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The governing nonlinear equation for unidirectional flow of a Sisko fluid in a cylindrical tube due to translation of the tube wall is
modelled in cylindrical polar coordinates.The exact steady-state solution for the nonlinear problem is obtained.The reduction of the
nonlinear initial value problem is carried out by using a similarity transformation. The partial differential equation is transformed
into an ordinary differential equation, which is integrated numerically taking into account the influence of the exponent n and the
material parameter b of the Sisko fluid. The initial approximation for the fluid velocity on the axis of the cylinder is obtained by
matching inner and outer expansions for the fluid velocity. A comparison of the velocity, vorticity, and shear stress of Newtonian
and Sisko fluids is presented.

1. Introduction

Over the past few decades, use of the Newtonian fluid
model to analyze and predict the behaviour of many real
fluids has been extensively adopted in industry. However,
the flow characteristics of many real fluids have been found
to be quite different from those of the Newtonian fluid and
hence researchers have proposed many non-Newtonian fluid
models to explain the deviation in the behaviour of real fluids
from that of the Newtonian fluid. Several rheological models
of non-Newtonian fluids have been proposed to represent
the viscosity function of these fluids. Amongst these models
is the Sisko model [1], which is the most suitable for the
flow of greases. The appropriateness of the Sisko model has
been successfully extended to the shear thinning rheological
behaviour of concentrated non-Newtonian slurries [2]. Some
polymeric suspensions such as waterbone coating are known
to be non-Newtonian in nature and follow the Sisko model
[3]. The viscosity of such coatings depends on the shear rate

and the strain history.Many rheological fluids such as drilling
fluids and cement slurries without yield stress also obey this
model.

The properties of Sisko fluids have been investigated by
the study of a range of problems. In [4] the problem of a
Sisko fluid in Taylor’s scraping problem has been considered
and magnetohydrodynamic [MHD] peristaltic motion of a
Sisko fluid in symmetric and asymmetric channels has been
considered in [5]. In [6] a Lie group analysis of the boundary
layer equations for a Sisko fluid has been performed, and thin
film flow of non-Newtonian and second grade fluids on a
moving belt has been analysed in [7, 8]. Flow of a Sisko fluid
in a porous medium has also been investigated. Solutions
for MHD flow have been obtained in [9] and an analysis of
heat transfer of an MHD flow in a porous medium has been
performed in [10]. Stokes’ first problem for a rotating Sisko
fluid with porous space has been studied in [11].The Rayleigh
problemhas been investigated for a rotating Sisko fluid in [12]
and for anMHDSisko fluid in [13], while Stokes’ first problem
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for a Sisko fluid over a porous wall has been considered in
[14].

There have been several investigations of non-Newtonian
and Sisko fluids in cylindrical geometry. Steady flow and
heat transfer of a Sisko fluid in an annular pipe have been
investigated in [15]. Exact solutions for rotating flows of a
generalised Burgers’ fluid have been derived in cylindrical
geometry in [16] and exact solutions for the helical flow of
a generalised Oldroyd-B fluid in a circular cylinder have
also been obtained in [17]. The unsteady flow of an MHD
Sisko fluid between two concentric tubes due to a prescribed
pressure gradient along the tube, with the tube walls at
rest, has been investigated in [18]. The problem was solved
numerically by using the fourth-order Runge-Kutta method.
More recently the steady flow and heat transfer of an MHD
fluid in the porous space between concentric tubes have been
considered in [19].Theflowwas due to themotion of the outer
cylinder and a constant pressure gradient along the tube. An
analytical solution was derived using homotopy analysis and
a numerical solution was obtained by an iterative method.

In this paper we consider the flow of a Sisko fluid in
a cylindrical tube due to the translation of the tube wall
parallel to the axis of the tube. The velocity of the wall is
not prescribed but is determined from a similarity solution
of the partial differential equation. There is no inner tube on
which a no-slip boundary condition could be imposed as in
[16, 17]. The flow is unsteady and the fluid velocity on the
axis of the tube is estimated by matching inner and outer
expansions for the fluid velocity. Using this initial estimate
a numerical solution for the fluid velocity is obtained by a
shooting method. This numerical method for a Sisko fluid is
a new feature of the paper.

In the reduction of a partial differential equation subject
to initial and boundary conditions to an ordinary differential
equation with boundary conditions by a similarity trans-
formation, the initial and boundary conditions cannot be
arbitrary because they must be expressible in terms of the
similarity variable. The value of such a transformation is the
great simplification achieved by the reduction of a partial
differential equation to an ordinary differential equation.The
present investigation is an extension to cylindrical geometry
of the two-dimensional problem of the flow induced by an
infinite sliding solid plate on a half-space of viscous fluid [20].
When the plate is impulsively set in motion with constant
speed 𝑈

0
, the flow is referred to as Stokes’ first problem or

the Rayleigh problem. The analytical solution was used by
Rayleigh as a model to study the diffusion of vorticity in a
boundary layer on a flat plate. In the two-dimensional flow
the plate velocity cannot be arbitrary for a similarity solution
to exist butmust be a power law of time 𝑡. If the velocity of the
plate is proportional to 𝑡1/2 then the applied stress on the plate
which induces the flow is constant, while if it is proportional
to 𝑡, the acceleration of the plate is constant. Other power
laws can be considered leading to numerical solutions. We
will find that, for a similarity solution to exist for a Sisko
fluid in a cylindrical tube undergoing translation, the velocity
of the tube wall must depend on time in a determined way.
The initial velocity of the Sisko fluid across the tube cannot

be arbitrary but must have a 𝑉-shaped profile. Although
these conditions would be difficult to realise in practice, the
physical relevance of the similarity transformation is that it
does yield a model to investigate the evolution with time of a
Sisko fluid in a tube undergoing translation and to study the
diffusion of its vorticity and shear stress from the translating
wall to the axis of the tube.

There are several ways to derive similarity solutions of
partial differential equations. We will derive the similarity
solution by first obtaining the Lie point symmetries of the
partial differential equation. This is a powerful systematic
method which does not assume a form for the solution. Only
one Lie point symmetry of the partial differential equation
will be used which presents the possibility of other forms of
solution for different boundary conditions. Other methods
could be applied which do not require a knowledge of Lie
group analysis of differential equations, for example, the
approach of Dresner [21].

Although it is difficult to obtain exact solutions of the
equations of motion of a non-Newtonian fluid, travelling
wave and similarity solutions of nonlinear equations are
desirable as such solutions play a very important role in
the study of nonlinear wave and fluid flow phenomena.
The analytical solutions, if available, facilitate the verification
of numerical solvers and are also helpful in the stability
analysis of solutions. In the literature, there are very few
analytical solutions for non-Newtonian fluids. It is due to
the fact that the governing equations of such fluids are much
more complicated and of higher order than the Navier-Stokes
equations. Unlike the Navier-Stokes equations which have
nonlinear terms only in the inertia term, the equations for
a non-Newtonian fluid have higher order nonlinear terms
in the viscous term. Although an analytical solution may
not be derived, it may be possible to reduce the partial
differential equations to ordinary differential equations.With
this background, the investigation of unsteady flow of a Sisko
fluid in a cylindrical tube subject to initial and boundary
conditions is carried out in the present study.

In this paper we concentrate on the reduction and
numerical solution of the partial differential equation for
the unsteady flow of a Sisko fluid in a cylindrical tube. This
partial differential equation is transformed into an ordinary
differential equation by using one of the Lie point symmetries
of the partial differential equation. Numerical solutions of the
ordinary differential equation are derived for values of the
exponent 𝑛 corresponding to a shear thinning, Newtonian,
and shear thickening fluid and for a fixed value of thematerial
parameter 𝑏.

The underlying physical process that the problem seeks
to clarify is diffusion in a Sisko fluid. It is an ideal problem
for investigation of this process. The diffusion of velocity,
vorticity, and shear stress from the wall to the axis of the tube
due to the translation of the wall will be studied. The process
will be illustrated by computer generated graphs.

A gap in the literature for Sisko fluids which this investi-
gation attempts to fill is the extension of Stokes’ first problem
(Rayleigh problem), from a flat plate set in motion to the
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wall of a cylindrical tube set in motion. For a Newtonian
fluid Stokes’ first problem yielded important insights into
boundary layers.

There have been investigations of steady and unsteady
flow of a Sisko fluid between concentric tubes [15, 18] with
the no-slip boundary condition on the inner tube. A novel
feature of the present study is the absence of the inner tube
for unsteady flow driven by the translation of the tube wall.
A matching procedure used to obtain an estimate for the
boundary condition on the axis of the cylinder and the shoot-
ing method take the place of the no-slip boundary condition.
The solution is possible because a similarity transformation is
found that not only reduces the partial differential equation
to an ordinary differential equation, but also determines the
initial condition in the form of a 𝑉-shaped velocity profile
that has to be imposed.

The remainder of the paper is organized as follows.
Section 2 deals with the formulation of the nonlinear initial
boundary value problem. In Section 3 steady-state solutions
are investigated,while in Section 4 the reduction of the partial
differential equation and the formulation of the problem in
terms of similarity variables are given. In Section 5 the prob-
lem is reformulated as a boundary value problem suitable for
numerical computation. In Section 6 the numerical results
are presented and discussed. Finally concluding remarks are
made in Section 7.

2. Problem Formulation

Consider the unsteady unidirectional flow of an incompress-
ible Sisko fluid in a circular cylinder parallel to the axis of the
cylinder (see Figure 1). Cylindrical polar coordinates (𝑟, 𝜃, 𝑧)
are chosen with the 𝑧-axis along the axis of the cylinder. We
assume the velocity, the stress fields, and pressure are of the
form

V = [0, 0, 𝑤 (𝑟, 𝑡)] , S = S (𝑟, 𝑡) , 𝑝 = 𝑝 (𝑟, 𝑡) . (1)

The fluid flow is generated by the translation of the wall of the
cylindrical tube and not by a pressure gradient along the tube.
The incompressibility condition

divV = 0 (2)

is identically satisfied. The fluid flow is illustrated in Figure 1.
The Cauchy stress tensor for a Sisko fluid [7, 9] is

T = −𝑝I + S, S = [𝑎 + 𝑏
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A
1
= L + L𝑇, L = gradV. (4)

In (3) and (4), 𝑝 is the pressure, I is the identity tensor, S is the
trace-free nonisotropic part of the stress tensor,A

1
is the first

Rivlin-Ericksen tensor, and 𝑛, 𝑎, and 𝑏 are positive material
constants defined differently for different fluids.

The substitution of (1) into (3) yields the nonzero compo-
nent of stress

𝑆
𝑟𝑧
= (𝑎 + 𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑤

𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

)
𝜕𝑤

𝜕𝑟
. (5)

U0V(t)

r = R

U0V(t)

r = R

Viscous
fluid

Viscous
fluid

w(r, t) w(r, t)

r r

z

0

Figure 1: Unidirectional flow induced in a cylindrical tube of
incompressible Sisko fluid when the wall of the cylinder is impul-
sively set in motion.

The body force due to gravity is neglected. The 𝑧-component
of the momentum balance equation in the absence of body
forces gives

𝜌
𝜕𝑤

𝜕𝑡
=
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆
𝑟𝑧
) . (6)

The 𝑟-component of the momentum balance equation shows
that 𝑝 is independent of 𝑟 and the 𝜃-component is identically
satisfied. From (5) and (6), we obtain
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The boundary conditions are no-slip of the viscous fluid at
the wall of the cylinder, 𝑟 = 𝑅, and symmetry of the velocity
at 𝑟 = 0:

𝑤 (𝑅, 𝑡) = 𝑈
0
𝑉 (𝑡) , 𝑡 ≥ 0,

𝜕𝑤

𝜕𝑟
(0, 𝑡) = 0, 𝑡 ≥ 0,

(8)

where 𝑈
0
𝑉(𝑡) is the velocity of the wall of the cylinder; 𝑈

0
is

the reference velocity; and 𝑉(𝑡) is dimensionless. The initial
condition is

𝑤 (𝑟, 0) = 𝑊 (𝑟) , 0 ≤ 𝑟 ≤ 𝑅, (9)

where 𝑅 is the radius of the cylinder. The functions 𝑉(𝑡) and
𝑊(𝑟) are as yet arbitrary functions. We choose the reference
velocity 𝑈

0
to be the velocity of the wall of the cylinder at

𝑡 = 0, so that

𝑉 (0) = 1, 𝑊 (1) = 𝑈
0
. (10)



4 Mathematical Problems in Engineering

We now introduce dimensionless variables and define the
dimensionless quantities 𝑤∗, 𝑡∗, 𝑟∗, 𝑏∗, and𝑊∗ by

𝑤 = 𝑈
0
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∗
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𝜌𝑅
2

𝑎
) 𝑡
∗
,
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∗
, 𝑏 = 𝑎 (

𝑅

𝑈
0

)

𝑛−1

𝑏
∗
,

𝑊 (𝑟) = 𝑈
0
𝑊
∗
(𝑟
∗
) .

(11)

The parameter 𝑏∗ depends on 𝑛. Expressed in nondimen-
sional form and suppressing the asterisks, the problem is to
solve the nonlinear diffusion equation
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subject to the boundary conditions

𝑤 (1, 𝑡) = 𝑉 (𝑡) , 𝑡 ≥ 0, (13)

𝜕𝑤
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where

𝑉 (0) = 1, (15)

and to the initial condition

𝑤 (𝑟, 0) = 𝑊 (𝑟) , 0 ≤ 𝑟 ≤ 1, (16)

where

𝑊(1) = 1. (17)

We will consider the solution of the problem for
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑤

𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
𝜕𝑤

𝜕𝑟
, 0 ≤ 𝑟 ≤ 1. (18)

When (18) is satisfied, (12) becomes in expanded form
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where subscripts denote partial differentiation.

3. Steady-State Solution

For the steady-state solution 𝑤 = 𝑤(𝑟). We set 𝑤
𝑡
= 0 in (12)

assuming (18), which gives

𝑑
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Integration of (20) with respect to 𝑟 and imposition of the
boundary condition (14) result in

𝑤
𝑟
+ 𝑏𝑤
𝑛

𝑟
= 0, 𝑛 > 0. (21)

Since 𝑏 > 0 and imposing the boundary condition (16) that
𝑤(1) = 1, gives

𝑤 (𝑟) = constant = 1, 𝑛 > 0, (22)

which is the constant velocity of the wall of the cylinder.

4. Lie Symmetry Analysis and
Similarity Solution

The Lie approach to derive similarity solutions of partial
differential equations is widely used and has been applied to
problems in fluid mechanics. We refer the reader to [22, 23]
in which the prolongation formulae and method are given in
detail. In this paper we present themain results.The Lie point
symmetry generator of (19) is of the form

𝑋 = 𝜏 (𝑡, 𝑟, 𝑤)
𝜕
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There are four cases to consider.
Case (i) 𝑛 ̸= 0, 1, 2.
The coefficient functions in (23) satisfy the determining

equations
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Case (ii) 𝑛 = 2.
The determining equations are
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The Lie point symmetries (25) are again derived.
Case (iii) 𝑛 = 1.
This describes a Newtonian fluid and the underlying

linear parabolic equation ((19) with 𝑛 = 1) has the Lie point
symmetries
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where 𝑑(𝑡, 𝑟) satisfies the linear partial differential equation
itself. In this case there are infinitely many Lie point symme-
tries.

Case (iv) 𝑛 = 0.
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For 𝑛 = 0 (19) again has infinitely many Lie point
symmetries; namely,
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where 𝑑(𝑡, 𝑟) satisfies the linear partial differential equation
(19) for 𝑛 = 0.

For all four cases one of the Lie point symmetries is the
scaling symmetry 𝑋
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that is, provided𝑊(𝑟, 𝑡) satisfies the first order linear partial
differential equation
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where 𝑓 is an arbitrary function. Since 𝑤 = 𝑊(𝑟, 𝑡) the
similarity solution for 𝑤 generated by𝑋
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is of the form
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Substituting (35) into (19) reduces (19) to the ordinary
differential equation
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where dash denotes differentiation with respect to 𝜁.
The similarity form (35) can also be found by using the

similarity ansatz
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and determining the constants 𝑐
1
, 𝑐
2
, and 𝑐

3
by substituting

(37) into the partial differential equation (19). The Lie group
analysis is of value, however, because it has shown that
there may be other useful solutions of the partial differential
equation generated by a linear combination of its Lie point
symmetries.

By considering the similarity form (35), we take as initial
condition

𝑤 (𝑟, 0) = 𝑟, 0 ≤ 𝑟 ≤ 1, (38)

which satisfies the boundary conditions (16) and (17), that
𝑤(1, 0) = 1, and also assumption (18). Expressed in terms of
the similarity variables (35), (38) becomes

𝑓 (∞) = 1. (39)

Next consider the boundary conditions. Expressed in
terms of the similarity variables, (14) becomes

𝜕𝑤

𝜕𝑟
(0, 𝑡) = lim

𝜁→0

(𝑓 (𝜁) + 𝜁𝑓
󸀠
(𝜁)) = 0. (40)

The boundary condition, (13) and (15), becomes

𝑉 (𝑡) = 𝑓(
1

√𝑡
) , 𝑉 (0) = 1. (41)

The condition (15) that 𝑉(0) = 1 is satisfied because of (39).
Equation (41) gives the velocity of thewall of the cylinder after
the solution for 𝑓(𝜁) has been derived. The velocity of the
wall of the cylinder cannot be prescribed arbitrarily in this
similarity solution.

The problem is to solve the ordinary differential equation
(36) for 𝑓(𝜁) subject to the boundary condition (40) at 𝜁 = 0

and (39) at 𝜁 = ∞. The boundary condition (40) is not
in a form suitable for numerical computation. In Section 5
the boundary value problem will be reformulated in a way
suitable for numerical computation.

5. Numerical Method

Consider first the boundary conditions at 𝑟 = 0, 𝑡 > 0, which
corresponds to 𝜁 = 0. From (35), the 𝑧-component of the
velocity is

𝑤 (𝑟, 𝑡) = √𝑡𝜁𝑓 (𝜁) , 𝜁 =
𝑟

√𝑡
. (42)

Since the fluid velocity must be finite on the axis of the
cylinder, 𝑟 = 0, it follows that

lim
𝜁→0

𝜁𝑓 (𝜁) = 𝐵
0
, (43)

where 𝐵
0
is a constant which will be nonzero because the

viscous fluid is set in motion by the translation of the wall
of the cylinder.We therefore introduce the new function 𝑔(𝜁)
defined by

𝑔 (𝜁) = 𝜁𝑓 (𝜁) . (44)
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Then

𝑤 (𝑟, 𝑡) = √𝑡𝑔 (𝜁) , 𝜁 =
𝑟

√𝑡
, (45)

and 𝑔(𝜁) satisfies the boundary condition

𝑔 (0) = 𝐵
0
. (46)

The constant 𝐵
0
is still to be determined. Also from (39),

𝜕𝑤

𝜕𝑟
(𝑟, 𝑡) =

𝑑𝑔

𝑑𝜁
, (47)

and the boundary condition (14) becomes

𝑑𝑔

𝑑𝜁
(0) = 0. (48)

Consider next the boundary condition at 𝜁 = ∞ which
corresponds to 0 < 𝑟 ≤ 1 and 𝑡 = 0. From (39), 𝑓(∞) = 1

and therefore
𝑑𝑔

𝑑𝜁
(∞) = 1. (49)

Thus the boundary conditions at 𝜁 = 0 and 𝜁 = ∞ can be
expressed in terms of 𝑔(𝜁) in a form suitable for numerical
computation. The problem will therefore be formulated in
terms of 𝑔(𝜁) instead of 𝑓(𝜁) and the ordinary differential
equation (36) will be expressed in terms of 𝑔(𝜁).

The problem is to solve the differential equation

[1 + 𝑛𝑏(
𝑑𝑔

𝑑𝜁
)

𝑛−1

]
𝑑
2
𝑔

𝑑𝜁2
+
𝑏

𝜁
(
𝑑𝑔

𝑑𝜁
)

𝑛

+ (
𝜁

2
+
1

𝜁
)
𝑑𝑔

𝑑𝜁
−
1

2
𝑔 = 0,

(50)

for 𝑔(𝜁) subject to the boundary conditions

𝑔 (0) = 𝐵
0
,

𝑑𝑔

𝑑𝜁
(0) = 0,

𝑑𝑔

𝑑𝜁
(∞) = 1, (51)

where the constant 𝐵
0
has still to be determined.

A shooting method will be used which will require an
initial estimate for 𝐵

0
. To obtain an approximate expression

for 𝐵
0
we first consider the asymptotic expansion for 𝑔(𝜁) as

𝜁 → ∞. From (49), we consider the expansion

𝑔 (𝜁) = 𝜁 + 𝐴
0
+
𝐴
1

𝜁
+
𝐴
2

𝜁2
+
𝐴
3

𝜁3
+
𝐴
4

𝜁4
+ 𝑂(

1

𝜁5
) (52)

as 𝜁 → ∞. Substituting (52) into (50) and equating the
coefficients of like powers of 𝜁 give

𝐴
0
= 0, 𝐴

1
= 1 + 𝑏, 𝐴

2
= 0,

𝐴
3
=
1

2
(1 + 𝑏) (1 + 𝑛𝑏) , 𝐴

4
= 0,

(53)

and therefore, for 0 < 𝑛 < ∞,

𝑔 (𝜁) = 𝜁 +
(1 + 𝑏)

𝜁
+
(1 + 𝑏) (1 + 𝑛𝑏)

2𝜁3
+ 𝑂(

1

𝜁5
) , (54)

as 𝜁 → ∞. From (11), 𝑔(𝜁) depends on 𝑛 through 𝑏. It first
depends explicitly on 𝑛 at the 𝑂(𝜁−3) term in the expansion
(54). To obtain an estimate for 𝐵

0
it is sufficient to consider

the first two terms in (53) which give a simple result. It follows
from (45) that

𝑤
𝑂 (𝑟, 𝑡) = 𝑟 +

(1 + 𝑏) 𝑡

𝑟
+ 𝑂(

𝑡
2

𝑟3
) , (55)

as 𝑡 → 0. In Figure 2 the two-term expansion for 𝑤
𝑂
(𝑟, 𝑡) is

plotted against 𝑟 for 0 < 𝑟 ≤ 1 and 𝑏 = 2 at 𝑡 = 0.05. We see
that 𝑤

𝑂
(𝑟, 𝑡) decreases steadily from 𝑤

𝑂
(1, 𝑡) as 𝑟 decreases

from 𝑟 = 1, reaches a minimum value at 𝑟 = 𝑟min, and then
steadily increases and tends to infinity as 𝑟 → 0. Using only
the first two terms in (55), we have

𝜕𝑤
𝑂

𝜕𝑟
(𝑟, 𝑡) = 1 −

(1 + 𝑏) 𝑡

𝑟2
. (56)

The minimum value of 𝑤
𝑂
(𝑟, 𝑡) occurs at 𝑟 = 𝑟min where

𝑟min = (1 + 𝑏)
1/2

√𝑡, (57)

𝑤
𝑂
(𝑟min, 𝑡) = 2 (1 + 𝑏)

1/2
√𝑡. (58)

Wematch (58) with an expansion for small 𝑟. Since from (48),
𝑔
󸀠
(0) = 0, a Taylor expansion of 𝑔(𝜁) at 𝜁 = 0 gives the two-

term expansion

𝑔 (𝜁) = 𝑔 (0) + 𝑂 (𝜁
2
) , (59)

as 𝜁 → 0 and therefore, from (45), since 𝑔(0) = 𝐵
0
,

𝑤
𝐼 (𝑟, 𝑡) = 𝐵

0
√𝑡 + 𝑂(

𝑟
2

√𝑡
) , (60)

as 𝑟 → 0. We take as a first approximation

𝑤
𝐼
(𝑟, 𝑡) = 𝐵

0
√𝑡. (61)

The matching condition is

𝑤
𝐼
(𝑟min, 𝑡) = 𝑤

𝑂
(𝑟min, 𝑡) , (62)

and therefore, from (58) and (61),

𝐵
0
= 2 (1 + 𝑏)

1/2
. (63)

The problem, (50) and (51), was treated as an initial value
problem with initial conditions 𝑔(0) = 𝐵

0
and 𝑔

󸀠
(0) = 0.

The initial estimate for 𝐵
0
was (63). A shooting method was

utilized and the value of 𝐵
0
was adjusted until the boundary

condition 𝑔
󸀠
(∞) = 1 was attained to sufficient accuracy. A

comparison of the initial estimate for 𝐵
0
(63) and the final

value for 𝐵
0
obtained with the shooting method is given in

Section 6.
Once 𝑔(𝜁) has been calculated, 𝑤(𝑟, 𝑡) for 𝑡 > 0 is given

by

𝑤 (𝑟, 𝑡) = √𝑡𝑔(
𝑟

√𝑡
) , 0 ≤ 𝑟 ≤ 1. (64)
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Figure 2: Matching principle. The two-term outer expansion
𝑤
𝑂
(𝑟, 𝑡) plotted against 𝑟 for 𝑏 = 2 and 𝑡 = 0.05. The two-term inner

expansion is 𝑤
𝐼
(𝑟, 𝑡) = 𝐵

0
√𝑡 + 𝑂(𝑟

2
).

From the no-slip boundary condition, the velocity of the wall
of the cylinder, 𝑉(𝑡), is obtained by setting 𝑟 = 1 in (64):

𝑉 (𝑡) = √𝑡𝑔(
1

√𝑡
) . (65)

For small values of time, the asymptotic expansion for large
values of 𝜁 applies and from (54),

𝑉 (𝑡) = 1 + (1 + 𝑏) 𝑡 +
1

2
(1 + 𝑏) (1 + 𝑛𝑏) 𝑡

2
+ 𝑂 (𝑡

3
) , (66)

as 𝑡 → 0. For large values of time, which corresponds to
small values of 𝜁, it follows from (60) that

𝑉 (𝑡) = 𝐵
0
√𝑡 + 𝑂(

1

√𝑡
) , (67)

as 𝑡 → ∞, where 𝐵
0
, the final value of 𝐵

0
derived in the

shooting method, depends on 𝑛. The wall velocity cannot
be prescribed. It increases approximately linearly for small 𝑡,
while for large 𝑡 it increases as√𝑡.

In cylindrical polar coordinates the vorticity𝜔 is given by

𝜔 = curl k = −
𝜕𝑤

𝜕𝑟
(𝑟, 𝑡) e

𝜃
, (68)

where e
𝜃
is the unit base vector parallel to the 𝜃-coordinate

line in the direction of increase of 𝜃. From (47)

𝜔 = −
𝑑𝑔

𝑑𝜁
e
𝜃
, (69)

and therefore, assuming (18), the magnitude of the vorticity,
𝜔, is given by

𝜔 (𝑟, 𝑡) =
𝑑𝑔

𝑑𝜁
, 𝜁 =

𝑟

√𝑡
. (70)

Since 𝑔󸀠(0) = 0, it follows that

𝜔 (𝑟,∞) = 0, 0 ≤ 𝑟 ≤ 1, (71)

and since 𝑔󸀠(∞) = 1, we have

𝜔 (𝑟, 0) = 1, 0 < 𝑟 ≤ 1. (72)

Consider the vorticity at the wall of the cylinder 𝑟 = 1. From
expansion (54) as 𝜁 → ∞ it follows that

𝜔 (1, 𝑡) = 1 − (1 + 𝑏) 𝑡 −
3

2
(1 + 𝑏) (1 + 𝑛𝑏) 𝑡

2
+ 𝑂 (𝑡

3
) , (73)

as 𝑡 → 0. We see that the magnitude of the vorticity at the
wall decreases approximately linearly for small values of time.

Finally, consider the shear stress 𝑆
𝑟𝑧

given by (5). The
characteristic quantities are defined by (11).The characteristic
stress is defined by

𝑆
𝑟𝑧
=
𝑎𝑈
0

𝑅
𝑆
∗

𝑟𝑧
. (74)

Expressed in dimensionless form and suppressing the aster-
isks, the shear stress is

𝑆
𝑟𝑧
(𝑟, 𝑡) = [1 + 𝑏(

𝜕𝑤

𝜕𝑟
)

𝑛−1

]
𝜕𝑤

𝜕𝑟
. (75)

Using (47), (75) becomes

𝑆
𝑟𝑧
(𝑟, 𝑡) = [1 + 𝑏(

𝑑𝑔

𝑑𝜁
)

𝑛−1

]
𝑑𝑔

𝑑𝜁
, 𝜁 =

𝑟

√𝑡
. (76)

Since 𝑔󸀠(∞) = 1 and 𝑔󸀠(0) = 0, it follows that

𝑆
𝑟𝑧 (𝑟, 0) = 1 + 𝑏, 0 < 𝑟 ≤ 1,

𝑆
𝑟𝑧
(𝑟,∞) = 0, 0 ≤ 𝑟 ≤ 1.

(77)

The wall shear stress is given by

𝑆
𝑟𝑧
(1, 𝑡) = [1 + 𝑏(

𝑑𝑔

𝑑𝜁
(
1

√𝑡
))

𝑛−1

]
𝑑𝑔

𝑑𝜁
(
1

√𝑡
) . (78)

The expansion of 𝑆
𝑟𝑧
(1, 𝑡) for small values of time is obtained

from the expansion (54) as 𝜁 → ∞. We find that

𝑆
𝑟𝑧
(1, 𝑡) = (1 + 𝑏) [1 − (1 + 𝑛𝑏) 𝑡 + 𝑂 (𝑡

2
)] , (79)

as 𝑡 → 0.Thewall shear stress, like the vorticity𝜔 at the wall,
decreases approximately linearly with time for small values of
time.

6. Results and Discussion

When comparing the evolution of shear thinning, Newto-
nian, and shear thickening fluids, the same characteristic time
and characteristic stress must be used and the dimensionless
parameter 𝑏∗, where

𝑏
∗
=
𝑏

𝑎
(
𝑈
0

𝑅
)

𝑛−1

, (80)
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Table 1: Shootingmethodwith 𝑏 = 2: 𝑛 values, initial𝐵
0
= 2(1+𝑏)

1/2

values, final 𝐵
0
values, and relative error percentage.

𝑛 𝐵
0
initial 𝐵

0
final Relative error%

0.25 3.4641 4.4237 21.69
0.3 3.4641 3.8554 10.15
0.3333 3.4641 3.2734 5.83
0.40 3.4641 3.2183 7.64
0.5 3.4641 3.1758 9.08
0.75 3.4641 3.1258 10.82
0.8 3.4641 3.1248 10.86
0.9 3.4641 3.1351 10.49
1 3.4641 3.1598 9.63
1.05 3.4641 3.1412 10.28
1.1 3.4641 3.1202 11.02
1.2 3.4641 3.0811 12.43
1.5 3.4641 2.9796 16.26
1.55 3.4641 2.9648 16.84
1.6 3.4641 2.9504 17.41
1.75 3.4641 2.9101 19.04
2 3.4641 2.8514 21.49
2.25 3.4641 2.8010 23.67
2.5 3.4641 2.7564 25.67
2.75 3.4641 2.7191 27.40
3 3.4641 2.6864 28.95
5 3.4641 2.6863 28.95

needs to be specified.Wewillmake a preliminary comparison
by assuming that 𝜌, 𝑎, and 𝑏 are the same for the fluids
under consideration. The characteristic time 𝑎/𝜌𝑅

2 and
characteristic stress 𝑅/𝑎𝑈

0
are therefore the same for all

fluids considered. Furthermore we will assume that the ratio
𝑈
0
/𝑅 = 1 in the SI units used so that 𝑏∗ is also the same for all

fluids considered. To carry out a more detailed comparison,
the parameters 𝜌, 𝑎, 𝑏, 𝑅, and 𝑈

0
would need to be specified.

Using Matlab ode23s, the shooting method outlined
in Section 5 gave physically acceptable results for shear
thickening fluids, Newtonian fluids, and for shear thinning
fluids with 𝑛 values down to 0.3. For 0 < 𝑛 < 0.3 we did
not obtain physically acceptable results with (𝜕𝑤/𝜕𝑟)(𝑟, 𝑡) > 0

for 0 < 𝑟 ≤ 1. To obtain feasible results we resorted
to Matlab bvp4c for 𝑛 < 0.3. We are of the opinion
that there may be a type change in the solution at some
small value of 𝑛. The Matlab ordinary differential equation
solvers will generally be better than anything one would
program oneself. They are able to estimate the error in
the solution at each time step and decide whether or not
the time step is too large (error too high) or too small
(inefficient). Matlab routine bvp4c is an adaptive Lobatto
iterative scheme. Boundary value problems arise in most
diverse forms. Just about any boundary value problem can
be formulated for solution with bvp4c. The first step is to
write the ordinary differential equations as a system of first
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Figure 3:The final value obtained for 𝐵
0
using the shootingmethod

plotted against 𝑛 for different values of 𝑏. The initial estimate for 𝐵
0

is 𝐵
0
= 2√1 + 𝑏.

order ordinary differential equations. Details of the solution
method can be found in [24] and the references therein.

The initial estimate for 𝐵
0
, (63), was used for all values

of 𝑛. In Figure 3 the final value obtained for 𝐵
0
using the

shooting method is plotted against 𝑛 for a range of values of
𝑏. The graphs for 𝑏 = 2, 𝑏 = 5, and 𝑏 = 10 show that 𝐵

0
starts

to increase rapidly for 𝑛 below a critical value. This critical
value of 𝑛 increases slowly with 𝑏. It can be expected that the
graphs for 𝑏 = 0.2 and 𝑏 = 1 would also show this property
if the solution had been taken to smaller values of 𝑛. This
rapid increase in 𝐵

0
demonstrates the difficulty in obtaining

a numerical solution for very small values of 𝑛.
In Figure 2, which illustrates the matching principle, and

Figures 4 to 7 which investigate the physical properties of
the solution, the value of 𝑏 used to perform the numerical
calculations is 𝑏 = 2. In Table 1 the initial estimate for𝐵

0
given

by (63), the final value obtained for 𝐵
0
using the shooting

method and the relative error percentage for a range of values
of 𝑛 are listed for 𝑏 = 2. We see that (63) underestimates
𝐵
0
for very small values of 𝑛, but otherwise it overestimates

𝐵
0
. The relative error percentage in the initial estimate for 𝐵

0

increases rapidly as 𝑛 decreases below 𝑛 = 0.3 and increases
steadily with 𝑛 for 𝑛 > 1.The shootingmethodwith the initial
estimate (63) still converges when the relative error in the
initial estimate for 𝐵

0
exceeds 20%.

The final value of 𝐵
0
has important physical significance.

From (45) and (46) the fluid velocity on the axis of the
cylinder, 𝑟 = 0, is

𝑤 (0, 𝑡) = 𝐵
0
√𝑡, (81)
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Figure 4: Fluid velocity 𝑤(𝑟, 𝑡) derived numerically and plotted against 𝑟 for a range of 𝑡 values with 𝑏 = 2 and 𝑛 = 0.3333, 0.5, 1 and 3.

and from (67) we see that for large values of time the wall
velocity is given by

𝑉 (𝑡) = 𝐵
0
√𝑡. (82)

For large values of time the velocity profile becomes almost
independent of 𝑟 and the wall velocity tends to the value of
the fluid velocity on the axis.

Consider next the fluid velocity 𝑤(𝑟, 𝑡) for 0 ≤ 𝑟 ≤ 1. In
Figure 4 𝑤(𝑟, 𝑡) is plotted against 𝑟 for shear thinning fluids
with 𝑛 = 0.3333 and 0.5, for a Newtonian fluid with 𝑛 = 1,
and for a shear thickening fluid with 𝑛 = 3. For all values
of 𝑛 considered, the initial 𝑉-shaped velocity profile evolves
into a smooth 𝑈-shaped profile for 𝑡 > 0 which gradually
flattens out as time increases. Because of the no-slip boundary

condition, fluid velocity is generated at thewall of the cylinder
and diffuses radially from the wall towards the axis of the
cylinder which produces the flattening of the velocity profile.

In Figures 5(a), 5(b), and 5(c) the scaled velocity
𝑤(𝑟, 𝑡)/𝑤(1, 𝑡) is plotted against 𝑟 for 𝑛 = 0.3333, 1, and 3.
Figure 5 clearly shows the diffusion of velocity in the radial
direction from the cylindrical wall to the axis. For the shear
thinning fluid the velocity profile in the neighbourhood of the
axis of the tube flattens out at a much earlier time than that
for the Newtonian fluid and shear thickening fluid. We see
clearly from the graphs for 𝑡 = 0.10 that the fluid velocity on
the axis 𝑟 = 0 is less for the shear thickening fluid with 𝑛 = 3

than for the Newtonian and shear thinning fluids with 𝑛 = 1

and 𝑛 = 0.3333, respectively. In Figure 5(d) the velocity of
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Figure 5: In (a), (b), and (c) the numerical solution for the scaled fluid velocity 𝑤(𝑟, 𝑡)/𝑤(1, 𝑡) is plotted against 𝑟 for 𝑏 = 2, 𝑛 = 0.3333, 1,
and 3 and for a range of 𝑡 values. In (d) the wall velocity 𝑉(𝑡) = 𝑤(1, 𝑡) is plotted against 𝑡 for 𝑏 = 2, 𝑛 = 0.3333, 1, and 3.

the cylindrical wall,𝑉(𝑡), is plotted against 𝑡 for 𝑛 = 0.3333, 1,
and 3. Because of the no-slip boundary condition at the
wall, 𝑉(𝑡) = 𝑤(1, 𝑡). The wall velocity is determined by the
similarity solution and cannot be prescribed. We see that
𝑉(𝑡) increases approximately linearly for small values of 𝑡
in accordance with expansion (65). For large values of time,
𝑉(𝑡) behaves approximately like 𝐵

0
√𝑡. From Table 1 for 𝑛 =

0.3333, 𝑛 = 1, and 𝑛 = 3 and for large time,

𝑉 (𝑡) = 3.2734√𝑡, 𝑉 (𝑡) = 3.1598√𝑡,

𝑉 (𝑡) = 2.6864√𝑡,

(83)

respectively, in agreement with Figure 5(d). For large time
the wall velocity decreases as 𝑛 increases from values for a
shear thinning fluid to a shear thickening fluid, except for a
small range of 𝑛 (0.5 < 𝑛 < 1) which may be due to a small
computational error.

Consider next the magnitude of the vorticity, 𝜔(𝑟, 𝑡),
given by (70). In Figures 6(a), 6(b), and 6(c), 𝜔(𝑟, 𝑡) is plotted
against 𝑟 for a range of values of time for 𝑛 = 0.5, 1, and 3.The
vorticity generated at the wall due to the no-slip boundary
condition diffuses inwards towards the axis of the tube. The
initial vorticity profile, given by (72), has the form of a right
angle.The vorticity decreases steadily with time and vanishes
as 𝑡 → ∞ when the fluid velocity becomes uniform across
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Figure 6: In (a), (b), and (c) the magnitude of the vorticity 𝜔(𝑟, 𝑡) is plotted against 𝑟 for 𝑡 = 0.0, 0.01, 0.10, 1, 2, 3 and∞ with 𝑏 = 2, 𝑛 = 0.5,
1, and 3. In (d) the vorticity at the wall 𝜔(1, 𝑡) is plotted against 𝑡 for 𝑏 = 2 and 𝑛 = 0.5, 1, and 3.

the tube. In Figure 6(d) the magnitude of the vorticity at the
wall, 𝜔(1, 𝑡), is plotted against 𝑡 for 𝑛 = 0.5, 1, and 3. At
𝑡 = 0, 𝜔(1, 𝑡) = 1 and it decreases approximately linearly with
time for small values of time in agreement with expansion
(73). It vanishes as 𝑡 → ∞. Since the viscosity of the shear
thickening fluid is increased by the shear at the wall, the
vorticity generated at the wall is greater than that of the
Newtonian fluid. The viscosity of the shear thinning fluid is
decreased by the wall shear stress and the vorticity generated
at the wall is less than that of the Newtonian fluid.

Finally, consider the shear stress 𝑆
𝑟𝑧
(𝑟, 𝑡) given by (76).

In Figures 7(a), 7(b), and 7(c), the shear stress, scaled by its
initial value, is plotted against 𝑟 for a range of values of 𝑡 and

for 𝑛 = 0.5, 1, and 3. The initial profile of the shear stress is
given by (77) and has the form of a right angle. For 𝑡 > 0

the shear stress is greatest at the wall of the tube where the
velocity gradient is greatest and decreases steadily to zero on
the axis of the tube where the velocity gradient vanishes. In
Figure 7(d), the scaled wall shear stress 𝑆

𝑟𝑧
(1, 𝑡)/𝑆

𝑟𝑧
(1, 0) is

plotted against 𝑡 for 𝑛 = 0.5, 1, and 3. The decrease of the wall
shear stress with time is approximately linear for small values
of time in agreement with expansion (79). From (78),

𝑑

𝑑𝑡
𝑆
𝑟𝑧
(1, 𝑡) = − (1 + 𝑏) (1 + 𝑛𝑏) + 𝑂 (𝑡) , (84)
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Figure 7: In (a), (b), and (c) the scaled shear stress 𝑆
𝑟𝑧
(𝑟, 𝑡)/𝑆

𝑟𝑧
(𝑟, 0) is plotted against 𝑟 for 𝑡 = 0.0, 0.01, 0.10, 1, 2, 3 and ∞ with 𝑏 = 2,

𝑛 = 0.5, 1, and 3. In (d) the scaled wall shear stress 𝑆
𝑟𝑧
(1, 𝑡)/𝑆

𝑟𝑧
(1, 0) is plotted against 𝑡 for 𝑏 = 2 and 𝑛 = 0.5, 1, and 3.

as 𝑡 → 0. Figure 7(d) and (84) show that the wall shear stress
decreases faster with time for a shear thickening fluid than for
a shear thinning fluid. A significant wall shear stress needs
to be maintained longer for a shear thinning fluid than for a
shear thickening fluid.

The results in the literature for a Sisko fluid generally
do not consider vorticity or shear stress. However, the axial
velocity profiles in the annular flow of a Sisko fluid between
concentric tubes driven by a negative pressure gradient have
been obtained in [18] and it is of interest to compare their
results with our results for the axial velocity profiles of a
Sisko fluid in a cylindrical tube undergoing translation. The
two problems are very different and are almost the opposite

of each other. For the problem considered in [18] the initial
axial velocity profile is flat with no-slip boundary conditions
on each tube wall. This flat velocity profile evolves into the
familiar parabolic-like profile for flow between concentric
tubes. The maximum axial velocity decreases as the material
parameter 𝑏 increases. The axial velocity profile stays flat
in the central region for a longer time for a shear thinning
fluid. This compares with the evolution of our initial 𝑉-
shaped velocity profile into a flat profile. From Figure 3,
the velocity on the axis of the tube, 𝐵

0
√𝑡, increases as the

material parameter 𝑏 increases. The velocity profile in the
central region becomes flat at an earlier time for a shear
thinning fluid. The reason for the different behaviour in the
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two problems is the small rate-of-shear in the nearly flat
velocity profile compared with the large rate-of-shear in 𝑉-
and 𝑈-shaped velocity profiles.

7. Conclusions

Apreliminary investigation of the properties of the numerical
solution was undertaken. Since we took 𝜌, 𝑎, and 𝑏 to be the
same for all the fluids considered, the investigation mainly
demonstrated the effect of the power law exponent, 𝑛, on the
numerical solution. As we expected, the velocity of the tube
wall and the initial velocity profile of the Sisko fluid across the
tube are determined by the similarity solution and cannot be
assigned arbitrarily. The initial𝑉-shaped velocity profile (38)
may be difficult to realise in practice. However the similarity
solution provided an instructivemodel to investigate the time
evolution of a Sisko fluid and the diffusion of its vorticity and
shear stress from a translating tubewall to the axis of the tube.

The shooting method described in Section 5 was applica-
ble for a large range of values of 𝑛. It gave physically acceptable
results for shear thickening and Newtonian fluids and for
shear thinning fluids for values of 𝑛 as low as 𝑛 = 0.25.This is a
strong indication that the numerical solution is correct. If the
solution for values of 𝑛 close to each other is being considered
then instead of using the initial estimate (63) for 𝐵

0
the final

value for 𝐵
0
from the previous solution could be used.

The Matlab ODE suite is a collection of five user-
friendly finite difference codes for solving initial value prob-
lems given by first-order systems of ordinary differential
equations [25]. They are able to estimate the error in the
solution at each time step and decide whether or not the time
step is too large (error too high) or too small (inefficient).
The code ode23s is a triple ofmodified implicit Rosenbrock
methods of orders 3 and 2with error control for stiff systems.
It advances from time step 𝑘 to time step 𝑘+1with the second-
order method (i.e., without local extrapolation) and controls
the local error by taking the difference between the third-
and second-order numerical solutions. Because it is a one-
step solver, it may be more efficient than ode15s at crude
tolerances. The code bvp4c is a finite difference code that
implements the three-stage Lobatto 𝐼𝐼𝐼𝑎 formula. This is a
collocation formula and the collocation polynomial provides
a 𝐶1-continuous solution that is fourth-order accurate uni-
formly in interval [𝑎, 𝑏]. Mesh selection and error control are
based on the residual of the continuous solution [24].

Thephysicalmechanism in the problem is diffusion. Fluid
velocity generated by the no-slip boundary condition when
the wall of the cylinder is impulsively set in motion diffuses
in the radial direction towards the axis of the cylinder. This
causes the velocity profiles to flatten out and the vorticity and
shear stress across the tube to steadily decrease and vanish as
𝑡 → ∞. The problem has some features in common with
Stokes’ first problem [20] for flow induced in a half-space of
viscous fluid when a wall is impulsively set in motion.

The graphs of the fluid velocity, vorticity, and wall shear
stress within the fluid showed no significant differences in
form for shear thickening, Newtonian, and shear thinning
fluids, although the velocity profile near the axis of the tube

for a shear thinning fluid flattened out at a much earlier time.
Quantitative differences were observed which were most
apparent on the axis of the tube and on the wall of the tube.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

S. Abelman, D. P. Mason, and F. M. Mahomed acknowledge
support from the National Research Foundation of South
Africa and the University of the Witwatersrand, Johannes-
burg. S. Abelman acknowledges Dr. Herven Abelman for
drawing Figure 1 in the paper. Taha Aziz is thanked for his
valuable comments on the original paper. The authors thank
anonymous referees for constructive comments which have
improved the paper. F. M. Mahomed is Visiting Professorial
Fellow at UNSW for 2014.

References

[1] A. W. Sisko, “The flow of lubricating greases,” International
Journal of Chemical Engineering, vol. 50, pp. 1789–1792, 1958.

[2] R. M. Turian, T. W. Ma, F. L. G. Hsu, and M. D. J. Sung, “Flow
of concentrated non-newtonian slurries: 1. Friction losses in
laminar, turbulent and transition flow through straight pipe,”
International Journal of Multiphase Flow, vol. 24, no. 2, pp. 225–
242, 1998.

[3] J. Xu, Rheology of polymeric suspensions: polymer nanocompos-
ites and warebone coatings [Ph.D. thesis], Ohio State University,
Columbus, Ohio, USA, 2005.

[4] A. M. Siddiqui, A. R. Ansari, A. Ahmad, and N. Ahmad,
“On Taylor’s scraping problem and flow of a Sisko fluid,”
Mathematical Modelling and Analysis, vol. 14, no. 4, pp. 515–529,
2009.

[5] Y. Wang, T. Hayat, N. Ali, and M. Oberlack, “Magnetohydro-
dynamic peristaltic motion of a Sisko fluid in a symmetric or
asymmetric channel,” Physica A: Statistical Mechanics and its
Applications, vol. 387, no. 2-3, pp. 347–362, 2008.

[6] G. Sari, M. Pakdemirli, T. Hayat, and Y. Aksoy, “Boundary layer
equations and Lie group analysis of a Sisko fluid,” Journal of
AppliedMathematics, vol. 2012, Article ID 259608, 9 pages, 2012.

[7] A. M. Siddiqui, M. Ahmed, and Q. K. Ghori, “Thin film flow
of non-Newtonian fluids on a moving belt,” Chaos, Solitons &
Fractals, vol. 33, no. 3, pp. 1006–1016, 2007.

[8] S. Abelman and S. N. N. Nguetchue, “Application of the homo-
topy analysis method (HAM) to thin film flow of a second-
grade fluid on a vertically moving belt,” Chemical Engineering
Communications, vol. 199, no. 10, pp. 1298–1319, 2012.

[9] H. Mambili-Mamboundou, M. Khan, T. Hayat, and F. M.
Mahomed, “Reduction and solutions for magnetohydrody-
namic flow of a Sisko fluid in a porous medium,” Journal of
Porous Media, vol. 12, no. 7, pp. 695–714, 2009.

[10] M. Khan and J. Farooq, “On heat transfer analysis of amagneto-
hydrodynamic Sisko fluid through a porous medium,” Journal
of Porous Media, vol. 13, no. 3, pp. 287–294, 2010.



14 Mathematical Problems in Engineering

[11] T. Hayat, S. Abelman, C. Harley, and A. Hendi, “Stokes’ s first
problem for a rotating Sisko fluid with porous space,” Journal of
Porous Media, vol. 15, no. 12, pp. 1079–1091, 2012.

[12] S. Abelman, T. Hayat, and E.Momoniat, “On the Rayleigh prob-
lem for a Sisko fluid in a rotating frame,” Applied Mathematics
and Computation, vol. 215, no. 7, pp. 2515–2520, 2009.

[13] M. Molati, T. Hayat, and F. M. Mahomed, “Rayleigh problem
for aMHD Sisko fluid,”Nonlinear Analysis. RealWorld Applica-
tions, vol. 10, no. 6, pp. 3428–3434, 2009.

[14] T. Hayat, R. J. Moitsheki, and S. Abelman, “Stokes’ first problem
for Sisko fluid over a porous wall,” Applied Mathematics and
Computation, vol. 217, no. 2, pp. 622–628, 2010.

[15] M.Khan, S.Munawar, and S. Abbasbandy, “Steady flow andheat
transfer of a Sisko fluid in annular pipe,” International Journal
of Heat and Mass Transfer, vol. 53, no. 7-8, pp. 1290–1297, 2010.

[16] M. Jamil and C. Fetecau, “Some exact solutions for rotating
flows of a generalized Burgers’ fluid in cylindrical domains,”
Journal of Non-Newtonian Fluid Mechanics, vol. 165, no. 23-24,
pp. 1700–1712, 2010.

[17] C. Fetecau, A. Mahmood, C. Fetecau, and D. Vieru, “Some
exact solutions for the helical flow of a generalized Oldroyd-
B fluid in a circular cylinder,” Computers & Mathematics with
Applications, vol. 56, no. 12, pp. 3096–3108, 2008.

[18] M. Khan, Q. Abbas, and K. Duru, “Magnetohydrodynamic flow
of a Sisko fluid in annular pipe: a numerical study,” International
Journal for NumericalMethods in Fluids, vol. 62, no. 10, pp. 1169–
1180, 2010.

[19] M. Khan, N. Shaheen, and A. Shahzad, “Steady flow and heat
transfer of a magnetohydrodynamic Sisko fluid through porous
medium in annular pipe,” International Journal for Numerical
Methods in Fluids, vol. 69, no. 12, pp. 1907–1922, 2012.

[20] F. S. Sherman,Viscous Flow, McGraw-Hill, NewYork, NY, USA,
1990.

[21] L. Dresner, Similarity Solutions of Nonlinear Partial Differential
Equations, Pitman, Boston, Mass, USA, 1983.

[22] T. Aziz, F. M. Mahomed, and A. Aziz, “Group invariant
solutions for the unsteady MHD flow of a third grade fluid
in a porous medium,” International Journal of Non-Linear
Mechanics, vol. 47, no. 7, pp. 792–798, 2012.

[23] T. Aziz and F. M. Mahomed, “Reductions and solutions for the
unsteady flow of a fourth grade fluid on a porous plate,” Applied
Mathematics and Computation, vol. 219, no. 17, pp. 9187–9195,
2013.

[24] L. F. Shampine, M. W. Reichelt, and J. Kierzenka, “Solving
Boundary-Value Problems for Ordinary Differential Equations
in MATLAB with bvp4c,” http://www.mathworks.com/matlab-
central/fileexchange/3819-tutorial-on-solving-bvps-with-
bvp4c.

[25] L. F. Shampine and M. W. Reichelt, “The MATLAB ODE suite,”
SIAM Journal on Scientific Computing, vol. 18, no. 1, pp. 1–22,
1997.



Copyright of Mathematical Problems in Engineering is the property of Hindawi Publishing
Corporation and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


