A Theoretical Investigation of the Structural, Electronic and Optical Properties of Transition Metal Chalcogenides

by

Mahmud Abdulsalam

Supervisor

Professor Daniel Joubert

A thesis submitted to the Faculty of Science
University of the Witwatersrand,
in fulfilment of the requirements for the degree of
Doctor of Philosophy.
School of Physics,
University of the Witwatersrand,
Johannesburg.

October, 2015
Declaration

I declare that this thesis is my own unaided work. It is being submitted for the award of the Doctor of Philosophy in Physics at the University of Witwatersrand, Johannesburg. It contains the outcome of research under the supervision of Prof. Daniel P. Joubert. No part of this thesis has been or is being submitted for any degree at any other University.

Mahmud Abdulsalam

10:13 Wednesday 28th October, 2015
Abstract

Harvesting renewable energy and the miniaturisation of electronic components are among the major challenges of the 21st century. Transition metal chalcogenides (TMC) have interesting properties that are promising in meeting these challenges. It is therefore important to conduct a systematic theoretical study of the structural, electronic and optical properties of the transition metal chalcogenides as possible components of low dimensional transistors or as solar-energy harvesters. In this work, we present the detailed theoretical investigation of the structural, electronic and optical properties of transition metal chalcogenides M_yX_z, (where $M = \text{Hf, Zr, Tc or Re}$, $X = \text{S, Se and Te}$), y and z are integers.

The structural properties of TMCs were studied using energy-volume relationship (equation of states (EOS)), equilibrium structural lattice parameters, formation and cohesive energies were extracted from the EOS. Mechanical stability test based on elastic constants and phonon dispersion relation were carried out to determine the strengths of the TMCs against mechanical distortions. The most stable structural configurations were used to investigate electronic properties through partial density of states (PDOS) and band structure analysis. Optical properties (absorption coefficients, refractivity, reflectivity) of some of the TMCs were then computed.

Our computations of the structural, electronic and the optical properties were based on density functional theory (DFT). Projector-Augmented wave (PAW) was used to mimic electron-ion interactions and generalised-gradient approximation was used in the exchange correlation functional. Van der Waal’s correction terms proposed by Grimme (DFT-D2), Lundqvist and Langreth (vdW-DF) and Tkatchenko-Scheffler (vdW-TS) were used to account for long range dispersion forces in addition to PBE and its modified version for solids PBEsol. Optical properties were investigated at the many body (GW) and Bethe-Salpeter equation (BSE) levels of approximations.

Our results obtained are discussed within the theoretical frame work and compared with experimental and previous theoretical results where available.
Publications

1. Electronic and optical Properties of semiconducting MX$_3$ (M= Ti, Zr and Hf; X = S, Se, Te) first principle insight *In preparation*

2. Structural, Electronic and Optical Properties of TcX$_2$ (X=S, Se, Te) from first principles calculations *Under review*

3. Electronic and Optical Properties of monolayer MX$_2$ (M= Zr, Hf; X = S, Se) from first principles calculations *Under review*

Presentations

1. 29th June - 3rd July 2015 Conference South African Institute of physics conference Boardwalk Convention Centre, Port Elizabeth, South Africa **Electronic and Optical Properties of mono-layer MX$_2$(M = Zr, Hf; X = S, Se) from first principles calculations** Oral presentation

2. 19 - 30 Jan. 2015 Workshop 3rd African School on Electronic Structure Methods and Applications (ASESMA)University of the Witwatersrand, Johannesburg South Africa

3. 01- 05 December 2014 Conference/Workshop CHPC National Meeting 2014 Kruger National Park, Mpumalanga, South Africa **Structural and Electronic Properties of MX$_3$(M = Zr and Hf; X = S, Se) from first principles calculations** Poster presentation

4. 28 –29th Oct. 2014 Conference 6th Cross Faculty Graduate SymposiumUniversity of the Witwatersrand, Johannesburg, South Africa **Rhenium Chalcogenides: Insight from first principles calculations** Oral presentation

5. 29th July - 2nd Aug. 2013 Conference 5th Cross Faculty Graduate SymposiumUniversity of the Witwatersrand, Johannesburg South Africa **A theoretical Investigation of the Structural, electronic and Phase transition of Molybdenum Selenide** poster presentation

6. 08 - 12 July 2013 Conference South African Institute of physics conference University of Zululand, South Africa **Molybdenum Selenide compounds for solar energy application** poster presentation

7. 02 August 2013 Workshop Gauteng Electronic Structure Meeting University of the Witwatersrand, Johannesburg, South Africa oral presentation
Dedication

To my late grand parents Abdulkadir Sidi, Zuwaira Armaya’u and Hajiya Amina Nuhu Salihu may your souls rest in peace.
Acknowledgements

First I will like to begin by thanking Allah (SWT) for everything that he has done to me and making this research a reality.

I would like to express my sincere appreciation to my supervisor Professor Daniel P. Joubert, who introduced me to this interesting field of computations, patiently provided me with adequate materials, encourage and guide me to continue with the work at the time of difficulties and provided me with the best support I could wish for. I would like to say a big Thank you.

The support of the DST-NRF Centre of Excellence in National institute for theoretical physics (NITheP) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the CoE.

I would also like to acknowledge Center for High Performance Computing (CHPC) for providing me with the computational resources to perform some of the computations in this thesis.

Special thanks to Dr Mohammed Suleiman Hussein Suleiman, Dr George S. Manyali for their valuable assistance in the course of this research.

Thanks to Professor Richard Martins (University of Illinois) for a wonderful discussion in electronic properties of semiconductor, Professor Matteo Gatti (European Theoretical Spectroscopy Facility, France) and Professor Andrea Marini (European Theoretical Spectroscopy Facility, Spain) for discussion in optical properties. Your help is indeed priceless.

This acknowledgement will be complete without thanking my colleagues in the office Moise Dongho Nguimdo, Peter Egbele and Faris Mohammed among many fellow postgraduate students at the School of Physics for their stimulating discussions during coffee breaks.

It will be a failure on my side if I fall to express gratitude to my families at Wits Musalla. Without your prayers, jokes and enthusiasm, this research would have been more tedious task than I expect. I really appreciate your efforts.

The support from my South African family, in particular Ibrahim Usman, Dr Iyabo Usman and Professor Pedro is highly appreciated. Na gode.

The contribution of my secondary school teachers Malam Ibrahim Jika (May your soul rest in peace) and Malam Kabir Mustapha is highly appreciated, without your support, encouragement and advice I may not be where I am today. Thank you for all you have done to me.
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>K point convergence</td>
<td>37</td>
</tr>
<tr>
<td>5.2</td>
<td>Cut-off energy convergence</td>
<td>38</td>
</tr>
<tr>
<td>6.1</td>
<td>TcS$_2$ unit cell doubled in the Z-direction to show the layered structure.</td>
<td>56</td>
</tr>
<tr>
<td>6.2</td>
<td>TcS$_2$ cohesive energy-volume graph calculated using (a) PBE, (b) PBEsol,</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>(c) vdW-TS, (d) DFT-D2 and (f) vdW-DF.</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>TcSe$_2$ cohesive energy-volume graph calculated using (a) PBE, (b) PBEsol,</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>(c) vdW-TS, (d) DFT-D2 and (f) vdW-DF.</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>TcTe$_2$ cohesive energy-volume graph calculated using (a) PBE, (b) PBEsol,</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>(c) vdW-TS, (d) DFT-D2 and (f) vdW-DF.</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>TcX$_2$ (X = S, Se and Te) phonon dispersion relation graph calculated using</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>vdW-D2.</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>vdW-D2 calculated specific heat capacity at constant volume and entropy for</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>the TcX$_2$ (X = S, Se and Te) structures.</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>Calculated vdW-D2 TcS$_2$ calculated electronic structure (a) band structure</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Tc(s,p,d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and (d) PDOS of S(s,p).</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>Calculated MBJ TcSe$_2$ calculated electronic structure (a) band structure</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Tc(s,p,d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and (d) PDOS of Se(s,p).</td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td>Calculated vdW-DF TcTe$_2$ calculated electronic structure (a) band structure</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Tc(s,p,d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and (d) PDOS of Se(s,p).</td>
<td></td>
</tr>
<tr>
<td>6.10</td>
<td>Band gap volume relationship in TcX$_2$ (X = S, Se and Te) calculated from</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>vdW-D2 relaxed structure.</td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>Primitive unit cell for technetium sulphide in the $P\bar{1}$ structure and</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>the positions of the four Technetium atoms.</td>
<td></td>
</tr>
<tr>
<td>6.12</td>
<td>Positions of Tc atoms.</td>
<td>70</td>
</tr>
<tr>
<td>6.13</td>
<td>Structural volume per atom as a function of doping configuration.</td>
<td>71</td>
</tr>
<tr>
<td>6.14</td>
<td>Formation energy per atom as a function of doping configuration.</td>
<td>71</td>
</tr>
<tr>
<td>6.15</td>
<td>Band gap as a function of doping configuration for TcS$_2$ calculated with MBJ</td>
<td>72</td>
</tr>
<tr>
<td>6.16</td>
<td>HfX$_2$ phonon dispersion relation graph calculated using vdW-TS.</td>
<td>74</td>
</tr>
<tr>
<td>6.17</td>
<td>vdW-TS calculated specific heat capacity at constant volume and entropy for</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>HfX$_2$ (X = S, Se and Te) structures.</td>
<td></td>
</tr>
<tr>
<td>6.18</td>
<td>HfX$_2$ (X = S, Se) BSE calculated optical absorptions.</td>
<td>76</td>
</tr>
<tr>
<td>6.19</td>
<td>High symmetry points used in HfX$_2$ (X = S, Se) band structure calculations.</td>
<td>77</td>
</tr>
</tbody>
</table>
6.20 Monolayer HfX₂ (X= S, Se) BSE calculated optical absorptions. 79
6.21 HfX₃ structure. .. 80
6.22 HfX₃ cohesive energy-volume relation. .. 81
6.23 HfX₃ phonon dispersion relation graph calculated using vdW-TS. 85
6.24 vdW-TS calculated specific heat capacity at constant volume and entropy for HfX₃ (X= S, Se and Te) structures. ... 86
6.25 Calculated electronic properties of HfS₃ using MBJ functional band structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Hf(s,p,d) (d) PDOS of S (s,p). ... 87
6.26 MBJ HfSe₃ calculated band structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Hf(s,p,d) (d) PDOS of Se (s,p). 88
6.27 vdW-TS HfTe₃ calculated band structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Hf(s,p,d) (d) PDOS of Te (s,p). 88
6.28 GW HfS₃ calculated frequency-dependent optical spectra (a) real εᵣ(ω) and the imaginary εᵢm(ω) parts of the dielectric function, (b) reflectivity R(ω) and Transmitivity T'(ω), (c) Refraction η(ω) and extinction coefficient κ(ω) and (d) absorption coefficient α(ω). The visible range are shaded. ... 91
6.29 GW HfSe₃ calculated frequency-dependent optical spectra (a) real εᵣ(ω) and the imaginary εᵢm(ω) parts of the dielectric function, (b) reflectivity R(ω) and transmittivity T'(ω), (c) refraction η(ω) and extinction coefficient κ(ω) and (d) absorption coefficient α(ω). The visible range is shaded. ... 91
6.30 vdW-TS calculated Specific heat capacity at constant volume and entropy for the ZrX₂ (X= S, Se and Te) structures. ... 92
6.31 ZrX₂ phonon dispersion relation graph calculated using vdW-TS. 93
6.32 ZrX₂ (X= S, Se) BSE calculated optical absorptions. .. 95
6.33 Optical absorptions for Monolayer ZrX₂ (X= S, Se) calculated at the BSE level. 97
6.34 ZrX₃ structure. ... 98
6.35 Cohesive energy-volume relation for ZrX₃. ... 99
6.36 ZrX₃ phonon dispersion relation graph calculated using vdW-TS. 101
6.37 vdW-TS calculated specific heat capacity at constant volume and entropy for ZrX₃ (X= S, Se and Te) structures. ... 102
6.38 ZrS₃ vdW-TS calculated band structure (a) band structure along high symmetry K-points, (b) spin projected total density of states (TDOS), (c) partial density of states (PDOS) of Zr(s,p,d) (d) PDOS of S (s,p). ... 104
6.39 MBJ ZrSe₃ calculated band structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Zr(s,p,d) (d) PDOS of Se (s,p). 104
6.40 vdW-DF ZrTe₃ calculated band structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Zr(s,p,d) (d) PDOS of Te (s,p). 105
6.41 GW ZrS$_3$ calculated frequency-dependent optical spectra (a) real $\epsilon_r(\omega)$ and the imaginary $\epsilon_{im}(\omega)$ parts of the dielectric function, (b) reflectivity $R(\omega)$ and transmittivity $T(\omega)$, (c) refraction $\eta(\omega)$ and extinction coefficient $\kappa(\omega)$ and (d) absorption coefficient $\alpha(\omega)$. The visible range is shaded. .. 107

6.42 GW ZrSe$_3$ calculated frequency-dependent optical spectra (a) real $\epsilon_r(\omega)$ and the imaginary $\epsilon_{im}(\omega)$ parts of the dielectric function, (b) reflectivity $R(\omega)$ and transmittivity $T(\omega)$, (c) refraction $\eta(\omega)$ and extinction coefficient $\kappa(\omega)$ and (d) absorption coefficient $\alpha(\omega)$. The visible range is shaded. .. 107

6.43 TiX$_3$ structure. ... 108

6.44 TiX$_3$ cohesive energy-volume relation. ... 109

6.45 TiX$_3$ phonon dispersion relation graph calculated using vdW-TS. 111

6.46 vdW-TS TiS$_3$ calculated electronic structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Ti(s,p,d) and (d) PDOS of S(s,p). .. 113

6.47 vdW-TS TiSe$_3$ calculated electronic structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Ti(s,p,d) and (d) PDOS of Se(s,p). .. 113

6.48 vdW-DF TiTe$_3$ calculated electronic structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Ti(s,p,d) and (d) PDOS of Se(s,p). .. 114

6.49 GW TiS$_3$ calculated frequency-dependent optical spectra (a) real $\epsilon_r(\omega)$ and the imaginary $\epsilon_{im}(\omega)$ parts of the dielectric function, (b) reflectivity $R(\omega)$ and transmittivity $T(\omega)$, (c) refraction $\eta(\omega)$ and extinction coefficient $\kappa(\omega)$ and (d) absorption coefficient $\alpha(\omega)$. The visible range is shaded. .. 116

6.50 ReSe$_2$ cohesive energy-volume graph calculated using (a) PBE, (b) vdW-TS and (c) vdW-DF. ... 118

6.51 Phonon dispersion of ReSe$_2$ calculated using the vdW-TS relaxed structure. 120

6.52 MBJ calculated ReSe$_2$ band structure (a) band structure along high symmetry K-points, (b) spin projected total density of states (TDOS), (c) partial density of states (PDOS) of Re(s,p,d) (d) PDOS of Se (s,p). .. 121

6.53 G$_0$W$_0$ ReSe$_2$ calculated frequency-dependent optical spectra (a) real $\epsilon_r(\omega)$ and the imaginary $\epsilon_{im}(\omega)$ parts of the dielectric function, (b) reflectivity $R(\omega)$ and transmittivity $T(\omega)$, (c) refraction $\eta(\omega)$ and extinction coefficient $\kappa(\omega)$ and (d) absorption coefficient $\alpha(\omega)$. The visible range is shaded. .. 122
List of Tables

5.1 Second order elastic constant. ... 43

6.1 Calculated and experimental equilibrium parameters of TcX₂ (X = S, Se and Te): lattice constants (a (Å), b (Å), c (Å)), volume V₀ (Å³), formation energy E_f per atom and cohesive energy E_coh per atom. ... 60

6.2 Calculated and experimental TcX₂ (X = S, Se and Te) nearest neighbour distances in Å. 61

6.3 TcX₂ (X = S, Se and Te) calculated elastic constants (GPa). 62

6.4 Charge transfer for TcX₂ (X = S, Se, Te) in electronic charge (e) calculated using vdW-D2. Charge transfer numbers refer to atoms in the first and second columns respectively (See Fig. 6.1). ... 65

6.5 Calculated and experimental indirect energy band gaps (in eV) of TcX₂ (X = S, Se and Te) structures. ... 67

6.6 Calculated elastic constants (GPa) for HfX₂ (X = S, Se and Te). 73

6.7 Calculated and experimental band gaps eV of HfX₂ (X = S, Se). 75

6.8 Calculated and experimental direct band gaps eV of HfX₂ (X = S, Se). 76

6.9 HfX₂ (X = S, Se) BSE calculated positions for A and B peaks in eV. 77

6.10 HfX₂ (X = S, Se) BSE calculated binding energy for A and B excitons in eV. 77

6.11 Monolayer HfX₂; X = S, Se band gap in eV. ... 78

6.12 Monolayer HfX₂ (X = S, Se) BSE calculated excitation energies for A and B excitons in eV. ... 79

6.13 Monolayer HfX₂ (X = S, Se) BSE calculated binding energy for A and B excitons in eV. ... 80

6.14 Calculated cohesive and formation energy/atom of HfX₃ (X = S, Se and Te) structures in (eV). ... 82

6.15 Calculated and experimental equilibrium parameters of HfX₃ (X = S, Se, Te): lattice constants [a (Å), b (Å), c (Å)], atomic volume V₀ (Å³) and angle β°. 83

6.16 Calculated and experimental HfX₃ (X = S, Se and Te) structures nearest neighbour distances in Å unit see Figure 6.21. ... 84

6.17 HfX₃ calculated elastic constants (GPa). ... 84

6.18 Charge transfer for HfX₃ (X = S, Se, Te) in electronic charge (e) calculated using vdW-TS see Figure 6.21. ... 87

6.19 Calculated and experimental energy band gaps (in eV) of HfX₃ (X = S, Se, Te). 89

6.20 MBJ calculated minimum direct band gaps (in eV) of HfX₃ (X = S, Se, Te). 90

6.21 Calculated elastic constants (GPa) for ZrX₂ (X = S, Se and Te). 93

6.22 Calculated and experimental band gaps in eV for ZrX₂ (X = S, Se). 94
6.23 Calculated and experimental direct band gaps in eV for bulk ZrX₂ (X = S, Se).
6.24 ZrX₂ (X = S, Se) BSE calculated positions for A and B peaks in eV.
6.25 ZrX₂ (X = S, Se) BSE calculated binding energy for A and B excitons in eV.
6.26 Monolayer ZrX₂ (X = S, Se) band gap in eV.
6.27 Positions for A and B peaks (in eV) calculated at the BSE level for Monolayer ZrX₂ (X = S, Se).
6.28 Monolayer ZrX₂ (X = S, Se) BSE calculated binding energy for A and B excitons in eV.
6.29 ZrS₃ like structures calculated cohesive and formation energy/atom in (eV).
6.30 Calculated and experimental equilibrium parameters of ZrX₃ (X = S, Se, Te): lattice constants [a (Å), b (Å), c (Å)], atomic volume V₀ (Å³) and angle β°.
6.31 Calculated and experimental nearest neighbour distances of ZrX₃ (X = S, Se and Te) in Å, see Figure 6.34.
6.32 Calculated elastic constants (GPa) for ZrX₃.
6.33 Charge transfer for ZrX₃ (X = S, Se, Te) in electronic charge (e) calculated using vdW-TS unit see Figure 6.34.
6.34 Calculated and experimental energy band gaps (in eV) of ZrX₃ (X = S, Se, Te).
6.35 MBJ calculated minimum direct band gaps (in eV) of ZrX₃ (X = S, Se, Te).
6.36 TiS₃ like structures calculated cohesive and formation energy/atom in (eV).
6.37 Calculated and experimental equilibrium parameters of TiX₃ (X = S, Se, Te): lattice constants (a (Å), b (Å), c (Å)), atomic volume V₀ (Å³) and angle β°.
6.38 Calculated and experimental TiX₃ (X = S, Se and Te) structures nearest neighbour distances in Å, unit see Figure 6.43.
6.39 TiX₃ calculated elastic constants (GPa).
6.40 Charge transfer for TiX₃ (X = S, Se, Te) in the unit of electronic charge (e) obtained in vdW-TS calculations, see Figure 6.43.
6.41 Calculated and experimental energy band gaps (in eV) of TiX₃ (X = S, Se, Te).
6.42 MBJ calculated minimum direct band gaps (in eV) of TiX₃ (X = S, Se, Te).
6.43 Rhenium diselenide structural phases.
6.44 ReSe₂ calculated and experimental equilibrium lattice parameters.
6.45 Calculated nearest neighbour distance in (Å) units for ReSe₂.
6.46 Calculated elastic constants (GPa) for ReSe₂.
6.47 ReSe₂ calculated and experimental band gaps.
A.1 Doped technetium dichalcogenides structural system, volume, volume per atom, cohesive energy E_{coh}, cohesive energy E_{coh} per atom, formation energy per atom, band gap for DFT, band gap and magnetic moment per unit cell (μ) in Bohr magnetons. 127
Contents

1 **Introduction**
 1.1 Solar energy harvesting: The solar cell ... 1
 1.2 Transition metal chalcogenides ... 3
 1.3 Aims ... 7
 1.4 Thesis outline ... 8

2 **Density Functional Theory (DFT)**
 2.1 Thomas-Fermi Model .. 10
 2.2 Hohenberg-Kohn Theorems (HK) .. 11
 2.3 Constrained search formalism ... 14
 2.4 Kohn-Sham Approach ... 14
 2.5 Exchange Correlation Functionals ... 15
 2.6 Van der Waals Corrections ... 21

3 **The GW Approximation**
 3.1 Quasi-Particles .. 25
 3.2 Self Energy ... 26
 3.3 Green Function ... 26
 3.4 GW Approximation ... 27
 3.5 Bethe-Salpeter equation (BSE) ... 28

4 **Pseudo-potentials and the PAW Method**
 4.1 Solution to K-S equation .. 30
 4.2 Pseudopotential .. 32
 4.3 Projector augmented waves (PAWS) .. 33

5 **Computational Details**
 5.1 Outline of Calculations ... 36
 5.2 Test of convergence .. 36
 5.3 Equation of states ... 38
 5.4 Pressure phase transition .. 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Cohesive energy</td>
<td>40</td>
</tr>
<tr>
<td>5.6</td>
<td>Formation energy</td>
<td>41</td>
</tr>
<tr>
<td>5.7</td>
<td>Elastic constants</td>
<td>41</td>
</tr>
<tr>
<td>5.8</td>
<td>Thermal properties</td>
<td>44</td>
</tr>
<tr>
<td>5.9</td>
<td>Electronic density of State</td>
<td>44</td>
</tr>
<tr>
<td>5.10</td>
<td>DFT band gap problem</td>
<td>46</td>
</tr>
<tr>
<td>5.11</td>
<td>Optical properties</td>
<td>47</td>
</tr>
<tr>
<td>5.12</td>
<td>Dielectric function</td>
<td>50</td>
</tr>
<tr>
<td>5.13</td>
<td>GW and BSE methodology</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>Results and discussions</td>
<td>55</td>
</tr>
<tr>
<td>6.1</td>
<td>Technetium dichalcogenide</td>
<td>55</td>
</tr>
<tr>
<td>6.2</td>
<td>Hafnium dichalcogenide</td>
<td>73</td>
</tr>
<tr>
<td>6.3</td>
<td>Hafnium trichalcogenide</td>
<td>79</td>
</tr>
<tr>
<td>6.4</td>
<td>Zirconium dichalcogenide</td>
<td>91</td>
</tr>
<tr>
<td>6.5</td>
<td>Zirconium trichalcogenide</td>
<td>97</td>
</tr>
<tr>
<td>6.6</td>
<td>Titanium trichalcogenide</td>
<td>107</td>
</tr>
<tr>
<td>6.7</td>
<td>ReSe(_2)</td>
<td>116</td>
</tr>
<tr>
<td>7</td>
<td>Conclusions and Future Work</td>
<td>123</td>
</tr>
<tr>
<td>7.1</td>
<td>Conclusion</td>
<td>123</td>
</tr>
<tr>
<td>7.2</td>
<td>Future work</td>
<td>126</td>
</tr>
<tr>
<td>A</td>
<td>Doped TcS(_2) Structures</td>
<td>127</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>156</td>
</tr>
</tbody>
</table>
1. Introduction

In this chapter, we introduce the current energy crises on the Earth, how the energy challenges may be overcome, properties of materials that may be used in harnessing the renewable sources of energy and the potential materials for harnessing the energy.

1.1 Solar energy harvesting: The solar cell

As a result of increased industrialisation and world population, energy consumption has risen tremendously over the last few decades, setting the possibility of exhausting fossil fuels such as coal, wood, oil and gas. This increase in human need for energy cannot be fulfilled by burning fossil fuel, which will increase the emission of carbon IV oxide (CO$_2$) in the atmosphere. Plants will not be able to convert all the CO$_2$ emitted into oxygen and bound carbon, leading to CO$_2$ accumulation in the atmosphere which further leads to negative effects to the environment like global warming and deforestation [1, 2, 3].

Among the anticipated consequences of an increase in atmospheric temperature are, but not limited to, increase in chemical and biological activities which can lead to faster bacterial growth, spread of diseases and corrosion in buildings. To limit these occurrences, CO$_2$ emission from man made activities has to be reduced by either reducing human energy consumption or adopting new ways of energy generation that emit less CO$_2$.

Solar energy is one of the alternative sources of energy that can be harnessed in lieu of fossil fuel. The energy from the sun is the purest form of renewable energy known to man, this energy made it possible to store energy in fossil fuels through a very long process of storing solar energy in plants and their decay process. The energy from the sun has been there for billions of years and will continue to be there for considerable amount of time in the future. The annual solar energy supply to the Earth has been estimated to be about 3×10^{24} J [4, 5, 6], whereas the world energy consumption is estimated to be around 4.29×10^{20} J [7]. Energy from the sun is unlimited. Harnessing it, does not constitute any hazard to the environment. To harness the solar energy, we need a device that can effectively convert the solar energy into the required form of energy.

A device which converts solar energy into electricity through the photovoltaic effect (a method of generation of current or voltage from sunlight) is known as solar cell/photovoltaic cell. In the photovoltaic
Section 1.1. Solar energy harvesting: The solar cell

Effect light is incident on the surface of a material, electrons in the valance bands of the material absorb the energy from the incident light, are excited, to the conduction band and become free electrons [8]. To prevent the recombination of the electrons with the holes (only materials in which electron-hole recombination can be prevented are good materials for solar cells), which can happen immediately the electrons are freed from the valance band, the freed electrons are accelerated into and collected in an external circuit by a built-in potential. The extra energy of the electron generates an electromotive force (EMF). The EMF drives the electrons through a load to do a work.

In order to extract the extra energy of the excited electrons, there must be an energy gap separation large enough compared to kT between the excited states of the material of the solar cell and the ground state [8]. Here k is Boltzmann’s constant and T is temperature. The material, that can be suitable for solar energy application, should therefore have valence band and conduction band separated by at least kT. Separation between these energy bands will serve to maintain the excited electron at a higher energy for a longer time compared to thermal relaxation time for the excited electrons to be exploited. Such a material with a separation between the valence band and the conduction band is called a semiconductor.

The generation of photovoltaic solar cells can be divided into three categories: First generation solar cells, which are based on silicon wafers with efficiency of about 10 to 25% [9]. Despite the favourable efficiency of these solar cells, their cost of production is very high [9, 5, 10] when compared with the cost of other means of energy generation (1 $/Wp). To reduce the cost of production, there was a gradual shift to thin-films (second generation solar cells). This offer the opportunity of reducing the cost of the material of the solar cell and its cost of deposition [11, 12]. Their efficiency is however, less than the efficiency of the first generation photovoltaic [11, 12]. The third generation solar cells were targeted toward reducing the production cost of the second generation solar cells and improving its efficiency at the same time [11, 13]. To improve the efficiency of the solar cell and overcome the well known limit of a single band gap material (the so-called Shockley Queisser limit) [14], we need multiple threshold devices like multi-colour or tandem (multi layer) solar cell [10, 11, 12]. Tremendous progress has been made in reducing the cost and improving the efficiency of the third generation solar cell and efficiencies of about 37.9% to 40% have been reported [15, 16]. To use a semiconductor in first and second generation photovoltaic material, it need to have an optimum band gap of about 1.5 eV [9], whereas a band gap that ranges from 0.5 eV to 3.0 eV are required in third generation solar cells [17, 18, 19, 20]. Transition metal chalcogenides are promising materials for these applications.

Transition metal chalcogenides are important inorganic materials with wide range of potential applica-
tions in the magnetic, electronic, catalytic and optical industry [21]. These materials can be divided into two categories: layered materials with van der Waal’s spacing between the layers, which comprise two-third of transition metal chalcogenides and non-layered materials [22]. Some members of the family of transition metal chalcogenide are semiconductors with band gap falling within the infra red and the visible range of the spectrum and are therefore promising material for investigation as potential candidates for third generation solar cells.

1.2 Transition metal chalcogenides

The Transition Metal Chalcogenides (TMC) is a family of compounds with the formula M_yX_z, where M is a member of the transition metals (V, Nb, Ta, Cr, Mo, W, Mn, Tc or Re), while X represents a member of the chalcogen family (P, S, Se and Te), y and z are integers. They have a variety of potentially useful properties [23, 24, 25, 26, 27, 28, 29]. Depending on the transition metal and the chalcogen involved, layered transition metal chalcogenide (LTMC) can have properties ranging from semi-conducting to superconducting [23]. Layered bulk dichalcogenide crystal materials are composed of vertically stacked layers bonded together by weak van der Waal’s forces, similar to the van der Waal’s forces in graphite [30]. Owing to strong surface effects, the properties of these materials vary drastically with the number of layers in a sheet. The electrical and optical properties of these compounds can be tuned on demand by reducing or increasing the number of layers [31], which makes them potential candidates for tunable nano electronics [32]. It is possible to extract single dichalcogenide layers from bulk crystals systems [33, 34] and deposit them on substrates. Single layered MX_2 systems present an opportunity for a wide range of systems for studying mesoscopic transport in 2D and may find practical applications similar to those of graphene. Bulk WSe$_2$ has been used in the fabrication of photo-voltaic cells [35]. MoS$_2$ has been used in nano tubes [36] and nanowires [37], where they showed confinement effects in their electronic and optical properties. Fabrication of field effect transistors can be achieved through nanoscale semi-conducting dichalcogenides [34, 37, 38]. Superconducting NbSe$_2$ could be a model for studying superconductivity in low-dimensions, while TSi$_2$, MoTe$_2$ and WS$_2$ are semiconductors with variety of physical properties and potential electronic applications [21]. Shearing in MoS$_2$, MoSe$_2$, MoTe$_2$, WS$_2$, TaS$_2$, NbSe$_2$, NiTe$_2$, BN and Bi$_2$Te$_2$ can be utilized in lubrication [39]. MoS$_2$, MoSe$_2$, TSi$_2$, MoTe$_2$, WS$_2$, HfS$_2$, HfSe$_2$, TSi$_3$, ZrS$_3$, ZrSe$_3$, HfS$_3$, HfSe$_3$, ZrS$_3$ and ZrSe$_3$ are semiconductors and are potential candidates for third generation solar cells [21, 40, 41, 42, 43, 44, 45, 46, 47].
Transition metal chalcogenides have been studied extensively both theoretically and experimentally. For the purpose of this thesis, we decide to limit our investigations to chalcogenide of technitium, hafnium, zirconium, titanium and rhenium. Compounds that are yet to be fully theoretically investigated.

1.2.1 Technitium dichalcogenide

Following the crystal structure study of group VII transition metal chalcogenides by Alcock and Kjekshus [48], Widervanck and Jellinek [49] used Guinier powder data and Weissenberg diagram to establish the stoichiometry of technitium dichalcogenides compounds, i.e. TcS$_2$, TcSe$_2$ and TcTe$_2$. They proposed that TcS$_2$ and TcSe$_2$ have triclinic symmetry with space group $P\bar{1}$, their unit cell contains four units formula (Z = 4), which corresponds to the distortion of Cd(OH)$_2$ type cell, the Tc atoms has octahedral coordination forming Tc diamond shaped chains and that TcTe$_2$ has the same structure with a high temperature form of MoTe$_2$ with space group $P2_1/m$ having lattice parameters a and b double that of MoTe$_2$. However, ab initio calculations show that TcTe$_2$ with a triclinic structure which is iso-structural with TcS$_2$ and TcSe$_2$ is energetically more stable than the one with the MoTe$_2$ structure [22]. Lamfers et. al. [50] used single X-ray crystal diffraction methods and re-examined the crystal structure of TcS$_2$ and reported the same cell parameters as obtained by Widervanck and Jellinek [49].

Widervanck and Jellinek [49] reported the preparation of TcS$_2$, TcSe$_2$ and TcTe$_2$ by chemical transport reactions in a tube which is 20 cm long at a temperature of about 1080 to 1150$^\circ$C for sulphide, 1000 to 1080$^\circ$C for selenides and 840 to 980$^\circ$C for the tellurides.

The structural and electronic properties of TcS$_2$ have been reasonably reported both theoretically and experimentally. However, there is scarce characterisation of the structural and electronic properties of TcSe$_2$ and TcTe$_2$ [51]. Added to the fact that the theoretical characterisation of TcS$_2$ reported by Fang et. al. [52] and Philippe et. al. [22], used the local density approximation and the generalized gradient approximation, respectively, of the density functional theory, methods known to underestimate the band gap of semiconductors by as much as 30 to 50 % and which do not take into account the long range dispersion forces between the layers of the TcS$_2$. The long range dispersion forces are a necessary ingredient for accurate description of the structural properties of layered materials like TcS$_2$, which in turn determines the electronic properties of the materials. There is therefore the need to carry out an accurate study of the structural and electronic properties of TcS$_2$, TcSe$_2$ and TcTe$_2$ with inclusion of the necessary van der Waal’s correction terms and post DFT methods like GW approach that are known
to correct the DFT band gap error.

1.2.2 Hafnium chalcogenides

In preparation and characterisation, Hafnium chalcogenides share the same methods and properties as zirconium discussed in Section 1.2.3 and share the same structure with TiX$_3$ and TiX$_2$ discussed in Section 1.2.4 of this thesis.

The structural as well as the electronic properties of the semiconducting chalcogenides of zirconium and hafnium have been theoretically reported by a number of authors [40, 53, 54, 55, 56]. However, to the best of our knowledge, there is no reported theoretical investigation of the optical properties of these structures using many body perturbation theory in the GW approximation and the BSE (Bethe-Salpeter equation), a methods believed to be the most accurate in description of the electronic and optical properties of an extended systems [40, 57, 58, 59]. This leaves room for the need to conduct systematic studies of the optical properties of these structures at the GW level and the Solution of the Bethe-Salpeter equation (BSE) in the Tamm-Dancoff level of approximation.

To the best of our knowledge, there are few or no theoretical studies of the structural, electronic or optical properties of the trichalcogenides of zirconium or hafnium. This is surprising considering the interesting properties of the compounds and that they have attracted tremendous attention of researcher from both theory and experiment.

Monolayer HfS$_2$ and HfSe$_2$ were generated and their electronic and optical properties investigated in a similar way to their zirconium counterparts discussed in Section 1.2.3

1.2.3 Zirconium chalcogenides

The chalcogenides of zirconium have been prepared and experimentally characterised by a number of authors [60, 61, 62, 63, 64]. Theoretically, Jiang [40] characterised the structural and electronic properties of the dichalcogenides of these compounds. The structures (ZrS$_2$, ZrSe$_2$, ZrTe$_2$, ZrS$_3$, ZrSe$_3$ and ZrTe$_3$) can either be prepared by heating the reactants separately in a suitably design vessel, by direct reaction of accurately weighted quantities of their elements, by decomposing compounds with higher chalcogenides content to lower chalcogenides contents in a silica evacuated tube or through the methods of chemical transport reaction [62, 63]. ZrX$_3$ (X= S, Se and Te) shares the same structure as
HfX₃ discussed in Section 1.2.2 of this thesis.

The structural and electronic properties of ZrS₂ and ZrSe₂ have been extensively investigated both theoretically and experimentally [40, 53, 65, 54, 66, 55, 56]. The structures have been shown to be iso-structural [40, 53, 65, 54, 66, 55, 56] and they crystallise in a 1T-CdI₂ type structure with space group 164, P̅3m1 in which the metal atom is sandwiched between two sheets of the chalcogen atoms leading to X-M-X layers. Atoms within a layer are strongly held together by a covalent bond with weak ionic bond within the layers. It is therefore a surprise that, to the best of our knowledge, there is no reported theoretical reported study of the optical properties of these structures at the GW level and BSE level of approximation. Methods believed to be the state of the art in predicting the optical properties of materials.

To tune the electronic and optical properties of the ZrX₂ structures, their layers were slice down to monolayers and their electronic and optical properties investigated. The monolayer was generated by creating a space wide enough between the adjacent layers in the z-direction of the relaxed bulk structure. A vacuum region of 19 Å was used to isolate the layers along the c axis and was found sufficient to eliminate interaction between the layers.

1.2.4 Titanium chalcogenides

McTaggart and Wadsley [60], Brattas and Kjeckhus [67] and Furuseth et. al. [64] prepared and characterised the structures of TiX₃ (X = S, Se and Te). The samples were prepared by heating a measures quantity of their samples in a closed, evacuated tube at a temperatures of about 600 °C. The structures were identified to be iso-structural to HfX₃ and ZrX₃ and their dichalcogenides structures have the same structure as the dichalcogenides of the hafnium and zirconium [63, 64, 68, 69, 70].

There is a need to conduct an accurate systematic first principle calculations of the electronic and optical properties of the TiX₃ structures.

1.2.5 Rhenium Selenides

The first production of rhenium selenide was reported by Henry et. al. [71], Alcock et. al. [48] characterized the crystal structure of ReSe₂, Wildevanck et. al. [49], Lamfers et. al. [50] and Wilson et. al. [21] independently characterised the structural as well as the electronic properties of quite a
number of rhenium selenide compounds.

Wildevanck et. al [49] reported preparation of the crystalline samples of ReSe$_2$ at a temperature of about 1100 °C by heating intimate mixtures of their elements in an evacuated quartz-glass tube.

The structural as well as electronic properties of ReSe$_2$ have been reported both theoretically and experimentally by a number of authors [50, 52, 72, 73, 74, 75, 76]. Unfortunately, none of the theoretical studies took into account the needed van der Waal’s correction necessary for accurate description of the layered structures.

1.3 Aims

Motivated by the facts discussed in Section 1.2, the aims and objectives of this thesis are:

1. Numerical computation techniques will be employed to investigate the most stable structural configuration of transition metal chalcogenides using density functional theory. The systems that will be investigated include experimentally identified structures as well as a range of potential new structures. The most stable structures will be identified for further study. Binary compounds M_yX_z (y and x are integer variables) where $M=(\text{Hf, Zr, Ti, Tc or Re})$ and $X=(\text{S, Se or Te})$ will be included in the study.

2. Further investigation on the stable structures will include

- Mechanical stability test using elastic constants and phonon band structures.
- Electronic structure calculations at the density functional theory and GW level of approximation with a hope of identifying systems with band-gaps in the optical range.
- Optical properties and excitation energies using the GW approximation and comparing our results with experiments, where available.
- Examining possible changes in electronic, structural and optical properties of subset of systems identified in the previous step when doped with another atom.
- Identify possible trends in the properties of the observed TMCs based on the obtained results.
1.4 Thesis outline

This thesis is organised as follows:

Chapter 1 provided a brief background on motivation for the research, transition metal chalcogenides and what is expected to be achieved at the end of the investigation.

Chapter 2 is devoted to the background of density functional theory, exchange correlation functional and van der Waal’s correction terms in density functional theory.

Chapter 3 gives a brief description of the method used in the so-called GW calculations, formalism for calculating frequency dependent dielectric functions and the BSE.

In Chapter 4, methods of solving the well known Kohn-Sham equations are discussed and approximations used in the solution of the equations.

In Chapter 5, the practical ways by which the calculations were done are described.

Chapter 6 discusses and analyses the structural, mechanical, electronic and optical properties of the transition metal chalcogenides. Chapter 7 followed 6, where all the work is concluded and future work proposed.

Appendix A provides detailed information about the changes in the structural, formation and cohesive energies and electronic properties of doped TcS$_2$.
2. Density Functional Theory (DFT)

To understand the behaviour of a particular system, obtain information about the density of the system and understand how the system will respond to external perturbation, it is important to solve Schrödinger equation for that particular system. The exact solution of the equation is available only for a few number of small systems like particle in a box, hydrogen atom and a simple harmonic oscillator. The equation can not be solved exactly for many body systems. Density Functional Theory (DFT) solves the problem by using the electron density (which is a function of three spatial coordinates only), to calculate the energy of systems, thereby reducing computational cost and offering the possibility of calculating the chemical and physical properties of large solids, molecules and atoms. DFT is a quantum mechanical theory of investigating the electronic structure of many-body systems (atoms, solids and molecules) in their ground states. Like most quantum mechanical calculations, the aim of DFT is to find an approximate solution of the many-body time independent Schrödinger equation for electrons

\[
\left[-\frac{\hbar^2}{2m} \sum_i \nabla_i^2 + \sum_i V_{\text{ext}}(r_i) + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{r_{ij}} - E\right] \psi(r_1, \ldots, r_N) = 0
\] (2.0.1)

where the external potential on electron \(i \), due to nuclei \(Z_I \) of \(R_I \) is given by

\[
V_{\text{ext}}(r_i) = -\sum_{i,I} \frac{Z_I e^2}{|r_i - R_I|}
\] (2.0.2)

The first term in equation (2.0.1) above describes the kinetic energy of the system, while the second and the third terms are electron-nucleus Coulomb interaction and electron-electron repulsive Coulomb energies respectively. The \(r_i \) and \(r_j \) denote the positions of electrons in the system, \(e \) is the electronic charge, while \(Z_I \) and \(R_I \) are the atomic numbers and coordinates of the nuclei [77]. For a given location \(R_I \) of nuclei, the most important characteristics in describing the ground state electronic structure are the total energy \(E \) and the electronic density distribution \(n(r) \). DFT has attracted interest from condensed matter physicists as well as chemists in recent years, due to the following reasons:

- it is much easier to work with a 3-dimensional density, \(n(r) \), than a 3N-dimensional wave function, \(\psi \), (\(N \) is the number of electrons)
- it is computationally simple and
- it can handle infinite periodic systems.
Understanding the electronic structure of matter relies on the understanding of the many-body non-relativistic Schrödinger equation [78]. The Hamiltonian of the system of nuclei and electron in an system is given by:

\[
\hat{H} = -\frac{\hbar^2}{2m_e} \sum_i \nabla_i^2 - \sum_{i,I} \frac{Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_I \frac{\hbar^2}{2M_I} \nabla_I^2 + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{|\mathbf{R}_I - \mathbf{R}_J|}
\]

where variables representing electrons, with mass \(m_e\) are lower case and that of nuclei having charge \(Z_I\) and mass \(M_I\) by upper case. The mass of the electrons is much less than the mass of the nuclei. This suggests that electrons will reach equilibrium faster than the nuclei. In the Born-Oppenheimer approximation electrons are considered to be in equilibrium with the nuclei at any instant. This allows us to separate the degrees of freedom of the electrons and the nuclei [79] and the electronic part of the Hamiltonian can be written as

\[
\hat{H} = -\frac{\hbar^2}{2m_e} \sum_i \nabla_i^2 - \sum_i V_{\text{ext}}(\mathbf{r}_i) + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}.
\] (2.0.3)

Here the external potential, which is given by \(V_{\text{ext}}(\mathbf{r}_i)\) accounts for the electron interaction with the nuclei [78]. DFT is a ground state theory which considers the charge density as the relevant physical quantity [80]. Besides its simplicity, it is highly successful in describing structural and electronic properties in quite a number of materials.

The Schrödinger equation for the first principles (\textit{ab-initio}) calculation is

\[
i\hbar \frac{\partial \psi(\{\mathbf{r}_i\}; t)}{\partial t} = \hat{H} \psi(\{\mathbf{r}_i\}; t)
\] (2.0.4)

where \(\psi(\{\mathbf{r}_i\}; t)\) is the wave function for the electron.

2.1 Thomas-Fermi Model

Thomas [81] and Fermi [82] describe a way of calculating the energy of an electronic system exclusively in terms of its density. They proposed an expression for the total energy of an electronic system as an explicit function of density, electrons were considered as non-interacting particles in a homogeneous gas whose density is equal to the local density at any given point [83, 78]. The Thomas and Fermi model neglected the correlation and exchange among electrons. Dirac [84] formulated a local approximation
for the exchange which leads to an electron energy functional in an external potential V_{ext} given by

$$E_{TF}[n] = C_1 \int d^3r n(r)^{(5/3)} + \int d^3r V_{\text{ext}}(r)n(r) + C_2 \int d^3r n(r)^{(4/3)} + \frac{1}{2} \int d^3r d^3r' \frac{n(r)n(r')}{|r-r'|},$$ \hspace{1cm} (2.1.1)

where $\int d^3r n(r)^{(5/3)}$ is the local density approximation to the kinetic energy and $C_1 = \frac{3}{10}(3\pi^2)^{2/3} = 2.81$ Hartree, $\int d^3r n(r)^{(4/3)}$ is the exchange \[85, 84\] with $C_2 = -\frac{3}{4}(\frac{3}{\pi})^{1/3} = -0.739$ Hartree and $\int \frac{1}{2} d^3r d^3r' \frac{n(r)n(r')}{|r-r'|}$ is the classical electrostatic Hartree energy \[78, 83\]. In order to find the ground state energy and density, we need to minimize the functional E_{TF} in all possible values of $n(r)$ subject to the constraint that the integrated charge density equals the total number of electrons

$$\int d^3n(r) = N. \hspace{1cm} (2.1.2)$$

The solution of the unconstrained functional of the minimization can be found by the use of a Lagrange multiplier μ

$$\Omega_{TF}[n] = E_{TF}[n] - \mu \left\{ \int d^3r n(r) - N \right\}, \hspace{1cm} (2.1.3)$$

The Lagrange multiplier μ represents the Fermi energy. If there is a small variation in density $\delta n(r)$, the condition for stationary point

$$\int d^3r \left\{ \frac{5}{3} C_1 n(r)^{(2/3)} + V(r) - \mu \right\} \delta n(r) = 0 \hspace{1cm} (2.1.4)$$

where the total potential is given by $V(r) = V_{\text{ext}}(r) + V_{\text{Hartree}}(r) + V_z(r)$. Since for any function $\delta n(r)$ eqn (2.1.4) must be satisfied, it is obvious that the will be stationary if and only if the potential and the density satisfies the relation

$$\frac{1}{2}(3\pi^2)^{2/3} n(r)^{(2/3)} + V(r) - \mu = 0. \hspace{1cm} (2.1.5)$$

The Thomas-Fermi model has been used in equation of state of elements \[78\], but the approach begins with a crude approximation, missing important chemistry and physics of shell structure of atoms and molecules binding energy, for example. It can therefore be said to fall short of an accurate description of electrons in matter.

2.2 Hohenberg-Kohn Theorems (HK)

Hohenberg and Kohn’s approach was to formulate DFT as an exact theory of many body systems \[78\]. It is applicable to systems of interacting particles in an external potential $V_{\text{ext}}(r)$ and it is applicable to
any system with electron and fixed nuclei in which the Hamiltonian can be written in the form
\[\hat{H} = -\frac{\hbar^2}{2m} \sum_i \nabla_i^2 + \sum_i V_{\text{ext}}(r_i) + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|r_i - r_j|}. \] (2.2.1)

DFT is based on the two theorems by Hohenberg and Kohn [86]. Hohenberg-Kohn Theorem I states that:

1. For any system, the ground state density \(n_0(r) \) uniquely determines the external potential \(V_{\text{ext}}(r) \) up to a constant. To prove this, HK used a general many body wave function to express the density and energy. They assumed two external potentials \(V_{\text{ext}}^1(r) \) and \(V_{\text{ext}}^2(r) \) which are different by more than a constant but lead to the same ground state density \(n_0(r) \). It is expected that the two potentials should have different Hamiltonians, \(\hat{H}^1 \) and \(\hat{H}^2 \) with ground state wave functions \(\psi^1 \) and \(\psi^2 \) respectively hypothesized to give the same \(n_0(r) \). It is expected that \(\psi^2 \) is not the ground state of \(\hat{H}^1 \), therefore
\[E^1 = \langle \psi^1 | \hat{H}^1 | \psi^1 \rangle < \langle \psi^2 | \hat{H}^1 | \psi^2 \rangle. \] (2.2.2)

The inequality is strictly obeyed in a non-degenerate ground state, we can write \(\langle \psi^2 | \hat{H}^1 | \psi^2 \rangle \) as
\[\langle \psi^2 | \hat{H}^1 | \psi^2 \rangle = \langle \psi^2 | \hat{H}^2 | \psi^2 \rangle + \langle \psi^2 | \hat{H}^1 - \hat{H}^2 | \psi^2 \rangle \] (2.2.3)
\[= E^2 + \int d^3 r [V_{\text{ext}}^1(r) - V_{\text{ext}}^2(r)] n_0(r), \] (2.2.4)

therefore
\[E^1 < E^2 + \int d^3 r [V_{\text{ext}}^1(r) - V_{\text{ext}}^2(r)] n_0(r). \] (2.2.5)

We can as well consider \(E^2 \) in a similar way by replacing the subscripts (1) with (2)
\[E^2 < E^1 + \int d^3 r [V_{\text{ext}}^2(r) - V_{\text{ext}}^1(r)] n_0(r). \] (2.2.6)

If we add eqn
\[E^1 + E^2 < E^1 + E^2. \] (2.2.7)

Which proves the theorem that there cannot be two different external potentials that give the same ground state charge density or the density at the ground state uniquely determines the external potential [87, 77]. Since \(n(r) \) determines the external potential, it also determines the ground state wave function which can be obtained from the many body Schrödinger equation. It is worthy to note that we are still facing the problem of solving the many body Schrödinger equation in the presence of an external field.
2. Hohenberg-Kohn Theorem II states that: A universal functional $F_{HK}[n]$ of the energy $E[n]$ in terms of the density $n(r)$ can be defined, which is valid for any external potential $V_{ext}(r)$; for a given $V_{ext}(r)$, the ground state energy of the system is the global minimum value of this functional, and the density $n(r)$ that minimizes the functional is the exact ground state density $n_0(r)$ [78].

To prove this theorem, the variational energy $E_{HK}[n]$ a density functional from HK theorem I, is:

$$E_{HK}[n] = T[n] + E_{int}[n] + \int d^3r V_{ext}(r) n(r)$$ \hspace{1cm} (2.2.8)

$$\equiv F_{HK}[n] + \int d^3r V_{ext}(r)n(r),$$ \hspace{1cm} (2.2.9)

where the internal, potential and kinetic energies of the interacting electron are contained in the term $F_{HK}[n]$ and it is given by

$$F_{HK}[n] = T[n] + E_{int}[n],$$ \hspace{1cm} (2.2.10)

which, by construction, must be same for all electron systems, irrespective of the external potential, since the kinetic and interaction energies of the system are functionals of the density only. Using the above discussion, if we consider a system with ground state density $n_0(r)$ which corresponds to an external potential $V_{ext}(r)$, the expectation value of Hamiltonian of the system in the unique ground state with wave function $\psi^{(0)}$ will give HK functional

$$E^0 = E_{HK}[n^0] = \langle \psi^{(0)} | \hat{H}^{(0)} | \psi^{(0)} \rangle.$$ \hspace{1cm} (2.2.11)

If we think of a different density $n^1(r)$ whose wave function is $\psi^{(1)}$. It will be clear that it will have have an energy E^1 which is higher than E^0 [78]. Therefore

$$E^0 = \langle \psi^{(0)} | \hat{H}^{(0)} | \psi^{(0)} \rangle < \langle \psi^{(1)} | \hat{H}^{(1)} | \psi^{(1)} \rangle = E^1.$$ \hspace{1cm} (2.2.12)

It is, therefore, clear that the energy given by eqn (2.2.8) in terms of HK functional evaluated for the correct ground state density $n^0(r)$ is lower than the value of this expression for any other density $n(r)$. If the functional $F_{HK}[n^0]$ is known, minimizing the system total energy with respect to variation in density will give the exact ground state density and energy. However, HK theorem do not give any information on how the functional $F_{HK}[n]$ that gives the ground state energy can be constructed. The theorem can only be applied to a non degenerate system, even though, DFT is based upon it [78].
2.3 Constrained search formalism

Levy [88] and Lieb [89] redefined the universal functional of the energy in Hohenberg-Kohn formalism (ii) above as

$$F[n] = \min_{\psi \rightarrow n(r)} [\langle \psi | \hat{T} + \hat{V}_{\text{int}} | \psi \rangle]$$

(2.3.1)

which minimizes the energy over all N-particle wave function ψ that yield a given density $n(r)$. The total energy functional $E(n)$ for a specific system is then given by

$$E[n] = \int dr V_{\text{ext}}(r)n(r) + F[n]$$

(2.3.2)

The ground state energy and density are obtained by minimizing $E[n]$ under the constraint $\int dr n(r) = N$, which implies that $dr n(r)$ is the average number of electrons in a volume element dr. In this way, Levy and Lieb restate the HK theorem and give more insight to the meaning of what the functional is as "the minimum of the sum of kinetic and interaction energies for all possible wave function with density $n(r)$". Unlike HK theorem, Levy and Lieb formalism is defined for all densities that correspond to anti-symmetric wave function and the restriction that the density has to be associated with the external potential is lifted [87]. Despite the success of the HK theorems, being the bedrock of DFT, it is only a proof that the electron density contains all the information needed to describe a molecular or electronic system. They failed to provide an insight on how the functional that produces the ground state energy can be constructed [87] and it also failed to provide a hint on the type of approximation to be used for the unknown functional. The constrained search formalism is of mere theoretical value and provides no solutions to the practical problem, searching through all possible wave function is practically impossible making

$$F[n] = \min_{\psi \rightarrow n(r)} [\langle \psi | \hat{T} + \hat{V}_{\text{int}} | \psi \rangle]$$

(2.3.3)

practically impossible to determine.

2.4 Kohn-Sham Approach

Kohn and Sham [90] reformulated the problem in a more familiar form and opened the way to practical applications of DFT by proposing the following ansatz

1. A system of interacting electrons is mapped on to an auxiliary system of non-interacting electrons having the same ground state charge density $n(r)$ as the interacting system
2. the auxillary Hamiltonian is chosen to have the usual kinetic operator and an effective potential \(V_{\text{eff}}(r) \) acting on an electron at a point \(r \).

For the Kohn-Sham system of non-interacting electrons, the ground state density is given by

\[
n(r) = 2 \sum_i |\psi_i(r)|^2 \tag{2.4.1}
\]

where the Kohn-Sham orbitals are the solutions of the one-particle Shrödinger equation

\[
\left(-\frac{\hbar^2}{2m_e} \nabla^2 + V_{\text{KS}}(r) \right) \psi_i = \varepsilon_i \psi_i. \tag{2.4.2}
\]

In this approach, the Kohn-Sham energy can be written as:

\[
E_{\text{KS}}[n] = T_s[n] + \int d(r)V_{\text{ext}}(r)n(r) + E_H[n] + E_{\text{XC}}[n], \tag{2.4.3}
\]

where the Hatree energy \(E_H[n] \) is the Coulomb energy of the density \(n(r) \) treated as a classical charge density

\[
E_H[n] = \frac{1}{2} \int d(r)dr'n(r)n(r') \frac{n(r)n(r')}{|r-r'|}, \tag{2.4.4}
\]

and \(T_s \) is the independent-particle kinetic energy of non-interacting electron given by [91]

\[
T_s = -\frac{\hbar^2}{2m} 2 \sum_i \int \psi^*_i(r)\nabla^2 \psi_i(r)dr. \tag{2.4.5}
\]

The variational problem on the density \(n(r) \) leads to the self-consistent Kohn-Sham equation [92], equation (2.4.2) with

\[
V_{\text{KS}}(r) = V_H(r) + V_{\text{XC}}(r) \tag{2.4.6}
\]

where \(V_{\text{XC}} = \frac{\delta E_{\text{XC}}}{\delta n(r)} \) and \(V_H = \frac{\delta E_H}{\delta n(r)} \). This implies that if the universal density functional is known, the exact density and the ground state energy can be computed by solving the Kohn-Sham equation [78].

The effects of the correlation and exchange are grouped into the exchange correlation energy

\[
E_{\text{XC}}[n] = \langle \hat{T} \rangle - T_s[n] + \langle V_{\text{int}} \rangle - E_H[n], \tag{2.4.7}
\]

which follows from equations (2.3.3), (2.3.2) and (2.4.3).

2.5 Exchange Correlation Functionals

The exchange correlation energy contains all the terms that we are ignorant of and it also contains correction to the independent particle kinetic energy. A good approximation for the exchange correlation
may give a realistic electron density and ground state energy [93]. In the spin-unrestricted form, the Kohn-Sham equation becomes
\[
\left[-\frac{\hbar^2}{2m_e} \nabla^2 + V_H(r) + V_{XC}^\sigma(r) \right] \psi_i^\sigma = \varepsilon_i^\sigma \psi_i^\sigma,
\] (2.5.1)
where \(\sigma = \uparrow \) or \(\downarrow \) label the spin state.

For several decades, there were several attempts to construct approximate density functionals. Today, such functionals can be constructed semi-empirically through the adjustment of parameters from a given experimental data set [94, 93] or non-empirically through satisfaction of well known exact constraints. Improvements on density functional theory calculations led to the development hierarchy of exchange correlation functionals called "Jacobs ladder" [95]. The first four rungs on the ladder are:

1. Local Spin Density Approximation (LSDA)
2. Generalized Gradient Approximation (GGA)
3. meta-GGA
4. hybrid functionals.

2.5.1 Local Spin Density Approximation (LSDA)

LSDA was first proposed by Kohn and Sham [90], they proposed that a solid can sometimes be considered to be close to homogeneous electron gas (a hypothetical system, where electrons move on a positive background of charge density in a way that the ensemble is neutral electrically [87]), within this limit, it is believed that exchange and correlation effects are local in character, the exchange correlation energy is expressed as an integral over all surfaces. It is also assumed that the density at each point is the same as that of an electron gas of the same density [96]. The exchange correlation energy in this approximation is given by
\[
E_{\text{XC}}^{\text{LSDA}}[n_\uparrow, n_\downarrow] = \int d^3r n(r) \varepsilon_{\text{xc}}(n_\uparrow(r), n_\downarrow(r))
\] (2.5.2)
where \(\varepsilon_{\text{xc}}(n_\uparrow, n_\downarrow) \) is the energy component in an electron gas with uniform spin densities \(n_\uparrow \) and \(n_\downarrow \) and \(n(r)d^3r \) is the average number of electrons in volume element \(d^3r \).

LSDA Exchange potential can be expressed as [97]
\[
\psi_{\text{xc}}^{\text{(LSDA)}} = \frac{\delta E_{\text{XC}}^{\text{LSDA}}}{\delta n_\uparrow(r), n_\downarrow(r)} = \varepsilon_{\text{xc}} + (n_\uparrow(r), n_\downarrow(r)) \frac{\partial \varepsilon_{\text{xc}}(n)}{\partial n}
\] (2.5.3)
We need to determine the exchange correlation term of a uniform electron gas at a given density for practical applications of LSDA. This can be broken into the exchange ε_x and correlation ε_c parts as

$$\varepsilon_{xc} = \int d^3\mathbf{r} n(\mathbf{r}) \left[\varepsilon_x(n_\uparrow(\mathbf{r}), n_\downarrow(\mathbf{r})) + \varepsilon_c(n_\uparrow(\mathbf{r}), n_\downarrow(\mathbf{r})) \right]$$ \hspace{1cm} (2.5.4)

where the exchange part, which is the electron exchange energy of a uniform electron gas at a given density, is given by Dirac the functional as [84]

$$\varepsilon_x = -\frac{3}{4} \frac{3}{\sqrt{\pi}} \frac{\sqrt{n_\uparrow(n_\downarrow)}}{n_\uparrow(n_\downarrow)}$$ \hspace{1cm} (2.5.5)

Ceperly and Alder [98] provide accurate values of ε_c through Quantum Monte Carlo simulations, analytic expressions for ε_c [99], are only known at high and low density limits [100]. The correlation energy in the high density limit is given by

$$\varepsilon_c = A \ln r_s + C + O(r_s)$$ \hspace{1cm} (2.5.6)

where $A = 0.031091$ and $C = -0.046644$ and r_s is Wigner-Seitz radius and is related to the density by

$$\frac{4}{3} \pi r_s^3 = \frac{1}{n}$$

At the low density limit, the correlation energy is given by

$$\varepsilon_c = -\frac{1}{2} \left\{ g_0 \frac{r_s}{r_s^3} + g_1 \frac{r_s^{3/2}}{r_s} + \ldots \right\},$$ \hspace{1cm} (2.5.7)

where $g_0 = 0.896$ and $g_1 = 1.325$ as deduced by Wigner. Vosko et. al. (VWN) [99], Perdew and Zunger (PZ81) [101], Cole and Perdew (CP) [102] and Perdew and Wang (PW92) [103] have used different approaches and different analytic expressions for ε_x to generate several LSDA correlation functionals.

LSDA is an *ab initio* method, and, by construction, is exact for a uniform system and has proven to be a very good approximation on systems of slowly varying density. For a real electronic system, whose density varies rapidly, it provide results with moderate accuracy, though, these densities are outside the range of the validity of the LSDA. After decades of the initial LSDA proposal, it remains a mere approximation for solid state calculations. LSDA describes successfully the ground state properties of metals and the Kohn-Sham eigenvalues are sometimes found to agree reasonably well with quasi-particle energies from experiments in photo-emission. However, LSDA tends to overestimate atomization energies and under-estimate bulk volumes [104].

2.5.2 Generalized Gradient Approximation (GGA)

GGA was developed to address the short comings of LSDA, it maintains all the features of LSDA and incorporate a correlation functional that is to correct the second order gradient expansion [105] in a slow
varying limit of density. With this correction, GGA partly takes into account changes in the electron density in the vicinity of the point of interest \[106\] and this is very important when points of consideration are near the nuclei, where the electron density is changing strongly. Energy functionals in GGA depend on the density and its gradient, and they also maintain the analytical properties of exchange correlation of the LSDA. The exchange correlation energy in GGA is given by:

\[
E_{XC}^{GGA}[n_\uparrow, n_\downarrow] = \int dr f(n(r), n_\uparrow(r), n_\downarrow(r), \nabla n_\uparrow(r), \nabla n_\downarrow(r)),
\]

while the exchange correlation potential is given by

\[
V_{xc}^\sigma(r) = \left[\epsilon_{xc} + n \frac{\partial \epsilon_{xc}}{\partial n} \right]_{r_m,\sigma} + \sum_{m'} \left[n \frac{\partial \epsilon_{xc}}{\partial |\nabla n|} \frac{\nabla n}{|\nabla n|} \right]_{r_{m'}m}. \tag{2.5.9}
\]

There are different versions of GGA: Chevary, et. al. version (PW91) \[107\], Perdew, et. al. version (PBE) \[108\], Becke et. al. version (BLYP) \[109\]. However, for the purpose of this research, we are going to use the PBE parametrization because it solves the problem encountered by PW91 with a simple construction of a version of GGA exchange correlation for all parameters. The correlation functional in this derivation is given by

\[
E_{C}^{GGA} = \int d^3 r C^\text{unif}_C(r_s, \xi) + H(r_s, \xi, t), \tag{2.5.10}
\]

\(r_s\) in the above equation represents local Seitz radius given by \(n = \frac{3}{4\pi r_s^3} = \frac{k_s^3}{3\pi^2}\), relative spin polarization \(\xi = \frac{n_\uparrow - n_\downarrow}{n}\) while \(t\) is a dimensionless density gradient quantity given by \(\left|\frac{\nabla n}{2\phi_k n}\right|\), here \(\phi\) in the \(t\) is given by

\[
\frac{(1 + \xi)^\frac{3}{2} + (1 - \xi)^\frac{3}{2}}{2} \tag{2.5.11}
\]

which is a spin scaling factor and Thomas-Fermi screening wave number

\(k_s = \sqrt{\frac{4k_f}{\pi a_0}}\) and \(a_0 = \frac{n^2}{me^2}\). Perdew, et. al. \[108\] classify the regions of density variation in to three:

1. Slow variation limit (second-order gradient is corrected in the region of slow variation in density).

2. Rapid variation limit (satisfied sum rule)

and

3. Region of uniform scaling (logarithmic singularity of \(\epsilon_{C}^\text{unif}\) is cancelled \[110\]).

All the three regions satisfy a simple ansatz:

\[
H = \left(\frac{e^2}{a_0} \right) \gamma \phi^3 \times \ln \left\{ 1 + \frac{\beta}{\gamma} \left[\frac{1 + At^2}{1 + At^2 + A^2 t^4} \right] \right\}, \tag{2.5.11}
\]
where

\[A = \frac{\beta}{\gamma} \left[e^{\left(-\frac{e^{3} unif}{e^{2} a_{0}} \right)} - 1 \right]^{-1}, \]

(2.5.12)

\(\beta \) is a constant \(\simeq 0.066725 \). Function of \(H \) takes its value from the point \(t = 0 \) and monotonically grows to \(t = \infty \), consequently, \(E^{GGA} \leq 0 \) which at high density, under uniform scaling tends to

\[- \frac{e^{2}}{a_{0}} \int d^{3} r n \gamma \phi^{3} \times \ln \left\{ 1 + \frac{1}{\chi s^{2}} + \left(\frac{\chi s^{2}}{\phi^{2}} \right)^{2} \right\},\]

(2.5.13)

where \(s \) is defined as

\[s = \left| \nabla \right| n^{2} k_{f} n = \left(\frac{r}{a_{0}} \right)^{\frac{3}{2}} \frac{\phi t_{c}}{c} \]

which is a dimensionless gradient of density, \(c = (3\pi^{2}/16)^{(1/3)} \simeq 1.2277 \), \(\chi \) is given by \((\beta/\gamma) e^{2} e^{-\omega/\gamma} = 0.72161 \). GGA-PBE exchange energy is constructed from four condition:

1. \(\xi = 0 \) everywhere, given

\[E_{x} = \int d^{3} r n^{unif}_{x}(n) F_{x}(s), \]

(2.5.14)

where \(e^{unif}_{x} = -3e^{2} k_{F}/4\pi \). In order to restore the right limit of a uniform gas, \(F_{x}(0) \) the enhancement factor is set to zero.

2. Spin scaling is obeyed by exact form of the exchange energy i.e. \(E_{x}[n_{\uparrow}, n_{\downarrow}] = \{ E_{x}[2n_{\uparrow}] + E_{x}[2n_{\downarrow}]\}/2 \)

3. LSDA gives an excellent approximation to exchange correlation energy for small changes in density, while gradient expansion did not. To maintain this LSDA feature

\[F_{x}(s) \rightarrow 1 + \mu s^{2}, \]

(2.5.15)

where \(\mu = \beta(\pi^{2}/3) \simeq 0.21951 \) effect of exchange gradient coefficient must cancelled that of correlation.

4. If the enhancement factor \(F_{x}(\xi = 1, s) = 2^{(1/3)} F_{x}(s/2^{(1/3)}) \) grows slowly, but progressively with \(s \), the condition below (Lieb-Oxford bound)

\[E_{x}[n_{\uparrow}, n_{\downarrow}] \geq E_{xc}[n_{\uparrow}, n_{\downarrow}] \geq -1.679 e^{2} \int d^{3} r n^{4/3} \]

(2.5.16)

will be satisfied. A form of enhancement factor, which satisfies eqn (2.5.15) and (2.5.16) is

\[F_{x}(s) = 1 + \kappa - \kappa/(1 + \mu s^{2}/\kappa) \]

(2.5.17)

with \(\kappa = 0.804 \).
The GGA proposed by Perdew et. al. [108] maintains the characteristics of LSDA together with gradient corrected non-locality. However, PW91 features like second order correction to exchange and correlation energy in slow varying limit and non-uniform scaling of exchange energy that are considered less important are sacrificed [108]. GGA however, fails to simultaneously describe exchange correlation energy densities as well as correlation potentials correctly in the limit $r \to \infty$, which calls for further improvement to the approximation.

2.5.3 meta-GGA

In meta-GGAs, the exchange correlation energy expression include the Laplacian of the spin density. The exchange correlation is now of the form

$$E_{\text{XC}}^{\text{M-GGA}}[n_{\uparrow}, n_{\downarrow}] = \int d^3r n_{\uparrow} \nabla n_{\uparrow}, \nabla n_{\downarrow}, \nabla^2 n_{\uparrow}, \nabla^2 n_{\downarrow}, \tau \uparrow, \tau \downarrow$$ \hspace{1cm} (2.5.18)

where $\tau_{\sigma}(r) = \frac{1}{2} \sum_{\alpha} \theta(\mu - \epsilon_{\alpha\sigma}) |\nabla \psi_{\alpha\sigma}(r)|^2$ is the Kohn-Sham orbital kinetic energy of electrons with spin σ. Meta-GGAs achieve very accurate atomization energies of molecules, surface energies of metals and lattice constant of solids. Despite these advances, there are difficulties in expressing the exchange part of the energy.

There are various meta-GGA flavours [111], among them TPSS [112], M06L [113] and Modified Becke Johnson potential (MBJ) [114]. The latter is known to predict electronic properties at an accuracy comparable to hybrid and GW at a lower computational cost [115].

MBJ used local approximation to atomic exchange potential together with screening term in the form

$$V_{x,\sigma}(r) = eV_{x,\sigma}(r) + (3c - 2) \frac{1}{\pi} \sqrt{\frac{5}{12}} \sqrt{\frac{2T(r)}{n_{\sigma}(r)}}.$$ \hspace{1cm} (2.5.19)

Where n_{σ} is the electron density, T kinetic energy density and $V_{x,\sigma}(r)$ is the Becke-Roussel potential given by

$$V_{x,\sigma}(r) = -\frac{1}{b_\sigma(r)} \left[1 - e^{-x_\sigma(r)} \right].$$ \hspace{1cm} (2.5.20)

The $V_{x,\sigma}(r)$ was introduced to model Coulomb potential created by exchange hole. It is purely local and determined by the electron density, its derivatives and kinetic energy density. The function b_σ in

\footnote{It is important to note that MBJ has no exchange correlation energy, it take its correlation energy from LSDA and thus its calculations can not be self consistent with respect to energy. It also become unstable in vacuum at points where the electron density and the kinetic energy approach zero [114].}
the equation above is given by

\[b_\sigma = \left[\frac{x_\sigma^3 e^{-x_\sigma}}{(8\pi n_\sigma)} \right]^{1/3}, \quad (2.5.21) \]

and

\[c = \alpha + \beta \left(\frac{1}{V_{\text{cell}}} \int_{\text{cell}} \frac{\nabla n(r')}{n(r')} dr' \right)^{1/2} \quad (2.5.22) \]

2.5.4 Hybrid Functionals

Hybrid-GGAs introduced by Becke [116, 117] try to overcome the difficulties encountered by GGAs by including exchange energy from Hatree-Fock expression into local/semi-local GGA/LDA exchange and correlation functions. A part of the non-local exact Hatree-Fock-like exchange

\[E_x^{HF}(r, r') = -\frac{1}{2} \sum_{i,j} \int d^3r d^3r' \phi_i^*(r) \phi_j(r) \phi_i^*(r') \phi_j(r') \frac{1}{|r - r'|} \quad (2.5.23) \]

is mixed with complementary GGA/LDA semi-local/local approximate exchange correlation. The hybrid functional is written as

\[E_{xc}^{\text{hyb}} = \alpha E_x^{\text{exact}} + (1 - \alpha) E_x^{\text{GGA/LDA}} + E_c^{\text{GGA/LDA}} \quad (2.5.24) \]

where \(\alpha \) is the mixing factor and it control the exact \(E_x^{HF} \) included in to the hybrid functional.

2.6 Van der Waals Corrections

Standard exchange correlation functionals in density functional theory (LDA, GGA, meta-GGA and hybrid) describe bonds, structures, lattice constants and many other properties of molecules and solids with varying degree of accuracy. However, fail to account for long range electron correlations that are the primary cause of van der Waal’s interactions, resulting from dynamical correlations between fluctuating charge distributions, which play a significant role in layered structures. There have been attempts to improve approximate functionals to account for van der Waal’s effects on biomolecules, polymers and van der Waal’s complexes [118, 119, 120, 121, 122].
2.6.1 DFT-D2

Grimme [119, 123] proposed a method of including a van der Waal’s correction term to the conventional DFT energy term \(E_{KS-DFT} \) to give the total corrected energy \(E_{DFT-D} \)

\[
E_{DFT-D} = E_{KS-DFT} + E_{disp}
\]

(2.6.1)

where \(E_{disp} \) is the empirical dispersion correction to the DFT energy and is given by

\[
E_{disp} = -s_6 \sum_{i=1}^{N_{at}-1} \sum_{j=i+1}^{N_{at}} \frac{C_{ij}^6}{R_{ij}^6} f_{dmp}(R_{ij})
\]

(2.6.2)

where \(N_{at} \) represents the number of atoms in a given system, \(C_{ij}^6 \) dispersion coefficient for atom pair \(ij \), \(s_6 \) scaling factor, which depends on the nature of the DFT approximation used, and \(R_{ij} \) are inter-atomic distances. A damping function \(f_{dmp} \) is added to avoid singularities for small values of \(R_{ij} \), with

\[
f_{dmp}(R_{ij}) = \frac{1}{1 + e^{-d\left(\frac{R_{ij}}{R_r} - 1\right)}}
\]

(2.6.3)

where \(R_r \) is the sum of atomic van der Waal’s radii. The dispersion coefficients \(R_{ij} \) and \(C_{ij}^6 \) are given by

\[
R_{ij} = R_i + R_j
\]

(2.6.4)

\[
C_{ij}^6 = \sqrt{C_i^6 C_j^6}
\]

(2.6.5)

respectively, where \(C_i^6 \) is expressed in term of atomic ionization potential \(I_p \) and static dipole polarizability \(\alpha \) as \(C_i^6 = 0.05 I_p^{\alpha} \). \(N \) has a value of 2, 10, 18, 36 and 54 for row 1-5 atoms of the periodic table. For PBE, \(s_6 \) has been optimized by least-square method to be 0.75. In the recent DFT-D method [122] more accurate dispersion coefficients are calculated through time dependent DFT by recurrent relation through the use of the Casimir-Polder equation

\[
C_{ij}^6 = \frac{3}{\pi} \int_0^\infty \alpha^i(i\omega)\alpha^j(i\omega)d\omega
\]

(2.6.6)

where \(\alpha^i(i\omega) \) is the average dipole polarizability at an imaginary frequency \(\omega \).

2.6.2 vdW-DF

Langreth et. al. [124, 125] proposed non-local correlation energies to account for the van der Waal’s effect, the correlation energy being of the form

\[
E_{c}^{nl}[n] = \int d^3r \int d^3r' n(r)\phi(r, r')n(r').
\]

(2.6.7)
The kernel ϕ is a function of $Rf(r)$ and $Rf(r')$, where $R = |r - r'|$ and $f(r)$ is a function of $n(r)$ and its gradient.

2.6.3 TS + SCS

Tkatchenko et. al. [126] proposed a method of calculating dispersion coefficients from London type dispersion formula by rescaling polarizabilities and atomic dispersion coefficients. Their dispersion energy is similar to that of Grimme et. al. [119] and is given by

$$E_{\text{disp}} = -\frac{1}{2} \sum_{A=1}^{N} \sum_{B=1}^{N} \sum_{L} C_{6AB} f_{\text{damp}}(r^{AB,L}), \quad (2.6.8)$$

Here, $r^{AB,L} = |r^{A,0} - r^{B,L}|$ sums over all N atoms and unit cell translation $L = (l_1, l_2, l_3)$, the prime shows that for $L = 0, A \neq B$. The new feature in TS + SCS is in the computation of dispersion coefficient C_{6AB}^{TS} and static polarizabilities α_{A}^{TS} which are computed in the following way

$$\alpha_{A}^{TS} = \frac{V_{A}^{\text{eff}}}{V_{A}^{\text{free}}} \alpha_{A}^{\text{free}}, \quad (2.6.9)$$

the first term on the right hand sign represents the ratio of effective volume atom in molecule or solid V_{A}^{eff} that of a free non-interacting atom V_{A}^{free}. In a similar way, by rationalizing the London dispersion formula, the effective dispersion of a free atom and atoms in a molecule can be computed by

$$C_{6AA}^{TS} = \left(\frac{V_{A}^{\text{eff}}}{V_{A}^{\text{free}}}\right)^2 C_{6AA}^{\text{free}}, \quad (2.6.10)$$

The Hirshfeld partition formula for all electrons density is then used to obtain the atomic volumes

$$\frac{V_{A}^{\text{eff}}}{V_{A}^{\text{free}}} = \frac{\int r^3 \omega(r) n(r) d^3(r)}{\int r^3 n_{A}^{\text{free}}(r) d^3(r)} \quad (2.6.11)$$

The n_{A}^{free} in the above equation represents the spherically average electron density of a neutral atom and ω_A the Hirshfeld weight by

$$\omega_A(r) = \frac{n_A^{\text{free}}}{\sum_B n_B^{\text{free}}} \quad (2.6.12)$$

The sum here runs over all the atoms in the system. The dipole-dipole dispersion between unlike atoms is given by

$$C_{6AA} = \frac{2C_{6AB}C_{6B}}{C_{6A}^{\alpha_A} + C_{6B}^{\alpha_B}} \quad (2.6.13)$$
To eliminate inaccurate interactions at close range distances, a damping function of the form is used

\[f_{\text{damp}}(r_{AB,L}) = \frac{1}{1 + e^{-d (r_{AB,L}/s_{R} - 1)}} \]

(2.6.14)

where the \(d \) parameter is fixed at 20 and the scaling coefficient \(S_{R} \), which is peculiar to the DFT exchange correlation functional used, has been optimised to be 0.94 for the PBE functional. \(R_{AB}^{eff} \) which stands for the sum of atomic radii is given by

\[R_{AB}^{eff} = R_{A}^{eff} + R_{B}^{eff} \]

(2.6.15)

and each can be calculated by rescaling free atom vdW radii as

\[R_{A}^{eff} = \left(\frac{\alpha_{TS}^{T_{A}}}{\alpha_{T_{A}}^{\text{free}}} \right)^{\frac{1}{3}} R_{A}^{TS} \]

(2.6.16)

\(R_{A}^{eff} \) is taken here to be the radius at which electron density of a free atom is the same as half the equilibrium distance in a dimer of noble gas atom in the same row in the periodic table as the atom under consideration. The term \(\alpha_{A}^{SCS}(i\omega) \), is however, computed by solving screening equation self-consistently in the recent method of TS + SCS [127] through

\[\alpha_{A}^{SCS}(i\omega) = \alpha_{A}^{TS}(i\omega) - \alpha_{A}^{TS}(i\omega) \sum_{A \neq B} \tau_{A,B} \alpha_{B}^{CSS}(i\omega) \]

(2.6.17)

here, \(\tau_{A,B} \) stands for the dipole interaction tensor and the effective frequency dependent polarizability is

\[\alpha_{A}^{TS}(i\omega) = \frac{\alpha_{A}^{TS}}{1 + \left(\frac{\omega}{\omega_{A}} \right)^{2}} \]

(2.6.18)

where \(\omega_{A} \) is the mean excitation frequency given by

\[\omega_{A} = \frac{3}{4} \frac{C_{6A}^{TS \omega}}{\left(\alpha_{A}^{TS} \right)^{2}} \]

(2.6.19)

The TSC +SCS dispersion coefficient can be calculated from the Casimir-Polder integral as

\[C_{6AA} = \frac{3}{4} \int_{0}^{\infty} \alpha_{A}^{SCS}(i\omega) \alpha_{A}^{SCS}(i\omega) d\omega \]

(2.6.20)

and the van der Waal’s radii \(R_{A}^{SCS} \) obtained by rescaling the TS radii

\[R_{A}^{SCS} = \left(\frac{\alpha_{A}^{SCS}}{\alpha_{T_{A}}^{\text{free}}} \right)^{\frac{1}{3}} R_{A}^{TS} \]

(2.6.21)

The value of \(S_{R} \) is optimized in a way similar to TS and found to be 0.97 for PBE functionals.
3. The GW Approximation

Generally speaking, properties of matter can be categorized into two groups: electronic ground state and electronic excited states. DFT describes exactly the ground state properties. It fails to describe excited properties of materials [92]. To be specific, for example, it underestimates band gaps in insulators and semiconductors by as much as fifty percent [78], yield wrong band order in some cases [128], there is significant deviation in DFT calculated optical spectra when compared with that of experiment [129].

The error in the DFT calculated excited properties of material is because the eigenvalues of KS theory are Lagrangian parameters meant to ensure orthogonality of orbitals of particles. As such the eigenvalues should be considered as mathematical tools with no physical meaning except that the square of the eigenfunctions will sum to exact ground state density. In fact, there has been no formal justification that relates KS eigenvalues to dispersion energy of quasi-particles in solids, with exception that highest occupied KS eigenvalues has been identified to be the chemical potential of metals [130] and negative ionization energy for semiconductors and insulators [131, 92].

In order to overcome the shortcomings of DFT, many-body perturbation techniques can be used as post-DFT approximations to improve the calculated values of band gaps [57]. This approach is based on the concept of quasi-particles and the well known Green function method [132, 92].

Nevertheless, results from DFT calculations are ingredients to the GW approximation [133, 134, 135]. Eigenvalues and eigenfunctions from KS-DFT are used together with many body Green function techniques in construction of the electronic self energy in GW quasi-particle approximation [58].

3.1 Quasi-Particles

Electrons in solids repel each other through Coulombic potential, as a result the electron surrounds itself with a positively charged screening which, together with the electron, form a quasi-particle [92]. The quasi-particles interact with each other via a screened potential instead of the Coulombic potential. Quasi-particles therefore offer the opportunity of dealing with weakly interacting particles rather than a complicated system of strongly interacting particles.
3.2 Self Energy

The difference in energy between a quasi-particle and a bare particle is described in terms of the Self energy (energy of a bare particle interacting with itself through the polarization cloud that the particles generate in a many body system). Usually, the self energy accounts for exchange and correlation effects beyond the Hatree-Fock approximation, it is non local, energy dependent and non-Hermitian in general [92, 136]. It is not possible to determine the self energy of real systems exactly. However, it can be determined by approximations such as the screened interaction or the GW approximation proposed by Hedin [58]. The behaviour of quasi-particles is governed by an equation called the quasi-particle equation [137], written in the form

\[
\left[-\frac{\hbar^2}{2m_e} \nabla^2 (r) + V_H (r) + V_{\text{ext}} (r) \right] \Psi_i (r) + \int dr' \Sigma (r, r', E_i) |\Psi_i (r') = E_i \Psi_i (r), \tag{3.2.1}
\]

where \(\Sigma (r, r', E_i) \) is the self energy, \(V_H (r) \) is the Hartree potential of electrons given by

\[
V_H (r) = \int dr' \frac{n (r')}{|r - r'|}, \tag{3.2.2}
\]

\(n \) is the electron density \(V_{\text{ext}} (r) \) is the external potential from the ions, \(E_i \) and \(\Psi_i (r') \) are the quasi-particle energy and wave function respectively. The quasi-particle wave functions are obtained from KS-DFT ground state calculations, while the quasi-particle energy is given by

\[
E_i = \text{Re} \left(\langle \Psi_i | H_{\text{KS}} - v_{\text{xc}} + \Sigma_{\text{GW}} | \Psi_i \rangle \right) \tag{3.2.3}
\]

3.3 Green Function

Significant physical information in many body theory can be extracted from a Green function [96]. Quasi-particle properties like lifetimes, energy and expectation values of single particle operators (total energy of many body system and density) are obtained from the single particle Green function [92].

In general, the Green function \(G \) of a linear operator \(\mathcal{L} \) is given by [138]

\[
[z - \mathcal{L}(r)] G(x, x'; z) = \delta(x - x'), \tag{3.3.1}
\]

where \(\delta(x - x') \) is the Dirac delta function. If for example, and external potential acted on a single quantum particle, one will obtains

\[
\left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{ext}} (r) - E \right] G^{(0)} (r, r'; E) = -\delta(r - r'). \tag{3.3.2}
\]
It can be proved [83] that one particle Green function for many electron system satisfies
\[
\left(-\frac{\hbar^2}{2m}\nabla^2 + V_{\text{ext}}(r) - E\right)G(r, r'; E) + \int dr''\Sigma(r, r''; E)G(r'', r''; E) = -\delta(r - r').
\] (3.3.3)

If the Hamiltonian is time dependant, G will explicitly depends on time difference \(t - t'\), i.e. \(G = G(r, t; r', t')\). Fourier transforming the \(G(r, t; r', t')\) with respect to \(t - t'\) will lead to a function that is energy dependent [138].

Physically, one can interprete \(G(r, t; r', t')\) as the probability of finding an electron at a point \(r\) in space and time \(t\) given that it was at \(r'\) at time \(t'\).

If the value of \(G_0(r'', r'; E)\) for a reference related system is known exactly, the value of \(G(r'', r'; E)\) for any required real system can be obtain by many body perturbation theory through the use of the Dyson equation
\[
G(r, r'; E) = G_0(r, r'; E) + \int \int dr_1 dr_2 G_0(r, r_1; E)\Delta\Sigma(r_1, r_2; E)G(r_2, r'; E),
\] (3.3.4)
where
\[
\Delta\Sigma(r_1, r_2; E) = \Sigma(r_1, r_2; E) - v_0(r_1, r_2)
\] (3.3.5)
is the perturbation on the system expressed via the interaction potential \(v_0(r_1, r_2)\) of the reference system. For a non interacting electron system \(v_0 = 0\) and \(G(r'', r'; E)\) can be shown to be:
\[
G_0(r, r'; E) = \Sigma_i \left\{ \frac{\psi_i(r)\psi_i^*(r')}{E - E_i} \right\},
\] (3.3.6)
with \(\psi_i\) and \(E_i\) being the solutions of single particle equation and eigenvalues, respectively, and the reference system is normally taken as the Kohn-Sham system.

3.4 GW Approximation

The Self energy can be obtained via the solution of the many body problem, the solution involves the two-particle Green’s function [139], but this method is not practicable. The practicable way of obtaining the Self energy is the GW approximation proposed by Hedin [58] where the self energy is expanded in terms of dynamically screened Coulomb interaction but maintaining the first term in the expansion \(W\).
\[
\sum_{GW}(r, r'; t) \simeq iG(r, r'; t)W(r, r'; t),
\] (3.4.1)
in energy domain
\[\sum_{GW} = j \int dE' G(r, r'; E + E') W(r, r'; E) \]
(3.4.2)

The screened interaction is expressed in terms of bare the Coulomb interaction
\[W(r, r'; E) = v(r, r') + \int \int W(r, r'; E) P(r_1, r_2; E) v(r_2, r') dr_1 dr_2 \]
(3.4.3)

and in terms of the dielectric function
\[W(r, r'; E) = \int \int e^1(r, r'; E) v_2(r, r_1) dr_1, \]
(3.4.4)

where the polarization \(P \) is given by
\[P(r, r'; E) = -jG(r, r'; E)G(r', r; E). \]
(3.4.5)

In practice, equations (3.3.5), (3.4.1), (3.4.3) and (3.4.5) are solved self consistently. The Random phase approximation (RPA) is normally used to calculate the dielectric function \(\epsilon(r, r'; E) \). Frequency dependent RPA evolved from plasmon pole model to recent full RPA dielectric function [140].

The simplest approximation, sometimes denoted by \(G_0 W_0 \), is to use the DFT eigenfunctions and eigenenergies to construct \(G \) and \(W \). Other approximations result if the quasi-particle energies and/or wave functions are updated in a self-consistent cycle [128, 132, 141, 142].

In this work different GW approximations will be used to calculate the band gap and optical properties of semi-conducting transition metal chalcogenides. Comparison to experiment, where possible, will be used to benchmark the GW approximation for this study.

3.5 Bethe-Salpeter equation (BSE)

Recall that in Section 5.10 of this thesis, we discussed how DFT is ill equipped to describe the fundamental band gap of semiconductors and insulators, because DFT eigen-energies do not correspond to quasi-particle energies required to describe the process of addition or removal of electrons and how in Section 3.4, we described the GW level of approximation, which is used to to account for many body electron-electron interaction. This method describes accurately photo emission and inverse photo emission spectra. It however, fails in the description of optical excitations, where the number of electrons do not change [143, 144, 145]. To address this shortcoming, one need go beyond the GW one-particle
Green’s function and account for two-particle Green’s function by solving the well known BSE equation [143, 146, 147].

In wide band gap semiconductors, the screening is weak and the electron-hole interaction is expected to be very strong. One need the BSE to account for such electron-hole interaction in order to calculate optical absorption spectra [143, 148, 149]. In order to do this, one needs to use the results from the GW approximation and construct the statically screened-electron-hole interaction term $W(X, X'; \omega = 0)$ and the spectra of the single particle. The two particle BSE Hamiltonian is of the form:

$$H_{ck',v'k'} = (E_{ck} - E_{vk}) \delta_{vv'} \delta_{cc'} \delta_{kk'} + 2 \int d^3x d^3x' \Psi_{ck}(X) \Psi_{vk}(X) \times \pi(X - X') \Psi_{ck'}(X') \Psi_{vk'}(X')$$

$$- \int d^3x d^3x' \Psi_{ck}(X) \Psi_{vk}(X) \times W(X, X'; \omega = 0) \Psi_{ck'}(X') \Psi_{vk'}(X'),$$

(3.5.1)

where π represents the bare Coulomb kernel given by [143] \left(\frac{1}{|x - x'|} \right), (E_{ck}, E_{vk}) are the single particle QP energies [148].

The polarization, in a number of BSE calculations [148, 150], is expanded in products of single particle conduction (c) and valence (v) bands states using DFT orbitals.
4. Pseudo-potentials and the PAW Method

4.1 Solution to K-S equation

In Chapter 2, we have shown how we can express observables in a many-body problem into equal observables in a single-particle problem. However, there is great task of expressing infinite number of mobile non-interacting electrons in a static potential of infinite ions or nuclei. In order to do this, two difficulties need to be overcome:

1. For each of the infinite number of electrons, wave function has to be calculated.

2. Because the electronic wave functions stretches over the whole solid, the basis set needed for the expansion of each of the wave functions has to be infinite.

The two problems can be overcome by doing calculations on periodic systems and using the famous Bloch’s theorem for electronic wave function.

4.1.1 Bloch’s Theorem

States that the electronic wave function of a periodic solid can be expressed as the product of the Bravais lattice periodicity and its plane waves. i.e.

$$\psi_k(r) = e^{i\mathbf{k}.r} f_i(r)$$ \hspace{1cm} (4.1.1)

where $e^{i\mathbf{k}.r}$ is the plane waves and $f_i(r)$ the lattice periodicity. The expansion of the periodic part of the cell can be done using discrete form of plane wave basis sets, in which the wave vector and the reciprocal lattice vectors are the same. i.e.

$$f_i(r) = \sum_G C_{i,G} e^{i\mathbf{G}.r},$$ \hspace{1cm} (4.1.2)

where G stands for the reciprocal lattice vector, given by $\mathbf{G.L} = 2\pi m$ for all lattice vectors of the crystal L and m is an integer. The electronic wave function can now be expressed in term of plane waves as

$$\psi_k(r) = \sum_G C_{i,k+G} e^{i(k+G).r}. \hspace{1cm} (4.1.3)$$

It is now clear that the problem of solving K-S equation has been reduced to that of calculating a finite number of electronic wave functions in a unit cell.
By using plane waves as basis set for electronic wave functions, K-S equations assumes a very simple form. Putting (4.1.1) into (2.4.1) and integrating over \(r \), one obtains a secular equation

\[
\sum_G \left[\frac{\hbar^2}{2m} |k + G|^2 \delta_{G,G'} + V^\sigma_R (G - G') \right] C_{i,k+G'} = \varepsilon_i C_{i,k+G'}.
\] (4.1.4)

From eqn. (4.1.4) above, we can see that the kinetic energy matrix element is diagonal in the reciprocal space and the different potentials can be described in term of Fourier transforms. The solution of the equation can be obtained through the diagonalization of the Hamiltonian matrix with elements in the brackets of eqn above.

4.1.2 Cut-off energy

The choice of \(\frac{\hbar^2}{2m} |k + G_c|^2 \) (cut-off energy) in equation (4.1.4) determine the size of the matrix, the cut-off energy is the highest kinetic energy of plane waves included in summing the K-S eigen states.

Having reduced the problem of solving K-S equation into that of calculating finite a number of electronic wave functions in a unit cell, we are now facing the problem of solving the electronic problem for an infinite number of Bloch states: there are infinite \(k \) points in the first Brillouin zone (primitive cell in reciprocal space) of the periodic lattice. There are nearby \(k \) vectors that carry the same information as the infinite Bloch states, making it possible to reproduce desired physical property at desired computational accuracy by using the wave function at the finite \(k \) point in the Brillouin zone [83, 151].

4.1.3 K points and Brillouin zone

From the symmetric properties of the wave function, it is clear that there are classes of \(k \) points in which the wave function and the phase factor are in phase with the periodicity of the unit cell of the solid. In order to determine the reciprocal lattice vectors of such a cell, we need a set of three smallest independent \(k \) points, so also for the primitive cell vectors.

If \(\Omega \) is the unit cell volume, the first Brillouin zone is given by

\[
\Omega_R = b_1 \cdot (b_1 \times b_3) = \frac{(2\pi)^3}{\Omega}.
\] (4.1.5)

Monkhorst-Pack [152] and Chadi and Cohen [153] devised an accurate method of sampling the Brillouin zone. By using any of these methods, we can get better approximation to the total energy and electronic potential of a semiconductor or an insulator by calculating their electronic states at a very small number
Section 4.2. Pseudopotential

Electrons in solids can be divided into core (highly localized) and valence (extended and responsible for bonding) electrons. It is believed that the physical properties of solids depend more on valence electrons than core electrons [96, 154, 83]. Pseudopotential approximation uses this advantage and replaces the core electrons and strong ionic potential with a weaker pseudopotential that acts on a set of pseudo wave functions in place of the true valence wave function. The pseudo wave function mimics the potential of the valence and core electronic states [155, 156, 157].

Let $|\psi_c\rangle$ and $|\psi_v\rangle$ be the exact solution to Schrödinger equation for core and valence electron respectively. Then

$$\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle,$$ \hspace{1cm} (4.2.1)

where $n = c, v$. In order to maintain the orthogonality that exists between the valence and core wave functions, the wave function of the valence oscillates rapidly in the vicinity filled by the core electron from the strong potential in the region. The valence orbitals can therefore be expressed as a sum of a smooth function and an oscillating function due to this orthogonality.

$$|\psi_v\rangle = |\varphi_v\rangle + \sum_c \alpha_{cv} |\psi_c\rangle,$$ \hspace{1cm} (4.2.2)

here $\alpha_{cv} = -\langle \psi_c | \varphi_v \rangle$. Re-writing Schrödinger equation for the smooth orbital, we have

$$\hat{H}|\varphi_v\rangle = E_v |\varphi_v\rangle + \sum_c (E_c - E_v) |\psi_c\rangle \langle \psi_c | \varphi_v \rangle.$$ \hspace{1cm} (4.2.3)

The equation (4.2.3) shows that $|\varphi_v\rangle$ satisfy Schrödinger-like equation with energy dependent pseudo-Hamiltonian

$$\hat{H}^{PK} = \hat{H} - \sum_c (E_c - E) |\psi_c\rangle \langle \psi_c |.$$ \hspace{1cm} (4.2.4)

From eqn (4.2.4), we can identify the pseudopotential \hat{w}^{PK} as

$$\hat{w}^{PK}(E) = \hat{v} - \sum_c (E_c - E) |\psi_c\rangle \langle \psi_c |.$$ \hspace{1cm} (4.2.5)

\hat{v} stands for the true potential of the system and $\sum_c (E_c - E) |\psi_c\rangle \langle \psi_c |$ the repulsive potential which makes the pseudopotential near the core much weaker than the true potential.
Philips and Kleinman [78, 158, 159] suggested that pseudopotential can be cast into the form

\[w(r, r') = \sum_{l} \sum_{m=-l}^{l} Y_{lm}^*(\hat{r}) w_l(r, r') Y_{lm}(\hat{r'}) \]

(4.2.6)

\(Y_{lm} \) represents spherical harmonics, and eqn (4.2.6) shows that \(w_l \) is angular momentum \(l \) dependent. Kleinman and Bylander [160] expresses it in a separable form as

\[w_l(r, r') = v_l(r) v_l(r'), \]

(4.2.7)

with semi local form

\[w(r, r') = w_l(r) \delta(r - r'). \]

(4.2.8)

To achieve more realistic pseudopotential, Topp and Hopfield [161, 162] put forward a suggestion that a pseudopotential should be adjusted in such a way that they can accurately describe charge density. As a result, today’s pseudopotential are generated by inverting the free Schrödinger equation for a given system and forcing the pseudo wave function to be similar to the true wave function after a given distance \(r_l \). The pseudo wave function are also forced to be norm conserving. The eigen energy values of the pseudopotential should have the same value as the true valence eigen values. The last three imposed condition can be expressed as

\[R_{PP}^l(r) = R_{AE}^n(r), \quad if \quad r > r_l, \]

(4.2.9)

\[\int_0^{r_l} dr |R_{PP}^l(r)|^2 r^2 = \int_0^{r_l} dr |R_{AE}^n(r)|^2 r^2, \quad for \quad r < r_l \]

(4.2.10)

and

\[\varepsilon_{PP}^l = \varepsilon_{AE}^n. \]

(4.2.11)

The additional condition imposed on the pseudo potential is that its wave function must not have nodal surfaces.

These conditions leads to the construction of pseudopotential that are norm-conserving and semi-local that only depend on the reference system electronic energy level \(\varepsilon_{AE}^n \).

4.3 Projector augmented waves (PAWS)

PAW was introduced by Blöch in 1994 [163], the approach decomposes the all electron wave function into a smooth pseudo wave function, and a rapidly varying localized contribution within the core, while retaining its all electron character.
In PAW, the relationship between the pseudo and the true wave functions are given by the linear transformation:

\[
\psi_{AE} = \psi_{PS} + \sum_i \left(|\Phi_{iAE}\rangle - |\tilde{\Phi}_{iPS}\rangle \right) \langle \tilde{p}_i | \tilde{\psi}_{PS}\rangle. \tag{4.3.1}
\]

The \(\psi_{PS} \) (pseudo wave functions) are variational quantities, index \(i \) stands for atomic site \(R \). The \(\Phi_{iAE} \) all electron (AE) partial waves are derived for the reference atom, it is expected that \(\tilde{\Phi}_{iPS} = \Phi_{iAE} \) outside the core radius and the two should continuously match inside the core radius, \(r_{lc} \), which is usually chosen to be half nearest neighbour distance [164, 165]. Due to linearity, the projection operators are required to satisfy a bi orthogonality condition

\[
\langle \tilde{p}_i | \tilde{\psi}_{PS} \rangle = \delta_{ij} \tag{4.3.2}
\]

The charge density of the AE can be derived from eqn (4.3.1)

\[
\eta_r = \tilde{\eta}_r + \eta^1_r - \tilde{\eta}^1_r, \tag{4.3.3}
\]

where the pseudo charge density is obtained from a pseudo wave functions on plane wave grid

\[
\eta_r = \sum_n f_n \langle \tilde{\psi}_{PS} | r \rangle \langle r | \tilde{\psi}_{PS} \rangle, \tag{4.3.4}
\]

and the pseudized charged densities \(\eta^1 \) and \(\tilde{\eta}^1 \) are evaluated using radial grid and are defined as

\[
\eta^1_r = \sum_{(i,j)} \rho_{i,j} \langle \Phi_i | r \rangle \langle r | \Phi_j \rangle, \tag{4.3.5}
\]

\[
\tilde{\eta}^1_r = \sum_{(i,j)} \rho_{i,j} \langle \tilde{\Phi}_i | r \rangle \langle r | \tilde{\Phi}_j \rangle, \tag{4.3.6}
\]

where \(\rho_{i,j} \) is the occupancies for each augmentation \((i,j)\), which are calculated from pseudo wave function by applying the projector function

\[
\rho_{i,j} = f_n \sum_n \langle \tilde{\phi}_n | \tilde{p}_i \rangle \langle \tilde{p}_j | \tilde{\phi}_n \rangle. \tag{4.3.7}
\]

In a complete set of projector operators, within the augmentation spheres \(\eta^1 = \tilde{\eta}^1 \).

The total energy is expressed as a sum of a smooth functions \(\tilde{E} \) which is evaluated on a regular grid in Fourier or real space and two one-centre contributions denoted by \(E^1 \) and \(\tilde{E}^1 \), which are evaluated on the radial grid in angular momentum representation. The total energy is given by

\[
E = \tilde{E} + E^1 - \tilde{E}^1, \tag{4.3.8}
\]
with \tilde{E}, E^1 and \tilde{E}^1 defined as

$$\tilde{E} = \sum \frac{f_n}{\tilde{\phi}_n} - \frac{1}{2} \Delta |\tilde{\phi}_n| + E_{xc}[\tilde{n} + \tilde{n}_c] + E_H[\tilde{n} + \tilde{n}]
+ \int v_H[\tilde{n}_{zc}] [\tilde{n}r + \tilde{n}r] d\mathbf{r} + U(\mathbf{R}, Z_{ion}), \quad (4.3.9)$$

$$\tilde{E}^1 = \sum \rho_{ij} |\tilde{\phi}_i - \frac{1}{2} \Delta |\tilde{\phi}_j| + E_{xc}[\tilde{n}^1 + \tilde{n} + \tilde{n}_c] + E_H[\tilde{n}^1 + \tilde{n}]
+ \int v_H[\tilde{n}_{zc}] [\tilde{n}^1(\mathbf{r}) + \tilde{n}(\mathbf{r})] d\mathbf{r}, \quad (4.3.10)$$

$$E^1 = \sum \rho_{ij} |\phi_i - \frac{1}{2} \Delta |\phi_j| + E_{xc}[n^1 + n_c] + E_H[n^1] + \int v_H[n_{zc}] n^1(\mathbf{r}) d\mathbf{r}, \quad (4.3.11)$$

where \tilde{n}_c is the electronic core density, n_c the frozen core density, n_{zc} point charge density of the nuclei given by $n_{zc} = n_z + n_c$ and satisfy the condition

$$\int_{\Omega_r} n_{zc}(\mathbf{r}) d^3\mathbf{r} = \int_{\Omega_r} \tilde{n}_{zc}(\mathbf{r}) d\mathbf{r}. \quad (4.3.12)$$
5. Computational Details

5.1 Outline of Calculations

Throughout this work, the software Vienna-ab initio Simulation Package (VASP) [94, 166, 167] was used to perform electronic structure calculations. The Projector-augmented-wave approach (PAW) [163, 165] as implemented in VASP was used to describe electron-ion interaction. Both local density and generalised gradient approximations [101, 108, 168] were used for the exchange correlation functional. Typical DFT exchange correlation functional do not account properly for the van der Waals interactions, which are the dominant forces that determine inter layer separations in layered materials. The van der Waals correction terms proposed by Tkatchenko et. al. [126], Grimme et. al. [119, 122] and Langreth et. al. [124] were used to describe long range dispersion forces in such layered structures. Different suitable set of Monkrost-Pack mesh [152] were chosen for geometry optimisation in each structure.

5.2 Test of convergence

A numerical calculation is said to be well converged when its produces a result that is approximately equal to the true solution of the mathematical problem [169, 170]. There are two parameters that need to be converged in any DFT calculation: k points (k spacing) with respect to total energy and plane waves cut off energy (the number of basis functions) with respect to total energy.

5.2.1 K point convergence

As we have seen in Section 4.1.3, there are accurate ways by which the Brillouin zone can be sampled. Appropriate Brillouin zone sampling is important in order to strike a balance between computational accuracy and efficiency. The nature of the system under study determines the way the Brillouin zone is to be sampled: metallic systems require denser kpoints as compared to semiconductors and insulators. The "smearing method" also affects the choice of kpoints. This makes it necessary to converge kpoints with respect to energy and achieve a desired accuracy. An example of k-points convergence with respect to energy is depicted in Fig. 5.1. In this research, the tetrahedron method [171, 172] with Blöchl correction was used, a method known to converge kpoints rapidly and give accurate description of energies and
5.2. Test of convergence

As we have seen in Section 4.1.2 that not all the kinetic energy in the solution of K-S equation are included in the calculations and that in the solution of equation (4.1.1), evaluating the solution of K-S equation at any point in k space, requires summation of infinite different possible values of G. This cannot be realistic for practical calculation. Luckily, the function in the equation appears to have the same interpretation as Schrödinger equation, with solution of the form

![Figure 5.1: K point convergence.](image-url)
It is therefore logical to expect that lower energy solutions are more important than higher energy solutions. This accord us the opportunity to truncate the infinite sum in the equation (5.2.1) and include energies with values less than

\[E_{\text{cut}} = \frac{\hbar^2}{2m} |k + G_c|^2. \]

(5.2.2)

A sample of cut-off energy convergence graph is shown in Fig. 5.2.

5.3 Equation of states

Understanding the pressure, volume, temperature (P-V-T) relationship (equation of state (eos)) is of importance to both basic and applied scientist [173, 174]. There are many theoretical and semi empirical description of equation of state [174]. In this research, third order-Birch-Murnaghan eos was used [175]. The third order-Birch-Murnaghan eos, which is the simplest form of eos predicts bulk modulus \(B_0 \), which measures the material ability to resist change in volume due to uniform expansion of compression

\[B_0 = -V \left(\frac{\partial P}{\partial V} \right)_T, \]

(5.3.1)
which when differentiated with respect to pressure gives a dimensionless parameter B'_0

$$B'_0 = \left(\frac{\partial B_0}{\partial P} \right)_T. \quad (5.3.2)$$

The quantity B'_0 tests the dependence of the bulk modulus at equilibrium on pressure, it can be measured experimentally and can be used to test the accuracy of our ab-initio calculations. We should remember that we can express pressure as a function of energy as

$$P(V) = -\left(\frac{\partial E}{\partial V} \right)_S. \quad (5.3.3)$$

The system is said to be at equilibrium when its pressure is zero and all quantities are donated the subscript "0". Energy in Birch-Murnaghan eos is expressed as

$$E(V) = E_0 + \frac{9V_0B_0}{16} \left\{ \left(\frac{V_0}{V} \right)^{\frac{2}{3}} - 1 \right\}^3 B_0 + \left\{ \left(\frac{V_0}{V} \right)^{\frac{2}{3}} - 1 \right\}^2 \left[6 - 4 \left(\frac{V_0}{V} \right)^{\frac{2}{3}} \right], \quad (5.3.4)$$

where E_0 and V_0 are equilibrium energy and volume at zero pressure. Using eqn (5.3.3), we can express pressure in Birch-Murnaghan eos as

$$P(V) = \frac{3B_0}{2} \left\{ \left(\frac{V_0}{V} \right)^{\frac{2}{3}} - \left(\frac{V_0}{V} \right)^{\frac{2}{3}} \right\} \left\{ 1 + \frac{3}{4}(B'_0 - 4) \left[\left(\frac{V_0}{V} \right)^{\frac{2}{3}} - 1 \right] \right\}. \quad (5.3.5)$$

It should be noted that the only quantity calculated from DFT directly is the energy (cohesive energy) at zero temperature, whereas B'_0 and B_0 are related to energy-volume curve and measure its curvature about the equilibrium volume.

To calculate the equilibrium lattice parameters of our structures and study their eos, we performed the calculations in two steps: in the first step, we relaxed the structural atoms and generate a guess equilibrium volume. In the second step, we performed a static DFT calculation by fixing the atomic positions using Blöchl tetrahedron correction. We then used least-square method to fit the cohesive energy as a function of volume on eqn (5.3.4), where the quantities B_0, E_0, V_0 and B'_0 are the fitting parameters. The energy, elastic properties and equilibrium structural parameters can then be easily obtained by performing calculations at the equilibrium volume.

5.4 Pressure phase transition

Application of external pressure to a solid material will cause the distance between its atom to decrease, which has the tendency to cause structural changes in the solid material. The Helmholtz free energy

$$F(V,T) = E(V,T) - TS(V,T), \quad (5.4.1)$$
where temperature (T) and volume (V) are independent variable and the Gibbs free energy

$$G(P,T) = H(P,T) - TS(P,T),$$ \hspace{1cm} (5.4.2)

where the temperature and pressure (P) are the independent variables with the enthalpy defined by

$$H = E + PV,$$ \hspace{1cm} (5.4.3)

are the basic quantities needed to determine the stability of the possible new structure [78]. For a structural phase transition to occur between two structures at constant pressure, the enthalpy of the two structures must be equal [176, 78].

From eqn (5.4.3), the cohesive energy of the two structures must be the same

$$E_1 + PV_1 = E_2 + PV_2,$$ \hspace{1cm} (5.4.4)

for them to have the same enthalpy. Using eqn (5.3.3), we can see that for the two structures to satisfy the aforementioned condition, they must share a common tangent on the plot of cohesive energy as a function of volume for different phases of the same material or use eqn (5.4.4) and plot enthalpy curves. The point where the curves crosses gives the transition pressure [177].

5.5 Cohesive energy

In solids, cohesive energy (binding energy) is defined as the energy needed to dismantle the solid into its constituent atoms, with the atoms infinitely separated [170, 176, 178, 179]. In \textit{ab-initio} calculations, the cohesive energy is the difference between the calculated total energy of a unit cell and total energy of its isolated atoms [170, 180, 181] and it is given by

$$E_{coh} = E_{\text{crystal}} - E_{\text{atoms}} = E_{\text{crystal}} - \sum_{\text{atom}} E_{\text{isolated atom}}.$$ \hspace{1cm} (5.5.1)

In transition metal chalcogenide, cohesive energy per formula unit can be written as

$$E_{\text{coh}}^{\text{tranChal}} = E_{\text{solid Chal}}^{\text{tranChal}} - Z \times (mE_{\text{tran atom}} + nE_{\text{Chal atom}}) \over Z \times (m + n).$$ \hspace{1cm} (5.5.2)

where Z is the number of tranChal in a unit cell of the considered transition metal chalcogenide, $E_{\text{tran atom}}$ and $E_{\text{Chal atom}}$ are atomic energies of the transition metal and the chalcogenide respectively, m and n are integers (stoichiometric weight).
It should be noted that for eqn (5.5.2) to have any physical meaning, the same level of accuracy must be used in calculating both the atomic and the crystal energies [182, 183]. In this research, cohesive energy was extracted from the fitting of the third order Birch-Murnaghan eos and it is used to predict structural stability.

5.6 Formation energy

Apart from cohesive energy, another factor used in predicting the relative stability of our structures is formation energy. Formation energy is defined as the energy released when individual atoms condenses to form a solid [170, 184]. The use of formation energy as a test for the formation of a structure and its phases relative thermodynamic stability is a common practice in ab-initio calculations [182], and it is obtained from the difference between the energy of the products $E_{coh}(\text{product})$ (cohesive energy of the products) and the reactants cohesive energy $E_{coh}(\text{reactants})$ [185, 170] given by

$$ E_f = \sum E_{coh}(\text{product}) - \sum E_{coh}(\text{reactant}), $$

the most stable state at a specified temperature of the reactants should be used in predicting the formation energy [186].

If a solid M_mN_n is formed as a result of a reaction between the solid state of a transition metal M_m heated at a temperature of about 600 ° [60] and N_2 chalcogenide gaseous state through the reaction

$$ mM_{\text{solid}} + \frac{n}{2}N_{2\text{gas}} \leftrightarrow M_{m}N_{n}^{\text{solid}}, $$

the formation energy eqn (5.6.1) will be

$$ E_f(M_mN_n^{\text{solid}}) = E_{coh}(M_{m}N_{n}^{\text{solid}}) - \frac{mE_{coh}(M_{\text{solid}}) + \frac{n}{2}E_{coh}(N_{2\text{gas}})}{m+n}, $$

where the energy $E_f(M_mN_n^{\text{solid}})$ is the same as the cohesive energy in eqn (5.5.2)

The method described in Section 5.3 was used to determine the cohesive energy per atom of the studied structures.

5.7 Elastic constants

The study of the elastic properties of solid material are of great interest to researchers and technological industries [187], the knowledge of the elastic constants provides information about the structural stability,
mechanical properties, strain, fracture toughness, stress, load deflection and the strength of the material [188, 189]. We presented a brief discussion of elastic constant here with a view to establish stability or otherwise of our structures.

5.7.1 Hooke’s law

In Hooke’s law, elastic constants C are related to strain ε and stress σ by the relation

$$\sigma = C\varepsilon \quad (5.7.1)$$

In DFT, elastic constants are derived from the total energy of a strained crystal, which is expressed as

$$E = E_0 + V_0 \left(\sum_{ij} \sigma_{ij} \varepsilon_{ij} + \frac{1}{2} \sum_{ijkl} C_{ijkl} \varepsilon_{ij} \varepsilon_{kl} \right) \quad (5.7.2)$$

where E_0 and V_0 are the total energy and volume of the crystal in the unstrained state σ_{ij} and ε_{ij} are the stress and strain tensors, respectively with indices i, j, k and l which run over x, y and z.

The stress tensor σ_{ij} is defined as

$$\sigma_{ij} = \frac{1}{V_0} \left(\frac{\partial E}{\partial \varepsilon_{ij}} \right), \quad (5.7.3)$$

the elastic constant tensor C_{ijkl} is defined as

$$C_{ijkl} = \frac{1}{V_0} \left(\frac{\partial^2 E}{\partial \varepsilon_{ij} \partial \varepsilon_{kl}} \right)_{\varepsilon=0}, \quad (5.7.4)$$

at a point where the energy is minimized. The tensor σ_{ij} is defined as

$$\sigma_{ij} = \sum_{kl} C_{ijkl} \varepsilon_{kl}, \quad (5.7.5)$$

Eqn (5.7.5) is a generalized form of Hooke’s law that relates strain and stress in a linear relation. Voigt notation [190] uses symmetry to reduce the order of the tensor, in this notation, the six dimensional vector is represented as

$$(\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sigma_{yz}, \sigma_{xz}, \sigma_{xy}) \equiv (\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6), \quad (5.7.6)$$

and the strain tensor given by

$$\varepsilon = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{bmatrix}, \quad (5.7.7)$$
Section 5.7. Elastic constants

is represented as

$$\varepsilon = (\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}, \varepsilon_{yz}, \varepsilon_{xz}, \varepsilon_{xy}) \equiv (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \varepsilon_5, \varepsilon_6),$$ \hspace{1cm} (5.7.8)

with

$$C_{ijkl} = C_{\alpha\beta} \text{ for } \alpha, \beta = 1, 2, 3, 4, 5, 6. \hspace{1cm} (5.7.9)$$

In any crystal, there are at most twenty one independent elastic constants, which can be reduced depending on the symmetry of the crystal. Table 5.1 summarizes the number of the independent elastic constants for possible crystal symmetries.

<table>
<thead>
<tr>
<th>Lattice type</th>
<th>No. of independent elastic constants</th>
<th>Independent elastic constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic</td>
<td>3</td>
<td>C_{11}, C_{12}, C_{14}</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>5</td>
<td>$C_{11}, C_{12}, C_{22}, C_{33}$</td>
</tr>
<tr>
<td>Rhombohedral I</td>
<td>6</td>
<td>$C_{11}, C_{12}, C_{13}, C_{23}, C_{33}$</td>
</tr>
<tr>
<td>Rhombohedral II</td>
<td>7</td>
<td>$C_{11}, C_{12}, C_{13}, C_{14}, C_{23}, C_{33}$</td>
</tr>
<tr>
<td>Tetragonal I</td>
<td>6</td>
<td>$C_{11}, C_{12}, C_{22}, C_{33}, C_{44}$</td>
</tr>
<tr>
<td>Tetragonal II</td>
<td>7</td>
<td>$C_{11}, C_{12}, C_{13}, C_{14}, C_{23}, C_{33}, C_{44}$</td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>9</td>
<td>$C_{11}, C_{12}, C_{13}, C_{14}, C_{23}, C_{24}, C_{34}, C_{45}, C_{56}$</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>13</td>
<td>$C_{11}, C_{12}, C_{13}, C_{14}, C_{15}, C_{16}, C_{23}, C_{24}, C_{25}, C_{26}, C_{34}, C_{35}, C_{36}, C_{45}, C_{46}, C_{56}$</td>
</tr>
<tr>
<td>Triclinic</td>
<td>21</td>
<td>$C_{11}, C_{12}, C_{13}, C_{14}, C_{15}, C_{16}, C_{23}, C_{24}, C_{25}, C_{26}, C_{34}, C_{35}, C_{36}, C_{45}, C_{46}, C_{56}$</td>
</tr>
</tbody>
</table>

Max Born [191, 192] and Grimvall et. al. [193] proposed that a crystalline structure need to satisfy the following stability criterion before it can attain stability (under the harmonic approximation, if there are no external forces):

1. All its phonon frequencies are positive for all considered wave vectors.
2. Elastic energies obtained from the solution of eqn. (5.7.2), must always be positive ($E > 0, \forall \varepsilon \neq 0$).

Félix and François-Xavier [194] used the above conditions to extract the necessary and sufficient condition needed for crystal stability and formulate them as:

1. the matrix C must be positive definite;
2. all the eigenvalues of the matrix C must be positive
3. leading principal minors of the matrix C should be positive;
4. arbitrary set of minors of the matrix C should be positive
5.8 Thermal properties

The specific heat capacity of a system within harmonic approximation is defined as [195]

\[C_V = \left(\frac{\partial E}{\partial T} \right)_V = \sum_{\mathbf{q},\nu} k_B \left(\frac{\hbar \omega(\mathbf{q}\nu)}{k_B T} \right)^2 \frac{\exp(h\omega(q\nu)/k_BT)}{[\exp(h\omega(q\nu)/k_BT) - 1]^2}, \]

(5.8.1)

where \(T \) is temperature and \(k_B \) is Boltzmann constant. The summation sign runs over all the normal modes. The specific heat capacity is related to the heat content of the system, which is in turn determined by phonon.

The entropy of the system is given by:

\[S = -\frac{\partial F}{\partial T} = \frac{1}{2T} \sum_{\mathbf{q},\nu} \hbar \omega(\mathbf{q}\nu) \coth(\hbar \omega(\mathbf{q}\nu)/2k_BT) - k_B \sum_{\mathbf{q},\nu} \ln [2 \sinh(\hbar \omega(\mathbf{q}\nu)/2k_BT)] \]

(5.8.2)

5.9 Electronic density of State

One of the most important quantities used in describing electronic state of materials is called the band structure [169, 196]. It provides information about the arrangement of electrons, and it clarifies how electrons in a system respond to external perturbation, like emission or absorption of photons. Information about the total energy of a system can be extracted from it, from which a number of thermodynamic and material properties can be extracted [196].

An important concept used in the analysis of the band structure is the density of state (DOS) as function of energy [196]. It contains information about the band structure of the material for all possible positions kpoints in a very simple form [169]. The density of states \(g(\epsilon) \) can be defined as the number of electronic states in a unit volume per unit energy [170]. In the energy range \([\epsilon, \epsilon + d\epsilon]\), the density of states is defined such that \(g(\epsilon)d\epsilon \) is the number of energy states within the given range per unit volume. However, since the wave vector \(\mathbf{k} \) are used to characterise the energy states, we have to sum all the number of states having energy within the interval of interest. Taking into account the spin degeneracy factor 2 and normalizing by the volume \(\Omega \) of the solid, we can express the density of states as

\[g(\epsilon)d\epsilon = \frac{1}{\Omega} \sum_{\mathbf{k},\epsilon \in [\epsilon, \epsilon + d\epsilon]} 2 \frac{2}{(2\pi)^3} \int_{\epsilon_k \in [\epsilon, \epsilon + d\epsilon]} d\mathbf{k}. \]

(5.9.1)
If \(\epsilon_k \) has special symmetry with respect to \(k \), then eqn (5.9.1) reduces to \(\frac{1}{\pi^2} k^2 dk \). Spherical coordinates in reciprocal space were used to arrive at this. Since energy in free electron model is not dependent on angular orientation of wave vector, i.e.

\[
\epsilon_k = \frac{\hbar^2 |k|^2}{2m_e} \Rightarrow m_e k = \left(\frac{2m_e \epsilon}{\hbar^2} \right)^{\frac{1}{2}}, \tag{5.9.2}
\]

for energy value \(\epsilon_k \epsilon[\epsilon, \epsilon + d\epsilon] \). Eqns (5.9.1) and (5.9.2) gives density of state in a simple spherical symmetry 3D case of the form

\[
g(\epsilon) d\epsilon = \frac{1}{2\pi^2} \left(\frac{2m_e \epsilon}{\hbar^2} \right)^{\frac{3}{2}} \sqrt{\epsilon}. \tag{5.9.3}
\]

For practical purposes in crystal, \(\epsilon_k \) is used from band structures calculation in place of eqn (5.9.3), leading to density of states of the form

\[
g(\epsilon) d\epsilon = \frac{1}{\Omega} \sum_{n,k} 2\delta \left(\epsilon - \epsilon_k^{(n)} \right) = \frac{2}{(2\pi)^3} \sum_{n} \int \delta \left(\epsilon - \epsilon_k^{(n)} \right) dk
\]

\[
= \frac{2}{(2\pi)^3} \sum_{n} \int_{\epsilon_k^{(n)} = \epsilon} \frac{1}{|\nabla_k \epsilon_k^{(n)}|} dS_k. \tag{5.9.4}
\]

The integral in the last part of eqn (5.9.4) is integrated over surface \(\delta_k \) in \(k \)-space, where \(\epsilon_k^{(n)} \) is constant and has the same value as \(\epsilon \) and the vector \(\nabla_k \epsilon_k^{(n)} \) is normal to \(S_k \) and having magnitude that is equal to rate of change of \(\epsilon_k^{(n)} \) in the normal direction. In real crystals, the number of unit cells are practically infinite if the crystal is large, this makes the spacing between the allowed wave vectors \(k \) to be very small, this makes it possible for us to replace the summation over the \(k \) vectors with an integral in the second part of eqn (5.9.4). We can see that from eqn (5.9.4), the denominator has roots that are of first order and has a finite contribution to the integral over the 2D smooth dimensional surface given by \(S_k \). The roots establish sharp features in the density of states called van Hove singularities \([78, 178, 196, 197]\), the singularities are established at points where the density of states changes continuously \([169]\). It is, however, possible to detect the presence of energy gap, if the valence and conduction band are well separated.

If we define the total density of states as

\[
g(\epsilon) = \frac{dI(\epsilon)}{d\epsilon}, \tag{5.9.5}
\]

where \(I(\epsilon) \) is the number of states with energy up to \(\epsilon \) and imposing the normalisation condition that

\[
N = \int_{-\infty}^{E_F} g(\epsilon) d\epsilon = I(E_F) \tag{5.9.6}
\]
where \(N \) represents the number of valence electron per unit cell, we can readily obtain the Fermi energy from eqn (5.9.4) and (5.9.6). But it is easier to calculate density of states from eqn (5.9.6) in VASP [170] as

\[
g(\varepsilon) = \frac{I(\varepsilon) - I(\varepsilon - \Delta \varepsilon)}{\Delta \varepsilon}
\]

(5.9.7)

\(\Delta \varepsilon \) is the difference in energy between two grid points. It is expected that this scheme should exactly conserve the number of electrons \(N \).

Information about the total density of states \(g(\varepsilon) \) can be broken down into partial (projected) density of states using data obtained from wave functions [198]. If a given charge which corresponds to a given wave function is divided into individual atomic contributions, the projected density of states can be written in the form of \(n^\ell(\varepsilon) \), where \(\ell \) is the atomic label.

5.10 DFT band gap problem

DFT is normally used in the electronic structure calculation of atoms, solids and molecule. Electron density is the key factor from which the ground state properties are determined. It provides information about forces and stresses, which can in turn allow structural relaxation of the system. Depending on the exchange correlation functional used, DFT accurately predicts equilibrium atomic positions and lattice parameters to an accuracy of about 95%. It however, fails in the prediction of band gap and excitation energies. Band gap calculated using DFT are underestimated by as much as 50% [57].

The DFT underestimation of band gap is however, not surprising, this is because DFT KS eigenvalues are completely artificial: they are eigenvalues of a non-interacting system, chosen in such a way to give a density equal to that of the many body interacting system. Thus, the eigenvalues have no physical significance, but in practice, the comparison of the eigenvalues to the band structure was motivated by the similarity of KS band structure and that of real systems for quite a number of materials.

In DFT, the band gap is defined for an \(N \) electron system as the difference between the ionization energy (defined as \(I = E^{(0)}_{N-1} - E^{(0)}_N \equiv -\epsilon_{HOMO} \)) and the electron affinity (defined as \(A = E^{(0)}_N - E^{(0)}_{N+1} \equiv -\epsilon_{LUMO} \)) i.e.

\[
E_{\text{gap}} = I - A = \epsilon_{LUMO} - \epsilon_{HOMO},
\]

(5.10.1)

where the LUMO and HOMO are the lowest unoccupied and highest occupied molecular orbitals respectively.
For non-interacting system, we can easily write the difference in the orbital energies as

\[E_{KS}^{gap} = \varepsilon^{(KS)}_{N+1}(N) - \varepsilon^{(KS)}_N(N). \]

(5.10.2)

We can get the exact KS gap from eqn (5.10.1) and (5.10.2) as

\[E_{gap} = \left(\varepsilon^{(KS)}_{N+1}(N) - \varepsilon^{(KS)}_N(N) \right) + \left(\varepsilon^{(KS)}_{N+1}(N+1) - \varepsilon^{(KS)}_{N+1}(N) \right) = E_{KS}^{gap} + \Delta_{xc}, \]

(5.10.3)

where \(\Delta_{xc} \) is defined as

\[\Delta_{xc} = \left(\left. \frac{\delta E_{xc}[\eta]}{\delta \eta(r)} \right|_{N+1} - \left. \frac{\delta E_{xc}[\eta]}{\delta \eta(r)} \right|_{N} \right) \],

(5.10.4)

and it is the difference between the energies of the \((N+1)\) th KS orbital of the neutral and ionized electron system and it corresponds to the known neglected derivative discontinuity by exchange correlation functional when the number of particles changes by an integer [131, 199]. This discontinuity is responsible for the difference between the experimental band gap and the KS gap [131, 200, 201, 202].

The evaluation of the exchange correlation potential \((V_{xc}(r = \frac{\delta E_{xc}}{\delta \eta(r)})\)) at the point \((N+1)\) is to ensure that this discontinuity is captured at an integer particle number \((N)\). In LDA and GGA, the value of \(\Delta_{xc} \) is always zero. The fundamental gap obtained from these approximations is always purely KS gap, which is the reason why their gap is all the times underestimated when compared with experimental band gap [200].

5.11 Optical properties

In solids, optical properties provide a unique opportunity for the experimental study of band structures, excitations, defects, impurity levels, magnetic excitations and lattice vibration [203]. In these kind of experiments, observables, like light scattering, reflectivity, absorption or transmission can be measured [203]. Based on the evaluation of these quantities, we can measure quantities like the optical conductivity \(\sigma(\omega)\), fundamental excitation frequencies, or the dielectric function \(\epsilon(\omega)\). These studies enable us to characterize the materials and provide us with a range of possible technological applications of the materials [129, 204], photovoltaics, light emitting devices and material for laser technology for example. It is therefore eminent to accurately describe such materials using an efficient \textit{ab initio} method. It is important to efficiently calculate the frequency-dependent microscopic polarizability matrix \(\chi\), which is crucial for a post-DFT approach implementation. In GW calculations, frequency-dependent macroscopic dielectric constants are of crucial importance and they are required for integrating analytically within
the long wavelength limit \((q = 0)\) the Coulomb singularity of the self and correlation energies. The dielectrically screened interaction potentials are of great importance, when excitonic effects are to be included in describing optical properties \([129, 132, 170, 205]\).

5.11.1 Linear response theory

In order to obtain a good description of DFT exchange correlation energy and in calculating reflectance difference spectra, we need to determine how the material responds to external perturbation. If the perturbation is weak when compared to the internal electric field of the ions, we can describe the induced change in density in terms of perturbation theory using a term linearly dependent on the applied perturbation.

The response function \(\chi(r, r', t - t')\) is the key quantity needed to describe the change in density \(\delta n\) at a point \((r, t)\), if there is a small change in external potential \(\delta v_{\text{ext}}\) at a point \((r', t')\). The change in density is assumed in linear response theory to be:

\[
\delta n(r, t) = \int dt' \int d^3r' \chi(r, r', t - t') \delta v_{\text{ext}}(r', t'),
\]

where the linear response function \(\chi\) is given by

\[
\chi(r, r', t - t') = \delta n(r, t) \frac{\delta v_{\text{ext}}(r', t')}{\delta v_{\text{ext}}(r', t')},
\]

It will be easy for one to calculate the response function \(\chi^{KS}(r, r', t - t')\) in KS-DFT, which describes how a KS system responds to a very small change in the effective KS potential \(v_{\text{eff}}[n]\),

\[
\delta n(r, t) = \int dt' \int d^3r' \chi^{KS}(r, r', t - t') \delta v_{\text{eff}}(r', t'),
\]

\[
\chi^{KS}(r, r', t - t') = \delta n(r, t) \frac{\delta v_{\text{eff}}(r', t')}{\delta v_{\text{eff}}(r', t')}.
\]

It is, however, required that the KS electron density and that of the physical system should be the same and the change in the time dependent density of the physical and the reference system must be the same. In order to be able to express \(\chi^{KS}\) explicitly in terms of \(\chi\), one may need to introduce an exchange correlation kernel \(f_{xc}\) given by

\[
f_{xc}[n_0](r, r', t - t') = \left. \frac{\delta v_{xc}(r, t)}{\delta n(r', t')} \right|_{n = n_0},
\]
the time dependent exchange correlation functional $v_{xc}(\mathbf{r}, t)$ is then written in term of ground state density $n_0(\mathbf{r})$ as
\[
v_{xc}(\mathbf{r}, t) = v_{xc}[n_0 + \delta n](\mathbf{r}, t) = v_{xc}[n_0](\mathbf{r}) + \int dt' \int d^3r' f_{xc}[n_0](\mathbf{r}, r', t - t') \delta n(r', t'),
\]
Eqn (5.11.6)

by requirement eqn (5.11.3) and (5.11.1) are the same and since the effective potential can be written in the form $v_{eff}[n](\mathbf{r}, t) = v_{ext}[n](\mathbf{r}, t) + v_H[n](\mathbf{r}, t) + v_{xc}[n](\mathbf{r}, t)$, where v_H is the Hartree potential, we can write them as
\[
\int dt' \int d^3r' \chi(r, r', t - t') \delta v_{ext}(r', t') =
\int dt' \int d^3r' \chi_{KS}(r, r', t - t') \{\delta v_{ext}(r', t') + \delta v_H(r', t') + \delta v_{xc}(r', t')\},
\]
Eqn (5.11.7)

using the chain rule, we can re-write $\delta v_H(r', t')$ and $\delta v_{xc}(r', t')$ in the form
\[
\delta v_H(r', t') = \int dt_1 dt_2 \int d^3r_1 d^3r_2 \frac{\delta v_H(r', t')}{\delta n(r_1, t_1)} \frac{\delta n(r_1, t_1)}{\delta v_{ext}(r_2, t_2)} \delta v_{ext}(r_2, t_2),
\]
Eqn (5.11.8)
\[
\delta v_{xc}(r', t') = \int dt_1 dt_2 \int d^3r_1 d^3r_2 \frac{\delta v_{xc}(r', t')}{\delta n(r_1, t_1)} \frac{\delta n(r_1, t_1)}{\delta v_{ext}(r_2, t_2)} \delta v_{ext}(r_2, t_2),
\]
Eqn (5.11.9)

By using eqn (5.11.8) and (5.11.9), re-naming the integrating variable and going to frequency space, eqn (5.11.7) can be written in the form
\[
\chi(r, r', \omega) = \chi_{KS}(r, r', \omega) + \int d^3r_1 d^3r_2 \chi_{KS}(r, r_1, \omega) \left(\frac{e^2}{|r_1 - r_2|} + f_{xc}(r_1, r_2, \omega)\right) \chi(r_2, r', \omega).
\]
Eqn (5.11.10)

Eqn (5.11.10) is called Dyson equation. To evaluate the response function of an interacting electron system, the KS response function is calculated and the interacting response function is estimated thereafter using the Dyson equation and an (approximated) exchange correlation kernel f_{xc}. The simplest approximation to the exchange correlation kernel is called the Hartree approximation or random phase approximation (RPA) [140], where f_{xc} is neglected (i.e. $f_{xc} = 0$) [206]. In this approximation, the electrons are assumed to respond to external perturbation independently [57] and the only contributing term is the Hartree term δv_H, while other interactions on the electrons cancel out due to their random phases [78].
5.12 Dielectric function

5.12.1 Macroscopic dielectric function

In an isotropic material, the instantaneous response to change in electric field E is given by

$$ E = \varepsilon^{-1} E_{ext}, \quad (5.12.1) $$

where ε is the dielectric function and E_{ext}, the external field/perturbation. The quantity ε is a second rank tensor. In a homogeneous (macroscopic) material, the solution of eqn (5.12.1) is a product of frequency space and momentum. To properly analyse the situation, the total potential on the system is divided into induce v_{ind} and external potential v_{ext},

$$ v_{tot} = v_{ext} + v_{ind}, \quad (5.12.2) $$

we can therefore re-write eqn (5.12.1) in the form

$$ v_{tot} = \varepsilon^{-1} v_{ext}, \quad (5.12.3) $$

where v_{tot} is the sum total of the screened potential derived from the external and induced charged densities $E = -\nabla v_H$ and $E_{ext} = -\nabla v_{ext}$. If the external field is weak (linear response regime), we can assume that there is a linear relationship between the induced charge and the external potential of the form

$$ \eta_{ind} = \chi v_{ext} \quad (\chi = \text{reducible polarizability}) \quad (5.12.4) $$

$$ \eta = P v_{tot} \quad (P = \text{irreducible polarizability}) \quad (5.12.5) $$

We can then write the relationship between the dielectric function ε and the inverse of the dielectric function ε^{-1} as

$$ \varepsilon = \frac{v_{ext}}{v_{tot}} = \frac{v_{tot} - v_{ind}}{v_{tot}} = 1 - v \frac{\eta_{ind}}{v_{tot}} = 1 - vP \quad (5.12.6) $$

$$ \varepsilon^{-1} = \frac{v_{tot}}{v_{ext}} = \frac{v_{ext} + v_{ind}}{v_{ext}} = 1 + v \frac{\eta_{ind}}{v_{ext}} = 1 + v\chi. \quad (5.12.7) $$

Where the two polarizabilities are related by

$$ 1 = \varepsilon \varepsilon^{-1} = (1 - vP)(1 + v\chi) \rightarrow \chi = P + Pv\chi. \quad (5.12.8) $$

We can now see that eqn (5.12.8) and (5.11.10) have the same form and that from eqn (5.12.6) and (5.12.7), we can calculate the dielectric function if we know the response function of the system to change in total or external potential.
5.12.2 Microscopic dielectric function

Response function in a periodic system on a coarse scale is homogeneous and macroscopic electric field of the system follows the external perturbation periodicity, unlike the microscopic electric field which rapidly oscillates on the scale of a primitive cell. It is therefore of great importance to differentiate between the functions. Dielectric function can be formally written in the form:

\[
E(r, \omega) = \int d^3 r' \varepsilon_{-1}^{mac}(r - r', \omega) E_{ext}(r', \omega),
\]

(5.12.9)

where \(E_{ext}\) and \(E\) are external and total macroscopic electric fields connected by macroscopic dielectric function \(\varepsilon_{mac}\). The microscopic electric field at the atomic level \(e(r, \omega)\) is given by

\[
e(r, \omega) = \int d^3 r' \varepsilon_{-1}^{mic}(r, r', \omega) E_{ext}(r', \omega).
\]

(5.12.10)

The microscopic dielectric function is invariant only under lattice translation vector and it is the quantity that is accessible directly in \textit{ab initio} calculations. We can use the invariant property of the microscopic dielectric constant to show that

\[
e(q + K, \omega) = \sum_{K'} \varepsilon^{-1}(q + K, q + K', \omega) E_{ext}(q + K', \omega) = \sum_{K'} \varepsilon^{-1}_{K,K'}(q, \omega) E_{ext}(q + K', \omega),
\]

(5.12.11)

since the microscopic dielectric function can be obtained easily from \textit{ab initio} calculation, one may wish to calculate the macroscopic dielectric function using the following relation:

\[
\varepsilon_{-1}^{mac}(q, \omega) = e(q + K', \omega) \delta_{G,0}.
\]

(5.12.12)

In real solids, local field effects arise due to the rapid variation of microscopic electric fields over a unit cell of the solid. As a result, the macroscopic field, which happens to be the average of the microscopic over a given region which is large enough when compared with the solid lattice constant and small when compared with the wavelength \(\frac{2\pi}{q}\), is in general not the same as the local field polarizing charges in the crystal [206, 207].

5.12.3 Real and imaginary parts of the dielectric function

We can use the sum over \(\delta\)-like Lorentzian peaks of width \(\eta\) and \(\omega = \varepsilon_{mk} - \varepsilon_{nk}\) as transition energy, which is weighted using a transition probability \(|\langle u_{mk+q}|u_{nk}\rangle|^2\) to evaluate the imaginary and real parts
of the macroscopic dielectric function \(\varepsilon = \varepsilon^{(1)} + j\varepsilon^{(2)} \), where

\[
\varepsilon^{(2)}(\hat{q}, \omega) = \frac{4\pi^2 e^2}{\Omega} \lim_{q \to 0} \frac{1}{q^2} \sum_{nmk} 2f_{nk}|\langle u_{mk+q}|u_{nk} \rangle|^2 \left[\delta(\varepsilon_{mk} - \varepsilon_{nk} - \omega) - \delta(\varepsilon_{mk} - \varepsilon_{nk} + \omega) \right],
\]

(5.12.13)

the subscripts \(n \) and \(m \) denote valence and conduction bands, respectively and \(u_{nk} \) represents the periodic part of the orbitals at a point \(k \) [208, 209]. When \(q \to 0 \), the imaginary part of the dielectric function will still depend on direction of \(\hat{q} \), which can be described using a vector \(\hat{q} = \frac{q}{|q|} \). We can then introduce a direction tensor of the form \(\varepsilon_{\alpha\beta} \) and set

\[
\varepsilon^{(2)}(\hat{q}, \omega) = \sum_{\alpha,\beta} \hat{q}_{\alpha} \varepsilon^{(2)}_{\alpha\beta}(\hat{q}, \omega) \hat{q}_{\beta}.
\]

(5.12.14)

We can then express the imaginary part of the dielectric function in term of Cartesian \(\varepsilon_{\alpha\beta} \) as

\[
\varepsilon^{(2)}(\hat{q}, \omega) = \frac{4\pi^2 e^2}{\Omega} \lim_{q \to 0} \frac{1}{q^2} \sum_{nmk} 2f_{nk}|\langle u_{mk+e_{\alpha\beta}}|u_{nk} \rangle|^2 \left[\delta(\varepsilon_{mk} - \varepsilon_{nk} - \omega) - \delta(\varepsilon_{mk} - \varepsilon_{nk} + \omega) \right].
\]

(5.12.15)

Using Hilbert transformation, the real part of the dielectric function \(\varepsilon^{(1)} \) can be expressed via Kramer-Kronig relation:

\[
\varepsilon^{(1)} = 1 + \frac{2}{\pi} \int_0^\infty \frac{\varepsilon^{(2)}(\omega')\omega'}{\omega'^2 - \omega^2} d\omega'.
\]

(5.12.16)

5.12.4 Absorption coefficient, refractive index and reflectivity

Measurement of light absorption is among the most useful techniques in optical measurements in solids. If, for example, light with intensity \(I_0 \) passes through a material of thickness \(z \), after which it has a new intensity \(I(z) \), the decrease in the intensity of the light can be expressed as [203, 210]

\[
dI = -\alpha dz \times I(z).
\]

(5.12.17)

Integrating equation (5.12.17) will give what is known as Beer’s law:

\[
I(z) = I_0 e^{-\alpha z},
\]

(5.12.18)

where the quantity \(\alpha \) is called the absorption coefficient defined as the fraction of power absorbed in a given unit length of a material.

It can be shown that the intensity of the light \(I(z) \) is proportional to the square of the optical field. It then follows that, the intensity in the medium will decrease exponentially with decay constant of
magnitude $2 \times \left(\frac{\kappa \omega}{c} \right)$. Comparing this equation to Beer’s law, we can write that:

$$\alpha = \frac{2 \kappa \omega}{c} = \frac{4 \pi \kappa}{\lambda}, \quad (5.12.19)$$

where the quantity λ is the wavelength of light in a vacuum and κ is called the extinction coefficient and is related to the complex part of the refractive index. Equation (5.12.19) shows that α and κ are directly proportional.

The refractive index is defined as the N of the material is the ratio of the speed of light c in vacuum to the speed v in a given material:

$$N = \frac{c}{v}, \quad (5.12.20)$$

For a plane wave, its group velocity in the medium v is equal to its phase velocity i.e. $v = \frac{\omega}{q}$, where q is wave vector given by:

$$q = \frac{\omega}{c} \left[\varepsilon_1 \mu_1 + i \frac{4 \pi \mu_1 \sigma_1}{\omega} \right]^\frac{1}{2} n_q, \quad (5.12.21)$$

where ω is frequency, n_q is unit vector in the direction of the wave vector q.

Putting eqn. (5.12.21) in to (5.12.20), and replacing $\frac{4 \pi \sigma_1}{\omega}$ with ε_2 we get

$$N = \frac{c}{v} = \frac{c}{\omega q} = \left[\varepsilon_1 \mu_1 + i \frac{4 \pi \mu_1 \sigma_1}{\omega} \right]^\frac{1}{2} = [\mu_1 (\varepsilon_1 + i \varepsilon_2)]^\frac{1}{2} = n + i \kappa. \quad (5.12.22)$$

Reflectivity R is normally derived from the complex part of the refractive index from the Fresnel equation:

$$R = \left| \frac{n - 1}{n + 1} \right|^2 = \left| \frac{n + i \kappa - 1}{n + i \kappa + 1} \right|^2. \quad (5.12.23)$$

5.13 GW and BSE methodology

Within the level of GW-PAW frame work discussed in Section 4.3, the calculation of the dynamically screened interaction requires a number of empty conduction band states. 996 empty bands were used for MX_3 (M= Ti, Zr and Hf; X= S, Se, Te) and ReSe$_2$ calculations, 504 and 192 for bulk and monolayer MX_2 (M= Zr and Hf; X= S, Se), respectively. Throughout the calculations, we start with normal DFT, where we calculate the unperturbed KS energies and eigenstates, to reduce computational cost. We then calculate the dielectric functions by employing a single shot $\mathbf{G}_0 \mathbf{W}_0$, where the self consistent KS DFT orbitals and eigenvalues are used to construct the dynamically screened interaction \mathbf{W}_0 and the Green’s function \mathbf{G}_0 and then solving the quasi particle (QP) equation iteratively. The simple $\mathbf{G}_0 \mathbf{W}_0$ was
adopted where the screening W and the orbital for the Green’s function are kept at the DFT level and the QP energies are calculated using first order perturbation theory. This method is known to predict fundamental band gaps with an accuracy of $\pm 10\%$ [211, 212] when compared with experimental values.

In order to calculate the optical spectra, BSE calculations using the Tamm-Dancoff approximation on the basis of a free quasielectron-quasihole were performed. Five highest valence bands and five lowest conduction bands were found to be enough to converge the heights of the first two energy peaks in the bulk and monolayer $\text{MX}_2 (M=\text{Zr}, \text{Hf}; X=\text{S}, \text{Se})$ structures.
6. Results and discussions

In this chapter, the results obtained are presented and discussed.

6.1 Technetium dichalcogenide

It follows from the discussion of the preparation and structural properties of TcX$_2$ ($X = S$, Se and Te) in Section 1.2.1 of this thesis. Here, we report the structural, mechanical, electronic and optical properties of these compounds.

6.1.1 Equilibrium and Structural Properties

Structural relaxation of TcS$_2$, TcSe$_2$ and TcTe$_2$ was done using the PBE, PBEsol, vdW-TS, vdW-D2 and vdW-DF DFT approximations. Different functionals were used in order to identify the ones that will predict lattice parameters that are in best agreement with experiment. The results obtained are also compared with other theoretical calculations. The cohesive energy-volume relationship (EOS) calculated using the different DFT approximations for the structures are displayed graphically in Figures 6.2, 6.3 and 6.4 for TcS$_2$, TcSe$_2$ and TcTe$_2$, respectively. From the data, the equilibrium structural properties are extracted and presented in Table 6.1. Since the compounds are iso-structural as established in Section 1.2.1 of this thesis, only the TcS$_2$ relaxed structure, with the unit cell doubled in the Z-direction to show the layered nature of the structures is presented in Fig. 6.1. The structural parameters obtained are compared with experiment [50] and theory [22], where available.

From Figures, 6.2, 6.3 and 6.4, we observed that, the cohesive energy graphs obtained from PBE-GGA and its modified version PBEsol (also based on GGA), due to their inability to account for long range dispersion forces, tend to overestimate equilibrium volumes as it is well known [213] in layered structures. The PBEsol has the same analyticity as PBE but with two parameters changed to satisfy constraint conditions in solids [214]. This is what caused curves in sub-figure (a) part of 6.2, 6.3 and 6.4 to be flat, because the layers of the structures decouple at higher volumes and larger inter-layer separation. However, our PBE result is in agreement to that reported by Weck et. al. [22] which is also based on PBE. This suggests the necessity of including the van der Waal’s correction term, for accurate description of layered structures like TcS$_2$. We observed that vdW-D2 (which combined conventional
PBE functional with empirical dispersion correction term to account for long range dispersion forces [119, 122, 215]) predicts structural lattice parameters and volumes that are closer to the experimental values, where the data is available for comparison. For example, in TcS\(_2\), the interlayer distance \(c\) from vdW-D2 is only 0.08 Å larger than the experimental one, whereas it is 1.13 Å, 0.16 Å, 0.22 Å larger with PBE, PBEsol and vdW-DF, respectively, and 0.42 Å less than the experimental value in the case of vdW-TS. The difference between our PBE interlayer distance \(c\) and that of reference [22] may be as a result of difference in the input parameters or pseudopotential. We also note that, vdW-TS (which is built to account for van der Waal’s interaction using system-dependent dispersion coefficients obtained from first principle calculations [214]) underestimates the equilibrium volume when compared with the experiment, where available. The vdW-TS volume is 8.06 % less than the experimental volume while vdW-DF (a nonlocal correlation functional that accounts for long range interaction [124, 125, 216]) overestimates the equilibrium volume by 6.79 % for TcS\(_2\). The vdW-D2 volume in TcS\(_2\) is 2.12 % greater than the experimental volume and this is the best theoretical result for this compound. From Figures 6.2, 6.3 and 6.4, the equilibrium properties of the structures are extracted and listed in Table 6.1.

![Figure 6.1: TcS\(_2\) unit cell doubled in the Z-direction to show the layered structure.](image)
From Table 6.1, using the vdW-D2 obtained structural lattice parameters, for example, we observe how the TcX$_2$ (X = S, Se and Te) structural lattice parameters (a, b and c) increase as one goes down from S to Te in the same group of the periodic table. This increase in the lattice parameters, leads to an increase in volume in the structures as can be observed from the table. The increase in volume may be
explained by the fact that as one moves down a particular group in the periodic table, the atomic volume increases. This is consistent with the information in Table 6.2, where we see that as we move down the group in the periodic table (i.e. from S to Te), the shortest nearest neighbour distances between the atoms increase.

![Figure 6.3: TcSe$_2$ cohesive energy-volume graph calculated using (a) PBE, (b) PBEsol, (c) vdW-TS, (d) DFT-D2 and (f) vdW-DF.](image-url)
Table 6.2 list the bond length of the TcS$_2$ like structures. The nearest neighbour distance controls the physical properties of the structures like bond strength, melting point, elasticity and charge transfer. It is established that the larger the bond length, the larger the bulk modulus [217], which in turn determines the stiffness or structural rigidity and that the shorter the nearest neighbour distance, the more likely that there will be charge transfer in the structure [218].

6.1.2 Mechanical and thermal properties

As discussed in Section 5.7, in order to determine stability of a given structure, one needs to examine the phonon band structure and elastic constants. It is therefore important, to accurately calculate the elastic constants and evaluate them for determining the stability of a given material. In order to test the stability of the TcX$_2$ (X= S, Se and Te), their underlying phonon dispersion relation and elastic
Table 6.1: Calculated and experimental equilibrium parameters of TcX$_2$ (X = S, Se and Te): lattice constants (a (Å), b (Å), c (Å)), volume V_0 (Å3), formation energy E_f per atom and cohesive energy E_{coh} per atom.

<table>
<thead>
<tr>
<th>Functional</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>V_0 (Å3)</th>
<th>E_f (eV/atom)</th>
<th>E_{coh} (eV/atom)</th>
<th>α°</th>
<th>β°</th>
<th>γ°</th>
</tr>
</thead>
<tbody>
<tr>
<td>TcS$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBE</td>
<td>6.39</td>
<td>6.50</td>
<td>7.78</td>
<td>261.84</td>
<td>-0.66</td>
<td>-5.00</td>
<td>67.85</td>
<td>101.7</td>
<td>118.82</td>
</tr>
<tr>
<td>PBEsol</td>
<td>6.31</td>
<td>6.42</td>
<td>6.81</td>
<td>220.68</td>
<td>-0.66</td>
<td>-5.00</td>
<td>65.76</td>
<td>102.99</td>
<td>118.77</td>
</tr>
<tr>
<td>vdW-TS</td>
<td>6.38</td>
<td>6.51</td>
<td>6.23</td>
<td>196.20</td>
<td>-0.79</td>
<td>-5.40</td>
<td>59.82</td>
<td>104.39</td>
<td>118.74</td>
</tr>
<tr>
<td>DFT-D2</td>
<td>6.37</td>
<td>6.47</td>
<td>6.73</td>
<td>217.92</td>
<td>-0.62</td>
<td>-5.23</td>
<td>63.86</td>
<td>103.47</td>
<td>118.85</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>6.43</td>
<td>6.54</td>
<td>6.87</td>
<td>227.88</td>
<td>-0.69</td>
<td>-5.15</td>
<td>64.27</td>
<td>103.38</td>
<td>118.91</td>
</tr>
<tr>
<td>Other PBE</td>
<td>6.42 [a]</td>
<td>6.52 [a]</td>
<td>7.07 [a]</td>
<td>234.4 [a]</td>
<td>64.7 [a]</td>
<td>102.9 [a]</td>
<td>118.9 [a]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TcSe$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBE</td>
<td>6.64</td>
<td>6.77</td>
<td>8.07</td>
<td>295.20</td>
<td>-0.52</td>
<td>-4.59</td>
<td>68.24</td>
<td>101.66</td>
<td>118.80</td>
</tr>
<tr>
<td>PBEsol</td>
<td>6.56</td>
<td>6.69</td>
<td>6.90</td>
<td>248.76</td>
<td>-0.52</td>
<td>-4.59</td>
<td>70.14</td>
<td>103.24</td>
<td>118.77</td>
</tr>
<tr>
<td>vdW-TS</td>
<td>6.66</td>
<td>6.79</td>
<td>6.62</td>
<td>229.68</td>
<td>-0.60</td>
<td>-4.99</td>
<td>61.22</td>
<td>104.27</td>
<td>118.76</td>
</tr>
<tr>
<td>DFT-D2</td>
<td>6.64</td>
<td>6.75</td>
<td>7.00</td>
<td>248.04</td>
<td>-0.48</td>
<td>-4.88</td>
<td>64.51</td>
<td>103.40</td>
<td>118.83</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>6.70</td>
<td>6.83</td>
<td>7.29</td>
<td>266.88</td>
<td>-0.52</td>
<td>-4.70</td>
<td>66.22</td>
<td>103.24</td>
<td>118.89</td>
</tr>
<tr>
<td>Other PBE</td>
<td>6.67 [a]</td>
<td>6.80 [a]</td>
<td>7.42 [a]</td>
<td>267.10 [a]</td>
<td>65.00 [a]</td>
<td>102.90 [a]</td>
<td>118.80 [a]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TcTe$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBE</td>
<td>7.07</td>
<td>7.22</td>
<td>8.24</td>
<td>348.36</td>
<td>-0.27</td>
<td>-4.20</td>
<td>71.77</td>
<td>102.49</td>
<td>118.91</td>
</tr>
<tr>
<td>PBEsol</td>
<td>6.98</td>
<td>7.12</td>
<td>7.34</td>
<td>300.00</td>
<td>-0.27</td>
<td>-4.20</td>
<td>70.50</td>
<td>103.24</td>
<td>118.95</td>
</tr>
<tr>
<td>vdW-TS</td>
<td>7.11</td>
<td>7.20</td>
<td>7.12</td>
<td>282.72</td>
<td>-0.28</td>
<td>-4.63</td>
<td>62.39</td>
<td>104.17</td>
<td>118.92</td>
</tr>
<tr>
<td>DFT-D2</td>
<td>7.12</td>
<td>7.22</td>
<td>7.39</td>
<td>301.68</td>
<td>-0.28</td>
<td>-4.63</td>
<td>65.52</td>
<td>103.51</td>
<td>119.01</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>7.13</td>
<td>7.27</td>
<td>7.62</td>
<td>324.12</td>
<td>-0.22</td>
<td>-4.32</td>
<td>70.11</td>
<td>103.15</td>
<td>119.04</td>
</tr>
<tr>
<td>Other PBE</td>
<td>7.10</td>
<td>7.24</td>
<td>7.91</td>
<td>324.70</td>
<td>65.90</td>
<td>102.80</td>
<td>118.90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\text{a} = \text{reference [22], \ b = reference [50]}$

Constants were calculated. The vdW-D2, an approximation which predicted equilibrium volume in best agreement with experiment was used in the computation of the phonon band structures. The phonon band structures of the TcX$_2$ (X = S, Se and Te) are depicted in Figure 6.5 and the elastic constants obtained are listed in Table 6.3.

From Figure 6.5, can see that, the phonon dispersion relation for the TcX$_2$ (X = S, Se and Te) have no imaginary phonon frequencies and thus have satisfied one of the necessary stability criteria discussed in Section 5.7.

From Table 6.3, the elastic constants obtained have also satisfied the stability criteria discussed in Section 5.7. We can therefore, say that the structures are stable against distortions. We also observe
Table 6.2: calculated and experimental TcX$_2$ (X = S, Se and Te) nearest neighbour distances in Å.

<table>
<thead>
<tr>
<th>Functional</th>
<th>Tc - Tc</th>
<th>Tc - S (Å)</th>
<th>S - S(Å)</th>
<th>TcS$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE</td>
<td>2.67</td>
<td>2.28</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td>PBEsol</td>
<td>2.80</td>
<td>2.40</td>
<td>3.21</td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>2.94</td>
<td>2.49</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>vdW-D2</td>
<td>2.85</td>
<td>2.42</td>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>vdW-DF</td>
<td>2.82</td>
<td>2.39</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>Other PBE</td>
<td>2.72 [a]</td>
<td>2.31 [a]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Expriment</td>
<td>2.70 [b]</td>
<td>2.23 [b]</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functional</th>
<th>Tc - Tc</th>
<th>Tc - Se (Å)</th>
<th>Se - Se(Å)</th>
<th>TcSe$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE</td>
<td>2.61</td>
<td>2.31</td>
<td>3.06</td>
<td></td>
</tr>
<tr>
<td>PBEsol</td>
<td>2.73</td>
<td>2.42</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>2.85</td>
<td>2.50</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>vdW-D2</td>
<td>2.78</td>
<td>2.44</td>
<td>3.23</td>
<td></td>
</tr>
<tr>
<td>vdW-DF</td>
<td>2.72</td>
<td>2.40</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>Other PBE</td>
<td>2.43 [a]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Expriment</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functional</th>
<th>Tc - Tc</th>
<th>Tc - Te (Å)</th>
<th>Te - Te(Å)</th>
<th>TcTe$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE</td>
<td>2.55</td>
<td>2.33</td>
<td>3.08</td>
<td></td>
</tr>
<tr>
<td>PBEsol</td>
<td>2.64</td>
<td>2.44</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>2.76</td>
<td>2.51</td>
<td>3.31</td>
<td></td>
</tr>
<tr>
<td>vdW-D2</td>
<td>2.71</td>
<td>2.45</td>
<td>3.23</td>
<td></td>
</tr>
<tr>
<td>vdW-DF</td>
<td>2.63</td>
<td>2.41</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>Other PBE</td>
<td>2.85 [a]</td>
<td>2.81 [a]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Expriment</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

a = reference [22] and b = reference [50]

that the structure has large in plane elastic constants C_{11} and C_{22} values and that weak inter-layer forces may be responsible for preventing the structure from attaining large out of plane elastic constants. For example, C_{33} with van der Waal’s correction (vdW-TS, vdW-D2 and vdW-DF) is typically about four times the ones without the van der Waal’s correction.

The phonon contribution to the heat capacity of TcX$_2$ (X = S, Se and Te) was evaluated using the calculated phonon frequencies determined from density functional perturbation theory [219]. The graph
Table 6.3: TcX$_2$ (X = S, Se and Te) calculated elastic constants (GPa).

<table>
<thead>
<tr>
<th></th>
<th>C$_{11}$</th>
<th>C$_{12}$</th>
<th>C$_{13}$</th>
<th>C$_{14}$</th>
<th>C$_{15}$</th>
<th>C$_{16}$</th>
<th>C$_{22}$</th>
<th>C$_{23}$</th>
<th>C$_{24}$</th>
<th>C$_{25}$</th>
<th>C$_{26}$</th>
<th>C$_{33}$</th>
<th>C$_{34}$</th>
<th>C$_{35}$</th>
<th>C$_{36}$</th>
<th>C$_{44}$</th>
<th>C$_{45}$</th>
<th>C$_{46}$</th>
<th>C$_{55}$</th>
<th>C$_{56}$</th>
<th>C$_{66}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TcS$_2$</td>
<td></td>
</tr>
<tr>
<td>PBE</td>
<td>1661</td>
<td>315</td>
<td>132</td>
<td>93</td>
<td>330</td>
<td>-159</td>
<td>1338</td>
<td>245</td>
<td>530</td>
<td>7.29</td>
<td>-155</td>
<td>94</td>
<td>120</td>
<td>65</td>
<td>83</td>
<td>254</td>
<td>54</td>
<td>69</td>
<td>174</td>
<td>205</td>
<td>568</td>
</tr>
<tr>
<td>PBEsol</td>
<td>1666</td>
<td>317</td>
<td>131</td>
<td>92</td>
<td>332</td>
<td>-160</td>
<td>1349</td>
<td>245</td>
<td>532</td>
<td>9.76</td>
<td>-155</td>
<td>88</td>
<td>119</td>
<td>64</td>
<td>82</td>
<td>252</td>
<td>53</td>
<td>70</td>
<td>171</td>
<td>205</td>
<td>570</td>
</tr>
<tr>
<td>vdW-TS</td>
<td>2447</td>
<td>485</td>
<td>534</td>
<td>135</td>
<td>143</td>
<td>-163</td>
<td>2163</td>
<td>419</td>
<td>360</td>
<td>-24</td>
<td>-109</td>
<td>972</td>
<td>174</td>
<td>159</td>
<td>92</td>
<td>379</td>
<td>41</td>
<td>70</td>
<td>646</td>
<td>256</td>
<td>734</td>
</tr>
<tr>
<td>vdW-D2</td>
<td>2144</td>
<td>421</td>
<td>314</td>
<td>79</td>
<td>274</td>
<td>-159</td>
<td>1852</td>
<td>339</td>
<td>518</td>
<td>-1.11</td>
<td>-151</td>
<td>419</td>
<td>78</td>
<td>74</td>
<td>81</td>
<td>261</td>
<td>47</td>
<td>82</td>
<td>320</td>
<td>213</td>
<td>678</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>1963</td>
<td>388</td>
<td>274</td>
<td>83</td>
<td>303</td>
<td>-175</td>
<td>1594</td>
<td>363</td>
<td>550</td>
<td>-4.15</td>
<td>-163</td>
<td>350</td>
<td>104</td>
<td>91</td>
<td>94</td>
<td>296</td>
<td>51</td>
<td>76</td>
<td>295</td>
<td>225</td>
<td>633</td>
</tr>
<tr>
<td>TcSe$_2$</td>
<td></td>
</tr>
<tr>
<td>PBE</td>
<td>1406</td>
<td>278</td>
<td>119</td>
<td>81</td>
<td>259</td>
<td>-130</td>
<td>1095</td>
<td>202</td>
<td>450</td>
<td>-0.47</td>
<td>-131</td>
<td>83</td>
<td>107</td>
<td>62</td>
<td>66</td>
<td>213</td>
<td>47</td>
<td>52</td>
<td>159</td>
<td>169</td>
<td>468</td>
</tr>
<tr>
<td>PBEsol</td>
<td>1406</td>
<td>278</td>
<td>119</td>
<td>81</td>
<td>259</td>
<td>-130</td>
<td>1095</td>
<td>202</td>
<td>450</td>
<td>-0.47</td>
<td>-131</td>
<td>83</td>
<td>107</td>
<td>62</td>
<td>66</td>
<td>213</td>
<td>47</td>
<td>52</td>
<td>159</td>
<td>169</td>
<td>468</td>
</tr>
<tr>
<td>vdW-D2</td>
<td>1765</td>
<td>364</td>
<td>342</td>
<td>41</td>
<td>166</td>
<td>-138</td>
<td>1462</td>
<td>369</td>
<td>436</td>
<td>-15</td>
<td>-138</td>
<td>520</td>
<td>54</td>
<td>93</td>
<td>88</td>
<td>256</td>
<td>44</td>
<td>57</td>
<td>349</td>
<td>181</td>
<td>526</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>1650</td>
<td>348</td>
<td>263</td>
<td>57</td>
<td>223</td>
<td>-135</td>
<td>1330</td>
<td>321</td>
<td>451</td>
<td>-22</td>
<td>-126</td>
<td>335</td>
<td>67</td>
<td>64</td>
<td>77</td>
<td>235</td>
<td>50</td>
<td>55</td>
<td>258</td>
<td>176</td>
<td>524</td>
</tr>
<tr>
<td>TcTe$_2$</td>
<td></td>
</tr>
<tr>
<td>PBE</td>
<td>1151</td>
<td>223</td>
<td>118</td>
<td>68</td>
<td>227</td>
<td>-93</td>
<td>1011</td>
<td>149</td>
<td>335</td>
<td>25</td>
<td>-101</td>
<td>109</td>
<td>67</td>
<td>45</td>
<td>53</td>
<td>163</td>
<td>32</td>
<td>52</td>
<td>124</td>
<td>133</td>
<td>405</td>
</tr>
<tr>
<td>PBEsol</td>
<td>1118</td>
<td>240</td>
<td>96</td>
<td>56</td>
<td>219</td>
<td>-91</td>
<td>976</td>
<td>162</td>
<td>340</td>
<td>7.35</td>
<td>-98</td>
<td>45</td>
<td>61</td>
<td>30</td>
<td>54</td>
<td>158</td>
<td>38</td>
<td>52</td>
<td>117</td>
<td>129</td>
<td>393</td>
</tr>
<tr>
<td>vdW-TS</td>
<td>1619</td>
<td>360</td>
<td>422</td>
<td>31</td>
<td>75</td>
<td>-102</td>
<td>1476</td>
<td>295</td>
<td>332</td>
<td>-19</td>
<td>-112</td>
<td>545</td>
<td>90</td>
<td>159</td>
<td>54</td>
<td>190</td>
<td>17</td>
<td>66</td>
<td>478</td>
<td>176</td>
<td>435</td>
</tr>
<tr>
<td>vdW-D2</td>
<td>1399</td>
<td>323</td>
<td>362</td>
<td>-4.84</td>
<td>58</td>
<td>-60</td>
<td>1343</td>
<td>300</td>
<td>277</td>
<td>-29</td>
<td>-66</td>
<td>530</td>
<td>8.23</td>
<td>65</td>
<td>62</td>
<td>153</td>
<td>29</td>
<td>62</td>
<td>359</td>
<td>129</td>
<td>429</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>1249</td>
<td>296</td>
<td>190</td>
<td>27</td>
<td>186</td>
<td>-78</td>
<td>1118</td>
<td>234</td>
<td>316</td>
<td>2.37</td>
<td>-89</td>
<td>275</td>
<td>28</td>
<td>52</td>
<td>58</td>
<td>182</td>
<td>29</td>
<td>51</td>
<td>206</td>
<td>120</td>
<td>430</td>
</tr>
</tbody>
</table>

of the structural specific heat capacity at constant volume against temperature is depicted in Figure 6.6. From the Figure, we note that the specific heat capacity of TcSe$_2$ is the first to approach a constant value (Dulong and Petit law) at a temperature of about 410 K, followed by TcS$_2$, at a temperature of about 430 K, then TcTe$_2$, at a temperature of about 450 K. It is also observed that, over the range of the observed temperatures, the specific heat capacity of the structures are of the order C_v[TcSe$_2$] < C_v[TcS$_2$] < C_v[TcTe$_2$]. This is consistent with the phonon dispersion relation of the structures displayed in Figure 6.6.

Since the TcX$_2$ (X = S, Se and Te) structures investigated are semiconductors, it is expected that their heat capacities at low temperature will be dominated by the phonon contribution. The electronic contributions are expected to be significant when there is sufficient thermal energy to excite the electronic degrees of freedom. This will only take place when the thermal energy kT (k is Boltzmann constant and T is temperature) is of the same order as the band gap of the structures.
From subfigure 6.6 (b), we can note that entropy of these structures increases steadily with increase in temperature, the entropy is also observed to increase with increase in volume of the structures as we move down the chalcogenide group in the periodic table (i.e. $S[TcS_2] < S[TcSe_2] < S[TcTe_2]$). This is consistent with Boltzmann's entropy law, discussed in Section 5.8 of this thesis, where the increase in micro-states of a system bring about increase in entropy.

6.1.3 Electronic properties

In trying to understand the nature of the electronic properties of technetium dichalcogenide structures, their underlying electronic structure, bonding and possible charge transfer were analysed using partial charge calculation in Bader partitions [220, 221, 222]. The electronic charge transfer was calculated for the vdW-D2 DFT approximation only, since this functional predicts structural parameters in best agreement with experiment than other approximations considered.

Bader charge analysis indicates that there is a significant charge transfer in these technetium structures. The charge transfer between the transition metal (Tc) and its corresponding dichalcogenides (X) is summarized in Table 6.4. From the table, we can see that the charge transfer from the Tc metal to
the chalcogen atom decreases as one goes down the group in the periodic table, i.e., from S to Se to Te, suggesting that the bonding between the structures is becoming less ionic with increasing atomic number of the chalcogen atom. The decrease in charge transfer may be correlated with the increasing distance between the transition metal and chalcogen atoms as shown in Table 6.2 and discussed in Section 6.1.2.

To understand the electronic properties of the TcX$_2$ (X = S, Se and Te) structures, their underlying electronic band structures, total density of states (TDOS) and partial density states (PDOS) were calculated and shown in Figures 6.7, 6.8 and 6.9. However, due to the similarity of the graphs obtained from the approximations considered, only results from one of the functionals will be shown in each instance. Having observed that the structures are not magnetic (electrons occupy spin up and spin down equally), it is sufficient to show only spin up density of states and spin up band diagrams. Plotting the electronic band structure along the high symmetry k-points accord us the opportunity of extracting the nature of the electronic band gap of the structures. Using the PDOS plots, we can obtain information about the orbital character of the bands. The TDOS and PDOS are plotted using an arbitrary scale.

Figure 6.6: vdW-D2 calculated specific heat capacity at constant volume and entropy for the TcX$_2$ (X = S, Se and Te) structures.
Table 6.4: Charge transfer for TcX$_2$ ($X = S, Se, Te$) in electronic charge (e) calculated using vdW-D2. Charge transfer numbers refer to atoms in the first and second columns respectively (See Fig. 6.1).

<table>
<thead>
<tr>
<th></th>
<th>TcS$_2$</th>
<th>TcSe$_2$</th>
<th>TcTe$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc1, Tc2</td>
<td>0.91</td>
<td>0.61</td>
<td>0.18</td>
</tr>
<tr>
<td>Tc3, Tc4</td>
<td>0.92</td>
<td>0.61</td>
<td>0.18</td>
</tr>
<tr>
<td>X1, X2</td>
<td>-0.52</td>
<td>-0.36</td>
<td>-0.12</td>
</tr>
<tr>
<td>X3, X4</td>
<td>-0.45</td>
<td>-0.30</td>
<td>-0.07</td>
</tr>
<tr>
<td>X5, X6</td>
<td>-0.42</td>
<td>-0.27</td>
<td>-0.08</td>
</tr>
<tr>
<td>X7, X8</td>
<td>-0.44</td>
<td>-0.29</td>
<td>-0.08</td>
</tr>
</tbody>
</table>

Fig. 6.7: Calculated vdW-D2 TcS$_2$ calculated electronic structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Tc(s,p,d) and (d) PDOS of S(s,p).

Fig. 6.7 shows that TcS$_2$ is a semiconductor Fig. 6.7 (a) shows its conduction band minimum (CBM) at a point between Y and L of the high symmetry k-points and its valence band maximum (VBM) at a point between Γ and M of the high symmetry k-points, leading to an indirect DFT vdW-D2 band gap of $E_g = 0.99$ eV. Fig. 6.7 (b) depicts the spin projected TDOS, (Fig. 6.7 (c) and (d) show the PDOS1, from it, we can see that the dominant orbitals at the conduction band minimum are Tc(s) and hybridized S(s and p) with little contribution from hybridized Tc (p and d). The valence band maximum, on the other hand is dominated by S (p) with little contribution from S (s) Tc (s) and hybridized Tc (p and d).

Fig. 6.8 shows that TcSe$_2$ is also a semiconductor Fig. 6.8 (a) shows its conduction band minimum

1It is important here to note that sub-figure (c) and (d) are plotted using a different scale. This is to make sure that individual atomic contributions to the density of states are clear in the sub-figures.
Figure 6.8: Calculated MBJ TcSe$_2$ calculated electronic structure (a) band structure along high
symmetry K-points, (b) spin projected TDOS, (c) PDOS of Tc(s,p,d) and (d) PDOS of Se(s,p).

(CBM) at a point between Y and L of the high symmetry k-points and its valence band maximum
(VBM) at a point between Γ and Y of the high symmetry k-points, leading to an indirect DFT band
gap of $E_g = 0.86$ eV. Fig. 6.8 (b) show the TDOS, Fig. 6.8 (c) and (d) show the PDOS. The dominant
orbitals at the CBM are Se(p) with slight contribution from hybridized Tc (s) and Se (s). The VBM is
dominated by Se (p) with little contribution from Tc (d).

Figure 6.9: Calculated vdW-DF TcTe$_2$ calculated electronic structure (a) band structure along high
symmetry K-points, (b) spin projected TDOS, (c) PDOS of Tc(s,p,d) and (d) PDOS of Se(s,p).

Fig. 6.9 depict that TcTe$_2$ is a semiconductor Fig. 6.9 (a) shows its CBM at a point between Y and L
of the high symmetry k-points and VBM at a point between Γ and Y of the high symmetry k-points,
leading to an indirect DFT band gap of $E_g = 0.30$ eV. Fig. 6.9 (b) shows the TDOS, Fig. 6.9 (c) and
(d) shows the PDOS. The dominant orbitals at the CBM are Te(p) with slight contribution from Tc
The VBM is dominated by Te (p) with little contribution from Tc (s and d).

Careful look at Figures 6.7, 6.8 and 6.9 reveal that the three TcX$_2$ materials share a common feature: they are all indirect band gap semiconductors with CBM between Y and L of the high symmetry k-points and VBM between Γ and Y of the high symmetry k-points.

Even though KS-DFT plays a very important role in predicting the properties of material at their ground states, it fails to provide an accurate description of the electronic properties of materials as discussed in Section 5.10. In trying to have a better prediction of the band gaps of the TcX$_2$ ($X = S$, Se and Te) structures, their band gaps were calculated using the modified Becke-Johnson potential (MBJ) [212] (a method known to predict band gaps at an accuracy comparable to hybrid and GW at less computational cost), a hybrid functional (HSE06) and G$_0$W$_0$ (this method has been described as state-of-the-art method for accurate fundamental band gap calculations, as observed in some extended systems and shown to be true by direct and inverse photo-emission spectroscopy). The relaxed structures obtained from vdw-D2, an approximation we note to provide lattice structural parameters with an accuracy comparable to the experiment, were used for the MBJ, HSE06 and the G$_0$W$_0$ calculations. The band gaps obtained are listed in Table 6.5 and compared with the available optical absorption edge reported [50]. It is important to note here that the absorption edge may not necessarily correspond to the fundamental band gap of the structures as observed in a number of transition metal dichalcogenides [223, 224, 225, 226, 227].

Table 6.5: Calculated and experimental indirect energy band gaps (in eV) of TcX$_2$ ($X = S$, Se and Te) structures.

<table>
<thead>
<tr>
<th>Structure</th>
<th>PBE</th>
<th>PBEsol</th>
<th>vdW-TS</th>
<th>vdW-D2</th>
<th>vdW-DF</th>
<th>MBJ</th>
<th>HSE</th>
<th>G$_0$W$_0$</th>
<th>Other PBE</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TcS$_2$</td>
<td>1.18</td>
<td>1.11</td>
<td>0.52</td>
<td>0.99</td>
<td>1.02</td>
<td>1.10</td>
<td>1.83</td>
<td>1.59</td>
<td>0.90 [a]</td>
<td>1.00 [b]</td>
</tr>
<tr>
<td>TcSe$_2$</td>
<td>0.99</td>
<td>0.83</td>
<td>0.36</td>
<td>0.70</td>
<td>0.82</td>
<td>0.86</td>
<td>0.69</td>
<td>1.32</td>
<td>0.80 [a]</td>
<td>0.88 [b]</td>
</tr>
<tr>
<td>TcTe$_2$</td>
<td>0.57</td>
<td>0.11</td>
<td>Metallic</td>
<td>0.07</td>
<td>0.30</td>
<td>0.20</td>
<td>0.38</td>
<td>0.63</td>
<td>0.30 [a]</td>
<td>-</td>
</tr>
</tbody>
</table>

a = reference [22], b = reference [50]

The difference in the vdW-TS, vdW-D2 and vdW-DF band gaps may not be unconnected with the difference in the structural equilibrium volumes predicted by the different approximations as earlier explained and shown in Figure 6.10. It is expected in these type of structures that the band gap will increase with increase in volume of the structure. We can understand the band gap volume relationship in these structures when we compare the volume predicted by the approximations considered in Table 6.1 and their corresponding band gaps in Table 6.5 or by looking at the band gap volume relationship.
in Figure 6.10 extracted from vdW-D2 calculated structures.

![Figure 6.10](image)

Figure 6.10: Band gap volume relationship in TcX₂ (X = S, Se and Te) calculated from vdW-D2 relaxed structure.

It is important to note here that TcS₂ and TcSe₂ having band gap between 0.63 eV and 1.59 eV are promising material for third generation solar cells as discussed in Section 1.1 of this thesis.

To the best of our knowledge, this is the first time where the structural and the electronic properties of TcX₂ (X = S, Se and Te) with inclusion of vander Waal’s correction are reported. The vander Waal’s correction terms are necessary for accurate description of the structural parameter and the accurate determination of the electronic properties relies heavily on the accurate determination of the structural parameters. And this is the first time that the electronic properties of these structures are reported beyond DFT.

6.1.4 Doping

In order to maximise the practical application of TcS₂ in nano-devices, solar energy applications and other electronic applications, their electronic and optical properties can be modulated by: the application of external fields, forces, alloying [228, 229], modified layer stacking or doping [230, 231, 232, 233, 234, 235]. Recently, investigations have proven that application of strain can change the band gap of some TMDCs from indirect to direct, while transition from semi-conductor to metal has also been observed.
in some TMDCs [236, 237]. The band gap of these materials may also be tuned by the application of external electric fields [238, 239].

To achieve a possible modification of the electronic properties of TcS$_2$, we substitute the Tc with Fe in TcS$_2$. This is based on Hick’s [240] rule for solubility, the ionic radius of the host and intercalating metal and should be close and the doped metal should come from a group adjacent to the host metal in the periodic table. Based on this, we decided to investigate substitutional doping of TcS$_2$ by replacing selected Tc atoms by Fe atoms, an element from the adjacent group in the periodic table, having one electron more than Tc in its d-shell. We calculated the DFT electronic band structure of Tc$_{1-x}$SFe$_x$ and Tc$_{1-x}$Fe$_x$S ($x = 0.125$, 0.25, 0.375, or 0.5), corresponding to a sub set of configurations for 12.5%, 25% 37.5% and 50% Fe doping respectively by considering modifications of the primitive unit cell forming supercells in different directions by doubling the structural lattice parameter (a, b or c in Table 6.1). The structures were relaxed using vdW-D2 approximation, an approximation we note to predict lattice structural parameters with an accuracy comparable to the experiment (see Table 6.1). As observed in Table 6.5, MBJ predict the band gaps of these type of structures with an accuracy that is comparable to experiment, thus, we decided to limit our band gap calculations to vdW-D2 and MBJ approximations. We note that in the bulk structures, there are the two Tc atomic positions that have different environments. This leads to five, twenty nine, thirty eight, and sixty two distinct doping configurations for the 12.5%, 25% 37.5% and 50% Fe-doping configurations considered respectively.

For example, using Figure 6.11, showing the TcS$_2$ structure and Figure 6.12 showing the positions of technetium in TcS$_2$ unit cell, the possible doping configurations of the unit cell are listed in Table A.1 of the appendix. To summarise the table, the volume per atom as a function of doping configuration, formation energy per atom as a function of doping configuration and band gaps as a function of doping configuration are shown pictorially in Figures 6.13, 6.14 and 6.15, respectively. It is important to mention here that the configurations are arranged according to their size of MBJ band gap in Figure 6.13 and not according to the percentage of the doping. We observed that there is no strict relationship that exists between the percentage of doping or the location of the dopant atom with the band gap of the structure. Detailed information about the band gap, doping position and percentage can be found in Table A.1.
Figure 6.11: Primitive unit cell for technetium sulphide in the $\overline{P}1$ structure and the positions of the four Technetium atoms.

Figure 6.12: Positions of Tc atoms.
From Figure 6.13, we can observe how the variation of the percentage of the dopant and doping positions affect the volume of the doped system. It is therefore expected that the electronic properties of the new structure will change as a result of the volume change of the new structure.

Formation and cohesive energy were used to determine the stability of the doped structures in Table A.1, from the table and Figure 6.14, we observed that the formation and cohesive energy obtained for the
investigated systems are all negative. A positive value of any of the two energies at a given temperature and pressure signifies instability in the structure and tendency of the structure to decompose to its constituent solid components. On the other hand, the more negative the value of the energies, the more stable the structure is. Our results in Table A.1 and pictorially depicted in Figure 6.14 suggests that the doped structures are stable with respect to decomposition to their components and that the formation energy of the new structure is dependent on the percentage of the dopant atom and the position of the doped atom.

We note that there is induced magnetisation in some of the doped structures and that the magnetic moments are almost entirely confined to the Fe and Tc atoms. Magnetic moments associated with other atoms are negligible. The magnetic semiconductors are materials of interest in the field of spintronics. We also note that TcS$_2$ and majority its Fe doped derivatives studied in this report are indirect band gap materials, the direct band gap systems are quite few. Direct gap materials are of importance for optical absorption without phonon assistance. We also note that the doped systems have potential applications in third generation solar cells as discussed in Section 1.1.

![Band gap as function of doping configuration](image)

Figure 6.15: Band gap as a function of doping configuration for TcS$_2$ calculated with MBJ functional.

From Figure 6.15, we observed that doping TcS$_2$ decreases the band gap of the parent material, the band gap of the new structure depends on the amount of dopant Fe introduced into the parent material and the position where the dopant are placed in the structure.
6.2 Hafnium dichalcogenide

The structures of this family of compounds has been discussed in Section 1.2.2 of this thesis. We will only report simulations of the mechanical, thermal, as well as the optical properties of these family of structures. It is, however, our belief that, for accurate description of properties of these structures, it is important to begin with an accurate description of their structural properties. Since the structures are layered, they were relaxed using vdW-TS and vdW-DF. It was found that the vdW-TS lattice structural parameters are surprisingly in good agreement with the experimental reported structural parameters, with an error that is less than 3\%. We therefore decide to adopt the vdW-TS structural parameters for all our subsequent calculations.

6.2.1 Mechanical and thermal properties

In order to examine the stability of the HfX$_2$ structures against mechanical distortions, their elastic and phonon properties were determined. The elastic constants of the structures are listed in Table 6.6 and the phonon dispersion plots shown in Figure 6.16.

The necessary and sufficient conditions for the stability of a hexagonal crystals are:

$$C_{11} > |C_{12}| \quad 2C_{13}^2 < C_{33}(C_{11} + C_{12}) \quad C_{44} > 0.$$(6.2.1)

<table>
<thead>
<tr>
<th></th>
<th>C$_{11}$</th>
<th>C$_{12}$</th>
<th>C$_{13}$</th>
<th>C$_{33}$</th>
<th>C$_{44}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfS$_2$ vdW-TS</td>
<td>1326</td>
<td>217</td>
<td>50</td>
<td>315</td>
<td>105</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>1358</td>
<td>253</td>
<td>56</td>
<td>284</td>
<td>60</td>
</tr>
<tr>
<td>HfSe$_2$ vdW-TS</td>
<td>1032</td>
<td>192</td>
<td>50</td>
<td>318</td>
<td>95</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>1099</td>
<td>224</td>
<td>79</td>
<td>305</td>
<td>59</td>
</tr>
<tr>
<td>HfTe$_2$ vdW-TS</td>
<td>621</td>
<td>199</td>
<td>69</td>
<td>219</td>
<td>138</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>1062</td>
<td>258</td>
<td>374</td>
<td>1228</td>
<td>388</td>
</tr>
</tbody>
</table>

From Table 6.6, we note that HfX$_2$ has satisfied one of the necessary and sufficient conditions for crystal stability discussed in Section 5.7. From Figure 6.16, we observe that HfX$_2$ have no imaginary phonon frequencies in all the considered brillouin zone. We may therefore assume that the structures are stable against mechanical distortions.
Results for the specific heat capacity at constant volume for the HfX\textsubscript{2} structures are shown in Figure 6.17. From the Figure, the heat capacity of HfSe\textsubscript{2} is the first to approach a constant value (Dulong and Petit law) at about 260 K. It is also observed that $C_v[\text{HfSe}_2] < C_v[\text{HfS}_2] < C_v[\text{HfTe}_2]$. These relationships are consistent with the relative phonon frequencies shown in Figure 6.16 (i.e. the number of lower lying energy states in HfSe\textsubscript{2} are more than that of HfS\textsubscript{2}, which in turn is higher than that of HfTe\textsubscript{2}). Since the structures are semiconducting, the heat capacity at low temperatures is expected to be dominated by the vibrational degrees of freedom. The electronic contributions will only become relevant when the thermal energy kT is sufficient to excite the electronic degrees of freedom, where k is Boltzmann’s constant and T is the temperature.

6.2.2 Electronic and Optical properties

For accurate determination of the optical properties of a structure, it is important to start from an accurate description of its electronic properties. As such we compare our calculated electronic properties (which is used as input to the optical properties calculations) with the reported theoretical and experimental electronic properties of the HfX\textsubscript{2} structures. The experimental band gaps are mainly ex-
Figure 6.17: vdW-TS calculated specific heat capacity at constant volume and entropy for HfX$_2$ (X = S, Se and Te) structures.

Extracted from optical (reflectivity, thermoreflectance, transmission, or absorption) experiments. Tables 6.7 and 6.8 list the calculated and experimental indirect and direct band gaps of the HfX$_2$ structures, respectively. From the tables, we observed that our calculated band gaps are in good agreement with the reported calculated and experimental band gaps (optical band gaps) of the structures, suggesting we have a good starting point for the computation of the optical properties. The difference between our results and that of Jiang [40] may be as a result of the fact that they did not account for long range dispersion forces in relaxing their structures or the difference in pseudopotentials used in the computations. Also, the difference between our calculated values and the experimental ones may be as a result of the difference in the input parameters of the structure.

Table 6.7: Calculated and experimental band gaps eV of HfX$_2$ (X = S, Se).

<table>
<thead>
<tr>
<th></th>
<th>GW</th>
<th>Other GW</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfS$_2$</td>
<td>1.79</td>
<td>1.96 [a]</td>
<td>1.96 [b], 2.13 [c], 1.80 [d], 1.87 [e]</td>
</tr>
<tr>
<td>HfSe$_2$</td>
<td>1.08</td>
<td>1.26 [a]</td>
<td>1.13 [b], 1.15 [d]</td>
</tr>
</tbody>
</table>

a = reference [40], b = reference [241], c = reference [242], d = reference [243] and e = reference [244]
In order to calculate the binding energies of the excitons in HfX$_2$, their optical absorption spectra were calculated at the BSE level of approximation, the positions of the first two peaks were compared with the GW calculated direct band gaps. Figure 6.18 depicts the absorption spectra of the structures. From the Figure, we note that HfS$_2$ starts to absorb photons at about 1.57 eV of the ultra-violet region of the spectrum and that there is a downward shift in absorption energy as we move from sulphur to selenium.

<table>
<thead>
<tr>
<th>Band gap</th>
<th>GW</th>
<th>Other GW</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfS$_2$</td>
<td>2.78</td>
<td>2.92 [a]</td>
<td>2.60 [b], 2.87 [c]</td>
</tr>
<tr>
<td>HfSe$_2$</td>
<td>2.19</td>
<td>2.27 [a]</td>
<td>2.02 [c]</td>
</tr>
</tbody>
</table>

\[a = \text{reference [40], } b = \text{reference [242] and } c = \text{reference [245]} \]

The binding energies of the excitons can then be determined by subtracting the energies that correspond to the first two peaks in Figures 6.18a and 6.18b from the GW direct band gaps in Table 6.8. The positions of the first two peaks are listed in Table 6.9 and their corresponding binding energies in Table 6.10. Negative binding energy in the table may be attributed to resonant exciton corresponding to that energy level. It is important to note that the absorption edge of these structures is lower than their GW band gaps, as expected from the inclusion of the interaction between the electron and hole quasiparticles in the BSE approximation. To the best of our knowledge, this is the first time where the optical properties of HfX$_2$ (X = S and Se) is reported at the BSE level of approximation.

It is important to note that HfS$_2$ and HfSe$_2$ having band gaps of 1.96 eV and 1.26 eV, respectively start
to absorb light within the infra red and the red region of spectrum are promising materials for first and third generation solar photovoltaic applications.

In order to use the materials in photovoltaic application, we may need to investigate the life time of the excitons of the structures.

6.2.3 Monolayer HfX₂ (X = S, Se) Electronic and Optical properties

<table>
<thead>
<tr>
<th></th>
<th>HfS₂</th>
<th>HfSe₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eₐ</td>
<td>2.61</td>
<td>2.26</td>
</tr>
<tr>
<td>Eᵦ</td>
<td>2.94</td>
<td>2.38</td>
</tr>
</tbody>
</table>

Table 6.10: HfX₂ (X = S, Se) BSE calculated binding energy for A and B excitons in eV.

<table>
<thead>
<tr>
<th></th>
<th>HfS₂</th>
<th>HfSe₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eₐ'B</td>
<td>0.17</td>
<td>-0.07</td>
</tr>
<tr>
<td>Eᵦ'B</td>
<td>-0.16</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

Figure 6.19: High symmetry points used in HfX₂ (X = S, Se) band structure calculations.

Our calculated fundamental electronic band gap of monolayer HfX₂ (X = S, Se) structures are listed in Table 6.11. The monolayers of these structures were found to be indirect band gap semiconductors,
their conduction band minimum lie at the A and valence band maximum at the M points of the high symmetry points, respectively. The Brillouin zone of the structures is shown in Figure 6.19. From the table we note that our calculated PBE electronic band gaps are in good agreement with those reported in [246]. The difference in our band gaps and that of reference [246] is less than 10%. The difference between our calculated band gap and that of reference [246] may be as a result of the small difference in our relaxed lattice parameters. However, we have no experimental or GW fundamental band gaps to compare our results with.

Table 6.11: Monolayer HfX$_2$; X = S, Se band gap in eV.

<table>
<thead>
<tr>
<th></th>
<th>HfS$_2$</th>
<th>HfSe$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE</td>
<td>1.22</td>
<td>0.67</td>
</tr>
<tr>
<td>GW</td>
<td>2.02</td>
<td>0.93</td>
</tr>
<tr>
<td>Direct GW gap</td>
<td>3.07</td>
<td>2.31</td>
</tr>
<tr>
<td>Other PBE</td>
<td>1.27 [a]</td>
<td>0.61 [a]</td>
</tr>
</tbody>
</table>

In order to determine the optical properties, the absorption spectra of the monolayer HfX$_2$ family of structures were calculated at the BSE level of approximation. The results are plotted in Figure 6.20a and 6.20b. From the figures, we can note that monolayer HfS$_2$ starts to absorb photons in the ultra-violet region of the spectrum and that there is a downward shift in energy absorption energy as we move from sulphur to selenium.

For the binding energies of the energetically lowest lying excitons, the energies of the peaks in the BSE calculated absorption coefficient were compared with the quasi-particle energies obtained from the GW calculations. The positions of the first two peaks are listed in Table 6.12. Again, the binding energies of the excitons are estimated by subtracting the lowest BSE absorption peak energy from the GW direct band gap energy, i.e. $E_A^a = (GW$ direct gap $)-E_A$ and $E_B^a = (GW$ direct gap $)-E_B$. These binding energies are listed in Table 6.13. We observed that on moving from bulk to monolayer in these compounds, the binding energies increase. This is consistent with the decrease in the screening and stronger interaction between electron and hole quasi-particles in the mono-layer. This becomes clear when we compare Tables 6.9 and 6.13. Negative binding energies suggest a resonant exciton at the corresponding energy level.

To the best of our knowledge, this is the first time ever that the electronic properties and the optical properties of the monolayer HfX$_2$ (X = S, Se) are reported at the GW and the BSE levels of approxima-
Section 6.3. Hafnium trichalcogenide

Table 6.12: Monolayer HfX$_2$ (X = S, Se) BSE calculated excitation energies for A and B excitons in eV.

<table>
<thead>
<tr>
<th></th>
<th>HfS$_2$</th>
<th>HfSe$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_A</td>
<td>2.84</td>
<td>2.20</td>
</tr>
<tr>
<td>E_B</td>
<td>3.17</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Figure 6.20: Monolayer HfX$_2$ (X = S, Se) BSE calculated optical absorptions.

...tions, respectively. The structures have band gaps that can be utilised in the manufacture of tandem solar cells and the structures are good absorbers of light. These qualities advantageous in multilayer solar cells.

6.3 Hafnium trichalcogenide

The structure of this family of compounds was discussed in Section 1.2.2 of this thesis. Since the structure is layered, we decided to use two different van der Waal’s correction terms to study the structural properties of the compounds. The van der Waal’s correction terms are necessary for accurate description of the structural properties of a layered structures. Details about the need of van der Waal’s correction term for accurate description of layered structural parameters was given in Section 6.1 of the thesis.
Table 6.13: Monolayer HfX₂ (X= S, Se) BSE calculated binding energy for A and B excitons in eV.

<table>
<thead>
<tr>
<th></th>
<th>HfS₂</th>
<th>HfSe₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eᴮ⁺</td>
<td>0.23</td>
<td>0.11</td>
</tr>
<tr>
<td>Eᴮ⁻</td>
<td>-0.1</td>
<td>-0.29</td>
</tr>
</tbody>
</table>

Figure 6.21: HfX₃ structure.
Section 6.3. Hafnium trichalcogenide

(a) HfS₃ cohesive energy-volume graph calculated using (a) vdW-TS and (b) vdW-DF

(b) HfSe₃ cohesive energy-volume graph calculated using (a) vdW-TS and (b) vdW-DF

(c) HfTe₃ cohesive energy-volume graph calculated using (a) vdW-TS and (b) vdW-DF

Figure 6.22: HfX₃ cohesive energy-volume relation.

The graph of cohesive energy against volume for HfS₃, HfSe₃, and HfTe₃ calculated using vdW-TS and
vdW-DF are plotted and shown in Fig. 6.22. The HfX₃ cohesive energy was calculated by subtracting the energy of its constituents isolated atoms from the HfX₃ total energy of a unit crystal at equilibrium lattice constant as discussed in Section 5.5. The cohesive energy and formation energy calculated are listed in Table 6.14. From the table, we can see that both the cohesive energy and the formation energies are negative, an indication that the reactions leading to the formation of these structures are an exothermic reactions, suggesting that these structures can be readily formed from their constituent atoms as observed experimentally [60, 63, 67, 247, 69]. From the table, we also observe that both the cohesive and formation energies per atom of the HfX₃ (X = S, Se and Te) structures decrease in magnitude as the atomic number of the chalcogen atom increases, indicating that the compounds are relatively less stable with increasing atomic number of the chalcogen atom. The unit cell of the HfX₃ structure is displayed in Figure 6.21

Table 6.14: Calculated cohesive and formation energy/atom of HfX₃ (X = S, Se and Te) structures in (eV).

<table>
<thead>
<tr>
<th>Functional</th>
<th>HfS₃</th>
<th>HfSe₃</th>
<th>HfTe₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohesive energy</td>
<td>vdW-TS</td>
<td>-5.30</td>
<td>-4.87</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>-5.49</td>
<td>-4.72</td>
</tr>
<tr>
<td>Form. energy</td>
<td>vdW-TS</td>
<td>-1.14</td>
<td>-0.94</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>-1.30</td>
<td>-1.05</td>
</tr>
</tbody>
</table>

The equilibrium lattice parameters are given in Table 6.15, where we observe that these lattice parameters agree well with the measured experimental values [67, 63]. The inter-layer distances are overestimated in both vdW-TS and vdW-DF approximations, which may be interpreted as the inability of the dispersion correction terms used in the calculations to accurately account for the long range dispersion forces in these structures. We note that vdW-TS predicts volumes that are closer to the experimental values in each case and also predicts lattice parameters that are in better agreement with the experimental values in most cases.

We can therefore conclude that the vdW-TS approximation predicts structural parameters in better agreement when compared to experiment for HfX₃ (X = S, Se and Te) systems. Qualitative trends in the change of volume and lattice parameters as functions of chalcogenide atom, however, are the same for the two approximations.
Table 6.15: Calculated and experimental equilibrium parameters of HfX$_3$ (X = S, Se, Te): lattice constants \([a (\text{Å}), b (\text{Å}), c (\text{Å})]\), atomic volume \(V_0 (\text{Å}^3)\) and angle \(\beta^\circ\).

<table>
<thead>
<tr>
<th>Functional</th>
<th>Functional</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>(V_0 (\text{Å}^3))</th>
<th>(\beta^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfS$_3$</td>
<td>vDW-TS</td>
<td>5.06</td>
<td>3.62</td>
<td>9.34</td>
<td>162.32</td>
<td>96.62</td>
</tr>
<tr>
<td></td>
<td>vDW-DF</td>
<td>5.17</td>
<td>3.62</td>
<td>9.16</td>
<td>170.40</td>
<td>96.86</td>
</tr>
<tr>
<td>Experiment</td>
<td></td>
<td>5.09</td>
<td>3.59</td>
<td>8.97</td>
<td>162.80 [a]</td>
<td>97.38 [a]</td>
</tr>
<tr>
<td>HfSe$_3$</td>
<td>vDW-TS</td>
<td>5.31</td>
<td>3.73</td>
<td>9.52</td>
<td>187.12</td>
<td>97.18</td>
</tr>
<tr>
<td></td>
<td>vDW-DF</td>
<td>5.49</td>
<td>3.76</td>
<td>9.67</td>
<td>198.00</td>
<td>97.02</td>
</tr>
<tr>
<td>Experiment</td>
<td></td>
<td>5.39</td>
<td>3.72</td>
<td>9.43</td>
<td>187.30 [a]</td>
<td>97.78 [a]</td>
</tr>
<tr>
<td>HfTe$_3$</td>
<td>vDW-TS</td>
<td>5.85</td>
<td>3.90</td>
<td>10.12</td>
<td>229.36</td>
<td>97.84</td>
</tr>
<tr>
<td></td>
<td>vDW-DF</td>
<td>6.02</td>
<td>3.95</td>
<td>10.26</td>
<td>241.84</td>
<td>97.85</td>
</tr>
<tr>
<td>Experiment</td>
<td></td>
<td>5.88</td>
<td>3.90</td>
<td>10.06</td>
<td>228.50 [a]</td>
<td>97.98 [a]</td>
</tr>
</tbody>
</table>

\(a = \text{reference [67]}\)

The shortest distances between the metal and the chalgonedide in the HfX$_3$ (X = S, Se and Te) structures are listed in Table 6.16. We can infer from this table, that the distance between the metal and the chalcogenide increases as we move down the chalcogenide group in the periodic table, which is consistent with what was observed in the volume change of the structures.

6.3.1 Mechanical and thermal properties

The structural mechanical stability of HfX$_3$ was determined by calculating their phonon dispersion relation and elastic constants. Fig. 6.23 shows the HfX$_3$ phonon dispersion curves, calculated based on vdw-TS functional, an approximation identified to produce volume at an accuracy that is comparable to experiment.

From this figure, we observe that all the phonon frequencies of the structures are positive, the structures therefore satisfy one of the elastic stability conditions discussed in Section 5.7.

In a monoclinic crystal, the independent elastic constants as discussed in Section 5.7 are \(C_{11}, C_{12}, C_{13}, C_{15}, C_{22}, C_{23}, C_{33}, C_{35}, C_{44}, C_{55}, C_{66}, \text{ and } C_{46}\). Conditions for mechanical stability are \[248, 249\]

\[
[C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0, \quad C_{11} > 0, \quad C_{22} > 0, \quad C_{33} > 0, \quad C_{44} > 0, \quad C_{55} > 0, \quad C_{66} > 0, \quad C_{33}C_{55} - C_{35}^2 > 0, \quad C_{44}C_{66} - C_{46}^2 > 0, \quad C_{22} + C_{33} - 2C_{23} > 0, \quad [C_{22}(C_{33}C_{55} - C_{35}^2) + 2C_{23}C_{25}C_{35} - C_{23}^2C_{55} - C_{35}^2C_{33}] > 0 \quad \text{and} \quad [2[C_{15}C_{25}(C_{33}C_{12} - C_{13}C_{23}) +
\]
Table 6.16: calculated and experimental HfX$_3$ ($X = S$, Se and Te) structures nearest neighbour distances in Å unit see Figure 6.21.

<table>
<thead>
<tr>
<th>Functional</th>
<th>Hf - Hf</th>
<th>Hf - X (Å)</th>
<th>X - X(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfS$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>4.19</td>
<td>2.60</td>
<td>2.16</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>4.33</td>
<td>2.68</td>
<td>2.17</td>
</tr>
<tr>
<td>Experiment</td>
<td>4.37 [a]</td>
<td>2.99 [a]</td>
<td>2.10 [a]</td>
</tr>
<tr>
<td>HfSe$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>4.40</td>
<td>2.72</td>
<td>2.40</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>4.38</td>
<td>2.69</td>
<td>2.40</td>
</tr>
<tr>
<td>Experiment</td>
<td>4.55 [a]</td>
<td>2.70 [a]</td>
<td></td>
</tr>
<tr>
<td>HfTe$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>4.48</td>
<td>2.73</td>
<td>2.64</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>4.49</td>
<td>2.71</td>
<td>2.61</td>
</tr>
<tr>
<td>Experiment</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[a = reference [67]]

Table 6.17: HfX$_3$ calculated elastic constants (GPa).

<table>
<thead>
<tr>
<th></th>
<th>C$_{11}$</th>
<th>C$_{12}$</th>
<th>C$_{13}$</th>
<th>C$_{15}$</th>
<th>C$_{22}$</th>
<th>C$_{23}$</th>
<th>C$_{25}$</th>
<th>C$_{33}$</th>
<th>C$_{35}$</th>
<th>C$_{44}$</th>
<th>C$_{46}$</th>
<th>C$_{55}$</th>
<th>C$_{66}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfS$_3$ vdW-TS</td>
<td>980</td>
<td>198</td>
<td>73</td>
<td>83</td>
<td>1387</td>
<td>117</td>
<td>0.80</td>
<td>324</td>
<td>-33</td>
<td>119</td>
<td>22</td>
<td>73</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>1000</td>
<td>209</td>
<td>99</td>
<td>107</td>
<td>1502</td>
<td>144</td>
<td>13</td>
<td>408</td>
<td>-14</td>
<td>165</td>
<td>24</td>
<td>71</td>
</tr>
<tr>
<td>HfSe$_3$ vdW-TS</td>
<td>1011</td>
<td>175</td>
<td>87</td>
<td>160</td>
<td>1137</td>
<td>122</td>
<td>-3.51</td>
<td>397</td>
<td>-27</td>
<td>126</td>
<td>67</td>
<td>28</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>863</td>
<td>176</td>
<td>112</td>
<td>81</td>
<td>1230</td>
<td>154</td>
<td>7.95</td>
<td>423</td>
<td>-4.25</td>
<td>133</td>
<td>4.85</td>
<td>145</td>
</tr>
<tr>
<td>HfTe$_3$ vdW-TS</td>
<td>1135</td>
<td>134</td>
<td>158</td>
<td>115</td>
<td>852</td>
<td>149</td>
<td>-7.84</td>
<td>494</td>
<td>-24</td>
<td>240</td>
<td>-42</td>
<td>119</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>884</td>
<td>114</td>
<td>111</td>
<td>51</td>
<td>876</td>
<td>99</td>
<td>-15</td>
<td>412</td>
<td>-37</td>
<td>206</td>
<td>-10</td>
<td>102</td>
</tr>
</tbody>
</table>

\[C_{15}C_{35}(C_{22}C_{13} - C_{12}C_{23}) + C_{25}C_{35}(C_{11}C_{23} - C_{12}C_{13}) - [C_{13}^2(C_{22}C_{33} - C_{23}^2) + C_{25}^2(C_{11}C_{33} - C_{13}^2) + C_{35}^2(C_{11}C_{22} - C_{12}^2)] + C_{55}g \geq 0\]

where \(g = C_{11}C_{22}C_{33} - C_{11}C_{23}^2 - C_{33}C_{12}^2 + 2C_{12}C_{13}C_{23}. \)

The HfX$_3$ calculated elastic constants are listed in Table 6.17, from the table, we can see that all the listed elastic constants satisfy the stability criteria discussed in Section 5.7. These structures, are
therefore, stable against mechanical distortions. We also note that the in-plane elastic constants C_{11} and C_{22} are considerably larger than the out-of-plane elastic constant C_{33}, reflecting the larger resistance to in-plane distortions compared to out-of-plane distortions. This is because, in most layered materials, forces between atoms in the same layer are known to be, to a large extent, greater than forces between atoms in different layers. The negative elastic constants observed for some non-diagonal elements may be as a result of the low symmetry of the monoclinic structure [250].

![HfX₃ phonon dispersion relation graph calculated using vDW-TS.](image)

Figure 6.23: HfX₃ phonon dispersion relation graph calculated using vDW-TS.

The phonon contribution to the heat capacity of the HfX₃ (X = S, Se, Te) compounds were computed based on their phonon frequencies. Results for specific heat capacity at constant volume for the structures are shown in sub-figure 6.24 (a). From the figure, the heat capacity of HfSe₃ is the first to approach a constant value (Dulong and Petit law) at about 750 K. It is also observed that $C_v[\text{HfSe}_3] < C_v[\text{HfS}_3] < C_v[\text{HfTe}_3]$. These relationships are consistent with the relative phonon frequencies shown in Figure 6.23.

For the semiconducting systems shown in sub-figure 6.23 (a), the heat capacity at low temperatures is dominated by the vibrational degrees of freedom. The electronic contributions only become relevant when the thermal energy is sufficient to excite the electronic degrees of freedom. This happens when
the thermal energy, kT (k is Boltzmann constant and T, temperature) is of the order of the band gap. Since $kT \sim 0.03 \text{ eV}$ at room temperature (300 K), the electronic excitations are expected to make an insignificant contribution to the heat capacity at room temperature for these semi-conducting systems. Anharmonic effect are likely to become important with an increase in temperature before the electronic contributions start to play a role.

As we can observe in the sub-figure 6.23 (b), the entropy of the HfX_3 ($X = \text{S, Se and Te}$) structures increases in a steady manner with increasing temperature and with unit cell volume expansion of the structures: the volume of the structures increases on moving from S to Te in the periodic table as observed in Table 6.15. These observations are in agreement with the fact that increase in a unit cell volume of a structure, will result in producing large number of micro states W in the system, leading to logarithmic a increase in the system entropy in accordance with a Boltzmann’s equation for entropy $S = k \ln W$.

Figure 6.24: vdW-TS calculated specific heat capacity at constant volume and entropy for HfX_3 ($X = \text{S, Se and Te}$) structures.
6.3.2 Electronic properties

To understand the electronic properties of Hafnium trichalcogenides, their electronic structure and charge transfer were analysed from partial charges calculated in Bader partitions [220, 221, 222]. The electronic charge transfer was calculated using only vdW-TS van der Waal’s approximation.

Using Bader charge analysis, it is observed that there is significant charge transfer in the structures. The charge transfer between the Hafnium and the chalcogenides is summarized in Table 6.18. We observed that the charge transfer from the hafnium to the chalcogenide atoms decreases from S to Se to Te, indicating that the bonding becomes less ionic as one goes down the chalcogenide group in the periodic table. The decrease in charge transfer may be correlated with the increasing distance between the transition metal and chalcogen atoms as observed in Table 6.16.

Table 6.18: Charge transfer for HfX₃ (X = S, Se, Te) in electronic charge (e) calculated using vdW-TS see Figure 6.21.

<table>
<thead>
<tr>
<th></th>
<th>HfS₃</th>
<th>HfSe₃</th>
<th>HfTe₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hf1, Hf2</td>
<td>1.99</td>
<td>1.83</td>
<td>1.54</td>
</tr>
<tr>
<td>X1, X2</td>
<td>-1.05</td>
<td>-0.95</td>
<td>-0.75</td>
</tr>
<tr>
<td>X3, X4</td>
<td>-0.46</td>
<td>-0.44</td>
<td>-0.40</td>
</tr>
<tr>
<td>X5, X6</td>
<td>-0.48</td>
<td>-0.44</td>
<td>-0.39</td>
</tr>
</tbody>
</table>
Figure 6.26: MBJ HfSe$_3$ calculated band structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Hf(s,p,d) (d) PDOS of Se (s,p).

Figure 6.27: vDW-TS HfTe$_3$ calculated band structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Hf(s,p,d) (d) PDOS of Te (s,p).

The band structure and spin projected density of states (DOS) of the HfX$_3$ structures are plotted in Figures 6.25 to 6.27 and partial density of states (PDOS) in sub-figures (c) and (d). In the figures, spin projected total density of states (TDOS) are depicted in sub-figures (b) in each case. In all the HfX$_3$ structures, due to non-magnetic nature of the structures, electrons occupy the spin up and spin down bands equally, leading to a zero spin-polarized density of states, as such only one component of the spin contribution is shown.

The valence band maximum is taken as the zero energy reference for HfS$_3$ and HfSe$_3$. Due to the

It is important here to note that sub-figure (c) and (d) are plotted using a different scale. This is to make sure that individual atomic contributions to the density of states are clear in the sub-figures.
similarity of the details in the calculated band structures, total and partial density of states for the different approximations, the band structures are shown for one representative approximation only in each case.

The semiconducting structures, HfS\textsubscript{3} and HfSe\textsubscript{3} have a common feature: they are indirect band gap semiconductors. The valence band maxima of HfS\textsubscript{3} is at \(\Gamma\) and conduction band minima at \(Y\), the valence band maxima at \(Z\) and the conduction band minima of HfSe\textsubscript{3} is at a point between \(X\) and \(\Gamma\) of the high symmetry points and valence band minima at \(X\).

Table 6.19: Calculated and experimental energy band gaps (in eV) of HfX\textsubscript{3} (X = S, Se, Te).

<table>
<thead>
<tr>
<th>Structure</th>
<th>vdW-TS</th>
<th>vdW-DF</th>
<th>MBJ</th>
<th>Others</th>
<th>Exp.</th>
<th>HSE06</th>
<th>(G_0)(W_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfS\textsubscript{3}</td>
<td>1.09</td>
<td>1.21</td>
<td>2.04 (2.00)</td>
<td>-</td>
<td>-</td>
<td>1.82</td>
<td>2.17</td>
</tr>
<tr>
<td>HfSe\textsubscript{3}</td>
<td>0.28</td>
<td>0.01</td>
<td>0.55 (0.46)</td>
<td>-</td>
<td>0.60</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>HfTe\textsubscript{3}</td>
<td>Metallic</td>
<td>Metallic</td>
<td>Metallic</td>
<td>-</td>
<td>-</td>
<td>Metallic</td>
<td>Metallic</td>
</tr>
</tbody>
</table>

From the figures, we see that the valence bands at the band gap edge of the sulphides are composed mainly of S s type orbitals with a small contribution from the transition metal s states, while the conduction band gap edge of the selenides is composed mainly of Se p mixed with little of Se d and s states and the s state of the transition metal.

The electronic band gaps of the HfX\textsubscript{3} structures are summarised in Table 6.19. The vdW-TS relaxed structure, which is observed to be in closer agreement to experimental values are used in the MBJ calculations (with the inclusion of spin-orbit coupling) hybrid calculations, \(G_0W_0\) calculations and all the subsequent calculations that come thereafter. Results obtained from the spin-orbit coupling calculations are in parenthesis. It is noted that due to inversion symmetry in the structures, the spin degeneracy in the structures is lifted. The most pronounced effect of spin-orbit coupling is in HfSe\textsubscript{3}, where it reduces the electronic band gap by about 0.1 eV. The difference between the band gap obtained from vdW-TS and vdW-DF may be connected with the difference in the volumes obtained from the two approximations as the band gaps in these types of structures are assumed to be volume dependent. We observed that PBE band gaps are about 0.32 eV less than the MBJ, HSE06 and the \(G_0W_0\) band gaps. This is not surprising, as it is always expected that the PBE should underestimate the experimental band gap by up to about 50 %. We however could not get experimental band gaps to compare our results with.

The direct band gap of an indirect band gap material is of importance for optical absorption without
phonon assistance. The MBJ calculated direct band gaps were obtained for the structures relaxed using the vdw-TS functional, an approximation that predicts structural parameters that are typically close to experimental values.

Table 6.20: MBJ calculated minimum direct band gaps (in eV) of HfX$_3$ (X = S, Se, Te).

<table>
<thead>
<tr>
<th></th>
<th>HfS$_3$</th>
<th>HfSe$_3$</th>
<th>HfTe$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBJ</td>
<td>2.12 (3.1) [e]</td>
<td>1.08</td>
<td>Metallic</td>
</tr>
</tbody>
</table>

$e = \text{reference [251]}$

Looking at the calculated band gaps of the HfX$_3$ (X = S and Se), we can conclude that these structures having band gaps in the range of 0.5 eV to 2 eV are promising materials for the manufacture of third generation solar cells.

6.3.3 Optical properties

G_0W_0 calculation was carried out on the semiconducting HfX$_3$ structures and the frequency-dependent optical spectra obtained is displayed in Figures 6.28 and 6.29. In the figures, the optical regions (visible part of the spectrum) is shaded. We see an gradual increase in the real part of the dielectric functions while that of the imaginary part gradually shifts downward within the energy ranges considered. Both have their peaks outside the visible part of the spectrum.

The transmittivity $T(\omega)$ and reflectivity $R(\omega)$ of HfS$_3$ and HfSe$_3$ are shown in part (b) of sub-figures 6.28 and 6.29. We find the transmittivity in the range $0.84 \geq T(\omega) \geq 0.78$ for HfS$_3$ and $0.69 \geq T(\omega) \geq 0.6$ for HfSe$_3$. Thus these structures are good transmitters. In the visible range, the structures has maximum reflectivity $R(\omega)$ at about 3.10 eV ($\sim 400nm$) for HfS$_3$ and 2 eV ($\sim 620nm$) of the visible range of the spectrum corresponding to violet and orange respectively.

In sub-figures 6.28 (c) and 6.29 (c), we can see that the refraction $\eta(\omega)$ and extinction coefficient $\kappa(\omega)$ have similar frequency dependence as the real $\epsilon_{re}(\omega)$ and the imaginary $\epsilon_{im}(\omega)$ parts of the dielectric function as expected.

Sub-figure 6.28 (d) and 6.29 (d), depict the absorption coefficient $\alpha(\omega)$. From these sub-figures, we note that the HfS$_3$ and HfSe$_3$ start to absorb incident radiation at the 1.07 eV and 0.5 eV range of the spectrum, respectively. As such, they may be potential materials for third generation solar cells.
To the best of our knowledge, this is the first time where the structural, electronic and optical properties of HfX₃ (X = S, Se and Te) are reported at the atomic level.

6.4 Zirconium dichalcogenide

The structures and preparation of the ZrX₂ family has been discussed in Section 1.2.3 of this thesis. It was established that the structural and the electronic properties of the structures have been extensively...
investigated theoretically and experimentally. We therefore decided to fill in the missing gap by reporting the mechanical, thermal, as well as the optical properties of these family of structures. For accurate description of these properties of the structures, we relaxed the structures using vdW-TS and vdW-DF. It was found that vdW-TS lattice structural parameters are surprisingly in good agreement with the experimental reported structural parameters, with an error that is less than 3%. We therefore decide to adopt the vdW-TS structural parameters for all our subsequent calculations.

6.4.1 Mechanical and thermal properties

Having discussed the preparation and the structures of the ZrX_2 in Section 1.2.3, the mechanical, thermal as well as the optical properties of the structures are reported here.

![Figure 6.30: vdW-TS calculated Specific heat capacity at constant volume and entropy for the ZrX$_2$ (X= S, Se and Te) structures.](image)

From Table 6.21, we observe that the calculated elastic constants of ZrX_2 structures satisfy one of the necessary and sufficient conditions for hexagonal crystal stability discussed in Sections 6.2.1 and 5.7 of this thesis.

From Figure 6.31, we note that the ZrX_2 phonon dispersion curves have no imaginary phonon frequencies, thus, satisfying the last necessary and sufficient condition for hexagonal crystal stability. We can therefore say that the structures are stable against mechanical distortions.
Table 6.21: Calculated elastic constants (GPa) for ZrX$_2$ (X = S, Se and Te).

<table>
<thead>
<tr>
<th></th>
<th>C$_{11}$</th>
<th>C$_{12}$</th>
<th>C$_{13}$</th>
<th>C$_{33}$</th>
<th>C$_{44}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrS$_2$ vdW-TS</td>
<td>1334</td>
<td>235</td>
<td>87</td>
<td>454</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>1264</td>
<td>244</td>
<td>59</td>
<td>293</td>
</tr>
<tr>
<td>ZrSe$_2$ vdW-TS</td>
<td>1052</td>
<td>196</td>
<td>92</td>
<td>474</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>1004</td>
<td>218</td>
<td>53</td>
<td>263</td>
</tr>
<tr>
<td>ZrTe$_2$ vdW-TS</td>
<td>596</td>
<td>170</td>
<td>103</td>
<td>512</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>633</td>
<td>212</td>
<td>93</td>
<td>93</td>
</tr>
</tbody>
</table>

Figure 6.31: ZrX$_2$ phonon dispersion relation graph calculated using vdW-TS.

The specific heat capacity at constant volume for the ZrX$_2$ structures calculated from the phonon frequencies calculated from density functional perturbation theory are shown in Figure 6.30. From the figure, we observe that the specific heat capacity of ZrSe$_2$ is the first to approach a constant value (Dulong and Petit law) at about 300 K. It is also observed that C_v[ZrSe$_2$] $<$ C_v[ZrS$_2$] $<$ C_v[ZrTe$_2$]. These relationships are consistent with the relative phonon frequencies shown in Figure 6.31. In semiconducting materials, heat capacity at low temperatures is expected to be dominated by the vibrational degrees of freedom. The electronic contributions will only become relevant when the thermal energy kT is sufficient to excite the electronic degrees of freedom (k is Boltzmann’s constant and T is the temperature).
6.4.2 Electronic and Optical properties

As discussed in Section 6.2.2, the electronic properties of ZrX\textsubscript{2} are calculated and compared with the theoretical and experimental values reported. Our calculated GW values are then used as input for the computation of the optical properties. Table 6.22 lists band gaps of the ZrX\textsubscript{2} structures. From the table, we observe that our calculated band gaps are in good agreement with both the theoretical and experimental literature band gaps, providing a good starting point for the computation of the optical properties. The experimental band gaps were extracted from various optical experiments. The difference between our calculated band gap and those in literature may be as a result of differences of pseudopotentials used in the computation or the differences in the approximations used in relaxing the structures. The direct band gaps of the structures needed for the determination of the binding energies of the energetically lowest lying excitons are listed in Table 6.23.

Table 6.22: Calculated and experimental band gaps in eV for ZrX\textsubscript{2} (X = S, Se).

<table>
<thead>
<tr>
<th>Band gap</th>
<th>GW</th>
<th>Other GW</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrS\textsubscript{2}</td>
<td>1.51</td>
<td>1.80 [a]</td>
<td>1.68 [b], 1.70 [c], 1.78 [d]</td>
</tr>
<tr>
<td>ZrSe\textsubscript{2}</td>
<td>1.18</td>
<td>1.12 [a]</td>
<td>1.20 [c], 1.10 [e], 1.18 [f]</td>
</tr>
</tbody>
</table>

a = reference [40], b = reference [241], c = reference [252], d = reference [242], e = reference [253] and f = reference [254]

Table 6.23: Calculated and experimental direct band gaps in eV for bulk ZrX\textsubscript{2} (X = S, Se).

<table>
<thead>
<tr>
<th>Band gap</th>
<th>GW</th>
<th>Other GW</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrS\textsubscript{2}</td>
<td>2.32</td>
<td>2.61 [a]</td>
<td>2.10 [b], 2.48 [c]</td>
</tr>
<tr>
<td>ZrSe\textsubscript{2}</td>
<td>2.02</td>
<td>1.94 [a]</td>
<td>1.65 [d], 1.2 [e], 1.1 [f]</td>
</tr>
</tbody>
</table>

a = reference [40], b = reference [254], c = reference [245], d = reference [255], e = reference [252] and f = reference [253]

In order to determine the optical properties, the absorption spectra of the ZrX\textsubscript{2} family of structures were calculated at the BSE level of approximation. The optical absorptions of the structures are shown in Figure 6.32 and the position of the first two peaks of the optical absorption spectra are listed in Table 6.24. From the figure, we observed that ZrS\textsubscript{2} starts to absorb photons in the infra red region of the spectrum and that there is a downward shift in energy absorption ZrX\textsubscript{2} as we move from X = sulphur to X = selenium in these family of structures.

The positions of the first two lower lying excitons in Figure 6.32 were subtracted from the GW calculated
Section 6.4. Zirconium dichalcogenide

(a) Bulk ZrS\textsubscript{2} optical absorption
(b) Bulk ZrSe\textsubscript{2} optical absorption

Figure 6.32: ZrX\textsubscript{2} (X = S, Se) BSE calculated optical absorptions.

Table 6.24: ZrX\textsubscript{2} (X = S, Se) BSE calculated positions for A and B peaks in eV.

<table>
<thead>
<tr>
<th></th>
<th>ZrS\textsubscript{2}</th>
<th>ZrSe\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_A)</td>
<td>2.33</td>
<td>1.88</td>
</tr>
<tr>
<td>(E_B)</td>
<td>2.52</td>
<td>2.22</td>
</tr>
</tbody>
</table>

direct band gap and the binding energies obtained are listed in Table 6.25. We observed that ZrS\textsubscript{2} has only resonant excitons within the spectrum considered while ZrSe\textsubscript{2} has both resonant and binding excitons.

Table 6.25: ZrX\textsubscript{2} (X = S, Se) BSE calculated binding energy for A and B excitons in eV.

<table>
<thead>
<tr>
<th></th>
<th>ZrS\textsubscript{2}</th>
<th>ZrSe\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_A^B)</td>
<td>-0.01</td>
<td>0.14</td>
</tr>
<tr>
<td>(E_B^B)</td>
<td>-0.20</td>
<td>-0.50</td>
</tr>
</tbody>
</table>

Based on our reported band gaps in Table 6.22 and the optical absorption spectra in Figure 6.32b, ZrS\textsubscript{2} and ZrSe\textsubscript{2} are promising material for the manufacture of third photovoltaic solar cells.

To the best of our knowledge, this work is the first to investigate, theoretically the optical properties of ZrS\textsubscript{2} and ZrSe\textsubscript{2} at the BSE level of approximation.

6.4.3 Monolayer ZrX\textsubscript{2} (X = S, Se) Optical properties

Following the same procedure used in calculating the optical properties of monolayer HfX\textsubscript{2} structures and discussed in Section 6.2.3, the optical properties of monolayer ZrX\textsubscript{2} (X = S and Se) were calculated,
the calculated PBE and GW band gaps are listed in Table 6.26. However, we have no experimental results to compare with, the only available information is that of Li et. al. [256], where the authors used their HSE06 band gap and predicted the experimental band gap of monolayer ZrS₂ to be between 1.7 to 1.93 eV, which is in good agreement with our GW indirect band gap result.

Table 6.26: Monolayer ZrX₂ (X = S, Se) band gap in eV.

<table>
<thead>
<tr>
<th></th>
<th>ZrS₂</th>
<th>ZrSe₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE</td>
<td>0.80</td>
<td>0.26</td>
</tr>
<tr>
<td>GW</td>
<td>1.95</td>
<td>2.53</td>
</tr>
<tr>
<td>Direct GW gap</td>
<td>2.83</td>
<td>2.53</td>
</tr>
<tr>
<td>Others</td>
<td>1.10 [a], 1.93 [b]</td>
<td>0.45 [a]</td>
</tr>
</tbody>
</table>

a = reference [246] and b = reference [256]

Monolayer ZrS₂ was found to be an indirect band gap material with valence band maximum which lies at Γ' and conduction band minimum at A points of the high symmetry k-points whereas ZrSe₂ is a direct band gap semiconductor with both valence and conduction bands at the Γ' points of the high symmetry k-points. The high symmetry k-points of the structures are similar to those of HX₂ (X = S, Se) and are shown in Figure 6.19. In order to calculate the binding energy of the excitons in the ZrS₂ structures, we therefore need to calculate its direct band gap, which is also listed in Table 6.26.

In order to determine the binding energies of the structures, their optical absorption spectra were computed and plotted in Figure 6.33, from the figures, the BSE calculated positions of the first two peaks were extracted and listed in Table 6.27. The BSE absorption spectra for ZrS₂ and ZrSe₂ are shown in Figure 6.33a and 6.33b, respectively, and the BSE transition binding energy listed in Table 6.28.

Table 6.27: Positions for A and B peaks (in eV) calculated at the BSE level for Monolayer ZrX₂ (X = S, Se).

<table>
<thead>
<tr>
<th></th>
<th>ZrS₂</th>
<th>ZrSe₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eₐ</td>
<td>2.15</td>
<td>1.57</td>
</tr>
<tr>
<td>E₋</td>
<td>2.40</td>
<td>1.71</td>
</tr>
</tbody>
</table>

From Figure 6.33, we note that ZrS₂ and ZrSe₂ start to absorb photons in the infra red region of the spectrum and that there is a downward shift in energy absorption energy as we move from sulphur to selenium.
Table 6.28: Monolayer ZrX₂ (X = S, Se) BSE calculated binding energy for A and B excitons in eV.

<table>
<thead>
<tr>
<th></th>
<th>ZrS₂</th>
<th>ZrSe₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eₐ</td>
<td>0.68</td>
<td>0.96</td>
</tr>
<tr>
<td>Eᵦ</td>
<td>0.43</td>
<td>0.82</td>
</tr>
</tbody>
</table>

The monolayer structures of ZrS₂ and ZrSe₂ having band gaps of 1.95 eV and 2.53 eV are promising material for the manufacture of third generation photovoltaic solar cells. Their optical absorption spectra point to the fact that the structures are good absorbers of light in the infrared region of the spectra.

To the best of our knowledge, this is the first theoretical investigation of the electronic and optical properties of ZrS₂ and ZrSe₂ at the GW and the BSE level of approximation.

6.5 Zirconium trichalcogenide

The structure and methods of preparation of ZrX₃ (X = S, Se and Te) structures have been discussed in Section 1.2.3 of this thesis. A unit cell of the structure doubled in the c direction is shown in Figure 6.34.

The cohesive - energy volume (equation of states) relationship for ZrX₃ structures is calculated and plotted in Figure 6.35. The cohesive and formation energies for the equilibrium structures are listed in Table 6.29 and the structural equilibrium lattice parameters in Table 6.30. From the graphs and the tables, we can see the similarities between the HfX₃ structures discussed in Section 6.3 and ZrX₃. This may not be unconnected with the fact that the structures are isostructural [63, 64, 68, 69, 70].
In Table 6.30, we see how the two different approximations (vdW-TS and vdW-DF) predict the structural lattice parameters. We note that the vdW-TS structural parameters are in better agreement with experiment and that both approximations overestimate the c-lattice parameter, which determines the inter-layer distance of the layered structures.

From Table 6.29, we note that the cohesive energy and formation energy follow the same trend and
Section 6.5. Zirconium trichalcogenide

(a) \(\text{ZrS}_3 \) cohesive energy-volume graph calculated using (a) vdW-TS and (b) vdW-DF

(b) \(\text{ZrSe}_3 \) cohesive energy-volume graph calculated using (a) vdW-TS and (b) vdW-DF

(c) \(\text{ZrTe}_3 \) cohesive energy-volume graph calculated using (a) vdW-TS and (b) vdW-DF

Figure 6.35: Cohesive energy-volume relation for \(\text{ZrX}_3 \).

we can therefore, use any of them to determine the stability of the structures. Since both energies
are negative, we may conclude that the structures can be formed. We also note that, as observed in the HfX$_3$ structures, both the cohesive and formation energies per atom decreases in magnitude as the atomic number of the chalcogen atom increases, indicating that the compounds are relatively less stable with increasing atomic number of the chalcogen atom.

Table 6.30: Calculated and experimental equilibrium parameters of ZrX$_3$ (X = S, Se, Te): lattice constants [a (Å), b (Å), c (Å)], atomic volume V_0 (Å3) and angle β°.

<table>
<thead>
<tr>
<th>Functional</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>V_0 (Å3)</th>
<th>β°</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrS$_3$</td>
<td>vdW-TS</td>
<td>5.04</td>
<td>3.63</td>
<td>9.05</td>
<td>164.74</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>5.21</td>
<td>3.66</td>
<td>9.15</td>
<td>173.04</td>
</tr>
<tr>
<td></td>
<td>Experiment</td>
<td>5.12</td>
<td>3.62</td>
<td>8.98</td>
<td>165.40</td>
</tr>
<tr>
<td>ZrSe$_3$</td>
<td>vdW-TS</td>
<td>5.33</td>
<td>3.76</td>
<td>9.59</td>
<td>190.56</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>5.52</td>
<td>3.80</td>
<td>9.70</td>
<td>201.28</td>
</tr>
<tr>
<td></td>
<td>other theory</td>
<td>5.41</td>
<td>3.77</td>
<td>9.45</td>
<td>97.50</td>
</tr>
<tr>
<td></td>
<td>Experiment</td>
<td>5.39</td>
<td>3.72</td>
<td>9.43</td>
<td>187.30</td>
</tr>
<tr>
<td>ZrTe$_3$</td>
<td>vdW-TS</td>
<td>5.85</td>
<td>3.92</td>
<td>10.17</td>
<td>230.8</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>6.04</td>
<td>3.99</td>
<td>10.42</td>
<td>248.72</td>
</tr>
<tr>
<td></td>
<td>Experiment</td>
<td>5.89</td>
<td>3.93</td>
<td>10.10</td>
<td>231.50</td>
</tr>
</tbody>
</table>

Table 6.31 lists the shortest distances between the atoms of the ZrX$_3$ structures. Looking at the table, we can note how the distances between the atoms increase with increase in the atomic number of the chalcogenide atoms. This may be attributed to the increase in atomic radius and consequently volume as one goes down a particular group in the periodic table.

6.5.1 Mechanical and thermal properties

To test for the stability of the ZrX$_3$ structures, their phonon dispersion curves were calculated using density functional perturbation theory and the underlying phonon band structures are shown in Figure 6.36. From the figure, we observe that the structures have no imaginary phonon frequencies, thereby satisfying one of the necessary conditions for stability as discussed in Section 5.7 of this thesis. Because it is possible that imaginary phonon frequency can arise in a structure as a result of structural phase transition, further studies were done on the elastic constants of the structures. The structural elastic
Table 6.31: Calculated and experimental nearest neighbour distances of ZrX₃ (X = S, Se and Te) in Å, see Figure 6.34.

<table>
<thead>
<tr>
<th>Functional</th>
<th>Zr - Zr (Å)</th>
<th>Zr - X (Å)</th>
<th>X - X (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrS₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>4.39</td>
<td>2.71</td>
<td>2.17</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>4.34</td>
<td>2.69</td>
<td>2.14</td>
</tr>
<tr>
<td>Experiment</td>
<td>4.41[a]</td>
<td>2.79[a]</td>
<td>2.09[a]</td>
</tr>
<tr>
<td>ZrSe₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>4.43</td>
<td>2.72</td>
<td>2.38</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>4.38</td>
<td>2.70</td>
<td>2.33</td>
</tr>
<tr>
<td>Experiment</td>
<td>4.58[a]</td>
<td>2.79[a]</td>
<td>2.33[a]</td>
</tr>
<tr>
<td>ZrTe₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>4.51</td>
<td>2.74</td>
<td>2.62</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>4.47</td>
<td>2.71</td>
<td>2.54</td>
</tr>
<tr>
<td>Experiment</td>
<td>4.84[a]</td>
<td>2.77[a]</td>
<td>2.78[a]</td>
</tr>
</tbody>
</table>

[a] = reference [67]

From Table 6.32, we can see that the elastic constants obtained satisfy the stability criteria discussed in

Figure 6.36: ZrX₃ phonon dispersion relation graph calculated using vdW-TS.
Section 5.7 and that the behaviour of the ZrX₃ structures elastic constants is similar to the behaviour observed in HfX₃ structures. We may therefore conclude that the structures are stable against mechanical distortions.

Table 6.32: Calculated elastic constants (GPa) for ZrX₃.

<table>
<thead>
<tr>
<th></th>
<th>C₁₁</th>
<th>C₁₂</th>
<th>C₁₃</th>
<th>C₁₅</th>
<th>C₂₂</th>
<th>C₂₃</th>
<th>C₂₅</th>
<th>C₃₃</th>
<th>C₃₅</th>
<th>C₄₄</th>
<th>C₄₆</th>
<th>C₅₅</th>
<th>C₆₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrS₃</td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>986</td>
<td>212</td>
<td>110</td>
<td>111</td>
<td>1385</td>
<td>163</td>
<td>7.75</td>
<td>444</td>
<td>-25</td>
<td>149</td>
<td>23</td>
<td>76</td>
<td>270</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>962</td>
<td>207</td>
<td>111</td>
<td>86</td>
<td>1403</td>
<td>142</td>
<td>-2.10</td>
<td>392</td>
<td>-22</td>
<td>135</td>
<td>20</td>
<td>73</td>
<td>283</td>
</tr>
<tr>
<td>ZrSe₃</td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>972</td>
<td>195</td>
<td>127</td>
<td>129</td>
<td>1129</td>
<td>180</td>
<td>-3.00</td>
<td>524</td>
<td>-29</td>
<td>172</td>
<td>-7.96</td>
<td>73</td>
<td>184</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>825</td>
<td>164</td>
<td>109</td>
<td>68</td>
<td>1131</td>
<td>132</td>
<td>-11</td>
<td>416</td>
<td>-26</td>
<td>78</td>
<td>46</td>
<td>97</td>
<td>190</td>
</tr>
<tr>
<td>ZrTe₃</td>
<td></td>
</tr>
<tr>
<td>vdW-DF</td>
<td>811</td>
<td>103</td>
<td>78</td>
<td>97</td>
<td>838</td>
<td>121</td>
<td>-3.28</td>
<td>358</td>
<td>-12</td>
<td>153</td>
<td>-2.22</td>
<td>88</td>
<td>186</td>
</tr>
</tbody>
</table>

Figure 6.37: vdW-TS calculated specific heat capacity at constant volume and entropy for ZrX₃ (X=S, Se and Te) structures.
Results from density functional perturbation theory were used to predict the phonon contribution to the heat capacity of the ZrX$_3$ (X = S, Se, Te) compounds based on their phonon frequencies. The specific heat capacity at constant volume are shown in sub-figure 6.37 (a). From the figure, the heat capacity of ZrS$_3$ is the first to approach a constant value (Dulong and Petit law) at a temperature of about 720 K. Over the range of the observed temperature, it is also found that $C_v[\text{ZrSe}_3] < C_v[\text{ZrS}_3] < C_v[\text{ZrTe}_3]$.

As discussed in Section 6.3.1, the heat capacity of the semiconducting member of these structures structures will be dominated by vibrational contributions at lower temperature and the electronic contribution to the specific heat will only manifest after a given temperature.

The entropy of these structures share the same trend as observed in HfX$_3$ structures and discussed in Section 6.3.1.

6.5.2 Electronic properties

In order to elucidate the electronic properties of ZrX$_3$ structures, their possible charge transfer has been studied using Bader charge analysis [220, 221, 222]. The charge transfers in the structures are listed in Table 6.33. From the table, we can see how the charge transfer decreases as one move from sulphur to selenium, this may not be unconnected with the increasing atomic volume of the atoms as one goes down their group in the periodic table.

<table>
<thead>
<tr>
<th></th>
<th>ZrS$_3$</th>
<th>ZrSe$_3$</th>
<th>ZrTe$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr1, Zr2</td>
<td>1.99</td>
<td>1.80</td>
<td>1.51</td>
</tr>
<tr>
<td>X1, X2</td>
<td>-1.07</td>
<td>-0.94</td>
<td>-0.75</td>
</tr>
<tr>
<td>X3, X4</td>
<td>-0.47</td>
<td>-0.44</td>
<td>-0.39</td>
</tr>
<tr>
<td>X5, X6</td>
<td>-0.46</td>
<td>-0.42</td>
<td>-0.37</td>
</tr>
</tbody>
</table>

The band structure diagrams and spin projected density of states (DOS) of the semiconducting stable ZrX$_3$ family structures are plotted in Figures 6.38 to 6.40. Spin projected total density of states (TDOS) are shown in sub-figures (b) in each case. In all the cases, because the structures are non-magnetic, electrons occupy the spin up and spin down bands equally, leading to a zero spin-polarized density of states, we showed only one component of the spin contribution.

The ZrX$_3$ have some common features: they are all indirect band gap semiconductors. The ZrS$_3$ has
its conduction band minimum at Y and valence band maximum at a point between \(\Gamma \) and Z of the high symmetry points. \(\text{ZrSe}_3 \) has conduction band minimum at \(\Gamma \) and and valence band maximum at Z.

![Figure 6.38: \(\text{ZrS}_3 \) vdW-TS calculated band structure (a) band structure along high symmetry K-points, (b) spin projected total density of states (TDOS), (c) partial density of states (PDOS) of Zr(s,p,d) (d) PDOS of S (s,p).](image)

![Figure 6.39: MBJ \(\text{ZrSe}_3 \) calculated band structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Zr(s,p,d) (d) PDOS of Se (s,p).](image)

The conduction band edge of the Zirconium compounds is dominated by hybridized chalcogene (p and s) with little contribution from transition metal (s).

From Table 6.34, we see that as we go down the chalcogenide group in the periodic table, the electronic band gap of the structures decreases due to a decrease in electro-negativity of the chalcogen atoms (the atoms with dominant contribution at the band edges) as obtained in a number of structures [262]. We
Table 6.34: Calculated and experimental energy band gaps (in eV) of ZrX$_3$ (X = S, Se, Te).

<table>
<thead>
<tr>
<th>Structure</th>
<th>vdW-TS</th>
<th>vdW-DF</th>
<th>MBJ</th>
<th>G_0W_0</th>
<th>Others</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrS$_3$</td>
<td>1.02</td>
<td>1.20</td>
<td>1.80 (1.78)</td>
<td>2.37</td>
<td>-</td>
<td>2.0 [c] 2.01 [e, f]</td>
</tr>
<tr>
<td>ZrSe$_3$</td>
<td>Metallic</td>
<td>0.34</td>
<td>0.44 (0.41)</td>
<td>Metallic</td>
<td>1.3 [d]</td>
<td>1.1 [g, h]</td>
</tr>
<tr>
<td>ZrTe$_3$</td>
<td>Metallic</td>
<td>Metallic</td>
<td>Metallic</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

$c =$ reference [257], $d =$ reference [247], $e =$ reference [258], $f =$ reference [259], $g =$ reference [260] and $h =$ reference [261]

also observed that vdW-TS, vdW-DF and MBJ band gaps are respectively, about 0.98, 0.8 and 0.2 eV less than the experimental gap (optical band gap) in ZrS$_3$. The experimental band gap is about 0.36 eV less than the calculated G_0W_0 fundamental band gap. The vdW-TS relaxed structure, which we observed to be in closer agreement to the reported experimental values were used for the MBJ calculations (with and without inclusion of spin-orbit coupling), hybrid calculations, the G_0W_0 calculation, and all the subsequent calculations that come thereafter. Results obtained from the spin-orbit coupling are in parenthesis. It is noted that due to inversion symmetry in the structures, the spin degeneracy in the structures is lifted. The most pronounced effect of spin-orbit coupling is in ZrSe$_3$, where it reduces the electronic band gap by about 0.03 eV. The difference between the band gap obtained from vdW-TS and vdW-DF may be connected with the difference in the obtained volumes of the two approximations as band gap in these kind of structures are assumed to be volume dependent.

The direct band gap of these kind of structures is useful in optical absorption without phonon assistance.
Table 6.35: MBJ calculated minimum direct band gaps (in eV) of ZrX$_3$ (X= S, Se, Te).

<table>
<thead>
<tr>
<th></th>
<th>ZrS$_3$</th>
<th>ZrSe$_3$</th>
<th>ZrTe$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBJ</td>
<td>1.89 (2.5) [d, f]</td>
<td>1.25 (1.47) [g] [d]</td>
<td>Metallic</td>
</tr>
<tr>
<td>d = reference [247], f = reference [263] and g = reference [261]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The MBJ calculated direct band gap of the ZrX$_3$ structures are listed in Table 6.35.

From Table 6.34, we observed that ZrS$_3$ have G_0W_0 band gap of about 2.37 eV, whereas ZrSe$_3$ have metallic character, respectively. ZrS$_3$, may therefore, be a promising material for third generation photovoltaic applications.

6.5.3 Optical properties

G_0W_0 calculated optical properties for the semiconducting ZrX$_3$ family are displayed in Figure 6.41 and 6.42, and shown in sub-figures of 6.41 (a) and 6.42 (a). The real $\epsilon_{re}(\omega)$ and the imaginary $\epsilon_{im}(\omega)$ part of the ZrX$_3$ functions have their peaks outside the optical regions of the white light spectrum.

In sub-figures of 6.41 (b) and 6.42 (b), the reflectivity $R(\omega)$ reached its peaks at 2.79 eV (∼450 nm), for ZrS$_3$ and 2.01 eV (∼620 nm) for ZrSe$_3$ which are blue and violet regions, respectively. With transmittivity $0.82 \leq T(\omega) \leq 0.78$ for ZrS$_3$ and $0.70 \leq T(\omega) \leq 0.67$ for ZrSe$_3$, we may conclude that the structures are good transmitters in the infra red and the red regions of the spectrum, respectively.

From subfigure 6.41 (c) and 6.42 (c), we see the expected similarity between the refraction $\eta(\omega)$ and extinction coefficient $\kappa(\omega)$ in 6.41 and 6.42 subfigure (a) as expected.

In 6.41 and 6.42 subfigure (d), the absorption coefficient $\alpha(\omega)$ are shown, where we can notice that ZrS$_3$ and ZrSe$_3$ absorb energy at 1.63 eV and 0.68 eV of the spectrum of the light and may not be good candidates for solar energy application.

Looking at the optical spectra of ZrS$_3$ and ZrSe$_3$, we can observe that the structures can be used as absorber within the visible range of the spectrum of light.

To the best of our knowledge, this is the first work in which the structural, electronic and optical properties of ZrX$_3$ (X = S, Se and Te) are reported at the atomic level. In order to calculate more accurate optical properties of the structures, one needs to include electron-hole interaction in the computations and this can only be done at the BSE level of approximation.
Figure 6.41: GW ZrS$_3$ calculated frequency-dependent optical spectra (a) real $\epsilon_{re}(\omega)$ and the imaginary $\epsilon_{im}(\omega)$ parts of the dielectric function, (b) reflectivity $R(\omega)$ and transmittivity $T(\omega)$, (c) refraction $\eta(\omega)$ and extinction coefficient $\kappa(\omega)$ and (d) absorption coefficient $\alpha(\omega)$. The visible range is shaded.

Figure 6.42: GW ZrSe$_3$ calculated frequency-dependent optical spectra (a) real $\epsilon_{re}(\omega)$ and the imaginary $\epsilon_{im}(\omega)$ parts of the dielectric function, (b) reflectivity $R(\omega)$ and transmittivity $T(\omega)$, (c) refraction $\eta(\omega)$ and extinction coefficient $\kappa(\omega)$ and (d) absorption coefficient $\alpha(\omega)$. The visible range is shaded.

6.6 Titanium trichalcogenide

The structure and methods of preparation of TiX$_3$ ($X = S$, Se and Te) structures have been discussed in Section 1.2.4 of this thesis and its structure is shown in Figure 6.43.
The TiX$_3$ equation of states (energy-volume equation) calculated from the different approximations considered are shown in Figure 6.44. The corresponding structural cohesive, formation energies and equilibrium lattice parameters extracted from the graphs are listed in Tables 6.36 and 6.37 respectively.

Table 6.36: TiS$_3$ like structures calculated cohesive and formation energy/atom in (eV).

<table>
<thead>
<tr>
<th></th>
<th>TiS$_3$</th>
<th>TiSe$_3$</th>
<th>TiTe$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohesive energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vdW-DF</td>
<td>-4.72</td>
<td>-4.37</td>
<td>-3.81</td>
</tr>
<tr>
<td>Form. energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vdW-TS</td>
<td>-1.09</td>
<td>-0.87</td>
<td>-0.47</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>-1.07</td>
<td>-1.13</td>
<td>-0.49</td>
</tr>
</tbody>
</table>

The negative values of the cohesive and formation energies in Table 6.36 points to the possibility of the formation of the structures and that the structures are stable. We note that the formation energy and cohesive energies follows the same trend in the structures.
Section 6.6. Titanium trichalcogenide

Figure 6.44: TiX$_3$ cohesive energy-volume relation.

In Table 6.37, we can note that vdW-TS predicts the structural parameters in better agreement to
Table 6.37: Calculated and experimental equilibrium parameters of TiX₃ (X = S, Se, Te): lattice constants (a (Å), b (Å), c (Å)), atomic volume \(V_0 \) (Å³) and angle \(\beta^\circ \).

<table>
<thead>
<tr>
<th>Functional</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>(V_0) (Å³)</th>
<th>(\beta^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiS₃</td>
<td>4.92</td>
<td>3.39</td>
<td>8.93</td>
<td>147.92</td>
<td>96.63</td>
</tr>
<tr>
<td>vdW-TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiSe₃</td>
<td>5.06</td>
<td>3.43</td>
<td>9.00</td>
<td>155.12</td>
<td>96.86</td>
</tr>
<tr>
<td>vdW-DF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other DFT</td>
<td>4.98</td>
<td>3.39</td>
<td>8.89</td>
<td>97.24 [a]</td>
<td></td>
</tr>
<tr>
<td>Experiment</td>
<td>4.97</td>
<td>3.43</td>
<td>8.71</td>
<td>97.74 [c]</td>
<td></td>
</tr>
<tr>
<td>Experiment</td>
<td>5.24</td>
<td>3.53</td>
<td>9.40</td>
<td>172.40</td>
<td>97.64</td>
</tr>
<tr>
<td>TiTe₃</td>
<td>5.42</td>
<td>3.58</td>
<td>9.49</td>
<td>182.72</td>
<td>97.94</td>
</tr>
<tr>
<td>vdW-TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiTe₃</td>
<td>5.82</td>
<td>3.72</td>
<td>10.00</td>
<td>214.24</td>
<td>98.20</td>
</tr>
<tr>
<td>vdW-DF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment</td>
<td>5.99</td>
<td>3.81</td>
<td>10.11</td>
<td>228.72</td>
<td>97.71</td>
</tr>
<tr>
<td>Experiment</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(a \) reference [264], \(c \) = reference [63]

In the experiment where available, the error in the vdW-TS lattice parameter is less than 3%. We can also observe that the volume of the structures increases as we move from S to Te in the periodic table as observed in HfX₃ and ZrX₃ structures, which may be due to the fact that the structures are iso-structural [63, 64, 68, 69, 70]. They therefore share a common trend in behaviour.

Table 6.38 lists the nearest neighbour distances in the TiX₃ structures. From the table, we can see how the nearest neighbour distances in the structures decreases as we move from S to Te in the periodic table, which is consistent with increase in volume as observed in Table 6.37.

6.6.1 Mechanical stability

In order to test for the stability of the TiX₃ structures, as it is established that relaxing a structure does not imply stability, phonon dispersion relation and the elastic constants of the structures were calculated. The obtained phonon band structures are displayed in Figure 6.45 and the elastic constants listed in Table 6.39.
Table 6.38: Calculated and experimental TiX$_3$ (X = S, Se and Te) structures nearest neighbour distances in Å unit see Figure 6.43.

<table>
<thead>
<tr>
<th>Functional</th>
<th>Ti - Ti (Å)</th>
<th>Ti - X (Å)</th>
<th>X - X(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiS$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vDW-TS</td>
<td>4.36</td>
<td>2.67</td>
<td>2.21</td>
</tr>
<tr>
<td>vDW-DF</td>
<td>4.34</td>
<td>2.64</td>
<td>2.19</td>
</tr>
<tr>
<td>Experiment</td>
<td>-</td>
<td>2.45 [a]</td>
<td>-</td>
</tr>
<tr>
<td>TiSe$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vDW-TS</td>
<td>4.43</td>
<td>2.68</td>
<td>2.43</td>
</tr>
<tr>
<td>vDW-DF</td>
<td>4.40</td>
<td>2.65</td>
<td>2.39</td>
</tr>
<tr>
<td>Experiment</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TiTe$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vDW-TS</td>
<td>4.58</td>
<td>2.69</td>
<td>2.69</td>
</tr>
<tr>
<td>vDW-DF</td>
<td>4.57</td>
<td>2.67</td>
<td>2.64</td>
</tr>
<tr>
<td>Experiment</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a = reference [265]

Figure 6.45: TiX$_3$ phonon dispersion relation graph calculated using vDW-TS.
Looking at the Figure 6.45, one can confirmed that all the observed structures have no imaginary phonon phonon frequencies, we can therefore say that they have satisfied one of the needed and necessary conditions for stability.

Table 6.39: TiX$_3$ calculated elastic constants (GPa).

<table>
<thead>
<tr>
<th></th>
<th>C_{11}</th>
<th>C_{12}</th>
<th>C_{13}</th>
<th>C_{15}</th>
<th>C_{22}</th>
<th>C_{23}</th>
<th>C_{25}</th>
<th>C_{33}</th>
<th>C_{35}</th>
<th>C_{44}</th>
<th>C_{46}</th>
<th>C_{55}</th>
<th>C_{66}</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiS$_3$ vdW-TS</td>
<td>1235</td>
<td>212</td>
<td>110</td>
<td>128</td>
<td>1549</td>
<td>155</td>
<td>-0.54</td>
<td>517</td>
<td>-55</td>
<td>210</td>
<td>16</td>
<td>96</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>954</td>
<td>182</td>
<td>90</td>
<td>102</td>
<td>1501</td>
<td>122</td>
<td>4.19</td>
<td>419</td>
<td>-33</td>
<td>165</td>
<td>12</td>
<td>61</td>
</tr>
<tr>
<td>TiSe$_3$ vdW-TS</td>
<td>1189</td>
<td>203</td>
<td>124</td>
<td>95</td>
<td>1281</td>
<td>175</td>
<td>15</td>
<td>564</td>
<td>10</td>
<td>281</td>
<td>-2.23</td>
<td>161</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>833</td>
<td>155</td>
<td>71</td>
<td>83</td>
<td>1236</td>
<td>132</td>
<td>3.34</td>
<td>409</td>
<td>-6.04</td>
<td>233</td>
<td>-6.82</td>
<td>59</td>
</tr>
<tr>
<td>TiTe$_3$ vdW-TS</td>
<td>1255</td>
<td>94</td>
<td>106</td>
<td>154</td>
<td>663</td>
<td>174</td>
<td>-16</td>
<td>390</td>
<td>-24</td>
<td>119</td>
<td>25</td>
<td>96</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>vdW-DF</td>
<td>843</td>
<td>77</td>
<td>88</td>
<td>139</td>
<td>780</td>
<td>139</td>
<td>16</td>
<td>366</td>
<td>5.44</td>
<td>172</td>
<td>-2.95</td>
<td>10</td>
</tr>
</tbody>
</table>

From the elastic constants obtained in Table 6.39, one can confirm that all the structures have satisfied the elastic stability criteria with both DFT functional and are, therefore, mechanically stable against distortions. As we expected, for all the TiX$_3$ systems examined, the in-plane elastic constants C_{11} and C_{22} obtained are larger than the of out-of-plane elastic constant C_{33}, reflecting the larger resistance to in-plane distortions compared to out-of-plane distortions. This is because, in most layered materials, forces between atoms in the same layer are known to be, to a large extent, greater than forces between atoms in different layers. The negative elastic constants observed for some non-diagonal elements may be as a result of the low symmetry of the monoclinic structure [250].

6.6.2 Electronic properties

To understand the detailed electronic properties of the TiX$_3$ structures, the underlying charge transfer was analysed and band gap calculated. Table 6.40 lists the charge transfer between the atoms in the TiX$_3$ structures. As observed earlier on, in structures considered iso-structural to TiX$_3$ [63, 64, 68, 69, 70], we note that the charge transfer between the structures decreases with increase in atomic volume of the structures.

The band structure diagrams and spin projected density of states (DOS) of the stable TiX$_3$ family
Table 6.40: Charge transfer for TiX$_3$ (X = S, Se, Te) in the unit of electronic charge (e) obtained in vdW-TS calculations, see Figure 6.43.

<table>
<thead>
<tr>
<th></th>
<th>TiS$_3$</th>
<th>TiSe$_3$</th>
<th>TiTe$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti1, Ti2</td>
<td>1.62</td>
<td>1.48</td>
<td>1.25</td>
</tr>
<tr>
<td>X1, X2</td>
<td>-0.87</td>
<td>-0.76</td>
<td>-0.76</td>
</tr>
<tr>
<td>X3, X4</td>
<td>-0.38</td>
<td>-0.36</td>
<td>-0.34</td>
</tr>
<tr>
<td>X5, X6</td>
<td>-0.37</td>
<td>-0.35</td>
<td>-0.33</td>
</tr>
</tbody>
</table>

Figure 6.46: vdW-TS TiS$_3$ calculated electronic structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Ti(s,p,d) and (d) PDOS of S(s,p).

Figure 6.47: vdW-TS TiSe$_3$ calculated electronic structure (a) band structure along high symmetry K-points, (b) spin projected TDOS, (c) PDOS of Ti(s,p,d) and (d) PDOS of Se(s,p).
structures are plotted in Figures 6.46 to 6.48. Spin projected total density of states (TDOS) are shown in sub-figures (b) in each case. Electrons occupy the spin up and spin down bands equally because the structures are not magnetic, as observed in HfX₃ and ZrX₃. This lead to zero spin polarized density of states, making it sufficient to show only one component of the spin projected density of states. The valence band maximum is taken as the zero energy reference.

The semi conducting TiS₃ conduction band minimum is observed to be between Γ and Z and its valence band maximum at Y. The dominant orbital at the band gap edge of the TiS₃ are mainly composed of S s type orbitals with a small contribution from the Ti s states. The band gaps of the TiX₃ structures are listed in Table 6.41 and the direct band gap of the structures in Table 6.42.

<table>
<thead>
<tr>
<th>Structure</th>
<th>vdW-TS</th>
<th>vdW-DF</th>
<th>MBJ</th>
<th>Others (HSE06)</th>
<th>Exp.</th>
<th>GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiS₃</td>
<td>0.24</td>
<td>0.31</td>
<td>0.87 (0.85)</td>
<td>0.94 [a] 1.02 [c]</td>
<td>0.9 [b], 1.35 [d]</td>
<td>1.34</td>
</tr>
<tr>
<td>TiSe₃</td>
<td>Metallic</td>
<td>Metallic</td>
<td>Metallic</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiTe₃</td>
<td>Metallic</td>
<td>Metallic</td>
<td>Metallic</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a = reference [42], b = reference [265], c = reference [264] and d= reference [263]

From the Table 6.41, we observed that PBE grossly underestimates the band gap of TiS₃, MBJ and HSE06 underestimate the band gap by about 0.5 eV and 0.41 eV, respectively, whereas G₀W₀ underestimate it by only about 0.01 eV. The vdW-TS relaxed structure, which we observed to be in close agreement to experimental values were used for the MBJ (with and without inclusion of spin-orbit cou-
pling), hybrid calculations, G_0W_0 calculation and all the subsequent calculations that come thereafter. Results obtained from the spin-orbit coupling are in parenthesis. It is noted that due to inversion symmetry in the structures, the spin degeneracy in the structures is lifted. The difference between the band gap obtained from vdW-TS and vdW-DF may be connected with the predicted volumes difference of the two approximations as band gap in these type of structures are assumed to be volume dependent.

Results from the spin orbit coupling are in parenthesis. Due to inversion symmetry in the structures, the spin degeneracy in the structures is lifted. The difference between the band gap obtained from vdW-TS and vdW-DF may be connected with the predicted volumes difference of the two approximations as band gap in these type of structures are assumed to be volume dependent.

Table 6.42: MBJ calculated minimum direct band gaps (in eV) of TiX$_3$ ($X = S, Se, Te$).

<table>
<thead>
<tr>
<th></th>
<th>TiS$_3$</th>
<th>TiSe$_3$</th>
<th>TiTe$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBJ</td>
<td>0.90</td>
<td>Metallic</td>
<td>Metallic</td>
</tr>
</tbody>
</table>

6.6.3 Optical properties

The optical properties for the semiconducting TiS$_3$ calculated at the G_0W_0 level are displayed in Figure 6.49. Sub-figure of (a) 6.49 shows the real $\epsilon_{re}(\omega)$ and the imaginary $\epsilon_{im}(\omega)$ parts of the TiS$_3$ functions have their peaks outside the optical regions of the white light spectrum.

In sub-figure of 6.49 (b), the reflectivity $R(\omega)$ reached its peaks at 3.19 eV (~ 390 nm), which correspond to the violet region of the spectrum, with transmittivity $0.33 \geq T(\omega) \geq 0.23$. We may conclude that the structure is a good transmitter in the infra red and the red region of the spectrum.

From subfigure 6.49 (c), we can see the similarity between the refraction $\eta(\omega)$ and extinction coefficient $\kappa(\omega)$ and sub-figure 6.49 (a) as expected.

In 6.49 sub-figure (d), the absorption coefficient $\alpha(\omega)$ is shown, where we notice that TiS$_3$ absorbs all the incident energy in the spectrum of the visible light and may not be a good candidate for solar energy application.

The G_0W_0 calculated band gap of 1.35 eV in TiS$_3$ points to the fact that the structures can be used as a possible component of first, second and third generation photovoltaic. The optical absorption spectrum of the structure, shows that it absorbs all radiation within the visible range of the spectrum of light. It also have low reflectivity.

To the best of our knowledge, this is the first time where the structural, electronic and optical properties of TiX$_3$ ($X = S, Se$ and Te) are reported at the atomic level. In order to calculate more accurate optical properties of the structures, one needs to include electron-hole interaction in the computations and this...
Figure 6.49: GW TiS\textsubscript{3} calculated frequency-dependent optical spectra (a) real $\varepsilon_{\text{re}}(\omega)$ and the imaginary $\varepsilon_{\text{im}}(\omega)$ parts of the dielectric function, (b) reflectivity $R(\omega)$ and transmittivity $T(\omega)$, (c) refraction $\eta(\omega)$ and extinction coefficient $\kappa(\omega)$ and (d) absorption coefficient $\alpha(\omega)$. The visible range is shaded.

can only be done at the BSE level of approximation.

6.7 ReSe\textsubscript{2}

6.7.1 Potential new ReSe\textsubscript{2} structures

The same compound may exist in different structural phases with different energies and stabilities. In order to find the most stable structural modification of ReSe\textsubscript{2}, different possible structural phases of the compound are considered. There are different ways by which a possible new stable structural phase can be determined: for known experimentally reported structure, the search is straight forward. In a situation where there is no experimentally reported phase, choice of the possible structural phases can be governed by physical and chemical intuition. The Periodic Table of elements is used as a starting point for this reasoning. For example, elements that belong to the same group in the periodic table have the same number of electrons in their outer orbitals (valence electrons). It is known that these outer electrons determine both physical and chemical properties of the elements. It is therefore, possible to expect similar characteristics from such elements in the same group. As such, one element in the group can be used to replace another element in the same group in any known existing structure. For example, manganese and rhenium belong to the same group in the periodic table, MnSe\textsubscript{2} crystallises into a cubic structure, it is therefore possible to replace the Mn in MnSe\textsubscript{2} with Re with the hope of checking the
possible existence of ReSe$_2$ in a cubic structure. The vdW-TS functional, a approximation known to predict structural parameters at an accuracy comparable to experiment in layered structures, was used to calculate the properties of these different possible potential structural modifications and are listed in Table 6.43.

Table 6.43: Rhenium diselenide structural phases.

<table>
<thead>
<tr>
<th>Polymorph</th>
<th>Space group</th>
<th>a(Å)</th>
<th>b(Å)</th>
<th>c(Å)</th>
<th>E_{coh} (eV/atom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclinic</td>
<td>P-1 ♯2</td>
<td>6.64</td>
<td>6.77</td>
<td>6.72</td>
<td>-6.54</td>
</tr>
<tr>
<td>Tetragonal</td>
<td>P42/mnm ♯136</td>
<td>5.72</td>
<td>5.72</td>
<td>3.86</td>
<td>-6.13</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>C2/m ♯12</td>
<td>3.58</td>
<td>3.28</td>
<td>5.69</td>
<td>-6.14</td>
</tr>
<tr>
<td>Cubic</td>
<td>Fm-3m ♯225</td>
<td>6.94</td>
<td>6.94</td>
<td>6.94</td>
<td>-6.09</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>P63/mmc 194</td>
<td>3.24</td>
<td>3.24</td>
<td>12.76</td>
<td>-6.25</td>
</tr>
</tbody>
</table>

Cohesive energy: is the negative of the energy required to decompose the solid into its constituents neutral atoms at infinite distance [176, 266], was used as a test for stability for the different possible structural phases. From the definition, the lower the cohesive energy, the more stable the considered structural modification [267, 268]. We can say that the most stable ReSe$_2$ structural phase from Table 6.43 is triclinic with P-1 ♯2 space group, as observed experimentally [48, 50, 75].

6.7.2 Equilibrium parameters

To obtain the structural lattice parameters of the most stable structure considered, different exchange correlation functionals were used to determine the structural cohesive energy volume relationship (equation of states). Figure 6.50 shows the graph of cohesive energy (E_{coh}) against volume V_0 with sub-figures (a), (b) and (c) depicting the PBE, vdW-TS and vdW-DF results for the ReSe$_2$ (a layered structure). Different functionals were used for the structure in order to study the effect of the van der Waal’s correction terms on the energy volume relation of the layered structure. It can be seen from the figure, that the PBE equation of state (EOS) curve flattens with increase in volume as the inter-layer interaction decreases to a point where the layers de-couples and the intra-layer interaction saturates. This reflects the inability of PBE functionals to describe long range dispersion forces in layered structures, suggesting the necessity for a van der Waal’s correction for an accurate description of the structural parameters of
the layered structure. The lattice structural parameters obtained from the equation of states are listed in Table 6.44 and the shortest distances between the structure are listed in Table 6.45.

Table 6.44: ReSe$_2$ calculated and experimental equilibrium lattice parameters.

<table>
<thead>
<tr>
<th>Functional</th>
<th>a(Å)</th>
<th>b(Å)</th>
<th>c(Å)</th>
<th>V_0/atom (Å3)</th>
<th>V_0 (Å3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE</td>
<td>6.67</td>
<td>6.79</td>
<td>7.76</td>
<td>24.64</td>
<td>295.68</td>
</tr>
<tr>
<td>vdW-TS</td>
<td>6.64</td>
<td>6.77</td>
<td>6.72</td>
<td>20.93</td>
<td>251.16</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>6.70</td>
<td>6.83</td>
<td>7.00</td>
<td>22.21</td>
<td>266.52</td>
</tr>
<tr>
<td>expt.</td>
<td>6.60 [a], 6.72 [b]</td>
<td>6.71 [a], 6.62 [b]</td>
<td>6.72 [a], 6.73 [b]</td>
<td>247.34 [a]</td>
<td></td>
</tr>
</tbody>
</table>

\[a = \text{reference } [49], \ b = \text{reference } [269] \]

In Table 6.44 we can see that vdW-TS reproduces structural lattice parameters and volume at an accuracy that is comparable to experiment, whereas the PBE and vdW-DF approximations over-estimate the equilibrium volumes. We note that, vdW-TS reproduces the better value for the c lattice parameter (the inter-layer separation) when compared with the experiment, and that PBE overestimates the c lattice parameter by more than 10%. The vdW-TS lattice parameters, a and b, agree quite well with that of the experimental values reported by Lamfers et al. [50] (with an error of less than 2 %) and those of Wildervank and Jellinek [49].
Table 6.45: Calculated nearest neighbour distance in (Å) units for ReSe$_2$.

<table>
<thead>
<tr>
<th>Functional</th>
<th>Re-Re</th>
<th>Se-Re</th>
<th>Se-Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE</td>
<td>2.69</td>
<td>2.39</td>
<td>3.15</td>
</tr>
<tr>
<td>vdW-TS</td>
<td>2.82</td>
<td>2.52</td>
<td>3.34</td>
</tr>
<tr>
<td>vdW-DF</td>
<td>2.79</td>
<td>2.48</td>
<td>3.29</td>
</tr>
<tr>
<td>expt.</td>
<td>2.64 [f]</td>
<td>2.34 [f]</td>
<td>3.26 [f]</td>
</tr>
</tbody>
</table>

f = reference [48]

From Table 6.45 we note that vdW-DF and vdW-TS overestimate the experimental nearest neighbour distances by about 6% and 8%, respectively. PBE, on the other hand predicts nearest neighbour distance that are surprisingly in good agreement with experiment with an error of about 4%. This may be not surprising, considering the fact that nearest atoms in the ReSe$_2$ structure lies within the same layer of the structure.

6.7.3 Stability

In order to test for the stability of ReSe$_2$, elastic constants were calculated. We applied deformation uniformly to the unit cell and calculated the yield stress as implemented in VASP. Triclinic crystals have twenty one independent elastic constants as discussed in Section 5.7. Table 6.46 lists the non-zero elastic constants obtained for ReSe$_2$ using PBE, vdW-TS and vdW-DF, respectively. The Born stability criteria (necessary and sufficient conditions) are satisfied for all the functional considered [194], indicating that the configurations investigated are stable against small distortions. It is evident from the table that the type of approximation used in calculating the elastic constants affects the value of the calculated elastic constants. This relative size of the dominant elastic constants correlate inversely with the relative volumes of the equilibrium structures calculated with the different functionals.

Table 6.46: Calculated elastic constants (GPa) for ReSe$_2$.

<table>
<thead>
<tr>
<th></th>
<th>C$_{11}$</th>
<th>C$_{12}$</th>
<th>C$_{13}$</th>
<th>C$_{14}$</th>
<th>C$_{15}$</th>
<th>C$_{16}$</th>
<th>C$_{22}$</th>
<th>C$_{23}$</th>
<th>C$_{24}$</th>
<th>C$_{25}$</th>
<th>C$_{26}$</th>
<th>C$_{33}$</th>
<th>C$_{34}$</th>
<th>C$_{35}$</th>
<th>C$_{36}$</th>
<th>C$_{44}$</th>
<th>C$_{45}$</th>
<th>C$_{46}$</th>
<th>C$_{55}$</th>
<th>C$_{56}$</th>
<th>C$_{66}$</th>
</tr>
</thead>
</table>
As a further test for stability, mechanical stability test based on the phonon dispersion relation of ReSe$_2$ can be performed. Due to the similarity of the phonon density of states, we show only that calculated using vdW-TS, a functional which predicts structural parameters of this structure in good agreement with experiment. The phonon density of states revealed that the structure is mechanically stable: there are no imaginary phonon frequencies.

6.7.4 Electronic properties

Figure 6.52 shows the MBJ-DFT calculated electronic band structure of ReSe$_2$. It is observed that electrons occupy spin up and down of the density of states equally, suggesting that the structure is not magnetic, as such only the spin up total density of states are shown. Sub-figure (a) show the band energies plotted along high symmetry K-points, the total density of states is depicted in sub-figure (b). Partial density of states are plotted to extract the orbital character of the bands Re (s, p, d) and Se (s, p) at the same energy level in sub-figure (c) and (d) respectively.

From Figure 6.52 we observed that the MBJ calculated electronic structure of ReSe$_2$ has valence band maximum and conduction band minimum at M points of the high symmetry k-points, resulting in a direct band gap of 1.23 eV.

Looking at the ReSe$_2$ partial density of States (PDOS), we can see that the dominant orbitals at the two band edges (valence band maximum and conduction band minimum) are Se (p) with little contribution

\[^{3}\text{vdW-TS relaxed structure, an approximation we identify to predict the ReSe}_2\text{, lattice parameters in better agreement with the experiment was used for the MBJ-DFT calculations}\]
Figure 6.52: MBJ calculated ReSe₂ band structure (a) band structure along high symmetry K-points, (b) spin projected total density of states (TDOS), (c) partial density of states (PDOS) of Re(s,p,d) (d) PDOS of Se (s,p).

from hybridized Re (p and s).

<table>
<thead>
<tr>
<th>Functional</th>
<th>PBE</th>
<th>vdW-TS</th>
<th>vdW-DF</th>
<th>MBJ</th>
<th>G₀W₀</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReSe₂</td>
<td>1.20</td>
<td>0.99</td>
<td>1.09</td>
<td>1.23 (1.00)</td>
<td>1.42</td>
<td>1.31, 1.32 [g, h]</td>
</tr>
</tbody>
</table>

Table 6.47: ReSe₂ calculated and experimental band gaps.

Our calculated electronic band gaps of the ReSe₂ are listed in Table 6.47 obtained by different methods, the band gaps are compared with optical band gaps [73, 72]. The vdW-TS relaxed structure, which is observed to be in good agreement with the experimental values were used for MBJ, MBJ with inclusion of spin-orbit coupling, G₀W₀ and all subsequent calculations that come thereafter. MBJ band gap calculated with inclusion of spin-orbit coupling are in parenthesis. It is observed that due to inversion symmetry in the structure, the spin degeneracy in the structures is lifted. It is observed that the effect of spin-orbit coupling reduces the electronic band gap by about 0.23 eV. The difference between the electronic gap observed in vdW-TS and vdW-DF approximations may be connected with the difference relaxed structure of the two approximations. We observed that PBE band gaps are about 0.12 eV less than the experimental band gap. However, this may be attributed to the fact that PBE overestimated the volume of the structure and the band gap in this structure is expected to increase with an increase in volume. vdW-TS, vdW-DF and MBJ with spin orbit coupling were observed to underestimate the band gap of the structure by about 0.33 eV, 0.23 eV and 0.32 eV respectively. G₀W₀ predicts band gap that are in good agreement with experiment with an error of only about 8%.

6.7.5 Optical properties

\(G_0W_0 \) calculation was carried out on the ReSe\(_2\) structure using the vdW-TS relaxed structures. Single shot \(G_0W_0 \) was done due to limitation of our computational resources and the frequency-dependent optical spectra obtained is displayed in Figure 6.53. In the figure, the optical regions (visible part of the spectrum) is shaded.

![Graphs](image)

Figure 6.53: \(G_0W_0 \) ReSe\(_2\) calculated frequency-dependent optical spectra (a) real \(\epsilon_{\text{re}}(\omega) \) and the imaginary \(\epsilon_{\text{im}}(\omega) \) parts of the dielectric function, (b) reflectivity \(R(\omega) \) and transmittivity \(T(\omega) \), (c) refraction \(n(\omega) \) and extinction coefficient \(\kappa(\omega) \) and (d) absorption coefficient \(\alpha(\omega) \). The visible range is shaded.

From the computed \(G_0W_0 \) band gap of the ReSe\(_2\) of 1.42 eV, we can conclude that the structure can be used in the manufacture of first, second and third generation photovoltaic solar cells. The optical absorption spectra of the structure, however, revealed that the structure absorbs all incident radiation within the visible range of the spectrum of light.

To the best of our knowledge, this is the first time in which the electronic and optical properties of ReSe\(_2\) is reported at the GW level of approximation. In order to calculate more accurate optical properties of the structures, one needs to include electron-hole interaction in the computations and this can only be done at the BSE level of approximation.
7. Conclusions and Future Work

7.1 Conclusion

The motivation for this research was to fill in some of the missing gaps in the understanding of the structural, electronic and optical properties of the transition metal chalcogenides and provide salient information on the possible application of the structures in the electronic industry. The following have been achieved in the study:

7.1.1 TcX\textsubscript{2} (X = S, Se and Te)

The structural and electronic properties of the technetium dichalcogenide TcS\textsubscript{2}, TcSe\textsubscript{2} and TcTe\textsubscript{2} have been studied using a first principles approach. Their structures were relaxed using PBE, PBEsol, vdW-DF, vdW-TS and vdW-D2. Van der Waal’s correction terms were used to study the equilibrium structural properties in order to account for long range dispersion forces and find the best approximation for the structure. For all the functional considered, we found a slight overestimate of the interlayer distances in the structures, but the functionals provide reasonably accurate descriptions of lattice parameters of the structures when compared with experiment. The vdW-D2 approximation consistently give structural properties that are in better agreement with experiment.

The cohesive and formation energies for all the calculated structures indicate stability against decomposition and elastic constant and phonon dispersion studies confirm that the calculated structures are stable against distortion and small atomic displacements.

Electronic properties were examined using PBE, PBEsol and van der Waal’s correction term (vdW-DF/vdW-TS/vdW-D2), modified Becke Johnson potential, HSE06 and also the many body perturbation theory at the G\textsubscript{0}W\textsubscript{0} level of approximation. The results show that the DFT functionals, as expected, underestimate the band gaps of these structures. The modified Becke Johnson potential (MBJ), GW and HSE06 band gaps are expected to be closer to the experimental band gap as we have no experimental value to compare with. Spin-orbit coupling effects are expected to be negligible as a result of the symmetry of the structures.

It is important here to remark that, TcS\textsubscript{2} and TcSe\textsubscript{2} having electronic band gap between 0.63 to 1.59 eV and may thus be potential materials for solar photovoltaic applications and photo-catalysis. Their
layered structure open the door for quite a number of possibilities in tuning their electronic properties. To modulate the electronic properties of TcS\(_2\), the structure was doped with Fe. Formation and cohesive energy were used to test the possibility of formation of the new structures. It was found that the new structures have negative formation and cohesive energies, an indication that the structures are energetically possible.

MBJ, an functional observed to predict electronic properties of TcS\(_2\) structures with an accuracy that is comparable to experiment, was used to calculate the band gap of the doped structures. It was found that the band gaps of the doped structures were less than that of the parent material and that the band gaps of the doped system depends on the position of the Fe atom and its percentage in the subset of the configurations considered.

7.1.2 MX\(_2\) (\(M = \text{Zr and Hf}; X = \text{S and Se}\))

We have calculated the band gaps of bulk and monolayer ZrS\(_2\), ZrSe\(_2\), HfS\(_2\) and HfSe\(_2\) at both the DFT and GW level of approximation. As it is well known, DFT underestimates the band gaps of these structures, whereas GW describes the fundamental band gaps of these structures in better agreement when compared with the experimental results. We observed that moving from bulk to monolayer, the direct band gaps of these structures increase. The direct band gaps in monolayer is 0.29 eV to 0.51 eV larger than that of the corresponding bulk systems. We also observed that ZrX\(_2\) monolayer fundamental band gaps are in the same range when compared with the energies of the A and B excitons.

Practically, GW fundamental band gaps should not be compared with the optical transition energies, because of the missing electron-hole interaction in the former. To compare them, bulk and monolayer MX\(_2\) (\(M = \text{Zr and Hf}; X = \text{S and Se}\)) optical transition energies were calculated by solving the well known Bethe-Salpeter equation (BSE). Results from the calculations show the presence of strong bound excitons in monolayer MX\(_2\) (\(M = \text{Zr and Hf}; X = \text{S and Se}\)) structures as observed in some monolayer transition metal chalcogenides like MoX\(_2\) (\(X = \text{S, Se and Te}\)) [225, 271, 224]. The absorption spectra of the bulk and monolayer MX\(_2\) (\(M = \text{Zr and Hf}; X = \text{S and Se}\)) indicate the presence of two strongly bound excitons, the positions of the peaks range from 1.50 eV to 2.95 eV. This suggests that the structures have potential applications in the infra red and violet regions of the visible spectrum.
\subsection{MX\textsubscript{3} (M = Ti, Zr and Hf; X = S, Se, Te)}

The structural and electronic properties of the four early transition metal trichalcogenide ZrS\textsubscript{3}, ZrSe\textsubscript{3}, ZrTe\textsubscript{3}, HfS\textsubscript{3}, HfTe\textsubscript{3}, TiS\textsubscript{3}, TiSe\textsubscript{3} and TiTe\textsubscript{3} using a-b initio approach have been reported for the first time. vdW-DF and vdW-TS van der Waal correction terms were used to study the equilibrium structural properties. In both approximations we found a slight overestimate of the interlayer distances in these structure, although these functionals provide reasonably accurate descriptions of the lattice parameters of the structures compared with the experiment. The vdW-TS approximation consistently give structural properties closer to experiment than the vdW-DF approximation.

The cohesive and formation energies for all the calculated structures indicate stability against decom- position and elastic constant and phonon dispersion studies confirm that the calculated structures are stable against distortion and small atomic displacements.

Electronic properties were examined using GGA with van der Waal's correction term (vdW-DF/vdW-TS), modified Becke Johnson potential, HSE06 and also many body perturbation theory at the GW level of approximation. The results show that the DFT GGA approximations used underestimate the band gaps of these structures by as much as 30\% when compared with experiment where available. The modified Becke Johnson potential and G\textsubscript{0}W\textsubscript{0} yield band gaps comparable to measured optical absorption values. Spin-orbit coupling effects were found to be negligible.

Optical properties were examined at the G\textsubscript{0}W\textsubscript{0} level of approximation. The results show that ZrS\textsubscript{3}, HfS\textsubscript{3}, ZrSe\textsubscript{3} and HfSe\textsubscript{3} start to absorb radiation in 1.63 eV, 1.37 eV, 0.68 eV and 0.50 eV regions of the spectra, respectively. This Suggest that these compounds are promising material for third generation photovoltaic applications.

\subsection{ReSe\textsubscript{2}}

The structural, electronic and optical properties of ReSe\textsubscript{2} have been investigated. PBE, vdW-DF and vdW-TS van der Waal correction terms were used to study the equilibrium structural properties. In all the approximations, we found a slight overestimate of the interlayer distances in these structure, but the functionals provide reasonably accurate descriptions of the ReSe\textsubscript{2} lattice parameters when compared with the experiment. The vdW-TS approximation consistently gave structural properties in better agreement when compared to experiment than the other approximations.
Cohesive and formation energies were used to test for other stable ReSe$_2$ structures not reported earlier. It was found that triclinic ReSe$_2$ is the most favourable structure as observed experimentally.

Mechanical stability test based on elastic constants and phonon dispersion frequencies revealed that the structure is stable against mechanical distortion.

Electronic properties of the structure investigated revealed that DFT underestimate the band gap of the triclinic ReSe$_2$ structure by about 25%. The band gap of the ReSe$_2$ was found to increase with increasing volume. Many body perturbation theory at G$_0$W$_0$ level of approximation predicts the fundamental band gaps of the ReSe$_2$ more accurately when compared with DFT. The calculated G$_0$W$_0$ band gap is, however, slightly larger than the experimental band gap by about 8% which is a small error when compared with the DFT ones.

The optical property of the structure was investigated at the GW level of approximation, it was found that the structure start to absorb incident energy at the 0.67 eV of the spectrum. It is therefore expected that ReSe$_2$ is a potential candidate for third generation solar cell application.

7.2 Future work

The unanswered question from this work are

1. MX$_3$(M = Ti, Zr and Hf; X = S, Se, Te) and ReSe$_2$ optical properties investigated are based on GW level of approximations. This can not be compared with experimental optical spectra. To compare them one need to build BSE on top of the GW calculations and this requires a lot of computational resources and time.

2. To use the TcS$_2$ and its doped system as solar energy materials, their optical properties need to be investigated.
Appendix A. Doped TcS₂ Structures

To provide the full picture of the changes in the structural and electronic properties of the doped TcS₂ structures, we present here in table A.1, the first four coloums in the table represent the undoped unit cell of the structure and the numbers, the Tc atom replaced with Fe, the unit cell of the structure was double in x, y and z directions and technetium atoms were replaced with iron in different atomic positions. For example, dc1_0.50 refer to doubling the unit cell in the y-direction and replacing the first technetium with iron, I and D in the table refers to indirect and direct band gaps respectively.

Table A.1: Doped technetium dichalcogenides structural system, volume, volume per atom, cohesive energy E_{coh}, cohesive energy E_{coh} per atom, formation energy per atom, band gap for DFT, band gap and magnetic moment per unit cell (μ) in Bohr magnetons.

<table>
<thead>
<tr>
<th>structure</th>
<th>Vol.</th>
<th>V/atom</th>
<th>e_{coh}/atom</th>
<th>f/atom</th>
<th>DFT-D2</th>
<th>MBJ</th>
<th>μ (vdW)</th>
<th>μ (MBJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u121</td>
<td>433.92</td>
<td>18.08</td>
<td>-5.22</td>
<td>-0.62</td>
<td>0.94 i</td>
<td>1.10 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>u211</td>
<td>433.44</td>
<td>18.06</td>
<td>-5.22</td>
<td>-0.62</td>
<td>0.94 i</td>
<td>1.10 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>u111</td>
<td>217.08</td>
<td>18.09</td>
<td>-5.22</td>
<td>-0.62</td>
<td>0.94 i</td>
<td>1.10 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>u112</td>
<td>434.16</td>
<td>18.09</td>
<td>-5.22</td>
<td>-0.62</td>
<td>0.938 i</td>
<td>1.09 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>da6_0.25</td>
<td>423.60</td>
<td>17.65</td>
<td>-4.96</td>
<td>-0.54</td>
<td>0.54 i</td>
<td>0.85 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>db9_0.375</td>
<td>419.28</td>
<td>17.47</td>
<td>-4.85</td>
<td>-0.52</td>
<td>0.29 i</td>
<td>0.80 l</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>da10_0.25</td>
<td>422.40</td>
<td>17.60</td>
<td>-4.98</td>
<td>-0.56</td>
<td>0.61 i</td>
<td>0.77 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>da4_0.25</td>
<td>422.88</td>
<td>17.62</td>
<td>-4.97</td>
<td>-0.55</td>
<td>0.60 i</td>
<td>0.76 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>db4_0.25</td>
<td>424.08</td>
<td>17.67</td>
<td>-4.97</td>
<td>-0.55</td>
<td>0.61 i</td>
<td>0.73 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>da2_0.25</td>
<td>421.44</td>
<td>17.56</td>
<td>-4.96</td>
<td>-0.53</td>
<td>0.37 D</td>
<td>0.72 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>da2_0.375</td>
<td>417.84</td>
<td>17.41</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.45 D</td>
<td>0.71 l</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>db6_0.25</td>
<td>423.12</td>
<td>17.63</td>
<td>-4.96</td>
<td>-0.54</td>
<td>0.55 i</td>
<td>0.70 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>db2_0.375</td>
<td>418.32</td>
<td>17.43</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.39 i</td>
<td>0.68 l</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>db9_0.25</td>
<td>424.32</td>
<td>17.68</td>
<td>-4.98</td>
<td>-0.56</td>
<td>0.53 i</td>
<td>0.68 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>db2_0.25</td>
<td>422.88</td>
<td>17.62</td>
<td>-4.95</td>
<td>-0.53</td>
<td>0.33 i</td>
<td>0.68 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>dc5_0.25</td>
<td>423.12</td>
<td>17.63</td>
<td>-4.96</td>
<td>-0.54</td>
<td>0.46 i</td>
<td>0.68 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>da14_0.50</td>
<td>411.36</td>
<td>17.15</td>
<td>-4.72</td>
<td>-0.48</td>
<td>0.48 i</td>
<td>0.68 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>da1_0.125</td>
<td>429.36</td>
<td>17.89</td>
<td>-5.08</td>
<td>-0.57</td>
<td>0.36 D</td>
<td>0.68 l</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>db1_0.25</td>
<td>423.12</td>
<td>17.63</td>
<td>-4.95</td>
<td>-0.53</td>
<td>0.33 i</td>
<td>0.68 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>db1_0.125</td>
<td>429.60</td>
<td>17.90</td>
<td>-5.08</td>
<td>-0.57</td>
<td>0.28 i</td>
<td>0.65 l</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>da18_0.50</td>
<td>411.84</td>
<td>17.16</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.37 i</td>
<td>0.64 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>da10_0.375</td>
<td>416.16</td>
<td>17.34</td>
<td>-4.85</td>
<td>-0.52</td>
<td>0.23 i</td>
<td>0.63 l</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>structure</th>
<th>V (atom)</th>
<th>V_{coh}/atom</th>
<th>f/atom</th>
<th>DFT-D2</th>
<th>MBJ</th>
<th>μ (vdW)</th>
<th>μ (MBJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc3,0.25</td>
<td>423.12</td>
<td>17.63</td>
<td>-4.97</td>
<td>-0.55</td>
<td>0.59</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>db20,0.50</td>
<td>414.96</td>
<td>17.29</td>
<td>-4.72</td>
<td>-0.48</td>
<td>0.16</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>da2,0.125</td>
<td>429.84</td>
<td>17.91</td>
<td>-5.08</td>
<td>-0.57</td>
<td>0.38</td>
<td>0.63</td>
<td>1.00</td>
</tr>
<tr>
<td>dc4,0.25</td>
<td>422.88</td>
<td>17.62</td>
<td>-4.94</td>
<td>-0.52</td>
<td>0.14</td>
<td>0.62</td>
<td>2.00</td>
</tr>
<tr>
<td>da9,0.50</td>
<td>412.32</td>
<td>17.18</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.40</td>
<td>0.62</td>
<td>0.00</td>
</tr>
<tr>
<td>db6,0.50</td>
<td>411.36</td>
<td>17.14</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.55</td>
<td>0.62</td>
<td>0.00</td>
</tr>
<tr>
<td>db9,0.50</td>
<td>411.36</td>
<td>17.14</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.38</td>
<td>0.62</td>
<td>0.00</td>
</tr>
<tr>
<td>da6,0.50</td>
<td>411.36</td>
<td>17.14</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.54</td>
<td>0.61</td>
<td>0.00</td>
</tr>
<tr>
<td>db11,0.375</td>
<td>417.84</td>
<td>17.41</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.35</td>
<td>0.61</td>
<td>1.00</td>
</tr>
<tr>
<td>dc8,0.50</td>
<td>411.84</td>
<td>17.16</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.34</td>
<td>0.61</td>
<td>0.00</td>
</tr>
<tr>
<td>dc1,0.125</td>
<td>428.88</td>
<td>17.87</td>
<td>-5.08</td>
<td>-0.57</td>
<td>0.30</td>
<td>0.61</td>
<td>1.00</td>
</tr>
<tr>
<td>da1,0.25</td>
<td>424.80</td>
<td>17.70</td>
<td>-4.94</td>
<td>-0.52</td>
<td>0.25</td>
<td>0.61</td>
<td>2.00</td>
</tr>
<tr>
<td>db10,0.375</td>
<td>419.52</td>
<td>17.48</td>
<td>-4.84</td>
<td>-0.51</td>
<td>0.40</td>
<td>0.61</td>
<td>1.00</td>
</tr>
<tr>
<td>db8,0.375</td>
<td>417.84</td>
<td>17.41</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.31</td>
<td>0.61</td>
<td>1.00</td>
</tr>
<tr>
<td>dc7,0.50</td>
<td>411.84</td>
<td>17.16</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.34</td>
<td>0.60</td>
<td>0.00</td>
</tr>
<tr>
<td>d1,0.25</td>
<td>411.12</td>
<td>17.13</td>
<td>-4.72</td>
<td>-0.47</td>
<td>0.29</td>
<td>0.60</td>
<td>0.00</td>
</tr>
<tr>
<td>dc5,0.50</td>
<td>411.36</td>
<td>17.14</td>
<td>-4.72</td>
<td>-0.49</td>
<td>0.55</td>
<td>0.59</td>
<td>0.00</td>
</tr>
<tr>
<td>db13,0.375</td>
<td>418.08</td>
<td>17.42</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.23</td>
<td>0.59</td>
<td>1.00</td>
</tr>
<tr>
<td>dc7,0.25</td>
<td>423.60</td>
<td>17.65</td>
<td>-4.98</td>
<td>-0.56</td>
<td>0.49</td>
<td>0.59</td>
<td>1.00</td>
</tr>
<tr>
<td>da11,0.375</td>
<td>417.36</td>
<td>17.39</td>
<td>-4.85</td>
<td>-0.52</td>
<td>0.31</td>
<td>0.59</td>
<td>1.00</td>
</tr>
<tr>
<td>db7,0.375</td>
<td>416.64</td>
<td>17.36</td>
<td>-4.82</td>
<td>-0.49</td>
<td>0.23</td>
<td>0.58</td>
<td>1.00</td>
</tr>
<tr>
<td>dc1,0.25</td>
<td>424.32</td>
<td>17.68</td>
<td>-4.95</td>
<td>-0.52</td>
<td>0.23</td>
<td>0.58</td>
<td>2.00</td>
</tr>
<tr>
<td>db5,0.375</td>
<td>418.08</td>
<td>17.42</td>
<td>-4.82</td>
<td>-0.49</td>
<td>0.08</td>
<td>0.57</td>
<td>1.00</td>
</tr>
<tr>
<td>da8,0.25</td>
<td>424.56</td>
<td>17.69</td>
<td>-4.95</td>
<td>-0.53</td>
<td>0.33</td>
<td>0.57</td>
<td>2.00</td>
</tr>
<tr>
<td>dc6,0.25</td>
<td>424.08</td>
<td>17.67</td>
<td>-4.98</td>
<td>-0.56</td>
<td>0.48</td>
<td>0.57</td>
<td>0.00</td>
</tr>
<tr>
<td>da20,0.50</td>
<td>414.48</td>
<td>17.08</td>
<td>-4.72</td>
<td>-0.49</td>
<td>0.38</td>
<td>0.57</td>
<td>0.00</td>
</tr>
<tr>
<td>da6,0.375</td>
<td>417.36</td>
<td>17.39</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.37</td>
<td>0.56</td>
<td>1.00</td>
</tr>
<tr>
<td>da11,0.50</td>
<td>411.60</td>
<td>17.15</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.41</td>
<td>0.60</td>
<td>2.00</td>
</tr>
<tr>
<td>db21,0.50</td>
<td>411.600</td>
<td>17.15</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.42</td>
<td>0.60</td>
<td>0.00</td>
</tr>
<tr>
<td>da17,0.50</td>
<td>408.72</td>
<td>17.03</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.37</td>
<td>0.56</td>
<td>0.00</td>
</tr>
<tr>
<td>db2,0.50</td>
<td>414.72</td>
<td>17.28</td>
<td>-4.70</td>
<td>-0.46</td>
<td>0.00</td>
<td>0.60</td>
<td>1.08</td>
</tr>
<tr>
<td>da9,0.375</td>
<td>418.08</td>
<td>17.42</td>
<td>-4.84</td>
<td>-0.51</td>
<td>0.35</td>
<td>0.55</td>
<td>1.00</td>
</tr>
<tr>
<td>da7,0.375</td>
<td>417.12</td>
<td>17.38</td>
<td>-4.82</td>
<td>-0.49</td>
<td>0.27</td>
<td>0.55</td>
<td>1.00</td>
</tr>
<tr>
<td>db8,0.50</td>
<td>411.12</td>
<td>17.13</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.40</td>
<td>0.55</td>
<td>0.00</td>
</tr>
<tr>
<td>dc2,0.125</td>
<td>430.08</td>
<td>17.92</td>
<td>-5.08</td>
<td>-0.57</td>
<td>0.41</td>
<td>0.55</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Continued on next page
Table A.1 – continued from previous page

<table>
<thead>
<tr>
<th>structure</th>
<th>Volume</th>
<th>V/atom</th>
<th>e_{coh}/atom</th>
<th>f/atom</th>
<th>DFT-D2 µ (vdW)</th>
<th>MBJ µ (MBJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>db5,0.50</td>
<td>410.40</td>
<td>17.10</td>
<td>-4.70</td>
<td>-0.46</td>
<td>0.28 I</td>
<td>0.55 I</td>
</tr>
<tr>
<td>db14,0.375</td>
<td>417.36</td>
<td>17.39</td>
<td>-4.85</td>
<td>-0.52</td>
<td>0.25 I</td>
<td>0.54 I</td>
</tr>
<tr>
<td>dc6,0.375</td>
<td>417.60</td>
<td>17.40</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.37 I</td>
<td>0.54 I</td>
</tr>
<tr>
<td>da13,0.375</td>
<td>418.32</td>
<td>17.43</td>
<td>-4.83</td>
<td>-0.49</td>
<td>0.38 I</td>
<td>0.54 I</td>
</tr>
<tr>
<td>db18,0.50</td>
<td>413.04</td>
<td>17.21</td>
<td>-4.72</td>
<td>-0.48</td>
<td>0.26 I</td>
<td>0.54 I</td>
</tr>
<tr>
<td>dc2,0.25</td>
<td>422.40</td>
<td>17.60</td>
<td>-4.95</td>
<td>-0.53</td>
<td>0.23 I</td>
<td>0.54 I</td>
</tr>
<tr>
<td>d2,0.25</td>
<td>211.92</td>
<td>17.66</td>
<td>-4.95</td>
<td>-0.53</td>
<td>0.31 I</td>
<td>0.54 I</td>
</tr>
<tr>
<td>da1,0.375</td>
<td>415.68</td>
<td>17.32</td>
<td>-4.81</td>
<td>-0.48</td>
<td>0.21 I</td>
<td>0.54 I</td>
</tr>
<tr>
<td>da3,0.50</td>
<td>409.20</td>
<td>17.05</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.36 I</td>
<td>0.54 I</td>
</tr>
<tr>
<td>db3,0.25</td>
<td>424.32</td>
<td>17.68</td>
<td>-4.94</td>
<td>-0.52</td>
<td>0.18 I</td>
<td>0.53 I</td>
</tr>
<tr>
<td>db3,0.50</td>
<td>411.84</td>
<td>17.16</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.28 I</td>
<td>0.53 I</td>
</tr>
<tr>
<td>da12,0.50</td>
<td>408.96</td>
<td>17.04</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.31 I</td>
<td>0.53 I</td>
</tr>
<tr>
<td>db10,0.25</td>
<td>422.16</td>
<td>17.59</td>
<td>-4.94</td>
<td>-0.53</td>
<td>0.25 I</td>
<td>0.53 I</td>
</tr>
<tr>
<td>dc9,0.375</td>
<td>416.40</td>
<td>17.35</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.35 I</td>
<td>0.53 I</td>
</tr>
<tr>
<td>da3,0.375</td>
<td>418.32</td>
<td>17.43</td>
<td>-4.82</td>
<td>-0.49</td>
<td>0.24 I</td>
<td>0.53 I</td>
</tr>
<tr>
<td>db14,0.50</td>
<td>411.36</td>
<td>17.14</td>
<td>-4.72</td>
<td>-0.48</td>
<td>0.44 I</td>
<td>0.53 I</td>
</tr>
<tr>
<td>dc10,0.375</td>
<td>416.40</td>
<td>17.35</td>
<td>-4.85</td>
<td>-0.52</td>
<td>0.31 I</td>
<td>0.52 I</td>
</tr>
<tr>
<td>db16,0.50</td>
<td>414.00</td>
<td>17.25</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.52 I</td>
<td>0.52 I</td>
</tr>
<tr>
<td>dc14,0.50</td>
<td>412.32</td>
<td>17.18</td>
<td>-4.72</td>
<td>-0.48</td>
<td>0.33 I</td>
<td>0.52 I</td>
</tr>
<tr>
<td>da7,0.50</td>
<td>411.84</td>
<td>17.16</td>
<td>-4.70</td>
<td>-0.46</td>
<td>0.24 I</td>
<td>0.51 I</td>
</tr>
<tr>
<td>dc3,0.50</td>
<td>411.12</td>
<td>17.13</td>
<td>-4.70</td>
<td>-0.47</td>
<td>0.22 I</td>
<td>0.51 I</td>
</tr>
<tr>
<td>db10,0.50</td>
<td>412.32</td>
<td>17.18</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.19 I</td>
<td>0.51 I</td>
</tr>
<tr>
<td>dc4,0.375</td>
<td>418.56</td>
<td>17.44</td>
<td>-4.85</td>
<td>-0.52</td>
<td>0.14 I</td>
<td>0.51 I</td>
</tr>
<tr>
<td>db1,0.375</td>
<td>416.64</td>
<td>17.36</td>
<td>-4.81</td>
<td>-0.48</td>
<td>0.19 I</td>
<td>0.51 I</td>
</tr>
<tr>
<td>db13,0.50</td>
<td>412.80</td>
<td>17.20</td>
<td>-4.72</td>
<td>-0.48</td>
<td>0.25 I</td>
<td>0.50 I</td>
</tr>
<tr>
<td>db12,0.375</td>
<td>419.52</td>
<td>17.48</td>
<td>-4.84</td>
<td>-0.51</td>
<td>0.18 I</td>
<td>0.49 I</td>
</tr>
<tr>
<td>db19,0.50</td>
<td>413.04</td>
<td>17.21</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.46 I</td>
<td>0.49 I</td>
</tr>
<tr>
<td>dc13,0.50</td>
<td>412.56</td>
<td>17.19</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.40 I</td>
<td>0.49 I</td>
</tr>
<tr>
<td>db7,0.50</td>
<td>414.24</td>
<td>17.26</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.00 D</td>
<td>0.49 I</td>
</tr>
<tr>
<td>db7,0.25</td>
<td>426.00</td>
<td>17.75</td>
<td>-4.94</td>
<td>-0.52</td>
<td>0.04 I</td>
<td>0.49 I</td>
</tr>
<tr>
<td>da5,0.50</td>
<td>410.16</td>
<td>17.09</td>
<td>-4.70</td>
<td>-0.46</td>
<td>0.27 I</td>
<td>0.49 I</td>
</tr>
<tr>
<td>dc5,0.375</td>
<td>416.88</td>
<td>17.37</td>
<td>-4.82</td>
<td>-0.49</td>
<td>0.12 I</td>
<td>0.49 I</td>
</tr>
<tr>
<td>db2,0.125</td>
<td>430.08</td>
<td>17.92</td>
<td>-5.08</td>
<td>-0.57</td>
<td>0.36 I</td>
<td>0.49 I</td>
</tr>
<tr>
<td>da5,0.375</td>
<td>414.96</td>
<td>17.29</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.28 I</td>
<td>0.48 I</td>
</tr>
<tr>
<td>db15,0.50</td>
<td>413.04</td>
<td>17.21</td>
<td>-4.71</td>
<td>-0.48</td>
<td>0.11 I</td>
<td>0.48 I</td>
</tr>
<tr>
<td>db12,0.50</td>
<td>413.52</td>
<td>17.23</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.16 I</td>
<td>0.48 I</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>structure</th>
<th>Volume</th>
<th>V/atom</th>
<th>(e_{coh}/\text{atom})</th>
<th>(f/\text{atom})</th>
<th>DFT-D2</th>
<th>MBJ (\mu) (vdW)</th>
<th>MBJ (\mu) (MBJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc1-0.50</td>
<td>204.72</td>
<td>17.06</td>
<td>-4.75</td>
<td>-0.51</td>
<td>0.36 l</td>
<td>0.48 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>dc1-0.375</td>
<td>415.68</td>
<td>17.32</td>
<td>-4.81</td>
<td>-0.48</td>
<td>0.14 l</td>
<td>0.47 l</td>
<td>1.00 l</td>
</tr>
<tr>
<td>dc2-0.375</td>
<td>415.20</td>
<td>17.30</td>
<td>-4.81</td>
<td>-0.48</td>
<td>0.14 l</td>
<td>0.47 l</td>
<td>1.00 l</td>
</tr>
<tr>
<td>da22-0.50</td>
<td>408.96</td>
<td>17.04</td>
<td>-4.75</td>
<td>-0.47</td>
<td>0.36 l</td>
<td>0.47 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>dc11-0.50</td>
<td>412.32</td>
<td>17.18</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.16 l</td>
<td>0.47 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>dc7-0.375</td>
<td>417.12</td>
<td>17.38</td>
<td>-4.85</td>
<td>-0.52</td>
<td>0.19 l</td>
<td>0.46 D</td>
<td>1.00 l</td>
</tr>
<tr>
<td>da8-0.50</td>
<td>412.80</td>
<td>17.20</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.13 l</td>
<td>0.46 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>db22-0.50</td>
<td>409.20</td>
<td>17.05</td>
<td>-4.75</td>
<td>-0.51</td>
<td>0.36 l</td>
<td>0.46 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>dc15-0.50</td>
<td>408.48</td>
<td>17.02</td>
<td>-4.75</td>
<td>-0.51</td>
<td>0.35 l</td>
<td>0.46 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>dc8-0.375</td>
<td>416.88</td>
<td>17.37</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.35 l</td>
<td>0.45 l</td>
<td>1.00 l</td>
</tr>
<tr>
<td>da8-0.375</td>
<td>417.84</td>
<td>17.41</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.35 l</td>
<td>0.45 l</td>
<td>1.00 l</td>
</tr>
<tr>
<td>da15-0.50</td>
<td>411.84</td>
<td>17.16</td>
<td>-4.70</td>
<td>-0.46</td>
<td>0.28 l</td>
<td>0.45 l</td>
<td>2.00 l</td>
</tr>
<tr>
<td>da1-0.50</td>
<td>408.48</td>
<td>17.02</td>
<td>-4.69</td>
<td>-0.45</td>
<td>0.23 l</td>
<td>0.45 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>db6-0.375</td>
<td>419.04</td>
<td>17.46</td>
<td>-4.83</td>
<td>-0.50</td>
<td>0.19 l</td>
<td>0.44 l</td>
<td>1.00 l</td>
</tr>
<tr>
<td>dc1-0.50</td>
<td>408.72</td>
<td>17.03</td>
<td>-4.69</td>
<td>-0.45</td>
<td>0.17 l</td>
<td>0.43 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>db1-0.50</td>
<td>408.72</td>
<td>17.03</td>
<td>-4.69</td>
<td>-0.45</td>
<td>0.18 l</td>
<td>0.43 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>dc3-0.375</td>
<td>417.12</td>
<td>17.38</td>
<td>-4.82</td>
<td>-0.49</td>
<td>0.16 l</td>
<td>0.43 l</td>
<td>1.00 l</td>
</tr>
<tr>
<td>d3-0.50</td>
<td>204.24</td>
<td>17.02</td>
<td>-4.69</td>
<td>-0.45</td>
<td>0.18 l</td>
<td>0.42 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>da9-0.25</td>
<td>421.44</td>
<td>17.56</td>
<td>-4.95</td>
<td>-0.53</td>
<td>0.15 l</td>
<td>0.42 l</td>
<td>2.00 l</td>
</tr>
<tr>
<td>da10-0.50</td>
<td>411.60</td>
<td>17.15</td>
<td>-4.70</td>
<td>-0.47</td>
<td>0.14 l</td>
<td>0.42 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>d2-0.50</td>
<td>205.92</td>
<td>17.16</td>
<td>-4.72</td>
<td>-0.45</td>
<td>0.20 l</td>
<td>0.41 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>da21-0.50</td>
<td>410.40</td>
<td>17.10</td>
<td>-4.71</td>
<td>-0.48</td>
<td>0.13 l</td>
<td>0.41 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>da19-0.50</td>
<td>409.92</td>
<td>17.08</td>
<td>-4.72</td>
<td>-0.48</td>
<td>0.14 l</td>
<td>0.40 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>da16-0.50</td>
<td>401.76</td>
<td>16.74</td>
<td>-4.72</td>
<td>-0.48</td>
<td>0.08 l</td>
<td>0.39 l</td>
<td>2.00 l</td>
</tr>
<tr>
<td>db4-0.375</td>
<td>419.52</td>
<td>17.48</td>
<td>-4.84</td>
<td>-0.51</td>
<td>0.24 l</td>
<td>0.39 l</td>
<td>1.00 l</td>
</tr>
<tr>
<td>db3-0.375</td>
<td>417.60</td>
<td>17.40</td>
<td>-4.82</td>
<td>-0.49</td>
<td>0.16 l</td>
<td>0.39 l</td>
<td>1.00 l</td>
</tr>
<tr>
<td>dc9-0.50</td>
<td>414.72</td>
<td>17.28</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.14 l</td>
<td>0.38 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>da14-0.375</td>
<td>415.92</td>
<td>17.33</td>
<td>-4.85</td>
<td>-0.52</td>
<td>0.24 l</td>
<td>0.37 l</td>
<td>1.00 l</td>
</tr>
<tr>
<td>dc10-0.50</td>
<td>398.16</td>
<td>16.59</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.37 l</td>
<td>0.00 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>dc12-0.50</td>
<td>410.88</td>
<td>17.12</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.26 l</td>
<td>0.37 D</td>
<td>0.00 l</td>
</tr>
<tr>
<td>dc4-0.50</td>
<td>410.16</td>
<td>17.09</td>
<td>-4.70</td>
<td>-0.46</td>
<td>0.14 D</td>
<td>0.35 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>db8-0.25</td>
<td>424.80</td>
<td>17.70</td>
<td>-4.95</td>
<td>-0.53</td>
<td>0.30 l</td>
<td>0.34 l</td>
<td>2.00 l</td>
</tr>
<tr>
<td>da4-0.375</td>
<td>418.80</td>
<td>17.45</td>
<td>-4.84</td>
<td>-0.51</td>
<td>0.25 l</td>
<td>0.33 l</td>
<td>1.00 l</td>
</tr>
<tr>
<td>da5-0.25</td>
<td>421.68</td>
<td>17.57</td>
<td>-4.94</td>
<td>-0.52</td>
<td>0.21 l</td>
<td>0.31 D</td>
<td>0.00 l</td>
</tr>
<tr>
<td>da7-0.25</td>
<td>421.44</td>
<td>17.56</td>
<td>-4.95</td>
<td>-0.53</td>
<td>0.25 l</td>
<td>0.31 l</td>
<td>0.00 l</td>
</tr>
<tr>
<td>dc6-0.50</td>
<td>412.8</td>
<td>17.20</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.00</td>
<td>0.26 l</td>
<td>0.00 l</td>
</tr>
</tbody>
</table>

Continued on next page
Table A.1 – continued from previous page

<table>
<thead>
<tr>
<th>structure</th>
<th>Volume</th>
<th>V/atom</th>
<th>$e_{coh}/$atom</th>
<th>$f/atom$</th>
<th>DFT-D2</th>
<th>MBJ</th>
<th>μ (vdW)</th>
<th>μ (MBJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc2,0.50</td>
<td>414.00</td>
<td>17.25</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.00</td>
<td>0.27 I</td>
<td>0.05</td>
<td>4.00</td>
</tr>
<tr>
<td>db11,0.50</td>
<td>413.28</td>
<td>17.22</td>
<td>-4.73</td>
<td>-0.49</td>
<td>0.30 l</td>
<td>0.22 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>da13,0.50</td>
<td>406.56</td>
<td>16.94</td>
<td>-4.70</td>
<td>-0.45</td>
<td>0.00</td>
<td>0.21 l</td>
<td>0.00</td>
<td>2.00</td>
</tr>
<tr>
<td>db5,0.25</td>
<td>424.08</td>
<td>17.67</td>
<td>-4.94</td>
<td>-0.52</td>
<td>0.11 l</td>
<td>0.20 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>da12,0.375</td>
<td>405.12</td>
<td>17.33</td>
<td>-4.81</td>
<td>-0.48</td>
<td>0.11 l</td>
<td>0.13 l</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>da4,0.50</td>
<td>411.84</td>
<td>17.16</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.20 l</td>
<td>0.12 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>da17,0.50</td>
<td>413.52</td>
<td>17.23</td>
<td>-4.72</td>
<td>-0.47</td>
<td>0.00</td>
<td>0.05 l</td>
<td>0.02</td>
<td>2.00</td>
</tr>
<tr>
<td>db4,0.50</td>
<td>413.04</td>
<td>17.21</td>
<td>-4.71</td>
<td>-0.47</td>
<td>0.00</td>
<td>0.05 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>da3,0.25</td>
<td>423.60</td>
<td>17.65</td>
<td>-4.93</td>
<td>-0.51</td>
<td>0.00</td>
<td>0.01 l</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The letters D and I in the band gap column signifies direct and an indirect band gaps respectively.
References

[80] P. Giannozzi Lecture Notes oer il Corso di strutta della materia.

[82] E. Fermi, “Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre
anwendung auf die theorie des periodischen systems der elemente,” Zeitschrift für Physik, vol. 48,
no. 1-2, pp. 73–79, 1928.

[83] J. Kohanoff, Electronic structure calculations for solids and molecules. Cambridge University

[84] P. Dirac, “Note on exchange phenomena in the thomas-fermi atom,” Prot. Cambridge Phil Sec,

1951.

[87] W. Koch, M. C. Holthausen, and M. C. Holthausen, A chemist’s guide to density functional

1982.

[90] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,”

systems within density functional theory,” The Journal of Physical Chemistry A, vol. 110, no. 43,

[92] W. Aulbur, L. Jönsson, and J. Wilkins, “Quasiparticle calculations in solids,” Solid State Physics,

the design and selection of density functional approximations: More constraint satisfaction with

[241] D. L. Greenaway and R. Nitsche, “Preparation and optical properties of group IV–VI chalco-

[248] J. P. Watt, “Hashin-shtrikman bounds on the effective elastic moduli of polycrystals with mono-

[251] W. Schairer and M. Shafer, “Growth and optical absorption spectra of the layer-type trichalco-

