
       School of Molecular and Cell Biology     

University of the Witwatersrand 

Johannesburg 

 

 

Defining the factors that influence 
the biosorption of lead by 

Paenibacillus castaneae and 
Micrococcus luteus 

_______________________________________________________________________________ 
A dissertation submitted to the Faculty of Science, University of the 

Witwatersrand, in fulfilment of the requirements for the degree of Master of 

Science in, Microbiology and Biotechnology 

2017 

by 
 

Darshana Vallabh 

453726 

 

 

 

Supervisor: Dr K. Kondiah  

Advisor: Dr D. Mavri-Damelin 

Postgraduate Coordinator: Dr J. Mollett 

 



                                                                   
                                                                 

Declaration 
I, Darshana Vallabh (453726), am a student registered for the degree of Master of 

Science in the academic year 2016.  

I hereby declare the following:  

• I am aware that plagiarism (the use of someone else’s work without their 

permission and/or without acknowledging the original source) is wrong.  

• I confirm that the work submitted for assessment for the above degree is my own 

unaided work except where explicitly indicated otherwise.   

• I have not submitted this work before for any other degree or examination at any 

other University.  

• The information used in this dissertation HAS NOT been obtained by me while 

employed by or working under the aegis of, any person or organisation other than 

the University.  

• I have followed the required conventions in referencing the thoughts and ideas 

of others.  

• I understand that the University of the Witwatersrand may take disciplinary 

action against me if there is a belief that this is not my own unaided work or that I 

have failed to acknowledge the source of the ideas or words in my writing.  

  

Signature___________  

 15 Day of February 2017 

 

 

 

 

ii 
 



                                                                   
                                                                 

Acknowledgements 

I would first and foremost like to thank my supervisor Dr K. Kondiah for her 

unwavering support, guidance, encouragement, advice and assistance and without 

whom this research would not be possible. I am eternally grateful for your 

patience and all the knowledge you have shared with me. 

My sincere and heartfelt gratitude goes out to my parents and brother for their 

unfailing support, love and continuous encouragement through this entire process. 

Thank you for being my pillars of strength and always encouraging me to keep 

going. This task would not be possible without you. 

Thank you to my family and friends for your constant support, love and 

encouragement throughout this entire process and for always cheering me on. 

A very big thank you to Vidya, Frances and Dishon for their continuous support, 

motivation, advice, help and friendship. Thank you for making this journey and 

learning experience a wonderful one. 

To all my fellow colleagues in labs 211 and 212 and the biology 2nd floor, thank 

you for your support, encouragement and help and for making this journey all the 

more joyful, amazing and one I will always remember. 

I would like to thank my advisor Dr D. Mavri-Damelin for all her support and 

assistance through this research. 

I would like to thank Professor Tutu and Mr Chuene Mokgehle from the 

Department of Chemistry, University of the Witwatersrand for ICPOES analysis. 

My sincere gratitude and appreciation goes out to the NRF for the block grant and 

the WITS PMA for the financial support throughout this study. 

I wish to thank the school of Molecular and Cell Biology and the University of the 

Witwatersrand for the opportunity to have conducted this research, the knowledge 

and experience I have gained from this research is truly invaluable. 

 

iii 
 



                                                                   
                                                                 

Abstract 
Heavy metal contamination, of natural water resources, resulting from the large 

amounts of toxic waste generated by industrial practices is of great environmental 

concern. Lead (Pb) in particular is one of the most toxic heavy metals that leads to 

several health deficiencies upon human exposure. The reduction of heavy metals 

like Pb to acceptable levels in the water therefore becomes critical for potable and 

agricultural use. 

Removal of heavy metals by conventional methods is expensive and results in 

secondary pollution. Bioremediation, a process that passively removes heavy 

metals from solution through microbial biosorption, is a much sought after 

alternative because it is more eco-friendly and cost-effective. Micrococcus luteus 

and Paenibacillus castaneae are two bacterial species reported to be highly 

resistant to Pb making them favourable as metal biosorbents. The present study 

aimed to further characterise these species as biosorbents by evaluating the 

influence of environmental conditions on their rate of biosorption of Pb. Each 

bacterial isolate was heat-killed and exposed to 0.5 mM (150 mg/L) Pb and the 

maximal rate of metal uptake calculated when the pH, temperature and biomass 

concentration were varied. Additionally, the initial metal concentration was 

increased from 0.005 to 1.25 mM to determine its effect on Pb uptake by each 

species. The influence of competing cations (Ni2+, Co2+, Mn2+ and Zn2+) on the 

rate of Pb uptake by each isolate was also established.  

Both bacterial isolates resulted in the biosorption of at least 50% of 0.5 mM Pb 

ions when used at a pH of 7, temperature of 25 oC, and a biomass concentration of 

2 g/L. The rate of metal uptake for M. luteus at the above mentioned parameters 

was found to be 24.51 mg/g biomass, while the rate of metal uptake for P. 

castaneae was 15.63 mg/g biomass. These findings indicated that M. luteus took 

up more Pb at a faster rate in comparison to P. castaneae. The present study 

furthermore elucidated that as the metal concentration of Pb was increased, the 

amount of Pb biosorbed by M. luteus decreased from 84.76% to 46.10%. 

Similarly, P. castaneae yielded 81.39% biosorption from 0.005 mM Pb but only 

34.29% of Pb was taken up when the concentration was increased to 1.25 mM. 
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When the bacteria were exposed to various competing cations an increase in the 

rate of Pb biosorption was observed for P. castaneae while the opposite effect was 

noted for M. luteus. 

Findings from this study show that under high metal concentrations, both M. 

luteus and P. castaneae are capable of significantly reducing the level of Pb from 

pure solution. The results warrant further treatment of several industrial effluents 

using these biosorbents for subsequent application in wastewater treatment.  

Keywords: Biosorption, heavy metals, lead, Micrococcus luteus, Paenibacillus 

castaneae, wastewater  
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Chapter 1 

Introduction 

1.1. Background 

The advancement of technology and industrialisation has led to the increase in 

water pollution due to the generation of large aqueous toxic effluents 

(Vijayaraghavan and Yun, 2008). These effluents are generated by many 

industries such as surface finishing, electroplating, metallurgical, tannery, 

chemical manufacturing, mining and battery manufacturing industries and are 

found to be the main source of heavy metal pollution (Meena et al., 2005). 

Industrial effluents contain elevated amounts of toxic heavy metals such as 

mercury (Hg), copper (Cu), uranium (U), manganese (Mn), nickel (Ni), cobalt 

(Co), zinc (Zn) and lead (Pb). These metals have an adverse effect on the 

environment and health sectors upon exposure (Gavrilescu, 2004). Major 

concerns regarding the release of heavy metals into the environment is the 

drainage of these metals into rivers and dams which form the main source of 

drinking water for many human settlements downstream (Malik, 2004). Another 

concern regarding the disposal of heavy metals results from marine animals that 

readily adsorb them from wastewaters making a direct entry into human food 

chains, which presents a high health risk for consumers (Meena et al., 2005). 

Upon ingestion of these toxic metals, detrimental health impacts such as 

neurodegeneration, liver and bone damage as well as interference with the 

function of certain vital enzymes (Malik, 2004) can be experienced. 

There have been many physicochemical methods employed for the removal of 

heavy metals from effluents. However, these methods are commercially 

impractical due to high operating costs or difficulty in treating solid wastes 

generated (Gavrilescu, 2004). Examples of such conventional technologies 

include chemical precipitation, reverse osmosis, evaporation recovery, ion 

exchange, sequestration and electrochemical treatment (Malik, 2004; Ahluwalia 

and Goyal, 2007). The increased amount of reagent requirement and the 
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unpredictable amount of metal ion removal are further disadvantages associated 

with these methods. Additionally, strong and contaminating reagents are used for 

desorption which results in toxic sludge and secondary environmental pollution 

(Malik, 2004). 

An alternative and cost effective method for metal removal is through a 

biotechnological approach. This approach involves the use of microorganisms to 

adsorb and accumulate heavy metals (Zabochnicka-Świątek and Krzywonos, 

2014). Microorganisms have the ability to capture, accumulate and bind heavy 

metals from water solutions; this procedure is usually referred to as biosorption or 

bioaccumulation.   

Biosorption may be defined as the ability of certain types of microbial biomass to 

retain relatively high amounts of metal ions through a passive method of metal 

sorption (Volesky, 1990). Metal sorption can occur by complexation, 

coordination, ion exchange, adsorption and chelation (Volesky, 1990). The cell 

walls of microbial biomass are composed of polysaccharides, proteins and lipids 

that carry abundant metal binding groups such as carboxyl, sulphate, phosphate 

and amino groups (Nanda, Sharma and Kumar, 2011). These metal binding 

groups allow for metal cations to complex with negatively charged reaction sites 

adsorbing them onto the cell surface (Ahluwalia and Goyal, 2007). An important 

feature of biosorption is its ability to allow for binding and accumulation of metal 

species even once the cell is not metabolically active (Volesky, 1990).  

Since heavy metals are natural elements and at a most basic level are just atoms, 

degradation and metabolism are not possible (Monachese et al., 2012). Instead 

microorganisms such as bacteria have evolved coping strategies to either 

transform the element to a less harmful form or they bind the metal intracellularly 

(bioaccumulation), thereby preventing any harmful interactions in the host cell 

(Monachese et al., 2012). It should also be noted that microorganisms have the 

ability to actively transport the metal out of the cell cytosol (Monachese et al., 

2012). 
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The interaction between heavy metals and bacterial species, and the ability of 

bacterial species to remove heavy metals from solution is a unique process 

(Monachese et al., 2012) that can be exploited for our benefit. Biosorption appears 

to be more favourable than physicochemical processes and even bioaccumulation 

because it is an active process. Biosorbents are heat killed cells that are not 

metabolically active but still have the ability to bind heavy metal to their cell 

surface (Zabochnicka-Świątek and Krzywonos, 2014). This is more cost effective 

than using living biomass which would require additional energy supply and 

nutrients (Zabochnicka-Świątek and Krzywonos, 2014). Additionally, many 

biosorbents can be obtained from industrial waste (Vijayaraghavan and Yun, 

2008) further alleviating the costs of culturing the biomass. Other advantages of 

this process include the rapid rate of metal removal and the relatively low energy 

demands (Vijayaraghavan and Yun, 2008). 

Despite the benefits of biosorption as a treatment strategy for heavy metals, few 

biosorbents have been commercialised. One of the limitations involves the need to 

optimise the process itself. This is because the efficiency of metal biosorption is 

affected by several environmental conditions such as pH, temperature, biomass 

concentration and metal concentration (Ahalya, Ramachandra and Kanamadi, 

2003). Several studies that have looked at biosorption kinetics have reported that 

at a lower pH, biosorption is decreased due to competition from H+ ions 

(Chatterjee, Bhattacharjee and Chandra, 2010; Çolak et al., 2011; Abbas et al., 

2014). Temperature affects the viscosity and solubility of metal ions which would 

influence the mobility and therefore the rate of metal uptake (Aksu, Sag and 

Kutsal, 1992; Zouboulis, Lokidou and Matis, 2004; Congeevaram et al., 2007; 

Fan et al., 2008). The biomass concentration is important because it represents the 

number of active binding sites therefore providing enough binding sites would 

enable maximal biosorption but too much biomass would lead to spatial 

interference reducing biosorption (Al-Asheh and Duvnjak, 1995; Fan et al., 2008). 

In this regard a study conducted by Puranik and Paknikar (1999) on the 

biosorption of Pb, Cd and Zn by Citrobacter illustrated that the biosorption rate 

increased as the pH was increased. The same trend was reported when the initial 
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metal concentration was increased. However, as the biomass concentration was 

increased the rate of biosorption of Pb, Cd and Ni was found to decrease.  

The examples stated above are just a few that indicate how the rates of biosorption 

may be affected by several environmental conditions. Furthermore, the range 

within which commercial biosorbents can function under such conditions requires 

optimisation on a case to case basis. The present study sought to study the 

performance of two bacterial biosorbents, Micrococcus luteus and Paenibacillus 

castaneae, in the uptake of Pb under the influence of pH, temperature, biomass 

concentration, initial metal concentration and competing cations. Both 

microorganisms were selected for the study as they were isolated from acid mine 

decant (AMD) on the West Rand of Johannesburg and were previously shown to 

be heavy metal resistant. 

Pb is a toxic, mutagenic and non-degradable heavy metal that leads to Pb 

poisoning, neurological diseases and damages and disruptions to systems such as 

cardiovascular, renal and reproductive systems (Brochin et al., 2008). It is a 

prominent metal contaminant of water in Gauteng. Acid mine decant that is 

released into natural water sources can carry from 2 mg/L (West Rand) up to 60 

mg/L Pb on the East Rand Basin (Personal communication, K. Kondiah) as a 

consequence of mining activities around the Witwatersrand Basin, Gauteng. This 

is between 200 – 6000 fold more as compared to the acceptable limit (0.05 – 0.10 

mg/L) for drinking water (WHO, 2008). Other industries that contribute to Pb 

containing effluents in Gauteng include the paint and iron smelting industries.  

Although these high concentrations are diluted within the natural rivers there is 

still a significant quantity of Pb that is reaching downstream human settlements. 

These communities use the water for personal consumption as well as agricultural 

purposes. The metal is thus directly or indirectly ingested through the food chain 

resulting in its accumulation within human tissues where it is detrimental to our 

health. 

Bacterial biosorbents can be used as an eco-friendly and cost effective means of 

further reducing Pb concentrations from chemically treated wastewaters such as 

14 
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AMD. Suitable biosorbents can be sourced from areas which are highly 

contaminated with heavy metals as these isolates may be attained with little/no 

additional cost therefore proving to be more economical (Vijayaraghavan and 

Yun, 2008).  

The present study proposes to optimise M. luteus and P. castaneae as biosorbents 

for Pb. Both bacteria were isolated from AMD on the West Rand, Gauteng and 

are reported to tolerate up to 6000 mg/L of Pb (Vallabh, 2014). M. luteus is a 

common and known metal biosorbent that is reported to effectively accumulate 

Cu and Pb in an extracellular manner in layers of extracellular polymeric 

substances (EPS) (Maldonado et al., 2010). On the other hand, there are no 

literature reports documenting the same in P. castaneae. However, other species 

belonging to the genus Paenibacillus are known to biosorb heavy metals 

including Pb, Cu, Zn, Cd, Ni and Co by EPS (Pérez et al., 2008; Çolak et al., 

2013) suggesting that P. castaneae may have similar capabilities.  

1.2. Aim of the research 

The aim of this particular research was to study the influence of external 

parameters on the rate of lead sorption by M. luteus and P. castaneae. 

1.3. Objectives of the research 

The specific objectives set out to fulfil the central aim were: 

• To calculate the specific rate of Pb uptake by heat-killed P. castaneae and 

M. luteus. 

• To calculate the changes in the specific rate of Pb uptake when 

temperature, pH, biomass concentration and initial metal concentration are 

varied in both bacterial strains. 

• To establish whether competing cations such as Ni2+, Zn2+, Mn2+ and Co2+ 

act synergistically or antagonistically on the uptake of Pb by each bacteria. 

• To compare the efficiency of P. castaneae and M. luteus in the biosorption 

of Pb. 
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1.4.  Chapter outline 
This dissertation follows the structure outlined below. 

Chapter 1 entails a brief introduction to the area of research and outline of the 

problem statement. The main aim/ research question and the specific objectives 

required in order to achieve and successfully address the problem in question are 

also discussed in this particular chapter. 

Chapter 2 forms an in depth review on current literature discussing heavy metal 

contamination, its treatment and the optimisation of biosorption. This chapter also 

provides an explanation behind the feasibility and economic advantage of using a 

biological approach as compared to a chemical approach of metal removal.  

Chapter 3 gives details of the materials used and methods followed in order to 

accurately and reproducibly conduct the experimental procedure required to 

address the aim. 

Chapter 4 illustrates and discusses the results obtained from the research 

conducted. This chapter displays and discusses the results received for the 

following external parameters: 

• Effect of pH 

• Effect of temperature 

• Effect of biomass concentration 

• Effect of initial metal concentration 

• The effect of competing cations on the biosorption of Pb by M. luteus and 

P. castaneae 

Chapter 5 forms the final conclusion and future recommendations from the 

present study. 
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Chapter 2 

Literature Review 
2.1.   Heavy metal contamination 

Human industrial activities over the past decade have led to an increased release 

of inorganic and organic compounds into the environment. The release of these 

compounds has resulted in a drastic increase in heavy metal pollution (Lloyd, 

2002). Industries such as electroplating, tannery, smelting and synthetic 

compound creation as well as mining operations, release aqueous effluents 

containing toxic heavy metals. Such heavy metals include: Cr, Cu, Pb, Hg, Mn, 

Cd, Ni, Zn and Fe (Meena et al., 2005; Ahluwalia and Goyal, 2007). Heavy 

metals are not degradable and are found to be persistent, toxic and mutagenic in 

nature (Gavrilescu, 2004). 

Many mining operations and geochemical activities result in the creation of AMD. 

Acid mine drainage is produced when sulphide bearing material is exposed to 

oxygen and water (Oelofse et al., 2007). It is characterised by a low pH, high 

electrical conductivity and toxic heavy metals (Oelofse et al., 2007). The heavy 

metals are carried by acid water into rivers and dams downstream (Duruibe, 

Ogwuegbe and Egwurugwu, 2007) where they are harmful not only to the 

environment but also to humans upon exposure (Gavrilescu, 2004). Animals that 

drink water from these contaminated rivers and dams accumulate the heavy metals 

in their tissues (Duruibe, Ogwuegbe and Egwurugwu, 2007). Petukhova, 2013 

reported an accumulation of 0.070 mg/kg of Pb in the muscle tissues of cattle that 

consumed such water. Humans are subsequently exposed to and accumulate the 

metal into their tissues by consuming the contaminated animals and plants where 

they may cause various biochemical disorders (Duruibe, Ogwuegbe and 

Egwurugwu, 2007). 

While some heavy metals are toxic with no cellular role, others are important for 

life at low concentrations. However at elevated concentrations they become highly 
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toxic due to their inhibition of activities of sensitive enzymes such as oxidases, 

catalase and dismutase (Stern, 2010; Nanda, Sharma and Kumar, 2011). Heavy 

metals such as Cr, Hg, As and Pb are of major concern especially when found at 

non-permissible concentration levels in rivers and dams as they are known to be 

detrimental to human health upon exposure (Jarup, 2003).  The present study 

focuses primarily on Pb contamination in water and its subsequent clean-up which 

will further be discussed in the sections to follow. 

2.1.1. Pb toxicity and contamination 

Pb is a metallic, malleable and ductile element. It is one of the most toxic heavy 

metals and is of no biological use (Jarup, 2003). It has a diversified use in petrol 

fuels, paints, food cans, ceramics, textile, mining industries and battery storage 

(Banik et al., 2014). Therefore Pb is present in air, soil, dust and water. Human 

exposure to Pb can occur through inhalation, digestion and dermal adsorption and 

thus may cause lead poisoning which leads to damages to the liver, kidney as well 

as mental disability and abnormalities in pregnancy (Meena et al., 2005; Duruibe, 

Ogwuegbe and Egwurugwu, 2007).  

Chronic Pb poisoning may cause gastrointestinal diseases, neuromuscular 

disorders as well as central nervous system effects (Meena et al., 2005). 

Accumulation of Pb in the nervous system is found to block a receptor known as 

N-methyl-D-aspartate which is responsible for the maturation of brain plasticity. 

Its blockage therefore leads to limitation and disruption of the permanent intake of 

newly learned knowledge (Brochin et al., 2008). A crucial point and most harmful 

aspect of Pb poisoning may occur during the in utero period, whereby the foetus is 

susceptible to toxins and disease as a result of still being in a developmental phase 

and therefore is unable to protect itself (Brochin et al., 2008). Pb exposure during 

this period may lead to crucial neurological disorders and developmental 

problems that may manifest later in the unborn child’s life (Brochin et al., 2008). 

In South Africa, the most common sources of Pb associated with water pollution 

are emanated from mining activities as well as paint industries, unleaded gasoline 

and lead soldered pipelines (Nriagu, Blankson and Ocran, 1996; Awofolu et al., 

2005). There are many provinces like the Eastern Cape where such activities 
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contribute the main source of income for semi-skilled workers. Communities 

formed by these workers and their families generally lack access to potable water 

systems. Human settlements in these areas are therefore solely dependent upon 

ground and surface water for domestic, irrigation and livestock activities 

(Awofolu et al., 2005). However, due to loosely regulated release of industrial 

effluents, the ground and surface waters build up high levels of trace metals. 

Aquatic life and vegetable produce cultivated using such water accumulate the 

heavy metals (Awofolu et al., 2005; Bvenura and Afolayan, 2012). The study by 

Awofolu et al. 2005 indicated that between 0.011 to 0.022 mg/kg of trace metals 

(Pb, Co. Cu and Zn) was accumulated in vegetable produce (cabbage and spinach) 

and the continual intake of these vegetables will subsequently pose as a grave 

health risk to consumers due to the food chain transfer.  

2.2. Methods used for the removal of heavy metals from contaminated waters 

       There are several conventional physicochemical methods employed to assist with 

the removal of heavy metals. These methods include chemical precipitation, ion 

exchange, membrane filtration and reverse osmosis. Table 1 below gives a brief 

description of each physicochemical method and their respective drawbacks. 

Chemical precipitation of metals as hydroxide salts is commonly incorporated in 

the wastewater treatment process. This strategy is inefficient at treating high 

concentrations of metals. Additionally, once the metal salts are filtered out they 

still need to be disposed of as metal recovery is difficult and costly. The high 

operating costs, secondary pollution, generation of toxic sludge and  the difficulty 

in treating solid wastes generated by physicochemical methods are indicative of 

their inefficiency to treat heavy metal contamination (Ahalya, Ramachandra and 

Kanamadi, 2003; Gaverilescu, 2004). Hosseini and Mirbagheri, 2005 evaluated a 

hydroxide precipitation method to remove Cu (II) and Cr (VI) from wastewaters. 

They found that the hydroxide precipitation generated large amounts of sludge 

which presents disposal problems and the complexing agents in the wastewater 

are found to inhibit metal hydroxide precipitation. 

Biological treatment is suggested to be a more cost-effective and economic 

alternative. This method entails the usage of biological material that has the 
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ability to bind metals through processes such as biosorption and bioaccumulation 

(Zabochnicka-Świątek and Krzywonos, 2014).  

Table 1. Physicochemical treatment methods used for the removal of heavy 

metals from contaminated water. 

Physicochemical 

Treatment 

Description Disadvantages 

Chemical 

Precipitation 

One of the most widely used 

treatments for the removal of 

heavy metals. This treatment 

involves chemical reactions with 

heavy metal ions to form 

insoluble precipitates (Fu and 

Wang, 2011).   

Excessive sludge production, 

slow metal precipitation and 

the long-term effects of 

environmental disposal 

(Parmar and Thakur, 2013). 

Ion Exchange A reversible chemical reaction 

wherein an ion from solution is 

exchanged for a similarly 

charged ion attached to an 

immobile solid particle (Parmar 

and Thakur, 2013). 

This method cannot handle 

concentrated metal solutions 

as the matrix gets easily 

polluted with other organics 

and solids in wastewater 

(Parmar and Thakur, 2013). 

Membrane 

Filtration 

This method has received 

considerable attention as it not 

only removes suspended solids 

and organic compounds but 

inorganic contaminants as well. 

Porous membranes are used for 

the removal of heavy metals 

(Ahalya, Ramachandra and 

Kanamadi, 2003). 

The generation of sludge and 

high costs (Parmar and 

Thakur, 2013). 

Reverse Osmosis Uses a semi-permeable 

membrane allowing the fluid 

being purified to pass through 

rejecting any contaminants (Fu 

and Wang, 2011). 

It is expensive (Ahalya, 

Ramachandra and Kanamadi 

2003; Parmar and Thakur, 

2013). 
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Biosorption may be defined as the ability of certain types of microbial biomass to 

retain relatively high amounts of metal ions through a passive method of metal 

sorption or complexation (Volesky, 1990). An important feature of biosorption is 

its ability to allow for binding and accumulation of metal species even when the 

cell is not metabolically active (Volesky, 1990). Bioaccumulation is an active 

process which utilises metabolically active cells for the uptake and accumulation 

of heavy metals (Malik, 2004; Zabochnicka-Świątek and Krzywonos, 2014).  

Biosorption and bioaccumulation differ in terms of the mechanism that allows for 

metal binding. Biosorption allows for the binding of metal contaminants mainly to 

the surface of the microbial cell. Thus is dependent on the composition and the 

kinetic equilibrium of the cell surface; it is an energy independent mechanism 

(Zabochnicka-Świątek and Krzywonos, 2014; Mosa et al., 2016). While 

bioaccumulation transports the metal contaminants into the microbial cell and is 

an energy dependent mechanism (Zabochnicka-Świątek and Krzywonos, 2014). 

2.3. Biosorption vs. bioaccumulation as a bioremediation method for heavy 

metal contaminants 

Hussein et al. (2004) reported that for large scale metal removal applications 

biosorptive processes are more feasible than bioaccumulative processes. This is 

because living systems (active uptake) usually require the addition of nutrients 

and hence increases the biological oxygen demand (BOD) or the chemical oxygen 

demand (COD) in effluents. Furthermore, the maintenance of healthy microbial 

populations is complex due to metal toxicity and other unsuitable environmental 

factors (Hussein et al., 2004) that can lead to metabolic stress. The potential for 

desorptive metal recovery is also restricted in bioaccumulative processes since 

metals may be intracellularly bound and metabolic products may form complexes 

with metals to retain them in solution (Hussein et al., 2004). Feasibility studies 

indicated that biosorptive processes are more applicable as compared to 

bioaccumalative processes as bioaccumalative processes require additional 

nutrients (Hussein et al., 2004). 

 

21 
 



                                                                               Chapter 2. Literature Review 

Table 2. Comparison of the biosorption and bioaccumulation processes 

(Vijayaraghavan and Yun, 2008). 

Characteristics Biosorption Bioaccumulation 

Cost  Usually low. Biomass can be 

obtained from industrial waste. 

Cost covers mostly transportation 

and production of biosorbent. 

Usually high. The process 

occurs in the presence of 

living cells that have to be 

supported. 

pH pH of the solution strongly affects 

sorption capacity of heavy metals. 

However, the process can occur in 

a wide range of pH. 

Significant change in pH 

can heavily affect living 

cells. 

Selectivity Poor. However can be increased 

by modifications/biomass 

transformation. 

Better than in the case of 

biosorption. 

Rate of removal Most mechanisms occur at a fast 

rate. 

Slower rate than in the case 

of biosorption. Intracellular 

accumulation takes a long 

time. 

Regeneration and 

reuse 

Biosorbents can be regenerated 

and reused in many cycles. 

Due to intracellular 

accumulation reuse is rather 

limited. 

Recovery of metals With an adequate eluent the 

recovery of heavy metals is 

possible. 

If it is even possible, 

biomass cannot be used for 

other purposes. 

Energy demand Usually low. Energy is required for cell 

growth. 

 

Biosorption does not require costly nutrients to maintain live cells in solution. 

Additional costs or problems associated with the disposal of unused nutrients or 

secondary metabolic products generated during bacterial growth are thus avoided. 

Furthermore, it is not governed by physiological constraints of living microbial 

biomass and since the cells are non-living, processing conditions are not restricted 

to those conducive for growth (Ahluwalia and Goyal, 2007). A comparison 
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between the major factors influencing biosorption and bioaccumulation and the 

feasibility of both methods is represented in Table 2. Using biosorption to 

bioremediate heavy metals is more favourable than bioaccumulation and was the 

focus of this study. 

2.4. Biosorption mechanisms 

Biosorption is a passive adsorption mechanism which is found to be fast and 

reversible. The biosorption process involves two phases, (I) a solid phase which is 

the biosorbent or biological material and (II) liquid phase which is the solvent 

containing the dissolved species to be  adsorbed, usually metal ions (sorbate). The 

sorbate therefore binds to the biosorbent by the mechanisms mentioned afore until 

this process reaches an equilibrium state which is established between the amount 

of sorbate bound and the portion remaining in solution (Das, Vimala and 

Karthika, 2008). Equilibrium is reached once the available binding sites of the 

biosorbent have reached saturation, thereby causing an equilibrium shift. The 

affinity of the biosorbent and sorbate determines its distribution between the solid 

and liquid phases (Das, Vimala and Karthika, 2008).  

 Microorganisms for instance fungi, algae and bacteria have evolved many 

mechanisms in response to metal uptake (Volesky, 1990). They have the ability to 

biosorb metals through processes such as complexation, ion exchange, adsorption 

and chelation (Volesky, 1990). Complexation involves binding of ions of heavy 

metals to functional groups present in the cell membrane. Ion exchange is a 

reversible chemical reaction of the exchange of mobile ions for other ions of the 

same charge occurring on solids that contain relevant functional groups 

(Zabochnicka-Świątek and Krzywonos, 2014). Adsorption is triggered by an 

intermolecular interaction of Van der Waals forces (Figure 1) (Zabochnicka-

Świątek and Krzywonos, 2014). However Aksu, Sag and Kutsal (1992) showed 

that electrostatic interactions can also play a role in adsorption and are responsible 

for Cu biosorption by the bacterium Zoogloea ramigera. Negatively charged 

groups such as carboxyl, hydroxyl and phosphoryl groups of bacterial cell walls 

adsorbs metal cations which are in turn retained by mineral nucleation; this 

process is known as chelation (Wase and Forster, 1997). 
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Figure 1. Biosorption mechanisms utilised by the microbial cell during the 

uptake of heavy metals. Adapted from Banik et al. (2014). 

The chemical makeup of the microbial cell plays a huge role in the binding and 

uptake of heavy metals, which therefore allows for the above mentioned 

mechanisms to function. An example is the chemical makeup of the bacterial cell. 

Bacteria are seen as good biosorbents for the uptake of heavy metals due to their 

high surface to volume ratios and the presence of potential chemosorption sites on 

their cell walls (Beveridge, 1989). The bacterial cell wall is a well defined 

polymeric matrix located just outside the cell membrane and is known to provide 

mechanical strength and support to the cell (Prescott, Harley and Klein, 2002). 

During the uptake of heavy metals the cell wall is one of the first cellular 

structures that comes into contact with soluble metal species (Prescott, Harley and 

Klein, 2002). A Gram negative bacterial cell wall contains a thin peptidoglycan 

monolayer, lipopolysaccharides (LPS), phospholipids and surface proteins 

(Beveridge, 1989). The phosphate groups found within the cell wall constituents 

have been established to be the primary sites for metal interactions during heavy 

metal uptake by bacterial cells (Beveridge, 1989) as shown in Figure 2. 
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Figure 2. Cell wall structure of a Gram positive and negative cell wall. The 

highlighted areas in blue indicate metal binding groups. Adapted from 

Hansda et al. (2015). 

In comparison a Gram positive bacterial cell is surrounded by a thick 

peptidoglycan layer containing teichoic acids and lipoteichoic acids (Figure 2). 

The negatively charged teichoic acids appear to extend to the peptidoglycan 

surface providing the gram positive bacterial cell a negative charge (Prescott, 

Harley and Klein, 2002). The phosphoryl groups as well as the carboxyl groups of 

peptide chains in the Gram-positive cell wall are able to partake in sequestration 

of metals during their uptake by the microbial cell (Prescott, Harley and Klein, 

2002). 

Pb is bound by both Gram positive and negative bacteria. However, the functional 

groups involved in binding differ based on the composition of the cell wall and 

other external layers such as the EPS found in some microorganisms. Binding of 

Pb (II) in M. luteus and Aztobacter sp. is reported to mostly occur in the cell wall 

and cell membrane (Jarosławiecka and Piotrowska-Seget, 2014). Çabuk and co-

workers (2006) demonstrated that hydroxyl and carboxyl groups were involved in 

metal binding by Bacillus sp. which was able to bind 91.7% of Pb (II) added to 

growth medium. It should also be noted that each bacterial strain is unique in the 

way they bind heavy metals. For example in Saccharomyces cerevisiae, amide 
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and phosphate groups were involved in the immobilisation of Pb (II) in the cell 

wall, whereas for Pseudomonas aeruginosa the carbonyl, phosphate and amino 

groups were involved (Çabuk et al., 2007). 

Microorganisms furthermore have the ability to synthesise extracellular polymers 

(EPs) to which cations of toxic metals bind (Jarosławiecka and Piotrowska-Seget, 

2014). EPs are composed of proteins, humic acids, polysaccharides and nucleic 

acids and therefore chelate metals with a different specificity and affinity (Pal and 

Paul, 2008; Jarosławiecka and Piotrowska-Seget, 2014). Binding of Pb (II) by EPs 

has been reported for a number of bacterial strains including Paenibacillus 

jamilae which has a higher affinity for Pb compared to other heavy metals such as 

Cd, Cu, Zn and Ni (Jarosławiecka and Piotrowska-Seget, 2014). The EPs of P. 

jamilae has a high content of uronic acids which plays a vital role in the binding 

of Pb ions (Jarosławiecka and Piotrowska-Seget, 2014). 

2.5. Factors that influence biosorption 

Many environmental factors influence the chemical nature of bacterial binding 

sites and consequently biosorption. These factors include pH, temperature, 

biomass concentration and the competition of other cations within solution 

(Ahalya, Ramachandra and Kanamadi, 2003).  

2.5.1. pH 

pH seems to be the most important parameter in the biosorption process as it 

affects the solution chemistry of metals, the activity of the functional groups in the 

biomass as well as the competition of metallic ions (Ahalya, Ramachandra and 

Kanamadi, 2003). The availability of binding sites varies depending on the pH; at 

a lower pH, binding sites are partially protonated thereby preventing accessibility 

of positively charged ions (Babák et al., 2012). At a higher pH the solubility of the 

metal is significantly reduced and the increase in pH contributes to the formation 

of hydroxides which collides and impedes biosorption (Babák et al., 2012). The 

uptake of Pb from industrial wastewater by Geobacillus thermodenitrificans was 

reported to increase to 32.26 mg/g of Pb ions as the pH increased (3 – 4.5) 

(Chatterjee, Bhattacharjee and Chandra, 2010). A study by Çolak and co-workers 

(2011) showed that as the pH of a solution was increased from 1.2 – 6 for Bacillus 
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pumilus the biosorption capacity for Pb increased and consequently an increase in 

the metal uptake rate was observed from 4.57 – 28.06 mg/g. This was due to the 

change in the surface charge from positive to negative allowing the binding of 

cations. 

2.5.2. Temperature 

Temperature influences the rate of biosorption because of its effect on: (I) the 

stability of the metal species in solution, (II) the stability of the biosorbent – metal 

complex dependent upon biosorption sites, (III) the cell wall configuration and 

(IV) the ionisation of chemical moieties on the cell wall (Sag and Kutsal, 2000). 

For endothermic reactions, higher temperatures enhance sorption due to the 

increase in surface activity and kinetic energy of the solute (Vijayaraghavan and 

Yun, 2008). In contrast, an increase in heat would cause a decrease in the 

biosorption capacity of the biosorbents in the system where binding of the metal 

ion is exothermic. Fan et al. (2008) demonstrated that when the temperature of a 

solution was increased between 20 – 40 °C, the rate of Pb uptake by Penicillium 

simplicissimum increased from 20 – 35 mg/g. However a study conducted by 

Bahadir and co-workers (2007) reported between 2 and 2.2 mg/g of Pb uptake by 

Rhizopus arrhizus regardless of the temperature in the range 20 – 45 °C. 

2.5.3. Biomass concentration  

The specific uptake of metals is influenced by biomass/biosorbent concentration. 

A lower concentration of biomass allows for an increase in metal uptake. 

Sufficient interaction between the metal ions and the biosorbent as a result of 

more intercellular space and less crowding allows for increased contact. 

Conversely, a higher concentration in biomass leads to cell agglomeration and less 

biosorption caused by the reduction in the intercellular distance and spatial 

interference of ion binding to the biosorbent (Fourest and Roux, 1992; Rani et al., 

2010). For instance as the biomass concentration was increased from 1 – 5 g/L of 

Citrobacter strain MCM B-181 the uptake of Pb from a 1 mM solution decreased 

from 90 mg/g to about 40 mg/g (Puranik and Paknikar, 1999). For this reason, it is 

important to determine the adsorption equilibria that will dictate the ideal ratio of 
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biomass to metal for maximal uptake (Bahadir et al., 2007) when preparing a 

biosorbent. 

2.5.4. Competing cations 
Industrial wastewaters are a complex mix of various contaminants of varying 

nature and concentrations that include heavy metals. Using biosorption to 

bioremediate wastewaters means that the biosorbent is exposed to more than one 

metal ion at a particular time (Ahalya, Ramachandra and Kanamadi, 2003). These 

metal ions could (I) compete with each other for binding sites, (II) enhance the 

binding of another metal ion or (III) not affect the binding of other metal ions in 

any manner (Wase and Forster, 1997). Sar and D'Souza (2001) reported that the 

uptake of the heavy metal uranium (U) by Pseudomonas biomass was not affected 

by the presence of Cd, Ag and Pb. However,  the rate of uptake of uranium by 

Rhizopus arrhizus  increased  in  the presence of Fe2+ and Zn2+ (Tsezos and 

Volesky, 1982). 

2.6. Rationale for the present study 

Gauteng is a province in South Africa that contributes approximately 34% of the 

national economy. This economy was once driven mainly by the mining industry 

but it has diversified to include manufacturing industries. These industries are the 

core contributors to heavy metal pollution of natural water resources in the 

province (Masindi et al., 2015). When Pb-contaminated wastewater flows 

untreated or partially treated into natural rivers, the metal finds its way into living 

tissues through the practices of irrigation and animal husbandry (Volesky, 2001). 

Within living tissues, Pb poses various hazards including mutations, nervous 

impairment and many others (Nanda, Sharma and Kumar, 2011). The effective 

treatment of such wastewaters prior to release and consumption is imperative. 

The benefits of complementing chemical treatment with biosorption have been 

discussed above, yet the commercialisation of biosorbents has been slow 

(Atkinson, Bux and Kasan, 1998). One reason is due to a lack of understanding of 

the competing ions effect and metal selectivity of biosorbents. This is where a 

huge proportion of research has been directed. The discovery of new biosorbents 
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can be highly competitive and effective if the influences of external factors on 

biosorption are elucidated (Wang and Chen, 2009). 

Two bacterial species, P. castaneae and M. luteus, were previously isolated from 

AMD on the West Rand, Gauteng by the Environmental Biotechnology group 

(University of the Witwatersrand). The decant had a pH of 5.4 and a Pb 

concentration of 2 mg/L which is above the acceptable tolerance limit of 0.01 

mg/L according to the World Health Organisation guidelines (WHO, 2008). Both 

isolates were shown to have a high tolerance for Pb with minimum inhibitory 

concentrations (MICs) for M. luteus and P. castaneae being 5800 mg/L and 5400 

mg/L, respectively (Vallabh, 2014). These findings strongly suggest their 

potential to be good biosorbents for the metal and warrant further investigation. 

2.6.1. Micrococcus luteus 

M. luteus is a Gram positive spherical and saprotrophic bacterium which is 

commonly found in environments of soil, dust particles, air and water (Stolp, 

1988). It has been reported to accumulate a variety of toxic substances that 

include petroleum, pesticides and many metals such as Cd, Cu and Pb. Rod and 

cocci shaped Gram positive bacteria have high metal sorption capacity (Cotoras et 

al., 2008) enabling them to have a high affinity to metal-contaminated 

environments. A study done by Maldonado et al. (2010) indicated that M. luteus 

has the ability to effectively accumulate Cu and Pb in an extracellular manner, in 

layers of EPS. Additionally, they reported its growth in 1.5 mM of Pb while also 

being able to withstand up to 3 mM metal. Silambarasan and Abraham (2014) 

found that M. luteus isolated from Palar River basin, Vellore was able to adsorb 

60% of Pb ions as well as 58% of Cd ions clearly indicating its metal resistance.  

2.6.2. Paenibacillus castaneae 

P. castaneae was first isolated from the phyllosphere of chestnut trees (Valverde 

et al., 2008). It is a Gram variable spore-forming bacterium which can be found in 

the environments of soil, rhizosphere, vegetable matter and water (Chien and Han, 

2009). There are a number of reports associating Paenibacillus sp. with resistance 

to heavy metals such as Ni, Co, Cu, Cd, Zn and Pb (Pérez et al., 2008; Chien and 

Han, 2009). In a study by Abou–Shanab, Van Berkum and Angle (2007), 
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Paenibacillus sp. was able to withstand between 5 – 10 mM of Pb ions 

demonstrating significance in heavy metal resistance capacity. Çolak and co-

workers (2013) also reported a metal uptake of 49.8 mg/g and 35.02 mg/g for Cu 

and Ni respectively for Paenibacillus sp. Although there is no formal literature on 

the ability of P. castaneae to tolerate high amounts of Pb, these findings suggest 

its potential as a metal biosorbent in wastewater treatment. 

 As a result of the harsh environment (low pH and high Pb concentration) from 

which these bacteria were isolated and their association with heavy metal 

resistance, it is proposed that they would constitute good metal biosorbents for 

wastewaters in Gauteng. The present study attempted to elucidate the impact of 

parameters such as pH, temperature, biomass concentration, metal concentration 

and the competition of metal cations within solution on their rate of uptake of Pb. 

Subsequently, it is anticipated that an optimised bioremediation process for Pb 

removal from wastewater using P. castaneae and M. luteus biomass would be 

designed by implementing the findings from this study. 
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Chapter 3 

Material and Methods 
All media and chemicals used in the study were of Reagent grade and Trace metal 

grade, respectively (Sigma Aldrich, USA). Stock solutions of lead nitrate 

(Pb(NO3)2), nickel chloride hexahydrate (NiCl2.6H2O), cobalt chloride 

hexahydrate (CoCl2.6H2O), manganese chloride tetrahydrate (MnCl2.4H2O) and 

zinc chloride (ZnCl2) were prepared by dissolving the metal salts in deionised 

water with precise concentrations, followed by filter sterilisation through a 0.22 

µm membrane filter. The metal solutions served as a source of metal ions 

throughout the experimental work. All experimental work was performed in 

triplicate in the presence of 0.5 mM of the respective metal ions, apart from the 

instance where the effect of metal concentration on biosorption was tested; a 

range of concentrations of Pb ions were used for this assay. 

3.1. Growth and preparation of bacterial biomass. 

The M. luteus and P. castaneae strains used in this study were previously isolated 

from AMD on the West Rand, Johannesburg and identified to species level using 

the Biolog Microbial ID System. They were maintained at -20 °C as glycerol 

stocks (addition of 200 µl of glycerol to 800 µl of bacterial culture) at a pH of 7, 

until required for the accumulation of biomass. 

Both bacterial strains were cultured by the addition of a 1 mL glycerol stock in a 

final volume of 200 mL to Luria Bertani (LB) broth (pH 7) for a period of 24 h, at 

37 °C, on an orbital shaker (Labcon) at 200 rpm. The bacterial cells were 

harvested by centrifugation (Multifuge X1R centrifuge, Thermo Scientific) at 

10 000 x g for 10 mins after which the cell pellet was collected and heat-killed by 

autoclaving at 121 °C for 20 mins. The heat-killed cells were washed twice in 

0.85% (w/v) physiological saline by centrifugation at 5000 x g for 5 mins to 

remove any external contaminants and residual media coating the cells. 

Physiological saline was used as it is isotonic with the cell and therefore would 

not cause any disruptions to the cell structure. After the final wash, the bacterial 
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biomass was resuspended in sterile deionised water to a concentration of 10 

mg/mL. 

For the remainder of the methods, reference to biomass during an experimental 

assay implies that it was prepared according to the procedure described above, 

unless otherwise stated. 

3.2. Pb biosorption study at pH 7 

In order to determine the biosorption of Pb ions by M. luteus and P. castaneae, 2 

g/L of biomass was added to 0.5 mM of Pb ions in a total volume of 25 mL 

deionised water. The suspension was incubated at 25 °C for 24 h on a rotary 

shaker at 150 rpm, after which the cell biomass was separated from the metal ions 

remaining in solution by centrifugation at 17 000 x g for 10 mins. The supernatant 

was nitrified to a pH of ≤ 2, using a 50:50 combination of nitric acid to nuclease 

free water and sent for inductively coupled plasma optical emission spectroscopy 

(ICPOES) analysis to the Department of Chemistry (University of the 

Witwatersrand). Inductively coupled plasma optical emission spectroscopy was 

used to measure the amount of residual metal ions left in the supernatant for the 

determination of the rate of specific metal uptake (Q) calculated according to 

Equation 1 (Puranik and Paknikar, 1999).  

Q = V (Ci – Cf)/ 1000M                                                                                       (1)                                                                                                   

Where: Q – Specific metal uptake (mg metal / g biosorption biomass) 

             V – Volume of metal solution (mL) 

             Ci – Initial concentration of metal in solution (mg metal/L) 

             Cf – Final concentration of metal in solution (mg metal/L) 

             M – Dry weight of biomass (g). 

3.3. Effect of pH  

The biosorption of Pb ions was tested at different pH conditions for the individual 

species in order to establish the optimal pH at which maximal biosorption occurs. 

Bacterial biomass was resuspended in deionised water that had been conditioned 

separately to a pH of 4, 5, 6 or 7 using a basic 20 pH meter (Crison instruments). 
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The pH was adjusted either using 0.1 M sodium hydroxide (NaOH) or 50% nitric 

acid. The conditioned biomass was then incubated with 0.5 mM of Pb ions at the 

corresponding pH. The suspensions were further treated as described in section 

3.2 above. 

3.4. Effect of temperature  

To evaluate the effect of temperature on the biosorption rate of Pb ions by each 

species, the procedure outlined in section 3.2 above was followed with some 

modification. The pH conditions were adjusted to the optimal pH (pH 7) 

determined from section 3.3 above for each species and individual treatments 

were incubated at 4 °C, 37 °C and 55 °C respectively, for 24 h on a rotary shaker 

at 150 rpm. Thereafter, cell biomass was removed by centrifugation and the 

supernatant was nitrified and analysed by ICPOES as previously described.  

3.5. Effect of biomass concentration  
The metal to biosorbent ratio is an important factor to consider when optimising 

metal uptake. Too high a biomass concentration leads to spatial crowding and less 

access to metal binding sites (Abbas et al., 2014). Alternatively, too low a 

concentration may result in reduced uptake due to rapid saturation of the binding 

sites (Abbas et al., 2014). To derive the optimal biomass concentration that would 

result in the most uptake of Pb by M. luteus and P. castaneae, several biomass 

concentrations (1, 2, 3, 4 and 5 g/L) were exposed to 0.5 mM of Pb ions in a final 

volume of 25 mL deionised water. Each treatment was prepared at the optimal pH 

(pH 7) determined in this study (Section 3.3 above) and incubated at 25 °C for a 

period of 24 h, with shaking at 150 rpm. Residual Pb ion concentrations after 

individual treatments were determined by ICPOES as previously described.  

3.6. Effect of initial metal concentration 

Harvested biomass (2 g/L) from individual species were exposed to 0.005 mM 

(low concentration) and 1.25 mM (high concentration) of Pb ions separately in a 

final volume of 25 mL deionised water at the optimal pH (pH 7) as determined 

from section 3.3 above. In solutions where the initial concentration of metal is 

low, a given concentration of biosorbent is able to take up more metal as 

compared to the instance when the metal concentration is too high. This is 
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because at higher concentrations, the biomass attains equilibrium much faster 

resulting in the saturation of metal binding sites within a short period of time 

(Fourest and Roux, 1992).  Cell suspensions were incubated at 25 °C for 24 h on 

an orbital shaker at 150 rpm. Supernatant containing unbound Pb ions was 

collected and the metal concentration was quantified using ICPOES as previously 

described.  

3.7. Effect of competing cations  

Aside from H+ that compete for negatively charged binding sites on the biosorbent 

surface, other cations may act in a synergistic or antagonistic manner. Some 

cations may enhance the binding of Pb to the biosorbent while other ions are 

known to compete with Pb for similar binding sites (Ahalya, Ramachandra and 

Kanamadi, 2003). The effect of various cations on the biosorptive ability of M. 

luteus and P. castaneae was studied in both binary as well as multi-metal systems. 

The metals of subject included: Pb, Ni, Co, Mn and Zn and were selected based 

on data collected by the Environmental Biotechnology research group (University 

of the Witwatersrand) on metal contaminants commonly found in AMD in 

Gauteng. Fifty mg of cells (equivalent to a concentration of 2 g/L) from each 

species was added to a combination of equal concentrations (0.5 mM) of the 

metals in binary as well as in a solution containing all the metals at the optimum 

pH determined previously. Each treatment was incubated at 25 °C for 24 h with 

shaking at 150 rpm. Subsequently the supernatant was collected, nitrified and sent 

for ICPOES analysis as previously described. 

3.7.1. Consortium study 

To show the potential of using a mixed formulation of the biosorbents for future 

studies on Pb uptake, a preliminary assay was conducted using a 1:1 and 2:1 ratio 

of P. castaneae to M. luteus cells. Each combination was subjected to equal 

concentrations (0.5 mM) of all metals in solution at pH 7 similar to the method 

described in section 3.7 above. The samples were incubated at 25 °C for 24 h with 

shaking at 150 rpm. The supernatant was thereafter collected and sent for ICPOES 

analysis as previously described. 
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Controls were set up for each parameter investigated and for each individual 

species. A control consisted of sterile Pb ions in solution subjected to the same 

conditions as each experimental treatment.  

3.8. Statistical analysis 
All experimental procedures were performed in triplicate to ensure statistical 

accuracy. Data was analysed using the statistical program R, version 3.3 for 

Windows. A two - way ANOVA test was used to evaluate the significance at a 

95% confidence interval of the parameters tested within a bacterial species and 

between the two bacterial species. 
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Chapter 4 

Results and Discussion 
The increase in heavy metal pollution as a result of industrial and mining 

activities in South Africa is of growing concern. Release of metal-bearing 

effluents into rivers and dams not only affects the quality of potable water but also 

agricultural soils as well as aquatic and plant life found within these waters. 

Natural biosorbents such as fungi, algae and bacteria have been receiving a great 

amount of interest due to their metal-sequestering ability, good performance, large 

available quantities as well as being cost effective (Wang and Chen, 2009).  

The current study therefore sought to optimise the conditions under which M. 

luteus and P. castaneae would best biosorb soluble metal ions with a focus on Pb. 

These bacteria were selected for their known resistance to Pb (GDARD, 2016).  A 

number of external parameters outlined in the methodology (Chapter 3, pg 31) 

were analysed in order to establish a set of conditions under which M. luteus and 

P. castaneae would biosorp the highest amount of Pb ions in solution. The set of 

conditions reported here includes a pH of 7, temperature range between 25 – 37 

°C and a biomass of 2 g/L of heat killed cells. The following chapter illustrates 

and discusses how these findings were reached. Furthermore, it elaborates on the 

influence of the initial Pb concentration and the presence of other cations on the 

rate of Pb uptake under these optimised conditions. 

4.1. Effect of pH 

pH is reported to be one of the most important parameters that affect the rate of 

biosorption of heavy metals (Hassan et al., 2010; Abbas et al., 2014). This is 

because it serves a dual purpose; pH influences metal binding sites on the 

biosorbent as well as the chemistry of the metal in solution (Hassan et al., 2010). 

At a lower pH the binding sites found on the surface of the cell are more closely 

linked with H+ making them unavailable for binding by other cations (Hawari, 

Catherine and Mulligan, 2006; Uslu and Tanyol, 2006; Rani et al., 2010). On the 

other hand, at a higher pH there is an increase in ligands with negative charges 
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being exposed resulting in increased binding of cations (Ahuja, Gupta and 

Saxena, 1999).  

This trend was observed in the present study when M. luteus was exposed to 0.5 

mM of Pb ions for 24 h (Figure 3).The percentage of Pb ions biosorbed increased 

from 7.51% at a pH of 4 to 46.08% at a pH of 7 supporting the theory that 

biosorption of metal ions increases as pH is increased within limitation. It should 

be noted that too high a pH can lead to the precipitation of metal salts making 

them unavailable for biosorption. Filtration or sedimentation would then be 

necessary to remove the precipitates (Azizi, Colagar and Hafeziyan, 2012). 

 

Figure 3. Graph showing % Pb biosorbed over 24 h when M. luteus and P. 

castaneae was exposed to 0.5 mM Pb at 25 °C under different pH conditions. 

Optimal uptake was achieved at pH 7 for both isolates.  

Furthermore, these findings are similar to those reported for the biosorption of Pb 

ions by Bacillus cereus and B. pumilus (Çolak et al., 2011). Although these 

species do not belong to the same genus as M. luteus, they are all Gram positive 

bacterial strains. In their study, Çolak and co-workers (2011) reported an increase 

in the rate of Pb ion uptake from 4.57 – 28.06 mg/g for B. pumilus and 3.2 – 22.1 

mg/g for B. cereus when the pH was increased from 1.2 – 6. Table 3 indicates that 

as M. luteus was exposed to Pb ions at a pH range of 4 - 7, the rate of metal 
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uptake increased from 4.00 – 24.51 mg/g. This increased rate is attributed to the 

acquisition of negative charges on the surface of biomass (due to a higher pH) 

leading to increased electrostatic attraction of the Pb ions (Çolak et al., 2011).   

Table 3. Specific rate of Pb uptake at different pH by M. luteus and P. 

castaneae.  

Biosorbent pH % Biosorption Specific metal uptake 
(mg Pb/g biomass) 

 

 

       M. luteus 

4 7.51 4.00 

5 13.74 7.31 

6 16.04 8.53 

    7(a) 46.08 24.51 

 

 

P. castaneae 

4 11.62 6.18 

   5(b) 29.23 15.53 

6 8.45 4.50 

    7(b) 29.40 15.63 

(a) Significant at p < 0.005 and (b) p < 0.05 (ANOVA) 

In contrast to the trend seen for M. luteus, P. castaneae illustrated an increase in 

Pb biosorption from a pH of 4 - 5, followed by a decrease at a pH of 6 with a 

sharp increase again at pH of 7 (Figure 3 and Table 3). Both M. luteus and 

Paenibacillus sp. are reported to have EPS that contributes to metal sorption 

(Puyen et al., 2012; Jarosławiecka and Piotrowska-Seget, 2014; Liang and Wang, 

2015). However the composition of the EPS between these two genera is likely to 

differ and consequently the trend in metal sorption is likely to differ. Both the 

content and composition of EPS in microorganisms are heterogenous (Wingender, 

Neu and Flemming, 2012) due to varying quantities of macromolecules such as 

polysaccharides, proteins, nucleic acids, lipids and other polymeric compounds. 

Subsequently changes in pH would affect the charges of the functional groups of 

proteins and carbohydrates differentially hence the observations made in the 

present study.  A study by Çolak and co-workers (2013) on the heavy metal 
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resistance and biosorptive behaviours of Paenibacillus polymyxa, reported that as 

the pH was increased, an increase in the biosorption of Cu (II) and Ni (II) was 

observed. Although P. castaneae belongs to the same family a true comparison 

between these findings cannot be surmised because even within a family, the EPS 

composition can differ substantially between species (Sutherland, 2001).   

The drop in metal uptake at a pH of 6 followed by the rapid increase at a pH of 7 

is an uncommon occurrence. It could be as a result of a switch between 

competitive H+ binding and the increase in negatively charged surface groups. 

Under more acidic conditions (high concentration of protons), active binding sites 

are closely linked with hydrogen ions and therefore limits binding of other 

cations. Under more neutral conditions there is an increase in ligands with a 

negative charge which results in an increase in binding of other cations (Hassan et 

al., 2010; Çolak et al., 2011). A similar observation was reported by Azizi, 

Colagar and Hafeziyan (2012) while testing the effect of pH on the biosorption of 

Cd (II) utilising biomass from a fungal species (Oscillatoria sp.). Additionally it 

was also found that at a pH of 5 and 7, phosphate groups of phospholipids present 

in the cell membrane began to deprotonate allowing for the binding of other 

cations (Azizi, Colagar and Hafeziyan, 2012).  

Both M. luteus and P. castaneae were found to take up the most Pb under the 

present conditions at a pH of 7. Hence it was selected as the optimal pH to use in 

subsequent experimental work. Additionally, due to the similarity and vast 

amount of metal uptake (15.53 mg/g) that occurred at a pH of 5 using P. 

castaneae biomass, this pH was also selected for further experimentation. If a 

high rate of uptake is maintained at pH 5 it could result in lowered cost of 

treatment as the need to neutralise acidic wastewaters may be circumvented.  

Although not a direct objective of this study, a comparison between the 

biosorption of Pb by M. luteus and P. castaneae can be inferred. At a pH of 7, M. 

luteus (46.08%) biosorbs more Pb ions from solution as compared to P. castaneae 

(29.40%). Statistical analysis using a two – way ANOVA test (see Table A.2 in 

Appendix A) indicated that when the rates of Pb uptake by M. luteus and P. 
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castaneae are compared, there is a significant difference between the two 

biosorbents at pH 5 (p = 0.041) and pH 7 (p = 0.008).  

4.2. Effect of temperature 

Another important factor that has an impact on the biosorption of heavy metals by 

bacterial biomass is temperature. A change in temperature has been reported to 

affect the stability of metal ion species placed into solution, the wall configuration 

of the microorganism cell and the ionization of chemical moieties on the cell wall 

(Özer and Özer, 2003).  

From Figure 4 it can be seen that some biosorption of Pb occurs at 4 oC in all 

three treatments although at a slow rate (Table 4). Since biosorption is a passive 

process and is generally an electrostatic attraction, temperature would not affect 

binding of the metal ions. However, temperature can affect the viscosity of 

aqueous solutions whereby the lower the temperature the more viscous the 

solution (Huddleston et al., 2001). A more viscous metal solution will thereby 

reduce the mobility of metal ions and lead to a slower rate of uptake by the 

biomass.  

 

Figure 4. Graph showing the % Pb biosorbed over 24 h when  M. luteus and 

P. castaneae was exposed to 0.5 mM Pb (pH 7) at different temperatures.  
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Opposing trends in Pb uptake by M. luteus and P. castaneae at pH 7 are observed 

between 25 - 55 oC. The percentage of Pb ion uptake decreases from 46.08% (25 
oC) to 26.69% at 55 °C in the presence of M. luteus. This is characteristic of 

physical sorption which does not require energy and preferably occurs at lower 

temperatures (Lowell and Shields, 1984). However, using P. castaneae the % 

uptake increases from 29.40 to 45.15 in the same temperature range. Such 

increases are due to the endothermic nature of chemical sorption implying that the 

spontaneity of biosorption increases with increasing temperature (Babarinde, 

Babalola and Adetunji, 2008).  

Table 4. Specific rate of Pb uptake at different temperatures by M. luteus and 

P. castaneae. 

Biosorbent 

   

Temperature 
(°C) 

% Biosorption Specific metal 
uptake 

(mg Pb/g biomass) 

 

M. luteus 

pH 7 

4 42.39 
 

19.78 

25 46.08 
 

24.51 

37(a) 42.93 
 

19.98 

55 26.69 
 

20.40 

  

P. castaneae 

pH 7 

4 41.36 
 

19.19 

25 29.40 
 

15.63 

37(a) 36.26 
 

24.18 

55(b) 45.15 
 

31.14 

 

P. castaneae 

pH 5 

4 30.83 
 

17.94 

25 29.23 
 

15.53 

37 18.37 
 

10.94 

55 21.57 
 

12.55 

(a) Significant at p < 0.05 and (b) p < 0.005 (ANOVA) 
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An excessive increase in temperature can cause damage to the active binding sites 

of the biomass and thus results in a decrease in the rate of metal uptake observed 

(Puranik and Paknikar, 1999) as seen in the present study (Table 4). This is true 

when bacteria are exposed to higher than optimal growth temperatures; 25 - 37 oC 

for M. luteus.  

While studying the biosorption of Pb, Cd and Zn by Citrobacter strain MCM B – 

181, Puranik and Paknikar (1999) observed a similar trend in metal uptake. They 

reasoned that an increase in metal uptake from 4 - 25 °C was due to the higher 

affinity of sites for metal binding at these particular temperatures, whereas the 

decrease in metal uptake at increasing temperatures (37 - 55 °C) was as a result of 

the distortion of some metal binding sites due to an increasing temperature. 

Furthermore, Horsfall and Spiff (2005) reported that although the sorption of Pb2+ 

and Cd2+ from aqueous solution, by Caladium biocolor (Wild Cococyam) biomass 

increases with an increase in temperature (30 – 80 °C) a decline in the rate of 

sorption is observed. As the temperature is increased the attractive forces between 

biomass and surface metal ions are weakened and therefore the sorption rate 

decreases. The best rate of Pb ion uptake by M. luteus was observed at 25 °C, 

yielding a 46.08% of biosorption of metal ions and a metal uptake rate of 24.51 

mg/g biomass (Table 4). 

Contrary to these reports, other studies have found that an increase in temperature 

can lead to increased biosorption of  Pb (II) and Zn (II) ions (Marandi, Ardejani 

and Afshar, 2010) and Cu ions (Al-Homaidan et al., 2014) as observed for P. 

castaneae (Figure 4) in this study. This could be due to a higher affinity of sites 

for metal on relevant biomass. In addition to the evident increase in the percentage 

biosorption, the overall rate of metal uptake as the temperature was increased also 

varied significantly ranging between 19.19 – 31.14 mg/g for P. castaneae (Table 

4 and Table A.3 in Appendix A for statistical analysis). This is indicative of an 

endothermic based adsorption of Pb ions (Lowell and Shields, 1984; Babarinde, 

Babalola and Adetunji, 2008). The biomass contains more than one type of 

binding site for metal ions which react differently to any given temperature 

therefore influencing the overall metal adsorption process. 
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When P. castaneae biomass is used to biosorb Pb ions at a pH of 5, no obvious 

trend is observed (Figure 4).  Pb ion uptake seems to increase and decrease 

unpredictably. This may be explained by the competition between excessive 

amounts of H+ and other cations for binding sites that could possibly be distorted 

due to higher temperatures.   

The highest percentage uptake of Pb by M. luteus was obtained at 25 oC at a rate 

of 24. 51 mg/g. On the other hand, at pH 7, P. castaneae has the highest rate of Pb 

uptake at 55 oC (31.14 mg/g biomass). Using higher temperatures for biosorption 

has energy implications that would increase the cost of the process especially if it 

were to be used as a commercial bioremediation strategy. Therefore, subsequent 

assays were maintained at 25 oC. The rates of uptake at this temperature were not 

significantly different (p = 0.225) between M. luteus and P. castaneae as indicated 

in Table A.4 in Appendix A. Furthermore when the pH is decreased to 5, the rate 

of Pb uptake by P. castaneae does not vary significantly from that at pH 7. The 

moderate rate of uptake at a pH of 5 has bearing on wastewaters of an acidic 

nature that may not require an additional neutralisation step for Pb removal.   

4.3. Effect of biomass concentration 

In the present study it was noted that the concentration of biomass can 

significantly affect the extent of Pb biosorption. The highest uptake of Pb by M. 

luteus at pH 7 and 25 °C over 24 h occurred when 2 g/L of biomass was used. 

Approximately 50% of the metal (Figure 5) was taken up at a rate of 24.51 mg/g 

biomass (Table 5). At a given equilibrium concentration, the biomass of subject 

will adsorb more metal ions at a lower density as opposed to a higher density 

(Fourest and Roux, 1992; Monteiro et al., 2009; Abbas et al., 2014). At this 

equilibrium, a lower biomass concentration results in a higher metal:biosorbent 

ratio leading to more metal retained by the sorbent unit (Al-Homaidan et al., 

2014). 
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Figure 5. Graph showing the % Pb biosorbed over 24 h when M. luteus and 

P. castaneae was exposed to 0.5 mM Pb at 25 °C under different biomass 

concentrations.  

Rani and co-workers (2010) reported 79.22% biosorption of Pb (initial 

concentration of 1.272 mg/L) by 200 mg/L of Micrococcus sp. biomass. It may be 

exaggeratedly suggested that in the ideal situation a ten-fold increase to 2 g/L 

biomass (as used in this study) would result in the almost total biosorption of 10 

mg/L Pb. From the results of the present study, 2 g/L of M. luteus biomass 

resulted in an uptake of 76 mg/L Pb (46.08% of 0.5 mM Pb) suggesting that it is a 

highly efficient biosorbent. Other studies using M. luteus for Pb biosorption have 

been performed using live cells and report higher rates of uptake (Puyen et al., 

2012) typical of active  processes. 

Similarly, P. castaneae biosorbed the most Pb ions (29.23%) when used at a 

concentration of 2 g/L at a pH of 5. On the other hand, under neutral conditions it 

appears that the most uptake of Pb occurred using 5 g/L P. castaneae biomass. 

This was observed as a sharp increase in Pb biosorption between pH 4 and 5. A 

similar trend was observed for M. luteus at pH 7 but did not result in the highest 

uptake of Pb. Al-Homaidan et al., 2014 reported a similar observation using 

Spirulina platensis biomass for the uptake of Cu ions, indicating that as the 
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biomass concentration was increased from 0.05 to 0.5 g the percentage of metal 

uptake decreased from 78.82 to 20%. Further work will be needed to explain the 

sudden increase in biosorption at higher biomass concentrations. Many 

biosorption studies that have investigated the influence of biomass concentration 

on metal uptake have reported on a general downward trend when an increase in 

the biomass is extended beyond the saturation threshold (Fourest and Roux, 1992; 

Puranik and Paknikar, 1999; Bahadir et al., 2007; Al-Homaidan et al., 2014).  

The initial increase in biosorption at lower concentrations of biomass is due to the 

increase of the availability of sorption sites (Tewari, Vasudevan and Guha, 2005). 

Using too high biomass concentrations leads to cell agglomeration consequently 

reducing the inter-cellular distance (Rani et al., 2010). This causes the formation 

of a protective shell over active binding sites limiting their occupation by metal 

ions. Optimum electrostatic forces exist between cells at a lower concentration 

due to a larger inter-cellular space (Rani et al., 2010); consequently allowing more 

metal to be biosorbed.  

The overall decrease in specific metal uptake rate as biomass was increased 

beyond the equilibrium threshold (Table 5) is consistent with other reports 

(Puranik and Paknikar, 1999; Tewari, Vasudevan and Guha, 2005; Özdemir et al., 

2009). The highest rate of uptake was observed when 2 g/L biomass was used for 

both M. luteus (24.51 mg/g) and P. castaneae (15.63 mg/g). As such, under the 

parameters outlined in the study, using this concentration of biomass would yield 

the most uptake of Pb ions. Furthermore, the difference between the rate of uptake 

at 2 g/L and the other concentrations of biomass for the individual species was 

significant as reported in Table A.5 in Appendix A. 
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Table 5. Specific rate of Pb uptake using various biomass concentrations of 

M. luteus and P. castaneae. 

Biosorbent Biomass 
concentration 

(g/L) 

% Biosorption 
 
  

Specific metal 
uptake 

(mg Pb/g biomass) 

  

 

M. luteus 

pH 7 

1 30.60 16.70 

2(a) 46.08 24.51 

3 25.51 11.30 

4 20.61 5.49 

5(b) 32.95 7.18 

 

 

P. castaneae 

pH 7 

1(a) 25.51 11.15 

2(a) 29.40 15.63 

3 3.78 1.38 

4 1.95 0.66 

5(a) 33.67 7.33 

 

P. castaneae 

pH 5 

1 11.85 6.45 

2 29.23 15.53 

3 5.37 2.70 

4 4.48 2.33 

5 4.52 2.46 

(a) p < 0.005 (ANOVA) (b) Significant at p < 0.05 

4.4. Effect of initial metal concentration 

The initial metal concentration provides an important driving force to overcome 

all mass transfer resistance of metal between the aqueous (solution) and solid 

(biomass) phases. Determining the behaviour of the biosorbent when initial Pb 

concentrations are varied is necessary to predict whether it is adequately 

functional in natural wastewaters. Most contaminated wastewaters constitute a 
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“cocktail” of different metal ions present in different concentrations which would 

have a direct effect on the rate and extent of biosorption.   

The present findings (Figure 6) show that both M. luteus and P. castaneae biosorb 

maximally when the initial concentration of Pb is low (1 mg/L equivalent of 0.005 

mM) under neutral conditions. At this concentration, 84.76% of the metal was 

taken up by M. luteus and 81.39% by P. castaneae. As the metal concentration 

was exaggeratedly increased 100 and 200 fold (0.5 and 1.25 mM, respectively), 

the % biosorption decreased for both biosorbents as expected. This is due to 

saturation of binding sites above a certain number in relation to the biomass 

concentration. Similar findings were reported for the sorption of Ni (II) and Mn 

(II) as the initial metal ion concentration was increased from 100 to 300 mg/L 

(Akpomie, Dawodu and Kayode, 2015). The authors reported a decrease from 

64.8 to 37.63% of Ni (II) and 54.8 to 30.57% of Mn (II) due to the saturation of 

the adsorbent’s affixed number of active binding sites. 

 

Figure 6. Graph showing the % Pb biosorbed over 24 h when M. luteus and 

P. castaneae was exposed to different metal concentrations at 25 °C. 

Table 6 shows that as the Pb concentration increased, the rate of metal uptake for 

M. luteus increased from 0.42 mg/g biomass to 59.21 mg/g biomass. Similarly at 

0.005 mM Pb, the specific rate of Pb uptake by P. castaneae (pH 7) was 0.40 

mg/g biomass and increased to 44.85 mg/g biomass at a concentration of 1.25 
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mM. This could be as a result of increased electrostatic attractions due to an 

increase in number of metal ions to active binding sites. These findings are in 

agreement with previous studies that have looked at biosorption kinetics in 

various other bacterial species (Aksu, Sag and Kutsal, 1992; Puranik and 

Paknikar, 1999; Özdemir et al., 2009; Al-Homaidan et al., 2014).  

Table 6. Specific rate of Pb uptake by M. luteus and P. castaneae when the 

initial metal concentration is varied.  

 

Biosorbent 

 

Metal 
concentration 

(mM) 

 
 

% Biosorption 

 

Specific metal 

uptake (mg Pb/g 

biomass) 

 

M. luteus 

pH 7 

0.005(a) 84.76 0.42 

0.5(b) 46.08 24.51 

1.25 46.10 59.21 

 

P. castaneae 

pH 7 

0.005(a) 81.39 0.4 

0.5(b) 29.40 15.63 

1.25 34.96 44.85 

 

P. castaneae 

pH 5 

0.005 21.73 0.10 

0.5 29.23 15.53 

1.25 34.92 43.92 

(a) p < 0.005 (ANOVA) (b) Significant at p < 0.05  

When comparing Pb uptake between M. luteus and P. castaneae at a pH of 7, the 

rates were significantly different at both 0.005 and 0.5 mM with p = 0.002 and p = 

0.005, respectively (see Table A.7 in Appendix A). Once the initial metal 

concentration is too high, there is no significant difference in rate of uptake as 

saturation thresholds have been realised.  
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Unlike the decreasing trend in Pb biosorption under neutral conditions, P. 

castaneae showed a continued increase in Pb biosorption as the initial metal 

concentration increased at a pH of 5. The biosorption percentage increased from 

21.73 (0.005 mM) to 34.92% (1.25 mM). Pb is more soluble at this pH which may 

result in a higher availability of metal ions. This could increase the driving force 

needed to overcome all mass transfer resistance of metal ions between the 

aqueous and solid phases resulting in higher probability of collisions between 

metal ions and sorbents (Tewari, Vasudevan and Guha, 2005) enabling more 

binding. 

It is consistently challenging to compare these rates with existing literature since 

parameters such as the initial metal concentration, temperature and pH differ from 

study to study. Nonetheless it can be confidently stated that up to 46.08% metal 

can be taken up from 0.5 mM Pb using 2 g/L M. luteus at a pH of 7 and 

temperature of 25 oC while 29.40% can be taken up by P. castaneae. This is 

equivalent to 49.01 and 31.26 mg of Pb, respectively. Adding such a biosorption 

step after chemical precipitation of metals in the wastewater treatment process 

would make a significant reduction in Pb concentration of wastewaters likely 

down to acceptable limits. 

4.5. Effect of competing cations  

The complex nature of industrial wastewaters means that any commercial 

biosorbent would come into contact with more than one type of metal ion in 

varying concentrations. In addition to H+ ions, other cations compete for the same 

non-specific binding sites (Puranik and Paknikar, 1999) that Pb ions are attracted 

to. The cations can either act synergistically to enhance the binding of Pb or 

antagonistically resulting in decreased biosorption of Pb in their presence. The 

cations Ni2+, Co2+, Mn2+ and Zn2+ are reported in elevated concentrations in the 

AMD from which the bacteria were isolated (GDARD, 2016). Subsequently, they 

were included in the present study to determine their effect on Pb uptake by both 

biosorbents (Figure 7).  

 

49 
 



                                                                              Chapter 4. Results and Discussion 

 

 

 

Figure 7. Effect of competing cations on the uptake of Pb by M. luteus and P. 

castaneae at a pH of 7 (A and B, respectively) and pH 5 (C). Individual 

metals were added at an initial concentration of 0.5 mM each and incubated 

with biomass at 25 °C for 24 h.  
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From Figure 7A it can be surmised that Pb uptake by M. luteus biomass is 

generally significantly decreased (Table A.8, Appendix A) when each of these 

ions is present either in binary or as a multimetal complex. Mn2+ was the only 

cation that enhanced the uptake of Pb by M. luteus biomass yielding 74.26% 

sorption. On the other hand, the biosorption of Pb by P. castaneae under similar 

conditions (pH 7, 25 oC, and 0.5 mM metal) significantly increased in the 

presence of the same cations both in binary and multi-mixes (Figure 7B). The 

highest % of Pb was taken up in the presence of Zn resulting in 82.62% 

biosorption.  

Overall, the rate of uptake of Pb was always higher irrespective of whether a 

binary or multimetal complex was used (Table 7). In the presence of other cations, 

the uptake of metals is influenced by atomic weight and electronegativity as well 

as the ionic group to which they belong (Puranik and Paknikar, 1999). All five 

competing cations used in the present study belong to the same class of borderline 

ions while Pb ions are classified into the class b ions. The classes are based on the 

covalent index described by Nieboer and McBryde (1973) which is dependent on 

the electronegativity and crystal radius of cations. Generally, the higher the 

covalent index, the more potential to form covalent bonds with biological ligands 

(Puranik and Paknikar, 1999). Pb ions have the highest covalent index (Table B.1. 

in Appendix B) and are therefore more likely to bind to the biosorbent when 

compared to the other cations. Additionally, Pb has a higher atomic weight and 

the highest electronegativity amongst the cations used in the present study further 

supporting its preferential binding to the functional groups on the biosorbent. 

Hence, the trend in the rate of Pb uptake observed in this study.  

According to the above reasoning, it is unexpected that Co2+, Ni2+ and Zn2+ would 

compete with Pb for binding, yet this was observed for M. luteus. This could be 

explained by the difference in EPS and hence functional groups present between 

P. castaneae and M. luteus. It may be that the EPS of M. luteus carries more 

functional groups that are preferentially bound by the borderline class of ions as 

opposed to class b ions. Further research involving the extraction and 

determination of the composition of the EPS from both species would be 
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necessary to identify active binding sites. This can be achieved using Fourier 

transform infrared spectroscopy (FTIR). 

Table 7. Specific rate of metal uptake by each biosorbent in binary and 
multimetal systems.  

(A)                        Rate of metal uptake (mg/g) for M. luteus pH 7 
Sample Pb Ni Co Mn Zn 

Pb and Ni 38.03 7.475 - - - 
Pb and Co 30.46 - 7.15 - - 
Pb and Mn 49.96 - - 12.625 - 
Pb and Zn 25.26 - - - 6.85 

Pb and Ni, Co, Mn, Zn 9.22 7.46 4.87 4.97 3.31 

 

(B)                        Rate of metal uptake (mg/g) for P. castaneae pH 7 
Sample Pb Ni Co Mn Zn 

Pb and Ni 40.04 4.85 - - - 
Pb and Co 43.41 - 7.45 - - 
Pb and Mn 40.03 - - 21.93 - 
Pb and Zn 56.07 - - - 11.43 

Pb and Ni, Co, Mn, Zn 52.88 0.13 1.31 7.79 4.88 

 

(C)                          Rate of metal uptake (mg/g) for P. castaneae pH 5 
Sample Pb Ni Co Mn Zn 

Pb and Ni 13.3 12.45 - - - 
Pb and Co 10.22 - 8.2 - - 
Pb and Mn 11.98 - - 7.65 - 
Pb and Zn 15 - - - 7.2 

Pb and Ni, Co, Mn, Zn 4.88 1.70 1.20 2.83 1.33 

 

Another interesting observation is that the rates of uptake of Co2+, Mn2+, Ni2+ and 

Zn2+ all decreased when placed in a multimetal system as compared to the binary 

system (Table 7). The only exception was for the uptake of Ni for M. luteus which 

remained similar irrespective of a binary or muitmetal system. This is in 

agreement with literature that states that cations belonging to the same class 
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undergo significant ionic competition (Paknikar, Pethkar and Puranik, 2003) for 

binding to the same sites on biosorbents. This in turn will lead to decreased 

binding of any particular ion as reported in the present study. 

When the pH was decreased to 5, the uptake of Pb by P. castaneae biomass was 

reduced both in binary and multimetal systems (Figure 7 and Table 7). This 

indicates that solution pH also plays a role in sorption in the presence of 

competing ions. At pH 5, Pb is less soluble than Co, Ni and Mn; consequently 

there would be less Pb ions available for binding compared to the other ions. 

Similar findings have been reported in other biosorption studies (Zhou and 

Robert, 1991; Paknikar, Pethkar and Puranik, 2003).   

The results from Table 7 indicate that at pH 7, M. luteus exhibited a preferential 

order of sorption Pb2+>Ni2+>Mn2+>Co2+>Zn2+ while P. castaneae exhibited a 

preferential order Pb2+>>Mn2+>Zn2+>Co2+>Ni2+. Interestingly, the biosorption of 

Pb (77.90%) by P. castaneae was highest in the presence of other cations while it 

was the lowest when using M. luteus as a biosorbent (6.58% Pb biosorption). 

4.6. Primary conclusions 

Under the conditions presented in this study (pH 7, 25 oC, 0.5 mM Pb), using 2 

g/L of biosorbent resulted in the greatest uptake of 69 mg/L and 44 mg/L Pb by 

M. luteus and P. castaneae respectively. When competing cations are introduced 

to the Pb solution, the specific rate of metal uptake for Pb by P. castaneae was 

increased while the opposite effect was observed for M. luteus. However, both 

biosorbents prefer to take up Pb and as such would make good biosorbents. 

Additionally, even at lowered pH levels or increasingly high temperatures both 

isolates are able to biosorb Pb ions. These findings suggest that both biosorbents 

could find use in the secondary stage of wastewater treatment. This can be done at 

no additional cost to the existing process with the added benefit of lowering the 

metal concentrations especially Pb down to acceptable levels,  Subsequently, the 

water decanted into the natural environment would be of a higher quality than 

what would have resulted from chemical removal of the metal salts.  
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4.7. Combined uptake of heavy metals by M. luteus and P. castaneae 

The findings from the present study indicate that both M. luteus and P. castaneae 

can be used as biosorbents for Pb from wastewaters. In nature, bacteria usually 

take on the formation of biofilms to withstand harsh conditions such as heavy 

metal toxicity (Harrison, Turner and Ceri, 2005). Mixed populations of sulphate 

reducing bacteria have been shown to reduce and lower concentrations of not only 

sulphate but also Zn, Cu and Ni in a short-term bench scale upflow anaerobic 

packed bed reactor (Jong and Parry, 2003).  

Bacterial consortiums also play a pivotal role in the cycling of heavy metals in the 

environment (Harrison, Turner and Ceri, 2005) showing between 2 – 600 fold 

tolerance to metals like Cu, Pb and Zn (Teitzel and Parsek, 2003). Therefore it 

would be of interest to determine if enhanced biosorption of Pb and the other 

cations tested in the present study would be possible if both biosorbents were 

present as a mixture.  

A preliminary study to evaluate the uptake of Pb from a multimetal system using a 

combination of M. luteus and P. castaneae was conducted according to the 

method described in Chapter 2, subsection 3.7.1 pg 34. Briefly, heat-killed 

biomass of P. castaneae and M. luteus were added in a 1:1 and 2:1 ratio to a 

multimetal system containing 0.5 mM Pb, Co, Ni, Mn and Zn ions in equimolar 

concentrations. After 24 h the supernatant was analysed for residual ions by 

ICPOES.  

The results (Figure 8) show that less Pb is biosorbed (32.50%) by a mixture of 

equal concentrations of both biosorbents as compared to when P. castaneae is 

used on its own (77.95%). This is about a 40% reduction in biosorption. However, 

as the ratio of P. castaneae to M. luteus biomass is doubled, the % biosorption of 

Pb increases to 80.31% suggesting that effective biosorption may only be 

contributed from P. castaneae.  
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Figure 8: Graph showing the % metal biosorbed over 24 h when M. luteus 

and P. castaneae was added in a 1:1 and 2:1 ratio to 0.5 mM equal 

concentrations of Pb, Ni, Co, Mn and Zn (pH 7) at 25 °C. 

These results further validate the decreased performance of M. luteus in the 

presence of competing cations when used on its own (6.58% biosorption). As 

more P. castaneae biomass is added to the mixture, the % biosorption increases. It 

may be necessary to test various combination ratios to conclusively decide if 

using a mixture or using P. castaneae biomass alone would result in more 

effective biosorption of Pb and the other metal cations.  
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Chapter 5 

Conclusion and Recommendations 
M. luteus and P. castaneae illustrated an optimal biosorption efficiency of up to 

50% using 2 g/L of biomass when exposed to 0.5 mM of Pb ions at a pH of 7 at 

25 oC. Although not the ideal conditions for Pb biosorption, both biosorbents were 

still able to take up metal at lowered pH levels and increasing temperatures. 

Furthermore, P. castaneae biomass performs better in the presence of other 

cations. This is an indication of their versatility for use in the treatment of 

complex industrial wastewaters under naturally fluctuating environmental 

conditions. The findings from this study support the further development of these 

isolates as commercial biosorbents for metal removal.  

The benefits realised when integrated into existing wastewater treatment 

processes may include economic viability, biodegradability and efficient lowering 

of toxic heavy metal concentrations to acceptable levels for potable use. It is 

recommended to further pilot test the biosorbents in the treatment of actual 

effluent samples from various industries under the optimised parameters. It is also 

suggested to investigate various combinations of both biosorbents in wastewater 

treatment so as to achieve the highest uptake of heavy metals. The appropriate 

combination of the bacterial biomass could then be immobilised onto calcium 

alginate nanoparticles to improve the stability of the biosorbents and enhance 

metal uptake in a biodegradable and eco-friendly manner. Additionally, it would 

allow retrieval of the spent biosorbents for metal retrieval and recycling. In the 

long-term this system could be incorporated into a filtration module to treat small 

water volumes or included in the activated sludge process during wastewater 

treatment.  
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Appendices 

Appendix A 

Tables showing the p values for each species within the parameters tested in the 

present study. A p value < 0.05 indicates a significant difference at a confidence 

interval of 95%.  

Table A.1. Probabilities obtained for the pH study in individual species.  

pH M. luteus (p value) P. castaneae (p value) 

4 vs. 5 0.765 0.016 

4 vs. 6 0.032 0.277 

4 vs. 7 0.000 0.008 

5 vs. 6 0.513 0.002 

5 vs. 7 0.004 0.277 

6 vs. 7 0.000 0.001 

 

Table A.2. Probabilities obtained for the pH study between species.  

pH p value 

4 0.341 

5 0.041  

6 0.052 

7 0.008  
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Table A.3. Probabilities obtained for the temperature study in individual 

species.  

Temperature 

(oC) 

M. luteus (p value) P. castaneae (p value) 

4 vs. 25 0.019 0.305 

4 vs. 37 0.001 0.027 

4 vs. 55 0.742 0.001 

25 vs. 37 0.163 0.008  

25 vs. 55 0.075 0.001  

37 vs. 55 0.014 0.004  

 

Table A.4. Probabilities obtained for the temperature study between species.  

Temperature (°C) p  value 

4 0.031  

25 0.225 

37 0.129 

55 0.002  

 

Table A.5. Probabilities obtained for the biomass study in individual species. 

Biomass 

concentration 

(g/L) 

M. luteus (p value) P. castaneae (p value) 

1 vs. 2 0.06 0.041 

1 vs. 3 0.059 0.002 

1 vs. 4 0.0429 0.000 

1 vs. 5 0.0477 0.001 

2 vs. 5 0.025 0.313 

3 vs. 4 0.971 0.865 

3 vs. 5 0.038 0.000 

4 vs. 5 0.291 0.000 
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Table A.6. Probabilities obtained for the biomass study between species. 

Biomass (g/L) p  value 

1 0.304 

2 0.008 

3 0.000 

4 0.022 

5 0.784 

 

Table A.7. Probabilities obtained for the metal concentration study between 
species. 

Metal concentration (mM) p  value 

0.005 0.002 

0.5 0.005 

1.25 0.134 

 

Table A.8. Probabilities obtained for the competing cation study with 
reference to Pb uptake by individual species in pure and mixed metal 
systems. 

Competing cations M. luteus (p value) P. castaneae (p value) 

  pH 7 pH 5 

Ni 0.888 0.387 0.001  

Co 0.012  0.043  0.001  

Mn 0.003  0.019  0.001  

Zn 0.021  0.000  0.001  

Multi-metal 0.004  0.000  0.000  
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Appendix B 

Table B.1. Covalent index of competing cations 

 

 

 

 

 

 

 

(a) Ionic crystal values obtained from Barbalace (1995). 

(b) Electronegativity, values obtained from Allred (1961).  

(c) Cationic index values obtained from Nieboer and Mcbryde (1973). 

 

 

 

 

 

 

 

Element Ionic crystal 

radius  

(r) (a) 

Electronegativity 

(Xm) (b) 

Cation index 

(Xm)2  (r + 0.85) (c) 

Pb 1.19 2.33 7.18 

Ni 0.70 1.91 5.73 

Co 0.70 1.88 5.61 

Mn 0.70 1.55 3.96 

Zn 0.74 1.65 4.54 
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