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SYMBOL TABLE

The cardinality of the set A.
Floor of x , the greatest integer 

which does not exceed x.

Ceiling of x , the least integer 
which is not smaller than x.

Elements on the left of j in the permutation H 
11 « " right * '' 11 11 «> «

Stack-sortable permutations of order n.

nth Catalan number = (n+1) (^n ) .

Ordered set.

The right subtree of node i in the 
binary tree T.

The left subtree of node i in the binary 
tree T.



ABSTRACT

The representation of some types of graphs as permutations, 

is utilized in devising efficient algorithms on those graphs. 

Maximum 'cliques in permutation graphs and circle graphs 
are found, by searching for a longest ascending or descending 

subsequence in their representing permutation.
The correspondence between n-noded binary trees and 

the set SSn of stack-sortable permutations, forms the 
basis of an algorithm for generating and indexing such trees.

The-relations between a graph and its representing 
permutation, are also employed in the proof of theorems 
concerning properties of subsequences in this permutation.

In particular, expressions for the average lengths of the 

longest ascending and descending subsequence a in a random 

member of SSn , and the average number of inversions in such 
a permutation, are derived using properties of binary trees. 

Finally, a correspondence between the set SSn , and the set 
of permutations of order n With no descending subsequence of 

length 3, is demonstrated.
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CHAPTER ONE 

• ’ INTRODUCTION

1.1 A GENERAL OUTLINE OF _THjg RESEARCH

Graph theory provides a natural tool for modeling 

and solving problems which involve a finite set of objects 

V , and relationships between pairs of objects in V, In 

practice , most applications which call for a graph theoretical 
approach , require graphs of large size for their represen­

tation. The successful analysis of such graphs is dependent 

on the availability of fast computers as well as efficient 

graph theoretical algorithms. Such algorithms may be required, 

for example, to determine whether a given graph possesses a 
required property , or to construct all graphs or subgraphs 

of a particular kind. The input graph for an algorithm , 

may be stored in many ways, the choice of a representation 

method depends on the graph itself, and on the nature Of the 

operations which are performed on it by the algorithm »
In this thesis, we are concerned with some types of graphs 

which lend themselves to a convenient representation by a 
permutation on a set or multiset of Integers-. The existence 

of a required property of the graph , can then be checked by 

searching for a particular subsequence in the representing 
permutation* Also, all distinct graphs with a certain property, 

can be constructed by generating all their representing perm­

utations *
This approach , of reducing a graph theoretical problem 

to a search for a pattern in a permutation, leads in many cases
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to algorithms which outperform their counterparts which are 

based on other methods of representation such as adjacency

or incidence matrices.
In particular two types of graphs are considered;

(a) permutation graphs and graphs related to them,

(b) binary trees.
in either case, theoretical results concerning subsequences 

in the representing permutations are derived. These results 

are further scrutinized for their practical algorithmic impli­

cations .
In Chapter 2 , we first deal with the problem of deciding 

whether a given labelled graph is a permutation graph. In case 

of a positive answer , its representing (defining) permutation 
is constructed. Next , some practical problems which are solved 

in [11 by finding a maximum clique in a permutation graph, 
are attacked here by constructing a representing permutation, 

and then employing Schensted's algorithm for finding a longest 
monotonic subsequence in integer sequences[2] . A generalization 

of this algorithm is given , whereby all longest monotonic 
subsequences can be generated , this can be ' Used' for obtaining 

a set of alternative solutions to the problem.
A fast algorithm for finding a maximum clique in a circle 

graph is presented. In this case , a representing sequence is 

produced for each vertex of the graph,and Schensted's algorithm 

is then applied to each one of those sequences. In the last 
section , a generalization of Erdos' theorem [31 on monotonic 

subsequences is proved by extending the idea of permutation 

graphs to permutation hypergraphs.
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The subject of Chapter 3 is the class SSn of stack sortable 

pexmutatlons of order n. Those permutations provide a useful
device for the representation of binary trees C 4, pp: 32? ].

The behaviour of some types of subsequences in a member of 

SSn , and their relation to the corresponding binary tree , 

are studied in detail. It is observed that members of SSn 
tend to be more 'ordered' than ordinary permutations in the

sense that on -the' average they contain less inversions , longer

maximum ascending subsequences and shorter maximum descending 

subsequences.
Characterizations of are given using permutation graphs

and inversion tables. The latter result is utilized in the

the algorithms of the next chapter#
In chapter 4 , algorithms for generating binary trees 

and -indexing them in a systematic manner are presented. These 

algorithms can be also used to generate a random binary tree,

or store a binary tree of order n as an integer smaller than

C = (n+1) (^) • A comparative evaluation of the-1 algorithms
show that they are superior to similar algorithms which are 

based on Knuth's [4] • natural order among binary trees.

In Chapter 5, a connection between the subsequences considered 

in Chapter 2 and those of Chapters 3 and 4 is pointed out by 

demonstrating a direct correspondence between SSn and the set 

of permutations of order n which do not contain a descending 
subsequence of length 3. The problem of extending this result to 

other types of subsequences is also considered.

The last chapter contains a summary of the main results 
of -the thesis as well as some problems for further research 

which are raised but not answered by this works
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1.2 PRELIMINARIES AND NOTATIONS

Let JI=<p ,p9 ,. . ,p > be a permutation on the set N={ 1,2 ,.. ,n}.
1  ̂ ^

A descending subsequence of length k in It satisfies,

p .> p. >...> p . and i,<i9< ...<ik * (1>1)
11 12 k ""

A descending subsequence is maximal in H if no element of k
can be added to it without'violating its monotonicity. A longest

descending subsequence in .H (LDS) contains the maximum number

of elements among all descending subsequences in H . We get

the corresponding definitions for ascending subsequences by

replacing '>' with '<' in (1.1) , where LAS stands for 1 longest

ascending subsequence1. For jcN , we denote by (j ) the set

of elements to the right of j in II , and by L^(j) the set of
elements to the left of j in H . Two elements p^ and pj form

an inversion in H if (p^“P^)(i-j)<0 . The SR (Small to the_ _ _ _ _ _ _ _  1 J
Right) inversion-table of H , is a vector <b-^/bg * • • »bn> such

that for lsi<n b^ counts, the number of elements in R^(i) which
are smaller than i. In the same w a y ,the SL (Small to the Left),

BR (Big to the Right) and BL (Big to the Left) inversion-table

of H is a vector whose i ^ 1 entry counts the elements which

are related to i as indicated by its name. It is well-known,

that an inversion-table (no matter of which type) uniquely
-1determines its corresponding permutation. We denote by It

the inverse permutation of % , if 11=It it is called an involution.

Example 1.1

Let n=<3,6,4,5,2,I p . Then <3,2,1> is a maximal descending 

subsequence in II , <6,4,2, 1> and <3,4 5 > are a LDS and a, LAS 

respectively in It, R ^ (4) = <5 ,2 , 1> and L ^ (6) =<3>. The BR inversion- 

table of n is <0,0,3,1,0,0> . □



A Standard Young Tableau (SYT) of '"shape" <rv r2 ,..,rm> , 

where for K i S m - l  r ^ r ^ ^  and r ^ l  , is an arrangement of
r +r +...+r distinct natural numbers in an array S={sij} where,
1 2  m t , ,th
(1) S has m rows with r^ elements in its i rov>?,
(2) the elements in each row and each column of S form an 

ascending sequence.

Example 1.2 The following SYT has the "shape" <3,3,2,1> ;

1 2  4 
3 5 7 
6 8
9 0

A SYT SOI),- is. formed from a permutation n=<p1 ,p2 ,.. ,Pn >

by the following construction due to Schensted [2] ,

Construetion-S

For lsi<n , insert p ± into S as follows;

(1) Search in the first row of S for the first element (from the 

left) which is greater than Pj_, :f no such element exists place 

Pi at the end of the first row, else call the element found

a "bumped element" and insert Pi in its place.
(2) If a "bumped element" is found, repeat the process of (1) 
on the second row,where the "bumped element ’ plays the role of

Pi"
(3) Repeat this process row by row until some "bumped element"

is placed at the chd of a row. □
S is showed after eachExample 1.3 Let H— <6,3,1,2,5,4 ,

insertion?
3 1 1 2  1 2  5 1 2  4

* : : i ■ i *  Q



A graph G consists of a vertex set V and an edge set E,

such that each edge in E is associated with two vertices in V

called its end points. We consider here only graphs which have

no two edges with the same two end points (parallel edges), and

no edge for which its two end points are the same (self loop).

Two vertices are adjacent if they are the end points of the same

edge , this is denoted by V^-^-Vj , otherwise they are n o n - ■

adjacent denoted by v j_~^“ v j • The? complement of G , denoted by
G , has the same vertex set as G, two vertices are adjacent in
G iff they are non-adjacent in G. •

A set of vertices C=V , is completely connected if every

pair of vertices in C are adjacent. If no other vertices of V

can be added to C without Violating this property, C is a

clique of G. A maximum clique is the one with the largest

number of vertices of all cliques.

The chromatic number of a graph is the minimal number of

colours needed to colour its vertex set , such that no two

adjacent vertices are assigned the same colour. The set V

of a graph with a chromatic number m, can be partitioned into

m disjoint sets .,Vm each containing the vertices of

one of the m colours, such a partition is called a minimal
-

chromatic decomposition of R , A graph G is y-perfect if the 

siae of its maximum clique is equal to its chromatic number.

A path of length k in G , is a sequence of edges e1 ,e2 ,..,ek
such that e^ and ei+1 have a common end point, and no vertex is
traversed mote than once. A path is denoted by the sequence

Vertices on it <v0 ,v]L,. . , vR > , in the order of their traversal.
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A direction can be assigned to the edge vi“ G~v j • this is
denoted by v.+v. . If all edges' of G are assigned a direction, i D
it is called a digraph (directed graph). A digraph is transitive

if for vffv j 'vk eV' the existence of .v^Vj and vy^v^ implies
v ,-»-vv . A graph G is transitively orientable (TRO) , if it i K
is possible to orient all its edges such that its directed 

image G is transitive. We now present an algorithm given 

in Cl-] > which finds a transitive orientation of a given 
graph G, if G is TRO , otherwise the algorithm terminates 

as soon as it detects that no transitive orientation exists.

We first define two rules which are used by the algorithm.

Rule 1 ; If v ^ V j  , Vj— and vi-£-vk assign

the direction vy^v^ ■*
Rule 2 ; If v ^ V j  , v j-Q-vk and v^-^-v^ assign

the direction Vj-My,.
A contradiction can occur,if the application of one of the

rules requires that an edge which is already directed , must

be assigned a different direction. This is used by the following 
algorithm to detect graphs which aie not TRO.
ALGORITHM 1.1

Step 1 : Choose an edge and direct it arbitrarily.
Step 2 : Use Rules 1 and 2 as long as they are applicable,

if a contradiction occurs , stop , G is not TRO.

Step 3 : Delete all edges which were directed in Steps 1 or 2,

if no edges are left , stop , the graph is TRO ,
and (j thus obtained is transitive , else go to Step 1.0

Let G(N) be a graph which has its vertices labelled by the

set N . Then G(N) has a defining permutation with respect to

its labelling,if. there is a permutation H on N such that;
i~7— .-j (vertices are called by their labels) iff G (N ) (16 «£ ■

1 and j form an inversion in H .



A graph G is a permutation graph, if at least one of the 

possible 1 bellings of its vertices with N , gives rise to a 

defining permutation.

Example 1.2' A permutation graph G,with two labellings and 

their respective defining permutations , is shown in Fig 1.1.

Figure 1.1

.5

4

The next theorem of Cl] demonstrates the connection 
between permutation graphs and transitively-orientable c^aphs.

Theorem 1.1 A graph G is a permutation graph iff btth G 

and GC are TRO graphs*
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1 .3 BIBLIOGRAPHIC NOTES

One of the earliest results on ruonotonic subsequences 

in permutations , is due to Erdos and Szekeres [3] . They 

showed that every permutation Of n numbers , has either a 

descending subsequence of length k+1 or an ascending sub­

sequence of length & . The combinatorial properties of

several types of monotonic subsequences which appear m  a 

permutation , were studied by Brock and Baer [6] . Their 

research was* chiefly inspired by applications in sorting al­

gorithms . The' main"'result of the" paper was a counting formula 

for the permutations of order n , in which the sum of the 

lengths of the LDS and LAS is n+1.
The results of [6] were significantly extended by 

Schensted [2]-.who counted the permutations of order n 

which contain.a LAS and LDS of any prescribed lengths. The 

enumeration in [2] was based on the construction of a SYT 
from a permutation (Construction-S) , and the correspondence 

between a permutation and a pair of equally shaped SYT.
In a later paper, Brock and Baer E7] calculated exten­

sive tables for the average lengths of monotonic subsequences 
in permutations. According to their calculations , the average 

length of the LDS in a random permutation of order.' n, shows 

good agreement With 2/n. However , the proof of this fact 
is still an unsolved problem. One result in this direction 
was given by Dixon [8] Who showed that in a random permutation 

of order n , the probability that the lengths of both the 
LAS and LDS lie in the range (e-:L/n,e/n ) tends to 1 as n->*<
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A directed, graph which is closely related to a permutation 

graph , appears in [9 , pp 137] in connection with the proof 
that the 1permutohedron1 is a lattice. A similar graph called 

'inversion digraph' , is introduced by Knuth [10] . The inver­

sion digraph' is constructed from a sequence so that its vertices 

are the elements of the sequence ,and-its edges’ correspond to 

the- non-inversions in the sequence, where the directions are 

from low to high. It was shown that'the SYT of a sequence can 
be constructed from its 'inversion digraph' by- using a topological 

sort.'Permutation graphs, in the context in which we use them,

were presented by Pnueli et al in [11], and used for solving 

some practical problems in [12] .
Properties and characterizations of stack-sortable permu­

tations , are given in [4, pp 239] . A more general model
of a network of stacks or queues in parallel , was studied 

by Even and Itai [5] . They used permutation graphs and circle 

graphs for characterizing those permutations which can be 

sorted in such networks. Some other results in this direction 

were reported by Tarjan [13] , who found relations between 

the length of monotonic subsequences in permutations,and the
number of stacks or queues which are needed to sort it
in a network. Some additional bibliographic notes are given

in the introductions of the relevant chapters«
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CHAPTER TWO

PERMUTATION GRAPHS AND MONOTONIC SUBSEQUENCES IN
PERMUTATIONS

2.1 INTRODUCTION

In [ l,pP 183] Even presents an*algorithm for finding the 

defining permutation of a labelled graph if ore exists.

We separate this problem into two cases;
(i) the graph is known to have a defining permutation with

respect to its labelling,
(ii) no additional information on the graph is known.

The algorithm presented here for case (ii) is shown to be 
superior to that of Even , it is further shown that utilization 

of the additional information enables a yet more efficient 

algorithm to be developed for case (i).
Next, a generalization of SchenSted1s C2] method for 

finding a LDS in a permutation is presented. It is shown that 

this generalized algorithm can be used for generation of all 
maximum cliques of a permutation graph once its defining permutation

is given.
Based on the above algorithms, methods are devised for

solving problems of dynamic storage allocation and design
of connection boards * , those methods are shown to be faster

than the existing methods
The subject of the next section is circle graphs

which are closely related to permutation graphs [14,3. By using 
the techniques developed in this chapter, we devise an algorithm 

which finds a maximum clique in a circle graph in 0(n lg2n) steps.
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To the best of our knowledge, the fastest algorithm to date

for this problem is the one given by Gavril 0.4] which requires 
30 (n ) steps.

,Finally , in the last section ' a theorem by Erdos and . 
Szekeres is generalized by extending the idea of a permutation 
graph to that of a permutation hypergraph.
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■ 3; 2 AN ALGORITHM FOR FINDING THE DEFINING PERMUTATION OF 

A LABELLED PERMUTATION GRAPH.

•Let G(N) be a given grap , with |v|= n. Suppose that it is known
that G(N) has a, defining permutation H with respect to this

labelling. In this section we present an algorithm which finds
II# An application of this algorithm is giten ,in Section 2.6.

Let G(N) be represented by its adjacency matrix A={a, >}.13
Since H is the defining permutation of G(N), a , .=1 iff i and

13
j form an inversion in II . A  sequence of distinct integers
from N which -forms a subsequence of It is called IT-consistent.

The general procedure for finding n is similar to the well-known

2-way merge sof t [16 pp 160]. We start initially with n unit-
length sequences which are trivially IT-consistent. 1a the ith 
pass, the sequences which were created in the i-lst pass are

merged in pairs so that longer H-consistent sequences are

Obtained. The algorithm terminates when We are left with one
sequence of length n.

We only present here an algorithm for the basic merge

operation. In Algorithm 2.1 two Inconsistent sequences are
merged Using the matrix A. It is then proved in Lemma 2.1

that the output sequence remains inconsistent. The difference

between Algorithm 2.1 and the ordinary merge is that each

comparison is followed by a lookup in A in order to decide

which of the two compared elements is to be written on the

Output. Let i and j be the two elements which are currently

compared, then m a x (i ,3 ) is written iff a^j-l and otherwise
min (i,j).
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ALGORITHM 2,1 .-V'-'-----
Given as input tv/o sequences <x 2 f " ,xiiî f ̂ 2 f ^

and the matrix A. The segygnces X and Y are merged to form an

Set i-1, j-1.

output

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

i
Set P= (xi-y j ) a:

If =0 set
x iy i

if

i'-XiYj
P>0 go to Step 8.

Write Yj on output.
If j<Jl set j=j+l and go to Step 2.
Write x 1 fXi+;L, on output and stop.

Write x^ on output.
If i<m set i-i+1 and go to Step 2.
Write yj,yj+3;, • • dn .output and stop. □

Example 2,1
We find the defining permutation of the graph of Fig 

which is represented by the adjacency matrix A.

A =

1 2 3 4 5 6 7 8

1 0 0 1 0 1 0 1 1
? 0 0 1 0 1 0 1 1
3 1 1 0 0 1 0 1 1
4 0 0 0 0 1 0 1 1
5 1 1 1 1 0 0 1 0
6 0 0 0 0 0 0 1 1
7 1 1 1 1 I 1 0 0
8 1 I 1 1 0 1 0 0

We start with the initial sequences: Figure 2.1
S&=<1> S*=<2> S*=<3> S^=<4> S==X5> S*=<6> S?=<7> 9»=<8>

S|~<5, 6 > vS!̂ =<7 , 8>

&%=<7,5,8,6> 

Si=<7,5,8,3,l,2,4,6>

, *»JrfcU « **1* **.*■

Pass 1 : S^~<1,2> S^=<3,4>

Pass 2 ; S^~<'3^1)t2jr4<>

Pass 3 : ‘ a
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Lemma 2,1 Let X=*)Xj^x2 / « » '£~<>¥.\rY2r ’ ’ ̂ tWO
n-consistent sequences with distinct elements which

are merged by Algorithm 2.1 and let z=<z^,...,z 

be the output. Then 2 is IT-con sis tent. 

proof We use the following simple properties of 2.

Property 1 ; For i4j if z^and Zj come from the same input 

sequence then Zj.eL^tZj),

m+S.’

Property 2 If two consecutive elements z^ and z i+1 come
from different input sequences they are compared 

in Step 3 and this ensures thf-V (z^+1) .

From Properties 1 and 2 it follows that for l^irSmH-l 

zieLir (zi-hl) and then by transitivity Z is IT-consistent. D

Running-time
By the nature of 2—way merge sort^ if there are k sequences

afterbefore the i pass then this number is reduced to 

the pass. In each pass we make no more than O n  elementary 
operations where c is a constant which depends mainly on the cost of 

a matrix lookup. We conclude that the total number of steps 
which are required to find the defining permutation of a graph 

of n vertices is C [“lgj>.n’] n ,
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5 .3 AN ALGORITHH-FOR DETECTING WHETHER A LABELLED GRAPH_ '

.HAS A DEFINING PERMUTATION

Let G(N) be a labelled graph, as in the previous section, 
but assume that it is not known whether jd defining permutation 

exists with- respeaf to this .labelling.In this section, we present 

an algorithm which either finds the defining permutation of 
G(N) or stops as soon as it detects that no such permutation 

exists. The algorithm is based on the following theorem which 
characterizes A  graph which has a defining permutation.

-Theorem 2.1 Given a graph G(N) which is represented by the
adjacency matrix A={a^^},let the matrix A={a^j) 

be obtained from A as follows,
For j< i aij=0 => ^ ^ = 1

aij=1 => aij=0
Otherwise aij= ^ij

The graph G(N)has a defining permutation iff for

izj it follows that S.^S. where 2 •j C™1
'-proof (a) Necessity; Let A be the adjacency matrix of the
permutation graph G (N) which has JI as its defining permutation.

The term , Z a .« counts those elements which are smaller
£-]_ iv

than i and do not form an inversion with i in II . In a similar
i —n

way f the term Z a .> counts all elements greater than i 

Which form an inversion With i in It. Therefore | (i) | *

We them have,
i*j => |L-(i)|< |L_(j)l« S ^ S ,  . (2 -1 )



17

(b) Sufficiency; We use induction on the size of the adjacency 

’nmtrix. The theorem holds trivially for the two possible adjacency 

matrices of order 2. Assume that it is true for matrices of 
order n-1. Let A be the adjacency matrix of the graph G(N), 

Consider the vector S=<S]+1 ;S2+ 1 ,,.,Sn+l> which we call the 
S^vector of A. Since ‘all.components of S are distinct integers 

and 0<Si5n-l for l<i<n , it follows that S is a permutation 

on the set N={l,2,..,n). Let n=<p1 ,p2 ,,.,Pn> be the inverse 

permutation of S , we prove our theorem by showing that II is 
the defining permutation of G(N). We have to show that for l^i,jsn,

i and j form an inversion in H iff aij= 1 * (2 .2 )
Let p^==& r we observe that all pairs of the form <&,j> are

inversions in II iff j<&. By the definition of H it follows 
that S^=0 f and this implies that a^j=0 for l^j-n. We *■. lave,

for j<A => &%.=! and

for j>A => a %,=0 .
We conclude that no violations of condition (2.2) occur in the 

row and by symmetry in the ith column of A. Consider the 

ith column of A, by (2.3) and the symmetry of A,

j<i => a . 0=1 => a ,£=1
- , (2.4)]>&'=> aj =̂0 => aja==

Therefore each element of this column contributes a unit to S^

for IsiSn and i*A. Let A' be the matrix which is obtained by 

eliminating the Ath row and column from A. We denote by 
S'=<S^+l,S^+l,..,S^_i> the S--vector of A'. By the above argument 

we get the following relation between S and S 1,

for lsi<A si=sl~ 1 and (2 5 )

for JUisn-l sl=sH-l""1 '
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By , (2.5) for i*j we hgye Sj^S) , therefore A v satisfies
. • 5

the ‘ condition of the theorem. By the induction hypothesis , 

the permutation • ■ •V'&n-i > such that n'=S '‘"1 , is the
defining permutation of A'. The elements of It and H 1 are 

related as follows,

for liisn-l if P1+1<P! (26)

ii“Pi-hl-1 if pi+l>pl ’

Hence is an inversion in H 1 iff <Pi+ i/Pj+i> is an
inversion in H .This shows that .condition (2.2) is 'satisfied also 

by all elements of A which are not in the row or column. ^

• The proof of Theorem 2.1 suggests the following simple 
algorithm for detecting whether G(N) has a defining permutation, 

directly from its adjacency matrix A.

ALGORITHM 2.2
Initially we have an array C=<c^,C2 ,.*,cn> of n empty cells. 

Step 1 : Set i=l.
Step 2 : Perform a logical 'NOT1 operation on all entries

a . - such that j<i.
] n

Step 3 : Set k- £ a , . 4- 1 .
j=l 3

Step 4 : If c^ is occupied stop (no defining' permutation

exists)..else set c%=i.
Step 5 : If i=n stop/ the array C contains the defining permutation

of G(N), else set i=i+l and go to Step 2. 0
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Example 2.2

Let N= (l,2,3,4,5 ) , we consider the graphs (N) and G2 (N) 

oi ' 2.2 , and their respective adjacency matrices and .

The . .ctor of A 1 is S =<3,4,2,1,9> , therefore .Algorithm. 2.2 

will terminate in Step 5 giving C=.<:4,3./1;2 r5> as> the.defining 
permutation of G^(N), The graph G2 (N) .has no defining permutation 

since in A n we have S0= S 0=2.

A l=

1 2 3 4 5 1 2 3 4 5
1 0 0 1 1 0 1 0 1 0 0 0
2 0 .0 1 1 0 A = 2 1 0 1 1 0
3 1 1 0 1 0 2 3 0 1 0 0 1
4 1 1 1 0 0 4 0 1 0 0 1
5 0 0 0 0 0 5 0 0 1 1 0

2 2

3
G

Fig 2.2

Running-time

In case of a positive answer , Algorithm 2.2, requires (2 )
2logical 'NOT1 operations and n additions.

Comparison of Algorithm 2.2 . wj.th Even's algorithm
In [I, pp 183] Even gives an algorithm for’t h e 'same purpose

• as Algorithm 'P.: S', ‘'which has t two stages. First, all edges of 
cG(N) and G (N) are oriented from low to high and from high to 

low respectively. In the second stage a topological sort is performed 
on the vertices of G(N) . From, the point of view of computation 
complexity both our algorithm and that of Even are of the same 
order , i.e. both require O(n^) steps. However Algorithm 2 ,.2'is 

superior for the following reasons:

1. Algorithm 2. 2 lends itself easier to computer implementation, 

only two types of operations are needed , logical 'NOT1 and 
counting the number of '1 ' bits in a storage word ,both operations 
are very fast- on most computers . on the other hand, the edge
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orientations and the topological sort which are used in Even's 

algorithm, require some more involved operations and specia 

data structures as shown by Knuth in [4 ,pp 258].
2. In case of a negative answer,Algorithm 2.2 performs only a fraction 

of the total number of operations, depending on how early two 

S.^'s are found to be identical.. In Even's algorithm we always 

have a fixed cost of (£) orientations , a negative answer is 

detected only in the second stage when the topological sort 

procedure fails to find a sink among the vertices of G(N).
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2.4 ‘ A GENERALIZATION OF SCHENSTED'S ALGORITHM

Let G($) be a permutation graph labelled with the set N 

and let H be its defining permutation with respect to this 

labelling. Consider a clique C of G(N) where |cj = k. We 

can order the labels of the vertices of C in descending order 

and obtain Ic= <ir i2 ,...,ik > -Since each pair of labels are 
an inversion in II , it follows that Ic is a maximal descending 

subsequence in H . In this way a maximum clique of G(N) corres­

ponds to a LDS in' II.
In C2] Schensted gives an algorithm for finding a LDS 

xn a given permutation. In this section we describe a gener­

alization of this algorithm which provides us with the option 

to generate all LDS's of a permutation. In view of the above 
connection between maxinum cliques and LDS's, this generalized

I
algorithm can be used to generate all maximum cliques of a 

permutation graph,once its defining permutation is given.

The number of LDS's of a permutation can grow exponent­

ial,ly with its order. For example consider the permutation 

H of order n for n-0(mod 3) ,which consists of n/3' trios and

has the general form: - >
n=<n~2,n~l,n,*»-,(n-2)-3k,(n-l)-3k,n-3k,*..,1,2,3>.

Then II has LDS's. Therefore it is., important to, avoid
repetition of LDS's or generation of intermediate subsequences 

which eventually do not form a part of a LDS. In order to 
meet those requirements the algorithm to be described operates 

in two stagesi The first stage reads the input permutation 

into a storage array and links those elements 'Which are
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candidates for joining a L D S .In this way each LDS is stored 

in a form of a chain. In the second stage those chains are 

traversed and a LDS is generated each time we arrive at the 
end of a chain.

Informal description —  Stage"],

Given a permutation H = <p.. ,p0 ,. . . #p > it is scanned 

from left to right and an ordered set of queues Q-1/ Q 2 ' * * z^n
I

is formed from its elements. The construction is described 
recursively as follows:

1) p^ is inserted into ,

2) Assume Q x ,® 2 ' ,*'®i were formed from p 1 ,p2 ,..,Pj_n, then
Pj is attached to the first queue which has its last element

smaller than p.. If no such queue exists p. starts a new J 3
queue

With each element p^ which is attached to Q^, two pointers

are updated indicating the minimal and maximal elements in

Q. , which are greater than p..3
Formal description

The set of queues is stored in a 3-dimensional array Q 
of size nxn*3. If an element is inserted into the position 

of it is placed in Q[i,j,1] and the two fields Q[i,j ,2] 

and Q[i,j,3] serve as pointer fields for the above mentioned _  

purpose. The variable N[i] counts the number of elements in 

the 1th queue and the variable q counts the number of non- 

empty queues in Q .
‘We' first describe the procedure ATTACH Which inserts 

an. element at the next available place in a " specified queue.
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a t t a c h  (Pj/Qi)

ATI : Set NCiH = NCi] + 1 .

A T 2 : Set QCi^Nlii], U  = Pj .
Perform A T 3 ,A T 4,,.and A T 5 only if i^*!/
AT3 : Search in Q ^ ' t  for the minimal I such that Q[i-l,&,l] 

is greater than P j .

AT4 : Set Q[i,N[i],2] = & .

ATS : Set Q[i,NCi],3] = NCi-1].

ALGORITHM 2.3. - STAGE 1
Step 1 : Set Nil] = 0, ATTACH (p1 ,Q1 ) , set q =  1.

Repeat Step 2 for 2<i<n :
Step 2 : If Pi <Qlq,N[q],l] then set q=q+l, Nlq] = 0

and ATTACH (Pj/Qq) else search the sequence 
QU,NC1],1],Q12,NC2],1],... ,Qlq,NCq],l] for the 

first element QCf,NCf],l] . such that p ^ Q C f  ,N[f ] ,1] 

m 4  ATTACH (p, ,Qf) •
□

Example 2.3'
Let n = < 7 ,8,9,4,6,3,1,5,2> . Then after stage 1 there 

are . 4 non-empty queues In Q ..with the following contents,

* 7:-:-,8:-:-,9:-s

Qg = 4 s Is 3,6:1:3
Q 3 - 3:1:2,5:2:2

q4 = 1:1:2 , 2 :1:2
The values of the other variables are.

q=4 .and N [ l > 3  N[2]= N[3]=N[4]= 2. 0
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Runnlng-tlma of Stage I '
The computation of the number of steps required to 

complete stage 1 is based on some properties of the elements 

of Q. Those properties are summarized in Lemma 2.2 which is 

a direct result of [23 and therefore stated without proof.

Lemma 2.2) * If q queues a%e formed from n in stage 1 then,

(a) The length of a LDS in II is q.
(b) For l^i^q , Q C i ,1,13<Q[i/2,13...<Q[i»N[i],13 «
(c) During the execution of the algorithm the last elements 

of the queues form a descending sequence^ i.e. rh Step 2 We
have, Q[1,NC13,13>Q[2,NE2 3,13>...>QEq,N[q3,13. 0

The running-time is governed by the comparisons made in 

AT3 and Step 2 of the algorithm. From (b) and (c) of Lemma 2.2
it follows that b i n a r y s e a r c h  can be used in both cases. We

recall that the number of comparisons made by a binary-search 

on a sequence of length m is at most jlg2mj+ 1«• Given ah 
Input permutation.of order n with LDS of length q, the longest 
queue has no more.than n+l-q elements. Therefore the total 
number of comparisons made in ATS is bounded by n (|lg2 (n+l-q)J +1) 

we call this term A. Turning our attention to Step 2, we 

Observe .that a binary-search is performed only for those 

n-q elements which do not start.a new queue. Therefore the 

binary-search in Ftep 2 is bounded by (n-q) (|j.g&qJ+D comp­

arisons, we call this term B. In addition to that We have a 

fixed cost of n-1 comparisons in Step 2. We now calculate an 

upper bound on A+B as follows,
A+DS nig 2 2 (n+l-q) + (n-q) lg?.2q

and since
(n+l-q)q£((n+1)/2)2
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we get
A+B £ 2nlg?. (n+l)- qlg22g .

We conclude that the total number of steps required by Stage 1 

is proportional to nlg?.n.

Informal Description of Stage 2

By (a) and (b) of Lenma 2.2 ,it follows that a LDS in

II has exactly one element in each queue of Qy such that the/
th •i element of a LDS is a'member of -

Lemma 2.3^ Let L = ^QClfi^fl] i Q L 2 1 x^t Xl t • • • tQLQ t ig c 13 ̂  be a 
* . \./-. sequence constructed from the array Q , Then L

is a LDS of H iff , for lsj<qf 

0[j+l,ij+l,2]3ij3 Q[j+l,ij+1,3].

Proof: By definition L is a LDS in H iff for l<j <q the

following two conditions are satisfied, . ; .

QCj,ij ,l]>QCj-tl,ij+1,l] (2.7)
Q[i,ij,l]eL^(Q[j+l,ij^,'l]) . (2.8)
(2 .7 )<=> First element in (L which is greater than Q[ j+1, ij+ 1 ,1] 

is in position i^ or before<=> ij^Qtj+l,ij+^,2].

<2.8 )<=> Qj had at least ij elements when QC j+l,ij+^,l3 was 

attached to ij^Qt j+l^ij^.^, 33 . □
* The second stage of Algorithm 2.^ is based directly on 

• Lemma 2.3 The generation scheme is started from Q[q,1,1].

By the lemma the possible successors of this element are 

in Qg_j_ ,in positions which are within the limits specified 
by the two pointers QCq,1,2] and OCg,!,3 ] . -Therefore 

we select the next element in Q n which is indicated byq — 1



Q[q,1/2 ] .In this way we move from one queue to the next t 

selecting one element in each queue^until an element in Q.

is reached. At this stage the first LDS is completed. We 

then backtrack to the element in Q2 which we came from and 
select its next possible successor. The general rule is as follows, 

when all successors of an element in are selected,, we 

backtrack to the element in Qj+1 which we came from. Each 

time we arrive at Q 1 a new LDS is completed. Termination 

occurs when all the elements of have been processed.
This backtracking approach requires a nest of iterations 

of variable depth according to the number of queues generated 

in Stage 1. A precise description of the process is given 

by the following ALGOL 6 8 procedure. This notation

provides a more elegant method of describing recursive processes 

than the semi-formal notation adopted elsewhere in this 

thesis.

Formal description

Let q be the number of queues formed in Stage 1 , and m the length

of the last queue. 
proc lister = (int m) :

( for i to m do access (q,i) od ) ?

proc access = (int j ,&) :

( buffer Cj3- QCj,A,l] ;
if j == 1 then print ((buffer,newline ))

else for k front QC j ,&,2] to QC j ,£,33 do

access (j-l,k) od fl, ) ; □
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Example 2 .4

The L D S 1 s of JI of Example 2.3 will be generated in the 
following order :

(1 ) <7,4,3,1> (6 ) <9 ,6 /3 ,1 > (1 1) < 8 ,6 ,3 ,2 >
(2 ) <8,4,3,1> (7) <7,4,3,2> (1 2 ) <9,6,3,2>
(3) <9,4,3,1> (8 ) <8,4,3,2> (13) <7,6,5,2>
(4) <7,6r3,l> (9) <9,4,3,2> (14) <8,6,5,2>
(5) A 00 Ch W H V (10) <7,6,3,2> (15) <9 ,6 ,5,2>

a
Remarks

, 1. Since a LDS in 11= <P1 ,P2 ,.. ,pn > is a LAS of nR= <pn/pn _1 ,..P;L>
it follows that the same algorithm can be used to generate
all LAS's of u given permutation.

2. Given a sequence S which contains repeated elements we may

want to generate (a) All longest strictly descending sub­

sequences or (b) All longest non-ascending subsequences in S.

It can be proved along the same lines as the proof of Lemma 2.2 
in [2] that Stage 1 must be modified as follows:
Case (a) : Replace 1> 1 by in Step 2.

Case (b) : Replace '<' by '3' in Step 2 and '>1 by
in AT3.
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•2.5 A CONNECTION-BOARD PROBLEM

The problem which is discussed in this section is taken 

from [17,pp 245] . Consider a connection-board B which consists

of two sets of fixed points called and and a set E of 

straight connecting lines Such that each line in E connects 

a point in X^ to a point in X% . Such a connection-board can 

be represented by a bipartite graph as shown in Fig 2.3 
It is required to decompose B into several parallel planes such 

that no two lines cross each other in a plane. This situation 
occurs in the design of printed circuits where tne connecting 

lines are not insulated and therefore may meet each other

only in vertices.
The problem is solved i n [17] by constructing a new graph

G in which each vertex corresponds to a line of B and two B
vertices are adjacent in G iff their corresponding lines cross

each other in B. It is then observed that a minimal chromatic
decomposition of GB corresponds to a decomposition of B into

the least number of planes. Under this correspondence each
monochromatic set of represents a set of lines which can

be assigned to the same plane. In [1] it is shown that Gg is
a permutation-graph. This enables us to employ an efficient
algorithm which finds a minimal chromatic decomposition of Gg 

2
in 0 ( IE| ) steps. We present here a method which finds the 
required decomposition in 0 ( |E|Igam) steps where m  is equal

to m i n (|X^l, |X2 |).
Without loss of generality we can assume that |x1|= m  and 

| Xg, | - n. We label the points of X^ by x j/x2' • • ,xm and those 
of Xg by the numbers 1,2,..,n from left to right. A line is



29

demoted by Li.,xA where i<;X2 and The lines of B can

be represented by m lists L 3_yL2 f * ' where contains all
points of X 2 which are connected to in their order from

left to right. We then construct the sequence LB = <L1 fL2 '*•'Lm >

by catenating those lists.

Example 2.5

Consider the connection-board of Fig 2,3 . It is represented 

by L]= <1,2,4> , L 2= <1,3> and L 3= <2,4> . We then have 

Lb= <1,2,4,1,3,2,4> •

ifFigure 2.3

X, "2 >»
' ‘ □
Lemma 2. 4 The chromatic number of GB is equal to the length

“ • o f  the longest strictly descending subsequence of Lg. 

Proof The vertices of a clique of Gg correspond to a set 

of lines Cg in B such that every two lines in Cg cross each 

other. On the other hand, two lines (i,x%.) and cross

each other in B iff (i-j)(k-A) < 0. Therefore Cg is in 1-1 
correspondence with a strictly descending subsequence in Lg.

Let Mg be a maximal clique of Gg. Since Gg is y-perfect 
[1,§9.1] its chromatic number is jMg| and by the above corres­

pondence this is also the length of a longest strictly de

creasing subsequence in Lg. 0 
: By Lemma 2.4 it follows that we can find a. minimal chro­

matic decomposition of Gg directly from Lg. We apply Algorithm

2,3 Stage 1 with the modification of .Remark 2(a) to Lg, Suppose 

that q non-empty queues are formed in Q by the algorithm. Then 

the chromatic number Gg is q , Furthermore, the elements
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■ in for correspond to a, set of lines in B in which

no two cross one another and this set defines a monochromatic 

Set of vertices in .

Example 2.6

We decompose the connection-board of Example 2,5 into 

planes , The contents of the array Q (ignoring pointers) after 

Algorithm 2,3 are as follows;

QjL — 1,2,4,4 
Q 2 = 1 , 3

C 3 = 2
Therefore Plane 1 contains the lines: (l,x^),(2,x^),(4,x^)

and (4,Xg) ; Plane 2 : (1,x2 ) and (3,x2) ;Plane 3 : (2,x3 ) . □

Running-time
The running-time here is dominated by the number of comparisons 

made by Algorithm 2.3,which we now compute, For Isism the 
elements in appear in ascending order f this ‘ensures 'that no more 
than i queues will be formed in Q from the elements o f .the

to a queue, a binary-search on at most i elements is performed. 

The total number of comparisons is therefore bounded by

lists L .. Therefore when each element of L . is ■ attached r .

i=i
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2.6 A • DYNAMIC ' STORAGE ALLOCATION PROBLEM

Let N = {1,2,..,n } be a set of programs which reside in

memory in starting addresses ' Xg,. . , ̂  where xi+1 for
l^isn-l . During execution 'ime, some programs may change
their memory requirements. Let those new requirements be

respectively. In order to meet these requirements,

it may be necessary to shift some programs to new storage
addresses. We assume that the order of the programs in memory

n
must be preserved and that Z & . does not exceed the available

i=l
memory space. The problem is to find a reallocation scheme

which has a minimal cost. If we assume that each program has

the same cost of transplantation ,the above problem is
equivalent to that of finding a maximal set of programs which

can remain in place while the other programs are shifted.,

In [12] a model graph G(N) is constructed such that i ^ ^ y j
iff'̂ ES,. S x--Xj . In words, vertices i and j are adjacent in G(N) 

k=i J
iff the programs i and j can remain in place under the new 

requirements. It is then proved that G(N) thus constructed 

is a permutation graph. The minimization problem is then 
solved using an algorithm which finds a maximum clique in 

G(N) in 0 (n2 ) steps. ■
However, we observe that by using the algorithms of 

the previous sections, We can find a maximum clique of G(N) 

in Ofnlggn) steps as follows. We define z^=0 and for 
2<dsn ,z±= 1 . We then find the defining permutation

H of G(N) with Algorithm 2.1, where Step 2 is replaced by

Step 2* : If X j - x ^ Z j - z ^  Set a^j-l ,otherwise set a ^ - l .
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A  maximum clique of GIN) can now be found from the LDS 

of n .
In order to ensure that programs are not shifted out 

of memory , the programs 1 and n are dummy programs such 

that x i=fi'i==ji2:=0 and xn is set to the highest address
available. We then restrict ourselves to those reallocation 

schemes where both program 1 and program n are kept in place. ^

We now have to find the longest descending subsequence in 

IT which includes both 1 and n. We' overcome this difficulty 
by applying some simple .modifications to II which we., 

now proceed to show.
Since the maximal available memory is greater t h a n : 

the total requirements we h a v e , ,

xn 2 zn~>xn -xl2zn ’"zl=>aln” ^ = > n£V 1 * • i-'9)
Let n=<p1 ,p2 ,. . ,pn > such that pk=n and p ^ l  } by (2.9) ,
k<& ’ . We construct a new sequence It' which is obtained

from H by repeating pk k times and p^ n-5,+1 times. , leaving

all other elements o f H  unchanged.

k <n—&+1
Lemma 2 .5 Let H 1 ~ <Pî r • « / Pk z • '^k+’l ' "  ^5,+!' * 1 '^n5*

be a sequence which is obtained from IT as described 

above. Then a longest non-ascending subsequence (LNAS) 
in IP is equal (disregarding repetitions) to a longest 

descending subsequence .In IT Which ‘ includes I,I; and-n. 

Proof We first prove that a LNAS in " II' contains both 1
^and n. We apply Algorithm 2,3,modified as shown in Remark 2 (b) , 

to IP , A LNAS of IP is constructed by choosing one element 

from each non-empty queue in Q. It suffices to show that there
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is at least one queue wh.jL.ch. has'p'^ as Its only ■'element- and* . 

another which contains only p. , When p}, is attached to a queue 
by the algorithm, there can be no more than k-1 queues in Q. 

Therefore, at least one of the k occurrences of must start 

a new queue, 'call this queue . No other element of 111 can 

join Qj , so Q. contains only pk . Now , each occurrence of p^
Starts a new queue. We therefore have n-X+1 queues containing 

, Since there are only n-& elements in R^(p^), this ensures

that the last queue contains only p^.

A LNAS i; H ’ has the form,

*‘:=<P k ' * * 'P]c,ĉ l'd 2 ' * ’ ,(̂ r' *
Now ,LjI=<;pj<,d1 ,d2 ,. , ,dr ,p^> is. .descending in' TI .. Any'.descend­

ing subsequence in H which is longer than and includes both

pk and p^ , gives rise to a subsequence in IT1 which is longer

and is non-ascending, in contradiction to the .definitionthan L

Example 2.7
Consider the reallocation problem which is represented by 

the following table *
i x i l L zi

1 0 0 0

2 0 300 0

3 400 500 300

4 800 400 800

5 1100 300 1200

6 1600 200 1500

7 1700 0 1700
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The defining permutation f 13 flf4 f2 flf5> is obtained directly 

from this table. We then have II'-£6,3,7,7,7, 4 ,2 f 1,1,5> . The 

LNAS in H 1 is <7Z7 /7,4,2,1/1> ,therefore the programs {7/4,2,!}
form a maximum set containing, ... • 7 and 1 ,whi<Jhrcan be" .kept' in 
pledge while the other programs are shifted.

■̂Remarks

1. During the construction of queues by Algorithm 2.3,if the 

.first is attached to Q^, then the following rp^'s are

automatically attached to • • 'Qj>k--1 * In the same
t . way , a binary-search is required only for the first occurrence 

of Pg,. We conclude that a binary-search is performed no 

more than n times in Step 2 of the algorithm. Since the 

number of queues formed from H 1 does not exceed 

k+(n-A+!l+(&-k-l)=n ,it follows that the total number of 

comparisons made by the algorithm is bounded by nijlgznj +1) .

2. The number of elements in H ’ is n-f-(k-l)+-(n-&) =2n-l+(k-&) .

Since k<& ,the maximal number of storage locations 
required for JT is 2h-2.

3. This method of repetition of elements,can be applied in 

cases where an integral cost of shift w^ is associated 

With the it î program. A sequence W(JI) is constructed from 

II by repeating the integer i w^ times. It is easy to 
prove that the distinct elements in a LNAS of w(n), 
correspond to a maximum weight clique of G(N)*
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2 . 7 a n a l g o r i t h m  f o r f i n d i n g a  m a x i m u m  c l i q u e in a  c i r c l e

GRAPH

Given a set S= , c2 ' • • ' cn chords in a circle, we

can construct >, a 'graph G^ where each vertex in Gg corresponds 

to a chord in S , two vertices are adjacent if their corresponding 

chords intersect. A graph which represents a set of chords 

in this way is called a circle graph.

Example 2.8

Figure 2.4

Circle‘graphs were used by Even and ItaiCS] as a model for 

finding the least number of parallel stacks which realize a 

given permutation. ’

Consider a subset C of S with the property that fevery 

pair of chords in C intersect. If no subset of S with cardinality 

greater than C has this property , C is called a maximum clique 

of S. Our purpose here is to find a maximum clique of a given 

set of chords " , clearly... such a maximum clique corresponds 
to a maximum clique of Gg- This problem was previously solved 

by Gavril [14] , his algorithm finds a maximum clique of S

from its representing graph Gg ,where as the approach here 

is to determine the maximum clique directly from S.
Without loss of generality, we can assume that no two
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chords in S have a common end point on the circle, if this

occurs , we can move one chord slightly without changing the

intersection structure. Given a circle and a :set S such that

| si =n , we can label the end points of the chords in the following

way. We choose an arbitrary end point on the circle and label

it 11' , then we move clockwise along the circle and label

each end point by the next , integer until the starting point

is reached. In this way the end points are numbered from 1

to 2n , each chord is represented by the two numbers on its
end points. For each c h o r d ,we order its representing pair

such that the smaller number comes first. We then sort the

n ordered pairs thus obtained on their first component.
The chords are now represented by the ordered set of pairs

S=<<x1 ,y1>,<x2 ,y2>,..,<xn ,yn>> where for lsisn-1 x x x ^ ,
and x.<y- for liisn. We rename the chords so that c^ is the 

i i ~
cttord which, is represented by ln s *

For each chord =1 , a set E(c.) is defined as follows, 

E( c i)={c,|x:j>xi and cj intersects c ^  .

Front this definition we have,
c.eE.(c1) iff x 1<xj<y1 <yj.. '(2-10)

Consider the set E(ci)uci . Let X± and be the sets of - ' . 
first components and second components respectively , of all 
chords in E t c ^ .  The graph B, ( X ^ Y ^ E  (c .) uc.) is a bipartite 

graph where each vertex in X. is adjacent to exactly one 
vertex in Y v  We can find a maximum set of intersecting edges 

in B 1( by using a similar technique to the one used for the 
connection board problem. Clearly,two edges ^ y ^ a n d ' < x k ,yk>
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intersect in iff (.x̂ -x̂ ,) >°* Assume that the chords

in E[c^)uCj, are arranged in ascending order according to their 

first component. Let be the sequence of second components

of these chords , then a maximum set of intersecting edges in 

corresponds to a LAS in .

Example 2.,9
Consider the set of chords of Fig 2.5 . After numbering 

the end points and sorting we obtain the ordered set
S= <l#14>,<2,ll>;<3,8>z<4,10>,<5,13>,<6,12>,<7f16>,<9,15> .

The chord c3=<3,8> defines the set (arranged in ascending order) 
E (c-h ijc3= <3 , 8> , <4 ,10> ,<5,13> , <6,12> r< 7 ,16> .

Y 3=<8,10,13,12,16> , a . LAS in Y 3 is <8,10,13,16> .

Therefore a maximum set of intersecting edges in B3 is. 

{•$3,8>,<4,10>Z< 5 Z13> ,<7,16>>

Figure 2.5

Consider a maximum clique C in S where |C |-k t and let 

C=<c. ,c. , * ,c. > be obtained from C by ordering ;its chordsx i in iii.
as previously shown, The. set E ( c . )u c . contains all the chords

1 1
of C , therefore C forms a maximum set of intersecting edges

in the bipartite graph B^ (xi '̂ i '^(c^ )uc^ ). This implies
1 1 1  1 1

that the sequence <yj ,yj ,•* ,yx > is a LAS in Y. » We
xX 2 k

are new'in a position to describe the following algorithm

i-»na .



for finding a maximum clique in S.

ALGORITHM 2.4

We assume that the set S is given as n pairs of distinct 

integers between 1 and 2n.
Step 1 : Order each pair so' that its smaller member comes first

Step 2 : Arrange the pairs in ascending order according to
their first component to obtain the-'ordered-’set S..

Step 3 : Given the set S= <xi'yi> ,<x2 ,̂ 2> '' * ,<xn ,-t'n> '

for isi<n-l form a list as follows;

(a) the first element in L^is <xjL #

(b) for j=itlyi+2f.♦,n ,
add the pair < x ,,y .> to L, iff it satisfies (2.10).3 3 1

Step 4 : ' For laian-l find a LAS in- of the list L ± ,
the longest LAS found.defines a maximum clique .of S. □

Example 2.10
Consider the set S of the previous example. The lists L i 

which are formed in Step 3 and the LAS in are:

L 1=<1,14>,<7*16>,<9,15>; LAS in Y 1=<14,16>
L 2=<2,11>,<5,13>;<6,12>,<7,l6>,<9fl5>;" " Y2=<1I,13,16>

L 3=<3,8> <4fl0>;<5,13>,<6,l2>,<7,16>; " " Y 3=< 8 ,10#13,16>
L 4=<4,10>><5,13>,<6,12>,<7,16>,<9^15>?" " Y4=<10,13,16>

L 5=<5,13>,<7,16>,<9,15>; " " Y5-<13,16>

L6^<6,12> ̂ <7,16> ,<9,15>; " " Yg=<12,16>
, 16>; " "
Since Y 3 has the longest LAS,We conclude that the chords 

{<3,8 > ,<4,10>,<5,13>,<7,16>) form a maximum clique in S.□
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Running-time
We compute upper bb'Qnds on the number*, of elementary operations

made-in each step of Algorithm 2.4.
Step 1 : n comparisons and interchanges.
Step 2 : Since the first components are integers between 1

and 2n, we can use radix sort which requires 0(n)

elementary operations.
Step 3 : When the list is formed , n-i chords must be checked

to find out if they satisfy.condition (2.,10). Each 

check requires 3 comparisons , therefore a total of 

3 (2 ) comparisons are made in this step.

Step 4 : Finding a LAS in a list of length n , requires about

Li =n-i , the total number ofnlg2n steps . Since
steps required for finding the LAS's in all lists ,is 

n
bounde . by .Ihilg.i =S (n) . By using Euler-Maclaurln's 1— J. 6
formula ,

S(n)= 0.72n2lg2n - 0.36n2 + 0(nlg2n).

We concludes that the total numoer of steps required by
2Algorithm 2.4 grows as n lg2n.

2.8 A GENERALIZATION OF A THEOREM BY ERDOS AND SZEKERF.S

The concept of a ‘permutation graph can be generalized to thau 

of a permutation hypergraph in the following way. Given a 

permutation ft on the set N , the hypergraph H^(n) has the 
vertex set N and edge set E'. An edge E^fcE iff (a) |e^ -k+1 f and 
itei-elements form a descending subsequence in It , or (b) |Ê |=1 and 

Lts element is not in any descending subsequence of length k+1
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in n . From this definition it follows that H 1 (n) is the 

permutation graph defined by H . I t  may be interesting to 

investigate the possible applications of hypergraphs in the 
study of subsequences in permutations. One attempt in this direction

is given in this section.
Following Greene 0.83. , we denote by d^Ol) the length of 

the longest subsequence in II which does not contain an ascending

subsequence of length k+1 , similarly, (H) denotes the length

of the longest subsequence in H which does not contain a 
descending subsequence of length k+1. Using this notation , (IT) 
and a1 (H) stand for the lengths of the LDS and LAS in H respectively 

A  famous theorem of Erdos and Szekeres [3] states that

d 1 (n)»a1 (n)> n (2.11)

where n is the order of H . There are many known proofs of
this theorem (see [63 ,C193 for example ) , it can also be derived

using the fact that d^(%) and a^(Il) are the lengths of the first 

column and first row in the SYT of H ''(as proved by Schensted [23). 
Our purpose here is to prove the following generalization of (2.11).

Theorem 2.2 Let It be a permutation of order n , then

ak (n) ►rd1 (E) |a n _ (2.12)
k j

We shall need the next lemma in the proof.

Lemma 2.6 Let X(Hk (II) ) be the chromatic number of HK (n) * then

x(Hk (n), = ̂ > r (2 .13,

Proof By definition,the chromatic number of a hypergraph is 

the smallest number of colours which are required to c .our

its Vertices such that no edge With E^ >1 tfhas all its
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vertices assigned the same colour. Since each set of k+1 

vertices which appear in the T,DS of n form an edge of E,

X(Hk (n) )a dl (II) (2.14)

In order to prove the inequality in the other direction, 

we construct a chromatic decomposition of the vertices of Hk (H) by a 

generalization of Schensted1s algorithm of Chapter 2.

Given %= <PX ,P2 / • • •/Pn > / a set of r queues Q 1 »Q2 f f Q r

are formed from H ' ollows;

1) is inserted into Q -̂ ,
2) Assume Q 1 ,Q2 ,.. ,Qi were formed from P 1 ,P2 ,.• /Pj-i ' then

p. is attached to the first queue such that p^ does not
form a descending subsequence of length k+1 tith its elements.

If no such queue exists, Pj starts a new queue Q i+1-

Clearly , this procedure provides an r colouration of H^dl), 

since the elements of each queue do not form an edge E ^ E  of 
cardinality greater than 1. Assume that the last queue contains 
a descending subsequence of length in (m5k) . Then II must contain 

a descending subsequence of length £- where A=(r-l)k+m. The 

following inequalities are then satisfied,

d1 (n)5 5,

Rill(II) a r & x(H. (n)) . (2.15)
; “ I F i

A set of vertices in a hypergraph H is stable if it does 

not contain a n ‘edge E , with 'e  . >1. The stability number of H 

p(H) is the cardinality of the maximum stable set in H.
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The following inequality is proved in [15, pp. 429]. 

Lemma 2.7 In a hypergraph H of order n

3 (If) X (H) an . □ (2.16)

Proof of Theorem 2.2 By our definitions the maximum stable 

set in Hk (H) corresponds to the longest subsequence in H 

which does not contain a descending subsequence of length k+1. 

Hence ,
3(Hk (n))=ak (n) . (2.17)

By substituting (2.13) and (2.17) into (2.16) our result is 

proved. □
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CHAPTER THREE 

PERMUTATIONS WHICH ARE SORTABLE WITH A STACK 

3.1 INTRODUCTION

Given a permutation H=<p-L,P2 »• /Pn > and an empty stack, 

the elements of H can be passed through the stack using two 

elementary operations coded 'S - and 1X 1. The operation S 

denotes ' put the next element of n on top of stack and X
stands for 1 transfer the element on top of stack to the output .

A sequence L of the above mentioned operations , is called a 

valid operation sequence (or simply an operation sequence) iff 

(1) all elements of H are transferred to the output and (2) the 

operation 'X' is never specified when the stack is empty. 
Conditions (1) and (2) imply that an operation sequence must 

consist of 2n operations , n of each kind, the number of X 
operations may never exceed the number of 'S 1 operations when

L is scanned from left to right.
We denote by L(H) the output permutation which results

from passing It through a stack . For example if n=<l,3,2, 4> 
and L=<S„X,S,X,S,S,X,X> then L(n)=<l,3,4,2> . A permutation 

E is sorfcable with a stack iff there exists an operation 

sequence L such that L (It) — < 1,2,. • *n> , it is realizable

with a stack iff an operation sequence R exists such that

R (<1,2,..,n>)= H.
We denote by SSn the class of permutations of order n

which are sortable with a stackfand by SRn the class of
permutations of. the same order which are realizable with

a stack. Those two classes are related as follows,
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HeSSn iff n"1eSRn . . (3-1)
The class SR is characterized by Knuth 14, pp 239] by

the following theorem,
Theorem 3.1 The permutation ]!=<?•,_fP2 ' • • 'Pn> a member of SRn

iff does not contain a subsequence

<Pi /Pj fPk > such that Pi>Pk>Pj • (3l2)
From this theorem and the relation (3.1) we obtain a characterization

of SSn as follows,
Theorem 3.1* TIeSSn iff it does not contain a subsequence

<pi ,Pj ,Pk> such that p j>pi>pk • (3,3)

There is a well-known one-to-one correspondence between 

the class SS^ (or SR^) and the class of binary trees of n 

n o d e s [4, pp 329], This correspondence serves as a basis to many 
of the results obtained here , it is therefore presented in 

Section 3.2 and proved in a different method to the one which 
is found in the literature. In section 3.3 , a new characterization 

of 5Sn is given in terms of inversion tables , this is utilized 

in the next chapter for generating and indexing binary trees.
In the rest of the chapter,we study some more properties 

of stack sortable permutations such as; runs, readings , standard
Young tableaux and associated permutation graphs. In particular,

surprisingly simple expressions are obtained for the expected 

length of the LAS in a random permutation in SSn , and for 

the number of involutions in this class.
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. 3.2 A CORRESPONDENCE BETWEEN SS^ AND BINARY TREES

Two binary trees T and T ' are similar (T-T') if they have 

the same * shape1 f formally f they both have the" same number 
c nodes,with the left subtree of T similar to the left subtree 

of T 1 and the same holds true for right subtrees. For a node 

j in T , we denote by LT (j) and RT (j) the left and right

subtrees of j respectively.
A permutati n n= <Pj_ ,P2 / • • ̂ Pn ^ can be mapped into a labelled 

binary tree using the following well known construction.

Construetion-T
We start initially with an empty tree T.' For convenience, 

we shall call the nodes of T by the labels from H which 

are assigned to them.

Given H = <pj ,P2 f • • • 'Pn*1' assl9ri P% ^’ne ro°^ ^%ee T; 
for each pk , k=2,3,...,n, apply the rule —  if Pk is to be 
inserted into a non-empty subtree rooted by p^, it must be 

on the left subtree of p i iff Pk < p^, otherwise pR must 
appear to the right of p^ —  until en empty subtree is reached, 

and then create a root to that subtree and assign the label 

pk to it.

We denote by T the tree into which H is mapped by 
Construction-T . For a node pk in T _ ,Construction—T assigns 

labels smaller than pkto nodes of (Pk ) an(i bigger than Pk

to nodes of R̂ , (pk ) . such a labe.l ling scheme of a binary tree 
is said to have the SLBR (Small to the Left Big to the Right) 

property*
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Lemma 3.1 There is exactly one SLBR labelling scheme of a 
. , binary tree T of order n with the set N— {1 ,,2 ,. , ,n } .

—i
Proof We can draw the tree T ,using a line of length 2 

units to connect a node in level i with a node in level i+1 

(the root is considered in level 0). We then project the 

nodes of T on a horizontal line L as shown in Fig 3.1. Let i 

be a node of T and i its corresponding projection point on L. 

From obvious geometrical considerations, the members of L^(i) 

and R (i) have their projection points on the left and on
A

the right of i respectively (no two nodes are projected on

the same point in L ) . . . .  .
All the possible labellings of T can be obtained by- 

assigning a permutation on N to the projection points, then 
copying the numbers from the points of L to the corresponding 

nodes in T. Assume that the permutation IfL is assigned to 

the projection points and let <j be an inversion in It̂ .

This will give rise to a labelling of T with one of the following 

situations;

(a) jeLT (i) ,
(b) j and i belong to a subtree rooted by k where jeL^(k) 

and ieR^(k).
In both cases this labelling does not have.the SLBR property. 

Hence ,only the identity permutation <1,2,..,n> will produce 

a SLBR labelling of T. D
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Given a binary tree T , we can construct H such that 

T=T^' by the following recursive procedure:
1) Assign a SLBR labelling to T as shown in Lemma 3.1.

Let the label at t.ie root of T be p^.
2) The first element of H is p -̂ , the labels of a root Pk

and its two subtrees (p̂ ,) and are written in H

in the order (pjJ ,R,r 'p^) > •
It is easy to prove by induction on the order of T that H thus 

formed does not' contain a subsequence (3.3) and . therefore 

HeSS furthermore'for two non-similar trees T and T' , their 

respective permutations H and H ' satisfy H?!!'.
The one-to-one correspondence between SSn and the class 

of binary trees of order n will be shown by proving the ̂ converse 

of the above statement. We. need ..the following lemma.
Lemma 3.2 Letu be the SR inversion-table of

n such that Jiessn , then for a node labelled k in

V.'
Proof we show that the elements which are counted by b% are 
exactly the ones which are inserted into L ^ ( k )  by Construction-T. 

Clearly, only an element j such that j<k and jeL^k) can.-be inserted 

into L,r (k) , If no such element exists in II then bk=0 and the 
subtree^L™. (k) is empty. Assume b^>0. Since nessft, all elements

TT iin L (k) are either bigger or smaller than both k and j r any
7t

other possibility will create a subsequence (3/3) in H . Therefore, 

application of Rule 1 will force j to be inserted into the 
same subtrees as k , finally j must be compared with k and 

since j<k it follows that ]GL^ (k). D
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Theorem 3.2 Let H,n'sSSn , -then if H*n' it follows that
Proof Given the tree T , the SR inversion-table of H

can be formed by writing noxt to each node the size of its 
left subtree , then copying those numbers to the corresponding 

projection points • of on L . Suppose T^T^, , then this

will imply that n and II ' have identical SR inversion-tables

thus contradicting H * n ' .

3.3 THE INVERSION-TABLES

In this section we show a Characterization of the members
Of SS in terms of their BR inversion-tables. n
Theorem 3. 3 The entries of the BR inversion-table • ‘" '^n^

of the permutation II=<p1 ,P2 / • • »P> satisfy: 

buabu^^ for is isn-1 , (3.4)

iff neSSn .
Proof Assume that R^SS^, by Theorem 3.1,It contains a subsequence

p j>pi>pk ancl i<3<k *, (3.5)

We choose p^ to be the rightmost' element in*r which can be 

a member of such a subsequence; in other words there is no 

element in (pk ) which is smaller than p^. Let there be m 

elements in \  (Pr ) ( m can be zero). All elements in R1T (Pk ) 
are greater than both p^ and pk by the choice of Pk , therefore 

we have in the inversion-table of It

Bpiibpk '

But PjfiR^ (p^) -Rir (p^) , affd SO Pj is counted only in b^

the following inequality holds ;
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Therefore (3.4) does not h o l d .
Conversely , let be ah inversion-table of

H=<P1 fP2 '••'Pn> ^or (3.4) is not satisfied. We will show
that II has an occurrence of a subsequence (3.3) .

Since condition (3.4) is not satisfied we must have two 

entries b% and b jl+1 such that b ^ b ^ .  By the definition of 
a BR inversion-table AeR^U+1) and there is at least one element 

between SL and A+l in II which is greater than U l .  Call this 
element g. Then ,the three elements .<&+!,g,&> form the desired 

subsequence (3.3) in H . D

Remark : In [20] Knott proves that the BL inversion-table of 

jl , satisfies b^-b^+ ^<2 iff HeSSn . This is 
equivalent to Theorem 3.3 since the BL inversion-table 

of n is equal to the vector subtraction of its BR 

inversion-table from the vector <n-l,n-2,..,0 >,

The proof i n [ 20]is longer and employs induction, it 

was brought to my attention after this work has been 

completed Independently.

Sequences <b^ ,b^ ,. . ,b^> which satisfy (a,) b i^bi+1 
and (b) b ^ n - i  , may be called ballot-sequences since they 
ate directly related to the classical ballot problem 114 ,pp53.VJ. It 

follows from Theorem 3.3 that the BR inversion-table of members 

of SS is a brllot-sequence, our next theorem shows a connectionn i
between the sequence of operations L which sorts a permutation 

II Of SSn and its BR inversion-table. The proof is based on 
the natural correspondence between ballot-sequences and laitice-

paths.
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Consider the lattice-diagram in Fig 3.2 . We assign the 
weight i to the line that joins the points (i,j) and (i,j+U• 
The set of paths from (o,n) to (n,0) which pass through points 
(i,j) where i+j<n and consist of unit steps from left to right 
or downwards f are in one-to-one correspondence with the set 
of ballot-sequences of length n , with respect to the sequence 
of weights in

Example 3.1

Theorem 3.4

'Xllustration
from the' inversion-table B=<:3,2 ,1,1,0> of the permutation 
II=<4,1,2,3,5> . Reading P as described in the theorem will. 
produce*:" -* L =<S,S,X,S,X^SfX,X,S,X> , since L(II) =<1,2 >.. ,n> 
it follows that L-L .
Proof We construct the sequence of differences D=<d1 ,d2 ,..,d^>

from B such ‘that ’•
d^-n-b-^ and for 2iisn d^=b^_^-b^ .

In P , d1 counts the number of vertical steps preceding the

%

the path.

figure 3.2

13Let B=<b. ,b0 ,. .£>_,> be the BR inversion-tablej. 6 il
of neSSn and let P be its corresponding lattice-- 
path. The operation sequence L can be constructed 
by reading P from left to right denoting each 
vertical step by 'S' and horizontal step by 1X' . 
In Example 3.1: , the lattice-path P is constructed
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first horizontal step ,for 2£i<n counts the number of

vertical steps between the i-lst and i horizontal steps.

We prove our theorem by showing:

(a) L begins with d, 'S' operations,
s t • tin(b) there are 'S' operations between the i-1 and i

'X' operations in L . Here we have two cases, ( D d ^ O  and (2) d i>0

Proofs of (a) and (b) : '■#

(a) By the definitions of D and B , d^ gives the position of 
the integer 1 in H , therefore sorting H with a stack requires 

that d 1 elements are 1 pushed into the stack before 1 can 

be removed from stack to the output.
(%) Case 1 ; d ^ O  => b ^ ^ b i  => ici^ti-l) , therefore no
'S' operations are required between the removal of i-1 and i

from the stack during the sorting process.
Case 2 ; d i> o ‘-> icR^(i-l) , in this case d̂. counts the

elements which are greater than i-1 in (i-1)-R^(i). These 
elements are exactly the ones which are pushed into the stack 

between the removal of i-1 and i to the output. Hence , also
,  c« t

in this case L has d^ 'S' operations between the i-1 and 

ith 1x' operations. 0

3.4 MONOTONIC SUBSEQUBMCEvS IN MEMBERS OF SS^ AND THEIR
RELATION TO THE CORRESPONDING BINARY TREE

The first theorem in this section places IIeSSn in a unique 

position,with respect to its LDS and LAS, among all other 
permutations which are mapped by Construction-T into a tree 

similar to T^ .

x



52 ,

Theorem 3.5 Let T be a binary tree of n nodes and G={n0/H 1 ,.. ,11̂ } 

the set of all permutations such that T^_=T for 

OsisS, , 3,At d i and a^ denote the lengths of the LDS 

and LAS in JI^G. Without loss of generality we assume 

that no eSSn . We then have

dg^dj and a0Sai for •

The proof is based on the following algorithm which gradually 

rearranges the elements of where l6i<& until is obtained,

V7e first define a procedure called BT which is employed by this 

algorithm.
Procedure BT 'Given an ordered set' of distinct elements

P=<P 1 /P2:' • • where k>2 ;
■BT1 : create two ordered sets P 2 and P 3 where p=:p]_UI?2uP3 '

such that P 1={p:i} , P 2={pi !pieP and and
P_=(d . I p .e P and p . > p J  . The order of elements in 3 " j J 1
P 2 and P 3 is consistent with their order in P.

BT2 : Place the sets created in Step 1 in the order
<Pi , (P2) , (P3)> enclosing Set..in brackets only

if it contains more than two elements.

ALGORITHM 3.1 Initially a permutation IT _ enclosed in brackets

is given.
Step 1 : Apply BT from left to right on every set enclosed

in brackets,then delete those brackets. 1 
Step 2 : If no set created in Step 1 has more than two elements

stop, else go to step 1.

Example 3.2
Let n-<4,2,6,3,8,9,7,l,5> , we give the sets which are

created after each application of Step 1.
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Initially 

Pass 1 
Pass 2 

Pass 3

Lemma 3.3

(2) if S=<s1 ,s2 ,.,,sn > is the permutation obtained 

after the algorithm terminates,then S=H0 .

Proof Let P=<p^,P2 / • • /Pn > ,̂e an input sequence to procedure BT 
and P its output (brackets are disregarded). Then , Tp and T-

have the same root p^ , the elements of P 2 are inserted into

''both Lm (pn) and LT_ (p, ) and those of P 3 into RT and RT_
p p P P

By definition we then have Tp=T- , furthermore when T- is produced

by Cons true t ion-T from P , L,p_(p^) is completed before Rip_ (p^)

is started.
In the ith pass of the algorithm , procedure BT creates

sets which form left and right subtrees of roots at level i-1

in T . Therefore the algorithm can have no more than k passes 
IT

and (1) is proved.
Consider the permutation S , since it was obtained by applications

of BT to sets that form subtrees in T^, it follows that Tg=T^.

Suppose that S/SS , Then S contains a subsequence

s . >s . >s. and i<j<k ,3 X K
This implies that • when„Ts •. is produced by Construction-T from S, 

there exists a root s^ ( possibly 8^=3^) such that sj is inserted
into R,̂  (s^) before s^ is inserted into LT (s^) . This is impossible

: (4,2,6,3,8,9,7,1/5)
: 4, (2,3,1) , (6,8,9,7,5)

: 4,2,1,3,6,5,(8,9,7)
: 4,2,1,3,6,5,8,7,9 0

Let HcG-tHg} be the input to Algorithm 3.1. Then, 

(1) Step 1 is performed no more than k times,where 

k is the height of T^ ,
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by the definition of BT and Algorithm 3.1. We therefore conclude 

that S gS'S and by the one-to-one correspondence of Section 3.2

s = n 0  . □

Proof of Theorem 3.5 Let lT^eG-{nQ} and let <p^,Pj> be a 

non-inversion pair in We apply Algorithm 3.1 to • By
the nature of this .algorithm, p.. cannot be moved to the left 
of p., hence all the non-inversions in n . are also non-inversionsX JL
in the final permutation S=IIq  •

Let A=<p. ,p. ,..,p. > be a LAS in R . (r=a.), then all
1 1 2 r

the (g) non-inversions defined by A" are present in J[q / therefore

aA sa. . On the other hand , let D=<s. ,s. ,..,s. > be a LDSO r  i1 i2 iq
in n0 (q=dg) , then since Algorithm 3.1 does not form any 

new inversions it follows that D is also a descending subsequence 

in n^ and d ^ d y .  □

We now demonstrate a connection between the LDS in 

TIeSSn and the traversal of Tir in symmetric order. Traversal
methods of binary trees can be classified according to the sequence

in which a root and its two subtrees are visited, in the symmetric

order the sequence is; (l) left subtree (2) root
(3) right subtree . It follows from the construction of Lemma 3.1, 

that given a tree T ' with its SLBR labelling , the labels 
of T listed in their symmetric order will form an ascending sequence. 

In [4,pp 3173 Knuth gives an algorithm for traversing a binary 

tree in symmetric order using a stack. For reference,we first 

present Algorithm 3.2 which is basically equivalent to Knuth's 

algorithm, then the following theorem is proved.
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Theorem 3.6 Let T be a given binary tree and let HeSS such

that T =T, then the maximum depth of stack achieved 7T
during the traversal of T by Algorithm>3.2 -

is equal to the length of the LDS in H .

ALGORITHM 3.2 Given a labelled binary tree T , T is traversed
and the labels are listed in symmetric order. The 

following notations are used : ST- top of stack,

RS(L) and LS(L)- right and left son respectively
of the node in L (nodes are called by their labels). 
Let T be a leftx subtree of a dummy root called c o . 

Step 1 (Initialize) : Set L=CQ.
Step 2 (Insert into stack): Set ST=L.
Step 3 (Check for left son): If LS(L) does hot exist go to Step 5.

Step 4 : Set L-LS(L), go to Step 2.
Step 5 (Remove top of stack): Set OUT=ST
Step 6 (Check for end ): If 0UT=0O stop, else write OUT on output.

Step 7 (Check for right son): If RS(OUT) exists set L=RS(OUT)
and go to Step 2, else go to Step 5. D

Proof of Theorem 3.6 We observe that the sequence of insertions 

(Step 2) and removals (Step 5) from stack,made by Algorithm 3.2 

while traversing T , is equivalent to the sequence of operations 
needed to sort H with a stack (we ignore the insertion of CO 
to the stack). Therefore it is sufficient to prove that the 
maximum depth of stack achieved while sorting H is equal to

the length of its L D S •
Let d -<d , ,d, ,. , ,dj > be a LDS in IT. Since no memberif ±2

of D can be removed from the stack before d ^ r t h e  stack must 

have at least & entries.
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Conversely, assume that in one stage of the sotting process

m  entries of the stack are occupied where m>&. Let

be the elements present in the stack at that stage ,then B is

a descending subsequence in R , a contradiction to the definition

of D. 0 
Remarks
(1) Considering all binary trees of n nodes equally probable, empirical 

results for the expected maximal depth of stack achieved by 

Algorithm 3.2, show agreement with'/jTn-l. 6 [4,Ex 11,pp 329 ] .

By Theorem 3.6, this is also the expected length of the LDS 
in a random permutation in SS^. It is interesting to compare 

' '■ this value with the corresponding result (2 /n) observed in 
[7] for ordinary permutations.

(2) A sequence of numbers S can be sorted by a method called 
Tree insertion Sort [16,pg 428] as follows;
Stage 1 : map S into a binary tree T using Construction-T,

Stage 2 ;“traverse T^ using Algorithm 3.2.

By theorems 3.5 and 3.6 , it follows that the number

of storage locations needed for the stack in Stage 2, is

bounded by the length of the LDS ip,S. |

3.5 THE SORTING OPERATION-SEQUENCE

Definitions ' - -
(1) Given a permutation 11= ̂  ,p2 ,. < ,Pn > , a descending run m  

ft is a sequence of successive elements P i ' P i + V  • ,pi+k 

such that P i_ 1<P i>Pi+i> •••>Pi+k<pi+k+l 

. (2) The-permutation II has k readings if k scans of n from 
left to right are required to read off all its elements

such that ;
(a) each scan reads off the maximum number of elements 

which appear in II in their natural order,
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(b) call the sequence of elements read off in the 

ith scan Rjy then R 1 has the integer 1 as its 

first element , the first element in Ri+1 is 

greater by 1 than the last element of R^.

(3) A composition of a whole number n into m parts is a

vector C=<c,,c0 ,..,c > such that c .>0 for isi^m and Z =n.
X 4 III -L x^l

Following[21] > a composition C of n can be represented 

as a zig-zag graph, this graph contains m rows with c^ 

dots in the i ^  row, for i>1 the first dot in the i row
is written under the last dot in row i-1. Given a composition

C , we obtain its conjugate composition C=<c^,c2 , • • 
such that for ISisn+l-m , c^ is equal to the number of 
dots in the ith column (from left) of the zig-zag graph of C, 
For example let C = < 3 ,2,4 ,1> be a composition of the integer 10.

The zig-zag graph of C is ...

_ ,  •
therefore C = < 1 ,1,2,2,1,1,2>

(4) Given a permutation TleSS^ , let L be the Sequence of operations

which sorts H with a stack. Scanning L from left to right ,

we call each sequence Of consecutive 'S' operatic: an S-group

and such a sequence of operations an X-group. Clearly,

the number of X-groups is equal to the number of S-groups, 
two S-groups are separated by an X-group and vice versa.
The S-specifIcation and the X-specification of L are vectors 

<S;L,s2 ,. . ,s%> and <x1,x2 ,. . ,xjl> respectively, where for 
IdiaA Sj, denotes the size of the ith S-group and x̂,

4- Vsthe size of the i X-group.

N
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Theorem 3.7 Let n=<p1 ,p2 ,..,pn >eSSn have a sorting sequence 

of operations L , then
(1) L has the S-specification <s^,s2 ,•.,s^> iff 

IT has I consecutive descending runs where the 

size of the i*'*1 run is s ^ ,

(2) L has the X-specification <Xj,x2 ,..,x^> iff 

nR=<Pn /Pn_ 3 ,.•,p1> has & readings where the 
size of Ft is x^.

Illustration Let n = < 9 ,3,2,1/8,5,4,7,6,10> . The descending

runs in IT from left to right are ;

<9,3,2,1>,<8,5,4> ,<7,6>,<10> .

The readings of n R  are ;
R 1=<1,2,3> , R 2=<4,5> , R3=<6,7,8,9> R 4=<10> .

The sorting sequence of It is ;
L=<S,S,S,S,X,X,X,S,S,S/X,X,S,S,X,XfX,X,S,X>.

Its S-specification is <4,3,2,1> and the X-specification <3 ,2 ,4,!>.D

Proof of Theorem 3.7 (1) We put next to each 'S' and 'X' operation

the element of It which it puts or removes .from stack.

Case (a) : p^ and Pj_+ j_ are in the same descending run <=>

Pi> p i+1 <=> S(p^) is followed immediately by S(p^+1) <=>
S(pu) and S(Pj+1) belong to the same S-group,

Case (b) : p^ and p^+^ are in different runs <=> <->

X(Pj_) appears in L between S(p^) and S (p̂ .,.̂ ) •

We Conclude that for each descending run in H ,we have a corresponding 

S-group which contains as many 'S' operations as elements in 

this run.
(2) Each X-group in L removes a maximum number of elements 
from stack which are stored in their reverse natural order*
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thFurthermore , if the last element removed by the i X-group

is p . , the i+lSt X-group will start by removing p^ where
t hp .= p ,+1 and p.eR^(p^). Hence , by definition^the i X-group 

removes from stack exactly the elements of R^ in It . D

Theorem 3.8 Let n 6SSn ,then the number of descending runs in

n is equal to the length of its LAS.
Proof Let A = < a . ,a. ,..,a. > be a LAS in H and let D 1 ,D2 ,..,Dk
— ---  11 12 A
be its descending runs. Since no two members of A can belong 

to the same descending run,we have k&&. Let •D=<d1 *d2 ,..,dk> 

be a subsequence of n such that for l^i^k d^ is the last 

element in D ± . We now show that D is an ascending subsequence. 

Suppose that for two successive elements in D we have djL>di+i» 
since d i and d i+1 are in different runs we must have an element 

deDi+l and The three elements d t& i and d i+1 appear

in n in the order <d1 ,d,du i > and they satisfy

d>di>di+l *
This contradicts UeSS . Therefore D is an ascending subsequence 

in n and ka&, We conclude that k-Jl and D is a LAS in II . D

Let ii and HRF be two members of SSn (not necessarily

distinct) such that their corresponding trees T^ and Tir_  are 

reflections of each other about the vertical axis, in Lemma 3.4 
we show an interesting relation between the operation-sequences

L and L Rp which sort H and 11RF with a stack. This relation

is then utilized in deriving a simple expression for the expected 

length of the LAS in members of SS^.
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Lemma 3.4 Let . ,xk> and XRp~ < x ^ . ,x^> be the

X-speclfications of L and LRp respectively. Then the

vectors XR=<xk ,xk-;L,. . ,x1> (the reverse of X) and

X n are conjugate compositions of n.RF
Illustration Consider the permutations n=<6,3,2,1,4,5,8,7> 

and Hrf=s<3 ,l/2,6,5,4,7/8>. The corresponding binary trees 

are shown in Fig 3,3 (a) and (b) respectively.
The X-specification of L is X=<3,1,2,2> and XR= < 2 ,2,1,3>

The zig-zag graph of XR is .. and therefore its conjugate

is XR=<1,2,3,1,1> , we then have XR= x ^ .

8

(b)

Figure 3.3

Proof A binary tree is traversed in reverse synmetric order if 

a root and its two subtrees are visited in the order (1) right 

subtree (2) root (3) left subtree . We observe that the operations 

which are required in order to traverse in reverse symnstric

order are equivalent to those necessary for traversing T^ RF
in symmetric order< Therefore L and I Rp specify the stack 
operations for traversing T in symmetric and reverse syntnetric 

order respectively, For two consecutive labels i and i-1 we 

can have (a) i<R^ (i-1) or (b) i-leii^.(i) . While traversing 

T^ in synmetric order , (a) implies that d, must be stacked after 

i-1 is written on output and therefore X(i-l) and X(i) are 
in different x-groups ,(b) implies that i is present in stack
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when i-1 is written ,hence X(i) and X(i-l) are in the same
X"group. It is easy to see that in the reverse symmetric order

traversal of we have exactly the converse, i.e. the labels

i and i-1 are written on output by the same X-group in LRF

in case (a) and by different X-groups in case (b) .
( . thWe can represent X as a zig-zag graph in which the i

th “row contains the elements written by the i X-group in L*
By the above argument , it follows that the 1 X-group in L Rp

will write out elements of the i ^  column in this graph,where
counting starts from the rightmost colhmn. For example in the

above illustration the graph is 123 and the X-grOups of
4
56
78

write out < 8 > ,<7,6 > ,<5,4,3 > ,<2>,<1> , where brackets
R

enclose elements of the same X-group Therefore X and XRF 

are conjugate compositions and k=n+l-m . D

Theorem 3.9 The expected length of the LAS in a random

permutation in SSn is ntl .

Proof We define a1 mapping RF:SS^»SS^ such that HeSSn is 
mapped into n by RF. Suppose that the length of the LAS 
in It is equal to k. By Theorems 3.7 and 3.8 this is also the 
number of components in the S-specification and X-specification 

of the sorting sequence L. From Lemma 3.4 »the length of the 
LAS in il is n+l-k. Since RF is a one-to-one correspondence

our result follows. D



3:6 PROPERTIES OF THE PERMUTATION GRAPHS ASSOCIATED WITH SS^

Definition
Let p=<v1 ,V2 ,..,vk> be a path in the graph G, P has. a. 

triangular chord if for some index i ( lsisk-2) v ^ - g - v ^ .

Theorem 3.10 Let G be a permutation graph with |v|=n. Then
the following conditions are equivalent;

(1) at least one of the labellings of G with
N, gives rise to a defining permutation IteSSn ,

(2) G does not contain a path of length 3 without

a triangular chord.
Proof (1)=> (2) ; Let G(N) be the graph which is obtained by

labelling G with N/such that IIeSSn is its defining permutation. 

Suppose that G(N) contains a path P=<i,'j,k,&> without a triangular 

chord. There are two possible transitive orientations of P.,

(a) i<-j, j+k,k*& and (b) i+j,j^k and k+A . This implies that

either
<i,k,j> With k>i>j or <],&,k> with &>]>k (3.8)

are subsequences in H # thus contradicting IteSS^*
(2)-> (1); We show that G which satisfies condition (2) can be 

transitively oriented without using Rule 1 of Algorithm 1. .

This implies that for every three vertices x,y and z such that 

x— y , y_g_z and x-^-z we assign directions x<-y and y yz. (3.9) 

Clearly , the defining permutation which results from such 
an orientation is a member of SSn irrespective of the orientation

Q
assigned to the edges of G .

Let G 1 ,G2 ,..,Gk be subgraphs of G such that G^=G and
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for isisk-l Gi+1 is obtained from by removing the edges 
which were oriented by the pass of Algorithm 1.1 , (G^ -=-s empty) .

We prove our theorem by showing;
(a) if Algorithm l.i is forced to use Rule 1 in the i pass

then G^ violates condition (2),

(b) if G i violates condition (2) so does G^_^.

Proofs of (a) and (b).
(a) If G^ is a union of disjoint complete graphs then neither rules 

are used , otherwise we can find a vertex b such that
a b,c -b and a-y^-c ve then start the pass by orienting a+bGi G^ G ̂
and c+b. Assume that we have to switch from Rule 2 to Rule 1 

during this pass. This implies that we have three vertices

e ,£ and g in Gi such that
e+f , f-p-g and e-^-g . ' (3.IP)

i i. since this is the first switch,e+f was oriented by Rule 2.
Therefore there is a vertex d in G^ where

e->-d and d— f . (3.11)
By (3.10) and (3.11) it follows that the path <d,e,f,g> in G.,

does not contain a triangular chord.
(b) Let P=<q,r,s,t> be a path without a triangular chord in G^.

• s t
Then P had at most one triangular chord in , since the.i-1
pass can orient only edges with a common end point. Without

loss of generality , let this chord be q.p— S and assume it
i-1

Was directed q-t-s • Then a Vertex U must exist m  where __

S4-U and q--̂ — u (as shown in -.'Fig 3.4) * (3.12)
From the fact that s— t (and was not removed after the i-1 pass) 

we have
Gi

tp-— U and tp— q 
G i-1 i“ l

Figure 3.4

(3.13)

By (3.12) and (3.13) it follows that P'=<u,t,q,r> is a path 

without a triangular chord in G^_^. In a similar way, the
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assumption that the chord g g - s  was directed s+g will also
±“1

lead to a violation of condition (2) in G ^ .  □

Theorem 3.11 Let G(N) be a permutation graph which has n

as its defining permutation. Let c i'C 2'**'Ck 
be the cliques of G where s^ is the smallest 

label in Then iff i*j=>s.zs. .

Proof Let C i and be two distinct cliques in G(N), suppose

s^=Sj=&. There must be two vertices and cycCj such that

c c .. Let n=max(c. ,o.) and m=min(ci ,c.) . We then have
i G(N) ] x J

<TU,n,l> as a subsequence in H , and since n>m>& = >n/SS^.

Conversely, assume that %/SS^ , let <c1 'c2 'c3> be a .
forbidden subsequence (3,3) in IT , We choose c^ to be the
smallest element in H which can join such a subsequence with

Ci and eg. Since , c^ and c% belong to two different
cliques and respectively, c3 is adjacent to both c1

and c2 and therefore c3eCjf'C j •
Assume that c ^ s .  , then a transitive orientation in G(N)u X

from high to low gives,
Cg+Si (both in the same clique)

/Therefore <Ci,C2 ,Si>is also a forbidden subsequence in H,ih
contradiction to the minimality of Cg. Similarly cig>sj gives 

rise to the forbidden subsequence <c 1 'c2 ''sj> ’ Hence Cl^i^^j" 0

Remarks -      • - - • — ---
(1) By Theorem 3.11,it follows that if HcSS^ is a defining permutation

" of a graph G ( N ) , then G(N) can have nr more than n cliques.

This could also be proved from the first part Of Theorem 3.10

since condition (2) of the theorem implies that G is
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chordal[22],It is well known that a chordal graph can have

no more than n cliques
(2) Since each clique in G(N) corresponds to a maximal descending 

subsequence in its defining permutation It, Theorem 3.11 

can also be stated in terms of descending subsequences.
We call the last element in a maximal descending subsequence 
its end point.The following theorem is equivalent to Theorem 3.11, 

Theorem 3.11* Let It be' a permutation on the set N. Then 
HeSSn iff no element in II is an end point 
of more than one maximal descending subsequence

in II.

3.7 STANDARD YOUNG TABLEAUX

Given a sequence of distinct elements II, let D (II) be a 

subsequence of II which is constructed from the last elements 

of the descending runs in II (as shown in the proof of Theorem 3.8). 

We can construct a progression of sequences 11̂  ,H2 ,.. ,nk m  the 

following way. Let ^^=11 , for 2£isk D(II^W )̂ and

nk=D(Itk ) . In words ,the sequence 11̂  is a subsequence of 
which is obtained by eliminating the elements of D(ni_1) from
II . The next theorem provides a simple method for constructing 
i~ 1

the SYT of IUSSn .

Theorem 3.12 Let II be a stack sortable sequence , then the 
jth row in the SYT of II is equal to D(It^) .

Illustration
Let II=<2,1,6,3,5,4> . Then D(H)=<1,3,4> , n2=<2,6,5>,
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D (II2 ) =<2, 5> , n 3=<6> and D(n3)=<6>. Let S (IT) be the SYT of H.

Then S (IT) = 1 3 4 
2 5 
6

Proof We use induction on the length of H. It is easy to verify 

the correctness of the theorem for sequences of length 2 , assume 

that it holds for sequences of length k<n . Let II be a stack- 

sortable sequence of length n. Let H' be the sequence of elements 
which are bumped from the first row of S(H) during its construction, 

such that elements appear in IT' in the sume order in which they 
were bumped. It is well known that rows 2,3',.. of S (H) form

a SYT which is equal to S (H1) [16,pp 54].
We now show that the elements of D^IT) (ith run in IT) go 

into the ith column in the first row of S(TI). This is clearly 

true for D,(Il)* let & be the first index such that yeD^II) 
goes into the jth column,where j<A and s ^ x .  Then x>y and
X6L (y). Since x and y belong to two different runs,there is 

an element z between x and y in : such that z>x. Then : contains 
a subsequence <x,z,y> with z>x>y , a contradiction. Therefore, 
the first row of 5(11) consists of the elements of D (IT) . Furthermore 

the sequence of bumped elements IT1 is equal to n-D(II)=II2 . Since 

n 2 is a subsequence of It it is sortable with a stack > our 
result follows by applying the induction hypothesis to $(n2>. 0

Given a valid sequence of operations L , another valid 

sequence can be obtained by reading L from right to left, 

replacing 'X' by 'S' and vice versa* We denote the sequence 
thus constructed by Lq * and call the sequences L and .uq conjugate 
operation sequences. Two conjugate operation sequences correspond 

to the two modes in which a lattice-path (as in Fig 3*2 ) can 

be read*
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Theorem 3.13 Let L and L c be two conjugate operation sequences
of length 2n, and let H and Hc be the members
of SSn which are sorted by those sequences respectively.

Then S(II) and S(nc ) have the same shape.
Illustration Consider the permutation It - < 2 ,1,6,3 *5 , 4> of

the previous illustration . Its sorting sequence is;
L=<S,S,X,X,S,S,X,S,S,X,X,X> , l g =< s ,S,S,X,X,S,X,X,S,S,X,X>

It =<4,2,1,3,6,5> and S(nc )= 1 3  5 which has the same shape 
C 2 6

4

as son in that illustration.
Proof The proof is by induction on the length of L. The theorem 

holds trivially for sequences of length 4.• Assume correctness 
for k< 2n.Since L and Lc have the same number of X-groups (or 

S-groups) it follows by theorems 3.7 and 3.12 that the first 

rows in S(It) and S (H^) have an equal length.
Let II1 be the sequence of bumped elements in S (It) (as in

Theorem 3.12)and let L* be the sequence which sorts IT with 

a stack. Then L can be obtained from L by eliminating the last 

'S' in each S-group and the first 'X' in each X-aioup, since 

those are the operations which put and remc't crom ..tack the 

last elements of runs in 11. Let It 'G be the ouence of bumped 

elements in S(%G ) then its sorting sequence L c can be 
obtained from Lc in the same way as L was obtained from L.

Now , each last 'S' in an S-groUp and first 'X' in an X-group 

of L , correspond to a first 'X' and last 'S' in X-groups
— ^ * j] ” *and S-groups of LG respectively. Hence , L and L c are

conjugate operation sequences, by the induction hypothesis S (It ) 

and S (II'C ) have the same shape. □



3.8 THE NUMBER OF INVOLUTIONS IN SS^

It is well known[16] that a permutation is an involution 

iff it does not contain a cycle with more than two elements.
Using this fact , we prove in Lemma 3.5 that the set of involutions 

in SSn is equal to SS^flSRn . A simple expression for the cardinality 
of this set is then calculated in Theorem 3.14.

Lemma 3.5 Let n e S S n  , then n  is an involution iff n e S S rf ) S R n  

Proof The 'only i f  part follows directly from the definitions.

We prove the ' i f  part by showing that a permutation which is 
a non-involution must contain at least one of the subsequences

(3.2) or (3.3) , therefore it is not a member of SS^ISR^.
Let H be a non-involution , then II contains a cycle of 

length ks3. Let this cycle be [a^»^ *4 where a^ is the 
smallest element in this cycle. We can arrange the elements 

of the cycle according to their original order in f i n  the 
following way. First we sort the cycle into ascending order, 

then write under each element its right successor in the cycle, 
the second line thus obtained forms a subsequence of It . For 

example if H contains the cycle [1,4,3,6,5] then the above

operations will give 1 3 4 5 6 
4 6 3 1 5

and <4,6 ,3,1,5>io a subsequence

of II (a^ is considered to be the right successor of a^) .

We distinguish between two cases:
Case 1 ; a2 <a3 . Let k=3 , then after sorting the cycle we get

al a2 a3 and <& 2 '£l3 ,ai> forms a subsequence (3*3) in H * 
a2 a3 a2 ’
Assume that k>3. We sort the cycle by placing a2 on the right
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of a^, then inserting the elements a)<'a)<-i7 ■ * f a3 one one 
into their correct positions. We write under each element its 

right successor when it is inserted. If a]̂ >a2 ^ en ak 
inserted on the right of a2 and we get the same result as in 

the case k = 3 , a^ playing,the role of a3 . Assume that a^<ag.

We insert ak_i'ak - 2 ' "  into their positions until an element 
ak_i is found such that ak_ i>a2 , the existence of such an element 

is guaranteed since a 3>a2 . The element ak_^+ -̂ is smaller than 
a2 , hence after inserting ak_^ we have the following configuration

’ ak“i4'l* ’1 ,a2 ak-i 
' ak-i+2 a3 ak-i+l

(3.14)

and <a2fa3 ,ak_ i+1> forins a subsequence (3.3) in n  •

Case 2 ; a2>a3 . If k=3 we have the configuration al a3 a2 
a2 al a3

after sorting the cycle,and <a2 ,a^,a3> forms a subsequence (3.2) 

in jl. Assume k>3. If ak <a2 obtain the same subsequence,
we therefore consider the case ak>a2 . We use the same procedure 

as in Case 1, this time we search for the first element ak-i 

such that ak-i+l>a2 and ak-j <a2 * We then haVe t l̂e configuration
(3.15)ai ak-i * 2 " :  'ak-i+l' *

a2 ak-i+l * 3 " '  ' ak‘-i+2 ‘
and ,<a2 ,ak_i+i /a3> is a subsequence (3.3 ) in ft. Cl

n^xTheorem 3.14 The number of involutions in SSft is equal to 2 ,
n-XProof By Lemma 3.5 ,we have to show that there are 2 

permutations of length n which do not contain subsequences

(3.2) or (3,3) . A permutation 'lIeSSrP s R n can be characterized 

by the following property of its maximal descending subsequences
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Let D=<d. ,d ,..,d. > be a maximal descending subsequence 
11 2 1k

in a permutation II of order n, then iff 'for isj<k-l,
d. =d. +1 (elements of D appear in reverse natural order). (3.16)

Proof ;
Clearly every permutation which satisfies condition (3.16)

is a member of SS^T) SR^ , since each of the forbidden subsequences

(3.2) and (3.3) have at least one pair of elements which

belong to a descending subsequence and are not in reverse natural

order. We now show that - if any violations of condition (3.16)

occur in II tuen n/SS^DSR^.
Suppose that for some index m , (ismsk-l) d. ^d. +1. Let

m m+l
d . ' +!=&. Then I can not appear between d, and d, in H ,

m+1 m m+1
since it is not a member of D. Therefore one of the two sub­

sequences <&,d. ,d. > or. <d. ,d. ,&> must appear in
^m 1m+l ^m m+1

II , thus contradicting ReSS^lSR^.
For each permutation IleSS^QSR^, we can generate two permutations 

and II of order n+1 as follows;
(a) generate by inserting n+1 one position to the left of 

n in H ,

(b) generate H by putting n+1 after the rightmost element 

in H .
Clearly , condition (3.16) is not violated in IÎ  and 

thus generated. Furthermore , inserting n+1 in any other position 

of H , generates a maximal descending subsequence ( with n+1 
as its first element) which does not satisfy condition (3.15). 

.Therefore and IÎ  belong to ssn 4,2f'SRn+j-‘ Since all the elements 
of SSn+]n s R n+1 are generated in this way, we have

lssn+ in s R h.al!=2 lssnr|s!fnl ‘ (3-17)
Our result follows from the fact that SSgOSR^ contains 4 elements , 

namely, <1,2,3>,<1,3,2>,<2,1,3>,<3,2,1> . □

. Kin"- ■‘i ' -'1'   ""

m i r  n w iM M iM ra B i *



3.9 THE AVERAGE NUMBER OF INVERSIONS

Theorem 3.15 The average number of inversions in a random

permutation of SS^ is

1( 4n - 3n -1) .
5  5 n

p roof Let i(H) denote the number of inversions in a permutation 

II and int(T) the internal path length of the tree T.
The sum of sizes of all subtrees in a binary tree (or any 

other tree ) is equal to int(T). This follows from the fact 
that in a tree T , the distance of vertex i from the root is 
equal to the number of subtrees in which i participates.

Let <s1 ,s2 ,...,sn> be the SR inversion-table of a 

permutation neSSn , then by definition

£ s, = i(lT) . (3.18)
1=1

By Lemma 3.2 , i(H) is the sum of sizes of all left sub­

trees in T^ . Hence,by the symmetry of left and right

subtrees

Z int (T ) = 21 i(It) . (3.19)
nessn iussn

The value of the left member of (3.19) is given in [4, pp 404] 

as
t int(T ) - 4n-(3n+l)Cn , (3.2Q)

nessn
from which the result follows . q

It is interesting -to note that on the average a random permutation

of SS contains ofn1 *5) inversions, whereas the corresponding
n 2 

value for a random permutation of order n is 0 (n ).
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AN ALGORITHM FOR GENERATING AND INDEXING BINARY TREES

4.1 INTRODUCTION

In this chapter we describe an algorithm which generates all 

#s h a p e s o f  n--noded binary trees. Such algorithms are used in 

investigating and comparing various deletion schemes in binary 
trees [20 ] and can be effectively employed for systematic gene­

ration of combinatorial objects which are in 1-1 correspondence 

With such trees [23,pp '154 ] .

The algorithm is based on a correspondence between binary trees 

and the class SS^ of stack-sortable permutations, together with 
a representation of such permutations as ballot-sentiences (Theorem 3.3) 

Initially, a ballot-sequence of length n is generated. This is 

then used to construct a binary tree. It is shc'm that if a 
ballot-sequence is an inversion table of HeSS , then the algorithm 
generates T^# Thus , by generating all ba1lot-sequehces o f .

length n , all Cn binary trees of n nodes are obtained. ’
*«. ’

A unique integer , num^(B), between 1 and Gn , is associated with 

each ballot-sequence B of length n , by using some combinatorial 

properties of such sequences. The lexicographic order is preserved 
by this association , "hambly , for any two ballot-sequences B and 

B* , if B precedes B ’ then numn (B)<num^(B1). v

A simple recursion relation , is used both in computing num^(B) 

from a given B , and its inverse numn ^(m) from a given integer ' 
This provides the capability of storing a binary tree of 

n nodes as an integer smaller than , as well as efficient

generation of a random binary tree.
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Definitions
Given a binary tree T , one of the following relations 

can hold between two adjacent nodes i and j in T ;

(a) iLSj (i is the left son of j).

(b) iRSj (i is the right son of j).

(c) iRE; (jRSi) .
(d) iLFj (jLSi).

h path <aQ , , . . . , a^> between nodes U and k in 'I1, where ay =

and a. “ k , is denoted by PT (u,k), It can be characterized 
as a product of relations ^l* a2' ' * * a'l where a^ is the 
relation between a^_^and a^ in the path. Two paths ,PT (u,k)= 

a-̂ * (*2 * / • • # * ot ̂ and Rrp (r # s ) —oi11 ^ ' 2 * * r * ® ® inn lar/iff

for -IsisS, , a . = a ' . . Similarity between two binary trees can ' * 1 1
be now defined in terms of paths as follows; two binary trees 

T and T 1 with the roots r and r 1 respectively , are similar, 

if there is a one-to-one correspondence between their nodes, 

such that if U£T corresponds to u'eT’ ,then PT (r,u)=PT ,(r',u')• 

This definition is used in the proof of Theorem 4.1, it is easy 

to check that it is equivalent to the definition which was given 

in Section 3.2.

4.2 GENERATION

To'-simplify the presentation,the generation of the ballot- 
sequence ; and the construction of the binary tree , are given 

sepefately in two procedures. Procedure BALLOT generates the 

next ballot-sequence from the previous one in an array B , and 

then calls procedure TREE to construct the corresponding binary 
t r e e , Semi-formal descriptions with some explanatory notes are 

given below*
/
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ALGORITHM 4.1 (BALLOT)

The application of this procedure will generate all 

ballot-sequences of length n in B, in their lexicographic order, 

where the rightmost digit is the most significant one. Note that 

by definition BCn] is always 0, and the values of an entry B[i] 
range from B[i+1] up to n-i. The algorithm is optimal in the 

sense that the new sequence is generated by setting only those 

entries which differ from the previous o n e '- ,

s t e p  1 : Set BCn]=q.

Step 2 : 2.1 : Set BCn-l3=BCn3.
2.2 : Set B[n-2]=BCn-13.

2.h-1:Set B[1]=B[23.

2.n :Set m=l.
■ step 3 : ( The next ballot-sequence is ready in B) Call , TRLE*

Step 4 s Set B[m3^B[m3+l • If BCm3>n-m go to Step 6.
Step 5 : If m^l go to Step 2 * n-(m-1) else go to Step 3*

Step 6 : Set m=mtl . If m-n stop , else go to Step 4. □
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TREE ->■-informal-description

Given a ballot-sequence in B , we create its difference- 

sequence in the array D,as shown in the proof of Theorem 3.4.

By the definitions of D and B , it follows that for Isisn,

D[i]kO , and DC1]+DC2]+,..,+DCn3=n.
The array D is scanned from DC 13 to DCn] , and a portion 

of the tree is constructed as each entry is processed , as 

described below. During the construction, the nodes are labelled 

from 1 to n in symmetric order.'This labelling may be required in 

some cases, and it also serves in proving the validity of the 
algorithm , it can be omitted if we are only concerned with 
the 'shape' of the tree. The algorithm also uses a stack.

Initially,a pointer P points to a dummy root labelled 0 , and

in general,? always points to a node labelled i-1 when dCi]

is processed. We distinguish between two cases;

case 1 - DCi3>0: Let DCi3 = j , then j new nodes are created

g l ,g2 ' * * ,9j sUch that (i-])RFg1 and for !<&&]-! g^LFg^-j.* 
Each node is pushed into the stack after it is created, 
finally, the last node g^ is removed from the stack and 

the label i is assigned to it (all the Other nodes are 
not labelled at this stage). The pointer P now points to 

the node i. Thus, the path P^(i-l,i) is constructed, and

it has the following 1 shape1 ,

Figure 4.1

i-1

ooo
o

o
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case 2 - DCi]=0:- The node on top of stack is removed and assigned 

the label i , again , P now points to i.
In this w a y ,all the entries of D are processed to obtain 

a’ labelled binary tree of n nodes. If only the 1 shape1 matters, 

we may stop even earlier, 1 after i n nodes are generated. Finally, 

the dummy root is removed and P points to its right son.

'ALGORITHM - 4.1 (TREE) ‘ _
Initially, P points to a dummy root," ST Is the top of an empty stack.

Step 1 ■ : Set D[l]= n-B[l] , and for 2si<n set D[i]=B[i-l]-B[i].

Set i=l.
Step 2 : Assign the label i-1 to the node which is indicated

by P. v
Step 3 : Set j=D[i] . if j=0 go to Step 7.
Step 4 Create a node as a right son of the node indicated

by P, place the new node in ST.

Step 5 : Set j=j-l. If j=0 go to Step 7.
Step 6 : Create a node as the left son of the node which is in

ST , place the new node in ST , then go to Step 5 *

Step 7 : If i=n go to Step 10 .

Step 8 : Set 1=1+1 .
Step 9 : Set P to point at the node in S T , remove that node

from ST , then go to .Step 2.
Step 10 : Assign the label h to the node in ST. Remove the

dummy root , and let P point to its right son, then 

stop. G

As an example,all binary trees of order 4 are shown 

in Figure 4.2 in their order of generation.
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Theorem 4.1 Let n ‘SSn have an inversion-table B . Then TREE
constructs from B a binary tree Tfa , such that Tb=T7r .

1̂ .  . For convenience let the number 0 be added to H as its

leftn^at member, and let us consider the generated tree with 
its dummy root. We have to prove that (O.i) for Isisn.

First "let us show that P <i-l.i>-PT U-l-i) the WhOT
i-! is to the left of i in H. According to the construction 
o' T , any element between i and 1-1 which is smaller than i-1 
w i U n o t  appear on the path PT (i-l.i>. Therefore .consider 
G=<g  .... gj=i> . the subsequence of all elements greater than

i-1 which appear between them in B. If G is t - v i a U y
a decreasing subsequence . For j>2 , suppose that G is non- 
decreasing , then we can find two elements gk<g, with k<! , and 

this in turn implies that n contains a subsequence

5 l<9k<gj=:i' and k<l<:’ 
which would contradict the fact that n £SSn (Theorem 3.1*) -Thus  ̂

c is always decreasing. Therefore P (i-l.D will have the 'shape 
shown in Figure 4.1,which is also the 'shape' of ^ ( i - l . D  -

' by definition j=D[i] •

The proof now proceeds by induction on i. As a special case 

p (0,1)=PT (0,1)• Assume that

^ m  " (4-2)PT (0,i-l)=P% (0,1-1) .

When i-1 is to the left of i in H , then p ^ d - l . D - P ^ J 1- ! . ^  •
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This together with the induction hypothesis^-2) gives the desired 

s result. When i-1 is to the right of i in If, we need to show that 

node i is placed at corresponding points on the paths fr 0 to
1-1 by both constructions. Clearly, in T^, i-1 is the ri* .cmost node 
in the left subtree of i. Namely , the path PT (i-l,D has the shape

TT
given in Figure 4. 3, Note that in this case D[i]=0 . Therefore i 

is assigned to the node on top of stack, which is the last one 
generated before i-l^and having a left son. This observation combined

w i t h (4.2) completes the p r o o f .
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' 4.3 INDEXING BINARY TREES

To store a binary tree T as an integer, we need to know its 
index with, respect to the generation scheme of procedure TREE. 
This can be achieved by solving the following two problems:
i) find the ballot-sequence B which is the inversion-table 

of H e SSn , such that T^ = T,
ii) find the number numn (B), of ballot-sequencee of length n 

which precede B.'in the lexicographic order of procedure

BALLOT.
We shall later see that the difference-sequence D is generated 

in the solution of both problems as an intermediary step, and 

‘therefore B does not need to be explicitly derived. However, 

to simplify the presentation we shall solve both problems as 

posed. The solution to the first one is an algorithm Which 
is the inverse of procedure TREE, and will be illustrated by 
an example. Consider the tree T given in Figure 4.4 . T is 

traversed in symmetric order, and the number of new nodes which 

are pushed into the stack before the removal of the i'th node 

from it is recorded as D[i]. This results in the sequence 
D = <2,0,3,0,1>0,1,1> which in fact is the difference-sequence 

of the ballot-sequence corresponding to T. Hence, we find 
B = <6,6,3,3,2,2,1,0>, ' • The justification of this
algorithm uses the same arguments as in the proof of Theorem .4*1.

Figure 4.4

A.
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We now turn to the problem of finding numn (B) for a given 

ballot-dequence. Let be the set of all ballot-sequences 

of order n , with exactly k non-zero digits,, A sequence

Will be called a unit-sequenca if its k non-zero digits, are. all .■ 

equal to 1.

Lemma .4 .1
1 for k=0 (4*3a)

Snkl l S ( n - l ) k l + lSn ( k - l ) I  fo r  0<k£n- 1 -3b'

0 for k=n (4.3c)

Proof The relations (4,3a). and (4.3c) follow directly from the 

definitions. To prove (4.3b) we first show that

lSn k h  /  , 0.4)1=1
• k
by constructing a correspondence between and J= [J s (n-1)i *
Given a sequence B=<b^,b2 f... ,bn >cSSn , v/e define B '=<b|,b2 /..
as follows ,

bj=b^-l for l<isk ,

b|=bi=0 for k<i^n-l , (4.5)

Clearly^ every member of Snj< is mapped by (45) into a unique member 
of J. Conversely , given any B'eJ , we can find the unique B e S ^  
associated with it using ,

b.=b!+l for IsiskX 1 »
b|=0 for k<isn . (4.6)

This correspondence implies (4,4) from which '43b) is readily derived. , □

In the sequel the subscript of 'hum' is omitted when it is applied 

to unit-sequences.
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Lemma_4.2 num(Unk)= Is (n+1) (k_i) I for 0<k<n . (4-7)

Proof By definition the sequence Unk is the first ballot-sequence

in the lexicographic which has k non-zero digits. Hence , the
sequences which precede Unk in this order , are exactly the ones

which have fewer than k non-zero digits. The number of such 
k-1 n

sequences is S |s ,| . The result now follows from (4.4-) . U 
1=0 ' nl

Theorem 4 .2 For a ballot-sequence B=<b1 ,b2 ,.. . ,bn> , let gi (-Isisb^ be 

the number of elements in B which are not smaller 

than i * Then i

nraV B)= num(u(n+l-i)g >• . ' (4,8)1—1 1
Proof The proof is by induction on the length of B. The result 

■is easily verified for sequences of length 2. Assume that it holds 

for ballot-sequences of length n-1. Let S(X) denote the set of 

sequences which are generated before X by procedure BALLOT.

Since B has g1 non-zero digits , it follows that S(B) can be 

partitioned into two disjoint sets S(Un g )̂ and S (B)-S(Ung^)= G. 

Therefore ,

numn (B) = | S (Un g )̂ l+|G|= num(Un g )̂ + |G| . , • . (4.9)

Consider the ballot-sequence B' of'length n-1 , which is obtained 

according to (4.5) . Using the mappings of (4.5) and (4,6) , a 1-1
correspondence between G and S(B') can easily be established. Hence,

numn (B)= num(Un g ^)+numn_1 (B’) . (4.10)

Let there be g| digits which are not smaller than i in B' , then
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b 1-l
n u m a _ i ( B ' ) =  Z ^ ( U ^ D g ,  . ( 4 , 1 2 )

by the construction of B ' and the induction hypothesis

gi=gi+l (4.1U
b,

3')= J
L«1 Vl 'L/yi

The result follows by substituting (i.11) and(4,12) into(4.10) . D

The two algorithms for computing nunv (B) from B and its inverse 
-Inumn (m) from an integer m<C^ , are both based on Theorem 4.2.

However , they are considerably simplified by observing that in 
the cliff ere nee-sequence D[l], . . , ,D[n] of B, an entry D[k] rep­

resents the number of times that g^ is equal to k-1. The entry

D[l]is irrelevant in both cases. For fast performance , the
algorithms make use of a pre-computed table T A B 'containing the values 

of num(tL ĵ.) l^isn and lsk5n-l , which can be computed directly
using the results of Lemmas 4.1 and 4.2

■r-'
, The first procedure, MUM, does not require any explanation since 
it is a straightforward application of (4.8) , The computation of 

the inverse in procedure 1NVNUM, is based on a'recursive applica­

tion of (4.10). Observe that in row n of TAB, num (Un „ ) is the
y 1 .

maximal value smaller than m. Similarly, in row n-1, nmn(U(n-l)g^) 

is the maximal element smaller than m-num(ung ) f ahd so on.
Thus, after num(U^) is found in row i, and subtracted from the 

argument, row 1-1 is searched for the index of the maximal unit'" 

sequence of order i-1. This process is continued until all the 
terms o f (4.8) are found. Note that in any row 1 of TAB, the 

first i-1 elements constitute a non-decreasing sequence suitable 

for binary search, and that this search can be restricted to 

fewer than i-1 elements since the g^s are non-increasing.
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ALGORITHM 4.2 (NUM)

Given the difference-sequence D of a ballot-sequence B , 

the algorithm computes the value of num^(B).

Step 1 : Set 1=0, set k=n ,set numn (B)=0.
Step 2 : If D[k]> 0 perform Step 4 Dl'k] times.
Step 3 : Set k=k-l. If k=l stop , else go to Step 2.

Step 4 : Set num^(B)= num^(B) + nura(u (n _i) (k-1) ̂ '
set 1=1+1. ^

ALGORITHM 4.3 (INVNUM)
Given an integer m<C^ , and the vector- D of1 n  entries, 

the difference-sequence of B=numn"1 (m) is constructed in D (D[ 13 

is not computed since it is not required fox the construction 

of B) .
Step 1 (Initialize): Set DCil = 0  for l^i^n, set i=n ,

set k=n-l , set ARG=m.

Step 2 : If ARG=0 stop ( the ballot-sequence B can nov; be 

constructed from D[2] ,DC,3],. . ,D[n]) .

Step 3 : Search in row i of TAB between* columns 1 and k, for 
the maximal element which is not greatef than ARG 

for -this purpose) .
Step 4 : Suppose that this element is found m  column j , 

set DCj+l3=DCj+l]+l , set k = j , 

set ARG=ARG-num(U^.).

Step 5 : Set i=i-l and go to Step 2. 0



Example

Given B=<5,3,1,1,0,0> find num6 (B). We first derive
D— <1,2,2,0,1,0> . Hence , by procedure NUM

num6 (B) = num (U64) tnum (U52) +num (U42) ‘,-num (u 3i^ 'l"num (U21)

= 48+5+4+1+1= 59.

Conversely , consider the construction of the ballot-sequence B 

of length 6 whose index is 86. In this case , five successive 
rows of the table (given below) containing the values of num(U^), 

are searched . The contents of array D after each search are

listed below.

i) The maximal element not exceeding 86 in row 6 is 48 , found

in column 4 , D=<0,0,0,0/1,0> .
ii) m=86~48=38 , the required number in row 5 is num(U^^)-28 ,

D=<0,0,0,0,2,0> . 
ill) m=38-28=10 , D = < 0 ,0,0,1,2 c0> .

iv) m=10-9=l t D-<0,1 /0 ,1 /2 ,0> .
v) m=l"-li=0 and no more searches are needed.

The required sequence B is constructed from D (in iv) es

B-<4,3,3,2,0/0> . Q

Table of the nuin (U^^) values
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4.4 COMPARATIVE EVALUATION

In this chapter , the approach taken for generating and 

indexing of all 'shapes' of binary trees , is based on a relation 

between such trees and ballot-sequences of the same order.

A different approach,based „ ,directly on stack-sortable'permutations

and Gonstruction-T , has been adopted by K n o t t [20] to solve the 

same problems. It may be, argued that the indexing we propose is 
not a natural one , while Knott uses the natural indexing [4 , pp 331] 

for binary trees. However , the suggested algorithms are con­

siderably more efficient than their counterparts in similar works 

known to the authors.

Jjet us first consider (a) Construction-T as opposed to (b) procedure

TREE. The actual creation of the nodes of the tree

is the same in both Cases . In creating the 1 shape* , it is well
known that (a) requires 0(n2) comparisons for worst case , and

0(nig2n) for best case. The amount of assignment statements have

similar bounds. In (b) , the extra memory space for n-1 pointers
which may have to be stacked is insignificant. Comparisons are

n
applied to the value j-DCi] , and since £ DCi] — n , it is clear

1=1
that exactly n comparisons are performed , while the number of

assignment statements is only 0(h). The superiority of (b) is
highlighted especially for those applications where all Cn 'shapes'

»need to be generated.

If the ^shape' of the tree is given , generating its corresponding 

permutation n or ballot-sequence B is straightforward and of
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equivalent complexity. However , if only the index of the tree 

is given , as in the case of random tree generation , the cost of 

procedure INVNUM is governed by the binary search which may require 
n

( [_lg2 (i"*l)j + 1 ) k2$0 (nlg2n)

comparisons between entries of a two dimensional array TAB and 

the argument m of the procedure. In addition there is a' fixed 

initial cost of 0(n ) additions in computing all the values in 

TAB , but this is insignificant since in many applications it is 
required to generate random trees in large numbers.

Similar algorithms for generating E '-from, a given index , rely on 

the definition of natural order among binary trees and the, well 
known recursion relation

''n+VjJo GjGn-j '

where G . is the number of distinct binary trees of order j . The J
relation between the complexities of the recursive procedure

given by Knott [20]for this purpose, and INVNUM seems to be

similar to the relation between Gonstruction-T and procedure TREE.

Finally, let us consider the case where k trees having

consecutive index numbers q,q+l,,..,q+k-l , are to be generated,
—  1

Using INVNUM , we find the sequence B=uiumn (q-1) . Then we apply
procedure BALLOT with a slight modification so that only k sequences

are generated , starting with the initial sequence B. Note that we_ 
compute a ballot-sequence from a given index only once, and each
consecutive sequence is generated from its predecessor at minimal 
cost. On the other hand, to generate k trees corresponding to consecu­

tive permutations would require the transformation of k indices, 
since there is no simple Way of deriving stack-sottable permutations 

in their order corresponding to the natural order of trees^
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CHAPTER FIVE
*

A CORRESPONDENCE BETWEEN BINARY TREES AND 2-PERMUTATIONS

5.1 INTRODUCTION

In this chapter we deal with the special case of permutations

which do not contain a descending subsequence of length three.

This class of permutations is called 2-permutations , and the
2set of 2-permutations of order n is denoted by Pn .

In [16, pp 64 ] , Knuth-proves that

|p2|= c^tn+ir1^”) . (5-D
The proof in employs an indirect method involving the 

enumerative theory of SYT. It is based on a correspondence of 

MacMahon [21, p p 130 3 between an SYT of shape <n,n> and a pair 

of S Y T 1s of order n which have the same shape and contain at 
most two rows. Knuth also states that " Curiously there seems 

to be no apparent way to establish a correspondence between 

such permutations and binary trees ...," , and compares this
situation to the direct correspondence which exists between the 

class SSn and binary trees of n nodes.

* some of the contents of this chapter were published by the author [241.
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5.2 THE CORRESPONDENCE

Let ]I=<p^,p2 ,. . . ,pn> be a permutation on the set N={1,2 ,. . ,n}, 

an element jrN is a left-to-right maximum in II , iff j>x for 
all x in (j). Let denote the set of all left-to-right
maxima in It, and let be the set of all oth~r elements of H .

Example 5.1
If I1=<3,4,2,6,1,5> , we have M =<3,4,6> and N^=<2,1,5>.

Since there is a descending subsequence 4>2>1 , IT is not a

2-permutation. □

The basis of the correspondence to be described here , is 

the following simple characterization of 2-permutations.

Lemma 5.1 H is a 2-permutation iff the elements of form 

an ascending subsequence in H . 
proof If n is not a 2-permutation , it contains a descending 

subsequence of length three ,
pi>pj>p^ and i<j<k . (5.2)

Then , both p^ and pk are members of and therefore

is not an ascending subsequence.
Conversely , suppose that is not an ascending sub­

sequence , then it contains two elements #
p , >pv and j <k . (5.3)3 x

By the definition of there is an element p^eLi[T(pj) such 

that p ,> p , . Hence , H Contains a subsequence (5.2) and itj- j
is not a 2-permutation. Q



90

2We now define a mapping from IIePn to an n-tuple of integers

B (H)=<b^,b2 ,...rbn > in the following w a y :

Mapping B

Let n=<p1 ,p2 ,...,pn > then
(1) bi=0 ;

(2) for 2si<n

Example 5.2

Given 1T=<1,4 ,2 ,3, 5> we construct B (ri) . In this case 

M Tr=<l,4,5> and N^=<2,3>;
b l=°

4eM7T=>b2=b^=0

2 e N u=>b3=2
3£N„=>b4=3
5eMn=>bg=b^=3.
Hence B ( H )-<o,0,2,3,3> . □

This mapping preserves the elements of and their relative
2position in II , therefore it follows that for ,

1 implies that B (H) ̂ B (II') .

Theorem 5.1 If il-<p^ rp 2 ,. . . ,pn>ep^ and B (It) =<b^,b2 ,. . i ^ b ^

(a) bi=b^_^ iff

(b) b i=p1 iff

is its corresponding n-tuple then

b^sbgS.* *Sbn ;
b^sj“l for j~l,2,.i,n (5.5)

(5.4)
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Proof

(1) Assume that (5.4) does not hold , then , for some index

j such that 1<j<n we have b j > b . By the rules of Mapping B

b jtl=Pj + leN7T (5.6)

b j~p £eNTf where £<j . (5.7)

But Pj2/>Pj+1 contradicts Lemma 5.1.

(2) Let j be the first index such that

• (5.8)

Then j>l . Since j is the first index for which (5.8) holds , 

it follows that . By Rule 2(a) of Mapping B ,

b :fPj gNtt ' . (5.9)

By the definition of , there exists an element p^ such 
that

p i>pj and pi eL7r(p:j) . (5.10)

All Pj-1 elements which are smaller than pj , must be 
members of L^(pj) . For if there is an element p^ such that

Pj^Pj and Pjl/ L7T(p.) , (5.11)

we can show a descending subsequence of length three in JT ,

Pi>Pj>p& and i<j<A . , (5.12)

From (5,10) and the contradiction of (5,12) , we find
that

I V ( P j ) h P j  f (5.13)
and from (5.8)

|L^(Pj)|5bj>j-l. (5,14)

This contradicts the fact that L ^ f p J  contains exactly j-l 

elements. Hehce (5.8) cannot hold and (5.5) is proved. □
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Given an n—tuple of integers B— ' *"*'^n^ which satisfies
(5.4) and (5.5) , the reversed sequence BR=<bn ,bn_1 ,...,b1> is

a ballot-sequence (as defined in Section 3.3). Hence , a

2-permutation is mapped into a reversed ballot-sequence by Mapping B. 

We now define Mapping T , which map's a reversed ballot-sequence 

into a 2-permutation. It is then proved that Mapping I is the 

inverse of Mapping B .

Mapping T
Given a reversed ballot-sequence B=<b^,b2f..,,bn> and 

n empty cells P i ^ 2  f * " * '^n ' sequence T(B) is constructed

as follows .

Step 1 : For l<j£n put all bj such that bj^bj.^ into

the corresponding empty cell P j .

Step 2 : Take all elements of {1,2,...,n) which do not

appear in B and put them in ascending order in 

the ncn-occupied cells. 0

Example 5.3

Given the reversed ballot-sequende B-<0,1,1,2,3,3,6,6>;

1 : 1 2 3

2 : 4 1 5 2 3 7 6 8

Hence T(B)-<4,1,5,2,3,7,6 *8> , 0
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Lemma 5.2 Given a reversed ballot-sequence B of" length n , then

T(B) gP^
Proof Since each of the integers {1,2,...,n } is inserted into 

the cells in one of the two steps , H=T(B) is a permutation

On {lf2/e m • / TlJ «
Assume that . Then it contains a descending

subsequence of length three S=<p^,Pjfp^> . At least two 
members of S are inserted into the cells in Step 1 or Step 2.
But in each step , the elements are inserted in ascending order. 

Therefore S cannot be a subsequence of IT . □

Lemma 5.3 Let B be a reversed ballot-sequence and n=T(B).

Then the k th cell is filled in Step 1 iff p%eN^ .
fchProof Let p^=j be inserted in Step 1 into the k cell f

r,e.
p^=j=b^=k-l . (5.15)

There are k-1 elements in L^(p^) but only j-1 integers which 

are smaller than p^ « Therefore there is at least one member 

in L1T (pk ) which is greater than pk , and pk cN^ .
Conversely , assume that there is ah element p^ in IT

such that puGN and p^ was inserted in Step 2. Then , an

element Pj exists in II where
PjCL.r (p, ) and pj>P%. (5.16)

Now , Pj was inserted in Step 1 because two elements which 

are inserted in the same step cannot form an inversion. By 

the first part of the lemma , p, must belong to thus
violating the fact that in a 2-pcrmutation,N^ is an ascending 

subsequence (Lemmas 5.1 and 5.2). □
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Theorem 5. 2 The mappi1- is T and B yield a one-to-one correspondence 

between reversed ballot sequences and 2 permutations.

Proof We show that B and T are inverses of each other.
2Let 11 ePn , and let B (II) be its corresponding n-tuple under

Mapping B„ By the definitions, every b^cB (II) such that
* thib^_^ is an element of , which appears in the i

position in H . Furthermore the elements of M appear in increasing

order within IT . Hence T (B (H)) = II , by the definition of
the Mapping T.

Conversely,let S be a reversed ballot-sequence such that 

H = T(S). Then B (H )= S by Lemma 5.3 and the definition of 

the Mapping B. q

By using T.heorems 5.2 and 3.3 , the required correspondence

between and binary trees is established.

5.3 PATTERNS IN PERMUTATIONS

Following Tarjan [13] , we say that a permutation H on 

N = { 1 ,2,,.,n) contains the pattern P=<p^,p2 ,../Pj> (ksn) 

where p is a permutation 6n{l,2,..,k) ,•if there is a 1-1 mapping 

♦ •from P to II such that <<£> (p^) ,4> (p2 ) r • - ,(t> (p^) >is a subsequence 
of li and p.<p^ iff ^ (p.) <4> (p .) .1  J  X  J

• In terms of this definition , we proved in the previous 

section that the number of permutations of order n which do 

not contain the pattern <2,3,1> is equal to the number of those 

which do not contain the pattern <3,2, 1>. By using the fact 

that 'tl contains P iff •• II ^ contains P ^ and ‘ contains P^,
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it follows that for any given permutation on {1,2,3} , the

number of permutations of order n which do not contain 'it as 
a pattern is (or the number of those which contain it is nj,-Cn )

The question is asked whether for any two permutations 

P and P ' of order k, the number of permutations of order n 

which contain P as a pattern is equal to those which contain 

P'. The many cases that were attempted by a computer 
support a positive answer , but no proof of this fact is known 

to the author. We conclude this chapter by proving the special 

case k=n-l .

Theorem 5.3 Given a permutation P of order n-1 , the number

of permutations of order n which contain P as 
1 oa pattern is n -2n+2.

Proof Let S(P) denote the set of permutations of length n Which 

contain the pattern P. We construct the sequence P 1 from P for 

l^isn , by adding 1 to all elements of P which are not smaller 

than i (Pn=P by this definition). It follows from the definitions 

that j,f H contains P 1 as a subsequence then IleS(P). It is 
easy to show that the converse is also true, namely , if IleS(P) 
it must contain at least one of P"1* ,P^,. . . ,Pn as a subsequence.
Fof, example , when fi-4 and P-<3,1,2> , P^=<4,2,3>,P^=<4,1,3>

and P =<4, 2> > the permutation #=<4,1,2,3> contains the - '
1 9  O

pattern.P , in this case P , P and P appear as subsequences*
iGiven a subsequence P =<p1 ,p2 f • • • for i>l, observe that?

1) P 1 does not contain the integer i ,

2) if pj=i-l then in P"1',P2 , t h e  integer i appears
t h

in the j position,
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3) there are n members of S(P) which contain P 1 , those
members can be generated by placing i'before p^, between 

and P i+1 .for.1=1,2,..,n-2 and after Pn„^ •

Let us generate the set S(P) in the following manner,

first , all permutations which contain P**" then those which

contain P and so on. Clearly , a permutation H' which is

generated from P 1 is a repetition of a previously generated
i 1permutation , iff H 1 contains P where i ’<i. Our purpose 

is to show that exactly two such repetitions occur during 

the’ above generation scheme for each P^ where i>l. But this

follows from observation 2 , since when i moves from left to
i i 'right while generating S(P) from P , a previous subsequence P

is formed when i assumes the position with respect to
Mthe elements of P ‘ . This can happen • "exactly when i is 

placed immediately to the left or to the right of py=i-l in 
P 1 .

1Since P introduces n new permutations of S(P) , and each 

of P^,P^,..,Pn only n-2 new permutations,

l'S(P) | = (n-l) (n-2) In = n^-2n+2 • 0
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CHAPTER SIX 

CONCLUSIONS

6.1 SUMMARY OF RESULTS

in’ this thesis we were concerned with the study of sub­

sequences in permutations. The research was motivated by 

applications in graph theoretic algorithms. However , following 

some initial work' , it was found that the relations of a graph 

to its representing permutation, may lead to combinatorial results 

on subsequences which are of interest in their own right.

A theorem of this nature can be found in Chapter 2 , where 

properties of hypergraphs were Used in generalizing a result 
concerning lengths of monotonic subsequences in a permutation.

In Chapter 3 , the class SS^ was studied from various aspects, 

such as average lengths of monotonic subsequences , average 

number of inversions , the number Of involutions and others.

Again , the correspondence of this class and n-noded binary 
trees was employed in many of the derivations. In particular, 

properties of binary trees such as symmetry between left and 

right subtrees , or the connection between sizes of subtrees 

and internal path length , played an important role in the 

proofs. It was also shown that the permutation graphs which 
correspond to members of SS^ , do not contain a path of length 

3 without a triangular chord.
In Chapter 5, it was proved that for any given permutation 

on {1,2,3} , the number of permutations of order n which
do not contain it as a pattern , is C^. This was shown by



establishing a one-to-one correspondence between SSn and per­

mutations of order n with no descending subsequence of length 

3. It was also conjectured that the above result can be generalized 

to patterns of order >. , for any ksn. A proof was given for

the special case k=n-l.

Some of the above mentioned results were implemented in 

algorithms. Those were shown to be faster than their counter­

parts which are based on other techniques.
The connection-board and dynamic storage allocation problems , 

were both formulated in terms of permutations on a multiset.

The solutions to both problems were then obtained by finding 
maximum monotonic subsequences in those permutations.

In the case of circle graphs , integer sequences ware produced 
for each vertex. It Was then proved that the longest ascending 

subsequence over all -Sequences thus produced , represented a 

maximum clique in the circle graph.
In Chapter 4 , algorithms for generating and indexing 

binary trees Were presented. The correspondence between SSn 

and n-noded binary trees, as well as a representation of 

members of SSn as ballot-seqUences, formed the basis of 

these algorithms.

6.2 PROBLEMS FOR FURTHER RESEARCH

The results obtained in this work , demonstrate the utility 

Of the approach of using graph theoretic representations 

for studying subsequences in permutations , and conversely , 

of applying results on such subsequences to tie construction 

of algorithms on graphs*
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Son.a specific problems for further investigation are:

(a) Given two permutations of order n , is there an efficient 

algorithm which decides whether they define isomorphic 

permutation graphs ?
(b) In chapter 4 , a method for coding a binary tree as an 

integer was given. It may be useful to find out which 

properties of a binary tree can be determined by mani­

pulations on its representing integer.

(c) Can the results of Chapter .5 concerning patterns in permu­

tations , be extended to any k<n ? It seems that the 

techniques which were used to prove the cases k=3 and 

k=n-l , are not applicable in the general case.

In general u might prove fruitful to consider whether 

additional problems which are intaractable on arbitrary graphs, 

can be solved in polynomial time on permutation graphs.
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