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ABSTRACT

The representation of some types of graphs as permutations,
is utilized in devising efficient algorithms on those graphs.
Maximum 'cliques in permutation graphs and circle graphs
are found, by searching for a longest ascending or descending
subsequence in their representing permutation.

The correspondence between n-noded binary trees and
the set 85 of stack-sortable permutations, forms the
pasis of an algorithm for generating and indexing such trees.

The-relations between a graph and its representing
permutation, are also employed 'in the proof of theorems
concerning properties of subsequences in this permutation.

In particular, expressions for the average lengéhs of the
longest ascending and descending subsequence, in a random
menber of SS,, and the average number of inversions in such
a permutation, are derived using properties of binary trees.
Finally, a correspondence between the set 55, and the set
of permutations of order n with no descending subsequence of

length 3, is demonstrated.
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CHAPTER ONE

- ‘ INTRODUCTION

1.1 A GENERAL OUTLINE OF THE RESEARCH

Graph theory provides a natural tool for modeling
and solving problems which involve a finite set of objects
v , and relationships between pairs of objects in V. 1In
practice , most applications which call for a graph theoretical
approach , require graphs of large size for their represen-
tation. The successful analysis of such graphs is dependent
on the availability of fast computers as well as efficient
graph theoret+zal algorithms. Such algorithms may be required,
for example, to determine whether a given graph possesses a
required property , or to construct all graphs or subgraphs
of a particular kind. The input graph for an algorithm ,
may be stored in many ways, the choice of a representation
method depends on the graph itself, and on the nature of éhe
operations which are performed on it by the algorithm -

In this thesis, we are concerned with some types of graphs
which lend themselves to a convenient representation by a
permutation ona set or multiset of integers. The existence
of a required property of the graph , can then be checked by
searching for a particular subsequence in the representing
permutation. Also, all distinct graphs with a certain property,
can be constructed by generating all their representing perm-
utations.

This approach , of reducing a grapﬁ theoretical problem

to a search for a pattern in a permutation, leads in many cases
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to algorithms which outperform their counterparts which are
based on other methods of representation such as adjacency
or incidence matrices.

In particular two types of graphs are considered;
(a) permutation graphs and graphs related to them,
A(b) binary trees.
In eitherlcase, theoretical results concerning subsequences
in the representing permutations are derived. These results
are further scrutinized for their practical algorithmic impli-
cations.

In Chapter 2 , we first deal with the problem of deciding
whether a given labelled graph is é permutation graph. In case
of a positive answer , its representing (defining) permutation
is econstructed. Next , some practical problems which are solved
in [17 by finding a maximum clique in a permutation graph,
are attacked here by constructing a representing permutation,
and then employing Schensted's algorithm for finding a longest
monotonic subsequence in.integer sequences[2] . A generalization
of this algorithm is given , whexeby all longest monotonic
subseguences can be generated , this can be ~used for obtaining
a set of alternative solutions to the problem.

A fagt algorithm for finding a maximum clique in a clrcle
graph is presented. In this case , a representing sequence 1s
produced for each vertex of the graph,and Schensted's algorithm
is then applied to each ohe of those seguences. In the last
section , a generalization of Erdos' £heorem [51 on moriotonic
subsequences is proved by extending the idea of permutation

graphs to permutation hypergraphs.
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The subject of Chapter 3 is +the class SSn of stack sortable

permutations of order n. Those permutations provide a useful
device for the representation of binary trees [ 4, pp: 329 1.
The behaviour of some types of subsequences in a member of

SSn , and their relation to the corresponding binary tree ,

are studied in detail. It is observed that members of SS

tend to be more 'ordered' than ordinary permutations in the
sense that on the -average they cantain less inversions , longer
maximum ascending subsequences and shorter maximum descending
subseguences,

. charac*erizations of SSn are given using permutation graphs
and inversion tables. The latter result is utilized in the

the algorithms of éhe next chapters '

In chapter 4 , algorithms for generating binary trees
and -indexing them in a systematic manner are presented. These
algorithms can be also used to generate a random binaty tree,
or store a binary tree of order n as an integer smaller than
Cn=(n+l)_l(2g). A comparative evaluation of thew algorithms
show that they are superior to similar algorithms which are
based on Knuﬁh'S*Cdj . watural order among binary trees.

In Chapter 5, a connection between the subsequences considerad
in Chapter 2 and those of Chapters 3 and 4 is puinted out by
demonstrating a direct correspondence between S8 and the set
of permutations of order n which do not contain a descending
subsequence of length 3. The problem of extending this result to
other types of subsequences ig also considefed;

The last chapter containg a sunmary of the main results
of -the thesis as well as some problems for further research

wiich are raised  but not answered by this work.
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1.2 PRELIMINARIES AND NOTATIONS

Let T=<p sPyse. /P> be a permutation on the set N={1,2,..,n}.

A descending subsequence of length k in [l satisfies,

P:> Py Yee>p, and i,<i,<...<i, . (1.1)
i, i, i 172 k

A descending subsequence is maximal in I if no element of I

can be added to it without violating its monotonicity. A longest

.

descending subsequence in I (LDS) contains the maximum number

of elements among all descunding subsequences in I . Wa get
the corresponding definitions for ascending subsequences by
replacing '>' with '<' in (1.1) , where LAS stands for 'longest
ascending subsegquence'. For jeN , we denote by Rﬂ(j) the set

of elements to the right of j in II , and by Ln(j) the set of
elements to the left of j in 1. Two elements Py and pj form
an inversion in I if (pi—pj)(i—j)<o . The SR (Small to the

Right) inversion-table of I , is a vector <bl’b2""bn> such

that for ls<isn bi counts, the number of elements in Rn(i) which
are smaller than i. In the same way,the SL (Small to the Left),
BR (Big to the Right) and BL (Big to the Left) inversion-table
of I is a vector whose ith entry counts the elements which
are related to i as indicated by its namé. It iz well-known,
that an inversion-table (no matter of which type) uniquely

determines its corresponding permutation, We denote by nt

1

the inverse permutation of T , if ="~ it is called an involution.

Example 1.1

Let Tn=<3,6,4,5,2,1» . Then <3,2,1> is a maximal descending
subsequence in I , <6,4,2,1> and <3,4 5> are a LDS and A LAS
respectively in II, Rﬂ(4)=<5,2,1> and LH(G) =<3>, The BR inversion-
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A Standard Young Tableau (sYT) of - 'shape’ <rl,r2,..,rm> ,

where for lsism-1l rini+l and rle , is an arrangement of

R DA RR distinct natural numbers in an array S={sij} where,
(1) S has m rows with ry elements in its ith YOW ;

(2) the elements in each row and each column of S form an

ascending sequence.

-e

Example 1.2 The following SYT has the 'shape’ <3,3,2,1>

4
7

OWANHhWPE
co Ut N

0

A sYT s(n), is. formed from a permutation I=<py Pyres 1Py

by the following construction due to Schensted [2],

Construction-S

For lsis<n , insert py into & as follows;

(1) Search in the first row of S for the first element (from the

left) which is greater than p,, 1 no such element exists place

P; at the end of the first row, else call the element found
a 'bumped element' and insert p, in its place.
(2) If a 'bumped element' is found, repeat the process of (1)

on the second row,where the 'bumped element ' plays the role of

Py .
(3) Repeat this process row by row until some 'bumped element'
is placed at the end of a row. 0

Let H=<6,3,l,2,5,4> , g is showed after each

Example 1.3

insertion;

6 3
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A graph G consists of a vertex set V and an edge éet E,
such that each edge in E is associated with two vertices in V

called its end points. We consider here only graphs which have

po'two edges with the same two end points (parallel edges), and
no edge for which its two end points are the same (self loop).
Two vertices are adjacent if they are the end points of the same
edge , this is denoted by vi—a—vj , otherwise they are non-.
adjacent denoted by vi—é~vj. The complement of G , denoted by
G® ; has the séme vertex set as G, two vertices are adjacent in

c

0] iff they are non-adjacent in G.

A set of vertices CgV , is completely connected if every

pair of i1ertices in C are adjacent. If no other vertices of V
can be added to C without violating this property, C is a

clique of G. A maximum clique 1s the one with the largest

number of vertices of all cliques.

The chromatic number of a graph is the minimal number of

colours needed to colcur its vertex set , such that no two
adjacent vertices are assigned the same colour. The set V

of a graph with a chromatic number m, can be partitioned into
m disjoint sets Vl,Vz,..,Vm each containing the vertices of

one of the m colours, such a partition is called a minimal

chromatic decomposition - of G

« A graph G is Y-perfect if the
size of its maximum clique is equal to its chromatic number,

A path of length k in G + 15 a sequence of edges e;se

such th | : ‘
at e; and €441 have a common end point, and no vertex is

21--rek ’
traversed more than once. A path is denoted by the sequence

of vertices on it <v0,vl,.i,vk> » in the order of their traversal,

R =Rt S

g i ¢ s




in

A direction can be assigned to the edge vi—-é—vj , this is

denoted by vi*vj . If all edges of G are assigned a direction,

it is called a digraph (directed graph). A digraph is transitive

if for vi,vj,vkev, the existence of vi—>vj and vj->vk implies

L VytVee A graph G is transitively orientable (TRO) , if it

is possible to orient all its édges such that its directed
image ¢ is transitive. We now present an algorithm given

[13 , which finds a transitive orientation of a given
graph G, if G is TRO , otherwise the alyorithm terminates

as soon as it detects that no transitive orientation exists.

We first define two rules which are used by the algorithm.

Rule 1 ; If vi+vj ' Vj’E"Vk and vi—é—vk assign
the direction v,+«v, .
3 k
Rule 2 ; If viﬂ/j i vj-—-é--vk and v.l—-é-vk assign
the direction v.+v,.
j ok
A contradiction can occur,if the application of one of the
rules requires that an edge which is already directed , must
be ascigned a different divectica. UThis is used by the followina

algorithm to detect graphs vhich are not TRO.
ALGORITLM 1.1

Step 1 : Choose an edge and direct it arbitrarily.
Step 2 : Use Rules 1l and 2 as long as they are applicable,
if a contradiction occurs , stop , G is not TRO.

Step 3 Delete all edges which were directed in Steps 1 or 2,

if no edges are left , stop , the graph is TRO .,
and & thus obtained is transitive , else go-to Step 1.0
Let G(N) be a graph which has its vertices labelled by the

set N . Then G(N) has a defining permutation with respect to

its labelling,if. there is a permutation I on N such that;j

iG(N). (vertices are called by their labels) iff

_ (L.2)
i and 4 form an inversion in I .

s s, 4 L

T o

ST N N T




8

‘

A graph G is a pvrmutation graph, if at least one of the

possible 1 bellirgs of its vertices with N , gives rise to a

defining permutation.

L)

Example 1.2° A permutation graph G,with two labellings and

their respective defining permutations , is shown in Fig 1l.l.

Figure 1.1l ‘ ‘ %

t

.‘_,... - . -~4 ‘e - ’
Hl=<31214'5’l> n2=<2I4I3I5I1> 0

|
The next theorem of [1l] demonstrates the connection e j
: i

between permutation graphs and transitively-orientable c¢raphs,

Theorem 1.1 A graph G is a permutation graph ifi puth G

and ¢¢ are TRO graphs.




1.3 BIBLIOGRAPHIC NOTES

One of the earliest results on monotonic subsequences
in permutations , is due to Erdos and Szekeres [3] . They
showed that every permutation of n numbers , has either a
descending subsequence of length k+1 or an ascending sub-
sequence of length 2 % . The combinétorial properties of
several cypes of monotonic subsequences which appear in a
permutation , were studied by Brocg and Baer [6] . Their
research was -chiefly inspired by applications in sorting al-
gorithns .The mainvresult Of the  paper was a counting formula
for the permutations of order n , in which the sum of the
lengths of the LDS and LAS is n+l.

The results of [6] were significantly extended by
Schensted [2]'> who counted the permutations of order n
which contdn.a LAS and LDS of any prescribed lengths. The
enumeration in [2] was based on the construction of a SYT
from a permutation (Construction-S), and the correspondence
between a permutation and a pair of equally shaped S¥T.

In a latef paper, Brock and Baer [7]1 calculated exten-
sive tables for the average lengths of monotonic subsequences
in permutations., According to their calculations , the average
length of the LDS in a random permutation of order’ n, shows
good agreement with 2/h. However , the proof of this fact
is still an unsolved problam. One result in this direction
was given by Dixon [8] who showed that in a random perﬁutation
of order n , the probability that the lengths of both the

LAS and LDS lie in the range (¢"1/i,e/n ). tends to 1 as n+w,

t
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A  directed. graph which is closely related to a permutation
graph , appears in [9 , PP 1377 in connection with the proof
that the 'permutohedron' is & lattice. A similar graph’called

'inversion digraph' , is introduced by Knuth [10] . The inver-

sion digraph' is constructed from a sequence SO that its vertices

are the elements of the sequence ,and-its edges' correspond to
+he non-inversions in the sequence, where the directions are

from low to high. It was shown thaty the SYT of asequence can

be constructed from its 'inversion digraph' by using a ‘topological

*

sort. Permutation graphs, in the context in which we use them,

ware presented by Pnueli et al %n [11], and used for solwving
some practical problems in [12] .

Properties and characterizations of stack-sortable permu-
tations , are given in [4, pp 239] . A more general model
of a network of stacks or queues in parallel , was studied
by Even and Itai [5] . They used permutation graphs and circle
graphs for characterizing those permutations which can be
sorted in such networks. Some other results in this direction
were reported py Tarjan [13] , who found relations between
the length of monotonic subsequences in permutations,and the
number of stacks or queues which are needed to sort it |
in a network. Some additional bibliographic notes are given

in the introductions of the relevant chapters.
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CHAPTER TWO

PERMUTATION GRAPHS AND MONOTONIC SUBSEQUENCES IN
PERMUTATIONS

2.1 INTRODUCTION

In [1,pp 183] Even presents an“algorithm for finding the
defining permutaLion of a labelled graph if ore exists.
We seperaterthis problem into two cases;
(i) the graph is known to have a defining permutation with
respect to its labelling,
(ii) no additional information on the graph 1is known.

The algorithm presented here for case (1i) is shown to be

superior to that of Even , it is further shown that utilization

of the additional information enables a yet nore efficient
algorithm to be developed for case (1) .

Next, a generalization of Schensted's [2] method for
finding a LDS in a permutation is presentad. It is shown that

this generalized algorithm can pe used for generation of all

maximum cliques of a permutation graph once its defining permutation

is given.

Based on the above algorithms, methods are devised for
solving problems of dynamic storage allocation and design
of connection boards® , those methods are shown to be faster
than the existing methods .

rhe subject of the next section is circle graphs

which are closely related to permutation graphs [14]. By using
the techniques developed in this chapter, 've devise an algorithm
which finds a maximuwi cligue in a cilrele graph in O(nzlgzn) steps.

¥
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To the best of our knowledge, the fastest algorithm to date
for this problem is the one given by Gavril L4Jwhich requires

O(n3) steps.

‘Finally , in the last section' a theorem by Erdos and .
Szekeres is generalized by extending the idea of a permutation

graph to that of a permutation hypergraph.

¥
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‘

.‘3;? AN ALGORITHM FOR FINDING THE DEFINING PERMUTATION OF

A LABELLED PERMUTATION GRAPH,

:Let G(N) be a given grap . with IV[= n. Suppose that it is known
that G(N) has a defining permutation I with respect to this
labelling. In this section we present an algorithm which £inds
I. An application of this algorithm is giVehﬂin Section 2.6.

Let G(N) be represented by its adjacency matrix A={aij}.
Since I is the defining permutation of G(N), aij=l i1ff i and
j form an inversion in II . A seguence of distinct integers
~fromuN which 'forms a subsequence of I is called II~consistent.
The general procedure for finding I is similar to the well-known
2-way merge sort [16 pp 160]. We start initially with n unit~

length sequences which are trivially H~c&hsistent. l.a the ith

pass, the sequences which were created in the i--lSt pass are

- merged in pairs so that longer T~consistent sequences are
obtained. The algorithm términates when we are left with one
sequence of length n.

We only present here an algorithm for the basic merge
operation. In Algorithm 2.l two N-consistent sequences are
merged using the matrix A, Tt is then proved in Lemma 2.1
that the output sequence remains IFconsistent. The difference
between Algbrithm 2.1 and the ordinary merge is that each
compafison ls followed by a lookup in A in order to decide
which of the two compared elements 1s +o be written on the
output. Let 1 and j be the two elements which are currently
compared, then max(i;j) is written iff a1j=l and otherwise

min(i;j).
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ALGORITHM 2.{‘
Given as input two sequences X=<xl,x2,.L,xﬁ»,Y=<yl,y2,..,y2>

and the matrix A. The sequences X and Y are merged to form an

output sequence of length m+l. The elements of X and Y are distinct.

Step 1 : Set i=l, j=l.
Step 2 : If & =0 ser a = =1,
xiyj xiyj

Step 3 Set P= (xi-—yj)ax

1Y

Step 4 : If P>0 go to Step 8.

Step 5 : Write yj on output,

step 6 : If 3j<& set j=j+l and go to Step é.
Step 7 : Write X, ,X ., q,¢¥X;! on output and stop.

_Step 8 : Write x; on output.

N

Step 9 : If i<m set i=i+l and go to Step

Step 10 : Write Y5r¥ypire 1Yy on output and stop. [

Example 2.1

We find the defining permutation of the graph of Fig 2.1
' 1

which is represented by the adjacency matrix A.

12345678
lLijopol101l011
2?{oololo1ll 7
3110011011 3G
A = 4 fo0001011
- 511110010
6 |l0o0000O01L11
7{L1111200
8 {1 1110100 u
e R ‘L : , o ‘ . 5 e
We start with the initial sequences: " “Pigure 2.1
) = 2224 8¢ s heeds g0 Brig e 7 By
S4=<1> §5=<2> S <3> 84 4> 85=<5> 84 <6> 80=<7> 8, <85
pass 1 : si==<1,2> Si=<3,4> 57=<5,6> §y=<7,8>
pass 2 55=<3,1,2,4> 53=<7,5,8,6>
Pass 3 , S§=<7p5,8,3'132’4,6>

0
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Lemma 2,1  Let X=<xl,x2,.q,xm>and Yégyl,yz,‘},yﬁ>‘be two
N~consistent sequences with distinct elements which
are merged by Algorithm 2.1 and let z=<zl,...,zm+£>
be the output. Then 7 is T-consistent.

Proof We use the following simple properties of 2,

" Property 1l : For i<j if ziand zj come from the same input

sequence then zieL“(zj).
Property 2 : If two consecutive elements N and 244 come
from different input sequences they are compared

in Step 3 and this ensures the'. zieLﬂ(zi+l).

From Properties 1 and 2 it follows that for lsism+g-1

ZiGLﬂ(Zi+l) and then by transitivity % is Ill-consistent. [

Runnhing=-time

By the nature of 2-way merge sort, if there are k sequences

ith EWafter

pass then this number is reduced to 5

before the

the pass. In each pass we make no more than C'n elementary
operations where C is a constant which depends mainly on the cost of

a matrix lookup. We conclude that the total number of steps

‘which are required to find the defining permutation of a graph

of n vertices is C[lg,n|n .

A — X, I . . . . L e
et : i,
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.....

.ﬁAS A DEFINING PERMUTATION

Let G(N) be a labelled graph as in the previous section,
but assume that it is not known whether ,d~defining permutation
exists with-respect’ to this.labelling.In this
an algorithm which either finds the defining permutation of
G(N) or stops as soon as it detects that no such permutation

exists. The algorithm is based on the following theorem which

characterizes 2 graph which has a defining permutation.

~Theorem 2.1 Given a graph G(N) which is represented by the

adjacency matrix A={a,.,},let the matrixyi={aij}

be obtained from A as follows,

For ij<1i aij=0 => aij=l

aij=1 =>
Otherwise aij=aij

The graph G(N) has a defining permutation iff for
' n
i=#g it follows that Si¢Sj where Si:ezlait i

-proof (a) Necessity; Let A be the adjacency matriX 6f the

permutation graph G (N) which has T as its defining permutation,

i
The texrm . I az, counts those elements which are smaller
=1
than i and do not form an inversion with 1 in T ., In a similar
| d=n_
way , the term ) aie counts all elements greater than i
g1 %

which form an inversion with i in I, Therefore Si=|Lﬂ(i)l.
We then have,
i#g = |Ln(1)|¢ |Ln(j)|:> 5485 (2.1)

section, we present
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(b)" Sufficiency; We use induction on the size of the adjacency

‘matrix, The theorem holds trivially for the two possible adjacency

matrices of order 2., Assume that it is true for matrices of
order n-l., Let A be the adjaéency matrix of‘the granh G(N),
Consider the vector S=<Sl+l;sz+l,..,sn+l> which we call the
S=vector of A. Since ‘all.components of S are distinct integers
and 0<S;sn-1 for lsisn ,~it follows that S is a permutation

on the set N={1,2,..,n}., Let TI=<py,py,..,p > be the inverse

permutation of S , we prove our theorem by showing that 1T is

the defining permutation of G(N)., We have to show that for 1<i,j<n,

| i and j form an inversion in II iff aij=l' (2.2)
Let pl=£ , we observe that all pairé of the foym <2,j> are
inversions in I iff j<&. By the definition of II it follows
that S;=0 , and this implies that 5£j=0 for 15j<n, We & - 1ave,

for j<2& 52j=0 => a£j=l and 23]
for 3> 52j=0 => a2j=0 .
We conclude that no violations of condition (2.2} occur in the
&th row and by symmetry in the 2th column of A, Consider the
¢¥ column of A, by (2.3) and the symretry of A,
..j<z = agp=l = 5j1=1
Ja7 = ag,=0 = 5j2=1 (2.4)

Therefore each element of this column contributes a unit to Si

for l<i<n and i#%. Let A' be the matrix which is obtained by

ch

eliminating the row and column from A. We denote by

S‘=<Si+l,sé+l,..,85—l> the S~vector of A', By the above argument
we get the following relation between S and S',
for 1si<g s51=5,~1 and R
| o (2.5)
for .Q:Sisn"l Sj'.=si+l-'l [

¢
3
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By . (2.5) for izj we haye SiﬁSj ; therefore A' satisfles
the ' condition of the theorem, By the induction hypothesis ,
the permutation H'=<zl,£2,...;&h;l > such that H'=S'"l, is the
defining permutation of A'., The elements of Il and JI' are
related as follows,
for l<isn-1 %i=Pi41 iﬁ pi+l<pl
. (2.6)
23%Pi417t *E Py Py -
Hence <£i,£j> is an inversion in II' iff <pi+1’pj+l> is an
inversion in I .This shows that ‘.Gondition (2.2) is 'satis&ied also

h

by all elements of A which are not in the 2t row or column. D

The proof of Theorem 2.1 suggests the following simple

"algorithm for detecting whether G(N) has a defining permutation,

directly from its adjacency matrix A.

ALGORITHM 2.2

Initially we have an array C=<cl,c2,..,cn> of n empty cells.

Step 1 Set i=l.

Step 2 : Perform a logical 'NOT' operation on all entries

’ aij suchnthat j<i.
Step 3 : Set k= & a, + 1.
j=1
Sstep 4 : If ¢ is occupied stop (no defining permutation

existe) glse set ckmi.
Step 5 : If i=n stops the array C contains the defining permutation

of G(N), else set i=i+l and go to Step 2. a

.

o g e e
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Example 2.2

Let N={1,2,3,4,5} , we consider the graphs G; (N) ‘and G, (N)

1 and A2.

The .. ..ctor of A, is § =<3,4,2,1,%> , therefore Algorithm 2.2

Gl + 2.2 , and their respective adjacency matrices A

will teisiinate in Step 5 giving €=<4,3,1,2,5> as'the.defining

permutation of GL(N)' The graph Gz(N).has no definingmpermqggtipnA

1
since in A2 we have §,=S_,=2,

27°3
QS 5

12345 12345 o ,

| 1loo11o0 1l01 000

A= 2/0001 10 ,_2{10110 4

1" 3/11010 2" 3l0100 1 4
4L 1100 4lo1 001 3 3
5/00 000 5002110 € () T e,

Fig 2.2 -

Running-time

In case of a positive answer , Algorithm 2.2) requires (g)

logical 'NOT' operations and n2 additions.

Comparison of Algorithm 2.2 .with Even's algorithm

In fl, pp 18371 Even gives an algorithm £or-the'same purpose
" .as Algoriﬁﬁm’Ql?}"which has « two stages. First, all edges of
G(N) and G?(N) are oriented from low to high and from high to
low respectively. In the second stage a topological sort is performed
on the vertices of G(N). From the point of view of computation
complexity both our algorithm and ;hat of Even are of the same
order , i.e. both require O(nz) steps. However Algorithm 2.2°is
superior = for the following reasons:
1. Algorithm 2., 2 lends itself easier to computer implementation,
only two types of operations are needed , logical 'NOT' and
counting the number of 'l1' bits in a storage word ,both operations

are very fast on nost computers. On the other hand, the edge

e tu{\&h’
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oriéntations and the topological sort which are used in Ever's
algorithm, require some more involved operations and specia
data structures as shown by Knuth in [4 ,pp 258].

In case of a negative answer,Algorithm 2.2 performs only a fraction
of the total number of operations, depending on how early two

Si's are found to be identical.. In Even's algorithm we always

have a fixed cost of (2) orienﬁations , @ negative answer is
detected only in the second stage when the topological sort

procedure fails to find a sink among the vertices of G(N).

R i s
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oriéntations and the topological sort which are used in Even's
algorithm, require some more involved operations and special
data structures as shown by Knuth in [4 ,pp 2581.

In case of a negative answer,Algorithm 2.2 performs only a fraction
of the total number of operations, depending on how early two

Si's are found to be identical.. In Even's algorithm we always

have a fixed cost of (g) orienﬁations , @& negative answer is
detected only in the second stage when the topological sort

procedure fails to f£ind a sink among the vertices of G(N).

T T T AT
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»

2.4 A GENERALIZATION OF SCHENSTED'S ALGORITHM

Let G(N) be a permutation graph labelled with the set N
and let I be its deflning permutation with respect to this
labelling. Consider a clique C of G(N) where lc| = k. We
can order the labels of the vertices of C in descending order
and obtain IC= <il’12’“"'ik> .8ince each pair of labels are
an inversion in II ,it follows that Ic is a maximal descending
subsequence in I . In this way a maximum clique of G(N) corres-
ponds to a LDS in’ Il.

th [2] Schensted gives an algorithm for finding a LDS
;n’a given permutation. In this section we describe a gener-
alization of this algorithm which provides us with the option
to generate all LDS's of a permutation. In view of the above
cofinection between maximm cliques and LDS's, this generalized
algorithm can be used to generate all maximw& cliques of a
permutation graph,once its defining permutation is given.

The number of LDS's of a permutation can grow exponent-
ially with its order. For example consider the permutation
I of order n for nZ0(mod 3),whick consists of Ivé: trios and
has the general form: N : . '

‘n=<n-2,n~1,n,.a.,(n—2)—3k,(nLi)~3k,n—3k,d..,l,2,3>.

Then I has 32 1Ds's. Therefore it is,important to avoid
rEpetitioA of LDS'é or generation of intermediate subsequences
which eventually do not form a paxt of a LDS. In order to :
meet those requirements the algorithm to be described operates
in two stages. The first stage reads the input permutation

into a storage array and links those elcments *which are
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candidates for joining a LDS.In this way each LDS is stored
in a form of a chain. In th2 second stage those chains are
traversed and a LDS is generated each time we arrive at the
end of a chain.

Informal description -— Stage-l

Given a permutation II = Spl,p2 ,...,pn> it. is scanned
froml%eft to right and an ordered set of queues Ql’Qé""Qn
is formed from its elements. The const}uction is described
recursively as foullows:

1) pl is inserted into Ql-,

2) Aséume Ql’Qz""Qi were formed from pl,pz,..,pj_J, then
pﬁ is attached to the first queue which has its last element
smaller than pj. If no such queue exists pj étarts a new
queue Q...

With each element pj which is attached to Qi’ two pointers
are updated indicating the minimal and maximal elements in

Q;.j Which are greater t#an Py

Formal description

The set of queues is stored in a 3-~dimensional array Q

of size nxnx3. If an eclement is inserted into the jth

position
of 0, it is placed in Q[i,j,1]1 and the two fields 0Q[i,3,2]
;nd Qfi,j,3]1 serve as pointer fields for the above mentioned
purpose. The variable N[il counts the number of elements in
the ith queue and the variable ¢ counts the number of non-
empty queues in Q .

‘We' first degcribe the procedure ATTACH which inserts

an element at the next available place in a " specified queue.

i b ik il ek,

R e P | (- e B § i B B et e 4 e




23

ATTACH (p;/Q;)

ATl : Set NEi] = N[il + 1,

AT2 : Set @Ci,N[il,1] = Py -

perform  AT3,AT4 . .and ATS'on}y if 1>1,

AT3 : Search in Q, 4% for the minimal £ such Epat QLi-1,4,11]

is greater than Py

AT4 : Set QCi,N[il,2]1 = 2.
AT5 : Set Q[i,N[il,3] = N[i-11.

ALGORITHM 2.3, - STAGE 1

Step 1 : Set N[1l = O, ATTACH (pl,Ql), set q = 1.

Repeat Step 2 for 2gisn 3 ‘

Step 2 : If py <Qlq,Nfgl,1] then set g=qg+l, N[gl = O
and ATTACH(pi,Qq) else search the sequence
QLl{N[lJ,lJ,QEZ,N[ZJ,IJ,...,Q[q,N[q],lJ for the
first element QC£,N[£f]1,1] .such that pi>QEf,N[f],1]

?n§ ATTACH (pi,Qf).

- Example 2.%

Let I = <7,8,9,4,6,3,1,5,2> Then after stage 1l there
are -4 non-empty gueues in Q ,w%th the following contents,
Qq = 7s-3=,Bs=3~,9:~¢
Q, = 4:1:3,6:1:3
Q) = 3:1:2,5:2:2
Q = 1:l:2, 2:l:2
The values of the other variables are:

g=4 .and N[11=3 N[2]= N[3I=N[4]= 2. 0

T T T I EI I AT
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Running~time of Stage -

The computation of the number of steps required to
complete stage 1 is based on some properties of the elements
of Q. Those properties are summarized in Lemma 2.2 which is
a direct result of [2] and therefore stated without proof.

femma 2.2} ° If q aweues are formed from II in stage 1 then,

(a) The length of a LDS in Il is q.
(b) For 1sigq , 0fi,1,13<QC4,2,11...<QL1,NI41,1 o
(c) During the execution of the algorithm the last elements
of the queues form a descending sequence, i.e.” in Step 2 we
have, QEl,NElJ,l]>Q[2;N[2],l]>...>Q[q,NEq],l].»D
The running-time is governed by the compargsons made in
, AT3 and Step 2 of the algorithm. From (b) and (¢) of Lemma 2.2
it follows that binary-search can be used in boih cases. We
recall that the number of comparisons made by a binary-search
cn a sequence of length m is at most l}g2@j+ 1. Given an
inpué perimutation.of order n with ILDS of length g, the longest

queue has no more‘ﬁhan n%l-q elements. Therefore the total

number of comparisons made in AT3 is bounded by n(Egz(n+l~§ﬂ +1),

we call this term A. Turning our attention to Step 2, we
observe .that a binary-search is performed only for those
n-q elements which do not start.a new queue. Therefore the
binary-search in Step 2 is bounded by (n-q)gt}gzgj+l) comp=
arisons, we call this term B. In addition to that we have a
fixed cost of n-1 comparisons in Step 2. We now calculate an
upper bound on A+B as follows, e

A+Bg nlgs2(ntl-q) + (n-q)lg22q
and since

(n+1—q)qs((n+l)/2)2

i e e A

e i
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we get

A+B £ 2nlgp (n+l)~ glga2qg .

We conclude that the total number of steps required by Stage 1

is proportional to nlgan.

Informal Description of Stage 2

By (a) and (b) of Lemma 2,2 ,it follows that a LDS in

II has exactly one element in each queue of 9/ such that the.

th

i element of a LDS is a’ﬁember~ovai;

Lemma 2.3 Let L = <Q[l,il,l] ,Q[2,i2,l],...,Q[q,i ;11> be a

d
Ay sequénce constructed from the array Q . Then L

is a LDS of T iff, for 1sj<q,

QFj+l,ij+l,ZJSij$ Q[3+l’lj+l’3]‘
Proof: By definition L is a LDS in I 1£ff for 1<j<q the
following two conditions are satisfied,
Q[jrijllj>Q[j‘*‘lrrij+lrlj v c (2.7)
Q[j,ij,lJeLﬂ(QEj+l,ij+lrlJ) . ' (2.8)

(2.7 )<=> First element in Qj which is greater than Q[j+l,ij+l,l]
is in position ij or before<=> ijaQ[j+l,ij+l,2]. |
(2.8 )<=> Qj had at least ij elements when Q[j+l,ij+l,l] was

attached to Qj+l<=> ist[j+l,ij+l,33 . 0O

o 44 #

"~ 'The secénd stage of Algorithm 2.3 is based directly on

* Lerma é.3 The gencration scheme ig started from QLg;l,1l1.

By the lemma the possible successors of this element are
in Qq—lsin positions which are within the limits specified
by the two pointers Q[q,l,2] and Q[q,1,3]. -Therefore

we select the next element in Q-1 which is indicated by
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0lg,1,2] .In this way we move from one queue to the next .

selecting one element in each queue,until an element in Ql

is reached. At this stage the first LDS is completed. We

then backtrack to the element in Qs which we came from and
select its next possible successor. The Yeneral rule is as follows,
when all successors of an element in Qj are selected,, we
backtrack to the element in Qj+l which we came from. Each

time we arrive at Ql a new LDS is completed. Termination

occurs when all the elements of Qq have been processed.

This backtracking approach reguires a nest of iterations
of variable depth according to the number of queues generated
in Stage l. A precise description of the process is given
by t@e following ALGOL 68 procedure. This notation
provides a more elegant method of describing recursive processes

than the semi-formal notati»n adopted elsewhere in this

thesis.

Forma.l description

Let g be the number of queues formed in Stage 1 , and m the length

of the last queue.
proc lister = (int m) :

( for i to m do access (q,i) od ) i
proc access = (int j,4&) :
( buffer [j31= 0[5,&,1] ; .
if j = 1 then print ((buffer,newline ))

else for k from Q[3,%,2] to QL3,4,31 do

O

access (j-1,k) od £i ) 0

TSR ST S Jre )
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Example 2.4

The LDS's of II of Example 2.3 will be generated in the

following order :

(1) <7,4,3,1> (6) <9,6,3,1> (11) <8,6,3,2>
(2) <8,4,3,1> (7) <7,4,3,2> (12) <9,6,3,2>
(3), <9,4,3,1» (8) <8,4,3,2> (13) -<7,6,5,2>
(4) <7,6,3,1> (9) <9,4,3,2> (14) <8,6,5,2>
0
Remarks
. l. 8ince a LDS in II= <pl,p2,..,pn> is a LAS of HR= <pn’-n-1"'p1>

it follows that the same algorithm can be used to generate
all LAS's of 4 given permutation.

Given a seqguence S which contains repeated elements we may
want to generate (a) All longest strictly descending sub-

sequences or (b) All longest non-ascending subsequences in S.

It can be proved along the same lines as the proof of Lemma 2.2

in [2] that Stage 1 must be modified as follows:
Case (a) '+ Replace '>' by '2' in Step 2.
Case (b) : Replace '<' by 's' in Step 2 and '>' by 'z'

in AT3.

prr S N
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2,5 A CONNECTION-BOARD PROBLEM

be represented by a bipartite graph as shown in Fig 2.3' .

The problem which is discussed in this section is taken
from [17,pp 245] . Consider a connection-board B which consists
of tyo sets of fixed points called Xl and X, and a set E of
straight connecting lines such that each line in E connects

a point in Xl to a point in X, - Such a connection-board can

It is required to decompose B into several parallel planes such i
that no two lines cross each other in a plane. This situation
occurs in the design of printed circuits where tne connecting
iihes are not insulated and therefore may meet each other
only in vertices.

The problem is solved in[17] by constructing a new graph E
GB rin which each vertex corresponds to a line of B and two
vertices are adjacent in GB iff their corresponding lines cross %
each other in B. It is then observed that a minimal chromatic
decomposition of Gy corresponds to a decomposition of B into
the least number of planes. Under this correspogdence each
monochromatic set of GB represents a set of lines which can
be assigned to the same plane. In [11] it is shown that Gy is
a permutation-graph. This enables us to employ an effjéient ;
algorithm which finds a minimal chromatic decomposition of Gy
in O([E|2) steps. We present here a method which finds the
required decomposition in O(]E‘lgzm) steps where m is equal
to min(lxl[,|X2[).

Without loss of generality we can assume that |X;|=m and
|X,|= n. We label the points of X; by xj,Xp,««r¥p and those

of X, by the numbers 1,2,..,n from left to right. A line is

2

e e
EHon
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denoted byv(i,xﬁ) where iqxz and xjgxl. The lines of B can

be represented by m lists Ll’LZ""Lm where Li contains all
points of Xz which are connected to Xy in their order from

>

left to right. We then construct the sequence L, = <L1,L2,..,Lm

by catenating those lists,

Example 2.5

Consider the connection-board of Fig 2,3 . It is represented

by L.= <1,2,4> , L,= <1,3> and L

= <2,4> , We then have

1 2 3

L= <1,2,4,1,3,2,4> -

e

Figuré 2.3

. 8]
Lemma 2, 4 The chromatic number of Gg is equal to the length

of the longest strictly descending subsequence of Ly-

Proof The vertices of a clique of G, correspond to a set
of lines Cp in B such that every two lines in CB cross each
other. On the other hand, two lines (i,xk) and (j,xg) Cross
each other in B iff (i-j) (k=) < O. Therefore C, is in 1-1
correspondence with a strictly descending subsequence in LB‘
Let Mg be a maximal clique of Gy. since Gy is y-perfect
[1,§9.17 its chromatic number is [M,| and by the above corres-
pondence this is also the length of a longest strictly de-
creasing subsequence in Ly. 0

By Lemma 2.4 it follows that we can find a minimal chro-
matic decomposition of Gy directly from Jig. We apbly Algorithmh
2.3 Stage 1 with the modification of Remark 2(a) to Ly Supvose
that q non-empty gueues are formed in Q by the algorithm. Then

the chromatic numbex GB is g. Furthermore, the elements

PIEEPEUS P g
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in Qy for lsi<q corrxespond to a set of lines in B in which

no two cross one another and thils set defines a monochromatilc

set of vertices in GB.

Example 2.6

We decompose the connection-board of Example 2,5 into
planes . The contents of the array Q (ignoring pointers) after

Algorithm 2.3 are as follows;

0, = 1,2,4,4
Q, = 1,3
Qy = 2

Therefore Plane 1 contains the lines: (1,xl),(2/xl),(4,xl)
and (4,x3) ; Plane 2 : (l,xz) and (3,x2) ;Plane 3 : (2,x3). 0
Running-time

The running—time herg is dominated by the number of comparisons
made by Algorithm 2.3,which we now compute. For ls<ism the
elements in Li appear in ascending order ., this 'ensures ‘that no more
thap i queues will be formed in Q from the elements of.the
lists Ll,Lz,..,Li..Therefore when each element of Li 1s ' attached
to a queue, a binary-search on at most i elements is performed.

The total number of comparisons is therefore bounded by

Ii
5Ly | ([];gg‘ij-% 1)s|Ellgs2m .
i=1 -

e R
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2.6 A DYNAMIC ° STORAGE = ALLOCATION PROBLEM

Let N={1,2,..,n} be a set of programs which reside in
memory in starting addresses Xy 1%y re e X where Xisxi+l for
1<isn-1 . During execution "ime, some programs may change
their memory requirements. Let those new requirements be
21,22,..,£n respectively. In order to meet these requirements,
it may be necessary to shift some programs to new storage
addresses. We assume that the order ¢f the programs in memory
must be preserved and that 'Eli does not exceed the available
memory space. The problem islgé find a reallocation scheme
wﬁich has a minimal cost. If we assume that each program has
the same cost of transplantation ,the above problem is ‘
equivelent to that of finding a maximal set of programs which

can remain in place while the other programs are shifted..

In [12] a model graph G(N) is constructed such that iETﬁTj
4~1

iff e, < :8~xi . In words, vertices i and j are adjacent in G(N)

'k
k=i .
iff the programs i and j can remain in place under the new

requirements. It is then proved that G(N) thus constructed
is a permutation graph. The minimization problem is then
solved using an algorithm which finds a maximum clique in
G(N) in O(nz) steps. -
However, we observe that by using the algorithms of
the previous sections, we can find a maximum clique of G(N}
in O(nlg,n) steps as follows. We define zl=0 and for
2gign 124= 249 + ﬁi_ . We then find the defining permutation

1
1 of GIN) with Algorithm 2.1, where Step 2 is replaced by

* .
) H : g - > i~ st & =] cnex i ‘ 1, ==l
Step 2 : If xj xiZZJ 2y set a4 1 ,otherwise set alJ

S

i e
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A maximum clique of G(N) can now be found from the LDS
of 1

In order to ensure that programs are not shifted out
of memory , the programs 1l and n are dummy programs such
that xlmll=£2=0 and % is set to the highest address
available. We then restrict ourselves to those reallocation
schemes where both program 1 and program n are kept in place. ot
We now have to find the longest descending subsequence in
I which includes both 1 and n. We  overcome this difficulty
by applying some $imple .moedifications to I which we,
now‘proceed to show.

Since the maximal available memory is greater than.:
the total requirements wé have, .
X2 znnﬁxn—xlzzn—zl=>aln=i=> neLﬂ(l). {2.9)
Let H=<pl,p2,..,pn> such that Py =n and'pfg.? by (2.9),
k<% ' . We construct a new sequence ' which is obtained
from 11 by repeating Py k times and Py n-%+1 times.,, leaving

all other elements of T unchanged.

k =St L
[URRO W——— : et e =,
Lemma 2.5  Let I'=<py, .y /BysesPrrPyyyresiPyrerPyrPyyyresrPpy>

be a sequence which is obtained from II as described
above, Then a longest non-ascending subsequence (LNAS)
in II' is equal (disregarding repetitions) to a longest
descending subsequence in I which'inéludes’l: and n,
v Broof We first prove that a LNAS in I' contains both 1
And n, We apply Algorithm 2,3,modified as shown in Remark 2(b),
to ', A LNAS of II' is constructed by choosing one element

from each non=empty queuie in Q, It suffices to show that there

T

1 e
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H

is at least one queue which has’'p) - as its only “elemont and
another which contains only pzv When Py is attached to a queue
by the algorithm; there can be no more than k-1 queues in Q.
Therefore, at least one of the k occurrences of Py must start
g new queue, call this queue Qj' No other element of II' can
join Qj, SO Qj contains only py. Now , each occurrence of Py
starts a new queue: We therefore have n-2+1 queues containing
Py Since there are only n-{ elements in Rn(pl)’ this ensures
that the last queue contains only Py -

A LNAS 1. I has the form,

th=<Pkr--rPkrdlrd21--rdrrPgr--lP$>t-

Now 'Ln=<pk,di,d2,..;dr;p£> 14, .descending dn' 0 ., Any :descend-
ing subsequence in II which is longer than Ly .and includes both
Py and Py ,gives rise to a subsequence in II' which is longer
than LH' and is non-ascending, in contradiction to the definition

of L 0

me:*

- Example 2.7
Consider the reallocation problem which is represented by

the following table. . " , N
1] %y Ly 24

1 0 0 0
2 0 300 0

400 500 300

w

800 400 800
1100 300| 1200

1600 200| 1500

DS N - ¢

1700 0} 1700

T -~
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The defining permutation .= <$6,3,7,4,2,1,5> is obtained directly
from this table. We then have N'=#6,3,7,7,7,4,2,1,1,5> . The

LNAS in II' is <7;7,7,4,2,l,l> ,therefore the programs {7,4,2,1}
form a maximum get .containing, .., * 7 and 1,whidh-can be kept'in

Place while the other programs are shifted,

\Remarks
1. During the construction of queues by Algorithm 2.3,if the

.f%rst P is attached to Qi’ then the followingxpk's are

automatically attached to Qi+l""Qi+k~l.' In the same

. Way ,a binary-search is required only for the first occurrence

of Pg+ We conclude that a binary-search is parformed no
more than n times in Step 2 of the algorithm. %ince the
number of queues formed from II' does not exceed

k+ (n-2+1)+ (L=k-1)=n ,it follows that the total number of
comparisons made by the algorithm is bounded by n(Egzq]+l).

2. | The‘number of elements in II' is n+(k-1)+(n=2)=2n~1+(k-2).
Since k<& ,the maximal number of storage locations
required for N' is 2n-2,

3. This method of repetition of elements,can be applied in
cases where an integral cost of shift W, is associated
with the 1th program. A sequence W(JI) is constructed from
Il by repeating the integer i wy times., It is easy to
prove that the distingt elements in a LNAS of W(r),

correspond to a maximum welght clique of G(N),
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2.7 AN ALGORITHM FOR FINDING A MAXIMUM CLIQUE IN A CIRCLE

GRAPH

, Given a)set S={cl,c2,..,cn} of chords in a circle, we

can construct .a "graph Gg where each vertex in GS corresponds

to a chord in 8 , two vertices are adjacent if their.corresponding
chords intersect. A graph which represents a set of chords

in this way is called a circle graph.

Example 2.8

.

Eigufe 2.4

[ O T - . o - l”l

Circle ‘graphs were used by Even and Itail[5] as a model for
finding the least number of parallel stacks which realize a
given permutation.’

Consider a subset C of S with the property that éevery

‘pair of chords in C intersect. If no subset of S with cardinality

greater than C has this property , C is called a meaximum clique
of S. Our purpose here is to find a maximum clique of a given
set of chords " , ‘clearly..such a maximum clique corresponds

to a maximum clique of GS‘ This problem was previously solved
by Gavril [14] , his algorithm finds a maximum cligque of S

from its representing graph Gg ,where as the approach here

is to determine the maximum‘clique directly from S.

Without loss of generality, we can assume that no two

s e
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chords in S have a commcn end point on the circle, Lf this
cccurs , we can move one chord slightly without changing the
intersection structure. Given a circle and a:set 8 such that
|S| =n , we can label the end points of the chords in the following
way. We choose an arbitrary end point on the circle and label
it Ll; , then we move clockwise along the circle and label
each end point by the next. : integer until the starting point
js reached. In this way the end points are numbgred from 1
to 2n , each choxd is reprasented by the two numbers on its
- end points. For each chord ,we order its representing pair ‘
such that the smaller number comes first. We then sort the
n ordered pairs thus obtained on their first component.
The .. chords are now represenied by the ordered set of pairs
§=<§xl.yl>,<x2,y2>,..,<xn,yn%} where for lgisn-l X ;<X .49
and xi<yi for lsiSn.iWe rename the chords so that cy is the
chord which is represented by <xi,yi> in S.
For each chord Cy a set E(ci) ig defined as follows,
E(ci)={cj[xj>xi and ¢ intersectsrci} .
From this definition we have,

cjeE(ci) if£ xiaxj<yi<yj, "(2.10)

Consider the set E(ci)uci. Let Xi and Yi be the sets of '
first components and second comhonents respectively of all
chords in E(ci)uci' The graph'Bi(Xi'Yi'E(ci)Uci) is a bipartite
graph where each vertex in Xi is adjacent to exactly ome
vertex in Y. We can f£ind a maximum set of intersecting edges

in By, by using a similax technigue to the one ugsed for the

connection board problem. Clearly,two edges ¢xg,y£>and'<xk,yk>

e B ARG O 3 . S
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intersect in Bi iff (xz~xk)(y£—yk)>o. Assume that the chords
in E(ci)uci are arranged in ascending order according to their
first component. Let ?i be the sequence of second components
of these chords , then a maximum set of intersecting edges in

B, corresponds to a LAS in ?i.

Example 2..9

Consider the set of chords of Fig 2.5 . After numbering
the end points and sorting we obtain the ordered set
S= <1,14>,<2,11>,<3,8>,<4,10>,<5,13>,<6,12>,<7,16>,<9,15> .
The chord c3=<3,8> defines thae set (arranged in ascending order)
) E(csiuc3= <3,8>,<4,10>,<5,13>,<6,12>,<7,16> .
§3=<8,1o,13,12,16> , +a. LAS in ?z is <8,10,13,16> .
Therefore a maximum set of intersecting edges in By is.

{¢3,8>,<4,105,$5,13>,$7,16>}
15 181

Figure 2.5 12k

Consider a maximum clique C in S where [C|=k, and let

C=<c,
1
as previously shown. The. set E(ci )ucj contains all the chords
"1 "1
of €¢ , therefore C forms a maximum set of intersecting edges

= rveaCy > be obtained from C by ordering :its chords
2 “k

1 1

that the sequence <y; ¥y s+ve¥y ? is a LAS in ¥, .
1 2 k iy

are nbw'in a position to describe the following algoxithm

in the bipartite graph B, (X, ,Y, ,E{c, )Juc, ). This implies
PTRNE PR iy i

We
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for finding a maximum cligue in S.

ALGORITHM 2.4

We assume that the set S is given as n pairs of distinct

integers between 1 and 2n.

Step 1 : Order each pair so that its smaller member comes first.

Step 2 : Arrange the pairs in ascewnding order according to
their first component to obtain the’ ordered"set S..
Step 3 : Given the set S§= S INNAETAS NS SLIRRRLS S0 AR
for isis<n-~1l form a list Li as follows;
(a) the first element in Liis <xi,yi>,
(b) for j=i+l,i+2,..,n.
add the pair <xj,yj> to Li iff it satisfies (2.10).

Step 4 :' For lsisn=1% -£ind a LAS in- ¥, of ‘the list L,,

the longest LAS found.defines a maximum clique.of S. 0O

Example 2,10

Consider the set S of the previous example. The lists Li

“which are formed in Step 3 and the LAS in §i are:

LAS in §l=<14,16>

L,=<1,14>,<7,16>,<9,15>;
L2=<2,11>,<5,13>;<6,12>,<7,16>,<9,15>;" " ¥,=<11,13,16>
L,=<3,8> <4,10>,<5,13>,<6,12>,<7,16>; woo" ¥,=<8,10,13,16>
L,=<4,10>,<5,13>,<6,12>,<7,16>,<9,15>;" " ¥,=<10,13,16>
L=<5,13>,<7,16>,<9,15>; WM ¥=<13,16>
Lg=<6,125,<7,16>,<9,15>; v ¥ =<12,160
L,=<7,16>; L i L

Since §3 has the longest LAS,we conclude that the chords

{<3,8>,<4,105,<5,13>,¢7,16>} form a maximum clique in 8.0 '

O e A R




Running-time

We compute upper boGnds on-the humber: of elementaryoperations

made -in each step of Algorithm 2.4.

Step 1 : n comparisons and interchanges.

'Step 2 : Since the first components are integers between 1
and 2n, we can use radix sort which requires O(n)
elementary operations. |

Step 3 : When the list L, is formed , u-i chords must be checked
to find out if they satisfy .condition (2.10).Each
check requires 3 comparisons , therefore a total of
3(2? comparisons are made in this step.

Finding a LAS in a list of length n , requires about

Step 4
nlgzn steps . Since ‘Lii=n-i ., the total number of
steps required for finding the LAS"s in all lists ,is
bounde.. by i__?jlilgzi =S(n) . By using Euler-Maclaurin's
formula ,

2

S(n)= O.72n21q2n - 0.36n" + Ojnlgzn).

We conclude-that the total numoer of steps required by

Algorithm 2.4 grows as nzlgzn.

2.8 A GENERALIZATION OF 7 THEOREM BY ERDOS AND SZEKERFS

The concept of a “permutation graph can be generalized to that
of a permutation hypergraph in the following way. Given a

permutation 1 on the set N , the hypergraph Hkin) has the
=k+1 , and

vertex set N and edge set E. An edge E ¢E iff  (a) By
its~elements form a descending subsequence in I , or (b) FiFl and

its element is not in any descending subsequence of length k+l

e ——
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in T . From this definition it follows that Hl(n) is the
permutation graph defined by I . It may be interesting to
investigate the possible applications of hypergraphs iﬁ the
study of subsequences in permutations. One attempt in this direction
is given in this section.

following ‘Greene Qjﬂ,, we denote by‘dk(H) the length of
the longest subsequence inll which does not contain an ascending
subsequence of length k+l , similarly, ak(H) denotes the length
of the longest subsequence in II which does not contain a
descending subsequence of length k+1. Using this notation , dl(H)

and al(H) stand for the lengths of the LDS and LAS in II respectively.

A famous theorem of Erdos and Szekeres [3] states that

dl(H)oal(H)z n (2.11)

where n is the order of 1 . There are many known proofs of
this theorem (seel6] ,[19 for example ) , it can also be derived

using the fact that dI(H) and al(H) are the lengths of the first

column and first row in the SYT of I *(as -proved by Schensted [2]) .

Our purpose here is to prove the following generalization of (2,11).

Theorem 2.2 Let 11 be a permutation of order n , then

; r~ =
ak(H)eidl(H)g2 n . (2.12)
|

We shall need the next lemma in the proof.

Lemma 2.6 Let X(Hk(ﬂ)) be the chromatic number of HK(H)’ then
I =
x (s ()= 921

| F I - (2.13)

Proof By definition,the chromatic number of a hypergraph is
the smallest number of colours which are required to ¢ .our

igs vertices such that no edge E; with Eikl vhas all its

¥,
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vertices assigned the same colour. Since each set of k+l

vertices which appear in the LDS of T form an edge of E,

I

X(H,(H))a’dl( )

In order to prove the ineguality in the other direction,

we construct a chromatic decomposition of the vertices of Hk(ﬂ) by a

generalization of Schensted's algorithm of Chapter 2.

Given II= <pl,p2,...,pn>, a set of r queues Ql'QZ""Qr
are formed from Il ‘ ‘ollows;
1) Py is inserted into Qq.
2) 'Assume Ql’QZ""Qi were formed from pl'pZ""pj—l . then
pj is attached to the first queue such that pj does not
form a descending subsequence of length k+1 3 ith its elements.

If no such queue exists, pj starts a new queue Q.. 4.

Clearly , this procedure provides an r colouration of Hk(H),

since the elements of each queue do not form an edge E eE of

cardinality greater than 1. Assume that the last queue Q. contains

a descending subsequence of length m (msk). Then I must contain

a descending subsequence of length % where f=(xr-1)k+m. The

following inequalities are then satisfied, %
dl(ﬂ)2 A

e SR el
Fdl(m 2p oz or oz X(H (). (2.15)
k llk } | 0

A set of vertices in a hypergraph H is stable if it does
. , : - .
not contain an edge E; with]Ei 1. The stability number of H

g(H) is the cardinality of the maximum stable set in H,

4
1
.
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The following inequality is proved in [15, pp. 429].
Lemma 2.7 In a hypergraph H of order n

f(H)X(H)zn . 0 (2.16)

Proof of Theorem 2.2 By our definitions the maximum stable

set in Hk(H) corresponds to the longest subsequence in Il
which does not contain a descending subsequence of length k+l.

Hence , 7 | |
B (H, (1)) =a, (1) . (2.17)

By substituting (2.13) and (2.17) into (2.16) our result is

proved. | 0

T
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CHAPTER THREE
PERMUTATIONS WHICH ARE SORTABLE WITH A STACK

3.1 INTRODUCTION

Given a permutation H=<pl’p2""’pn> and an empty stack,
the elements of I can be passed through the stack using two
elementary operations coded 's' and 'X'. The operation 'S’

denotes ' put the next element of I on top of stack' and 'X'

stands for ' transfer the element on top of stack to the output’'.

A sequence L of the above mentioned operations , is called a
valid operation sequence (or simply an opnration sequence) iff
(1) all 2lements of Il are transferred to the output and (2) the

operation 'X' is never specified when the stack is empty.

_Conditions (1) and (2) imply that an operation sequence must

consist of 2n operations , n of each kind, the number of "X
operations may nevex exceed the number of 'S' operations when
I, is scanned from left to right.

We denote by L(Il) the output permutation which results
from passing Il through a stack . For example if n=<1,3,2,4>
and L=<8,X,8,%X,5,5,X,X> then L(M)=<1,3,4,2> . A permutation
it is sortable with a stack iff there exists an operation

sequence I, such that L(N1)=<1,2,..,n> , it is realizable

‘with a stack iff an operation seguence R exists such that

R(<1,2,..,n>)= I,

We denote by CEM the class of permutatiohs of order n
Which are sortable with a stack'and by SR the class of
permutations of. the same oxrdexr which are realizable with

a stack. Those two classes are related as follows,

Y
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~1
Mess ~ iff 1 "¢SR . , (3.1)

The class SRn is characterized by Knuth [4, pp 2391 by

the following theorem,

Theorem 3.1 The permutation I=<py /Pyr-- Py is a member of SR,

iff does not contain a subsequence
<pi'pj'pk> such that pi>pk>pj . (3.2)
From this theorem and the relation (3.1) we obtain a characterization

of SSn as follows,

*
Theorem 3.1 Hessn iff it does not contain a subsequence

<pi,pj,pk> such that pj>pi>pk . (3.3)

There is a well-known one-to-one correspondence between
the class SSn (ox SRn) and the class of binary-trees of n
nodes {4, pp 329], This zorrespondence serves as a basis to many
of the resulﬁs obtained here , it is therefore presented in
Section 3.2 and proved in a different method to the one which
is found in the literature. In section 3.3 , a new characterization
of SSn is given in terms of inversion tables , this is utilized
in the next chapter for generating and indexing binary trees.
In the rest of the chapter,we study some more properties
of stack sortable permutations such as; runs, readings , standard
Young tableaux and associated permutation graphs. In particular,
surprisingly simple expressions are obtained for the expected
length of the LAS in a random permutation in SS_ . and for

the number of involutions in this class.
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..3.2 A QORRESPONDENCE BETWEEN SSn AND BINARY TREES

-

Two binary trees T and T' are similar (T=T') if they have
the same ‘shape' , formally,they both have the same number
© podes,with the left subtree of T similar to the left subtree
of T' and the same holds true for right subtrees. For a node
4 in T , we denote by LT(j) and RT(j) the left and right |
subtrees‘of j respectively. |
A permutati n =<pl,p2,..,pn$ can be mapped into a labelled

binary tree using the following well known construction.

Zonstruction-T

We start initially with an empty tree T. For convenience,
we shall call the nodes of T by the labels from I which
are assigned to them.
Given Il = <pl,p2,...,pn>, assign py to the root of tree T;
for each Py s k=2,3,...,n, apply the rule -~ if Py is to be
inserted into a non-empty subtree wooted by pj. it must be
on the left subtree of py 1E£ P < Pyr otherwise p, must
appear to the right of p, -~ until en empty subtree is reached,
and then create a root to that subtree and assign the label

o’

Py to it.

We denote by Tw the tree into which I is mapped by

Censtruction=T ., For a node Py in Tﬂ ,Construction-T assigns

labels smaller thian py to nodes of Ly (pk) and bigger than Py
-

to nodes of RT (pk)‘Such a 1abe1iing scheme of a binary tree

. . m _ , o
is said to have the SIBR (Small to the Left Big to the Right)

proper‘t‘ya

= e i . e ot A S e A L e Rl s~

B R T R



5 B bk sl o e

T o SRS e

46

Lemma 3.1 There is exactly one SLBR labelling scheme of a

binary tree T of order n with the set N~{1,2,..,n}.
Proof We can draw the tree T,using a line of length 2~ %
units to connect a node in level i with a node in level i+l
(the root is considered in level 0). We then project the
nodes of T on a horizontal line L as shown in Fig 3.1l. Let i
be a node of T and :i.p its corresponding projection point on L.
From obvious geometrical comsiderations, the members of LT(i)
and R_(i) have their projection points on the left and on

T

the right of i_ respectively (no two nodes are projected on

P
the same point in L). .. . .

All the possible labellings of T can be obtained by
assigning a permutation on N to the projection points, then
copying the numbers from the points of L to the corresponding
nodes in T. Assume that the permutation HL is assigned to
the projection points and let <jji$J be an inversion in EL'

This will give rise to a labelling of T with one of the following
situations;

(a) jeLT(i)(

(b) 3 and i belong to a subtree rooted by k where jeLT(k)

and ieRT(k).

In both cases this labelling does not have .the SLBR property.
Hence ,only the identity permutation <1,2,..,n> will produce

a4 SLBR labelling of T. []

Figure 3.1

st




Given a binary tree T, we can construct I  such that

T=T%‘by the following recursive procedure:
1) Assign a SLBR labelling to T as shown in Lemma 3.1l.
+  Let the label at t.e root of T be p,-.
2) The first element of I is Py ‘the labels of a root Py
and its two subtrees Lj(p,) and Ry (py) are written in I
in the order <pk,LT(pk),RT(pk)>-
It is easy to prove by induction on the order of T that II thus
formed does not. contain a suhsequence (3.3) and . therefore
HeSSn, furthermore -for two non-gimilar trees T and T', their
respective permutations Il and I' satisfy ~ I#FI’',

The one-to-one correspondence between SSn and the class
of binary trees of order n will be shown by proving the .converse
of the above statement. We. need.the following lemma.

Lemma 3.2 Let: <bl'b2""bn> be the SR inversion-table of

such that nessn , then for a node labelled k in

|
T ;¢ | L
(RO

Proof We show that the elements which are counted by bk are

(k)IEER'

exactly the ones which are inserted into LTn(k) by Construction-T.
Clearly, only an element j such that j<k and jELW(k) ¢can..be inserted
into L (k). If no éuch element exists in I then bk=o and the
subtreeﬂLTt(k) is empty. Assume by >O. Since T€S5,; all elements

in Lw(k) age,either bigger or smaller than both k and 5 ,any

othier possibility will create a subsequence (3.3) in I . Therefore,
application of Rule 1 will force 4 to be inserted into the

same subtrees as k , finally j must be compared with k and

since j<k it follows that jelg (K). 0
T
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“Theorem 3.2 Let H,H'eSSn , .then if M=I' it follows that Tﬂ#TH..

Proof Given the tree mn , the SR inversion—tablé of T

can be formed by writing next to each node the size of its
left subtree , then copying those numbers to the corresponding

projection points -of mw on L . Suppose T"=Tﬂ, , then this

will imply that I and ' have identical SR inversion-tables

thus contradicting ="' .

3.3 THE INVERSION-TABLES

In this section we show a characte.lzation of the members

of ssn in terms of their BR inversion-tables.

Theorem 3.3 The entries of the BR inversion~tabkle <bl,b2,..,bn>

of the permutation H=<pl,p2,..,pﬁ satisfy:
bi_>.bi+l for l<isn-=1l , (3.4)
iff MeSs, .
Proof Assume that Ti£8S,
pj>pi>pk and i<j<k . (3.5)
We choose py, to be the rightmost: element in' whicﬁ can be
a member of such a subsequence; in other words there is no
element in Rﬂ(pk) which is smaller than p,. Let there be m
elements in R“(pk) ( m ¢an be zero). All elements in Rw(Pk)

are greater than both Py and py by the choice cf py, therefore

~we have in the inversion-table of I

B 2b_ . SR
Pi Py ®
pudBut p‘ERu(pi)"Rw(pk) , and so pj is counted only in bpi and

the following inequality holds ;

by Theorem 3.1, contains a subsequence

e O = ANt LA epga opE e
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bpiszk+l (3.7)
Therefore (3.4) does not hold.

Conversely , let <bl,b2,..,bn> be an inversion-table of
H=<pl,p2,..,pn> for which (3.4) is not satisfied. We will show
that I has an occurrence of a subsequence (3.3).

‘Since condition (3.4) is not satisfied we must have two
entries bz and bl+l such that b2<b£+l' By the definition of
a BR inversion-table EeRﬂ(z+l) and there is at least one element
between % and 2+1 in II which is greater than 2+1. Call this
element g. Then ,the three elements .$%+1,g,8> form the desired
subsequence (3.3) in T. O ’

Remark : In [20] Knott proves that the BL inversion-table of
1.  satisfies by=b; <2 iff NeSS;. This is
equivalent to Theorem 3.3 since the BL inversion~table
of 1 is equal to the vector subtraction of its BR
inversion-table from the vector <n-1,n-2,..,0 >.
The proof inEZO]is longer and employs induction, it
was brought tc my attention after this work has beeﬁ
completed independently.

,b2,..,bn> which satisfy {a) bikbi+l

Sequences <bl

and (b) bisn—i , may be called ballot-sequences since they

are directly related to the classical ballot problem [4,pp531].
follows from Theorem 3.3 that the BR inversion-table of menbers
of ssn is a bellot-sequence. Our next theorem shows a connection
between the serjuence of operations I which sorts é permutation
I of 88, and 1its BR inversion-table. The proof is based on

the natural correspondence between ballot-sequences and lattice~

pathS ‘
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Consider the lattice-diagram in Fig 3.2 . We assign the
weight i to the line that joins the points (i,3) and (i,3+1).
The set of paths from (o,n) to (n,0) which pass through points
(i,j) where i+jsn and consist of unit steps from left to right
or downwards , are in one-to-one correspondence with the set
of ballot-sequences of length n , with respect to the sequence

of weights in the path.

s
S l \
L3 ) ~ ' Figure 3.2
Xgf | |
Lol
] C o
l .
% xt‘]
Lo
L e X |

- . e -
Theorem 3.4 Let B=<bl,b2,..bn> be thngR inversion-~table

of HeSSn and let P be its corresponding lattice-
path. The operation sequence I can be constructed
by reading P from left to right denoting each

. vertical step by 'S' and horizontal step by '¥' .

*¥llustration In Example 3.1, the lattice-path P is constructed

from the’ inversion-table B=¢3,2,1,1,0> of the permutation
M=<4,1,2,3,5> . Reading P as described in the theorem will. ..
produce:-- L =<8,5,X,5,X,5,X,X,5,X> , since L(Il)=<1,2,..;n>

it follows that L=L .

Proof We construct the seguence of diffeorences D=<dl,dz,..,dn>

from B wuch ‘that
dlﬂn—bl and for 2<isgn di=bi_1—bi .

In P , d; counts the number of vertical steps preceding the

&
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first horizontal step ,for 2s<isn di counts the number of

st t

vertical steps between the i-1 and i h horizontal steps.

We prove our theorem by showing:

(a) L begins with 4, '8" operations,

t th

(b) there are d, 'S' operations between the 1-1%% ana i

i
'X' operations in T . Here we have two cases,(3)d ;=0 and (2) d;>0.

proofs of (a) and (b) : P
ga) By the definitions of D and B , dl gives the position of

the integer 1 in T , therefore sorting 1 with a stack requires
that dl elements are ' pushed into the stack before 1l can

be removed from stack to the output.

(b) case 1 ; a,=0 => by _1=by => jen (i-1) , therefore no

'S' operations are reguired between the removal of i-1 and i
from the stack during the sorting process.

Case 2 ; di>0‘=> ieRw(i-l) , in this case di counts the

elements which are greater than i-l in Rﬂ(i~l)~Rﬂ(i). These

elements are exactly the ones which are pushed into the stack

between the removal of i-1 and i to the output. Hence , also
st

in this case L ‘has di 187 operations between the i=-1 and
ith 'X' operations. [
3.4 “° MONOTONIC SUBSEQUENCES IN MEMBERS OF SSn‘AND THEIR

RELATION TO THE CORRESPONDING BINARY TREE

The first theorem in this section places HeSSn in a unique

' position,withkreSpect to its LDS and LAS, among all other

permutations which are mapped by Construction-T into a tree

g¢imilar to T" .
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Theorem 3.5 Let T be a binary tree of n nodes and G={HO,H1,..,H2}

the set =f all permutations such that T, =T for
i
Ogi<f® . hamt di and a; denote the lengths of the LDS

and LAS in HieG. Without loss of generallity we assume

that Il eSSn. We then have

0o

dosdi and aOZai for 1sisf .

The proof is based on the following algorithm which gradually
rearranges the elements of Hi where lsis<? until HO is obtained.
We first define a procedure called BT which is employed by this
algorithm.

Procedure BT ‘Given an ordered set’ of distinct elements

P=<pl,p25...pk> where k>2 ;

.BT1 : Create two ordered sets P2 and P3 where P=PluP2uP3,
such that Pl={pl}' P2={pi|pieP and pi<pl} and
P3={pj|pjeP and pj>pl} . The order of elements in
P, and Py is consistent with their order in P.

- BT2 Place the sets created in Step 1 in the order

<Py, (P,) ,(P4)> enclosing egchnsetmin brackets only

if it contains more than two elements.

ALGORITHM 3.1 Initially a permutation II _enclosed in brackets

is given.
Step 1 : Apply BT from left to right on every set enclosed
in brackets,then delete those brackets. - -
Step 2 : If no set created in Step 1 has more than two elements
stop, else go to step 1.

Example 3.2

Let =<4,2,6,3,8,9,7,1,5> , we give the sets which are
created after each application of Step 1.
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Initially : (4,2,6,3,8,9,7,1,%)
Pass 1 : 4,(2,3,1),(6,8,9,7,5)
Pags 2 : 4,2,1,3,6,5,(8,9,7)
PaSS 3 H 4’2,1,3,6'5’8’7'9

Lemma 3.3 Let HeG-{HO} be the input to Algorithm 3.1. Then,
(1) step 1 is performed no more than k times,where
k is the height of TTr '
(2) if s=<sl,sz,..,sn> is the permutation obtained
after the algorithm terminates,then S=HO.
Proof Let P=<py,Pys-+sPy> be an input sequence to procedure BT

and P its output (brackets are disregarded). Then , Tp and T§

have the same root Py the elements of P2 are inserted into

“both Lo (py) and LTﬁ(pl) and those of P, into R4 (pl) and RTg(pl)i

p
By definition we then have Tp=T§ , furthermore when T§ is produced
by Construction-T from ?, LT_(pl) is completed before RT_(pl)
p P

is started.

»

th pass of the algorithm , procedure BT creates

In the i
sets which form left and right subtrees of roots at level i-1

in T . Therefore the algorithm can have rno more than k passes
T

and (1) is proved.
Consider the permutation S, since it was obtained by applications
of BT to sets that form subtrees in T, it follows that TS=TH.
Suppose that SKSSn. Then § contains a subsequence
Sj>si>sk and i<¢j<k .
This implies that “when, T+ is produced by'Construction—T from S,
there exists a root Sy, ( possibly Sh=si) such that Sj is inserted

into R (Sh) before s, is inserted into Ly (sh). This is impossible

il
lS 8
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by the definition of BT and Algorithm 3.l. We therefore conclude

that Ssssn and by the one-to-one correspondence of Section 3.2

S=HO . 0

Proof of Theorem 3.5 Let HieG-{HO} and let <pi,pj> be a

non-inversion pair in ;. We apply Algorithm 3.1 to My - By
the nature of this .algorithm, pj cannot be moved to the left
of Py hence all the non-inversions in I, are also non-inversions
in the final permutation S=HO .
Let A=<pil,piz,..,pir> be a LAS in Iy (r=ai), then all
the (g) non-inversions defined by A" are present in Mge therefore
2 ) ==
ag=ay - On the other hand , let D <sil,siz,..,siq> be a LDS
in 11PN (q=do) , then since Algorithm 3.1 does not form any

new inversions it follows that D is also a descending sabseqguence

in 18] and diado. O

We now demonstrate a connection between the LDS in
IIeSSn and the traversal of T, in symmetric order. Traversal
methods of binary trees can be classified according to the sequence
iri which a root and its two subtrees are visited, in the symmetric
order the sequence is: (l) left subtree (2) root
(3) right subtree . It follows from the construction of Lemma 3.1,

that given a tree T° with its SLBR labelling ; the labels

of T listed in their symmetric order will form an ascending sequence.

In (4,pp 317] Knuth gives an algorithm for traversing a binary

_tree in symmetric order using a stack. For reference,we first

présent Algorithm 3.2 which is basically equivalent to Knuth's

algorithm, then the following theorem is proved.
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Theorem 3.6 Let T be a given binary tree and let IeSS_ such
n

"~ that Tn=T’ then the maximum depth of stack achieved
during the traversal of T by Algorithm 3,2

is equal to the length of the LDS in Il .

ALGORITHM 3.2 Given a labelled binary tree T, T is traversed
and the labels are listed in symmetric order. The
following notations are used : ST— top of stack,

RS(ﬁ) and LS (L)~ right and left son respectively

_ of the node in L (nodes are called by their labels).

: Let T be a left subtree of a dummy root called’cs
Step 1 (Initialize) : Set L='cO.

Step 2 (Insert into stack): Set ST=L.

step 3 (Check for left son): If LS(L) does not exist go to Step 5.
Step 4 : Set L=LS(L), go to Step 2.

Step 5 (Remove top of stack): Set OUT=ST

Step 6 (Check for end y: If oUT='00 stop, else write OUT on output.
Step 7 (Check for right son): If RS (OUT) exists set L=RS(OUT)

and go to Step 2, else go to Step 5. 0

Proof of Theorem 3.6 We observe that the sequence of insertions

(Step 2) and removals (Step 5) from stack,made by Algorithm 3.2

while traversing T , is equivalent to the sequence of operations

needed to sort N with a stack (we ignore the insertion of €0

to the stack). Therefore it is sufficient to prove that the

maximum depth of stack achieved while sorting 1T is equal to
the length of its LDS.

Let D=2d. ,d, ,..,d, > be a LDS in I. Since no member
| iy, i
of D can be removed from the stack before dizpthe stack must

have at least % entries.
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Conversely, assume that in one stage of the sorting process

b, ;eqb, >
' T vy
1 t2 Tn
,then B is

m entries of the stack are occupied where m>%. Let B=<bi

"be the elements present in the stack at that stage

a descending subsequence in 1T , a contradiction to the definition

of D. [
Remarks

(1) Considering all binary trees of n nodes equally probable, empirical

results for the expected maximal depth of stack achieved by §

Algorithm 3.2, show agreement withfﬁﬁ—l.G [4,Ex 1l,pp 3297 . g
By Theorem 3.6, this is also the expected length of the LDS E
in a random permutation in SSn. It is interesting to compare

- this value with the corresponding result (2//4) observed in
[7] for ordinary permutations. .
(2) A sequence of numbers S can be sorted by a method called ‘

Tree Insertion Sort [16,pg 4286) as follows;
Stage 1 : map S into a binary tree Ts using bonstruction—T,
Stage 2 :-traverse Ts using Algorithm 3.2.

oy theorems 3.5 and 3.6 , it follows that the number :
of storage locations needed for the stack in Stage 2, is

bounded by the length of the ILDS in S. |

pefinitions I .

(1) Given a permutation I=<pj,Pyrs«Py> ¢ a descending run in - |
I is a sequence of successive elements pi’pi+l""pi+k
such that pi~l<pi>pi+l>‘“>pi+k<pi+k+l .

. (2) The permutation I has k readings if k scans of f from %
ieft to right are required to read off all its elements :

such that ;
(a) each scan reads off the maximum number of elements

which appear in I in their natural order,

b — A —————
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(b) call the sequence of elements read off in the
ith scan Ry, then R, has the integer 1 as its
first element , the first element in R, ., is
greater by 1 than the last element of R, .

A composition of a whole number n into m parts is a

m

vector C=<cl,c2,..,cm> such that ci>o for l<iem and iilci =n.
Following[21] , a composition C of n can be represented

as a zig-zag graph, this graph contains m rows with cy

dots in the ith row, for 1>l the first dot in the ith row

is written under the last dot in row i-1l. Given a composition
C , we obtain its conjugate composition a=<al'62""5n+l—m>
such that for lgisn+l-m , c; is equal to the number of

dots in the ith column (from left) of the zig-zag graph of C.

For example let C=<3,2,4,1> be a composition of the integer 10.

The zig-zag graph of C is v

therefore 6;<l,l,2,2,l,l,2>

Given a permutation IleSS. , let L be the segquence of operations
which sorts T with a stack. Scanning L from left to right ,
we call each sequence of consecutive 'S' operatic: an Szgroup
and such a seqﬁence of 'X' operations an X-group. Clearly,

the number of X-groups is equal to the number of S-groups,

two S-groups are seperated by an X-group and vice versa.

The S-specification and the X-specification of I are vectors

<sl,sz,.‘,sz> and gxl,xz,..,xz>re5pectively, where for

lgizt Sy denotes the size of the ith S-group and X

the size of the ith X=group.
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Theorem 3.7 Let H=<pl,p2,..,pn>eSSn have a sorting sequence

of operations L , then
(1) I has the S-specification <8148, ,00,8,> LEE

I has & consecutive descending runs where the
th

size of the 1 run is Sy
(2) L has the X-specification <xy,X,,..,X,> 1ff
HR=<pn’pn—l""pl> has & readings where the

size of R, 1is x..
i i

Illustration Let 0=<9,3,2,1,8,5,4,7,6,10> . The descending

runs in I from left to right are ;
<9,3,2,1>,<8,5,4> ,<7,6>,<10> .
Thé readings of HR are ;
R =<1,2,3> , R,=<4,5> , R3=<6,7,8,9>v R =<10> .
The sorting sequence of I is ;
L=<s,s,s,s,X,%X,%X,5,5,5,%,X,S,5,X;X,X,X,8,X>,

Its S-specification is <4,3,2,1> and the X-specification <3,2,4,1>.0

Proof of Theorem 3.7 (1) We put next to each 'S' and 'X' operation

the element of 1 which it puts or removes from stack.

Case (a) : Py and Py, are in the same descending run <=>
P;>Py4p <=> S(pi),is followed immediately by S(pi+l) <=>
s(pi) and S(p,,,) belong to the same S=group.

Case (b) : Py and Py, are in different runs <=> pi<pi+l <z
X(p;) appears in L between S(py) and S(py ).

We conclude that for each descending run in l,we have a corresponding

_S~group which cortains as many 'S' operations as elements in

this run.
(2) Each X-group in L removes a maximum number of elements

from stack which are stored in their reverse natural ordei.,

Aot ot ey e Ry
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Furthermore , if the last element removed by the ith X-group

is Py the i+lSt X-group will start by removing pj where
pj=pi+l and pjeRw(pi). Hence , by definition,the ith X-group

removes from stack exactly the elements of R, in R, O

Theorem 3.8 Let HeSSn ,then the number of descending runs in

T is equal to the length of its LAS.

Proof Let A=<a, ,a; y.+,84 > be a LAS in II and let Dl'DZ""Dk

12 %
be its descending runs. Since no two members of A can belong
to the same descending run,we have k:z%. Let ~D=<dl,d2,..,dk>

be a subsequence of ]I such that for lgigk a, is the last

element in Di‘ We now show that D is an ascending subsequence.

suppose that for two successive elements in D we have dy>d; 4 q

since d, and d, . are in different runs we must have an element

deDi and deLn(di+l). The three elements d 'di and di+l appear

+1
in I in the order <di’d'di+l> and they satisfy

d>di>di+1 .
This contradicts MeSS - Therefore D is an ascending subsequence

in 1 "and k<&. We c¢onclude that k=f and D ig a LAS in I . 0O

Let 11 and Tap be two members of S5, (not necessarily

. distinct) such that their corresponding trees T, and T, _ are

RF
reflections of each other about the vertical axis. In Lemma 3.4

we show an interesting relation between the operation=-sequences

L and ERF which sort I and HRF with a stack. This relation

is then utilized in deriving a simple expression for the expected

length of the LAS in members of SSn.

S
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" order are equivalent to those necessary for traversing T
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I - ' ' ' ‘
Lemma 3.4 Let X—\Al,xz,..,xk> and XRF <xl,x2,..,xm> be the
X-specifications of L and ERF respectively. Then the
IR S . - ’
vectors X —<xk,xk_l,..,xl> (the reverse of X) and

X e conjugate compositions of n.

Ry &F
Illustration Consider the permutations N=<6,3,2,1,4,5,8,7>

and HRF=<3,1,2,6,5,4,7,8>. The corresponding binary trees
are shown in Fig 3.3 (a) and (b) respectively.
The X-specification of L is X=<3,1,2,2> and xR=<2,2,1,3>

The zig-zag graph of xR is . and therefore its conjugate

is ¥R=<1,2,3,1,1> , we then have X°=Xgp.
6 © 3

Figure 3.3

,Proofv A binary tree is traversed in reverse symetric order if

a root and its two subtrees are visited in the order (l) right

subtree (2) root (3) left subtree . We observe that the operations

which are required in oxder to traverse mﬂ in reverse symwetric
. TR

in symetric order. Therefore L and ERF specify the stack

operations for traversing TW in symmetric and reverse symmetric

order respectively. For two consecutive labels i and i-1l we

‘can have (a) ieRTw(i~1) or (b) inleLTﬁ(i) . While traversing

T, in symmetric order , (a) implies that i must be stacked after

i~1 18 written on output and therefore % (i-1) and X(i) are

in different X-groups ,(b) implies that i ig present in stack

T I T
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when i-1 is written ,;hence X(i) and X(i-1l) are in the same
X-group. It is easy to sue that in the reverse symmetric order
traversal of T, we have exactly the converse, l.e. the labels

i and i-1 are written on output by the same X=group in Lpp

in case (a) and by different X-groups in case (b).

We can represent X as a zig-zag graph in which the ith
row contains the elements written by the ith X-group in L.
By the above argument , it follows that the ith X-group in ERF

h column in this graph,where

counting starts from the rightmost colimn, For example in the

will write out elements of the it

above illustration the graph is 123 and thé X-groups of
4

56
78

Lop write out <8>,<7,6%,<5,4,3>,<2>,<1> , where brackets
enclose elements of the same X-group .. Therefore x® and XRp

are conjugate compositions and k=n+l-m . [

Theorem 3.9 The expected length of the LAS in a random

permutation in SSn is n+l
2

Proof We define a'mapping RF:8S »SS, =~ such that TeSS  is
mapped into HRF by RF. Suppose that the length of the LAS

in T is equal to k. By Theorems 3.7 and 3.8 this is also the
number of components in the S-specification and X-specification
of the sorting seyuence L. From Lemma 3.4 ,the length of the
LAS in HRF‘iS ntl-k. Since RF is a one-to-one correspondence
our result follows. [

et

foga

e e gt




62

376 PROPERTIES OF THE PERMUTATION GRAPHS ASSOCIATED WITH SSn

Definition-

Let P=<vl,V2,..,vk> be a path in the graph G, P has.a,

triangular chord if for some index i ( lsisk-2) Vi_ﬁ"vi+2'

Pheorem 3.10 Let G be a permutation graph with lV!=n. Then

the following conditions are equivalent;
(1) at least one of the 1abellings of G with
N, gives rise to a defining permutation HeSSn,
(2) G does not contain a path of length 3 without
4 triangular chord.
Proof (1)=>(2) ; Let G(N) be the graph which is obtained by
labelling G with Npsuch that eSS/ is'its defining permutation.
Suppose that G(N) contains a path p=<i,q,k,4> without a triangular
chord. There are two possible transitive orientations of P,
(a)i¢j,3+k,k«% and (b) i+j,j«k and k*& . This implies that
either
<i,k,3> with k>i>j or <j,%,k> with 2>j>k (3.8)
are subgequences in T , thus contradicting Hessn.
(2)=> (1) ; We show that G which catisfies cendition (2) can be
transitively oriented without using Rule 1 of Algorithm 1. .
This implies that for every three vertices x,y and z such that
Xy o Yt and x~4—z we assign directions x¢y and y*z. (3.9)
Clearly , the defining‘permutation which results from such
“an orilentation is a member of S8, irregpective of the orientation
assigned to the edges of C.
Let Gl'GZ""Gk be subgraphs of G such that G,=G and
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for lsisk-1l Gi+l is obtained from Gy by removing the edges
which were oriented by the ith pass of Algorithm l.l.(Gk is empty).
We prove our theorem by showing;j

(a) if Algorithm 1.1 is forced to use Rule 1 in the ith pass

then Gi’violates condition (2),
(b) if Gi violates condition (2) so does Gi—l'
Proofs of (a) and (b).
(a) If G, is a union of disjoint complete -graphs then neither rules
are used , otherwise we can find a vertex b such that
a—aIb,c—aIb and a—é;c 7e then start the pass by orjenting a*b
and c+b. Assume that we have to switch from Rule 2 to Rule 1
duriné this pass. This implies that we have three vertices
e ,£ and ¢ in G, such that
e+f , f~azg and e—é;g . ' (3.10)
. Since this is the first switch,e”f was oriented by Rule 2.
Therefore there is a vertex d in G, where
erd and d—§-f . (3.11)
i ‘

By (3.10) and (3.11) it follows that the path <d,e,f,9> in G,

does not contain a triangular chord.

(b) Let P=¢q,r,s,t> be a path without a triangular chord in Gy.
Then P had at most one triangular chord in Gi—l , Since the_i-—lSt
pass can orient only edges with a common end point. Without

loss of generality , let this chord be gg—s and assume it

was directed g«s . Then a vertex u must ;;ist in G,_, where 7
s+u and q~é7:§ (as shown in Fig 3.4) (3.12) |
From the fact th;t S*EIt (and was not removed after the i—lst pass)
we have
tz—u and tg—d . (3.13)
i-1 i=1
Figure 3.4

By (3.12) and (3.13) it follows that P'=<u,t,q,r> is a path

without a triangular chord in G,y In a gimilar way, the
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assumption that the chord qg—S was directed s+q will also
i-1
lead to a violation of condition (2) in G;_ 4. 0

Theorem 3.1l Let G(N) be a permutation graph which has I

rise to the forbidden subsequence <cl,c2;sj>. Hence 03=si=sj‘ 0

(1) By Theorem 3.11,it follows that if NeSS, is a defining permutation

c

as its defining permutation. Let Cl,Cz,.., Kk

be the cliques of G where s, is the smaliest
label in C,. Then ¢SS iff izg=>s,#S. .
i n 773
Proof Let Ci and Cj be two distinat cliques 1in G(N), suppose
si=s.=2. There must be two vertices cigCi and cjeCj such that
C -t .+ Let n=max(c,.,C. =mi c.). We then have
i—éTﬁch t n=max(c; J) and m=min(cy, j)
“Men, %> as a subsequence in II , and since n>m>2=>HﬂSSn.

~ Conversely, assume that H/ssn , let <cy:C,,C3° be a
forbidden subsequence (3.3) in I , We choos‘e'c3 to be the f
; ]
smallest slement in N which can join such a subsequence with ;
. ] } ) 3 15" “
cy and Cye Since crafﬁycz r ©q and ¢, belong to two dlf_grgnt ’
cliques Ci and Cj respectively, ¢, is adjacent to both cq f
and ¢, and therefore c3€Cfﬂcj.
Assume that CB>Si , then a transitive orientation in G(N) %
from high to low gives,
L 3 ‘Wed P . - i
cyrsy (both in the same cllque),cz+c3,c3'>si >Co*s, . !

Therefore <cl,02,si>is also a forbidden subsequence in I, in

contradiction to the minimality of cg. Similarly c’3>sj gives !

of a graph G(N), then G(N) can have nr more than n cliques.
This could also be proved from the first part of Theorem 3.10

since condition (2) of the theorem implies that G is




(2)
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chordal[22], it is well known that a chordal graph can have

no more than n cliques .

since each clique in G(N) correspohds to a maximal descending
subsequence in its defining permutation I, Theorem 3.11

can also be stated in terms of descending subsequences.

We call the last element in a maximal descending subsequence

its end point.The following theorem is equivalent to Theorem 3.1l.

*
Theorem 3.11 Let I be' a permutation on ihe set N. Then

eSS iff no element in I is an end point

of mcre than one maximal descending subsequence

in 1.

3.7 BSTANDARD YOUNG TABLEAUX

Given a sequence of distinct elements 1, let D(II) be a

subsequence of I which is constructed from the last elements

of the descending runs in II (as shown in the proof of Theorem 3.8).

We can construct a progression of sequences ni,nz,..,nk

in the

following way.. Let T,=I , for 2gisk I;= Hi_l-D(Hi_l) and

Hk=D(ﬁk). In words ,the segquénce Hi is a subsequence of H'»l

which is obtained by eliminating the elements of D(ni—l) from

ni—l.

The next theorem provides a simple method for constructing

the sY7T of HeSSn.

Theorem 3.12 Let I be a stack sortable sequence , then the

jth row in the SYT of II is equal to D(Hﬁ).

Illustration

o R ey wm e e e -
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D(H2)=<2,5> ' n3=<6> and D(H3)=<6>. Let S(II) be the SYT of I.
4

Then S(II)=

13 .
2 5

6
Proof We use induction on the length of II. It is easy to verify
the correctness of the theorem for sequences of length 2 , assume

that it hclds for sequences of length k<n . Let Il be a stack~

sortable sequence of length n, Let T' be the sequence of elements

which are bumped from the first row of S(II) during its construction,

such that elements appear in II' in the sume order in which they
were bumped.It is well known that rows 2,3,.. of s(Il}) form
a SYT which is equal to S(II') [16,pp 547,

We now show that the elements of Di(H) (ith

run in 1) go
into the ith column in the first row of S(I). This is clearly
true for Dl(H), let % be the first index such that yeDL(H)
goes into the jﬁh column,where j<& and slj=x. Then x>y and
xeL“(y). Since x and y belong to two different runs,thére is

an element z between x and y in 1 such that z>x. Then II contains

a subsequence <x,z,y> with z>x*>y , & contradiction. Therefore,

the first row of S(l) consists of the elements of D(I) . Furthermore
the sequence of bumped elements n' is equal to H—D(H)=H2. Since

. is a subsequence of II it is sortable with a stack ; our

2
result follows by applying the induction hypothesis to S(Hz). 0

Given a valid sequence of operations L , another valid
sequence can be obtained by reading I, from right to left,
replacing 'X' by 'S' and vice versa. We denote the sequence
’thus constructed by ic ; and call the sequences I and EC conjugate
operatioin sequenccs. Two conjugate operation sequences correspond
to the two modes in which a lattice-path (as in Fig 3.2) can

be read.
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Theorem 3.13 Let L and EC be two conjugate operation sequences

of length 2n, and let Il and HC be the members
of SSn which are sorted by those sequencés respectively.
Then S(II) and S(HC) have the same shape.

Illustration Consider the permutation I =<2,1,6,3,5,4> of

the previous illustration . Its sorting sequence is;

(@]

Hc:<4,2,l,3,6,5> and S(HC)= 5 which has the same shape

[=) RS

1
2
4
as S(I) in that illustration.
Prcof The proof is by induction on the length of L. The theorem
holds trivially for sequences of length 4., Assume correctness
for k<2n,Since L and EC have the same number of X-groups (or
S-groups) it follows by theorems 3,7 and 3.12 that the first
rows in S(II) and S(HC) have an equal length.

Let II' be the sequence of bumped elements in 8{i)(as in
Theorem 3.12)and let i' pe the sequence which sorts II' with
a stack. Then i' can be obtained from L by eliminating the last
'S' in each S-group and the first 'X' in each X-Jroup, since
those are the operations which put and remoz ‘rom .tack the
last elements of runs in I, Let H'C be the .. cuence of bumped
elements in S(Hc) v then its sorting sequence ﬁﬁc can be
obtained from EC in the same way as i' was obtained from L.
Now , each last 'S' in an S-group and first 'X' in an X-group

of I , correspond to a first 'X' and last 'S' in X-groups
‘ A

- . ) - ) - !
and S-groups of La respectively. Hence , L and L ¢ are
conﬂugate operaktion sequences, by the induction hypothesis S(I')

and S(HYC) have the same shape. [
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3.8 THE NUMBER OF INVOLUTIONS IN SSn

It is well known[1l6]that a permutation is an involution
iff it does not contain a cycle with more than two elements.
Using this fact , we prove in Lemma 3.5 that the set of involutions
in S8, is equal to SSAWSRn. A simple expression for the cardinality

of this set is then calculated in Theorem 3.14.

Lemma 3.5 Let MeSS_ , then Il is an involution iff HeSSA?SRn
Proof The 'only if' part follows directly from the definitions.,
We prove the 'if' part by showing that a permutation which is

a non-involution must contain at least one of the subsequences
(3.2) or (3.3) , therefore it is not a member of SSATSRH.

Let 11 be a non—involution , then II contains a cycle of
length k23. Let this cycle be [al,az,..,ak] where a,y is the
smallest eiement in this cycle. We can arrange the elements
c¢f the cycle according to their original order in H:in the
following way. First we sort the cycle into ascending order,
then write under each element its right successor in the cycle,
the secohd line thus obtained forms a subsequence of I . For
example if II contains the cycle Cl,4,3,6,5] then the above
operations will give [? 345 %] and <4,6,3,1,5>15 a subsequence

46315
of Il (al ig considered to be the right successor of ak).
We distinguish between two cases:
Case 1 ; a,%a,y . Let k=3 , then after sorting the cycle we et
aq a, aj and <8y,85,8y> forms a subsequence (3:3) in I,
a, aj a, |
Assume that k>3. We sort the cycle by placing a, on the right

it e g e e e
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of ay then inserting the elements ak,ak_l,..,a3 one by one
into their correct positions. We write under each element its
right successor when it is inserted. If ak5a2 then ay is
inserted on the right of az'and we 'get the same result as in

the case k=3, a,_ playing the role of a,. Assume that a, <a,.

k

We insert Apnqr8pagree into their positions until an element

Ay .y is found such that a,_;>a, . the existence of such an element
is guaranteed since a,>a,. The element Ay i+l is smaller than

a, , hence after inserting a,_, we have the following configuration
al..'..ak~i+'l..'.a2 ak—‘i (3.14)
az! 8 5 0 ak-i+2. L B a3 ak_i+l

and <a2,a3,ak_i+l> forms a subsequence (3.3) in I .

Case 2 ; ay>aj . If k=3 we have the configuration ‘él a3'a2
a, a; ag
after sorting the cycle,and <a,,a,,23> forms a subsequence (3.2)
in 1. Assume k»3. If ap<a, we obtain the same subseqguence,
we therefore consider the case ap>ag. We use the same procedure
as in Case 1, this time we search for the first element a,_,
such that a, ;.1”8, and p .38y We then have the configuration
5 i T A R T R Al (3.15)

a2 ak_i+l 336...ak‘_i+2.‘--‘ |
and .<a2,ak~i+l,a3> is a subsequence (3.3) in I. 0O

Theorem 3.14 The number of involutions in 88 is equal to 2"l

1

Proof By Lemma 3.5 ,we have to show that there are 2h”

| permutations of length n which do not contain subseguences

(3.2) or (3.3). A PermUﬁatiOn'HcSSJﬁSRn can be characterized

by the following property of its maximal descending subsequences.

R R




70

Let D=<d., ,d, ,..,d, > be a maximal desscending subsequence
i Tk
in a permutation ]I of order n, then HGSSAWSRn iff for isjsk-1,

(elements of D appear in reverse natural order). (3.16)

d., =d, +1

TS

Proof ;

Clearly every permutation which satisfies condition (3.16)

is a member of SSA]SRn , since each of the forbidden subsequences

(3.2) and (3.3) have at least onc pair of elements which

belong to a descending stbsequence and are not in reverse natural

order. We now show that :if any violations of condition (3,16)

occur in T tuen HﬁSSAWSRn.
Suppose that for some index m , (lsmsk-1) a, #di +1. Let
m m+1l
i. +1l=%. Then & can not appear between 4, and di in I,
m+1l *n m+1
Therefore one of the two sub-

a

since it is not a member of D.

L 4> must appear in

sequences <&,d, ,d, > or <d, ,di
' m+ 1

_ m m+1 m
I , thus contradicting HeSSA\SRn.

For each permutation HESSA\SRn, we can generate two permutations

M, and I of order n+l as follows;

1 2

(a) generate Hl by inserting n+l one position to the left of

n in II ,

(b) generate H? by putting n+l after the rightwost element

in 1,

Clearly ,copdition (3.16) is not violated in Hl and T,

thus generated. Furthermore , inserting n+l in any other position
of I, generates a maximal descending subsequenze ( with n+l

as its firxst element) which does not satisfy condition (3.18).
Therefore Hl and H2 belong to Ssn+JWSRn+l“ Since all the elements

of SSn+fWSRn+1 are generated in this way,; we have
Issn+{\snn+ll=2lssnﬂs§ | . (3.17)

our result follows from the fact that SSjWSRB contains 4 elements,

namely, <1,2,3>,41,3,2>,<2,1,3>,<3,2,1> . 0O
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3.9 THE AVERAGE NUMBER OF INVERSIONS

as ,
p dnk(r) = "= (3n+1)c (3.20)
eSS,
: n
from which the result follows . ) 0

Theorem 3,15 The average number of inversions in a random

permutation of S8, is

1( 4" - 3n -1).

2 C
n

Pproof Let i(ll) denote the number of inversions in a permutation

i o Lk

I and int(T) the internal path length of the tree T. " i

The sum of sizes of all subtrees in a binary tree (or any

other tree ) is equal to int(T). This follows from the fact IR ;
that in a tree T, the distance of vertex i from the root is ‘
eqﬁal to the number of subtrees in which i participates.

‘ . i
Let <sl'82""'sn> be the SR inversion-table of a E

permutation TeSS_ then by definition -

I o1 3

i=l
By Lemma 3.2 , 1(ll) is the sum of sizes of all left sub-
trees in TTr . Hence,by the symmetry of left and right
subtrees

I int(TW) = 25 i(m) . (3.19)
HeSSn I[eSSn

The value of the left member of (3.19) is given in [4, pp 404 ] ' L

Tt is interesting -to note that on the average a random permutation
of S8, contains O(nl‘s) inversions, whereas the corresponding

value for a random permutation of order n is O(nz).

L i SR
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AN ALGORITHM FOR GENERATING AND INDEXING BINARY TREES

4.1 INTRODUCTION

In this chapter we describe an algorithm which generates. all
‘shapes‘ of n-~noded binary trees. Such algorithms are used in

investigating and comparing various deletion schemes in binary

-trees [20 ] and can be effectively employed for systematic gene-

ration of combinatorial objects which are in 1-1 correspondence

with such trees [23,pp-154 1.

The algorithm is based on a correspondence between binary trees

and the class SSn of stack-sortable permutations, together with

a representation of such permutations as ballot-~seqliences (Theoren 3.3).;

Initially, a ballot-sequence of length n is generated. This is

then used to construct a binary tree. It is shr'mn that if a
ballot~sequence is an inversion table of.HeSSn, then the algorithm

generates Tw‘ Thus , by generating all ballot-seguences of.

e e

?%ngth n , all C, binary trees of n nodes are obtained.:

[

& ’ N “« s

A unique integer , numn(B), between 1 and Cn ' isléssociated with
each ballot-sequence B of length n , by using some combinatorial
préperties of such sequences. The lexicographic order is preserved
by this association , “hamely , for any two ballotfseqUences B and

B' , if B precedes B' then numn(B)<numn(B').

A gimple recursion relation , is used both in computing numn(B)
from a given B , and its inverse numgl(m) from a given integer
m<cﬁ. This provides the capability of storing a binary tree of

n nodes as an integer smaller than C, r as well as efficient

generation of a random binary tree.

T
.
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Definitions

Given a binary txee T , one of the following relations
can hold between two adjacent nodes i and j in T;
(a) iLSj (1 is the left son of Jj).
(b) iRSj (i is the right son of j).

(¢) iRE? (jRSi).

(a8} iLP3 (3jLsi).
A path <a_,&,,...,a,> between nodes u and k in T, where & = u

and a, = k, is danoted by PT(u,k). It can ke characterized

A
as a product of relations al'az',..,*dz where 2y is the

relation between ai_land a; in the path. Two paths ,PT(u,k)=

Ayt 0st pesyty and PT(r,s)=a°l-a'2‘,..,-aé are similar iff

for 1s<i<? ,”,ai=a'i. Similarity between two binary trees can

be now defined in terms of paths as follows; two binary trees

»

T and T with the roots r and r' respectively , are sinilar,
if there is a one-to-one correspondence between their nodes,
such that i1f ueT corresponds to u'eT' ,then PT(r,u)=PT.(r',u').
This definition is used in the proof of Thecrem 4.1, it is easy
to check that it is equivalent to the definition which was given

in Section 3.2.

4,2 GENERATION

fo-simplify the presentation,the generation of the ballot-
sequence ; and the construction of the binary tree , are given
seperately in two ﬁrocedures. Procedure BALLOT Qenerates the
next ballot-sequence from the previous one in an array B , and
then calls procedure TREE to construct the corresponding binary
tree. Semi-fornal descriptions with some explanatory notes are

given below.

S S
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ALGORITHM 4.1 (BALLUT)

The application of this procedure wiil generate all
ballot-sequences of length n in B, in their lexicographic order,
where the rightmost digit is the most significant ohe. Note that
by definition B[n)] is always 0, and the values of an entry B[i]
range from B[i+l] up to n=i. The algorithm is optiﬁal in the
sense that the new sequence is generated by setting only those

entries which differ from the previous one’':,

Step 1 : Set BInl=0.

Step 2
P 2.1 : Set B[n-1l=B[nl.
2.2 : Set B[n-2]1=Bln-11.
2.n-l:Set BL1]=B[2].
2.n :Set m=l.
-~ 8tep 3 : ( The next ballot-sequence is ready in B) Call ' TREE.

Step 4 : Set B[ml=B[mj+l . If B{ml>n-m go to Step 6.
Step 5 If m#l go to Step 2.n-(m-1) else go to Step 3.

Step 6 : Set m=m+l . If m=n stop , else go to Step 4. O

[}
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_“TREE - -Informal.description

Given a ballot-seguence in B , we create its difference-
sequence in the array D,as shown in the proof of Theorem 3.4.

By the definitions of D and B, it follows that for ls<isn,
p{ilz0 , and DL11+D[2]+,..,+Dnl=n.

The array D is scanned from D[1] to Dinl ,'and a portion
of the tree is constructed as each entry is processed , as
described below, During the construction, the nodes are labelled
from 1 to n in symmetric order.' This lapelling may be required in

some cases, and it also serves in proving the validity of the

aléorithm ", it can be omitted if we are only concerned Qith
the 'shape' of the tree. The algorithm also uses a stack.

Initially,a pointer P points to & dummy root labelled O , and
in general,P always points to a node labelled i-1 when DLi]
is processed. We distinguish between two cases;
case 1 - DLi]>0: Let DLil = 3 ,'th&u j new nodes are created

9y rggres 19y such that(i—jRFgl and for 1s2sj-1 g LFg, 4.

Each node is pushed into the stack after it is created,
finally, the last node gj is reitoved from the stack and
the label i is assigned to it (all the other nodes are

not labelled at this stage). The pointer P now points to

the node i.Thus, the path PT(i~l,i) is constructed, and

it has the following 'shape' ,

Figure 4.1 o 1
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case 2 - D[il=0: The node on top of stack is removed and assigned
the label i , again , P now points to i.
In this way,all the entries of D are processed to obtain
a labelled binary tree of n nodes. 1f only the 'shape' matters,
we may stop even earlier, - after . n nodes are generated. Finally,

the dummy root is removed and P points to its right son.

S ALGORITHM - 4.1 (TREE)’

Initially, P points to a dummy rooty sT is the top of an empty stack.

Step 1 : Set D[1ll]= n-B[1]l , and for 2<i<n set D[iJ=B[i-11-B[il.

Set i=1l.

Step 2 : Assign the label i-1 to the node which is indicated
by P.

Step 3 : Set j=D{i] . If j=0 go to Step 7. '

Step 4 . Create a node as a right son of the ncde indicated

by P, place the new node in ST.

Step 5 : Set j=j-l. If j=0 go to Step 7.

Step 6 : Create a node as the left son of the node which is in
ST , place the new node in ST , then go to Step 5.

Step 7 : If i=n go to Step 1.0 .

Step 8 : Set i=i+l .

Step 9 : Set P to point at the node in ST, remove that node
from ST , then go to Step 2.

Step 10 : Assign the label n to the node in ST. Remove the
dummy root , and let P point to its right son, then

stop. O

As an example,all binary trees of order 4 axe shown

in rigure 4.2 in their order of generation.




3100 14 16 3210

4

" Pigure 4.2- The binary trees
+ and their corresponding ballot=-

sequences 1ln their order of
generation by procedure BALLOT.
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Theorem 4,1 Let HGSSn have an inversion-table B . Then TREE

constructs from B a binary tree Ty o such that T =T, .

“¢.. . For convenience let the number O be added to 1 as its

leftn:.;t member, and let us consider the generated tree Ty with
(O,i)==PT (0,i) for lsisn,

b 'rr 8

(i-1,i) for the case when

i
According to the construction

its dummy root. We have to prove that PT

Pirst let us show that Pq (i—l,i)=PT
b

i-1 is to the left of i in .

of 'I‘1r , any element between i and i~1 which is smaller than i-1

will not appear on the path Py (i-1,i). Therefore ,consider
T

G=<gl,g2,...,gj=i> , the subsequence of all elements greater than
i-1 which appear between them in 1. If J=2 , then G is trivially
352 suppose that G is non-

a decreasing subsegquence . For '

with k<% , and

decreasing +then  we can £ind two elements gk<gz

this in turn implies that T contains a subseguence

g£<gk<gj=i and k<&<j (4.1)

o . *
dict the fact that‘HeSSn (Theorem 3.1 ) .Thus

(i-1,i) will have the 'shape'’

which would contra

G is always decreasing. Therefore PT
v

1,which is also the 'shape' of P (i-1,i) . since

shown in Figure 4,
b

" py definition j=DLil .

The proof now proceeds by induction on i. As a special case

Py (O,l)=PT (0,1). Assume that
b

i
v (4:2)

, Py (0,i-1)=Py (0,1-1) -
i b
When i-1 is to the left of i in I, then Py (i—l,i)=PTb(i~l,i)a
i .

e o a s e s
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This together with the induction hypothesisf/4.2) gives the desiéed
“result. Wﬁén i-1 is to the right of i in T, we need to show that
node i is placed at corresponding points on the paths fr 0 to

i~1 by both constructions. Clearly, in Tﬂ, i~1l is the ri, .cmost node
in the left subtree of i. Namely , the path Pp (i~1,1) has the shape
given in Figure 4.3 Note that in this case D[i]zo ., Therefore i

is assigned to the node on top of stack, which is the last one

generated before i-l;and having a left son. This observation combined

with{4.2) completes the proof.

B
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4.3 INDEXING BINARY TREES

To store a binary tree T as an integer, we need to know its

index with fespect to the generation scheme of procedure TREE.

This can be achieved by solving the following two problems:

i) find the ballot-sequence B which is the inversion-table
of Il € SSn, such that 'I‘Tr =T, 1

ii) find the number numn(B), of ballot-seauences of length n
which precede B.in the lexicographic order of procedure
BATLOT.

We shall later see that the difference-sequence D is genérated

in the solution of both problems as an intermediary step, and

‘therefore B does not need to be explicitly derived. However,

to simplify the presentation we shall solve both problems as
posed. The solution to the first one is an algorithm which
js the inverse of procedure TREE, and will be illustrated by
an example. Consider the tree T given in Fiéure 4,4 . T is
traversed in symmetric order, and the number of new nodes which
are pushed into the stack before the removal of the i'th node
from it is recorded as D[il. This results in the sequence

D = <2,0,3,0,1,0,1,1> which in fact is the difference=sequence
of the ballot-sequence cortresponding to ?. ﬁence, we find

B = <6,6,3,3,2,2,1,0>, - . The justification of this

algorithm uses the same arguments as in the proof of Theorem A.%a

Figure 4,4

Mt
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We now turn to the problem of finding numn(B) for a given
balldt-&equence. Let Snk be the set of all ballot-sequences

of order n, with exactly k non-zero digits,, A sequence Unkssnk
Qill be callea"a ﬁni£—sequence if its k non-zero digits, are,all -
equal to 1.

Lemma 4.1

1 for k=0 (4.3a)
1Sy 1= Is(n—l)k|+lsn(k—1)| for O<ksn-1 (4.3b)
° for k=n (4.3c)

Proof The relations (4,3a). and @.3¢) follow directly from the
definitions., To prove (4.,3b) we first‘show that
k

Isnkl= izlls(n—l)i] ' (4.4)

. k
by constructing a correspondence between Snk and Je== é:é S(n-l)i R
Given a sequence B=<bl,b2,...,bn>cssn  we define B'=<bi,b5,..,b$_l>

as follows ,

bl=b, -1 for  1sisgk

b
b}=b;=0 for  k<isn-1 , . (4,5)

Clearly, every member of S, is mapped by (45) into a unique member

of J. Conversely , given any B'eJ , we can find the unique Besnk

asgsociated with it using ,

by=bl+l for Lsisk

b,=0 for k<ign . (4.6)
This correspondence implies (44) from which %3b) is readily derived.. O

In the sequel the subscript of 'num' is omitted when it is applied

t6 unit-sequences.
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Lemma 4.2 num(U for O<k<n . (4+7)

a8 (ne1) (k19 |

Proof By definition the sequence U, is the first ballot-sequence
in the lexicographic which has k non-zero digits. Hence , the
sequences which precede Unk in this order , are exactly the ones
which have fewirlthan k non-zero digits. The number of such

sequences is P |Sni| . The result now follows from{.4). D
i=0 "

Theorem 4,2 For a ballot-sequence B=<bl,b2,...,bn> , let 94 Clsisbl) be
the number of elements in B which'are not smaller
than i. Then 4
b
zl
i=1
Proof The proof is by induction on the length of B. The result

npmn(B)= num(U(n+l~i)gi,' (4.8)

.is easily verified for sequences of length 2. Assume that it holds

for ballot-sequences of length n-1l. Let S(X) denote the set of

sequences which are generated before X by procedure BALLOT.

Since B has g; non~zero digits , it follows that S(B) can be
partitioned into two disjoint sets S (U ) and S(B)-S(U )= G.
ngy ng,

Therefore ,
= ) + ( = u . x . ! . 4'9
num_ (B) IS(Ungl)l |G| num(Ungl)+IG| , (4. 9)
N
Consider the ballot-sequence B' of length n-1 , which is obtained

according to{,5). Using the mappings of (45) and {46) , a 1-1

correspondence between G and s(B') can easlly be established. Hence,

numn(B)= num(Ungl)+numn_l(B'). (4.10)

‘Let there be gi digits which are not smaller than i in B' , then

[ A I DRI R R e A SLATIRTIY S A W g » A e o
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by the construction of B' and the induction hypothesis

9i=94 41 | (4.11)
b, -1
g

num, 4 (B')= L

num(Un-1) gy (4,12)

The result follows Ly substituting@.ll) and@.,12) into@.10). O

The two algorithms for computing numn(B) from B and its inverse

num__*

n (m) from an integer m<Cn ; are both based on Theorem 4,2.

However , they are considerably simplified by observing that in

the differcnce-seguence D[1l],...,D[n] of B, an entry D[k] rep-
resents the number of ti@éé that g9, is equal to k-l. The entry
D[l]is irrelevant in both cages. For fast performance , the
flgorithms make use of a pre-computed table TAB'containing the values
of num(Uik) lsisn and 1lsksn-1 , which can be computed directly

using the results of Lemmas 4.1 and 4,2

PV

it is a st?aightforward application of@.B). The computation of
the inverse in procedure INVNUM, is based on a recursive applica-
tion of({.10). Observe that in row n of TAB, num(Ungl) is the
maximal value smaller than m. Similarly, in row n—l,nuﬁ(U(n_l)gz)

is the maximal element smaller than m—num(Un ), and so on.

g
Thus, after num(Uik) is found in row i, and stbtracted from the
argument, row i-l is searched for the index of the maximal unit«~
sequence of order i-l. Thig process is continued until all the
terms OfM.B)‘are found. Note that in any row i of TAB, the
first i-1 elements constitute a non-decreasing sequence suitable
for binary search, and that this search can be restricted to

fewer than i=1 elements since the gi% are non~increasing.

The first procedure, NUM, does not require any explanation since’

e
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ALGORITHM 4.2 (NUM)

Given the difference-~sequence D of a ballot-sequence B,

the algorithm computes the value of numn(B).

Step 1 ¢ Set i=0, set k=n set numn(B)=O.

Step 2 : If D[kl> O perform Step 4 D[k] times,

Step 3 : Set k=k-l. If k=1 stop , else go to Step 2.
Step 4 : Set numn(B)= numn(B) - num(U(n_i)<k_l)),

set i=i+l. il

ALGORITHM 4.3 (INVNUM)

Given an integer m<Cn , and the vector D of“n'enfries,

~-the difference-sequence of B=numn—l(m) is constructed in D (D[1]

is not computed since it is not required for the construction

of B).

Step 1 (Initialize): Set DLil = O for 1lsisn, set i=n ,

set k=n-1 ,; set ARG=Q7

Step 2 : If ARG=0 stop ( the ballot-sequence B can now be
congtructed from D[2],D[3],..,DInl).

Step 3 : Search in row i o% TAB between®columns 1 and k, for
the maximal element which is not greater than ARG
("-'='w' foux this purpose).

Step 4 : Suppose that this element ig found in column 3,

set DLY+11=p[i+11+L , set k=3,

set ARG=ARG—num(Uij).

Step 5 Set i=i-1 and go to Step 2. O

. o®
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Example

Given B=<5,3,1,1,0,0> £find numG(B). We first derive
p=<1,2,2,0,1,0> . Hence , by procedure NUM

num6(8)= num(064)+num(Usz)+num(U42)+num(U3l)+num(021)

= 48+5+4+1+1l= 59.

Conversely , consider the construction of the bhallot-sequence B
of length 6 whose index is 86. In this case , five suceessive
rows of the table (given below) containing the values of num(Uik),

are searched . The contents of array D after each search are

listed below. ’ ;

i) The maximal element not exceeding 86 in row 6 is 48 , found
‘n column 4 , D=<0,0,0,0;1,0> . %

ii) m=86-48=38 , the required number in row 5 is num(U54)=28 ;
D=<0,0,0,0,2,0> .

iii) m=38-28=10 , D=<0,0,0,1,2,0> .

iv) m=l0-9=1 , D=<0,1,0,1,2,0> .

v) m=1=1=0 and no more searches are needed.

The required sequence B is constructed from D (in iv) as

B=<4’3[3,2[O'o> . [:]

Table of the num(U,,) values

vkt 2 3 4 5

l o i - - —

211 - = = -
Y I R
R B T
s|l1 5 14 28 -
6l1 6 20 48 90

i
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4,4 COMPARATIVE EVALUATION

In this chapter , the approach taken for generating and
indexing of all 'shapes' of binary trees , is rased on a relation

between such trees and ballot~sequences of the same order.

A different approach,based,q,directly oﬁ(staék~sortable’permutations

J T L aa it

and Construction-T , has been adopted by Knott [20] to solve the

[

same problems. It may be. argued that the indexing we propose is
not a natural one , while Knott uses the natural indexing [ 4, pp" 331];v;
for binary trees. However , the suggested algorithms are con-

siderably more efficient than their countexparts in similar works

known to the authors.

Let us first consider (a) Construction-T as‘oppésea‘to (q)*précedure

TREE. The actual creation of the nodes of  the tree i

i et s — T

is the same in both cases . In creating the 'shape' , it is well
known that (a) requires O(nz) comparisons for worst case , and
O(nlgzn) for best case. The amount of assignment statements have

il
similar bounds. In (b) , the extra memory space for n-1 pointers |
which may have to be stacked is insignificant. Comparisons are I

n ,
applied to the value j=D[il , and since I D[il =n , it is clear )

i=1 ‘ ‘
that exactly n comparisons are pexformed , while the number of |

assignment statements ig only O(n). The superiority of (b) is
highlighted especially for those applications where all Cy 'shapes '

need to be generated.

1f tHe YsHape' of the tree is given , generating its corresponding |

permutation T or ballot=-stquence B is straightforward and of

. o
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equivalent complexity. However , if only the index of the tree
is given , as in the case of random tree generation , the cost of

procedure INVNUM is governed by the binary search which may require

I ([lg,(i-1)j+ 1) &x0(nlg,n)

i=1

It~ 3

comparisons between entries of a two dimensional array TAB and
~the argument m of the procedure. 1In addition there is a' fixed

2) additions in computing all the valuas in

initial cost of O(n
TAB , but thisg is insignificant since in many applications it is

reguired to generate random trees in large numbers,

Similar algorithms for generating ﬁ““-from»a given index‘, rely on

the definition of natural order among binary trees and the, well

known recursion relation

Cpp1=. 1

n+l §=0 Jn-j

where Gj is the number of distinct binary trees of order j. The
relation betwee:,. Lhe complexities of the recursive procedure
given by Kﬁott (20]) for this purpose, and INVNUM seems to be
similar to the relation between Construction-T and procedure TREE.
Finally, let us consider the case where k trees having
consecutive index numbers q,q+l,...,gt+k-1 , are to be genérated.
.Using INVNUM , we f£ind the sequence B=num;l(q~l). Then we apply
procedure BALLOT with a slight modification so that only k sequences

are generated , starting with the initial sequence B. Note that we |

compute a ballot-sequence from a given index only once, and each
consecutiﬁe sequence is generated from its predecessor at minimal
cost. On the other hand, to generate k trees corresponding to consecu-
tive permutations would require the transformation of k indices,

since there is no simple way of deriving stack-sortable permutations

in their order corresponding to the natural order of trees.

St e R e 4T o e ————
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CHAPTER FIVE

*
A CORRESPONDENCE BETWEEN BINARY TREES AND 2-PERMUTATIONS

5.1 INTRODUCTION

In this chapter we deal with the special case of permutations
which do not contain a descending subsequence of length three.
This class of permutations is called 2-permutations , and the
set of 2-permutations of order n is denoted by Pg.

In [ 16, PP 64 ] , Knuth ‘proves that

-1 Zn)

|22 |= ¢, =(n+1) 77 (] (5.1)

The proof in employs an indirect method involving the
enumerative theory of SYT. It is based on a correspondence of
MacMahon [21 , pp130 1] between an SYT of shape <n,n> and a pair
of SYT'S of order n which have the same’ shape and contain at
most two rows. Knuth also states that " Curiously there seems
to be no apparent way to éstablish a correspondence between
such permutations and binary trees «.s," , and compares this
situation to the direct correspondence which exists between the

class SSn and Binary trees of n nodes.

some of the contents of this chapter were published by the author [24].
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5,2 THE CORRESPONDENCE

+

Let H=<pl,p2,...,pn> be a permutation on the set N={1,2,..,n},

an element jeN is a -left-to-right maximum in I , iff j>x for
all x in Lﬂ(j). Let MTr denote the set of all left-to-right

maxima in I, and let NTr be the set of all oth~r elements of II .

Example 5.1

If NI=<3,4,2,6,1,5> , we have Mﬂ=<3,4,6> and Nﬂ=<2,l,5>.
Since there is a descending subsequence 4>2>1 , II is not a

2-permutation. [

The basis of the correspondence to be described here , is

the following simple characterization of 2-permutations.

Lemma 5.1 1T is a 2-permutation iff the elements of Nw form

an ascending subsequence in II .

Proof If I is not a 2-permutation , it contains a descending

subsequence of length three ,

pi>pj>pk and i<j<k . (5.2)

Then ’ both pﬂ and p, are members of Nn and therefo;e Nﬂ
is not an ascending subsequence.
Conversely , suppose that N, is not an ascending sub-
sequence , then it contains two elements
pj>pk and j<k . | (5.3)
By the definition of NTT there is an element pieL"(pj) such
that ‘pi>pj . Hence , T contains a subsequence (5.2) and it

is not a 2=permutation. O

R e Y - p ety

e
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We now define a mapping from HePﬁ to an n-tuple of integers
B(H)=<bl,b2,...,bn> in the following way:

Mapping B
Let H=<pl,p2,...,pn> then

(1) by=0 ;

1
(2) for 2<isn

(a) bi=bi-l iff piEMﬂ;

(b) bi=pi i1ff pieNﬂ' O

Example 5.2

Given INI=<1,4,2,3,5> we construct B(Nl). In this case
M.=<1,4,5> and N =<2,3>;

b,=0

1
46Mﬂ=>b2=b1=0
’ 2€Nﬂ=>b3=2

3EN“=>b4=3

56Mﬂ=>b5=b =3,

4

+

This mapping preserves the elements of N, and their relative
position in ]I , therefore it follows that for H,H'épi ’
HALY  implies that B(I)#B(N').

‘ ) 2 , :
Theorem 5.1 If H=<pl,p2,...,pn>€Pn and B(ﬁ)=<bl,b2,...,bn>

is its corresponding n-tuple then
bleZS.acﬁbn H (5.4)
bisj~l for 9=1,2,..,n . (5.5)
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Proof

(1) Assume that (5.4) does not hold , then , for some index

’

3 such that 1<j<n we have bj>bj+l « By the rules of Mapping B

bj+l=pj+lENn : (5.6)
bj=pzeN7T where 4y (5.7)
But p2>pj+l contradicts Lemma 5.1.

(2) Let j be the first index such that

bj>j~l . ' (5.8)

[4

Then j>1 . Since j is the first index for which (5.8) holds

it follows that bj#bj~l .« By Rule 2(a) of Mapping B

’

b.=p.eN . 5.
j PJE - ’ ( 9?

By the definition of NTT » there exists an element p; such

that

Pi7P.

3 and piELw(pj)' (5.10)

All pj-l elements which are smaller than pj , must be
members of Lﬁ(pj) . For if there is an element Py such that

p2<pj and pgg Ln(pj) ; (Sﬂll)

we can show a descending subsequence of length three in I ’

p£>pj>p£ and i<y, ‘ . (5.12)

From (5.10) and the contradiction of (5,12) ; we find
that

Ly (py) [2py (5.13)
and from (5.8) ‘

(b ) P 5.14

ILﬂ(pJ)[abJ>J 1 ( )

This contradicts the fact that L“(pj) contains exactly j-1

elements. Hence (5.8) cannot hold and (5.5) is proved. [

e 3 0 it o et ) Formraieder
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Given an n-tuple of integers B=<bl,b2,...,bn> which satisfies

(5.4) and (5.5) , the reversed sequence BR=<bn’bn—l"f”bl> is

a ballot-sequence (as defined in Section 3.3). Hence , a
2-permutation is mapped into a reversed ballot-sequence by Mapping B.
We now define Mapping T , which maps a reversed ballot-sequence
into a 2-permutation. It is then proved that Mapping T is the

inverse of Mapping B.

Mapping T
Given a reversed ballot-sequence B=<bl,b2,...,bn> and

n empty cells PyePoresetPy v the sequence T(B) is constructed

as follows .

Step 1 : For 1<jsn put all bj such that bj'r‘bj_l into
the corresponding empty cell pj.
Step 2 : Take all elements of {1,2,...,n} which do not

appear in B and put them in ascending order in

the ncn-occupied cells. 1]

Example 5.3

4

Given the reversed ballot-sequence B=<0,1,1,2,3,3,6,6>;

Step 1 T2l Tel ]

Step 2 [AaE]Z 3171618l

Hence T‘(B)ﬁ<4,l,512,3’7'6’8> [ D

1
hel
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Lemma 5.2 civen a reversed ballot-sequence B of' ‘length n , then
T(B)ePﬁ .

Proof Since each of the integers {1,2,...,n} is inserted into
the cells in one of the two steps , [=T(B) is a permutation
on {1,2,...,n} .

Assume that H{Pi . Then it contains a descending
subsequence of length three S=<pi,pj;p£> . At ieast two
members of S are inserted into the cells in Step 1 or Step 2.

But in each step , the elements are inserted in ascending order.

Theref.ure S cannot be a subsequence of I . 0

Lemma 5.3 Let B be a reversed ballot-sequence and n=T(B}.

h

Then the k™  cell is filled in Step 1 iff pycN_ .

Proof  Let pk=j be inserted in Step 1 into the kM ce11 ;

i.e.

P =d=hy sk-1 . (5.15)

There are k-1 elements in Lﬂ(pk) but only 3=l integers which
are smaller than Py Therefore there is at“least one member
in Lﬂ(pk) which is greater than p, . and ppeN .

éonversely , assume that there is an element Py in I
such that pg‘e;N7T and p, vas inserted in Step 2. Then , an
element 2 exists in Il where

. pjeLw(pQ) andl pj>pz. | (5.16)

Now , py was inserted in Step 1 because two elements which
are inserted in the same step cannot form an inversion. By
the first part of the lemma ; Py must belong to N, thus
violating the fact that in a 2--'pe'r;nutatio‘nrNTT is an ascending

subgsequence (Lemmas 5.1 and 5.2), a

5 T o
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Theorem 5.2 The mappir s T and B yield a one-to-ong corresmondence

between reversed ballot sequences and 2 permutations.

Proof We show that B and T are inverses of each other,
Let He?ﬁ , and let B(ll) be its corresponding n~tuple under
Mapping B. By the definitions, every bieB(H) such that
bi# bi-l is an element of NTr , which appears in the ith
position in II . Furthermore the elements of MTr appear in increasing
order within I . Hence T(B(I))= 1 , by the definition of
the Mapping T.
Conversely,let S be a reversed ballot-sequence such that

I = T(S). Then B(l)= 8 by Lemma 5.3 and the definition of

il

the Mapping B. [j

By using Theorems 5,2 and 3.3 , the required correspondence

between Pi and binary trees is established.

5.3 PATTERNS IN PERMUTATIONS

“

Following Tarjan [13] , we say that a permutation T on
N={1,2,..,n} coutains the pattern P=<pl,p2,.i,pk> (ksn)
where P is a permutatién on{l,2,..,k} ,-if there is a 1-1 mapping
¢ -from P to II such that <¢(pl),¢(p2),..,¢(§k)>is a subsequence
of II and pi<pj LEF ¢(pi)<¢(pj).

« In terms of this definition ; we proved in the previous
section that the number of permutations of order n which do
not contain the pattern <2,3,1l> is equal to the number of those
which do not contain the pattern <3,2,1>. By using the fact

that 'Il COhtaihS’P-ifﬁ4‘th ¢contains Pﬁl and TR contains PR,

»

T
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it follows that for any given permutation on {1,2,3} , the

number of permutations of order n which do not contain it as

a pattern is Cn,(or the number of those which contain it is nl—cn).

The gquestion is asked whether for any two permutations
P and P' of order k, the number of permutations of order n

which contain P as a pattern is equal to those which contain

»

. P'. The many cases that were attempted by a computer N

support a positive answer, but noproof of this fact is known
to the author, We conclude this chapter by proving the special

case  k=n-1 .

Theorem 5.3  Given a permutation P of order n-1l , the number
of permutations of order n which contain P as
a pattern is ﬁ2~2n+2;
Proof Let S(P) denote the set of permutations‘of length n which
contain the pattern P. We construct the sequence Pi trom P for
l<isn , by adding 1 to all elements of P which are not smaller

than i (p"=p by this definition). It follows from the definitions

¢

that .f I contains P~ as a subsequence then MeS(P). It is

easy to show that the converse is also true, namely , if NeS(P)

it must contain at least one of Pl,Pz,...,Pn as a subsequence.

For, example , when n=4 and P=<3,1,2> , Pl=<4,2,3>,P2=<4,l,3>

3 ) -
and P"=<4, 2>, the permutation ll=<4,1,2,3> coéntains the -

1 2 R

pattern P , in this case P ; P7oand P3 appear as subsequences.

4
:

Given a subsequence Pl=<pl,p2:---:Pn_l>fmf§>l:fmserve that;
1) P* does not contain the integer

i
l,Pzi..,Pi"l the integer i appears

’

2) 1Lf pj=i—l then in P

in the jth position,

T K TR e e b ks -
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3) there are n members of S(P) which contain pt , those
members can be generated by placing i-before Py between

p; and py ., .fox.i=1,2,..,n-2 and after p _, -

Let us generate the set S(P) in the following manner,
first , all permutations which contain Pl then those which
contain P2 and so on. Clearly , a permutation M' which is
generated from Pi is a repetitiocn of a previously generated
permutation , iff I1I' contains Pi' where i'<i, Our purpose
is to show that exactly two such repetitions occur during
the above géneration scheme for each Pi where i>1l, But this
follows from observation 2 , since when i moves from left to

. I ]
right while generating S(P) from P, a previous subseqguence p*

h

is formed when i assumes the jt position with respect to

1ot
the elements of P" . This can happen - “exactly when i is

placed immediately to the left or to the right of pj=i—l in

pi,

Since Pl introduces n new permutations of S(P) , and each

of P2,P3,..,Pn only n-2 new permutations,

fS(P)|=(n—l)(n—2)+n = n2—2n+2 . o

< et e




97

CHAPTER SIX

.

CONCLUSIONS

6.1 SUMMARY OF RESULTS

In this thesis we were concerned with the study of sub-
sequences in permutaticns. The research was motivated by
applications in graph theoretic algorithms. However , following

some initial work' , it was found that the relations of a graph

to its representing permutation, may lead to combinatorial results

on subzaguences which are of interest in their own right.
A theorem of this nature can be found in Chapter 2 , where

properties of hypergraphs were used in generalizing a result

concerning lengths of monotonic subsequences in a permutation.

In Chapter 3 , the class SSn was studied from various aspects,
such as average lengths of monotonic subseguences , average
number of inversions , the number of involutions and others.
Again , the correspondence of this class and n-noded binary
trees was employed in many of the derivations. In particular,
properties of binary trees such as symmetry between left and
right subtrees , or the connection between sizes of subtrees
and internal path length , played an important role in the
proofs. It was also shown that the permutation graphs which
correspond to members of 88, do not contain a path of length
3 without a triangular choxd.

In Chapter 5, it was proved that for any given permutation
on {1,2,3} , the number of permutations of order n which

do not contain it as a pattern is Cph» This was shown by

»

ceowane sy
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establishing a one-to-one correspondence between SSn and per-
mutations of order n with no descending subsequence of length
3. It was also conjectured that the above result can be generalized

to patterns of order ¥ , for any ksn. A proof was given for

' the special case k=n-1,

Some of the abo&e mentiohed results were implemented in
algorithms. Those were shown to be faster than their counter-
varts which are based on other techniques.

The connection-board and dynamic storage allocation problems ,

were both formulated in terms of = permutatiomson a multiset.

The solutions to both problems were then obtained by finding
maximum monotonic subsequences in those permutations. §
In the case of circle graphs , integer sequences wpre produced |
for each vertex. It was then proved that the longest ascending ¥
subsequence over all -sequences thus produced , represented a
méximum cligue in the circle graph. ,
In Chapter 4 , algorithms for generating‘and indexing ‘
binary trees were presented. The correspondence betweép §s,
and n~noded binary trees, as well as a representation of

members of SS = as ballot-sequences, formed the basis of

these algorithms.

¥

6.2 PROBLEMS FOR FURTHER RESEARCH

The results obtained in this work , demonstrate the utility
of the approach of using graph theoretic representations
for studying subsequences in permutations , and conversely ,
of applying results on such subsequehces to the construction

of algorithms on graphs.

Sy
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Sonie specific problems for further investigation are:

(a)

(b)

(c)

Given two permutations of order n , is there an efficient
algorithm which decides whether they define isomorphic
permutation graphs ?

In chapter 4 , a method for coding a binary tree as. an
integer was given. It may be useful to find out which
properties of a binary tree can be determined by mani-
pulations on its representing integer.

Can the results of Chapter .5 concerning patﬁerns in permu-

tations , be extended to any ksn ? It seems that the

technigues which were used to prove the cases k=3 and

k=n-1 , are not‘applicable in the general case.

In general . might prove fruitful to consider whether

additional problems which are intaractable on arbitrary graphs,

can be solved in polynomial time on permutation graphs.
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