SOUTH AFRICAN EXPERIENCE WITH
CROSS- LINKED ULTRAHIGH MOLECULAR WEIGHT
POLYETHYLENE IN TOTAL HIP ARTHROPLASTY

Josip Nenad Cakic

A thesis submitted to the Faculty of Health Sciences,
University of the Witwatersrand
In fulfillment of the requirements for the degree
of

DOCTOR OF PHILOSOPHY

Johannesburg
2009
DECLARATION

I, Josip Nenad Cakic declare that this thesis is my own work. It is being submitted for degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg.

It has not been submitted before for any degree or examination at this or any other University.

day of ________________, 2009.
DEDICATION

In Memory of my father

Josip Cakic, Sr.

1932 – 1999

to

Jasmine and my boys for their patience and support when I needed it most
PUBLICATIONS AND PRESENTATIONS ARISING FROM THIS STUDY

PUBLICATION:

Clinical experience with gamma irradiation-crosslinked polyethylene
- A 14 to 20 year follow-up report

PRESENTATIONS:

Crosslinked high density polyethylene in South Africa 16 – 23 year follow up

Cross-linked High Density Polyethylene Update 16 – 23 years follow up

Cross-linking of polyethylene cups in South Africa

Gamma cross-linked polyethylene old vs. new

South African Arthroplasty Society Meeting, Drakensberg, 12 – 17 April 2005
THESIS SUMMARY

SOUTH AFRICAN EXPERIENCE WITH CROSS- LINKED ULTRAHIGH MOLECULAR WEIGHT POLYETHYLENE IN TOTAL HIP ARTHROPLASTY

Student: Josip Nenad Cakic

Supervisor: Prof. B. Sweet

Co-Supervisor: Prof. C.M. Schnitzler

Department: Department of Orthopedic Surgery
Faculty of Medical Sciences
University of the Witwatersrand

Degree: Doctor of Philosophy, PhD

Keywords: ultra-high molecular weight polyethylene
total hip replacement
cross-linking
Total hip replacement (THR) is an effective method of treatment for patients with hip disability. The procedure is capable of providing long-term functional improvement with excellent control of pain and restoration of function. Sir J Charnley developed a concept of low friction arthroplasty, which was based on use of ultra-high molecular weight polyethylene acetabular and stainless steel femoral components. The components were attached to bone with the use of polymethylmethacrylate (PMMA) bone cement. This concept has been very successful, and is considered the gold standard of THR.

Aseptic loosening of the prosthetic components remains the single most important reason for failure of THRs. Wear to the ultra high molecular weight polyethylene (UHMWPE) acetabular cup is a well-known cause of osteolysis and aseptic loosening of the components. Thus, substantial improvement to the wear resistance of UHMWPE could extend the clinical life span of total hip replacements. In an attempt to reduce polyethylene wear and subsequent osteolysis, a method was developed in the early seventies in South Africa to improve polyethylene quality by means of gamma ray cross-linking. The acetabular cup was irradiated with 100 Kilogray in an acetylene environment, which was used as a cross-linking gas material, resulting in improvement of UHMWPE wear resistance.

Influenced by the world trend and with the advent of a ceramic bearing surface, the Project of cross-linking was, to a certain extent, forgotten. Patients followed up in the late 1990s, showed minimal or total absence of wear after 15 years or longer.
Based on my preliminary studies, and anticipating the world trend of acceptance of cross-link UHMWPE, the aim of this research is to consolidate the results from the largest long term group of patients with acetylene cross-link UHMWPE, to study polyethylene gamma irradiated in the presence of a cross-linking acetylene gas and the effects of it, in vitro, using a hip simulator. I was planning to communicate with as many patients as possible from the group operated on from 1977 until 1983 in whom cross-link UHMWPE was used. This group of over thousand patients represents the largest group of patients with cross-linked UHMWPE acetabular components in the world, with the longest clinical follow up of over 20 years on average.

The first part of the research is a retrospective study:
The goal was to contact as many patients as possible who were operated on during the period 1977 to 1983 when cross-linked polyethylene was used. To qualified for the study each patient had to have an early postoperative and the latest follow up radiograph.

The radiological study consisted of the radiological measurement of wear. For this purpose the Hip Analysis Suite program was used. This is a software program designed by Dr John M. Martell from the University of Chicago, which is widely used and internationally accepted for that purpose. Image analysis offers significant improvements in reproducibility and accuracy when compared to manual analysis.
The final results were compared with results of polyethylene wear in patients in whom conventional UHMWPE was used. For this comparison only patients with acetabular components made from the same UHMWPE material and from the same supplier were used. The conventional UHMWPE is a component of the gold standard of hip replacement surgery. World-wide published follow up studies of 15 years and longer using conventional UHMWPE were compared to the cross-link UHMWPE group.

If revision surgery was indicated for whatever reason in patients in with cross-linked UHMWPE acetabular components, the retrieved prosthesis was analyzed. The analysis consisted of examination of the articular surface of the cross-linked acetabular component for micro wear phenomena using a Scanning Electron Microscope (SEM). In order to perform an objective analysis of the retrieved components, two independent laboratories were used, namely:

Peterson Tribology Laboratory, Loma Linda University, California, and
Biomechanical Laboratory, Faculty of Engineering, University of Pretoria.

The analyses were possible thanks to collaboration with Dr Ian Clark from Peterson Tribology Laboratory and Dr NDL Burger in charge of the Biomechanical Laboratory at the Department of Engineering, University of Pretoria.
Concurrent with retrospective radiological analysis and SEM analysis of the retrievals, a prospective study of the new chemically cross-linked cups was also performed.

In the majority of patients with total hip replacement, walking is the activity that contributes most to wear. An average person takes around 5000 steps per day, which extrapolates to 1.8 million steps per year for a lower extremity, or 0.9 million steps per hip joint. The hip simulator was used to simulate the average annual cycles of walking, where one million cycles will correspond to one year of normal average walking per hip joint.

In hip joint simulation, appropriate load was used at constant value to simulate average body weight. Similarly, for objectivity and independency, part of the analysis was performed under the supervision of Dr Stephen Li in the Tribology Laboratory, Sarasota, Florida. By using independent Institutions I hoped to achieve the highest possible level of expertise and objectivity.
The contribution of South Africa to the method of cross-linking is important. This is a cheap and effective way to improve the quality of the polyethylene with minimal increase in the cost of the final implant. I believe that the South African method has proved itself to transform UHMWPE into a material with a highly acceptable level of reliability, and it is important to scientifically consolidate the available data for access to everyone.

Figure 1: Pretoria Hip design by prof C Grobbelaar
ACKNOWLEDGMENTS

I would like to thank the following colleagues for their support, that made this study possible:

- Prof. F.A. Weber for his teaching and guidance, and for providing me with his clinical data
- Prof. C. Grobbelaar for allowing me to use his clinical data
- Prof. B. Sweet and Prof. C.M. Schnitzler for guidance and objective criticism that helped me to finish this thesis
- Prof. D. Burger for his help with biomechanical work, assistance and guidance
- Dr B. Wium for his help with work on histological specimens
- Dr G. Liknitzky for his help with statistical analysis
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 HISTORY OF DEVELOPMENT OF HIP REPLACEMENT
 3

1.2 THE ORIGIN OF UHMWPE IN HIP ARTHROPLASTY
 6

1.3 UHMWPE IN HIP REPLACEMENTS
 CLINICAL PERFORMANCE
 10

CHAPTER 2 ABOUT POLYETHYLENE AND UHMWPE

2.1 WHAT IS A POLYMER, POLYETHYLENE AND UHMWPE
 14

2.1.1 COMPRESSION MOLDING OF UHMWPE
 17

2.1.2 RAM EXTRUSION OF UHMWPE
 18

2.1.3 ArCOM UHMWPE
 19

2.1.4 DIRECT COMPRESSION MOLDING OF UHMWPE
 20

2.2 FROM CONSOLIDATED FORM TO IMPLANT
 21
CHAPTER 3 HISTORY OF HIGHLY CROSS-LINKED

UHMWPE

3.1 DEVELOPMENT OF THE SURFACE CROSS-LINKING

TECHNIQUE IN SOUTH AFRICA

3.2 RE-INTRODUCTION OF THE RADIATION SURFACE

CROSS-LINKING TECHNIQUE BY RADIATION
CHAPTER 4 RADIOGRAPHIC STUDY

CLINICAL APPLICATION

4.1 METHODS FOR MEASURING CLINICAL WEAR IN TOTAL HIP REPLACEMENTS 49

4.2 MARTELL DIGITAL METHOD OF ANALYSIS OF ACETABULUM WEAR 53
 4.2.1 ADVANTAGES OF IMAGE ANALYSIS 55
 4.2.2 METHOD OF ANALYSIS 59
 4.2.3 FORMAT OF THE .txt OUTPUT FILE 62

4.3 RADIOLOGICAL ASSESSMENT
 RESULTS AND DISCUSSION 66
 4.3.1 MARTELL’S HIP ANALYSIS SUITE RESULTS 77
 4.3.2 STATISTICAL ANALYSIS 80
CHAPTER 5 HIP SIMULATOR STUDIES 88

5.1 WEAR AND WEAR MODES IN ACETABULAR COMPONENTS 88

5.2 RESULTS FROM SIMULATOR STUDIES IN VITRO

LITERATURE REVIEW 91

5.3 IN VITRO HIP SIMULATOR STUDIES

- SOUTH AFRICAN HIGHLY CROSS-LINKED

UHMWPE – FIRST STUDY 100

5.3.1 RESULTS 112

5.4 SECOND STUDY 115

5.4.1 RESULTS 116
CHAPTER 6 RETRIEVAL STUDIES

6.1 LITERATURE

6.2 SOUTH AFRICAN RETRIEVALS
 6.2.1 CONVENTIONAL UHMWPE RETRIEVALS
 6.2.2 CROSS-LINKED UHMWPE RETRIEVALS

6.3 HISTOLOGICAL FINDINGS – LITERATURE

6.4 LOCAL HISTOLOGICAL FINDINGS
 CROSS – LINKED RETRIEVALS

CHAPTER 7 CONCLUSION AND RECOMMENDATION

7.1 CONCLUSION

7.2 RECOMMENDATION
APPENDIX A MARTELL HIP ANALYSIS TABLES 157
APPENDIX B HIP SIMULATION PROTOCOL 163
APPENDIX C ETHICAL APPROVAL DOCUMENT 169
APPENDIX D CONSENT FORM 170

REFERENCES 171
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1:</td>
<td>Pretoria Hip design by Prof. C. Grobbelaar</td>
<td>XI</td>
</tr>
<tr>
<td>Figure 2:</td>
<td>Effect of the cross-linking in the acetylene gas environment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increased wear resistance and impact stress performance,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>while the material is gradually cross-linked resulting in retaining</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the viscoelastic properties of UHMWPE</td>
<td>36</td>
</tr>
<tr>
<td>Figure 3:</td>
<td>Unchanged radiographic appearance of a Pretoria Hip with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-linked polyethylene. 20 years follow up with no</td>
<td></td>
</tr>
<tr>
<td></td>
<td>signs of wear or osteolysis.</td>
<td>37</td>
</tr>
<tr>
<td>Figure 4:</td>
<td>Motion of the femoral head with respect to the centre of rotation</td>
<td>54</td>
</tr>
<tr>
<td>Figure 5:</td>
<td>Illumination direction as showing on the Martell’s Hip Analysis Suite software</td>
<td>55</td>
</tr>
</tbody>
</table>
Figure 6: Right click option of illumination

Figure 7: AP X-ray scanned with both ischial tuberosities visualized

Figure 8: Margins of the regions (femoral head and acetabular edge) used for wear analysis

Figure 9: Magnified (x20) view of the dome of the articular surfaces of tested liners
 9-A 32mm liner before testing, non-cross-linked, with presence of machine marks
 9-B 32mm liner as 9-A after 5 million cycles, obliteration of machine marks
 9-C 32mm liner cross-linked before testing
 9-D 32mm cross-linked liner after 5 million cycles still showing machine marks

Figure 10: Representative optical micrographs of the articulating surfaces of highly crosslinked and control UHMWPE after 5 million cycles of simulated gait. The dome and the superior quadrant of the crosslinked (A and B) and of control (C and D). After the 5 million cycles of simulated gait, the original machining marks still are present on the cross-linked UHMWPE, whereas they are eliminated completely from the control liners by the loss of surface
material from wear, resulting in a highly polished surface with a few random scratches as shown by the arrows.

(From: Muratoglu et al., The Journal of Arthroplasty, 2001, Vol. 16 No. 2:149-160.)

Figure 11: Sample of Marathon liner (DePuy, Co., Warsaw)

Figure 12: Simplex – Hedrocel acetabular component with specific molded polyethylene.

Figure 13: Stryker Omnifit acetabular component

Figure 14: Zimmer-Durasul polyethylene component

Figure 15: Zimmer Longevity-Triology acetabular component

Figure 16: South African made, radiation induced surface highly crosslinked all-poly cemented acetabular component (Fare, Aesculap)
Figure 17: Presence of wear and creep on visual inspection of the cross section

(From: Burger NDL., Failure analysis of UHMWPE acetabular cups, PhD Thesis, University of Pretoria) 127

Figure 18: Cracking in the fractured acetabular cup

(From: Burger NDL., Failure analysis of UHMWPE acetabular cups, PhD Thesis, University of Pretoria) 127

Figure 19: x10 magnification of the defect. It is believed that final fracture occurred after the cracks.

(From: Burger NDL., Failure analysis of UHMWPE acetabular cups, PhD Thesis, University of Pretoria) 128

Figure 20: x40 magnification of crater defect treated with dye penetrant. The cracks are propagated from these defects, leading to final failure.

(From: Burger NDL., Failure analysis of UHMWPE acetabular cups, PhD Thesis, University of Pretoria) 129
Figure 21: A: The rim of the acetabular cup shows plastic flow on circumference
 B: x20 magnification of defect on the rim of the acetabular cup
 (From: Burger NDL., Failure analysis of UHMWPE acetabular cups,
 PhD Thesis, University of Pretoria)

Figure 22: A: Machine marks visible in acetabular cup
 B: x500 magnification of machine marks on inside of the virgin acetabular
 Implant
 (From: Burger NDL., Failure analysis of UHMWPE acetabular cups,
 PhD Thesis, University of Pretoria)

Figure 23: x1300 magnification, abrasion wear on surface of the acetabular cup
 (From: Burger NDL., Failure analysis of UHMWPE acetabular cups,
 PhD Thesis, University of Pretoria)

Figure 24: x 3700 magnification, wear particles entrapped in the cup
 (From: Burger NDL., Failure analysis of UHMWPE acetabular cups,
 PhD Thesis, University of Pretoria)
Figure 25: X-ray preoperatively, 20 years follow-up Pretoria hip in situ with fracture of the proximal part of the femoral shaft. Patient required revision surgery.

Figure 26 A and B: Post revision. Clearly presents fractured femoral component and excellent fit after 20 years. Inferiorly can be seen sign of the femoral neck impingement, however there were no failure consequences related to impingement, or signs of osteolysis.

Figure 27: A: 50x magnification of the unworn area of the Control Cup.

B: same zone with 200x magnification

Figure 28 : A: 99x magnification, presents of machine tracks after 12 years

B: 500x magnification reveals presents of folding with minimal edge

Fibrillation

Figure 29: Retrival 20 years: the machine tracks had been entirely obliterated. On the highly polished wear zones folds and polyethylene nodules with apparent ripples were observed.

A: 200x magnification B: 10 000x magnification
Figure 30: A. Histology slide represents largest high density polyethylene particle identified in the right hip specimen (150 microns)

B. Identification of the residua of the prosthetic cement in the fibrous tissue taken from the left hip area
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Summary of results: 57 patients followed between 13 and 30 years with Pretoria hip in situ, and no clinical or radiological indications for revision.</td>
<td>77</td>
</tr>
<tr>
<td>Table 2</td>
<td>Results of the 2nd generation cross-linked UHMWPE started in 1998. Group is relatively small for the reason of equal comparison with non-cross-linked group of patients. Most important condition for analysis was to have post operative X-ray and follow up X-ray in the same time frame.</td>
<td>78</td>
</tr>
<tr>
<td>Table 3</td>
<td>Results of patients analyzed with non-cross-linked UHMWPE implants. Note that the follow up time is similar to the group with cross-linked UHMWPE inserts.</td>
<td>79</td>
</tr>
<tr>
<td>Table 4</td>
<td>Descriptive statistics for the variable follow-up vector wear</td>
<td>81</td>
</tr>
</tbody>
</table>
Table 5: Descriptive statistics for the variable 2D volumetric wear 82

Table 6: Mann-Whitney test results for follow-up vector wear 84

Table 7: Mann-Whitney test results for 2D volumetric wear 86

Table 8: Classification of the common defects in acetabular implants with possible effect on useful life.

(From: Burger NDL., Failure analysis of UHMWPE acetabular cups, PhD Thesis, University of Pretoria) 135

Table 9: Analysis of 47 retrieved conventional UHMWPE acetabular cups with number of presentation of total of 125 defects found

(From: Burger NDL., Failure analysis of UHMWPE acetabular cups, PhD Thesis, University of Pretoria) 136
Graph 1: Graph of the wear rates over time showing a near linear increase in wear with number of cycles for all groups of liners. However, the slopes of wear for the elevated cross-linked groups were dramatically reduced as evidenced by the decrease in wear rates.

28-0 = liners with a 28-mm inner diameter and nominally cross-linked polyethylene,
28-X = liners with a 28-mm inner diameter and elevated cross-linked polyethylene,
32-0 = liners with a 32-mm inner diameter and nominally cross-linked polyethylene,
32-X = liners with a 32-mm inner diameter and elevated cross-linked polyethylene.

Graph 2: Graph shows the hip simulator weight change data of highly crosslinked and control UHMWPE liners studied in the hip simulator in Sulzer Interop shells with 28-mm and 22-mm liners after correction for the weight increase in the load-soak specimens. The highly cross-linked liners did not show any weight loss during the 20 million cycles; they showed a slight
weight gain from slight additional fluid imbibition.

(From: Muratoglu et al., The Journal of Arthroplasty, 2001, Vol. 16 No. 2:149-160.)

Graph 3: Soak graph, all specimens were soaked in deionized water at 37°C with 0.2% weight in volume of sodium azide for 28 days prior to beginning of wear test. Graph shows increase in weight as result of soak process.

Graph 4: Paul curve, a Paul-type loading profile with a maximum load of 2000 N is applied at a frequency of 1 Hz. Cups were mounted inferior to the femoral heads on rotating incline blocks to produce a bi-axial, orbital motion.

Graph 5: Comparison of wear between Control 1, 4150 HP gamma sterilized in air and Control 2, same type of polyethylene gamma sterilized in nitrogen/vacuum environment.

Graph 6: Comparison between Control 1 and Arcom acetabular components. After 5 million cycles, ArCom DM acetabular component showed evidence of 56% lower wear rate versus control group.
Graph 7: Presentation of wear results after 5 million cycles. Note that UHMWPE from Durasul and Barc show immeasurable amount of wear.

Graph 8: Presentation of significant difference between conventional types of polyethylene used in control group and group 2 vs. Cross-linked type of polyethylene’s. Note effect of gaining weight presenting in case of Zimmer and South African Barc UHMWPE implants after 5 million cycles.

Graph 9: Comparative presentation of the results between Barc Aesculap cemented cross-linked all-cemented acetabular component and control group. As control group was used same data as in the first leg of the study performed in HSS New York (Chapter 5).