 

(g/t) 

Grade Control Model LUC Model Percentage Difference 

TONS 
GRADE 

(g/t) 

METAL 

(g) 
TONS 

GRADE 

(g/t) 

METAL 

(g) 
TONS 

GRADE 

(g/t) 

METAL 

(g) 

0.0 778,083 1.39 1,084,858 713,083 1.41 1,005,692 -8% 1% -7% 

0.4 777,472 1.40 1,084,658 711,667 1.41 1,005,208 -8% 1% -7% 

0.5 775,528 1.40 1,083,744 706,583 1.42 1,002,855 -9% 2% -7% 

0.6 757,944 1.42 1,073,911 691,083 1.44 994,202 -9% 2% -7% 

0.7 718,417 1.46 1,048,128 650,417 1.49 967,707 -9% 2% -8% 

0.8 651,805 1.53 998,432 590,333 1.56 922,518 -9% 2% -8% 

0.9 575,139 1.62 933,577 529,833 1.64 871,178 -8% 1% -7% 

1.0 510,944 1.71 872,971 470,417 1.73 814,883 -8% 1% -7% 

1.1 445,139 1.81 804,089 412,833 1.83 754,347 -7% 1% -6% 

1.2 384,000 1.91 733,918 355,000 1.94 687,977 -8% 1% -6% 

1.3 330,444 2.02 667,239 308,000 2.04 629,348 -7% 1% -6% 

1.4 286,139 2.12 607,876 267,833 2.15 575,153 -6% 1% -5% 

1.5 242,917 2.24 545,271 231,250 2.26 522,203 -5% 1% -4% 

2.0 121,722 2.78 337,940 115,917 2.80 324,365 -5% 1% -4% 

Table 3.   Tonnes, grade and metal comparisons of Grade Control and LUC within the study 

area 

 

The Grade Control and LUC models compared very well with tonnes and metal within 

about 4 to 9 percent of each other and grades within 1 to 2 percent.  This is considered 

especially good considering that the study area represented only about two to three 

month’s production (reconciliations over smaller volumes are expected to be poorer 

than over larger volumes).  
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8 ALTERNATIVES FOR GRADE PATTERN ESTIMATION 

In the previous chapters, the LUC estimation process and results were described and the 

quality of the localisation achieved – by the direct kriging of the SMU – was evaluated.   

 

LUC can also incorporate external information such as high resolution geophysical data 

or alternative estimation techniques (other than Ordinary Kriging) for prediction of local 

grade patterns.  In light of this, an alternative technique for the estimation of the grade 

patterns used for SMU ranking was tested and compared with that achieved by the 

direct kriging of the SMUs.  Inverse Distance Weighting (IDW) was used and its 

application and results are described in this chapter. 

 

Two IDW estimates were produced - one to the power of two (IDW2) and one to the 

power of 5 (IDW5).  The LUC ranking determined by OK was compared with rankings 

obtained by Inverse Distance Weighting (IDW) to evaluate the robustness of the OK 

estimation technique for determination of the rankings (Figure 23).   
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Figure 23  Plan view comparison showing the ranking models (left) and the corresponding LUC 

result (right) for Ordinary Kriging (A), IDW2 (B) and IDW5 (C) 

 

Visually the results from the OK and IDW rankings looked similar with the LUC model 

based on IDW rankings slightly more smoothed in comparison with that based on OK 

rankings.  However, when comparing the rank count plots for the three scenarios 

(counting the number of occurrences of each ranking combination) the LUC ranking 

based on OK appeared to be better correlated with the ‘true’ rankings than those based 

on IDW2 and IDW5 (Figure 24) – a greater amount of rank pairs occurred closer to the 
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45 degree line (where prediction = actual) for the LUC estimate based on OK, than for 

those based on IDW. 

 

 

Figure 24  Comparison of the number of occurrences of ‘true’ vs. LUC rankings based on 

rankings from (A) Ordinary Kriging, (B) IDW2 and (C) IDW5 

 

In conclusion, the use of IDW for SMU ranking did not produce a better result than that 

achieved with the direct kriging of the SMU.  For ranking of the SMUs, one should 

always use the best available technique or data. 
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9 SUMMARY AND CONCLUSION 

A basic assumption of the conventional UC approach is that the locations of ore and 

waste within the panels are unknown.  The LUC method aims to overcome this 

theoretical constraint by attempting to predict the spatial locations of the SMUs, but its 

validity is strongly dependent on the ability to confidently estimate the rankings of the 

SMUs within the panels.   

 

Since 2006, the LUC method has been implemented in commercial software and has 

been commonly used for the estimation of recoverable resources.  The LUC technique is 

an enhancement of the conventional UC technique and it re-produces the conventional 

UC grade-tonnage relationships.  Even though this is the case, the validity of the 

localisation is heavily reliant on the ability to reasonably predict SMU rankings from 

sparse data and the accuracy of this localisation depends on the techniques used for the 

SMU ranking (Abzalov, 2014).   

 

It is considered that, when using the direct kriging of the SMU for ranking, the presence 

of a high nugget and strong short range variability could potentially result in inadequate 

localisation.  In addition, this could be aggravated if drill spacing is too broad to achieve 

adequate localisation.  Drill spacing plays an important role in the quality of the 

localisation achieved by LUC – the closer the distances between drillholes – the better 

the quality of the ranking is expected to be.  Accordingly, if the predictions of the SMU 

rankings by Ordinary Kriging (or any other technique) are inadequate, the advantages of 

using the LUC approach will be more limited or even entirely unsuitable.  It is therefore 

deemed necessary to assess the quality of the localisation before accepting an LUC 

result.  In the mined out area of an active open pit, one could achieve this by comparing 

the rankings of the SMUs based on close spaced Grade Control data with the rankings 

based on sparse exploration data (as was done in this study).  In an unmined pit with no 

close spaced data, it is more difficult to assess the quality of the localisation.  However, 

one could attempt to improve the rankings from the direct kriging of the SMUs by 

integrating it with auxiliary data such as geophysical or geochemical information as 

proposed by Abzalov (Abzalov, 2014).   

 



62 

 

In the current study, the LUC technique was implemented for the mined out portion of a 

typical Birimian style gold deposit (mined by open pit methods) to model the grades of 

SMU sized blocks from sparse, early stage data which followed a 25x25x2 m drilling 

grid.  This grid is conventionally used for classification of Mineral Resources of the 

Indicated category for this deposit.  Drill spacing plays an important role in the quality 

of the localisation achieved – the closer the distances between drillholes, the better the 

quality of the ranking is expected to be.  Conversely, wider drillhole spacing would be 

expected to reduce the quality of the localisation achieved.   

 

The LUC grade-tonnage relationships closely matched the conventional UC grade-

tonnage relationships and better predicted the grade-tonnage relationship of the ‘true’ 

grades than that derived from Ordinary Kriging.  In order to assess the quality of the 

LUC localisation, the direct SMU kriging rankings (based on sparse data) were 

compared with the Grade Control model rankings (based on close spaced data and the 

best available estimate of the deposit).  The results showed a reasonable relationship 

between the actual and predicted rankings and it was concluded that, even though the 

grade patterns predicted by the direct kriging of the SMUs may be less meaningful for 

deposits exhibiting strong short range continuity, there nevertheless appears to be some 

confidence in the local positioning achieved by the LUC technique.  Therefore, it is 

considered that the use of the LUC technique may still be useful for this style of 

deposits.    

 

It is recommended that, if possible, the quality of the localisation achieved by the LUC 

technique should be determined for each LUC study undertaken.  This is to ensure that 

the LUC estimates are acceptable - that there is a relationship between the spatial 

positioning predicted by the LUC technique and that which will be encountered at the 

time of mining.  
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