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Abstract: The main concern of the present article is to study steady magnetohydrodynamics
(MHD) flow, heat transfer and entropy generation past a permeable rotating disk using a semi
numerical/analytical method named Homotopy Analysis Method (HAM). The results of the present
study are compared with numerical quadrature solutions employing a shooting technique with
excellent correlation in special cases. The entropy generation equation is derived as a function of
velocity, temperature and concentration gradients. Effects of flow physical parameters including
magnetic interaction parameter, suction parameter, Prandtl number, Schmidt number, Soret and
Dufour number on the fluid velocity, temperature and concentration distributions as well as entropy
generation number are analysed and discussed in detail. Results show that increasing the Soret
number or decreasing the Dufour number tends to decrease the temperature distribution while the
concentration distribution is enhanced. The averaged entropy generation number increases with
increasing magnetic interaction parameter, suction parameter, Prandtl number, and Schmidt number.

Keywords: entropy generation; heat and mass transfer; MHD flow; rotating disk; HAM; Soret effect;
Dufour effect

1. Introduction

Rotating disk flows have received much attention in several industrial and engineering
processes. They have feasible applications in many industries, such as rotating machinery, lubrication,
oceanography and computer storage devices. Von Karman [1] was, to the best of our knowledge, the
first who studied fluid flow due to an infinite rotating disk. He introduced his famous appropriate
transformations, resulting in ordinary differential equations, which are a reduced form of the governing
partial differential equations.

In several studies, Dufour and Soret effects were assumed to be negligible on heat and mass
transfer according to the effects described by Fourier’s and Fick’s laws [2]. These effects are more
important when the density differences exist in the flow regime [3]. When heat and mass transfer
happen simultaneously in a moving fluid, the energy flux can be generated by temperature gradients
as well as composition gradients. The energy flux caused by a composition gradient is named the
Dufour or diffusion-thermo effect and also the mass fluxes can be developed by the temperature
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gradients which are called the Soret or thermal-diffusion effect [4]. In this matter, several studies have
been carried out. Das et al. [5] displayed the effect of mass transfer on the free convective flow and heat
transfer of a viscous incompressible electrically conducting fluid past a vertical porous plate through a
porous medium. Rashidi et al. [6] presented an analytical solution for steady magnetohydrodynamics
(MHD) convective and slip flow due to a rotating disk in the presence of viscous dissipation and
Ohmic heating. Hayat et al. [7] illustrated thermal-diffusion and diffusion-thermo effects on 2D MHD
axisymmetric flow of a second grade fluid in the presence of Joule heating and first order chemical
reaction. Osalusi et al. [4] studied Soret and Dufour effects on combined heat and mass transfer
of steady hydromagnetic convective and slip flow due to a rotating disk in the presence of viscous
dissipation and Ohmic heating numerically using a shooting method. Pal and Talukdar [8] investigated
effects of thermal radiation and first-order chemical reaction on unsteady MHD convective flow past a
semi-infinite vertical flat plate in the presence of transverse magnetic field under oscillatory suction
and heat source in a slip-flow regime. In another study, Turkyilmazoglu and Pop [9] studied heat and
mass transfer characteristics of unsteady electrically conducting fluid flow past a suddenly started
vertical infinite flat considering Soret and heat source effects.

In recent years, efficiency calculation of heat exchanger systems was restricted to the first law
of thermodynamics in many studies. In many industrial systems, various mechanisms that account
for irreversibility compete with each other. Thermodynamic optimization has become the concern of
several researchers in recent years and is also the condition of the most desirable trade-off between two
or more competing irreversibilities [10]. Entropy generation minimization has been comprehensively
covered by Bejan [11], specifically in the fields of refrigeration, heat transfer, storage, solar thermal
power conversion, and thermal science education. Entropy generation minimization method is
employed to optimize the thermal engineering devices for higher energy efficiency. In order to
access the best design of thermal systems, one can employ the second law of thermodynamics by
minimizing the irreversibility [12,13]. The performance of engineering equipment in the presence of
irreversibilities is reduced and the entropy generation function is a measure of the level of available
irreversibilities in a process. Since entropy generation is a criterion for measurement of available work
destruction of systems, reduction of entropy generation is essential to obtain the optimal design of
energy systems [14]. Moreover, entropy generation causes the systems to decrease useful power cycle
outputs for a power production device or increase the power input to the cycle for power consumption
devices. It is important to emphasize that the second law of thermodynamics is more reliable than
the first law of thermodynamics analysis, because of the limitation of the first law efficiency in heat
transfer engineering systems [15]. The evaluation of entropy generation is carried out to improve the
system performance. In addition, heat transfer, mass transfer, viscous dissipation, finite temperature
gradients, etc. can be introduced as the sources of entropy generation [16].

Many researchers have been motivated to conduct applications of the second law of
thermodynamics in the design of thermal engineering systems in recent decades. Rashidi et al. [17]
investigated analysis of the second law of thermodynamics applied to an electrically conducting
incompressible nanofluid flowing over a porous rotating disk. Jafari and Freidoonimehr [18] studied the
second law of thermodynamics over a stretching permeable surface in the presence of a uniform vertical
magnetic field in a slip nanofluid regime. In another study, Abolbashari et al. [19] used Homotopy
Analysis Method (HAM) to study entropy analysis in an unsteady magnetohydrodynamic nanofluid
regime adjacent to an accelerating stretching permeable surface. In addition, Abolbashari et al. [20]
investigated heat and mass transfer and entropy generation for steady laminar non-Newtonian nanofluid
flow induced by a stretching sheet in the presence of velocity slip and convective surface boundary
conditions using Optimal HAM. Further, Ellahi et al. [21] studied natural convection boundary layer
flow along an inverted cone. They also considered effect of the shape of nanosize particles on entropy
generation with base fluid.

Some strongly nonlinear equations used to describe physical systems in the form of mathematical
modeling have no exact solutions. Numerical or analytical methods such as Runge–Kutta
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method [22,23], differential transform method (DTM) [24–26] and the present employed analytical
method, HAM, can be applied to solve these nonlinear equations. Numerical methods have many
disadvantages in comparison with analytical methods. Thus in this article, we apply one of the
analytical methods named Homotopy analysis method (HAM) to solve the system of nonlinear
differential equations. The HAM was firstly introduced by Liao [27–29] to offer a general analytical
method for nonlinear problems. Awad [30] presented a simple method for calculating heat transfer
from a rotating disk to fluids for a wide range of Prandtl numbers using asymptotic analysis. Recently,
HAM was used to solve many nonlinear problems in fluid dynamics and heat transfer [31–34].

Recently, many researchers have been interested to study MHD and its practical applications [35–42].
The object of this paper is to study the second law of thermodynamics of steady MHD flow over a
permeable rotating disk in the presence of Soret and Dufour effects analytically via HAM. The effects of
various parameters such as magnetic interaction parameter, suction parameter, Prandtl number, Soret
number, Dufour number, and Schmidt number on the fluid velocity, temperature and concentration
distributions as well as the averaged entropy generation number are analyzed.

2. Mathematical Formulation

We assume steady, axially symmetric, incompressible flow of an electrically conducting fluid with
heat and mass transfer flow past a rotating permeable disk. Consider that the fluid is infinite in extent
in the positive z-direction. The fluid is assumed to be Newtonian. The external uniform magnetic
field B0 which is considered unchanged by taking the small magnetic Reynolds number is imposed
in the direction normal to the surface of the disk. The induced magnetic field due to motion of the
electrically-conducting fluid is negligible. Uniform suction is also applied at the surface of the disk.
The flow description and geometrical coordinates are shown in Figure 1. The governing equations,
respectively, of continuity, momentum, energy and species diffusion in laminar incompressible flow
are given by:
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By using cylindrical polar coordinates (r, φ, z), the disk rotates with constant angular velocity Ω
and is placed at z = 0, where z is the vertical axis in the cylindrical coordinate system with r and φ as
the radial and tangential axes. The components of the flow velocity (u, v, w) are in the directions of
increasing (r, φ, z), respectively. P is pressure, ρ is the density of the fluid, and T and C are the fluid
temperature and concentration, respectively. ν is the kinematic viscosity of the ambient fluid, σ is the
electrical conductivity, k is the thermal conductivity, cp is the specific heat at constant pressure, D is the
molecular diffusion coefficient, KT is the thermal diffusion ratio, Cs is the concentration susceptibility,
and Tm is the mean fluid temperature. The appropriate boundary conditions subject to uniform suction
w0 through the disk are:

u “ 0, v “ Ω r, w “ w0, T “ Tw, C “ Cw at z “ 0, (7)
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u Ñ 0, v Ñ 0, P Ñ P8, T Ñ T8, C Ñ C8 at z Ñ8. (8)
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In order to obtain the non-dimensional form of Equations (1)–(6), the following dimensionless
variables are introduced as

R “ r
L , Z “ z

L , U “ u
Ω L , V “ v

Ω L , W “ w
Ω L ,

P “ p´p8
ρ Ω2L2 , ν “ ν

ΩL2 , T “ T´Tw
T8´Tw

, C “ C´Cw
C8´Cw

,
(9)

U “ RFpηq, V “ RGpηq, W “ pνq1{2Hpηq, T “ θpηq, C “ ϕpηq. (10)

Substituting the dimensionless variables Equations (9) and (10) into Equations (1)–(6), and by
introducing a dimensionless normal distance from the disk, η “ Zpνq´1{2, the following nonlinear
ordinary differential equations are obtained:

H1 ` 2F “ 0, (11)

F2 ´ HF1 ´ F2 ` G2 ´MF “ 0, (12)

G2 ´ HG1 ´ 2F G´MG “ 0, (13)

1
Pr

θ2 ´ Hθ1 `Duϕ2 “ 0, (14)

1
Sc

ϕ2 ´ Hϕ1 ` Srθ2 “ 0, (15)

where M = σ¨B0
2/Ω¨ ρ is the magnetic interaction parameter, Pr = ν¨ ρ¨ cp/k is the Prandtl number,

Sc = ν/D is the Schmidt number, Sr = D¨ (T8 ´ Tw)¨KT/ν¨Tm (C8 ´ Cw) is the Soret number,
Du = D¨ (C8 ´ Cw)¨KT/Cs¨ cp¨ ν¨ (T8 ´ Tw) is the Dufour number, and F, G, H, θ, and ϕ are the
dimensionless functions of modified dimensionless vertical coordinate η. The transformed boundary
conditions are:

Fp0q “ 0, Gp0q “ 1, Hp0q “ Ws, θp0q “ 1, ϕp0q “ 1,
Fpηq Ñ 0, Gpηq Ñ 0, θpηq Ñ 0, ϕpηq Ñ 0, as η Ñ8,

(16)
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where Ws = w0/(ν¨Ω)1/2 is the suction/injection parameter and Ws < 0 shows uniform suction at the
disk surface.

3. Entropy Generation Analysis

According to [16,43–45], in the presence of axial symmetry and magnetic field and considering
the mass transfer effect, the volumetric rate of local entropy generation is defined as
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J “ σ pE`V ˆ Bq . (21)

We assume that the electric force per unit charge E is negligible in comparison with V ˆ B, in
Equations (17) and (21) and we also consider that the electric current J is much greater than QV.
Thus, by applying the above assumption and after reduction, Equation (17) can be further simplified
as follows

.
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Thus, by applying the above assumption and after reduction, Equation (17) can be further simplified 
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The right-hand side of Equation (22) consists of four parts; the first part is local entropy 
generation due to heat transfer irreversibility, the second part arises due to fluid friction 
irreversibility, the third part denotes the magnetic effects and entropy generation due to diffusion 
can be calculated from the fourth part which denotes diffusive irreversibility. It must be noted that 

Diffusive irreversibility

.
(22)

The right-hand side of Equation (22) consists of four parts; the first part is local entropy generation
due to heat transfer irreversibility, the second part arises due to fluid friction irreversibility, the third
part denotes the magnetic effects and entropy generation due to diffusion can be calculated from the
fourth part which denotes diffusive irreversibility. It must be noted that the entropy generation due to
diffusion is the sum of a cross term with both thermal and concentration gradients and a pure term
which involves concentration gradient only. The non-dimensional form of the entropy generation rate
is the entropy generation number and indicates the ratio of the actual entropy generation rate

´ .
S
3

gen

¯

to the characteristic entropy generation rate
´ .

S
3

0

¯

. By using the Von Karman similarity variables given
in Equations (9) and (10), the entropy generation number pNGq becomes:

NG “ α θ1 pηq2 ` Br
A

3
Re H1 pηq2 ` R2

!´

F1 pηq2 ` G1 pηq2
¯

`M
´

F pηq2 ` G pηq2
¯)E

`
βλ
α ϕ1 pηq2 ` λθ1 pηq ϕ1 pηq ,

(23)

where α “ ∆T{Tw is the dimensionless temperature difference, Br “ µ Ω2L2{k∆ is the rotational
Brinkman number, Re “ ΩL2{ν is the rotational Reynolds number, β “ ∆C{Cw is the
dimensionless concentration difference, λ “ RgD∆C{k is the diffusive constant parameter, and

NG “
.
S
3

gen{ pkΩ∆T{ν Twq is the dimensionless entropy generation rate.
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As the Brinkman number (a measure of the effect of viscous dissipation) increases, entropy
generation due to viscous and magnetic effects also increases. Increasing the Reynolds number results
in a decrease in the effect of fluid friction irreversibility.

The averaged entropy generation number, which is an important measure of total global entropy
generation can be evaluated using:

NG,av “
1
@

ż m

0

ż 1

0
2πRNG dR dη, (24)

where @ is the volume considered. In order to consider the effects of velocity, thermal and concentration
boundary-layers, we calculate the volumetric entropy generation in a large finite domain. Thus, the
integration of Equation (24) is obtained in the domain 0 ď R ď 1 and 0 ď η ď m; where m is a
sufficiently large number.

4. HAM Solution

We choose suitable initial approximations, according to the boundary conditions (16) and the rule
of solution expression

Hp0q “ Ws, Fp0q “ 0, Gp0q “ e´η , θp0q “ e´η , ϕp0q “ e´η . (25)

The auxiliary linear operators L1pHq, L2pFq, L3pGq, L4pθq and L5pϕq are:

LpHq “ BH
Bη , LpFq “ B2F

Bη2 `
BF
Bη , LpGq “ B2G

Bη2 `
BG
Bη ,

Lpθq “ B2θ
Bη2 `

Bθ
Bη , Lpϕq “ B2 ϕ

Bη2 `
Bϕ
Bη ,

(26)

with the following properties

L1pc1q “ 0, L2pc2 e´η ` c3q “ 0, L3pc4 e´η ` c5q “ 0,
L4pc6 e´η ` c7q “ 0, L5pc8 e´η ` c9q “ 0,

(27)

where ci, i “ 1´ 9, are the arbitrary constants. Nonlinear operators, due to Equations (11)–(15), are
introduced as

N1
“

Ĥpη; pq, F̂pη; pq
‰

“
BĤpη; pq
Bη

` 2F̂pη; pq, (28)

N2
“

Ĥpη; pq, F̂pη; pq, Ĝpη; pq
‰

“
B2 F̂pη; pq
Bη2 ´ Ĥpη; pqBF̂pη; pq

Bη

´F̂pη; pq2 ` Ĝpη; pq2 ´M F̂pη; pq,
(29)

N3
“

Ĥpη; pq, F̂pη; pq, Ĝpη; pq
‰

“
B2Ĝpη; pq
Bη2 ´ Ĥpη; pqBĜpη; pq

Bη

´2 Ĝpη; pqF̂pη; pq ´M Ĝpη; pq,
(30)

N4
“

Ĥpη; pq, θ̂pη; pq, ϕ̂pη; pq
‰

“
1

Pr
B2θ̂pη; pq
Bη2 ´ Ĥpη; pq

Bθ̂pη; pq
Bη

`Du
B2 ϕ̂pη; pq
Bη2 , (31)

N5
“

Ĥpη; pq, θ̂pη; pq, ϕ̂pη; pq
‰

“
1
Sc
B2 ϕ̂pη; pq
Bη2 ´ Ĥpη; pq

B ϕ̂pη; pq
Bη

` Sr
B2θ̂pη; pq
Bη2 . (32)

The zero-th order deformation equations are

p1´ pqL1
“

Ĥpη; pq ´ H0pηq
‰

“ p }HHpηqN1
“

Ĥpη; pq, F̂pη; pq
‰

, (33)

p1´ pqL2
“

F̂pη; pq ´ F0pηq
‰

“ p }HFpηqN2
“

Ĥpη; pq, F̂pη; pq, Ĝpη; pq
‰

, (34)

p1´ pqL3
“

Ĝpη; pq ´ G0pηq
‰

“ p }HGpηqN3
“

Ĥpη; pq, F̂pη; pq, Ĝpη; pq
‰

, (35)
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p1´ pqL4
“

θ̂pη; pq ´ θ0pηq
‰

“ p }HθpηqN4
“

Ĥpη; pq, θ̂pη; pq, ϕ̂pη; pq
‰

, (36)

p1´ pqL5 rϕ̂pη; pq ´ ϕ0pηqs “ p }HϕpηqN5
“

Ĥpη; pq, θ̂pη; pq, ϕ̂pη; pq
‰

, (37)

where HHpηq,HFpηq,HGpηq, Hθpηq, and Hϕpηq are the auxiliary functions, which are selected as

HHpηq “ HFpηq “ HGpηq “ Hθpηq “ Hϕpηq “ 1, (38)

subject to the boundary conditions

Ĥp0; pq “ Ws, F̂p0; pq “ 0, Ĝp0; pq “ 1, θ̂p0; pq “ 1, ϕ̂p0; pq “ 1,
F̂p0;8q “ 0, Ĝp0;8q “ 0, θ̂p0;8q “ 0, ϕ̂p0;8q “ 0.

(39)

Finally by Taylor's theorem, we obtain

Ĥpη; pq “ H0pηq `
8
ÿ

m“1

Hmpηq pm, (40)

F̂pη; pq “ F0pηq `
8
ÿ

m“1

Fmpηq pm, (41)

Ĝpη; pq “ G0pηq `
8
ÿ

m“1

Gmpηq pm, (42)

θ̂pη; pq “ θ0pηq `
8
ÿ

m“1

θmpηqpm, (43)

ϕ̂pη; pq “ ϕ0pηq `
8
ÿ

m“1

ϕmpηqpm, (44)

where
Hmpηq “

1
m!
Bm Ĥpη; pq
Bpm

ˇ

ˇ

ˇ

p“0
, Fmpηq “

1
m!
Bm F̂pη; pq
Bpm

ˇ

ˇ

ˇ

p“0
,

Gmpηq “
1

m!
BmĜpη; pq
Bpm

ˇ

ˇ

ˇ

p“0
, θmpηq “

1
m!
Bm θ̂pη; pq
Bpm

ˇ

ˇ

ˇ

p“0
,

ϕmpηq “
1

m!
Bm ϕ̂ pη; pq
Bpm

ˇ

ˇ

ˇ

p“0
.

(45)

Convergence of the series in Equations (40)–(44) strongly depends on the auxiliary parameter
p}q [27]. Consider that } is chosen such that the series in Equations (40)–(44) is convergent at p = 1
we have

Hpηq “ H0pηq `
8
ÿ

m“1

Hmpηq, (46)

Fpηq “ F0pηq `
8
ÿ

m“1

Fmpηq, (47)

Gpηq “ G0pηq `
8
ÿ

m“1

Gmpηq, (48)

θpηq “ θ0pηq `
8
ÿ

m“1

θmpηq, (49)
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ϕpηq “ ϕ0pηq `
8
ÿ

m“1

ϕmpηq. (50)

To obtain mth-order deformation equations, differentiate Equations (33)–(37) m times with respect
to p, divide by m! in p = 0. The results become:

L1 rHmpηq ´ χm Hm´1pηqs “ }HHpηqR1,mpηq, (51)

L2 rFmpηq ´ χm Fm´1pηqs “ }HFpηqR2,mpηq, (52)

L3 rGmpηq ´ χm Gm´1pηqs “ }HGpηqR3,mpηq, (53)

L4 rθmpηq ´ χm θm´1pηqs “ }HθpηqR4,mpηq, (54)

L5 rϕmpηq ´ χm ϕm´1pηqs “ }HϕpηqR5,mpηq, (55)

where

R1,mpηq “
BHm´1pηq

Bη
` 2 Fm´1pηq, (56)

R2,mpηq “
B2Fm´1pηq

Bη2 ´
m´1
ř

n“0

´

Hnpηq
BFm´1´npηq

Bη ` FnpηqFm´1´npηq ´ GnpηqGm´1´npηq
¯

´M Fm´1pηq,
(57)

R3,mpηq “
B2Gm´1pηq

Bη2 ´

m´1
ÿ

n“0

ˆ

Hnpηq
BGm´1´npηq

Bη
` 2 FnpηqGm´1´npηq

˙

´M Gm´1pηq, (58)

R4,mpηq “
1

Pr
B2θm´1pηq

Bη2 ´

m´1
ÿ

n“0

ˆ

Hnpηq
Bθm´1´npηq

Bη

˙

`Du
B2 ϕm´1pηq

Bη2 , (59)

R5,mpηq “
1
Sc
B2 ϕm´1pηq

Bη2 ´

m´1
ÿ

n“0

ˆ

Hnpηq
Bϕm´1´npηq

Bη

˙

` Sr
B2θm´1pηq

Bη2 , (60)

and

χm “

#

0 m ď 1
1 m ą 1

, (61)

with respect to the following boundary conditions

Hmp0q “ Ws, Fmp0q “ 0, Gmp0q “ 1, θmp0q “ 1, ϕmp0q “ 1,

Fmp8q “ 0, Gmp8q “ 0, θmp8q “ 0, ϕmp8q “ 0.
(62)

The symbolic software MATHEMATICA (version 9.0.1) is used to solve the system of linear
equations, Equations (51)–(55) with boundary conditions (62), for m = 1, 2, 3, . . .

5. Optimal Convergence Control Parameters

Convergence of the series in Equations (40)–(44) forcefully depends on the auxiliary parameter,
as mentioned by Liao [27]. It is essential to select an appropriate value of the auxiliary parameter to
control and speed up convergence of the approximation series with the assistance of the so-called
}-curve. Obviously, the valid regions of } correspond to the line segments nearly parallel to the
horizontal axis. The }-curves of F1p0q, G1p0q, H2 p0q, θ1p0q and ϕ1p0q obtained by the 20th order
approximation are shown in Figure 2.
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The averaged residual errors are defined as:

ResH “
dH pηq

dη
` 2F pηq , (63)

ResF “
d2F pηq

dη2 ´ H pηq
dF pηq

dη
´ F pηq2 ` G pηq2 ´M F pηq , (64)

ResG “
d2G pηq

dη2 ´ H pηq
dG pηq

dη
´ 2F pηq G pηq ´M G pηq , (65)

Resθ “
1

Pr
d2θ pηq

dη2 ´ H pηq
dθ pηq

dη
`Du

d2 ϕ pηq

dη2 , (66)

Resϕ “
1
Sc

d2 ϕ pηq

dη2 ´ H pηq
dϕ pηq

dη
` Sr

d2θ pηq

dη2 . (67)

For example, using the above residual error equations (Equations (64) and (65)), one can obtain
the optimum values of auxiliary parameters using the below equations [46–48]:

∆ f , m “
1
K

K
ÿ

i“0

»

–ResF

¨

˝

m
ÿ

j“0

Fj pi∆xq

˛

‚

fi

fl

2

, (68)

∆G, m “
1
K

K
ÿ

i“0

»

–ResG

¨

˝

m
ÿ

j“0

Gj pi∆xq

˛

‚

fi

fl

2

, (69)

where ∆x “ 10{K and K “ 20. For the given order of approximation m, the optimal value of } is given
by the minimum values of the ∆F, m and ∆G, m corresponding to nonlinear algebraic equations:

d∆F, m

d} “ 0,
d∆G,m

d} “ 0. (70)

In order to check the accuracy of the method and determine the optimal values of }, the residual
errors displayed in Equations (64) and (65) for the 20th order approximation HAM solutions are
presented in Figure 3.
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6. Results and Discussion

The nonlinear ordinary differential Equations (11)–(15) subject to boundary conditions (16) have
been solved via HAM for some values of the magnetic interaction parameter M, Prandtl number Pr,
Schmidt number Sc, Soret number Sr, Dufour number Du, and suction parameter Ws. The values
of the physical flow parameters are mentioned in each of the graphs and tables. Tables 1 and 2
illustrate a comparison between our results and those reported by Turkyilmazoglu [49] and Kelson
and Desseaux [50] for F1p0q and G1p0q as well as different values of magnetic interaction parameter and
suction parameter. Excellent agreement is observed. The diluting chemical species of most common
interest have Schmidt number between 0.1 and 10.0. Thus, we chose Schmidt number 0.22, 0.64,
0.78, and 1, which represent the Schmidt number of helium, ammonia, carbon monoxide, and carbon
dioxide, respectively.

Table 1. Numerical values of the radial skin friction coefficient F1p0q.

M Ws Ref. [49] Ref. [50] Present

0
0 - 0.510233 0.510186
´1 - 0.389569 0.389559
´2 - 0.242421 0.242416

1
0 0.309258 - 0.309237
´1 0.251044 - 0.251039
´2 0.188719 - 0.188718

4
0 0.165703 - 0.165701
´1 0.149016 - 0.149015
´2 0.129438 - 0.129438

Table 2. Numerical values of the tangential skin friction coefficient ´G1p0q.

M Ws Ref. [49] Ref. [50] Present

0
0 - 0.61592 0.61589
´1 - 1.17522 1.17523
´2 - 2.03853 2.03853

1
0 1.06905 - 1.06907
´1 1.65708 - 1.65709
´2 2.43136 - 2.43137

4
0 2.01027 - 2.01027
´1 2.56933 - 2.56933
´2 3.24134 - 3.24134
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The effect of magnetic interaction parameter on the velocity components in radial, tangential
and axial directions, temperature distribution as well as concentration profile is presented in Figure 4.
Infliction of the vertical magnetic field to the electrically conducting fluid causes a drag-like force
named the Lorentz force. This force has the tendency to slow down the flow around the disk at the
expense of increasing its temperature and concentration. Thus, as the magnetic field becomes stronger,
the velocity profiles in radial, tangential and axial directions decrease and the thermal boundary layer
and concentration field increase. It is important to note that as the vertical magnetic field increases,
increased resistance on the fluid particles applies, which causes heat to generate in the fluid.
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Figure 4. Effect of magnetic interaction parameter on: (a) axial velocity; (b) radial velocity; (c) tangential
velocity; (d) temperature distribution; and (e) concentration profiles.

The effect of the suction parameter on all velocity components as well as temperature distribution
and concentration profile is illustrated in Figure 5. When suction is applied at the disk surface, the
radial, tangential and axial velocity profiles decrease. Applying suction leads to draw the amount of
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fluid particles into the wall and consequently the velocity boundary layers decrease. In addition, the
radial velocity component becomes very small for large values of the suction parameter. The usual
decay of temperature and concentration profiles occurs for larger values of the suction parameter.
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Figure 5. Effect of suction parameter on: (a) axial velocity; (b) radial velocity; (c) tangential velocity;
(d) temperature distribution; and (e) concentration profiles.

Figure 6 demonstrates the effect of Prandtl number on the temperature distribution as well as the
effect of Schmidt number on the concentration profile. The thermal boundary-layer thickness decreases
with increasing Prandtl number. This physically means that the flow with large Prandtl number
prevents spreading of heat in the fluid. As the Schmidt number increases, the concentration boundary
layer thickness decreases. In other words, molecular diffusion decreases, as Schmidt number increases.



Entropy 2016, 18, 131 13 of 19

Entropy 2016, 18, 131 14 of 20 

 

 
(e) 

Figure 5. Effect of suction parameter on: (a) axial velocity; (b) radial velocity; (c) tangential velocity; 
(d) temperature distribution; and (e) concentration profiles. 

 
(a) 

 
(b) 

Figure 6. (a) Effect of Prandtl number on the temperature distribution; and (b) effect of Schmidt 
number on the concentration profile. 

 
(a) 

 
(b) 

Figure 7. Effects of Soret and Dufour numbers on: (a) temperature distribution; and (b) concentration 
profiles. 




(

)

0 2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

Ws = - 0.2
Ws = - 0.5
Ws = - 1.0
Ws = - 1.5
Ws = - 2.0

M = 1
Pr = 0.71
Sc = 1
Du = 0.2
Sr = 0.3




(

)

0 2 4 6 8

0.2

0.4

0.6

0.8

1

Pr = 0.71
Pr = 1.00
Pr = 2.00
Pr = 3.00

M = 1
Ws = - 1
Sc = 1
Du = 0.2
Sr = 0.3




(

)

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1

Sc = 0.22
Sc = 0.64
Sc = 0.78
Sc = 1.00

M = 1
Ws = - 1
Pr = 0.71
Du = 0.2
Sr = 0.3




(

)

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

Sr = 0.06, Du = 1.00
Sr = 0.12, Du = 0.50
Sr = 0.20, Du = 0.30
Sr = 0.30, Du = 0.20
Sr = 0.50, Du = 0.12
Sr = 1.00, Du = 0.06

M = 1
Ws = - 1
Pr = 0.71
Sc = 1




(

)

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

Sr = 0.06, Du = 1.00
Sr = 0.12, Du = 0.50
Sr = 0.20, Du = 0.30
Sr = 0.30, Du = 0.20
Sr = 0.50, Du = 0.12
Sr = 1.00, Du = 0.06

M = 1
Ws = - 1
Pr = 0.71
Sc = 1

Figure 6. (a) Effect of Prandtl number on the temperature distribution; and (b) effect of Schmidt
number on the concentration profile.

Figure 7 indicates the simultaneous effects of Soret and Dufour number on temperature
distribution as well as concentration profile. The Soret effect is a mass flux due to a temperature
gradient and the Dufour effect is enthalpy flux due to a concentration gradient and appears in the
energy equation. It should be mentioned that Dufour and Soret numbers are arbitrary constants
provided that their product remains constant [6,7,51]. Moreover, Du = 0 and Sr = 0 correspond to
the condition when thermal diffusion and diffusion thermo effects are of smaller order of magnitude
than effects described by Fourier’s and Fick’s laws [7,52]. The thermal boundary layer increases
by increasing Dufour number or simultaneously decreasing Soret number. As the Dufour number
increases or Soret number decreases, the rate of mass transfer (concentration boundary layer thickness)
decreases at the disk.
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Figure 7. Effects of Soret and Dufour numbers on: (a) temperature distribution; and (b) concentration profiles.

Figures 8–11 display the averaged entropy generation number as a function of suction parameter,
Prandtl number, Schmidt number, and Soret and Dufour numbers for a wide range of magnetic
interaction parameter. It should be mentioned that the values of α, β and λ are chosen as unity. Figure 8
shows that as the suction through the disk surface increases, the averaged entropy generation number
also increases. Moreover, increasing the Prandtl number increases NG, av (Figure 9). It is clear that
Schmidt number follows the same trend as Prandtl number. From Figure 10 maximum values of the
averaged entropy generation number occur when the values of both Soret and Dufour numbers are
maximized simultaneously. Finally, all entropy generation related figures reveal that as the magnetic
interaction parameter increases, the averaged entropy generation number also increases.
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7. Conclusions

In the current study, a mathematical formulation has been derived for the second law of
thermodynamics analysis of MHD fluid flow due to a permeable rotating disk. HAM was used to solve
the system of ordinary differential equations. The presented semi numerical/analytical simulations
agree closely with previous studies for some special cases. HAM has been shown to be a very strong
and efficient technique in determining analytical solutions for nonlinear differential equations. Effects
of the six key thermo-physical parameters governing the flow, i.e., magnetic interaction parameter,
Prandtl number, Schmidt number, Soret number, Dufour number, and suction parameter on the all
dimensionless velocity components, temperature distribution and concentration profile as well as
the averaged entropy generation number have been depicted graphically and interpreted in detail.
The main results of the present analysis are listed below:

(a) HAM is shown to demonstrate excellent potential, convergence and accuracy for simulating flow
over rotating disk problems.

(b) As the magnetic field becomes stronger, the velocity profiles in radial, tangential and axial
directions decrease and the thermal boundary layer and concentration field increase.

(c) When suction is applied at the disk surface, the radial, tangential and axial velocity profiles
decrease. The usual decay of temperature and concentration profiles occurs for larger values of
the suction parameter.

(d) The thermal boundary-layer thickness decreases with increasing Prandtl number. Furthermore,
as the Schmidt number increases, the concentration boundary layer thickness decreases.

(e) The thermal boundary layer increases by increasing Dufour number or simultaneously decreasing
Soret number. As the Dufour number increases or Soret number decreases, the rate of mass
transfer (concentration boundary layer thickness) decreases at the disk.

(f) The averaged entropy generation number increases by increasing the magnetic interaction
parameter, suction parameter, Prandtl number, and Schmidt number. In addition, the maximum
values of averaged entropy generation number occur when the values of both Soret and Dufour
numbers are maximized simultaneously.
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Nomenclature

B external uniform magnetic field
B0 constant magnetic flux density
C fluid concentration
cp specific heat at constant pressure
Cs concentration susceptibility
D molecular diffusion coefficient
E electric field
F self-similar radial velocity
G self-similar tangential velocity
H self-similar axial velocity
J current density field
k thermal conductivity
KT thermal diffusion ratio
L characteristic length
P pressure
Q electric charge density
r radial direction in cylindrical polar coordinates
Rg ideal gas constant
.
S

3

gen volumetric rate of local entropy generation
.
S

3

0 characteristic entropy generation rate
T fluid temperature
u velocity component in the radial directio
v velocity component in the tangential direction
w velocity component in the axial direction
w0 uniform suction
z normal direction in cylindrical polar coordinates

Dimensionless parameters
Br rotational Brinkman number
Du Dufour number
NG entropy generation number
M magnetic interaction parameter
Pr Prandtl number
R dimensionless radial coordinate
Re rotational Reynolds number
Sc Schmidt number
Sr Soret number
Ws suction parameter

Greek symbols
α dimensionless temperature difference
β dimensionless concentration difference
λ diffusive constant parameter
η a scaled boundary-layer coordinate
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θ self-similar temperature
µ dynamic viscosity
ν kinematic viscosity
ρ density
σ electrical conductivity
ϕ self-similar concentration
φ tangential direction in cylindrical polar coordinates
Φ viscous dissipation function
Ω angular velocity of the disk
@ volume

Subscripts
av average condition
m mean condition
w condition of the wall
8 condition of the free steam
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