ALCOHOL AND CANNABIS USE AMONG MINEWORKERS IN SOUTH AFRICA

Adenike Frances Yejide Ajani

A thesis submitted to the Faculty of Health Sciences, University of the Witwatersrand,

Johannesburg, in fulfilment of requirements for the degree

of

Doctor of Philosophy

Johannesburg, 2010
DECLARATION

I, Adenike Frances Yejide Ajani declare that this thesis is my own work. Although the structured interviews aspect of this study formed a single project carried out for the Safety in Mines Research Advisory Committee (SIMRAC) through the Wits School of Public Health, the seven mines involved were distributed between different researchers. The author who was the principal investigator, was allocated two mines for this aspect of the study (mines P1 & P2), and the other five mines (mines G1, G2, D1, C1 & O1) were distributed between three students at the University of the Witwatersrand and have been submitted for the purpose of Master of Public Health degrees. The other aspects of this study, including the focus group discussions, record review, and comparison of the findings of all study mines were however for the sole purpose of this PhD.

This thesis is being submitted in fulfilment of the degree of PhD in Public Health at the University of the Witwatersrand, Johannesburg.

[Signature]

18th day of October 2010
Dedicated to my husband, Olufemi, and my children, Daniel and Anne.

Thanks for your support.
ABSTRACT

Substance use is associated with mining accidents, increased health care utilisation, and economic loss. Although South Africa is a major mining country, paucity of data exists on substance use among mineworkers. To determine the prevalence of alcohol and cannabis use among mineworkers, the prevalence of accidents associated with substance use, and factors influencing substance use among this population, structured interviews of 1571 participants (involving breathalyser tests for alcohol and urine tests for cannabis), focus group discussions, and a record review of post-accident substance tests were carried out in seven mines. While structured interviews were carried out between March & October 2002, focus group discussions were carried out between May & June 2003, and record review was done between March & September 2004.

Between 10.7% to 24.4% of participants across study mines, with a mean of 15.3%, are likely to be dependent on alcohol, while 4.6% to 21.5% of participants, with a mean of 9.1%, use cannabis. Between 0% and 5.9% of all breath samples, with a mean of 1.9%, contained alcohol ≥ 0.10mg/1000ml of breath, the legal limit for professional drivers. However, the majority of positive samples were collected on a Monday and day of sample collection was found to be a confounding factor. In mine P1 in 2003, 1% of samples tested in cases of accidents were positive for alcohol, and in 2002 and 2003, cannabis tests were positive in 4.9% and 3.9% of accident cases tested, respectively.
Low levels of education (p=0.020), low job categories (p=0.004) and lack of awareness of link between cannabis use and accidents (p=0.0001) were found to be positively associated with cannabis use. Being a full-time worker compared to a contract worker (p=0.004) was protective from cannabis use. While being married (p=0.001) was protective from alcohol use, there was no significant difference in the alcohol and cannabis use status of those who were married and lived with their wives at the mines and those who didn’t live with their wives but visited them periodically.

Findings of this study where alcohol use for fun (p=0.046) and relaxation (p=0.018) were associated with alcohol dependence, and where misconceptions about the energy-boosting attribute of cannabis, and perception that work is ‘most-times to always dangerous’ (p=0.012) were associated with cannabis use and alcohol dependence, suggest the use of substances as a coping mechanism and highlight the link between social factors and substance use.

Industry regulations employing a holistic approach and incorporating essential components, such as clear written individual mine policy, health promotion, monitoring and surveillance, Employee Assistance Programmes, disciplinary procedures and wellness programmes, can contribute towards substance use control among this population.
ACKNOWLEDGEMENTS

I wish to extend my gratitude to my supervisor, Prof William Pick for his invaluable comments and leadership during the course of this project. I also thank Prof Sharon Fonn for her support. My gratitude goes to Prof Mary Ross and Prof Shan Naidoo for technical advice and support. I also thank Dr Victor Onwukwe, Dr Rashaad Hansia and Dr Onyekwelu Bielu, researchers with whom the structured interviews were conducted. I also thank Dr Nicola Christofides for technical assistance with the development of the focus group discussion guidelines. I thank Dr Florence Bithalabeho for her contribution during the development of the study protocol, and Victoria Mathibeli for her support during the initial mine presentations.

I thank Mrs Ndhuwivo Masindi for facilitating the focus group discussions and Mr Phineaus Riba for transcribing the focus group discussion tapes. I am grateful to Mr Grant Napier of Contract Laboratory Services (CLS), and his staff, for their assistance with analysis of the urine samples for cannabis. I thank Mr Chris Vertue of Draeggar who provided technical support for the breathalyser, and Mrs Ivy Tshuma of Wits School of Public Health for administrative support. I also thank Prof Jonathan Levin of the Medical Research Council (MRC), Eustasius Musenge of Wits School of Public Health, Dr Eugenius Senaoana of Wits Department of Statistics, and Dr Tolu Taiwo for statistical support.
I am grateful to all the research assistants who cheerfully assisted with data collection at all hours of the day and night. My gratitude also goes to all the mine staff and union representatives who facilitated this research, and all the employees who participated. I am also grateful to my parents, Mr and Mrs FS Oladunmoye for their encouragement, and my husband, Olufemi Ajani, and children, Daniel and Anne, for their patience and support.

I am sincerely grateful to the Safety in Mines Research Advisory Committee (SIMRAC) for sponsoring this project. To everyone who in way one or another contributed towards the successful completion of this project, I am also grateful.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxvii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxviii</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>xxxiv</td>
</tr>
</tbody>
</table>

1.0 INTRODUCTION

1.1 Prevalence of substance use in the workforce 1
 1.1.1 Prevalence of alcohol use in the workforce 1
 1.1.2 Prevalence of cannabis use in the workforce 2
 1.1.3 Prevalence of workplace accident-related substance use 3

1.2 Factors associated with substance use 4

1.3 Effects of substance use 5
 1.3.1 Effects of alcohol use 5
 1.3.2 Effects of cannabis use 6
1.4 Screening tools for substance use

1.4.1 Screening tools for alcohol misuse

1.4.1.1 Questionnaires for alcohol misuse screening

1.4.1.2 Tests of acute alcohol intoxication

1.4.1.3 Laboratory tests for chronic alcohol misuse

1.4.2 Screening tools for cannabis use

1.5 Measures for control of substance use in the workplace

1.6 Motivation for this study

1.7 Study aim & objectives

1.7.1 Overall aim

1.7.2 Specific objectives

2.0 METHODOLOGY

2.1 Study design

2.2 Study population

2.2.1 Background information on study mines

2.3 Structured Interviews

2.3.1 Sampling

2.3.1.1 Sample size calculation

2.3.1.2 Selection of subjects

2.3.1.3 Inclusion/exclusion criteria & replacement technique
2.3.2 Instruments of measurement

2.3.2.1 Questionnaire

2.3.2.2 Breathalyser tests for alcohol

2.3.2.3 Urine cannabis tests

2.3.3 Pilot study

2.3.4 Data collection

2.3.4.1 Accessing of participants

2.3.4.2 Administration of questionnaire

2.3.4.3 Collection of urine samples

2.3.4.4 Breathalyser tests

2.3.5 Challenges encountered

2.3.5.1 Lengthy consultation process

2.3.5.2 Logistics of accessing employees

2.3.5.3 Unavailability of urine sample at time of interview

2.3.6 Facilitating factors

2.3.6.1 Cooperation of stakeholders

2.3.6.2 Masking of results on breathalyser screen

2.3.6.3 Non-invasive nature of requested tests

2.3.6.4 Experience gained by research team from mine to mine

2.3.7 Quality assurance

2.3.7.1 Breathalyser tests

2.3.7.2 Urine tests
2.3.8 Data analysis 32

2.4 Focus group discussions 33
2.4.1 Study sample 33
2.4.2 Focus group discussion guidelines 34
2.4.3 Pilot study 34
2.4.4 Data collection 34
2.4.5 Data analysis 35

2.5 Record review of accidents 36
2.5.1 Study sample 36
2.5.2 Instrument of measurement 36
2.5.3 Pilot study 36
2.5.4 Data collection 37
2.5.5 Data analysis 37

2.6 Limitations of the study 37

3.0 RESULTS OF BREATHALYSER & URINE TESTS 40
3.1 Response proportion 40
3.2 Breathalyser results 41
3.2.1 Overview of breathalyser results 41
3.2.2 Comparison of breathalyser results to specific alcohol limits 42
3.2.2.1 Comparison of breathalyser results to legal breath alcohol limit for professional drivers 42
3.2.2 Evaluation of relationship between day of breathalyser test and breathalyser test result 45

3.2.3 Comparison of breathalyser results to individual mine breath alcohol limit 46

3.3 Urine tests results for cannabis 47

3.3.1 Urine test results by mine 48

3.3.2 Urine test results by commodity group 48

4.0 RESULTS OF STRUCTURED INTERVIEWS 49

4.1 Response proportion 50

4.2 Prevalence of substance use 50

4.2.1 Estimated prevalence of alcohol dependence 50

4.2.2 Comparison of CAGE positive respondents to breathalyser results 52

4.2.3 Prevalence of cannabis use 53

4.2.3.1 Prevalence of self-reported cannabis use 54

4.2.3.2 Prevalence of cannabis use estimated by urine tests 54

4.2.3.3 Comparison of percentages of self-reported cannabis users to urine-positive cannabis users 55

4.2.3.4 Evaluation of level of accuracy of self-reported cannabis use 56

4.3 Socio-demographic profile & substance use 57

4.3.1 Age distribution of participants 57

4.3.1.1 Substance use & age 58
4.3.2 Sex 60
4.3.3 Country of origin 61
4.3.4 Main languages spoken 62
4.3.5 Location of workstation 63
 4.3.5.1 Substance use & location of workstation 63
4.3.6 Level of education 64
 4.3.6.1 CAGE status & level of education 65
 4.3.6.2 Cannabis use & level of education 65
4.3.7 Type of accommodation 66
 4.3.7.1 CAGE status & type of accommodation 67
 4.3.7.2 Cannabis use & type of accommodation 68
4.3.8 Marital status 69
 4.3.8.1 CAGE status & marital status 70
 4.3.8.2 Cannabis use & marital status 71
4.3.9 Cohabitation status with wife 72
 4.3.9.1 CAGE status and cohabitation status with wife 72
 4.3.9.2 Cannabis use status and cohabitation status with wife 73
4.3.10 Job category 73
 4.3.10.1 CAGE status & job category 74
 4.3.10.2 Cannabis use & job category 75
4.3.11 Nature of employment 76
 4.3.11.1 CAGE status & nature of employment 77
4.3.11.2 Cannabis use & nature of employment 77
4.3.12 Length of service 78
 4.3.12.1 CAGE status & length of service 79
 4.3.11.2 Cannabis use & length of service 79
4.3.13 Type of study mine 81

4.4 Practice of substance use 85
 4.4.1 Frequency of substance use 85
 4.4.1.1 Frequency of alcohol consumption 85
 4.4.1.2 Frequency of cannabis use by current users 86
 4.4.2 Drinking partners 87
 4.4.3 Practice of substance use among participants’ fellow workers 88
 4.4.3.1 Reported alcohol use status of fellow workers 88
 4.4.3.2 Participants’ CAGE status & reported alcohol use status of fellow workers 89
 4.4.3.3 Reported cannabis use status of fellow workers 91
 4.4.3.4 Reported cannabis use status of fellow workers & participants’ cannabis use status 92
 4.4.4 Help-seeking practice & its relationship to substance use 92
 4.4.4.1 Help-seeking practice & CAGE status 92
 4.4.4.2 Help-seeking practice & its relationship to cannabis use 94
 4.4.5 Practice of multiple substance use 95
4.5 Awareness of link between substance use & work-related accidents

4.5.1 Awareness of link between alcohol use & accidents

4.5.1.1 CAGE status & awareness of link between alcohol use & accidents

4.5.2 Awareness of link between cannabis use & accidents

4.5.2.1 Cannabis use & awareness of its link to accidents

4.6 Participants’ perceptions & its relationship to substance use

4.6.1 Perceived level of work-related danger

4.6.1.1 CAGE status & perceived level of work-related danger

4.6.1.2 Cannabis use status & perceived level of work-related danger

4.6.2 Perceptions of reasons why mineworkers use alcohol

4.6.2.1 Evaluation of relationship between ‘relaxation’ as reason for alcohol use & CAGE status

4.6.2.2 Evaluation of relationship between ‘fun’ as reason for alcohol use & CAGE status

4.6.2.3 Evaluation of relationship between CAGE status & other reasons for alcohol use

4.6.3 Perceptions of reasons why mineworkers use cannabis

4.6.3.1 Evaluation of relationship between cannabis use & reasons for cannabis use
4.6.4 Perceptions of how to control alcohol use among mineworkers 112

4.7 Summary of study variables & their relationship to substance use 113

5.0 FINDINGS OF FOCUS GROUP DISCUSSIONS 115

5.1 Socio-demographic profile of participants 116

5.1.1 Age of participants 116

5.1.2 Sex of participants 116

5.1.3 Level of education 117

5.2 Perceptions, practice & attitudes of mineworkers towards alcohol use 118

5.2.1 Perceptions about alcohol use 118

5.2.1.1 First thoughts about alcohol 118

5.2.1.2 Why some mineworkers misuse alcohol 120

5.2.1.3 Why some mineworkers do not misuse alcohol 122

5.2.2 Attitudes towards mineworkers who misuse alcohol 122

5.2.3 Practice & patterns of alcohol use 123

5.2.3.1 “Most mineworkers drink in bars with their friends” 123

5.2.3.2 “Most mineworkers drink alcohol after work but some drink before and during the shift” 124

5.2.3.3 “Day shift workers usually drink alcohol in the evening after their shift but night shift workers find it difficult to sleep during the day and sometimes end up drinking before their shift” 124
5.2.3.4 “Mineworkers who work under more stressful conditions tend to drink more” 125
5.2.3.5 “People drink more after pay-day” 126
5.2.3.6 “Drinking increases during festive seasons” 126

5.3 Practice, perceptions & attitudes of mineworkers towards cannabis use 126

5.3.1 Perceptions about cannabis use 127
 5.3.1.1 First thoughts about cannabis 127
 5.3.1.2 Why some mineworkers use cannabis 129
 5.3.1.3 Why some mineworkers do not use cannabis 132

5.3.2 Attitudes of participants towards those who use cannabis 133
 5.3.2.1 “Those who use dagga are usually hard working and do not cause problems unlike those who use alcohol, so we are tolerant of them” 133
 5.3.2.2 “Those who use dagga jeopardise safety, can be aggressive, and give a bad reflection of the mine” 133

5.3.3 Practice of cannabis use 134
 5.3.3.1 “It is sometimes difficult to know when others use dagga as it is not always used publicly, but some people smoke it openly before and during the shift” 134
 5.3.3.2 “Dagga use is more common among those who carry out more physically demanding jobs” 135
5.4 Participants’ perceptions of challenges of working at mines

5.4.1 “Working at the mine exposes you to physical hazards and psychological stress”

5.4.2 “Relatively decent pay and team spirit are positive things about working in the mine, but they come at a price”

5.5 Participants’ awareness of health & safety risks linked to alcohol & cannabis use

5.6 Perceptions of challenges of controlling substance use & recommendations

5.6.1 Challenges & recommendations relating to the approach of mines in controlling substance use

5.6.1.1 “There is need for more mine commitment towards control of dagga use”

5.6.1.2 “In order to influence behaviour, we need a holistic approach”

5.6.1.3 “There is a need for sound EAP which work closely with employees & other role-players”

5.6.1.4 “Alternative activities to substance use can help keep employees constructively occupied”

5.6.1.5 “Counselling of substance users should be done on a continuous basis by trained personnel”
5.6.1.6 “Awareness programmes are important but they are not as effective as they should be” 142
5.6.1.7 “It is possible to bring substances into the mine as employees are not usually searched on their way in” 143
5.6.1.8 “The supervisor is not always present throughout the shift so an employee who wants to smoke dagga during the shift can do so” 144
5.6.1.9 “The selection process for random breathalyser tests is not transparent” 144
5.6.1.10 “We need to expand substance-testing protocols to include dagga” 144
5.6.1.11 “Hostel bars stay open beyond their stipulated operating hours” 145
5.6.1.12 “Incentives can motivate people to maintain a good safety record” 145
5.6.1.13 “Improvement in working and living conditions have a role to play in controlling substance use” 146

5.6.2 Challenges & recommendations relating to knowledge, attitudes & perceptions about substance use

5.6.2.1 “It is not the responsibility of individual mineworkers whose co-workers are using dagga, to take action” 146
5.6.2.2 “We need to prove to people that dagga use is not innocuous” 147

5.6.2.3 “We need clarity about the relationship between actual alcohol intake & effect on blood alcohol levels” 147

5.6.3 Challenges relating to perceptions of the public about cannabis 148

5.6.3.1 “Substances are easily accessible in the community” 148

5.6.3.2 “There is public uncertainty about adverse effects of dagga” 148

5.6.3.3 “The legal disciplinary measures for offences related to dagga use among the general public are inadequate” 149

5.7 Summary of focus group discussion findings 149

5.7.1 Practice of substance use among mineworkers 149

5.7.2 Perceptions about why mineworkers use substances 150

5.7.3 Attitudes of mineworkers towards those who use substances 150

5.7.4 Knowledge about hazards of substance use 151

5.7.5 Perceptions of challenges of controlling substance use among mineworkers & recommendations 151

6.0 FINDINGS OF RECORD REVIEW 152

6.1 Availability of post-accident & medical surveillance tests for substance use at study mines 152
6.2 Mine protocol for post-accident & medical surveillance-related substance tests 153

6.2.1 Mine protocol for post-accident substance tests 153

6.2.2 Mine protocol for medical surveillance-related substance tests 155

6.3 Prevalence of positive post-accident & medical surveillance-related substance tests 156

6.3.1 Prevalence of positive post-accident alcohol & cannabis tests 156

6.3.1.1 Prevalence of positive accident-related alcohol tests 156

6.3.1.2 Prevalence of positive post-accident cannabis tests 157

6.3.2 Prevalence of positive medical surveillance-related substance tests 158

6.4 Lost time injury frequency rates & substance use 159

6.4.1 Lost time injury frequency rates by mine 159

6.4.2 Evaluation of differences in LTIFR between mines 160

6.4.3 Evaluation of link between lost time injury frequency rates & substance use 160
6.5 Summary of findings

6.5.1 Types of post-accident/medical surveillance-related substance tests & modality of testing

6.5.2 Prevalence of positive post-accident & medical surveillance-related substance tests

6.5.3 Relationship between LTIFR & substance use

7.0 DISCUSSION & CONCLUSIONS

7.1 Response proportion

7.2 Prevalence of substance use among mineworkers

7.2.1 Prevalence of alcohol dependence

7.2.2 Prevalence of cannabis use

7.2.3 Prevalence of positive pre-shift alcohol tests

7.2.4 Comparison of CAGE results to breathalyser results

7.2.5 Accidents & substance use

7.2.5.1 Accidents & alcohol use

7.2.5.2 Accidents & cannabis use

7.2.5.3 Prevalence of positive medical surveillance-related alcohol & cannabis tests

7.3 Probable influence of substance use policies on substance use
7.4 Factors which may be linked to substance use

7.4.1 Low job categories & low levels of education

7.4.2 Location of workstation & levels of perceived work-related danger

7.4.3 Nature of employment & length of service

7.4.4 Hostel dwellers & marital status

7.4.5 Reported reasons for substance use

7.4.5.1 Fun, relaxation & stress relief

7.4.5.2 Perceived energy-boosting attribute of cannabis

7.4.6 Awareness of effects of substance use on health & safety

7.4.7 Use of substances by participants’ fellow workers

7.4.8 Attitudes towards those who use substances

7.4.9 Differences in characteristics between mines

7.5 Recommendations for controlling substance use

7.6 Conclusions

8.0 RECOMMENDATIONS

8.1 Renew commitment of stakeholders to substance control

8.2 Develop industry regulations for substance control

8.3 Develop individual mine policies which incorporate essential Components
8.4 Improve monitoring & surveillance systems for substance use

8.4.1 Develop industry regulated standards for surveillance of substance use

8.4.2 Incorporate other ways into monitoring of substance use

8.4.2.1 Increase vigilance for signs of substance use during night shift & following weekends

8.4.2.2 Improve random security checks

8.4.2.3 Encourage involvement of co-workers in substance use control

8.4.3 Strengthen database for substance use-related medical surveillance

8.5 Effectively involve different categories of employees in programmes

8.6 Strengthen health promotion programmes

8.7 Adopt holistic approach to substance use control

8.7.1 Renew commitment to Employee Assistance Programmes

8.7.2 Teach alternative coping strategies for problems

8.7.3 Provide adequate leisure activities

8.7.4 Continuously improve working conditions

8.7.5 Improve living conditions

8.8 Review disciplinary procedures

8.9 Ensure sustainability of programmes

8.10 Control substance use in the wider community

8.11 Carry out further studies on substance use among mineworkers
8.12 Continuously monitor & evaluate programmes

8.13 Conclusion

APPENDIX A	Minimum sample sizes for prevalence studies at 95% precision
APPENDIX B	A project management model for carrying out studies on substance use among mineworkers in South Africa
APPENDIX C	Introductory remarks for interviewers
APPENDIX D	Subject information & consent form for structured interviews
APPENDIX E	Questionnaire for structured interviews on alcohol and cannabis use among mineworkers
APPENDIX F	Mini questionnaire for breathalyser tests
APPENDIX G	Where to obtain more information/help about alcohol/dagga use
APPENDIX H	Information & consent form for participants of focus group discussions
APPENDIX I	Socio-demographic information questionnaire for participants of focus group discussions
APPENDIX J	Focus group discussion guidelines
APPENDIX K Questionnaire for record review of post-accident &
medical surveillance-related alcohol & cannabis tests 269

APPENDIX L Evaluation of relationship between LTIFR & substance
use 275

REFERENCES 276
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.1:</td>
<td>Scatter plot of CAGE positive results to breathalyser results above 0.10mg/1000ml by mine</td>
<td>53</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Associations made by participants to alcohol</td>
<td>119</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Vicious cycle of alcohol misuse</td>
<td>121</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Main associations made by participants to dagga</td>
<td>128</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Vicious cycle of dagga use</td>
<td>131</td>
</tr>
<tr>
<td>Figure 6.1:</td>
<td>Evaluation of differences in LTIFR between mines using ANOVA techniques</td>
<td>160</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Evaluation of link between LTIFR & indicators of substance use by correlation analysis</td>
<td>162</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of background information on study mines</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of sample size of study mines</td>
</tr>
<tr>
<td>2.3</td>
<td>Rapid cannabis test results by Cobas Integra test results</td>
</tr>
<tr>
<td>2.4</td>
<td>Number of discussion groups carried out at study mines</td>
</tr>
<tr>
<td>2.5</td>
<td>Number of focus group discussion participants per mine</td>
</tr>
<tr>
<td>3.1</td>
<td>Response proportion by mine</td>
</tr>
<tr>
<td>3.2</td>
<td>Overview of results of breathalyser tests by mine</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison of breathalyser results to legal breath alcohol limit for professional drivers of 0.10mg/dl</td>
</tr>
<tr>
<td>3.4</td>
<td>Comparison of breathalyser results to individual mine breath alcohol limit</td>
</tr>
<tr>
<td>3.5</td>
<td>Overview of urine test results by mine</td>
</tr>
<tr>
<td>3.6</td>
<td>Overview of urine test results by commodity group</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparison of breathalyser results to individual mine breath alcohol limit</td>
</tr>
<tr>
<td>3.8</td>
<td>Overview of urine test results by mine</td>
</tr>
<tr>
<td>3.9</td>
<td>Overview of urine test results by commodity group</td>
</tr>
<tr>
<td>4.1</td>
<td>Current users, ex-users & never users of alcohol by mine</td>
</tr>
<tr>
<td>4.2</td>
<td>Estimated prevalence of alcohol dependence by individual mine</td>
</tr>
<tr>
<td>4.3</td>
<td>Estimated prevalence of alcohol dependence by commodity mine</td>
</tr>
<tr>
<td>4.4</td>
<td>Current users, ex-users & never-users of cannabis by mine</td>
</tr>
</tbody>
</table>
4.5 Prevalence of cannabis use in individual mines estimated by urine tests 54
4.6 Prevalence of cannabis use in commodity mines estimated by urine tests 55
4.7 Comparison of percentages of self-reported cannabis users & urine-positive cannabis users 55
4.8 Self-reported cannabis use by urine-positive cannabis use 56
4.9 Age distribution of participants by mine 56
4.10 Mean age & median age of participants by mine 58
4.11 CAGE status by age 58
4.12 Cannabis use status by age 59
4.13 Sex of participants by mine 59
4.14 Country of origin of participants by mine 60
4.15 Participants’ main language by mine 61
4.16 Location of participants’ workstations by mine 62
4.17 CAGE status by location of workstation 63
4.18 Cannabis use status by location of workstation 64
4.19 Level of education of participants by mine 64
4.20 CAGE status by level of education 64
4.21 Cannabis use status by level of education 65
4.22 Univariate & multivariate analysis of cannabis use by level of education 65
4.23 Type of accommodation by mine 66
4.24 CAGE status by type of accommodation 67
4.25 Univariate & multivariate analysis of CAGE status by type of accommodation 68
4.26 Cannabis use status by type of accommodation
4.27 Marital status of participants by mine
4.28 CAGE status by marital status
4.29 Univariate & multivariate analysis of CAGE status by marital status
4.30 Cannabis use status by marital status
4.31 Job category of participants by mine
4.32 Cohabitation status of participants with their wives
4.33 CAGE status by cohabitation status with wife
4.34 Cannabis use status by cohabitation status with wife
4.35 Job category of participants by mine
4.36 CAGE status by job category
4.37 Cannabis use status by job category
4.38 Univariate & multivariate analysis of cannabis use status by job category
4.39 Nature of participants' employment by mine
4.40 CAGE status by nature of employment
4.41 Cannabis use status by nature of employment
4.42 Univariate & multivariate analysis of cannabis use by nature of employment
4.43 Length of service of participants
4.44 CAGE status by length of service
4.45 Cannabis use status by length of service
4.46 Univariate & multivariate analysis of cannabis use status by length of service
4.47 Univariate analysis of substance use by mine

4.48 Multivariate analysis of CAGE status by mine

4.49 Multivariate analysis of cannabis use by mine

4.50 Frequency of current users’ alcohol consumption by mine

4.51 Current users’ frequency of cannabis use by mine

4.52 Drinking partners of current alcohol users

4.53 Reported alcohol use status of respondents’ fellow workers

4.54 Participants’ CAGE status by fellow workers’ reported alcohol use status

4.55 Univariate & multivariate analysis of participants’ CAGE status by fellow workers’ reported alcohol use status

4.56 Prevalence of cannabis use & reported cannabis use status of fellow workers

4.57 Participants’ cannabis use status by fellow workers’ reported cannabis use status

4.58 Help-seeking practice & its relationship to CAGE status

4.59 Univariate & multivariate analysis of CAGE status by help-seeking practice for alcohol use

4.60 Help-seeking practice & its relationship to cannabis use

4.61 Participants’ CAGE status by cannabis use status

4.62 Univariate & multivariate analysis of CAGE status by cannabis use

4.63 Awareness of relationship between alcohol consumption & accidents

4.64 CAGE status by awareness of link between alcohol use & accidents
4.65 Awareness of relationship between cannabis use & accidents
4.66 Cannabis use status by awareness of link between cannabis use & accidents
4.67 Univariate & multivariate analysis of cannabis use by awareness of positive link between cannabis use & accidents
4.68 Perceived level of work-related danger
4.69 CAGE status & perceived level of work-related danger
4.70 Univariate & multivariate analysis of cage status by perceived level of work-related danger
4.71 Cannabis use status by perceived level of work-related danger
4.72 Univariate & multivariate analysis of cannabis use by perceived level of work-related danger
4.73 Perceptions of reasons why mineworkers drink alcohol
4.74 CAGE status by ‘relaxation’ as reason for alcohol use by mineworkers
4.75 Univariate & multivariate analysis of CAGE status by ‘relaxation’ as reason for alcohol use by mineworkers
4.76 CAGE status by ‘fun’ as reason for alcohol use by mineworkers
4.77 Univariate & multivariate analysis of CAGE status by ‘fun’ as reason for alcohol use by mineworkers
4.78 Participants’ perceptions of reasons why mine workers use cannabis
4.79 Participants’ recommendations for control of alcohol use by mine
4.80 Summary of variables significantly linked to substance use
5.1 Mean age of participants by mine
5.2 Sex of union/H & S representatives by mine 116
5.3 Sex of management representatives/supervisors by mine 117
5.4 Highest level of education of union/H & S representatives by mine 117
5.5 Highest level of education of management representatives/supervisors by mine 117

6.1 Availability of post-accident & medical surveillance tests for alcohol & cannabis use at study mines 153
6.2 Mine protocol for post-accident alcohol & cannabis tests 154
6.3 Mine protocol for medical surveillance-related alcohol & cannabis tests 155
6.4 Prevalence of positive post-accident alcohol tests in study mines 157
6.5 Prevalence of positive post-accident cannabis tests in study mines 158
6.6 Lost Time Injury Frequency Rate (LTIFR) by mine 159
6.7 Overview of LTIFR & indicators of substance use 161
6.8 Evaluation of link between LTIFR & indicators of substance use by regression analysis 162
6.9 Prevalence of positive post-accident & medical surveillance-related alcohol and cannabis tests in study mines 165

8.1 Algorithm of proposed health promotion programme on alcohol & cannabis use among mineworkers 211
8.2 Intervention model for control of substance use among mineworkers 223
GLOSSARY

Never user: One who has never used alcohol/cannabis before.

Current user: One who currently uses alcohol/cannabis.

Ex-user: One who has stopped using alcohol/cannabis.

Ever-user: One who has used alcohol/cannabis before.

This category includes current users and ex-users.

CAGE positive respondents: Respondents who are likely to be dependent on alcohol.

CAGE negative respondents: Respondents other than those who are CAGE positive.

Urine positive respondents: Respondents who tested positive for cannabis.

Urine negative respondents: Respondents who tested negative for cannabis.