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Abstract

In this dissertation, we consider a number of modified Black-Scholes equations
being either non-linear or given in higher dimensions. In particular we focus
on the non-linear Black-Scholes equation describing option pricing with hedg-
ing strategies in one case, and two dimensional models in the other. Classical
Lie point symmetry techniques are employed in an attempt to construct ex-
act solutions. Some large symmetry algebras are admitted. We proceeded by
determining the one dimensional optimal systems of sub-algebras for the ad-
mitted Lie algebras. The elements of the optimal systems are used to reduce
the number of variables by one. In some cases, exact solutions are constructed.
For the cases for which exact solutions are difficult to construct, we employed
the numerical solutions. Some simulations are observed and interpreted.
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Chapter 1

Introduction

1.1 Literature review

Lie symmetry methods have been recently applied in finance, see [2], [13], and

[14]. These methods are used as an alternative tool to solve Partial Differ-

ential Equations (PDEs), arising in mathematical models describing financial

markets. It is easy to solve linear PDEs using Lie symmetry, and solutions to

bond pricing equations have been derived using Lie symmetry. The problem

becomes more interesting if we look at non-linear PDEs.

Some scholars elaborate on methodology of the one factor interest-rate

bond-pricing problem consisting of the PDE and the final condition. For ex-

ample, Lesniewski [1] uses a one factor model to price a zero coupon bond. The

general assumption is that short term interest rates follow a random walk, mak-

ing interest rate changes to be sensitive to the level of the risk less rate. Lie

symmetry methods solves one factor models and leads to variable reductions

and exact solutions to the bond pricing equation. Short rates models use the

instantaneous spot rate r(t) as the basic state variable. It is a one factor model

because this is the only stochastic driver.

1
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The intrinsic value of bonds depends on interest rates. That short term

interest rate follows a stochastic differential equation and the price of the bond

also satisfies a deterministic model given as differential equation. Many models

for the short rate have been proposed in the past, such as [7, 8, 9, 10]. It is

found that the most successful models in capturing the movements of the short

rate were those that allowed the volatility of interest rate changes to be highly

sensitive to the level of the interest rate.

Goard [6] uses the symmetries admitted by the bond pricing equation to

find the group invariant solutions. These exact solutions must satisfy the final

condition on a bond price that is equal to one. The author then also compares

the performances of the Lie symmetry models with that of the Chan-Karolyi-

Longstaff-Sanders (CKLS) type and Ahn and Gao models. The Ahn and Gao

models are based on state variable with inverted square root diffusions. These

models represent the United States (US) 1-month T-Bill yields from the year

1946−1994. Simulation of US interest rates seem to be more exact when using

Lie symmetry methods.

The authors in [5] consider the bond pricing equation and employs the Lie

point symmetries. It turned out that only trivial Lie point symmetries are

obtained. However, the authors identify drift functions for which there exist

non trivial symmetries, not just time translations or multiplication by scalars.

Here, the assumption is that the drift function is a solution to one of Riccati’s

equations, and this yielded the non trivial symmetries. Then the Lie algebra is

spanned vector fields, and there is an infinite-dimensional subalgebra spanned

by vector fields.

Craddock, Konstandatos and Lennox [4] also calculate Lie point symme-

tries for the Cox Ingersoll Ross (CIR) model for interest rates. Again they

assume that the drift is a solution for a Ricatti equation. The Lie algebra of
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symmetries is then given by four vector fields, vi. To get to a group trans-

formation of the vector fields, they exponentiate the infinitesimal symmetries

v1, ..., v4

Craddock and Lennox [5] also show an application that the Lie algebra of

symmetries of the Black-Scholes equation is spanned by vector fields v1, ..., vi.

To get to a fundamental solution of the Black-Scholes equation they use one

of the vectors vi. They end up performing the Mellin inversion by converting

the equation to a corresponding Fourier inversion. The final expression is

easily recognised as the transition probability density function for Geometrical

Brownian Motion (GBM). This is expected for the fundamental solution for

the Black-Scholes PDE, as the underlying asset price dynamics is driven by

GBM in the classic Black-Scholes case. To summarise, the authors Craddock

and Lennox [5] say that whenever a second order, linear, parabolic PDE in one

spatial variable x has a non trivial symmetry group, then for at least one of

the vector fields in the Lie algebra, an integral equation can be identified as a

classical integral transform.

A more interesting problem however, is that of solving non-linear PDEs in

finance. For example, Qiu and Lorenz [11] modify the Black-Scholes equation

by assuming that the volatility is not constant. They assume that volatility

is a function of the value of the option and the price of the underlying asset.

A simple choice of volatility such that we have estimates for the maximal and

minimal values of the volatility results in a non-linear PDE. They consider the

case where the volatility is a smooth function, and presents a basic existence

and uniqueness result.

Bordag [13] looks at a non-linear pricing model for a derivative security.

The price of the security depends on a demand function. They study the

demand function, still looking at a non-linear Black-Scholes equation. The
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diffusion coefficient is dependent on various variables like us, uss, and α which

affects the interest rate. Depending on whether the interest rate r is or isn’t

zero, they find different Lie algebras admitted by the equation. They find

optimal systems of sub-algebras in both cases. The optimal systems of sub-

algebras allow to describe the set of independent reductions of these non-

linear PDEs to different ordinary differential equations (ODEs). Some explicit

solutions to these equations were derived.

Liu [14] studies symmetry classifications and exact solutions to bond pricing

equations using Lie symmetry analysis and the power series method, hence the

result being exponentiated solutions



Chapter 2

Symmetry methods for

differential equations

2.1 Introduction

In this chapter we give a brief summary of the work by Sophus Lie on symmetry

methods. Sophus Lie developed a transformation, currently known as Lie

group of transformation, which map a given differential equation to itself.

The differential equations remain invariant under some continuous group of

transformations, usually known as symmetries of a differential equation. The

theory of Lie Groups may be found in texts such as Bluman and Kumei [18],

Bluman and Anco [19], Arrigo [20] and Olver [21].

2.2 Symmetry

Symmetry is a change or a transformation that leave an object invariant. For

example, the area of a triangle is an invariant with respect to isometries of

the Euclidean plane. An identity equation is unchanged for all values of its

5
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variables. Angles and ratios of distances are invariant under scalings, rotations,

translations and reflections. Symmetry groups are invariant transformations

when applied to an equation, they do not change the structural form of the

equation under investigation.

Groups of transformations, otherwise referred to as Lie symmetries, are

used to lower the order of the Ordinary Differential Equation (ODE). In the

case of PDEs, Lie groups of transformations are used to reduce the number

of independent variables by one. This may lead to construction of invariant

solutions. In this dissertation, group of transformations will be utilized to

determine exact (group invariant) solutions.

2.2.1 Infinitesimal transformations

The Taylor series expansion of a function f(x) about a point a, is given by

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · (2.1)

Consider a one parameter group of transformations

x̄ = X(x, ε) (2.2)

with identity ε = 0 and a composition law ψ. Expanding (2.1) about ε = 0 we

obtain

x̄ = x+ ε(
∂X

∂ε
(x, ε))

∣∣∣∣∣
ε=0

+
ε2

2
(
∂2X

∂ε2
(x, ε))

∣∣∣∣∣
ε=0

+ · · ·

= x+ ε(
∂X

∂ε
)(x, ε)

∣∣∣∣∣
ε=0

+ o(ε2)

(2.3)

Let

ξ(x) =
∂X

∂ε
(x, ε)

∣∣∣∣∣
ε=0

(2.4)
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The transformation x̄ ≈ x + εξ(x) is called an infinitesimal transformation of

the Lie group of transformations. The components of ξ(x) are called infinites-

imals of (2.1)

2.2.2 Infinitesimal generators

According to Lies theory, the construction of one parameter group G is equiv-

alent to the determination of the corresponding infinitesimal transformation:

x̄
¯

= x
¯

+ εξ(x
¯
) +O(ε2) (2.5)

an ODE of order n. Here x
¯

= (x, y).

The infinitesimal generator of the one parameter Lie Group of transformations

is the operator

X =
n∑
i=1

ξi(x)
∂

∂xi
(2.6)

We usually write

X = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂ηα
(2.7)

Theorem 2.2.1.

ζk(x, y, y1, ..., yk) = Dx(ζk−1)− ykDx(ξ(x, y))) k = 1, 2, ...,

where

ζ0 = η(x, y).

and y1 = y′, y2 = y′′, y3 = y′′′ and so on. Explicit formulas for ζk follow
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immediately

ζ1 = Dx(η)− y′Dx(ξ)

= ηx + (ηy − ξx)y′ − ξyy′2,

ζ2 = Dx(ζ1)− y′′Dx(ξ)

= ηxx + (2ηxy − ξxx)y′ + (ηyy − 2ξxy)y
′2 − ξyyy′3 + (ηy − 2ξx − 3ξyy

′)y′′,

ζ3 = Dx(ζ2)− y′′′Dx(ξ)

= ηxxx + (3ηxxy − ξxxx)y′ + 3(ηxyy − ξxxy)y′2 + (ηyyy − 3ξxyy)y
′3 − ξyyyy′4

+3[ηxy − 2ξxx + (ηyy − 3ξxy)y
′ − 2ξ − yyy′2]y′′ − 3ξyy

′′2 +

(ηy − 3ξx − 4ξyy
′)y′′.

Infinitesimal transformations can be applied to ODEs, one independent

and one dependent variable. They can also be applied to PDEs with one

independent and n dependent variables.

If an ODE is of the kth order, then the infinitesimal transformation needs

to be extended to the same order as well.

Theorem 2.2.2. An infinitesimal criterion for invariance of an nth order ODE.

Let

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

be an infinitesimal generator of the one parameter Lie group of point transfor-

mation

x̄ ≈ x+ ξε(x) +O(ε2) (2.8)

ȳ ≈ y + ηε(x) +O(ε2) (2.9)

Let

X [n] = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ ζ1(x, y, y

′) + · · ·+ ζk(x, y, y
′, y′′, · · · , yn)

∂

∂yn
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Then a Lie point symmetry is admitted by an nth order ODE if and only if

X [n](yn − f(x, y, y′, y′′, , yn−1)) = 0, when yn = f

The transformers (2.8), (2.9) leave the PDE invariant. The transformations

are generated by

X = ξi(x, u)
∂

∂xi
+ η(x, y)

∂

∂u
(2.10)

The corresponding (kth extended) infinitesimal generator for PDEs is given by

the following

X [k] = ξi
∂

∂xi
+ η

∂

∂u
+ ζi

∂

∂ui
+ · · ·+ ζi1,i2,···ik,

∂

∂ui1,··· ,ik,
, k ≥ 1

Then a Lie point symmetry is admitted by a kth order PDE if and only if

X [k](∆) = 0, when ∆ = 0

Here

ζi = Di(η)− ujDi(ξ
j) (2.11)

ζi1,i2,...,ik = Dik(ζi1,i2,...,ik−1
)− ui1,i2,...,ik−1

Dik(ξ
j) (2.12)

2.2.3 An example

Consider the Burgers’ equation

ut = uxx + uux. (2.13)

The infinitesimal criterion for invariance is given by

X [2](ut − uxx − uux)

∣∣∣∣∣
(2.13)

= 0 (2.14)

ζt − ζxx − uxη − uζx = 0 (2.15)
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This gives the following determining equations

utxux : ξ1u = 0 (2.16)

utx : ξ1x = 0 (2.17)

utux : 2ξ2u + 2ξ1xu = 0 (2.18)

ux3 : ξ2u = 0 (2.19)

u2x : 2ξ2xu − ηuu − 2ξ2uu = 0 (2.20)

ux : −ξ2t − 2ηxu + 2ξ2xx − ξ2xu− η = 0 (2.21)

ut : −ξ1t + ξ1xx + 2ξ2x + ξ1xu = 0 (2.22)

u : ηt − ηxx − ηxu = 0 (2.23)

The solution of the overdetermined system of equations (2.16− 2.23) is given

by

ξ1 = −c1t2 − 2c2t+ c5,

ξ2 = (c1t+ c2)x+ (−c3t+ c4),

η = (c1t+ c2)u+ (c1x+ c3),

X = (−c1t2 − 2c2t+ c5)
∂

∂t
+ [(c1t+ c2)x+ (−c3t+ c4)]

∂

∂x

+[(c1t+ c2)u+ (c1x+ c3)]
∂

∂u
.

Hence, the generators are as follows

X1 = t2
∂

∂t
+ tx

∂

∂x
+ (tu+ x)

∂

∂u
(2.24)

X2 = −2t
∂

∂t
+ x

∂

∂x
+ u

∂

∂u
(2.25)

X3 = −t ∂
∂x

+
∂

∂u
(2.26)

X4 =
∂

∂x
(2.27)

X5 =
∂

∂t
(2.28)
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This implies that the Burgers’ equation admits a 5-dimensional Lie algebra

which corresponds to a five parameter Lie Group of transformation, see [18],

[19], and [21].

2.3 Concluding remarks

We have gone through fundamental theory behind symmetry analysis of dif-

ferential equations. Various applications of symmetry and operator methods

are used in the literature referencing the works of Lie. There are recent ap-

plications to the space of finance, particularly banking. We show in the next

chapter the main approach on computation of symmetry groups, for models of

finance.

Consider the non-linear Black-Scholes equation, so our focus is on 1 + 1

D Black-Scholes equations, and invoke an element of volatility. We also look

at the hedging strategies in finance and trading environment, applied onto a

different non-linear equation. Also, we consider higher dimensional models of

relevance in mathematics of finance.



Chapter 3

Mathematical description of

non-linear 1+1 D Black-Scholes

equations

3.1 Introduction

In this chapter we will look at derivation methods of non-linear equations in

finance.

3.2 Option pricing theory

Black and Scholes derived a linear partial differential equation of diffusion type

which can be applied to the pricing of financial instruments, like options.

An option is an agreement that gives the holder a right, not an obligation, to

buy from or sell to, the seller of the option a certain amount of an underlying

asset at a specified price at a future time. The specified price is the strike

price and the future time is the expiration date. The value v of an option is

12
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a function of s, the price of the underlying asset, t, current time, µ, the drift

of s, σ, the volatility of s, E is the strike price and T is the expiration date of

the option, r is the risk free interest rate.

The classical Black-Scholes follows the next assumptions

• r, risk free interest rate is a known constant for the life of the option

• the price s follows a lognormal random walk, drift µ and volatility σ are

constants known in advance

• transaction costs associated with buying or selling the underlying asset

are ignored

• no dividends paid from the underlying asset

• there is continuous hedging

• the price of the underlying asset is divisible so that we can trade any

fractional share of the asset

• arbitrage-free market.

Let π denote the value of a portfolio with long position in the option and

short position in some quantity ∆ of the underlying asset,

χ = π = v(s, t)− δs (3.1)

A short position is the sale (also known as writing) of an options contract.

A long position is the buying of an options contract. We assume that the price

s of the underlying asset follows a log-normal random walk

ds = µsdt+ σsdχ (3.2)
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where χ is Brownian motion. As time changes from t to t + dt, the value

of the portfolio will also change. This is due to the change of the underlying

assets, and hence the change in the value of the option.

dπ = dv −∆ds (3.3)

By Itôs formula, we have

dv = (vt +
1

2
σ2s2vss)dt+ vsds (3.4)

Combining the last two equations gives

dπ = (vt +
1

2
σ2s2vss)dt+ (vs −∆)ds (3.5)

Delta hedging aims to reduce (hedge) the risk associated with price move-

ments in the underlying asset by offsetting long and short positions. For exam-

ple, a long call position may be delta hedged by shorting the underlying stock.

Short selling is the sale of a stock that is not owned by the seller. This is done

to speculation on price declining, enabling profit due to the price difference.

The Greek letter ∆ is used to denote the quantity of stock we sell short for

hedging. Simply put, the hedge ratio can be described as follows:

∆ =
Change in Option Value

Change in Stock Value
(3.6)

This strategy is based on the change in premium (price of option) caused

by a change in the price of the underlying security.

If we use a delta hedging strategy, and choose ∆ = vs we obtain

dπ = (vt +
1

2
σ2s2vss)dt (3.7)
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By the assumption of an arbitrage-free market (same assets or with iden-

tical cash flows trade with the same price in different markets), the change dπ

equals the growth of π in a risk-free interest-bearing account,

dπ = rπdt = r(v −∆s)dt. (3.8)

Therefore,

r(v −∆s)dt = (vt +
1

2
σ2s2vss)dt (3.9)

Substituting ∆ = vs, we arrive at the Black-Scholes equation

vt + rsvs +
1

2
σ2s2vss − rv = 0 for 0 ≤ t ≤ T (3.10)

This is a 1 dimensional Black-Scholes equation for the pricing of a European

option.

The equation has an end-condition at the expiration time T,

v(s, t) =


max(s− E, 0) for a call option,

max(E − s, 0) for a put option,

H(s− E, 0) for a binary call option, H is the Heaviside function.

(3.11)

This problem can easily be transformed into the heat equation, the state-

ment known as

∂u

∂t
− α52 u = 0. (3.12)

Denote the right hand side in formula (3.9) by v0(s). If one uses the transfor-

mation
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τ = T − t,

x = ln(s) + (r − 1

2
σ2)(T − t),

w(x, τ) = er(T−t)v(s,t)

then the equation (3.8) transforms into the heat equation.

wτ =
1

2
σ2wxx (3.13)

To transform the Black-Scholes equation derived above into a non-linear

PDE, we can make certain assumption. This follows from [11]. Starting with

volatility, we will assume that it is known in the following range 0 < σ− ≤ σ ≤

σ+.

σ+and σ− are estimate maximal and minimal values of σ

We then have

minσ−≤σ≤σ+

1

2
σ2s2vss =


1
2
σ+2

s2vss if vss < 0,

1
2
σ−

2
s2vss if vss ≥ 0.

(3.14)

Hence,

σd(vss) =

 σ+ if vss < 0,

σ− if vss ≥ 0.
(3.15)

Under delta hedging, ∆ = vs we have

dπ = (vt +
1

2
σ+2

s2vss)dt (3.16)

Assume the minimum return on the portfolio with volatility σ varying over

the range σ− ≤ σ ≤ σ+ equals the risk-free return rπdt. We then obtain

vt +
1

2
σd

2(vss)s
2vssdt = rπdt = r(v − svs)dt (3.17)
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with σd(vss) given by (3.13). We then get to the non-linear PDE

vt + rsvs +
1

2
σd

2(vss)s
2vss − rv = 0 (3.18)

if we use the transformation

τ = T − t,

x = s,

u(x, τ) = erτv(s,t)

then

uτ =
1

2
σd

2(uxx)x
2uxx + rxux, x > 0

u(x, 0) = v(s, T ) (3.19)

This is the Black-Scholes equation with variable volatility.

Taking this further, to a different type of non-linear PDE, Cimpoiasu and

Constantinescu [15] assumes the European call options on a basket of two

assets x, y with mean tendencies (or expected rates of returns) , µi, i = 1, 2,

volatilities σi and correlation ρ. We assume that x, y are governed by stochastic

processes of the form:

dx = µ1xdt+ σ1xdW
1

dy = µ2ydt+ σ2ydW
2

ρ = (dW 1, dW 2)

The option µ with payoff uT (x, y) at maturity T will satisfy a two dimen-

sional Black-Scholes PDE:

ut + µ1xux + µ2yuy +
1

2
σ1

2x2u2x +
1

2
σ2

2y2u2y + ρσ1σ2xyuxy − ku = 0,
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k is a constant

u(x, y, T ) = uT (x, y) (3.20)

This is a 1 + 1 D Black-Scholes equation.

3.3 Option pricing theory: Non-linear Black-

Scholes

The market structure is important to risk managers because it impacts in liq-

uidity. A good market brings together sellers and buyers, and reduces search

and transaction costs.

Trading of financial securities, derivatives, and so on, takes place either

on an over-the-counter (OTC) platform, or a formal financial exchange. The

best prices for both buyers and sellers are found when we have high trading

volumes, which are affected by having more buyers and sellers, narrowing the

bid - ask price. Liquidity, loosely interpreted is being able to find the best

price with the least effort, and this attracts buyers and sellers.

There is a relationship between pricing and liquidity. The amount of order

flow is significant when assessing liquidity. The greater the order flow, then

chances are that large trades will not have an adverse price impact. For illiquid

stocks with little order flows, there is a large buy - sell spread.

What happens when you have an illiquid market, where large trades of an

asset affect the price. Frey [38] discusses a model where a hedging strategy

affects the price of the underlying instrument. He derives a formula for the
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feedback effect of dynamic hedging on market volatility. Dynamic hedging is a

technique that involves adjusting a hedge as the underlier moves often several

times a day, hence dynamic.

Dealers at times hold large numbers of short option positions on an un-

derlier which they want to offset by purchasing long options, but can’t find

long options. The delta M, of an option is the sensitivity of the option to

the underlying. It’s the rate of change of value with respect to the underlying.

The trader will create a delta hedge of a non-linear position (i.e. exotic option,

vanilla options, exotic derivatives and bonds with embedded options) to reduce

exposure with a linear position ( i.e. spot trade, forward position and futures).

The deltas of the linear and non-linear positions offset. As the value of the un-

derlier changes the trader will have to take out new linear positions to offset the

changing non-linear delta. A non linear version of the Black-Scholes equation

is used to capture perfect hedging strategies. The hedging of derivatives via

dynamic trading strategies in markets that are not perfectly liquid is looked at.

The model looks at two assets being traded, a riskless one, typically a bond,

and a risky one, like a stock. They assume that the market for the bond is

perfectly liquid, meaning that investors can buy and sell large quantities with-

out impact on the price. Money markets are usually more liquid than stock

markets. A money market is where financial instruments with high liquidity

and very short maturities are traded. The money market is used as a means

for borrowing and lending in the short term, from several days to just under a

year. The stock market is a market in which shares of publicly held companies

are issued and traded. Also known as the equity market, the stock market

provides companies with access to capital in exchange for ownership in the
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company.

The price of the stock, is modelled as a stochastic process (St)t. The major

assumption is that there exists a group of N agents hedging OTC derivatives

on the stock, with a common maturity date T and a path-independent payoff.

Individual hedgers are assumed to be price takers. Looking at an individual

hedger, with a derivative contract on the stock, with maturity T and payoff

h(ST ) using a dynamic trading strategy in stock and bond. The trading s-

trategy is represented by a pair (αt, βt)t where αt is the number of shares of

the stock, and βt, the number of bonds at time t. The implementation of the

traders’ hedging strategy has a feedback effect on the price of the stock. That

means that stock prices may fall(rise) if the hedger sell(buys) additional shares

of the stock.

The following restriction are inferred on the stock trading strategies per-

missable for the trader:

(i) The stockholdings (αt)t are left-continuous (i.e. αt = lims→t < αs)

(ii) The right-continuous process α+ with α+ = lims→t < αs) is a semi

martingale.

(iii) The downward-jumps of the strategy are bounded: ∆α+
t := α+

t − αt >

−1/ρ for some ρ > 0.

The model is also described as the perturbation of the Black-Scholes Model.

ρ measures the market liquidity, and also describes the perturbation. If ρ is 0,

and if there is no trade, αt = 0, then the asset follows the normal Black-Scholes

equation.
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St(ρ, α) denotes the asset price affected by trading strategy and liquidity.

It can be described by the following stochastic differential equation:

(iv) Given a Brownian motion W two constants α > and ρ > 0 and a contin-

uous function λ such that ρλ(S) ≤ ρ for all S ≥ 0. Suppose that the large

trader uses a stock-trading strategy (αt)t satisfying assumptions i and ii.

Then the asset price process solves the following stochastic differential

equation

dSt = σSt−dWt + ρλ(St−)St−dα
+
t ; (3.21)

where St− denotes the left limit lims→tSt.

λ is normalized by assuming that λ(S0) = 1. 1
ρλ(St− )St−

measures the size of

the change in the large traders stock position which causes the price to move.

3.3.1 Dynamic hedging

Frey [38] continues on the subject of dynamic hedging. The value of the

traders’ position has to be determined, this is normally the mark to market

value. It is given by V t
M = αtSt(ρ, α) + βt. Assuming that the strategy is

given by ξ = (α, β). The gains from the stock trading strategy α are given

by Gt =
∫ t
0
αsdSs(ρ, α). The strategy is self financing if V M

t = V M
0 + Gt for

all 0 ≤ t ≤ T . The strategy follows (i), (ii), (iii) and an initial investment V0.

The tracking error of the strategies is then looked at. This is the difference in

the value of a self financing hedging strategy and the payoff of the derivative

at maturity. The tracking error of a self financing strategy α, initial value V0,

payoff h(St) is

eMt = h(St(ρ, α))− V t
M = h(St(ρ, α))−

(
V0 +

∫ t

0

αsdSs(ρ, α)

)
(3.22)

A positive (negative) eMt indicates that a profit (loss) has been made.
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3.3.2 Dynamic hedging with volatility

We now look at dynamic hedging with volatility as studied by Frey [38]. As-

suming that the trader’s stock strategy is given by a function φ, the dynamics

of the asset price and volatility are analysed. φ is assumed to follow:

(v) The function φ : [0;T ]×<+ → < is of class C1,2([0;T ]×<+). Moreover,

ρλ(S)φS(t, S) < 1 for all (t, S)ε[0;T ]×<+ .

If we suppose that a large trader uses a stock-trading-strategy of the form

αt = φS(t, St) for a function φ satisfying assumptions (v), and that the stock

price process St = St(ρ, α) follows an Itô process of the form

dSt = v(t, St)StdWt + b(t, St)Stdt (3.23)

for the two functions v and b, then under assumption (iii)

v(t, S) =
σ

1− ρλ(S)SφS(t, S)
, and (3.24)

b(t, S) =
ρ

1− ρλ(S)SφS(t, S)

(
φt(t, S) +

σ2S2φSS(t, S)

2(1− ρλ(S)SφS(t, S))2

)
(3.25)

Proof 3.3.2.1. Itô’s formula and assumption (v) imply that stockholding α

are semimartingale. By Itô’s formula, we get that

dαt = φS(t, St)dSt +

(
φt(s, Ss) +

1

2
φss(t, St)v

2(t, St)(Ss)
2

)
ds

Assumption (iv) together with equation (3.20) give the following for the equi-

librium stock price process S:

dSt = σStdWt + ρStφS(t, St)dSt + ρSt

(
φt(t, St)dt+

1

2
φss(t, St)d〈S〉t

)
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equivalently

(1− ρStφS(t, St))dSt = σStdWt + ρSt

(
φt(t, St)dt+

1

2
φss(t, St)d〈S〉t

)
(1− ρStφS(t, St))dSt is strictly positive.

Integrating (1 − ρStφS(t, St))dSt over both sides yields the following for the

stock price dynamics

dSt =
σ

1− ρStφS(t, St)
StdWt +

ρSt
1− ρStφS(t, St)

(
φt(t, S) +

σ2S2
t

(1− ρStφS(t, St))2

)
(3.26)

The feedback effect from dynamic hedging on volatility is described above.

The trading-activity of the large investor with the constant volatility σ is

transformed into the time and price dependent volatility v(t, S) in (3.22).

v(t, S) > σ if φ(t, S) > 0, meaning if the trader uses a positive feedback

strategy which calls for additional buying if the stock price rises. This is com-

mon in hedging strategies for derivatives with a convex terminal payoff such

as European call or put options. If the trader uses v(t, S) < σ if φ(t, S) < 0,

then volatility is decreased.

From this work, [17] Frey and Patie looked at the feedback effect of the

option replication strategy of the large trader on the asset price process. The

purpose is to find out if the hedger will reproduce the payoff of derivative con-

tracts by dynamic trading, even though the hedging affects the asset prices.

This perfect hedging strategy is represented by a non-linear Black-Scholes e-

quation.

Proposition 3.3.2.1. Assume that there is a solution u ∈ C1,2([0;T ]×<+) of

the following non-linear Black-Scholes equation

ut(t, S) +
1

2

σ2

(1− ρλ(S)SuSS(t, S))2
S2uSS(t, S) = 0, u(T, S) = h(S) (3.27)



3.3. OPTION PRICING THEORY: NON-LINEAR BLACK-SCHOLES 24

whose space derivative uS(t, S) = ∂u(t,S)
∂S

satisfies (v). Then a strategy with

αt = uS(t, St) and the value process Vt = u(t, St), 0 ≤ t ≤ T is a strategy

that makes the tracking error value equal to 0, so it works well for a derivatives

with payoff h(ST ).
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Proof 3.3.2.1. Using a strategy αt = uS(t, St), volatility of the asset price is:

σu(t, S) :=
σ

1− ρλ(S)SuSS(t, S)
. (3.28)

Applying Itô’s formula to u we get

h(ST ) = u(T, ST ) (3.29)

= u(0, S0) +

∫ T

0

uS(t, St)dST +

∫ T

0

uS(t, St)

+
1

2
uSS(t, St)σ

2
u(t, St)S

2
t dt (3.30)

where S stands for S(ρ, α). The right hand side falls away. Hence, h(ST (ρ, α)) =

V0
∫ T
0
αtdSt(ρ, α), proving that the tracking error is zero.

The values of ρ and λ(S) can be estimated from the observed option prices

and depend on the payoff h(S). Remember, S is the price of the underly-

ing asset, u(S, t) is the hedge-cost of the claim with a payoff h(S). t is the

time variable, σ defines the volatility of the underlying asset. (3.25) can be

generalized as

u(t, S) +
1

2
(v(t, S, uSS))2uSS(t, S) = 0; (3.31)

The above equation emphasises the dependence on volatility

3.3.3 Hedging strategy for a perfect replication of deriva-

tives

[38] Frey derives an expression that uses a non-linear Black-Scholes PDE to

hedge a derivative with a payoff h(ST ) in an illiquid market.

Proposition 3.3.3.1. Assume that there is a solution u ∈ C1,2([0;T ]×<+) of

the following non-linear Black-Scholes equation

ut(t, s) +
1

2

σ2

(1− ρSuSS(t, S))2
S2uSS(t, S) = 0, u(T, S) = h(S) (3.32)
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whose space derivative uS(t, S) = ∂u(t,S)
∂S

satisfies (v). Then a strategy with

αt = uS(t, St) and the value process Vt = u(t, St), 0 ≤ t ≤ T is a strategy that

makes the tracking error value equal to 0, so it works well for a derivatives

with payoff h(ST ).

Proof 3.3.3.1. Using a strategy αt = uS(t, St), volatility of the asset price is

v(t, S, u) = σ
1−ρSuSS(t,S)

. Applying Itô’s formula to u we get

h(ST ) = u(T, ST ) (3.33)

= u(0, S0) +

∫ T

0

uS(t, St)dST +

∫ T

0

uS(t, St)

+
1

2
uSS(t, St)v

2(t, St, u)S2
t dt (3.34)

where S stands for S(ρ, α). The right hand side falls away. Hence, h(ST (ρ, α)) =

V0
∫ T
0
αTdST (ρ, α), proving that the tracking error is zero.

3.4 Concluding remarks

In this chapter, a detailed account of mathematical description for non-linear

Black-Scholes equations is given. Furthermore, we discussed the applications

of these equations to financial markets.



Chapter 4

Symmetry reductions of 1+1 D

non-linear Black-Scholes

equation

4.1 Introduction

In this chapter, we will continue with elaboration on [38]. We look at the

model where the hedging strategy affects the price of the reference entity. The

model on feedback effects of dynamic hedging is reviewed.

4.2 Hedging strategy for a perfect replication

of derivatives

Proposition 4.2.1. Assume that there is a solution u ∈ C1,2([0;T ] × <+) of

the following non-linear Black-Scholes equation

ut(t, S) +
1

2

σ2

(1− ρλ(S)SuSS(t, S))2
S2uSS(t, S) = 0, u(T, S) = h(S) (4.1)

27
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whose space derivative uS(t, S) =
∂u(t, S)

∂S
satisfies (v). Then a strategy with

αt = uS(t, St) and the value process Vt = u(t, St), 0 ≤ t ≤ T is a strategy

that makes the tracking error value equal to 0, so it works well for a derivatives

with payoff h(ST ).

4.3 Determining system of equations

The infinitesimal symmetry operator is of the form:

X̃ = ξ1(x, y, t, u)
∂

∂x
+ ξ2(x, y, t, u)

∂

∂y
+ η(x, y, t, u)

∂

∂y
(4.2)

The following consideration is made ϕ = c0, then the determining system

of equations looks as follows:
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ρξt
2 = 0

ρηt
2 = 0

σξs
1 = 0

σξuu
2 = 0

σξu
1 = 0

ρσξs
1 = 0

ρσξuu
2 = 0

ρσξu
1 = 0

σ(ηuu − 2ξsu
2) = 0

ρσ(ηuu − 2ξsu
2) = 0

ρ(sσ2ξu
2 + 3ρ(ξt)

2) = 0

2s2σ2ηss + 4ηt = 0

σ(−4ρηuu + sσ2ξ1uu + 8ρξ2su) = 0

ρσ(−4ρηuu + sσ2ξ1uu + 8ρξ2su) = 0

ρ(s2σ4ξ1u + sσ2ξ2u − 15ρξ2t ) = 0

4s2σ2ηsu − 2s2σ2ξ2ss − 4ξ2t = 0

ρ(2sσ2ηu − 2sσ2ξ2s + 12ρηt − sσ2ξ1t ) = 0

ρ(10sσ2ξ2u + ρ(2s2σ2ηsu − s2σ2ξ2ss + 30ξ2t )) = 0

ρ(−6sσ2ξ2u − 4s2ρσ2ηsu + s3σ4ξ1su + 2s2ρσ2ξ2ss − 40ρξ2t ) = 0

ρ(−3σ2(ξ2)[t, s, u] + sσ2ηu + s2σ4ξ1s + 2sσ2ξ2s + 15ρηt − 2sσ2ξ1t ) = 0

2s2σ4ξ1u − 2sσ2ξ2u − 4s2ρσ2ηsu + s3σ4ξ1su + 2s2ρσ2ξ2ss + 12ρξ2t ] = 0

4σ2(ξ2)[t, s, u] + 4s2σ4ξ1s − 4sσ2ξ2s − 4s2ρσ2ηss + s3σ4ξ1ss − 24ρηt + 2sσ2ξ1t = 0
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ρ(2ρ)σ2(ξ2)[t, s, u]− 6sρσ2ηu + s2σ4ξ1u + 4sρσ2ξ2s + s2ρ2σ2ηss − 30ρ2ηt + 4sρσ2ξ1t ) = 0

ρ(12ρσ2(ξ2)[t, s, u]− 12sρσ2ηu + 2s2σ4ξ1u + 4s2ρ2σ2ηss − s3ρσ4ξ1ss − 80ρ2ηt + 12sρσ2ξ1t ) = 0

This can be easily verified using software ”SYM”.

A solution has to be found for one of the functions ξ2, η, ξ1

Case 1: ρ = 0, σ = 0

The coefficients of the Infinitesimal Generator are:

η[t, s, u] = F1[s, u] (4.3)

ξ2[t, s, u] = F2[s, u] (4.4)

The solution is spanned by the following:

ξ1[t, s, u]
∂

∂t
+ F1[s, u]

∂

∂u
(4.5)

F2[s, u]
∂

∂s
+ ξ1[t, s, u]

∂

∂t
(4.6)

Case 2: ρ 6= 0, σ = 0

The coefficients of the Infinitesimal Generator are:

ξ2[t, s, u] = F1[s, u] (4.7)

η[t, s, u] = F2[s, u] (4.8)

The solution is spanned by the following:

ξ1[t, s, u]
∂

∂t
+ F2[s, u]

∂

∂u
(4.9)

F1[s, u]
∂

∂s
+ ξ1[t, s, u]

∂

∂t
(4.10)

Case 3: ρ 6= 0, σ 6= 0
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The coefficients of the Infinitesimal Generator are:

ξ2[t, s, u] = sc3 (4.11)

η[t, s, u] = c1 + sc2 + uc3 (4.12)

ξ1[t, s, u] = c4 (4.13)

The solution is spanned by the following:

X1 =
∂

∂u

X2 =
∂

∂t

X3 = s
∂

∂u

X4 = s
∂

∂s
+ u

∂

∂u

Now we want to capture the results in a commutator table.

Definition 4.3.1. The commutator of any two infinitesimal generators of an

r-parameter Lie Group of transformations is also an infinitesimal generator.

In particular:

[Xi, Xj] =
r∑

k=1

Ck
i,jXk (4.14)

where the coefficients Ck
i,j are the constants called structure constants, i, j, k =

1, 2, ...r.

Suppose one is given the generators

X1 = ξi1(x, u)
∂

∂xi
+ ηα1 (x, u)

∂

∂uα
,

X2 = ξi2(x, u)
∂

∂xi
+ ηα2 (x, u)

∂

∂uα
.

X1 and X2 span the vector space (Lie Algebra) L if the commutator

[X1, X2] = (X1(ξ
i
2)−X2(ξ

i
1))

∂

∂xi
+ (X1(η

α
2 )−X2(η

α
1 ))

∂

∂uα

= X1X2 −X2X1 ∈ L
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The axiom of skew symmetry also holds, that means that if X1, X2 ∈ L,

then [X1, X2] = −[X2, X1]. These axioms will be very helpful as we look at

the commutator table. All of the above can be summarised as shown in the

commutator Table 4.1.

Table 4.1: Commutator table of the sub-algebras using Black-Scholes

and hedging strategies

[Xi, Xj] X1 X2 X3 X4

X1 0 0 0 X1

X2 0 0 0 0

X3 0 0 0 sX1

X4 −X1 0 −X3 0
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Using the commutator above and the formula

Ad(eεXi)Xj = Xj − ε[Xi, Xj] +
1

2!
ε2[Xi, [Xi, Xj]]− ..., (4.15)

where i and j take on values from 1 to 4, we can find the adjoint representation

of Xi.

Definition 4.3.1. [21] Let G be a Lie group. An optimal system of s-

parameter subgroups is a list of conjugacy inequivalent s-parameter subgroups

with the property that any other subgroup is conjugate to precisely one sub-

group in the list. Similarly, a list of s-parameter sub-algebras forms an optimal

system if every s-parameter subalgebra of g is equivalent to a unique member of

the list under some element of the adjoint representation: h̆ = Ad[g(h)], g ∈ G.

The adjoint representation can be summarised by the Table.4.2 below

Table 4.2: Adjoint table of sub-algebras

[Adj.] X1 X2 X3 X4

X1 X1 X2 X3 X4 − εX1

X2 X1 X2 X3 X4

X3 X1 X2 X3 X4 − sεX1

X4 X1e
ε X2 X3e

ε X4

From this it is possible to calculate the one-dimensional optimal system of

the symmetry subgroups. Using the operator below that is also non- zero

X = a1X1 + a2X2 + a3X3 + a4X4, (4.16)

we have to simplify the coefficients of ai by the application of the adjoint maps

to the operator X. ai are arbitrary constants
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Let a4 = 1, then

X = a1X1 + a2X2 + a3X3 +X4,

With reference to the table above we act on X by Ad(ea1/sX3)X to eliminate

a1X1. This gives

XI = a2X2 + a3X3 +X4 (4.17)

this cannot be simplified further.

XI = X4 + αX2 + βX3

Next we assume a4 = 0, a3 6= 0, a3 = 1, then

X = a1X1 + a2X2 +X3,

X = a1X1 + a2X2 +X3,

Next we assume a4 = 1, a2 = 0, then

Ad(eβX4)X = a1X1 + a2X2 + eεX3,

depending on the sign of a1, a2, we have

X3 ±X1 ±X2, X3, X3 ±X2, X3 ±X1

Now, a3 = 0, a2 = 1

X = a1X1 +X2,

Now, a2 = 0, then

X2 + αX1

The one dimensional optimal system of sub-algebras is

{X4 + αX2 + βX3, X3 ±X1 ±X2, X3, X3 ±X2, X3 ±X1, X2 + αX1, X1}
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X1

α, β ∈ < (4.18)

Now, the work to provide a complete list of invariant solutions has been com-

pleted. As per our optimal systems of one dimensional sub-algebras of the

full symmetry algebra, we need to find group-invariant solutions for the one

parameter subgroups. For example, the solutions, which corresponds to the

symmetry group generated by

α(X2 +X3) =
∂

∂t
+ s

∂

∂u
, α = 1

can be recovered from the stationary solutions u = f(x). Solving the above

and substituting it back to our original equation

ut(t, S) +
1

2

σ2

(1− ρλ(S)SuSS(t, S))2
S2uSS(t, S) = 0, u(T, S) = h(S) (4.19)

we see that f(x) is a function satisfying

2ρλs2F ′′2 + (4ρλs− σ2s)F ′′ + 2 = 0 (4.20)

The particular solution of this ODE is as follows

F1(s) = c1 + sc2 +
(4ρ− σ2 +

√
−8ρσ2 + σ4)(s+ s ln 1

s
)

4ρ2
(4.21)

F2(s) = c1 + sc2 −
(4ρ− σ2 +

√
−8ρσ2 + σ4)(s+ s ln 1

s
)

4ρ2
(4.22)

We can also get to other forms of the solutions by making certain assumptions.

Case 1: ρ =
σ2

4
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Then the ODE we have to solve becomes

F ′′2 =
−16

σ4s2
(4.23)

The solution to this ODE is as follows

F1(s) = c1 + sc2 −
4i(−s+ s ln s)

σ2
(4.24)

F2(s) = c1 + sc2 +
4i(−s+ s ln s)

σ2
(4.25)

Case 2: ρ = 0

Then the ODE we have to solve becomes

F ′′ =
2

σ2s
(4.26)

The solution to this ODE is as follows

F (s) = c1 + sc2 −
2lns

σ
(4.27)

The rest of the symmetry reductions and invariant solutions are shown in the

tables below. We show the second subalgebra is X1 + X3, and find solutions

for the arising equations. Lastly, we find solutions using subalgebra X1 +X2.
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Table 4.3: Summary of symmetry reductions and invariant solutions

using sub-algebra X1 +X3

Symmetry
Reduced

Equation

Invariant solution in terms

of original variables

X1 +X3

Case 1: ODE as is

2ρλs2F ′′2 +

(4ρλs−

σ2s)F ′′ + 2 = 0

F1(s) =

c1 + sc2 +

(4ρ−σ2+
√
−8ρσ2+σ4)(s+s ln 1

s
)

4ρ2

F2(s) =

c1 + sc2 −
(4ρ−σ2+

√
−8ρσ2+σ4)(s+s ln 1

s
)

4ρ2

Case 2: ρ = σ2

4 F ′′2 = −4
σ2s2

F1(s) = c1 +

sc2 − 4i(−s+s ln s)
σ2

F2(s) = c1 +

sc2 + 4i(−s+s ln s)
σ2

Case 3: ρ = 0 F ′′ = 2
σ2s

F (s) = c1 +

sc2 + 2(−s+s ln s)
σ2

Case 1: ODE as is

To get to a particular solution, we will make the following initial assumptions.

ρ ∈ {0.1, 0.5}

σ ∈ {0.4, 0.6, 0.7, 0.8}

λ = 1

Then our hedging profile can be represented in the figures 4.1 and 4.2. The

plot shows two sets of results, the first solution lies on the x axis, and the second
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Figure 4.1: Varying levels of volatility, but very low liquidity

one, depending on the volatility level, lies on the positive or negative y axis.

The interesting result with this plot seems to be that the higher the volatility,

the higher the cost of hedging. These factors seems to have a proportionally

increasing relationship. We look at a similar exercise, but in this case the

market liquidity ρ parameter is increased. The results are what we expect, in

Figure 4.2: Varying levels of volatility, but a slight increase in liquidity

that in a market with high liquidity, the hedging cost should decrease. But

how much impact does an increase in volatility have on the hedging cost when
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the asset is volatile. We see in the plots that not a lot, the increase in volatility

leads to a negligible increase.

Case 2: ρ =
σ2

4
, λ = 1

λ represents the level dependent liquidity profile. If we assume that λ = 1, then

that means there is a constant liquidity profile. Remember that ρ represents

the market liquidity parameter. We will use varying values of ρ to see the

impact on the hedging cost. We want to see 1
ρλs

(depth of the market), how the

size of the change in large traders stock positions will be affected by liquidity

availability or scarcity. To get to a particular solution, we will make the

following initial assumptions.

ρ = 0.1 or

= 0.2

σ = 0.4

λ = 1

s ∈ [0, 100]

Then our hedging profile can be represented as shown in the following plots
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Figure 4.3: Option with fixed payoff values of u

The solutions are interesting in that they yield a complex number solution.

As before, we look at scenarios with two levels of volatility and show the drastic

effect that this has on the hedging cost. The volatility of the stock also has

a proportional influence on the stocks’ liquidity. We have assumed a constant

liquidity profile.

Case 3: ρ = 0

Remember that ρ represents the market liquidity parameter. The model used is

a perturbation of the Black-Scholes model, and it is controlled by the parameter

ρ. If we assume the ρ = 0, then the resultant is that the asset simply follows
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Black-Scholes with volatility σ. To get to a particular solution, we will make

the following initial assumptions.

ρ = 0

σ = 0.4

s ∈ [0, 100]

Then our hedging profile can be represented as shown in the figure below.

This is a very interesting profile because the graph seems to be polynomial

Figure 4.4: Hedge cost u, assuming no market liquidity ρ = o

plot, meaning an increase in the stock price means for a direct increase in the

hedging cost to a certain degree. This is a direct impact arising from market

illiquidity, and high probability of failure to sell off at a profitable margin.

The play on volatility further exacerbates the problem caused by illiquidity,

such that an increase in the volatility of the stock results also in a substantial

increase of the hedging cost. This of course is what we would intuitively expect.

Liquidity risk is an important risk faced by the financial industry. It is im-

portant to look at liquidity costs, the extra price one pays over the theoretical

price of a tradable asset, due to finite liquidity.
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Subalgebra : X1 +X2

Similar methodology in solving equations in the subalgebra and plots is fol-

lowed.



4.3.
D

E
T

E
R

M
IN

IN
G

S
Y

S
T

E
M

O
F

E
Q

U
A

T
IO

N
S

43

Table 4.4: Summary of symmetry reductions and invariant solutions using sub-algebra X1 +X2

Symmetry Reduced Equation
Invariant solution in terms of

original variables

X1 +X2

Case 1: ODE as is 2ρ2s2F ′′2 + (σ2s2 − 4ρs)F ′′ + 2 = 0

F1(s) = c1 + sc2 − 1
4ρ2

(
4ρs + s2σ2

2
+

4ρ
√
s
√
−8ρ+sσ2

σ
+ σ

√
−8ρ+ sσ2( s

3
2

2
− 2ρ

√
s

σ2 ) −

4ρs ln s − 8ρs ln(σ
√
s
√
−8ρ+ sσ2) +

32ρ2 ln(σ
√
s+
√
−8ρ+sσ2)

σ2 − 16ρ2 ln(σ
√
s+
√
−8ρ+sσ2)

σ2

)
F2(s) = c1 + sc2 + 1

4ρ2

(
4ρs + s2σ2

2
+

4ρ
√
s
√
−8ρ+sσ2

σ
+ σ

√
−8ρ+ sσ2( s

3
2

2
− 2ρ

√
s

σ2 ) −

4ρs ln s − 8ρs ln(σ
√
s
√
−8ρ+ sσ2) +

32ρ2 ln(σ
√
s+
√
−8ρ+sσ2)

σ2 − 16ρ2 ln(σ
√
s+
√
−8ρ+sσ2)

σ2

)
Case 2: ρ =

σ2s

4
F ′′2 = −16

σ4s4

F1(s) = c1 + sc2 − 4i ln s
σ2

F2(s) = c1 + sc2 + 4i ln s
σ2

Case 3: ρ = 0 F ′′ = − 2
σ2s2

F (s) = c1 + sc2 + 2lns
σ2 )
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Case 1: ODE as is

To get to a particular solution, we will make the following initial assump-

tions.

ρ ∈ {0.1, 0.2, 0.3, 0.5}

σ ∈ {0.4, 0.8}

λ = 1

Then our hedging profile can be represented as shown in the following plots

below
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Figure 4.5: Hedge cost u, different levels of liquidity ρ and varying volatilities

σ

We first try to understand the relationship that this profile shows between

liquidity and the stock price. What happens to the hedging cost when we
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increase liquidity in the market. If the assumption is that we have constant

volatility, then the hedge cost should decrease as we increase liquidity. This

is only when volatility is assumed to be very low. However, if we change the

position of volatility and increase it significantly higher, then the results on

liquidity are different. For very volatile stocks, this shows that when there is

little liquidity, then the hedging cost is rather inexpensive. As liquidity grows,

the hedging cost increases by a small margin for a while, but eventually tapers

off.

Case 2: ρ =
σ2s

4
, λ = 1

To get to a particular solution, we will make the following initial assumptions.

σ ∈ {0.4, 0.65, 0.8}

λ = 1

We show firstly the impact when the volatility is low at 0.4. We vary values of

s to see clearer plots of the profile, and to see how quickly the hedging costs

change as we increase the stock cost. For the sake of a clearer graph, we show

x = [0, 1)

x = [1, 60]
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Figure 4.6: Hedge cost u, volatility σ = 0.4

This is a polynomial, in the beginning the hedge cost is very low, then tends

to zero, increases, and at some point of the stock cost starts decreasing again,

no a negative level. Here we can assume that the cost is close to nothing. Let

us see what happens if we increase volatility slightly.
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Figure 4.7: Hedge cost u, volatility σ = 0.65

Very interesting that at very low stock prices, the hedge cost is slightly

higher than the previous example, but then afterwards increases almost expo-

nentially. This is due to a slight increase in volatility σ = 0.65

We then look at the third scenario, further increasing volatility. The behaviour

of the plot is similar to when σ = 0.4. However, in this case, the hedge cost is

much more cheaper than at a lower volatility. This does not fulfil our natural

expectations, we expect the behavior to be opposite.
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Figure 4.8: Hedge cost u, volatility σ = 0.8

Case 2: ρ = 0, λ = 1

To get to a particular solution, we will make the following initial assumptions.

σ ∈ {0.4, 0.65, 0.8}

λ = 1

We show firstly the impact when the volatility is low at 0.4. We vary values of

s to see clearer plots of the profile, and to see how quickly the hedging costs

change as we increase the stock cost. For the sake of a clearer graph, we show

x = [0, 10)
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x = [0, 100]

Figure 4.9: Hedge cost u, with varying values of volatility σ
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Subalgebra : X3 +X4

Table 4.5: Summary of symmetry reductions and invariant solutions

using sub-algebra X3 +X4

Symmetry
Reduced

Equation

Invariant solution in terms

of original variables

X3 +X4

Case 1: ODE as is F ′ = 0 F (s) = c1

We follow a similar methodology in solving equations in the subalgebra as we

did previously. We also plot the results as shown before. This can simply

be plotted as a straight line, dependant of what values are assigned to the

constant c.

4.4 Concluding remarks

In this chapter, classical Lie point symmetry methods are applied to the non-

linear Black-Scholes equations. Some large Lie algebras are admitted. We

determined the one dimensional optimal systems and constructed some exact

solutions. Wherever necessary, we employ numerical methods to determine

approximate solutions.



Chapter 5

Black-Scholes equation with

variable volatility

In this chapter we consider the non-linear equation

uτ =
1

2
σd

2(uxx)x
2uxx + rxux, x > 0

u(x, 0) = v(s, T ) (5.1)

The difficulty in solving for this equation lies with the following terms:

σd
2(uxx)uxx because this is where the non linearity comes into play.

5.1 Determining system for Lie symmetries

The equation has the form

ut = A(x, y)u2xx +B(x, y)ux (5.2)

The infinitesimal symmetry operator is given by

X̃ = ϕ(x, u, τ)
∂

∂x
+ ξ(x, u, τ)

∂

∂u
+ η(x, u, τ)

∂

∂τ
(5.3)

52
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The solution for the determining equations is spanned by the following

operators:

X1 =
∂

∂t

X2 =
1

2re2rt
[
∂

∂t
− xr ∂

∂x
]

X3 = −xetr ∂
∂u

X4 =
∂

∂u

X5 = x
∂

∂x
+ 2u

∂

∂u

The commutator table is given by

Table 5.1: Commutator table of the sub-algebras for Black-Scholes

with variable volatility

[Xi, Xj] X1 X2 X3 X4 X5

X1 0 −2rX2 −rX3 0 0

X2 2rX2 0 0 0 0

X3 rX3 0 0 0 X3

X4 0 0 0 0 2X4

X5 0 0 −X3 −2X4 0

Using the commutator above and the formula

Ad(eεXi)Xj = Xj − ε[Xi, Xj] +
1

2!
ε2[Xi, [Xi, Xj]]− ..., (5.4)

where i and j take on values from 1 to 5, we can find the adjoint representation

of Xi. This is shown in the examples below:
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for i=1, j=2

Ad(eεX1)X2 = X2 − ε[X1, X2] +
1

2!
ε2[X1, [X1, X2]]− ...,

= X2 − ε(−2rX2) +
ε2

2!
[X1,−2rX2]

= X2(1 + 2rε− (2r)2ε2

2!
+

(2r)3ε3

3!
− ...)

= X2e
2rε

for i=2, j=1

Ad(eεX2)X1 = X1 − ε[X2, X1] +
1

2!
ε2[X2, [X2, X1]]− ...,

= X1 − 2rεX2 +
ε2

2!
[X2, 2rX2]

= X1 − 2rεX2

The rest of the adjoint representations are summarised in the table as below

Table 5.2: Adjoint table of sub-algebras

[Ad.] X1 X2 X3 X4 X5

X1 X1 X2e
2rε X3e

εr X4 X5

X2 X1 − 2rεX2 X2 X3 X4 X5

X3 X1 − εrX3 X2 X3 X4 X5 − εX3

X4 X1 X2 X3 X4 X5 − 2εX4

X5 X1 X2 X3e
ε X4e

2ε X5

From the definition on adjoints above, it is possible to calculate the one-

dimensional optimal system of the symmetry subgroups. Using the operator

below that is also non- zero

X = a1X1 + a2X2 + ...+ a5X5, (5.5)

we have to simplify the coefficients of ai by the application of the adjoint maps

to the operator X. ai are arbitrary constants.
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To get to a one dimensional optimal system of sub-algebras we look at the

equation below. Let

a5 6= 0, a5 = 1

Ad(eβX2)X = a1X1 − 2a1rβX2 + a2X2 + a3X3 + a4X4 +X5

= a1X1 + (a2 − 2a1βr)X2 + a3X3 + a4X4 +X5

β =
a2

2a1r
, a1 6= 0

The X operator then converts to X∗

XI = a1X1 + a3X3 + a4X4 +X5

Ad(eβX3)XI = a1(X1 − βrX3) + a3X3 + a4X4 +X5 − βX3

choosing β = a3
a1r+1

, then

XII = a1X1 + a4X4 +X5

Ad(eβX4)XII = a1 + a4X4 +X5 − 2βα4

choosing β = a4
2

, then we obtain

a1X1 +X5
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No further simplification can be made so X5 + a1X1 is the first element of

the one dimensional optimal system.

Next, we let

a5 = 0, a4 = 1

X = a1X1 + a2X2 + a3X3 +X4

Ad(eβX2)X = a1(X1 − 2γβX2) + a2X2 + a3X3 +X4

Choose β = a2
2a1r

, then

XI = a1X1 + a3X3 + a4X4

Ad(eβX3)XI = a1(X1 − βrX3) + a3X3 +X4

choosing β = a3
a1r

we obtain

XII = a1X1 +X4

Ad(eβX5)XII = a1X1 + e2βX4

= X4 + e−2βa1X1

depending on the sign of a1, then we have now, a5 = a4 = 0, a3 = 1,

X4 ±X1, X4

X = a1X1 + a2X2 +X3

Ad(eβX2)X = a1(X1 − 2rβX2) + a2X2 +X3

XI = a1X1 +X3 following elimination of X2

Ad(eβX5)XI = a1X1 + eβX3

= X3 + a1e
−βX1
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X3 ±X1, X3

depending on the sign of a1, we obtain

now, a5 = a4 = a3 = 0, a1 = 1,

X = X1 + a2X2

Ad(eβX2)X = X1 − 2rβX2 + a2X2

Let β = a2
2r

,then if a5 = a4 = a3 = a1 = 0,then

X1

X2

The complete one-dimensional optimal system of sub-algebras is therefore

{X5 + αX1, X4 ±X1, X4, X3 ±X1, X3, X1, X2}, (5.6)

for all α ∈ <

5.1.1 Symmetry reductions and invariant solutions

Elements of the optimal system obtained above are used for symmetry reduc-

tions. We must find group invariant solutions for the one parameter subgroups

generated. The results using the subalgebra αX1 +X4 are shown below.

αX1 +X4 =
∂

∂t
+

∂

∂u

dt = du

t = u+ I2

but remember that

I1 = x
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I2 = F (I1)

I2 = F (x)

Our primary equation becomes

u = t− F (x) (5.7)

Substituting into our original PDE,

uτ =
1

2
σd

2(uxx)x
2uxx + rxux, x > 0

u(x, 0) = v(s, T ) (5.8)

we obtain the ODE

σ2
dx

2F ′′2 − 2rxF ′ − 2 = 0 (5.9)

We were unable to come about with a solution to the ODE above as is, so we

made the following assumptions to get to a particular solution.

Case 1: r = 0

then

F ′′2 =
2

σ2
dx

2
(5.10)

Remember that r represents the risk free interest rate. Academics and practi-

tioners have used government security rates as risk free rates, though at times

there is confusion arising regarding using long term of short term rates. Realis-

tically, to work out the interest rate, a risk free bond issued by the government

is chosen, where the risks of default are negligible.

In particular, a solution can be written in terms of

F1(x) = c1 +
xc2 −

√
2(−x+ x lnx)
√
σd

(5.11)
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F2(x) = c1 +
xc2 +

√
2(−x+ x lnx)
√
σd

(5.12)

In terms of the original variables, we have

u = t− [c1 +
xc2 ±

√
2(−x+ x lnx)
√
σd

] (5.13)

Case 2: r = 1

This case yields an ode for which we are unable to find a solution to.

Case 3: σd = 0

σd represents volatility. Zero volatility is theoretically possible, but not ob-

served in financial markets. This is because option prices cannot be calculat-

ed, infinity, and the Black-Scholes equation explodes. This causes the asset

to be degenerate. Zero volatility means that Brownian motion is no longer

stochastic and will move in the direction of the drift.

Given a zero volatility, equation (5.9) has a solution.

F ′ =
1

−rx
(5.14)

The solution can be written as

F (x) = c1 −
lnx

r
(5.15)

in terms of the original variables we obtain

u = t−
(
c1 −

lnx

r

)
(5.16)

The rest of the symmetry reductions and invariant solutions are shown in the

tables below.
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Table 5.3: Summary of symmetry reductions and invariant solutions

using sub-algebra X1 +X4

Symmetry
Reduced

Equation

Invariant solution in terms

of original variables

X1 +X4

Case 1: ODE as is
σdx

2F ′′2 −

2rxF ′ − 2 = 0
No solution

Case 2: r=0 F ′′2 = 2
σdx2

F1[x] = c1 +

xc2−
√
2(−x+x lnx)√

σd

F2[x] = c1 +

xc2+
√
2(−x+x lnx)√

σd

Case 3: σd = 0 F ′ = 1
−rx F [x] = c1 − lnx

r

Case 1: ODE as is

We attempt solving (5.9) ODE using numerical methods, and in this case

Explicit Euler method. We make certain assumption on initial boundary values

as seen below. We also use hypothetical values for volatility σd, and risk free

interest rate r.

σdx
2F ′′2 − 2rxF ′ − 2 = 0

y′[1] = 1

y[1] = 1

σd = 0.47

r = 0.04

x ∈ [0, 40]
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We show the second subalgebra is X1 + X2, and find solutions for the arising

equations. Lastly, we find solutions using subalgebra X1 + X3. We have used

the Explicit Runga-Kutta method, and the plot of the extrapolation of the

function based on initial conditions stated above. We get a solution with two

graphs. We plot third order Hermitian graphs. We also evaluate the behaviour

based on varying values of the risk free rate to see the impact on the hedging

cost. It is very interesting to see that slightly reducing the risk free rate causes

Figure 5.1: Option with fixed payoff values of u, and variable interest rates r

our solution to be chaotic. The plot becomes extremely volatile and the hedge

cost fluctuates from one range to the other. So very low adjustments of the

interest rate r causes results that are not negligible.
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Figure 5.2: Comparison on impact to hedge cost when interest rates are greatly

reduced

Case 2: r = 0

Looking at this case in the table above, we try to solve for constants c1, and

c2. To get to a particular solution, we invoke an initial condition to solve for

the arbitrary constants.

x0(price) = 100

σd(volatility) ∈ [0.32, 0.84]

F (x0)(u) = 50
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From this we are able to conclude that

c1 = −100c2 + 961.29

If we suppose that at some time t1 = 3, we have x1 = 105, then we can invoke

boundary condition

∂F

∂x

∣∣∣∣∣
x=105

= 0

This gives a solution for our constant.

c2 = 11.64

Hence, our solution can we written as follows

F1(x) = −1164 + 11.64x−
√

2(−x+ x lnx)√
0.32

(5.17)

F2(x) = 1164− 11.64x+

√
2(−x+ x lnx)√

0.32
(5.18)

The profile for both these solutions are then plotted as shown below The

graph shows that when volatility is high, then from very low costs of a stock,

the hedge becomes costly. At very low stock prices, the impact of volatility

on the hedge is negligible. If the volatility is increased however, then the cost

continues to decrease at an increasing rate, as compared to when volatility is

low.

This is interesting, because when we solve the problem using a numerical

method like explicit Euler or Adams method, then we get very a different

profile, yet intuitive. The hedge cost increases as the stock price increases.
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Figure 5.3: Impact of adjusting various points of volatility σd

Figure 5.4: Profile using numerical methods Euler and Adams
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Case 3: σd = 0

To get to a particular solution, we will make the following initial assump-

tions.

x0(price) = 100

r(risk free interest rate) ∈ [0.01, 0.05]

F (x0)(u) = 60

Depending on the varying constants chosen for r, then we are able to find

profiles for the solution of u. The graph below shows impact of interest rates

of volatile values of x for the solution. We do a similar construct to solve

Figure 5.5: Assumed variable interest rates, and no volatility

the ODE. Here Runga-Kutta methods are employed to construct approximate

solutions. We make the following assumptions

x ∈ [0, 100]

y(1) = 1

Then the plot we get differs from the solution previously attained. So we try
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using similar initial conditions. We assume that

x ∈ [0, 300]

y(100) = 60

We observe from the plots that at very high values of the interest rate r, the

Figure 5.6: Option with payoff u, plotted using R-K methods

hedging cost greatly reduces and almost plateaus. As the interest rate increas-

es, the hedging cost decreases.
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We elaborate further here on implied volatility. For a call option, Black-

Scholes takes as input the strike, interest rate, together with the volatility to

output the price. Volatility is very hard to measure and we don’t really know

what value to insert in the formula. The following information on a call op-

tion, with five months until expiry and a strike of 98 is trading at 6.51 with the

underlying at 99.5 and a short-term interest rate of 0.02 can be made available

to a trader.

How do we infer the relationship between volatility and an option price.

We see the price where the option trades, and can get to the market price

by making an assumption on volatility. This is the implied volatility. The

implied volatility is the volatility of the underlying, and when inserted into

the BlackScholes formula, gives a theoretical price equal to the market price.

Simply put, it is how the market sees volatility over the life of the option.

Volatility is not constant, and typically has a smile shape, characteristic of the

market. Empirical evidence shows that the market does not price European

Figure 5.7: Implied Volatility with skew shape
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call options according to the Black-Scholes model, for the volatility σ to be

constant isn’t plausible. This derives models where volatility is not constant

but dependent on time.

Subalgebra : X1 +X2

Here we look at the next sub-algebra and follow a similar process as above to

get to solutions. The symmetry reductions and invariant solutions are shown

in the table below. This is a very intricate problem to find a solution to as the

resultant gives complex numbers.

Table 5.4: Summary of symmetry reductions and invariant solutions

using sub-algebra X1 +X2

Symmetry
Reduced

Equation

Invariant solution in

terms of original vari-

ables

X1 +X2

Case 1: ODE as is z = xert

1+2rert

σ2
dF
′′2 + 4r2

z2
F ′ =

0

F1[z] =

−2r2z
σ2 + irzc1

σ
+

zc21
4

+c2+
2r2z ln z
σ2 −

irzc1 ln z
σ
− r2z ln z2

σ2

F2[z] =

−2r2z
σ2 − irzc1

σ
+

zc21
4

+c2+
2r2z ln z
σ2 +

irzc1 ln z
σ
− r2z ln z2

σ2

Subalgebra : X1 +X5
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The symmetry reductions and invariant solutions are shown in the table below.

This problem is similar to the previous one in that the resultant solution is in

the form of complex numbers.

Table 5.5: Summary of symmetry reductions and invariant solutions

using sub-algebra X1 +X5

Symmetry
Reduced

Equation

Invariant solution in

terms of original vari-

ables

X1 +X5

Case 1: ODE as is z = xe−t
1
2
σ2
dF
′′2 + r

z
F ′ +

1
z
F ′ − 2

z2
F = 0

F1[z] =

z
[
c2 + 1

4
(−e

2c1

z
−

z − 2iec1 ln z)
]

F2[z] =

z
[
c2 + 1

4
(−e

2c1

z
−

z + 2iec1 ln z)
]

The interesting result from this is we can clearly see that the costs on the

subalgebra X1 +X2 increase much faster.
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Figure 5.8: Cost plots arising from the subalgebra X1 +X5 and X1 +X2

Subalgebra : X1 +X3

For this problem, this is the last subalgebra that we will look at. Assumption

on the risk free interest rate are made, as well as on volatility. Though the

assumptions may not be practical in the real financial world, they are made

to come to the solution of the mathematical problem.
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Table 5.6: Summary of symmetry reductions and invariant solutions

using sub-algebra X1 +X3

Symmetry
Reduced

Equation

Invariant solution in terms

of original variables

X1 +X3

Case 1: ODE as is

σd(2F
′+xF ′′)2+

2rx2F ′+2rxF =

0

No solution

Case 2: r=0
σd(2F

′ +

xF ′′)2 = 0
F [x] = −c1

x
+ c2

Case 3: σd = 0 xF ′ + F = 0 F [x] = c1
x

Case 1: ODE as is

We attempt solving ODE in table (5.5) using numerical methods, and in this

case Explicit Euler method. We make certain assumption on initial boundary

values as seen below. We also use hypothetical values for volatility σd, and

risk free interest rate r.

σd(2F
′ + xF ′′)2 + 2rx2F ′ + 2rxF = 0

F ′[1] = 1

F [1] = 1

σd = 0.47

r ∈ [0.01, 0.04]

x ∈ [0, 100]

We have used the Explicit Runga-Kutta method, and the plot of the extrapola-

tion of the function based on initial conditions stated above. We get a solution
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with two graphs. We plot third order Hermitian graphs. This is really just a

chaotic plot that we can draw no real conclusion from.
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Figure 5.9: Option with fixed payoff values of u

Case 2: r = 0

To get to a particular solution, we will make the following initial assumptions.

x0(price) = 100

F (x0)(u) = 120

From this we are able to conclude that

c1 = −12000c2 + 100c2

If we suppose that at some time t1 = 5, we have x1 = 105, then we can invoke

boundary condition

∂F

∂x

∣∣∣∣∣
x=105

= 0

This gives a solution for our constant.

c2 = 120

Making c1 = 0. Hence, our solution can we written as follows

F (x) = 120 (5.19)

This can simply be plotted as a straight line as shown below.
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Figure 5.10: Option with fixed payoff values of u

Figure 5.11: Risk free rate is zero
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Case 3: σd = 0

This case brings about a similar solution as when we assume that r = 0. This

is simply a plot of a straight line as seen in Figure 4.4, so we will not plot

again as it is of a similar fashion.

One of the first and simplest methods for solving initial value problems

was proposed by Euler. Euler’s method is not very accurate. Local accuracy

is measured by how high terms are matched with the Taylor expansion of the

solution. Euler’s method is first-order accurate, so that errors occur one order

higher starting at powers of h2. The ODE has been solved using Mathematica

as follows

xy′[x] + y[x] = 0

y[1] = 1

x ∈ [0, 500]

We have used the Explicit Runga-Kutta method, and the plot of the extrapola-

tion of the function based on initial conditions stated above. With no volatility,

the hedge cost is negligible as expected.

A number of questions arise

1. Is this a true reflection of the markets?

2. What impact does this have on the stock price?

3. What is the impact on the costs of insurance?

4. How do we model the costs to be reflective of the disruption caused by

volatility?
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Figure 5.12: Option with fixed payoff values of u

5. Does this have a knock on effect on the market liquidity?

We look at work done on the effects of constant volatility and implied volatility

in the next section. We try answer these questions in sections to follow.

We look at work done on illiquid markets and pricing of derivatives and give

examples to give clarify. The graphs and solutions we have represented above

don’t always give a real life solution because we are solving a mathematical

function and certain hypotheses don’t always hold in reality.
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5.2 Hedging a call option

Suppose that we have sold a call option with strike price K and maturity time T

for an amount c0 at time 0, and want to hedge this position. The assumption

is that volatility is some constant σ, but the true volatility is given by the

stochastic process β(t, ω). Thus, we believe that the price of the option at

time t, which we denote by Pt, is given by Pt = F (t, St), where F solves the

Black-Scholes equation

∂F

∂u
+ rx

∂F

∂x
+

1

2
σ2x2

∂2F

∂x2
= rF

F (T, x) = (x− k)+

We can hedge the position as follows

δt =
∂F

∂x
(t, St) (5.20)

and

hBt =
F (t, St)− ∂F (t,St)

∂x
St

Bt

(5.21)

If σ represents the value of volatility, then this delta hedge means that the

value of our portfolio perfectly matches the value of the option at any time

t ∈ [0, T ]. This portfolio is not self financing. P is given by

dPt = δtdSt + hBt dBt + Stdδt +Btdh
B
t

= δtdSt +HB
t dBt − dCt
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Ito’s formula gives the following

dPt = dF (t, St)

=
∂F

∂t
dt+

∂F

∂x
dSt +

1

2

∂2F

∂x2
d < St >

= [
∂F

∂t
+

1

2
β2
t S

2
t

∂2F

∂x2
]dt+

∂F

∂x
dSt

The resultant cost strategy arrived at using δt and hBt is shown below

−dCt = dPt − δtdSt − hBt dBt

= [
∂F

∂t
+

1

2
β2
t S

2
t

∂2F

∂x2
]dt+

∂F

∂x
dSt −

∂F

∂x
dSt + rFdt− r∂F

∂x
Stdt

= [
∂F

∂t r
St
∂F

∂x
− rF +

1

2
β2
t S

2
t

∂2F

∂x2
]dt

F solves the Black-Scholes equation, so substituting −1

2
σ2S2

t

∂2F

∂x2
gives

−dCt =
1

2
S2
t

∂2F

∂x2
(t, St)(β

2
t − σ2)dt

integration from 0− T gives

C0 =
1

2

∫ T

0

S2
t

∂2F

∂x2
(t, St)(β

2(t, ω)− σ2)dt (5.22)

since cT = 0. For a European call option, σ ≥ βt for all t ∈ [0, T ], since
∂2F

∂x2
is

strictly positive. The cost is then non positive. The work of [37] is also used

for consistency in a similar fashion, and the example below follows from their

cost function.
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An Example

Strike Price = 90

Term = 3 months

Current Price = 94

Risk Free Interest Rate = 0.045

Volatility = 0.35

6> 0.7 for the next three months

We then want to solve for the hedging cost, using hypothetical values of volatil-

ity.

c(σ) = Price of European Call Option in Black-Scholes model if σ is constant

c(0.35) = 9.19

c(0.70) = 15.37

The assumption is that the buyer doesn’t want to pay more than 12.00 for

example, then different assumptions on volatility must be made and the hedge

cost must be different. Money might be made or lost.

As volatility increases, it becomes time and price dependant. This effect

is also impacted by the share of total demand that is due to hedging. The

heterogeneity of the distribution of the hedged payoffs is also greatly impacted.

This particular outcome is further elaborated in the section below.
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5.3 Hedge demand generated by Black-Scholes

strategies

Here we look at the paper of [38], he shows the feedback effect of portfolio

hedging can be alleviated if distribution of strike prices and times to maturity

is heterogeneous. To get to this, the problem of replicating payoff of a call

option with the following characteristics is considered

K = Strike Price

T = Maturity

σ = Volatility

t = time

The assumption that the underlying follows GBM with constant volatility σ is

made, and the price at any time t is given by a solution c(t, xt) of the problem

(
∂

∂x
+

1

2
σ2x2

∂2

∂x2
)c(t, x) = 0 c(T, x) = [x−K]+, (5.23)

The strategy is then represented by
∂c

∂x
(t, xt). The following represent price

and strategy functions, c(σ, k, T − t, x) and ϕ(σ,K, T − t, x). The strategy

function is given by ϕ(σ,K, τ, x) = ℵ(
log x− logK

σ
√
τ

+
1

2
σ
√
τ) where

ℵ = Standard Normal Distribution

τ = T − t, Time to Maturity

σ = Volatility used for computation of Hedging Strategies

[38] shows the traders demand as ρφ(σ, x), ρ the market weight. He then

represents

φ(σ, x) = a+

∫
R2

⊕

ϕ(σ,K, τ, x)ν−(dK ⊗ dτ), (5.24)
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where

a = Static position in underlying

ν− = Measure on R2
⊕ describing the distribution of strike prices K

and times to maturity τ in portfolio

They then show (σ, x) =
∂φ

∂x
(σ, x). [38] goes on to conclude on the following

Assumption 5.3.1. ν− has a smooth density with respect to the Lebesgue

measure, ν− is of the form ν−(dK ⊗ dτ) = g(K, τ)dK ⊗ dτ where

g.<+ × [0,∞)→ <+ is a smooth density function having compact support in

<+ × [0,∞) .

There is distinct equilibrium in the economy when ρ is very small, and

this is verified. On a single contract, function x
∂ϕ

∂x
(σ,K, τ, x) blows up when

x→ K and τ → 0. This is supported by the fact that when the option is close

to maturity and at the money, hedging strategies need large movements of the

hedge portfolio. For the collective, the problem is resolved if distribution ν−

is non singular. This implies that bounds on (x, σ) can be arrived at that rely

on the heterogeneity of the distribution of ν−.

To conclude on this, the following proposition is laid out by [38]

Proposition 5.3.1. Suppose σ > η for some η > 0. We have the estimation

for all x ∈ <+

1.

|(σ, x)| ≤
∫ ∞
0

∫ ∞
0

| ∂
∂K

(Kg(k, τ))|dKdτ (5.25)

2.

| ∂
∂σ
, (σ, x)| ≤ 2

η

∫ ∞
0

∫ ∞
0

| ∂2

∂τ∂K
(τKg(K, τ))|dKdτ (5.26)
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From the proposition, [38] achieves the assumption above without restric-

tion on the distribution ν−, if there is a requirement that the portfolio insur-

ance weight ρ not to be too large. The feedback effect of dynamic hedging

on market volatility mainly manifests itself through the appearance of [σ, x)

in the denominator of v([σ, x)). Hence by (i) we see that this disturbance is

controlled by the degree of heterogeneity of ν. From this [38] comes to the

following corollary

ν(0, x) =
1− ρφ(σ, x)

1− ρφ(σ, x)− ρ(σ, x)
≤ 1− ρ

1− ρ− ρsup(σ, x)
(5.27)

They conclude by saying that even maximal increases in volatility is controlled

by the degree of heterogeneity of ν.

5.4 Concluding remarks

In this chapter we considered the Black-Scholes equation with variable volatili-

ty. It turns out that the equation admits a five dimensional Lie algebra. Some

symmetry reductions are performed using the elements of the optimal sys-

tem, and group invariant (exact) solutions are constructed. We also determine

approximate solutions.



Chapter 6

Symmetry reductions of 2+1 D

Black-Scholes equation

6.1 Introduction

In this chapter we attempt constructing group invariant solutions for the 2 + 1

D Black-Scholes equation.

6.2 2+1 D Black-Scholes equation

Cimpoiasu and Constantinescu [15] derive the following PDE

ut + µ1xux + µ2yuy +
1

2
σ1

2x2u2x +
1

2
σ2

2y2u2y + ρσ1σ2xyuxy − ku = 0,

k is a constant

u(x, y, T ) = uT (x, y), (6.1)

where (x, y) is a basket of two assets, and the returns by ui.

They compute the Lie symmetry generators, and Lie Algebra. In this dis-

sertation, we extend to this work by constructing the one dimensional optimal

83
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system of sub-algebras of the Lie algebra admitted by (6.1)

6.2.1 Determination of Lie symmetries for 2+1 D Black-

Scholes equation

The 2 + 1 D Black-Scholes equation has the form

ut = A(x, y)uxy +B(x, y)uxuy + C(x, y)u2x +D(x, y)u2y + E(x, y)uy

+ F (x, y)ux +G(x, y, u).
(6.2)

We seek the infinitesimal symmetry operator of the form

X̃ = ϕ(x, y, t, u)
∂

∂t
+ ξ(x, y, t, u)

∂

∂x
+ η(x, y, t, u)

∂

∂y
+ φ(x, y, t, u)

∂

∂u
(6.3)

If the following consideration is made ϕ = c0, then the determining system

of equations is given by

Bξy − Cφ2u = 0

Bηx −Dφ2u = 0

Aηy − ηAy + Aξx − ξAx + 2Dξy + 2Cηx = 0

Aξy + 2Cξx − ξCx − ηCy = 0

Aηx + 2Dηy − ηDy − ξDx = 0

−Aφ2u +Bξx −Bφu +Bηy −Bxξ −Byη = 0

−ηt+Fηx−Bφx+Eηy−Exξ−Eyη+Aηxy−Aφxu+Cη2x+Dη2y−2Dφyu = 0

ξt −Bφy + Fξx +Eξy − Fxξ − Fyη +Aξxy −Aφyu +Cξ2x +Dξ2y − 2Cφxu = 0

φt +Gφu − Fφx − Eφy −Gxξ −Gyη −Guφ− Aφxy − Cφ2x−Dφ2y = 0
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To solve the 2+1 D Black-Scholes equation one may consider the following

[15]

A = ρσ1σ2xy;

B = 0;

C = −1

2
σ2
1x

2;

D = −1

2
σ2
2y

2;

E = µ2y;

F = −µ1x;

G = ku.

Choosing c0 = 1, yields the solution [15]

ξ =
c3x

ρσ2
[ρσ2lnx− σ1lny] + x(c1t+ c2) (6.4)

η = − c3y
ρσ1

[ρσ1lny − σ2lnx] + y(c4t+ c5) (6.5)

φ = ω + βu (6.6)

where ci, i = 1, ...6 and ω is any solution of (6.1).

β =
1

ρσ2
1σ

2
2(1− ρ2)

∗
{[
−c1

ρ2σ1σ2
2

+ c3
σ1σ2

2
[σ2

1 − 2µ1](ρ
2 − 1)

+ c2ρσ
2
1

]
ln y +

[
c1ρσ

2
2 − c3

σ1σ2
2

[σ2
2 − 2µ2](ρ

2 − 1)− c4ρ2σ1σ2
]

lnx+ γ

}
(6.7)

γ = t

{
c1

[
ρσ2

2

2
[σ2

1 − 2µ1]−
ρ2σ1σ2

2
[σ2

2 − 2µ2]

]
+ c4

[
ρσ2

1

2
[σ2

2 − 2µ2]

− ρ2σ2σ1
2

[σ2
1 − 2µ1]

]}
+ c6ρσ

2
1σ

2
2(1− ρ2)

(6.8)

The Lie operator is decomposed as

X̃ = X +Xw (6.9)
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This can be interpreted as

X =
∂

∂t
+

{
c3x

ρσ2
[ρσ2lnx− σ1lny] + x(c1t+ c2)

}
∂

∂x

+

{
c3y

ρσ1
[ρσ1lny − σ2lnx] + y(c4t+ c5)

}
∂

∂y
+ β(x, y, t)u

∂

∂u

(6.10)

Xw = w
∂

∂u
(6.11)

For the purpose of our exercise, we will not look at the solutions in ω.

The solution for the determining equations is spanned by the following opera-

tors

X1 =
∂

∂t

X2 = xt
∂

∂x
+

1

σ2
1σ

2
2(1− ρ2)

{
σ2
2 lnx− ρσ1σ2 ln y +

t

2
[σ2

2(σ2
1 − 2µ1)

− ρσ1σ2(σ2
2 − 2µ2)]

}
u
∂

∂u

X3 = x
∂

∂x

X4 = x

(
−σ1
ρσ2

x ln y + x lnx

)
∂

∂x
+

(
σ2
ρσ1

y lnx+ y ln y

)
∂

∂y

+

{
(2µ1 − σ2

1) ln y − (2µ2 − σ2
2) lnx

2ρσ1σ2
u

}
∂

∂u

X5 = yt
∂

∂y
+

1

σ2
1σ

2
2(1− ρ2)

{
σ2
1 ln y − ρσ1σ2 lnx+

t

2
[σ2

1(σ2
2 − 2µ2)

− ρσ1σ2(σ2
1 − 2µ1)]

}
u
∂

∂u

X6 = y
∂

∂y

X7 = u
∂

∂u

It is easy to verify these solutions by software algebra such as Reduce, SYM

and Yalie.
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6.2.2 Lie algebras

In the case of the example above, the Lie algebra of the admitted symmetry

algebra has 7 representatives, ranging from X1 to X7. The ideal structure of

the table for i, j = 1 to n, should be as shown in table (6.1) We show the

results for only i = 1, and the rest will be displayed in a commutator table.

[X1, X1] = 0

[X1, X2] = X3 +
1

2σ2
1σ

2
2(1− ρ2)

[
σ2
2(σ2

1 − 2µ1)− ρσ1σ2(σ2
2 − 2µ2)

]
X7

[X1, X3] = 0

[X1, X4] = 0

[X1, X5] = X6 +
u

2σ2
1σ

2
2(1− ρ2)

[
σ2
1(σ2

2 − 2µ2)− ρσ1σ2(σ2
1 − 2µ1)

]
X7

[X1, X6] = 0

[X1, X7] = 0
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Set the parameters as follows,

z1 =
1

σ2
1(1− ρ2)

z2 =
−ρ

σ1σ2(1− ρ2)

z3 =
z1(σ

2
1 − 2µ1)

2

z4 =
z2(σ

2
2 − 2µ2

2

z5 =
1

σ2
2(1− ρ2)

z6 =
z4z4
z2

z7 =
z2z3
z1

z8 =
−σ1
ρσ2

z9 =
−z1
z2

z10 =
z4

z2ρσ1σ2

z11 =
−z3

z1ρσ1σ2

The above workings similar to that of [15] has been verified using ”SYM”

software.

Substituting into the commutators gives the following
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1
D

B
L

A
C

K
-S

C
H

O
L

E
S

E
Q

U
A

T
IO

N
89

Table 6.1: Commutator table of the sub-algebras for 2D Black-Scholes equation

[Xi,Xj] X1 X2 X3 X4 X5 X6 X7

X1 0 X3 + (z3 + z4)X7 0 0 X6 + (z6 + z7)X7 0 0

X2 −X3 − (z3 + z4)X7 0 −z1X7 X2 + z9X5 0 −z2X7 0

X3 0 z1X7 0
X3 + z9X6 +

x10X7

z2X7 0 0

X4 0 −X2 − z9X5 −X3 − z9X6 − z10X7 0 X5 − z8X2 −z8X3 +X6 − z11X7 0

X5 −X6 − (z6 + z9)X7 0 −z2X7 −X5 + z8X2 0 −z5X70 0

X6 0 z2X7 0
z8X3 −X6 +

z11X7

z5X7 0 0

X7 0 0 0 0 0 0 0
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6.2.3 Verification of results

We will add onto the work of Cimpoiasu and Constantinescu [15] by considering

the 3D Lie algebra which we verified using Yalie software.

We consider the PDE

ut + µ1xux + µ2yuy +
1

2
σ1

2x2u2x +
1

2
σ2

2y2u2y + ρσ1σ2xyuxy − ku = 0,

(6.12)

k is a constant. We focus on a 3D sub-algebra

X1 =
∂

∂t

X2 = −x ∂
∂x

X3 = y
∂

∂y
+
ρσ1
σ2

x
∂

∂x
(6.13)

admitted by equation (6.15). The commutators are given in table (6.2)

Table 6.2: Commutator table of the sub-algebra (6.15)

[Xi, Xj] X1 X2 X3

X1 0 0 0

X2 0 0 0

X3 0 0 0

Commutations results in zero, which means that L3 is a subalgebra. It is well

known that the linear combination of these symmetries is also a symmetry of

the original equation. The linear combination of these symmetries is given by

X = c1
∂

∂t
+ c3y

∂

∂y
+ [

c3ρσ1
σ2
− c2]x

∂

∂x
(6.14)
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To determine the basis for invariants, ie. XI = 0, implies solving the

following characteristic equations

dt

c1
=

dy

c3y
=

dx

( c3ρσ1
σ2
− c2)x

=
du

0
(6.15)

This gives the following solutions:

I1 = u (6.16)

c3
c1
dt =

dy

y

ln I2 +
c3
c1
t = ln y

I2 = ye
− c3
c1
t

(6.17)

also

dy

y
=

c3
( c3ρσ1

σ2
− c2)

dx

x

ln I3 + ln y =
c3

( c3ρσ1
σ2
− c2)

lnx

I3 =
xB

y
, B =

c3
( c3ρσ1

σ2
− c2)

(6.18)

Let

I1 = u, I2 = γ, I3 = ψ (6.19)

In most cases we would determine the one dimensional optimal system to

determine reductions that are not characterised by any point transformation.

So, writing I1 as a function of the other two invariants we obtain

I1 = F (I2, I3) (6.20)

or equivalently

u = F (γ, ψ) (6.21)
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We then substitute this into the original equation, being

ut + µ1xux + µ2yuy +
1

2
σ1

2x2u2x +
1

2
σ2

2y2u2y + ρσ1σ2xyuxy − ku = 0,

(6.22)

k is a constant

so,

ut = Fγ(
∂γ

∂t
)

=
−c3
c1

ye
− c3
c1
t
Fγ

=
−c3
c1

γFγ (6.23)

uy = Fγ(
∂γ

∂y
) + Fψ(

∂ψ

∂y
)

= e
− c3
c1
t
Fγ −

xB

y2
Fψ

=
γ

y
Fγ −

ψ

y
Fψ (6.24)

ux = Fγ(
∂γ

∂x
) + Fψ(

∂ψ

∂x
)

=
B

x

xB

y
Fψ

=
B

x
ψFψ (6.25)

uxx =
B

x
ψFψψ

∂ψ

∂x
+
B

x
Fψ
∂ψ

∂x
+BψFψ

∂

∂x
(
1

x
)

=
B2

x2
ψ2Fψψ +

B2

x2
ψFψ −

B

x2
ψFψ (6.26)

uyy = Fγγ(
∂2γ

∂x2
)e
− c3
c1
t

= 0 (6.27)
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uxy =
B

x
ψFψψ

∂

∂y
(
xB

y
) +

B

x
Fψ

∂

∂y
(ψ)

=
−B
xy

ψ2Fψψ −
B

xy
ψFψ (6.28)

substituting the above into 4.22 we get the following

(µ2 −
c3
c1

)γFγ + (
1

2
σ2
1B

2 − ρσ1σ2)ψ2Fψψ+

(
1

2
σ2
1B

2 − 1

2
σ2
1B − ρσ1σ2)ψFψ − kF = 0 (6.29)

where

A = µ2 −
c3
c1

B∗ =
1

2
σ2
1B

2 − ρσ1σ2

C =
1

2
σ2
1B

2 − 1

2
σ2
1B − ρσ1σ2

then the equation becomes

AγFγ +B∗ψ2Fψψ + CψFψ − kF = 0 (6.30)

Let us explore the following scenarios to try get to a solution

Case 1: A = 0

we get

B∗ψ2Fψψ + CψFψ − kF = 0 (6.31)

This is an Euler equation that we can get a solution for. We assume that

ψ > 0 and that solutions are of the form

F (γ, ψ) = ψr (6.32)
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substituting (4.32) into (4.31) we get the following

Fψ = rψr−1 (6.33)

Fψψ = r(r − 1)ψr−2 (6.34)

This then brings forth the following equation

[B∗r(r − 1) + Cr − k]ψr = 0 (6.35)

we said that ψ > 0, meaning that the equation above will only be zero if

[B∗r(r − 1) + Cr − k] = 0

The equation is a quadratic in r, so we can have real distinct roots, double

roots or complex roots. The general solution will be of the form

F (γ, ψ) = c4ψ
r1 + c5ψ

r2 (6.36)

r1 =
B∗ − C +

√
(C −B∗)2 + 4B∗k

2B∗
(6.37)

r2 =
B∗ − C −

√
(C −B∗)2 + 4B∗k

2B∗
(6.38)

We recall that

B∗ =
1

2
σ2
1B

2 − ρσ1σ2

C =
1

2
σ2
1B

2 − 1

2
σ2
1B − ρσ1σ2

and assume

Subcase 1.1 k=0

then

r1 = 0 (6.39)

r2 =
σ2
1B

σ2
1B

2 − 2ρσ1σ2
(6.40)
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and since B =
c3

( c3ρσ1
σ2
− c2)

,the we can conclude that

r2 =
σ2
1σ2c3

σ2
1σ2c3 − 2ρ2σ2

1σ2c3 + 2ρσ1σ2
2c2

(6.41)

The general solution then becomes

F (γ, ψ) = c4ψ
r1 + c5ψ

r2

= c4 + c5ψ
σ21σ2c3

σ21σ2c3−2ρ2σ21σ2c3+2ρσ1σ
2
2c2 (6.42)

The complete solution may be constructed subject to the relevant boundary

conditions. This task will be completed elsewhere. In terms of the original

variable, we have

u = c4c5
(xB
y

)r2 . (6.43)

Case 2: B∗ = C = 0

we get

AγFγ − kF = 0, (6.44)

Subcase k=1

AγFγ − F = 0

F = e
x
Ax c1 (6.45)

Substituting this into equation (6.13) gives the following solution

µ1

A
e
x
AxC1 +

1

2A
σ2
1e

x
AxC1 − ke

x
AxC1 (6.46)

Subcase k=0

AγFγ = 0

F = c1 (6.47)
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6.3 Derivative pricing in illiquid markets

[37] gives an interesting input regarding the parametrisation of liquidity. He

builds a model that relies on observable or attainable inputs. He builds a

model where trading in assets takes place in times t0, t1, ..., tn = T . The state

of the economy is given by a finite set Ω = ω1, ..., ωm, and the true state is

represented by a sequence of sub-algebras (z1)t ∈ t0, ..., T .

The initial set of states is assumed to be zt0 = Ω, and the eventual state of

the economy is zT = ωj, ∀ωy ∈ Ω.

The following are defined as the stock St(ω), and a riskless bond Bt. [37]

uses the binomial model [CCR], as a measure of randomness due to trading

in stock due to arrival of information. There is an assumed increase in risky

assets by u−1, with probability ρ, or a decrease by 1−d, with a corresponding

probability of 1− ρ in 1 time step.

The following is assumed

Sti+1
=

 uSti if ωj = ωu,

dSti if ωj = ωd.
(6.48)

where u > d. The bond yields a riskless return r defined by

Bt+1 = (1 + r)Bti (6.49)

If St0 = S, and Bt0 = 1, then the assumption made is that

• No arbitrage given that 0 < d < 1 + r < u

• For a chosen u, d, ρ,
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The models first two moments can be fitted into GBF

dSt = rStdt+ rStdXt (6.50)

where

σ = Volatility

dXt = Increments of the Standard Brownian Motion

A controlled process representing the effect of a large or influential trader on

the market is put together.

Holding process in stock = (Ht(ω))∀t,ω

Holding process in bond = (Ĥt(ω))t∈∀t,ω

adapted to filtration (zt)t∈t0,...,T .

If S = mid-market price, then the best price is above and below S for buyer

and seller respectively, and S̄, the average transaction price, is a monotonically

increasing function f� of current spot St, liquidity λ and trade size (Hti+1
−

Hti). [37] states that the trade reaction/price impact function must have the

following properties

lim
Hti+1−Hti↓−∞

f = 0

lim
Hti+1−Hti↑∞

f = ∞

f(Hti+1
−Hti = 0) = Sti

[38] suggests the following

S̄ti = Sti expλ(Hti+1−Hti ) where λ ≥ 0 trade reaction

Cash Flows = (Hti+1
−Hti)S̄ti

Transaction Costs = −(Hti+1
−Hti)(S̄ti − Sti)
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Then we can conclude that the price is as follows

Sti+1
(ωj) =

 uSαt S̄ti
1−α

if ωj = ωu,

dSαtiS̄ti
1−α

if ωj = ωd. permanent slippage
(6.51)

If 0 ≤ α ≤ 1 and constant, then Sti is a convex combination. Combining the

trade reaction and permanent slippage using a binomial representation, they

get to the following model

Sti → S̄ti

= Sti expλ(Hti+1−Hti )

→

 uStiαS̄ti
1−α

= uSti expλ(1−α)(Hti+1−Hti ),

dSαtiS̄ti
1−α

= dSti expλ(1−α)(Hti+1−Hti ) .

The model can be applied to the following

1. Portfolio trading

2. Liquidity options

3. Exotic options in illiquid markets

4. Strike detection

For further elaboration on this, see [37].
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6.4 Concluding remarks

In this chapter, higher dimension Black-Scholes equation is considered. This is

a review of the work in [15]. However, in this chapter we extended the work in

[15] by constructing the one dimensional optimal system of algebras. We also

considered a 3D symmetry sub-algebra and constructed some exact solutions.



Chapter 7

Conclusion.

In this dissertation we focused on models arising in Mathematics of finance. In

particular we considered the non-linear Black-Sholes equation in 1+1 and 2+1

dimensions. We employed the classical Lie symmetry methods in an attempt

to construct the group-invariant (exact) solutions. In Chapter one, we revisit-

ed work done by scholars in the area of application of Lie symmetry methods

to PDEs arising in modelling the pricing of options, hedging and volatility.

An account on algebraic techniques for symmetry reduction is provided in

chapter two. There are a number of excellent texts on this topic in the pub-

lic domain. We restrict our analysis using the classical Lie point symmetries

throughout this dissertation. In the determination of Lie point symmetries the

infinitesimal criterion for invariance results in a system of overdetermined lin-

ear equations, known as determining equations. The solutions of this system

of equations are algorithmic to obtain, however one may use software algebra

such as YaLie, SYM, Maple and Reduce. The Lie point symmetries leaving the

equation in question invariant are then used to reduce the number of variables

of PDEs by one.

100
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We first considered the classical Black-Sholes equation and study the trans-

formation that maps it to a linear diffusion equation. Perhaps this observation

points to the fact that classical Black-Sholes equation admits a six dimensional

Lie algebra. Notably it is claimed in [39], that this is not the case when we

construct conservation laws. The classical Black-Sholes models is used for the

pricing of options. The intricacy comes in when we assume that volatility is

not constant. As such, the equations are rendered non-linear. Furthermore, in

this dissertation we focussed on the derivation of Black-Sholes equation with

variable volatility. Here we considered both the 1+1 D and 2+1 D Black-

Sholes equations. In the subsequent chapters, we obtained the classical Lie

point symmetries which span some large Lie symmetry algebras. We then

determined the one-dimensional optimal systems of these Lie algebras. An

attempt is undertaken to construct group-invariant (exact) solutions for 1+1

D and 2+1 D Black-Sholes models. Where such construction was difficult,

numerical schemes were employed to determined approximate solutions. The

effects of market liquidity and volatility are deduced and summarised.
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