Spatial Variation

In the previous chapter, I examined temporal variation in the southern Cape burials and found indications of changes in burial practices through time. In this chapter I examine spatial variations amongst the recorded burials. In doing so, I do not simply choose another variable—space—across which to examine the burials. There are prior indications in southern Cape Later Stone Age archaeology that strongly suggest differences across space, in some cases differences between fairly small areas. It is on the basis of these prior indications that I undertake a spatial analysis of the southern Cape Later Stone Age burials. In doing so, I do not expect to find patterns of difference that correspond exactly to those noted in other classes of material. The burial data are too limited in number to hope for such a situation. Instead, I look for spatial patterning of a similar kind.

I begin by reviewing evidence of spatial variation in the southern Cape Later Stone Age and explanations that researchers have proposed to account for it. I then move on to the question of whether similar—or dissimilar—patterns may be detected in the burial data.

Spatial variations in the southern Cape Later Stone Age

The earliest clearly articulated discussion of geographical variations in the Later Stone Age archaeology of the southern Cape is that of Deacon (1972, 1976:163). He argued that populations subsisting on plant foods and small, non-migratory animal species, as he found in the Holocene layers at Melkhoutboom and Boomplaas, were organized into smaller foraging groups with a higher relative population density, with territorial ranges more restricted and with territorial boundaries more fixed (Deacon 1976:163, see also H. Deacon 1972:39). He
argued that the changes correlated to some extent with the “organization of the relevant populations” (Deacon 1976:163). He did not, however, discuss the nature of the territories and their boundaries or the social changes that would have been necessary to allow and maintain the subsistence strategy changes he outlined.

The next explicit discussion of territoriality in the southern Cape Later Stone Age was that by Mary Leslie-Brooker (1987). She tentatively suggested that the distinctive Kasouga flakes (woodworking tools made from silcrete blades) she identified at Uniondale Rock Shelter (they have also been identified at Melkhoutboom, Wilton Large Rock Shelter and Edgehill; Binneman 1995:163) may have acted as stylistic territorial markers (Leslie-Brooker 1987:147). She suggested that:

The social boundary defined by the Kasouga flake style would centre on the area between Uniondale and the adjacent coast from Alexandria in the west to Bodiam on the Peddie coast in the east, with lesser extensions inland up the valley of the Great Fish as far as Cradock, and to Wilton in the west (Leslie-Brooker 1987:147).

Subsequent workers have agreed with her suggestion and added that the stemmed and semi-stemmed bone and ivory points found at Uniondale Rock Shelter may also have been stylistic markers (S. Hall 1990:200; Binneman 1995:163; Mitchell 2002:172).

The issues raised by Deacon’s discussion formed the focus of research conducted by Hall (1990, see also Hall 2000) in the Fish River Basin. His argument was premised on his observation of hunter-gatherer intensification of resource use through the Holocene and concomitant increases in human population. He, like Deacon, saw this process as resulting in the organization of hunter-gatherers into restricted and bounded territories. He saw these territorial groups as socially exclusive, that is, there would have been more interaction within groups than between groups: “greater economic competition resulted from regional population saturation which gave rise to risk reduction strategies that emphasized more socially exclusive behaviour” (S. Hall 1990:125). He discussed the economic and
ecological factors that would have led to changes in foraging strategy and territorial make up. Importantly for a central theme of this thesis, he also discussed some of the social mechanisms that may have allowed for the changes in territorial make-up.

He saw artefact style as important in broadcasting group boundaries. Drawing on San ethnography, he made the good point that different classes of objects transmit different information (S. Hall 1990:126). Wiessner (1983b, 1984), for instance, showed that Kalahari San projectile point style corresponded to ethnic group at the level of the band nexus and linguistic group, whereas beaded headband style gave information about an individual and their relations, but did not relate at all to group boundaries. Hall argued that in some areas of the southern Cape Later Stone Age lithic raw materials carried similar stylistic information: “raw material and raw material frequency is actively selected, constituted and manipulated as a socio-spatial stylistic marker” (S. Hall 1990:130).

Hall suggested that the use of raw material as a stylistic marker in areas of the southern Cape was temporally specific. Before about 5 000 BP at Edgehill, Uniondale Rock Shelter, Wilton Large Rock Shelter and Melkhoutboom a variety of locally available lithic raw materials were used, predominantly local chert, quartzite, hornfels and chalcedony (S. Hall 1990:130, 175). After about 5 000 BP, however, the assemblages at these sites were dominated by silcrete. The silcrete was obtained from the Grahamstown peneplain and coastal foreland. Whilst this was a relatively local source for Uniondale Rock Shelter and Wilton Large Rock Shelter, it is about 40 km from Melkhoutboom and Edgehill. There was no economic logic in sourcing raw materials from so far afield when there was perfectly good hornfels and chalcedony in the immediate area of those sites (S. Hall 1990:177). Hall (1990:177) also pointed out that the change in raw material was not related to the introduction of new artefact classes or a change in their morphology.
Based on these points, Hall argued that “the shift towards silcrete records the appropriation of raw material in a purely stylistic way in order to signal social identity” and that “the social identity broadcast by the use of silcrete corresponds to a geographic identity focused upon the eastern extension of the CFB [Cape Folded Belt] and its immediate surrounds” (S. Hall 1990:178, parenthesis added). He saw the shift to silcrete use as relating to increased population reflected, not in territorial shifts, but in the increasing definition and formalization of a social sphere. Hunter-gatherers intensified their exploitation of resources within small, defined, exclusive territories.

Hall, then, saw the shift to silcrete use after approximately 5 000 BP as an intentional social strategy to signal group allegiance and boundary during a period of increased population and competition for economic resources.

Binneman (1995:15–23) contested aspects of Hall’s interpretation, particularly as it related to intensified exploitation of resources and territoriality. He argued that there were methodological and technical problems in the way that Deacon, Hall and others identified intensification in the sites they excavated (Binneman 1995:15–19). He also argued, partly on the basis of ethnographic analogy and partly theoretically, that Hall’s notion of ‘territory’ required revision:

San ownership of land and resources (both materially and symbolically) was not directed by ecological or economical factors, but was an integral part of their social universe which was negotiated by individuals and groups in their day-to-day relationships with others (Binneman 1995:20, parenthesis in original).

He argued that instead of seeing hunter-gatherer territories as bounded geographical areas, they should rather be conceived as spheres of influence in which differential power relations governed social relations between groups (Binneman 1995:20–23). It was not land per se that was inherited or owned, but a network of social obligations related to an area of land and the resources it contained (Binneman 1995:20). Groups would have had to negotiate permission to exploit resources in another group’s area. The ‘ownership’ of a territory related
to the power relations between the host group and the visitors, the conditions of generosity in allowing others to use their resources and in the prestige of playing host (Binneman 1995:22).

The crux of Binneman’s disagreement with Hall was the reason for the proliferation of hunter-gatherer territories during the mid to late Holocene and the nature of these territories. Whilst Hall (1990) saw population increase leading to intensified exploitation of resources which in turn led to a proliferation of small exclusive territories, Binneman saw the proliferation of territories as a result of the splitting of existing groups “initiated by social needs and desires” (Binneman 1995:160). Unfortunately, it is not clear what those social needs were.

Hall (1990) saw the territorial groups as socially exclusive, with little (friendly) interaction between them. Binneman (1995), on the other hand, saw territories as inclusive, with much interaction between groups. Binneman’s concept of hunter-gatherer territories was, however, largely based on models of Kalahari San. Whilst the Kalahari San are certainly a useful analogue in interpreting Later Stone Age materials, I argued in Chapter 2 that researchers need to be discerning in choosing appropriate pieces of ethnography in constructing analogical arguments. Humphreys (2004/5, 2007) has commented directly on the issue of using Kalahari San territories as analogical sources for Later Stone Age archaeology. He argued that the large open territorial systems of some Kalahari San groups is not representative of San generally and was probably an adaptation to the harsh Kalahari environment (Humphreys 2004/5, 2007; see also Sealy & Pfeiffer 2000; Sealy 2006). He suggested that other hunter-gatherers, particularly Australian Aborigines and Native Americans, may be more appropriate analogical sources (Humphreys 2004/5, 2007).

Linked to Binneman’s use of Kalahari San ethnography as a model for Later Stone Age territories is his conception of social relations between groups as operating in a hxaro-like way. I argued in Chapter 3 that there is little evidence to support the presence of a hxaro-like system in the southern Cape Later Stone Age
(see also Mitchell 2003; Sealy 2006). I believe that the same argument applies to Binneman’s use of the concept: there is little material evidence to support it.

Despite his disagreement with Hall on the nature of groups and territories, Binneman also argued for the use of material culture to signal group membership. Like Hall, he found different lithic raw materials used in different areas. For example, to the west of the Kromme River silcrete dominated assemblages, whereas to the east of the river assemblages were dominated by quartz (Binneman 1995:155). Similarly, silcrete was virtually absent from The Havens Cave and other sites in the Baviaanskloof, whilst sites such as Paardeberg Cave and Kangkara Cave about 12 km away in the Langkloof had many formal tools made from silcrete (Binneman 1995:155). Silcrete was equally available in both areas. On the basis of this raw material difference, Binneman proposed a social boundary between the Baviaanskloof and Langkloof (Binneman 1995:155, figs 42, 43).

In addition to differences in raw material usage, Binneman (1995:151) has argued for the presence of two different, contemporary lithic industries, the Wilton and the Kabeljous Industries, between about 4 700 and 1 900 BP. During this period, the Kabeljous Industry was found only at the coast, whereas the Wilton Industry was found inland and at the coast. Unlike the microlithic Wilton Industry, the Kabeljous Industry is characterized by large, heavy-duty cobble tools including large segments made almost exclusively on quartzite (Binneman 1995:107). Binneman (1995:152) emphasized that both groups followed similar subsistence strategies, and that ecological models were therefore inadequate to explain the differences between the industries. He also argued that the Kabeljous Industry did not represent a dispersal phase of hunter-gatherer life (Binneman 1995:151).

Binneman explained the two industries as produced by two separate groups of people. One group of people lived permanently on the coast and used the macrolithic Kabeljous Industry to signal group membership and territory. The
other group, who produced the Wilton assemblages, lived inland and occasionally visited the coast.

The fact that similar subsistence patterns were associated with both industries clearly indicates the Kabeljous Industry must be seen as a meaningfully constructed social strategy by coastal groups to transmit information about themselves and their territory in response to the already existing information networks of the inland Wilton tradition (Binneman 1995:152).

Binneman’s emphasis on socially inclusive territories is clear in this interpretation.

Further evidence of the presence of small, bounded territories in the southern Cape came from an unexpected source: bone isotopes. Sealy and her collaborators extended their study of stable light isotopes in human skeletons from the Western Cape Province where they began the study (see discussion in Chapter 3) to the southern Cape (Sealy & Pfeiffer 2000; Muller 2001; Sealy 2006).

Sealy and Pfeiffer (2000) initially measured nitrogen isotopes in 80 skeletons from sites between George in the west and the Tsitsikamma National Park in the east. The study aimed to examine dietary differences, that is, the proportions of marine and terrestrial food eaten by individuals during the Holocene. The initial study, however, produced some unexpected results. There were significant differences in nitrogen values from skeletons from Matjes River Rock Shelter and from the nearby Robberg Peninsula and Plettenberg Bay. The different nitrogen values relate to differences in diet. People who lived at Matjes River Rock Shelter appear to have eaten very mixed diets consisting of both marine and terrestrial protein (Sealy & Pfeiffer 2000:647). In contrast, people who lived on the Robberg Peninsula seem to have had a diet containing large quantities of high trophic level protein (Sealy & Pfeiffer 2000:647, 650). Sealy and Pfeiffer (2000:650) suggested that they may have derived much of their protein from Cape fur seals (Arctocephalus pusillus) living on the peninsula. The dietary distinction between these two areas seems to have persisted from approximately 4 000 to 2 000 BP;
since then there seems to have been a general trend away from marine food around the coast, probably related to the arrival of food producing economies (Sealy & Pfeiffer 2000).

These rather unexpected findings were followed-up by Muller (2001). She analyzed an additional 38 skeletons from Matjes River Rock Shelter and the Robberg Peninsula sites. She too found significant differences in the nitrogen values between the two areas.

Further work by Sealy (2006) has now examined both carbon and nitrogen isotopes from 69 skeletons from the two areas (45 from Robberg Peninsula and Plettenberg Bay, and 24 from Matjes River Rock Shelter and adjacent sites). This total includes those skeletons analyzed in previous studies. Her results are consistent with those described from the previous studies. She concluded that:

Between 4 500 and 2 000 BP, skeletons from Robberg/Plettenberg Bay show uniformly enriched $\delta^{15}N$ values, all > 13. . . . These are the remains of people who ate substantial quantities of seafood, including high-trophic-level animal food such as the meat of seals and/or carnivorous fish (Sealy 2006:578).

In contrast, she found that

Skeletons from Matjes River Rock Shelter show less chronological variation in $\delta^{15}N$. Most have values of around 13‰, indicating that people ate a mixed diet with more terrestrial food and/or low-trophic-level marine food such as shellfish (Sealy 2006:578).

What makes the difference in diet between the two areas so unusual is that not only are the sites all coastal, but they are in close proximity to each other; the Robberg Peninsula is about only 14 km from Matjes River Rock Shelter (Sealy & Pfeiffer 2000:647). All three isotope studies suggested that Matjes River Rock Shelter and the Robberg Peninsula sites represented parts of different, adjacent territories, and that the Keurbooms–Bietou Estuary may have formed a boundary
between the two territories (Sealy & Pfeiffer 2000; Muller 2001; Sealy 2006; see also Döckel 1998:38).

I propose that we can begin to reconstruct an archaeological landscape in which, by ca. 4 500 BP, the coastal areas of the southern Cape were partitioned into territories occupied by separate hunter-gatherer groups. These appear to have been separated by clear geographic boundaries, and individual and group mobility was limited to demarcated areas (Sealy 2006:581).

The nature of the territory that Sealy and colleagues conceive of is more similar to Hall’s (1990) view of exclusive hunter-gatherer territories than to Binneman’s (1995) suggestion of inclusive territories.

Ben Ludwig (2005) attempted to corroborate these arguments based on stable light isotopes by examining certain classes of material culture from Nelson Bay Cave (Robberg Peninsula) and Matjes River Rock Shelter. He examined a number of classes of material, choosing items that he argued were likely to be used to indicate stylistic or ethnic boundary. His results were, unfortunately, less clear-cut than would be hoped for. He did, though, find some differences in material between the two sites that he argued supported Sealy, Pfeiffer and Mullers’s argument.

Many of the differences Ludwig (2005:99) found seem to be time-related. For example, he found that the Layer C assemblages at Matjes River Rock Shelter were much richer in bone tubes, bone awls, shell segments (crescents), shaped shell pendants, *Glycymeris* pendants and perforated *Donax* shells than the corresponding Wilton levels at Nelson Bay Cave. All of these items became less common or disappeared from the assemblage in the following Layer B at Matjes River Rock Shelter, whereas the same items became more common in the post-3 300 BP levels at Nelson Bay Cave (Ludwig 2005:99). Ludwig did not clearly draw out the implications of these inverse patterns of artefact frequencies. What these differences in artefact patterning meant and whether they can be considered as evidence of social or territorial differences between the sites is unclear.
Ludwig (2005) found clearer evidence of differences between the two sites in three classes of material, although even these were not as clear-cut as may be desirable.

- **Backing of scrapers:** He found that there was a higher frequency of backed scrapers at Matjes River Rock Shelter than at Nelson Bay Cave (although, he found that there was backing at both sites) (Ludwig 2005:34, 79, 95).
- **Lithic raw material:** He found that crypto-crystalline silicates (CCS), particularly chalcedony, dominated the raw material at both sites, but that people at Matjes River Rock Shelter had shown a greater preference for CCS relative to quartz (the next most common raw material) than people at Nelson Bay Cave (Ludwig 2005:35, 79, 96).
- **Turtle carapace pendants:** Fresh water turtle (*Pelomedusa subrufra*) carapace pendants were found only at Nelson Bay Cave. None was found at Matjes River Rock Shelter. The turtle is found in the Keurbooms–Bietou Estuary and the Piesang River, so people at both sites would have had equal access to the animal (Ludwig 2005:51–52, 97).

He argued that these differences in material culture indicated social distinctions between the people living at the two sites and that they may have been actively manipulated as stylistic markers of group identity (Ludwig 2005).

All of these arguments, from different areas of the southern Cape, suggest that Holocene hunter-gatherers were, to some extent, dividing themselves into relatively small territories with a greater or lesser degree of exclusiveness. The reasons for the fragmentation, the nature of the territories formed and, indeed, their boundaries remain to be resolved.

Spatial variation and material culture

If southern Cape Holocene hunter-gatherers were fragmented into relatively small, circumscribed territories, recognized by ‘stylistic’ differences in material culture, as the arguments I have summarized suggest, an obvious question is whether
similar spatial variations may be recognized in the burials. This question is particularly pertinent because the form of the burials is unique to the southern Cape Holocene and appears to be part of a related set of social phenomena including territoriality.

Binneman (1995) suggested that there were differences in burial content between burials associated with Wilton and Kabeljous Industries in the sites he examined. Similarly, Hall (1990:234) suggested that the ten silcrete flakes he found in one of the Welgeluk burials (WG2) may have related to the lithic raw material symbolism for which he argued. He also suggested that small bovid metapodials and warthog tusks found in burials at Welgeluk and Middelkop may have been part of a similar regional style and symbolic tradition (S. Hall 1990:200). These tentative suggestions need to be followed up in greater detail and over a larger area. In this section I therefore examine details of graves spatially. Grave goods form the basis of the study because they are most abundant and most diverse. I do, though, examine other aspects of graves, body position for example.

In the first instance, the analysis aims to determine whether the contents of graves vary across space. Once such patterns have been demonstrated, one may then ask what they mean. It does not follow automatically from the arguments about territoriality that I have summarized that spatial variations in graves equate to territorial or ethnic differences. Some variations may have had a more mundane explanation. Seashells, for instance, may have been found at more sites near to the coast for simple reasons of proximity. Graves and grave goods are, I argue, residues of important rituals and rich in symbols (details of the symbolism are explored in Chapters 6 and 7). They may therefore be good candidates for examining the transmission of cultural information: items were carefully selected and arranged for reasons other than the mundane. The vast majority of items included in graves were placed there for exclusively symbolic reasons; there is no question of to what extent they were practical and to what extent symbolic. Practicality is itself a loaded concept drawing heavily, and usually without
acknowledgement, on Western notions of utilitarianism and, ultimately, capitalist ideas of optimization of resource and labour.

The manner in which such information is transmitted is usually discussed in terms of style. ‘Style’ is a perennial source of debate amongst archaeologists and ethnographers. Unfortunately, much of the debate is moribund and devoid of use. The concept of style adds little to what I wish to discuss. I am here primarily interested in variations in material culture across space. Whether one describes these variations as stylistic or not makes little difference. Indeed, as Wiessner (1984:229) pointed out,

> emphasis on the active role of material culture in social relations . . . has neglected the fact that not all material culture functions in such a way, and, thus, not all variation which has been labelled ‘style’ can be understood in this light.

In archaeology, arguments for the meaning of the spatial variations of material culture ultimately come down to ethnographic analogy. The work of Wiessner (1983b, 1984) on San in the Kalahari and Hodder (1977, 1979, 1982) with various groups in east Africa are the most commonly cited (but not the only) sources of such analogy.

Wiessner (1983b, 1984) framed her discussion of Kalahari San projectile points and beaded headbands in terms of two aspects of style that she distinguished. She described ‘emblemic style’ as “formal variation in material culture that has a distinct referent and transmits a clear message to a defined target population . . . about conscious affiliation or identity” (Wiessner 1983b:257). Items such as badges or flags would represent this aspect of style. The referent described is usually the norms and values of a particular social group. The distinct referent means that emblemic style carries information about the existence of groups and boundaries, but not about the degree of interaction within or between groups (Wiessner 1983b:257). The second aspect of style that Wiessner described is ‘assertive style’. It is a “formal variation in material culture which is personally based and which carries information supporting individual identity” (Wiessner
Such symbolism may be employed either consciously or unconsciously and functions to separate persons from similar others. She found both aspects of style operating in different classes of Kalahari San material culture.

She found Kalahari San arrows contained both emblemic and assertive aspects of style. Emblemic style, appeared in head shape variation: it marked differences between language groups (!Kung, G/wi and !Xõ) and in some cases also differences between dialect groups and band clusters. Wiessner (1983b:268) concluded that “the !Kung, G/wi, and !Xõ linguistic groups are separated stylistically on the basis of attributes that are readily observable and discretely distributed within their group boundaries.” Attributes of arrows relating to body shape, base shape, quality and link shaft engraving related to assertive style. The !Kung did not use style assertively to clearly mark ownership of arrows, but they did, whilst making them, include some elements of personal expression that aided in identifying the arrows (Wiessner 1983b:269).

In contrast, she found that another class of material culture, beaded headbands, played an almost exclusively assertive role (Wiessner 1984). The same design repertoire existed across all linguistic groups over the entire area of her study. Individuality was expressed by manipulating the combinations of standard design elements, or deviating from them. Headband design showed a high degree of interindividual differentiation, but remained within the bounds of a shared design repertoire. This situation was in distinct contrast to arrow heads, which conformed to a very narrow range of variation that made those from an entire linguistic group appear similar (Wiessner 1984:227).

Hodder (1977, 1982) examined the distribution and ‘stylistic’ variation of material culture items in parts of east Africa, particularly the Baringo District of western Kenya. His interest was in patterns of material culture distribution across boundaries between groups. In the Baringo area these groups were linguistically defined tribes. He found that certain, but not all, classes of material culture had
discontinuous distributions correlating to boundaries between groups, yet were uniform within groups (Hodder 1977, 1982). In other words, different classes or sub-classes of material culture were associated with different ethnic groups. In contrast to the expectation of much received archaeological wisdom, the adjacent groups had substantial, sustained interaction between themselves (Hodder 1977). He demonstrated that the material culture differences were not a product of isolation, separation or lack of contact.

Hodder attributed the differences in material culture to the need to maintain separate ethnic identities in light of contact with other groups: interaction between groups led to an intensification of cultural differences, not a blending. He attributed the need to maintain separate ethnic identities primarily to ecological stress as a result of competition for resources between adjacent groups (Hodder 1979), but also to within-group social relations such as competition between age and gender groups (Hodder 1982). Importantly, Hodder (1982:27) saw material culture as not only expressing group identity, but “constitute[ing] the group differences.”

Spatial variation in southern Cape graves

With these thoughts on style and material culture variation in mind, I move on to the task of examining the spatial arrangement of material in southern Cape Later Stone Age graves. I examine data per site rather than per individual grave; in several cases there are multiple graves in a single site. I consider presence or absence of items, not the proportions of items in sites. Examining proportions is made difficult by the different numbers of graves per site. I begin by examining the distribution of sites containing each class of grave goods across space. I plot the distribution of all grave goods that occur at two or more sites. Before examining the results of these spatial studies, I must first enter a caveat regarding sample size.
The 95 burials in my data set come from 21 sites. At first glance, 21 sites may seem like a reasonable sample, but when considered across the area of my study they are rather thinly spread. In addition, the distribution is not even: there are clusters of sites in some areas and many large gaps between sites (Fig. 10.1). This pattern is probably a result of uneven archaeological work rather than a reflection of the true distribution of burial sites across the area (e.g., Morris 1992a:140, 147). The uneven and thin distribution of sites means that in some cases it is not possible to tell whether the distribution of a particular artefact class is meaningful, or simply a product of sample size.

Figure 10.1: Distribution map of all sites used in analysis.

These problems of sample size impose two serious limitations on spatial study of the data. First, I am limited to examining spatial distributions of grave good classes. I cannot examine more complex questions such as the distribution of differing combinations of grave goods or different placements of grave goods relative to the body across space. The data are simply insufficient to address these questions. Second, and more seriously, the small sample size means that I cannot undertake the spatial study within the temporal phases I identified in Chapter 9. The dated burials containing grave goods in each phase are too small a sub-set to form meaningful spatial patterns. The phases I described are not sufficiently clear-cut to allow undated burials to be assigned to one or other phase with certainty.
I begin by plotting the distributions of grave good classes across space (Fig. 10.2). The problem of sample size is immediately obvious with some of these plots. There are too few sites to show anything meaningful. Fortunately, some classes of grave goods—stones, grinding stones, ostrich eggshell beads, ochre and tortoise carapaces—do occur in a larger number of sites. None of them, however, seems to be restricted to a single geographical area. They are all spread fairly evenly across the whole area of study. The spread of these items across the entire area of study suggests that they were not used as regional territorial or ethnic markers. Rather, they expressed a more widely held symbolism.

Seashells and seashell beads seem like good markers of territory or, for that matter, other social divisions; there are a large number of species widely distributed along the coast. Different species could easily be chosen by different groups. I examined the distribution of graves containing unmodified seashells, modified *Turbo sarmaticus* (‘Turbo buttons’), *Donax serra* pendants and *Nassarius kraussianus* beads (Fig. 10.2 e–h). Each of the items is found at only a small number of sites. Only *Turbo* is restricted to the coastal sites. All other classes are found both inland and at the coast. It is difficult to attribute meaning to these distributions. The small sample size removes confidence in the patterns. It should be noted, however, that the distribution of the different seashell classes overlap and indeed some are found in the same sites. I suggest that these classes of seashells were probably not used as regional markers, at least not in relation to one another.

Animal teeth and bones were found in graves in five sites stretched across the whole study area. They therefore do not seem to form any regional pattern. It is interesting to note, however, that animal teeth and bones are both found in combination with each other in four of the graves. Table 10.1 lists the sites together with the teeth and bones recovered from each grave. There seems to be a preference for pig (bushpig, *Potamochoerus porcus*, or warthog, *Phacochoerus aethiopicus*) tusks in combination with limb or foot bones of medium size bovids in the two eastern sites, Vygeboom and Welgeluk. The symbolism of this
Figure 10.2 a–d: Distribution maps of grave good classes: a. all sites; b. ochre; c. stones; d. grinding stones.
Figure 10.2 e–h: Distribution maps of grave good classes: e. seashells; f. *Turbo* beads; g. *Donax* shells; h. *Nassarius* beads.
Figure 10.2 i–l: Distribution maps of grave good classes: i. ostrich eggshell beads; j. animal bones; k. animal teeth; l. tortoise carapace.
Figure 10.2 m–o: Distribution maps of grave good classes: m. plants; n. lithics; o. crystal.

combination may well be significant, but remains unknown. Whether the combination of these items may be considered a regional marker is difficult to say on the basis of the available evidence (see S. Hall 1990), but it does appear that this is a case where the categories ‘bones’ and ‘teeth’ are too broad and need to be further divided.
Table 10.1: Graves containing animal teeth and bones. Descriptions are based on published identifications of varying detail and accuracy.

<table>
<thead>
<tr>
<th>Site</th>
<th>Grave no.</th>
<th>Tooth and Bone Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson Bay</td>
<td>NBC4</td>
<td>2 fish (Sparodon durbanensis?); 2 bird carpo-metacarpals</td>
</tr>
<tr>
<td>Cave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oakhurst</td>
<td>OH7</td>
<td>Fish vertebrae</td>
</tr>
<tr>
<td>Shelter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snuifklip</td>
<td>SF1</td>
<td>Hippo (Hippopotamus amphibius) incisor; Vertebral element</td>
</tr>
<tr>
<td>Vygeboom</td>
<td>VB1</td>
<td>Bushpig (Potamochoerus porcus) tusk; Metatarsal of medium sized bovid</td>
</tr>
<tr>
<td></td>
<td>VB2</td>
<td>Pig (Potamochoerus porcus?) tusk; Bovid limb bone</td>
</tr>
<tr>
<td></td>
<td>VB3</td>
<td>Lynx (Felis caracal) tooth; 1 bovid foot bone, 2 carnivore vertebrae</td>
</tr>
<tr>
<td>Welgeluk</td>
<td>WG6</td>
<td>Warthog (Phacochoerus aethiopicus) tusk; Metapodial of medium sized bovid</td>
</tr>
</tbody>
</table>

As with animal bones and teeth, the category ‘plants’ could be further divided by species or other criteria. The sample of available sites, however, is so small as to not make this a viable proposition. The plot of the distribution of plant remains in graves shown in Figure 10.2 is deceptive. Plant remains in graves are mentioned in several graves not included in this study on the grounds that they had too little associated information or were too fragmentary (e.g., Péringuey 1911:149; Binneman 2000). I suggest, therefore, that the apparent limited distribution of plant remains is entirely a product of small sample size and differential preservation of organic material.

Preservation is not a problem when considering lithics. The difficulty here, though, is deciding which artefacts were intentionally placed in graves and which formed part of the rubble of the grave fill. Importantly, four sites have been identified in which the excavators were confident that lithics had been included as intentional grave goods. These sites are widely scattered across the study area. All but one, Welgeluk, are coastal sites. It is once again difficult to say much about these few widely scattered sites. Hall (1990) suggested that the silcrete flakes at Welgeluk may be symbolically significant in a similar way to the general silcrete symbolism he identified in that area. A similar focus on different raw materials at other sites is not viable with so small a sample scattered over so large an area. Nevertheless, if we can be sure that stone artefacts were deliberately placed in graves, some sort of symbolic value seems inescapable.
Only three sites have been identified at which quartz crystals occur in graves. All three sites are near to the coast and located in the central part of the study area. Although fairly near to each other, they are actually spread over a large area. Once again, whether or not they can be considered a regional marker is compromised by the small sample size.

Besides grave goods, there are not many aspects of the burials, for which data are available, that are amenable to spatial study. The most obvious possibilities are the directions in which the bodies were facing and heading and the side on which the body was laid. The directions in which bodies faced or were heading, however, proved not to be of use. The burials in a single site faced and headed in multiple directions (Table 10.2). Spatial variation was clearly not a factor influencing the direction of burial.

Table 10.2: Directions in which bodies faced and headed by site.

<table>
<thead>
<tr>
<th>Site</th>
<th>Facing</th>
<th>Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasies River Mouth Cave</td>
<td>E, SE, S, SW</td>
<td>E, SE, S, SW</td>
</tr>
<tr>
<td>Nelson Bay Cave</td>
<td>NE, SE, W</td>
<td>NE, E, SE</td>
</tr>
<tr>
<td>Oakhurst Shelter</td>
<td>E, SE, S, W, NW</td>
<td>N, E, SE, S, SW, W</td>
</tr>
<tr>
<td>Sea Vista</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Seal Point</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Tierkloof</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>Welgeluk</td>
<td>N, NE</td>
<td>N, SW, W</td>
</tr>
</tbody>
</table>

Side of burial proved more amenable to study; only three of the ten sites for which side of burial was recorded contained bodies buried on more than one side. Only one body was buried on its back (NBC3). The rest were buried on either their left or right sides. The distribution of bodies buried on left or right sides is not, however, enlightening. Both sides are represented across the entire study area (Fig. 10.3). Geographical location does not seem to be a factor in determining side of burial.

In sum we can say that the distribution of grave goods and burial traits across space is not particularly enlightening: either grave goods and traits are distributed across the entire study area or they are represented by too small a sample of sites.
to allow confidence in their distributions. Some classes of material hint at regionalism, but others are ubiquitous to the graves.

Figure 10.3: Distribution maps of side of burial: a. left; b. right.

I have so far considered the distribution of material that is found at two or more sites. It is, after all, difficult to consider the spatial distribution of material from only a single site. Material recovered from single sites is, however, also informative. A number of classes of material were found only at single sites, but in several graves at those sites and in relatively high numbers. I consider these materials in further detail. I do not consider classes of material known from only a single grave in detail: it is difficult to know whether they are idiosyncrasies or part of a larger regional pattern.

Three sites have unique classes of material: Welgeluk, Klasies River Mouth Cave 5 and Oakhurst Shelter. Graves WG5 and WG6 at Welgeluk both contained *Polinicies tumidus* shells. WG5 had four, pierced for suspension and located on the chest of the body. WG6 contained three *P. tumidus* shells, also probably pierced (Hall & Binneman 1987). *P. tumidus* shells were not recorded from any
other site. Hall and Binneman (1987:146) pointed out that \textit{P. tumidus} has a limited distribution, occurring as far south only as the Transkei coast. This, they suggested, meant that the shells must have come from at least 200 km from the site. The large distance from the source suggests that they were not chance inclusions in the graves, but had been brought and intentionally placed there. The fact that they were found in two graves suggests that they were not simply items to hand or worn by the children, but were repeatedly placed in graves for symbolic reasons.

One reason may have been that they were items related to particular age classes. The graves were, after all, those of a child (WG6) and an infant (WG5). This suggestion is argued against, though, by the many other child and infant burials recorded at other sites: none of them was associated with \textit{P. tumidus}. If there was an age class element to the symbolism of \textit{P. tumidus}, then it was one that related specifically to the Welgeluk site or a small region of which Welgeluk was part.

A similar situation obtains at Klasies River Mouth Cave 5. Two burials there, KRM5/1 and KRM5/4, contained pendants made from oyster (the species was not reported) shell. KRM5/1 had two serrated oyster shell pendants in the area of the shoulders. KRM5/4 had four oyster shell pendants on the chest of the body. Oyster shell pendants are not reported from any other burial sites in my sample. Oyster shells with holes bored in them are, however, mentioned as coming from Matjes River Rock Shelter, possibly in association with a burial (Dreyer 1934:194). KRM5/1 was probably a female of between 16 and 18 years of age. KRM5/4 was an infant. It is unlikely they would have formed part of the same age set.

The same site also has three graves that contained \textit{Tricolia} sp. shell beads. KRM5/1 had ten \textit{Tricolia} beads associated with it and KRM5/4 had 14 scattered all over the body. KRM5/3 had an astonishing 745 \textit{Tricolia} shell beads on its chest. The inclusion of \textit{Tricolia} beads in three graves at the same site, and in such numbers, is clearly not accidental. \textit{Tricolia} shell beads were not recorded in
gravess at any other sites in the southern Cape. Their inclusion at Klasies River Mouth Cave 5 was nevertheless clearly significant. Once again, the significance seems to relate to the single site.

The third, and most significant, site at which material of this sort was found is Oakhurst Shelter. There, three graves, OH7, OH8 and OH17, contained Conus sp. shells. OH7 had four pierced Conus shells near the right thigh. OH8 had two pierced shells positioned as though they had been hung around the neck. OH17 had four Conus shells in the area of the neck. Like the other classes of material I have discussed, Conus shells are recorded only from graves at Oakhurst Shelter.

The last class of material unique to a single site is ostrich eggshell water containers. These are whole ostrich eggshells that have been pierced at one end. Their archaeological use as water containers is assumed. General discussions of the southern Cape burials often describe these ostrich eggshells as one of the common classes of grave goods. This is a misperception. In my sample, they are recorded only from Oakhurst Shelter. Seven of the graves there contained at least 12 ostrich eggshells. Dreyer (1934:194) mentioned at least one ostrich eggshell at Matjes River Rock Shelter (a site I excluded from my analysis because of the lack of detailed information on the graves from the site). Because of the poor quality of the excavation and reporting on the site, it is impossible to know how many ostrich eggshells were found, the detailed contexts from which they came and, most importantly, whether they were associated with burials.

At Oakhurst Shelter, OH6 contained four ostrich eggshells: one behind the skull, one at the chest, one in front of the face and the fourth about 300 mm in front of the skeleton. OH7 contained one ostrich eggshell behind the pelvis. OH8, an infant, had one ostrich eggshell between it and the adult skeleton in OH6. OH9 had the remains of three or more ostrich eggshells near the skull. OH15 had one ostrich eggshell behind the skull. OH18 had an ostrich eggshell behind the skeleton. OH21 contained fragments of ostrich eggshell.
The large numbers of ostrich eggshells in a number of the graves is surely significant. The significance does not, however, appear to relate to age classes. The ostrich eggshells were associated with skeletons of individuals that range in age from infants to adults. The relationship to sex is difficult to determine. Only two of the skeletons are definitively sexed (OH6 and OH7; OH18 has contradictory determinations). Both happen to be male. The small sample of sexed individuals is a product of the difficulty of sexing the skeletons of young children and fragmentary archaeological skeletons. The two males cannot be taken as representative of the whole sample. The apparent association between males and ostrich eggshells cannot be substantiated with the available data. I suggest that the use of a particular class of material exclusively at a single site strongly suggests that the material was used to signal something about the site specifically or the people buried there.

The three sites and five classes of material I have discussed, taken together, mutually reinforce the idea that certain classes of material were associated with particular sites. It was not a chance, once off, occurrence, but a repeated trend that is found at sites across the entire study area. With further research, more site-specific materials may be identified.

If we accept that certain material was occurring in a site specific way, we need to ask what it may have meant. The researchers whose work I summarized at the beginning of this chapter suggested that material culture was used by hunter-gatherers in the Holocene southern Cape to indicate and maintain boundaries between territories. If we accept their argument it is an easy step to accept that site specific material culture items may have played a similar role. The major difference is that the items under discussion were buried in graves; they were not openly displayed. Why such symbols may have been considered appropriate to bury in graves at certain times is a point I discuss in the final chapter.

A contrast therefore exists between the classes of material that occurred at two or more sites and the classes that occurred in multiple graves at a single site. Most of
the material that occurred in multiple sites seems to be scattered across the entire research area. No clear regional centres can be identified from the available sample. Classes of material that were found in multiple graves at single sites on the other hand, do seem to be potential regional markers. If material culture was used at these sites as site-specific or region-specific markers, then some re-conceptualization of the relationship between sites, regions and material culture is needed.

The presence of site-specific material culture rather than geographically closely placed sites containing the same material suggests two primary possibilities. First, it suggests that regional social or symbolic territories were much smaller than often conceived, possibly based around a single site. This conclusion would be contradicted by Hall’s (1990) description of a large area apparently making symbolic use of silcrete. It, however, remains a possibility: there is no reason to suppose that territories should be of uniform size across the whole research area. Welgeluk is, though, in the silcrete-symbolism area.

The second possibility is that territorial symbolism relating to burials operated differently from material culture symbolism generally within territories. In this scenario, a territory would have consisted of, potentially, a number of sites, but one would have been a ritually significant centre in which burial of certain significant individuals took place. Material that was both territory specific and appropriate to place in graves would therefore have accumulated in a particular site within the territory. In this regard I note that all three of the sites I have described contain large numbers of burials: Welgeluk had six in a 3 m² excavation, Klasies River Mouth Cave 5 had six in about 16 m² of excavation (all, in fact, came from an area of about 2 m²) and Oakhurst Shelter had at least 46 in a large, but not total excavation of the site (the exact dimensions of the excavation are unclear, but probably in the region of 30 m²).
Regional variations

In discussing spatial variations in the archaeology and specifically the burials of the southern Cape, it is important not to lose sight of the point that the southern Cape burials were themselves a regional variation of Later Stone Age burial practice. Nowhere else in southern Africa were the dead buried in quite the same way.

Over most of southern African, Later Stone Age burials appear to have taken place in open sites and contained few, if any, grave goods. Three burials, probably of Later Stone Age date, are known from rock shelters in the Matopos Hills, Zimbabwe (Walker 1994). They, however, contained no grave goods and must, because of the small number, be considered an anomaly for the area. A few burials are known from rock shelters in KwaZulu Natal, South Africa (e.g., Cramb 1934, 1961). Unfortunately there are few details about these burials, but it does seem that they also did not contain grave goods and were a rare anomaly to the larger Later Stone Age pattern.

The region containing Later Stone Age burials most similar to those I have discussed from the southern Cape is, not surprisingly, the adjacent region to the west (Inskeep 1986). A number of burials are recorded from the Western Cape coastal belt from both open sites and rock shelters. Unfortunately, many of them have suffered the same fate of unprofessional excavation as burials from the southern Cape. I do not undertake a detailed analysis of the Western Cape burials; it is a task equivalent to analysing the southern Cape burials and beyond the scope of this project. I instead offer some impressions of the differences and similarities between the two regions based on available published accounts (e.g., Goodwin & Peers 1953; Parkington & Poggenpoel 1971; Voigt 1972; Smith 1981; Morris 1992a:tables C and D; Jerardino, Yates et al. 1992; Manhire 1993; Pfeiffer et al. 1999; Jerardino, Sealy & Pfeiffer 2000; Sealy et al. 2000; Pfeiffer & van der Merwe 2004).
In the Western Cape, a number of burials are recorded from rock shelters. This is an important point of similarity or continuity between regions. It suggests that similar changes in burial practices occurred in both regions, possibly for similar reasons. In terms of grave goods, on the other hand, there were significant differences between the two regions. In the southern Cape, number and variety of grave goods varied temporally. Phase 3 burials tended to contain large numbers of grave goods of diverse type. In the Western Cape, at all times burials seem to have contained few grave goods. One item that did occur frequently in Western Cape graves was stone slabs. Like those from the southern Cape, many of the Western Cape graves seem to have been overlain with one or more stone slabs.

In many ways, Western Cape graves were similar to phase 2 graves from the southern Cape, but they occurred into more recent periods. It is tempting to speculate that similar reasons led to rock shelter burials containing stones in both regions. If this was the case, the subsequent histories of the two regions diverged, with the southern Cape burials and related rituals becoming more elaborate and the Western Cape practices following a different, less elaborate trajectory. Such changes would no doubt be linked to different social and religious practices. Unfortunately, it is not possible to take this intriguing line of thought further without more detailed study of Western Cape Later Stone Age burial practices.

Overlapping symbolism

The study of spatial variations in southern Cape graves may at first appear inconclusive. It does, however, point to a significant conclusion. It would be simplistic to argue for a single explanation for the geographical distribution of types of grave goods. It seems more likely that what we are finding is a result of complex, overlapping symbolic frameworks. Some items may, as students of lithics have argued, be related to territoriality. The items I have identified as occurring at only single sites hint at this. Territorial marking, however, was underlain with symbolism that was related to individuals and their links to a spirit
world (see discussion in Chapters 6 and 7). Rather than be worried by inconsistent uses of overlapping systems of symbolism, we should welcome such a finding. As Hodder’s (1982) ethnographic study in Baringo District, Kenya demonstrated, symbolic systems do operate in overlapping and cross-cutting ways. If we find such a situation in the archaeology, it means that we are beginning to go beyond superficial understandings that items were ‘symbolic’ and engage with the nature and scope of that symbolism. I explore this issue further in the final chapter.

Although some of this study seems disappointing—though by no means entirely barren—from a statistical perspective, we must remember that an item placed in a grave had symbolic referents no matter how many times we may find it. There is always a personal element. Individuals may sanction the placing of a unique object in a grave: its uniqueness does not make it meaningless. Rather, the unique object relates in a novel way to an overarching symbolic framework. If we understand something about the general form that this framework may have taken, we can suggest ways in which the object may have carried symbolic associations. This practice of idiosyncratic variation on a widely held symbolic system has been observed in Later Stone Age rock art in several areas of South Africa (Lewis-Williams et al. 1986; Dowson 1988; Dowson & Holliday 1989; Lewis-Williams & Pearce 2004b). We should therefore not be surprised to find it operating in the construction of graves, which was, after all, a practice that had much in common with rock art in that both were significant ritual occasions.