TABLE OF CONTENTS

i. DECLARATION
ii. DEDICATION
iii. ABSTRACT
iv. ACKNOWLEDGEMENTS
v. TABLE OF CONTENTS
vi. LIST OF TABLES
vii. LIST OF FIGURES
viii. LIST OF ABBREVIATIONS

CHAPTER 1 - INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

1.1.1 Aetiology of Breast hypertrophy

1.1.2 Incidence

1.1.3 Indications for Choosing a pedicled BBR for Macromastia/Gigantomastia

1.1.4 Objective

1.1.5 Background

CHAPTER 2 - PATIENTS & METHODS

2.1 PATIENT SELECTION

2.2 SURGICAL APPROACH

2.2.1 Skin Markings (figure 1)

2.2.2 Operative technique

CHAPTER 3 - RESULTS

3.1 TABLE 1: PATIENT DATA

3.2 TABLE 2: COMPLICATIONS

3.3 TABLE 3: QUADRANT DIVISION OF NAC LIGHT TOUCH SENSATION CHANGE AT 1 YEAR

3.4 TABLE 4: BREAST AESTHETICS AFTER 1 YEAR
3.5 RESULTS ANALYSIS

CHAPTER 4 - DISCUSSION

4.1 NAC PLACING

4.2 SKIN RESSECTION PATTERN

4.3 SMP PATTERN DESIGN

4.4 THE BREAST PEDICLE

4.5 DRAINS AND ANTIBIOTICS

4.6 TAPE, BANDAGES, AND COMPRESSION

4.7 EXPLORING CONCEPTS

4.7.1 Tissue Parenchymal Pattern Versus Skin Resection Pattern

4.7.2 Parenchymal Shaping Versus Skin Brassiere

4.7.3 What role does the parenchymal resection play?

4.7.4 Do Breast Sutures to pectoralis fascia work?

4.7.5 Liposuction for fine contouring

4.8 ANTICIPATION OF COMPLICATIONS

4.8.1 Nipple-areola malposition

4.8.2 Breast shape improvement using the medial pedicle, with the wise pattern skin resection

4.8.3 Nipple retraction

4.8.4 Hematoma

4.8.5 Nipple-areola necrosis

4.8.6 Fat necrosis

4.9 NIPPLE SENSATION

4.9.1 Shape and Projection and Scarring

4.9.2 Hypertrophied and symptomatic scars

4.9.3 Secondary breast deformity
4.9.4 Minor breast asymmetry 59
4.9.5 Nipple-areola malposition 59

CHAPTER 5 - CONCLUSION 62

5.1 OUTCOME AND PROGNOSIS 62
5.2 LIMITATIONS 62

APPENDIX F: ETHICAL APPROVAL FOR CONDUCTING THIS STUDY
APPENDIX G: SIGNED DECLARATION OF NON-PLAGERISM, TURNITIN
TITLE: The Safety of the Superomedial pedicle for Gigantomastia.

Dr. Vaneshri Chetty

A research submitted to the Faculty of Health Sciences, University of Witwatersrand, Johannesburg, in partial fulfillment of the requirements for the degree of Master of Medicine in Plastic and Reconstructive Surgery

18 July 2016

Johannesburg
i. DECLARATION

I, Chetty, Vaneshri, declare that this research report is my own work. It is being submitted for the degree of Master of Medicine in Plastic and Reconstructive Surgery at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.

Chetty, Vaneshri

[Signature]

Full Name & Surname

18 July 2016
DEDICATION

To all the staff at both Chris Hani Baragwaneth and Rand Clinic Hospitals without which this work would not have been so fruitful and unencumbered.
ABSTRACT

Introduction

Breast reduction surgery in women with gigantomastia and macromastia can present as a major challenge to the plastic and reconstructive surgeon. The superomedial pedicle (SMP) technique of breast reduction has been shown to be a safe and efficacious procedure to decrease a moderate size hypertrophy of the mammary glands. A myriad of techniques has been demonstrated to decrease the size of extremely large and hyperplastic breasts, they can, however, potentially result in complications, amongst the most dreaded being damage to the nipple-areola complex (NAC), especially necrosis and loss of sensibility.

Excessive breast hypertrophy is termed macromastia or gigantomastia. Macromastia is defined as an excess or hypertrophy of breast tissue over 1.0 kg per breast but less than 2.0 kg. Gigantomastia is defined as hypertrophied breast tissue equal to and greater than 2.0 kg per breast. [1]

McKissock recommended breast amputation mammoplasty and free nipple grafts for those reductions that required removal of more than one kilogram of parenchyma, or if the length of vertical distance is greater than 35 cm. [2]

Numerous pedicled techniques of breast reduction exist and pedicles can be based in any of the four quadrants as well as centrally. While the 2 main skin excision patterns include the Wise pattern (inverted T-shape closure) and the Vertical pattern. (Diagram.1 & 2)

Objective

The objective of this study was to determine exactly how efficiently the superomedial pedicle (SMP) technique performs breast reduction surgery, particularly in candidates with extremely large breasts, viz. macromastia and gigantomastia.

To evaluate the efficacy and complication rate of the SMP reduction mammoplasty technique, with wise pattern skin closure, for macromastia and gigantomastic breasts, at two different hospitals in Johannesburg, as performed by 2 surgeons, Chetty, V. and Ndobe, E.
Methods

Retrospective review of patient records with macromastia and gigantomastia who had undergone the SMP technique reduction mammoplasty, over a 4-year period. Complications were assessed at 1 week, 3 weeks, 6 months and a mean of one-year post operatively. Photo records were taken at each stage.

Results

There were a total of 31 patients, 62 breasts, with macromastia and gigantomastia that had an SMP pattern of reduction. The mean age was 30.1 years, mean BMI was 28.1 and average resection weight from each breast was 1835 g. The mean N-N was 44.13 cm. The majority, 90% of patients had a good aesthetic outcome with less than 20% having any long-term complications, which were all relatively minor.

Conclusion

The SMP reduction mammoplasty efficiently reduces extremely large breasts while preserving the integrity of the NAC, sensation and simultaneously provides a well-shaped, projecting breast in macromastia and gigantomastia patients.
AKNOWLEDGEMENTS

To my family for their inspiration always.
iv. LIST OF TABLES

Table 1: Patient data

Table 2: Complications

Table 3: Sensation 1 week to 1 year post BBR

Table 4: Sensation at 1 year: per Quadrant

Table 5: Breast Aesthetics after 1 year
LIST OF DIAGRAMS

Diagram 1: Vertical skin resection pattern with variation of pedicle designs

Diagram 2: Wise key hole pattern skin resection pattern with variation of pedicle designs

Diagram 3: Skin resection pattern: Wise keyhole pattern

Diagram 4: Vertical movement of the NAC and Wise Keyhole pattern.

Diagram 5: Post-operative breast scars. 3: peri-areolar, vertical and horizontal

Diagram 6: Post Operative Niple Areola Complex Viability: Right breast

Diagram 7: Post Operative Niple Areola Complex Viability: Left breast

Diagram 8: Postoperative Preservation of Sensation Right Breast

Diagram 9: Postoperative Preservation of Sensation Right Breast
LIST OF FIGURES

Figure 1: Patient 1 - Pre Operative Marking on Breasts

Figure 2: Patient 2 - Gigantomastia: yellow shading: Superomedial pedicle pre-operative planning

Figure 3: Patient 3 - Pre and Post-operative Superomedial Pedicle Reduction Mammoplasty

Figure 4: Patient 4 - Right Breast Superomedial Pedicle Dissection of Macromastia breast
DIAGRAMS

Vertical skin resection pattern with variation of pedicle designs

Pedicle designed in each of the 4 breast quadrants:

a. Superior pedicle
b. Lateral pedicle
c. Medial pedicle
d. Inferior pedicle

Diagram 1
Wise key hole pattern skin resection pattern with variation of pedicle designs

In each quadrant:

a. Central pedicle
b. Superomedial pedicle
c. Inferior pedicle
d. Superior pedicle

Diagram 2
Skin Markings

Preoperative

Diagram 4

1) White dash line:
 a) Wise ‘Keyhole’ pattern with peri-aereolar opening at the top of the ‘keyhole’
 b) White circular dash line: New areola marking

2) Blue arrow: planned vertical movement of the new NAC into the top of the keyhole

Post-Operative

Diagram 5

1) 3 Red lines: Scars- peri-areola, vertical, horizontal
NAC viability was well maintained, except minor superficial necrosis in 3 left breasts and 4 right breasts which experienced up to 10% and 15% minor surface necrosis respectively.
Diagram 7
Postoperative Preservation of Sensation

Diagram 8

Normal pre-operative sensation was preserved in over 80% on the left and 77% on the right. 16.1% experienced decreased, but not absent sensation, on the right and 12.9% on the left. One left and two right breasts still had absent sensation at 1 year.
Diagram 9

Left breast sensation

- absent
- decrease
- same
Testing Light touch in 5 Quadrants

1 Central quadrant: Nipple
2 Right: Upper and Lower quadrants
2 Left: Upper and Lower quadrants

Diagram 10

Breast Amputation Skin Markings

Diagram 11

A: Anterior View
B: Right Lateral View
FIGURES

Patient1: Pre-Operative Marking on Breasts

- Gigantomastic breasts
- Preoperative Markings: done in standing position
- Breast meridian: Central, vertical marking
- Skin resection pattern: Wise keyhole pattern (Fig. 1 and diag. 3)
- Midline: N-N to Umbilicus

Anterior View

![Figure 1a](Image)

![Diagram: Wise Keyhole Skin Pattern](Image)

Lateral View

![Figure 1b](Image)
Patient 2: Gigantomastia: Pre-operative planning yellow shading: Superomedial pedicle, left.

Post-operative views, right.

Figure 2a

Figure 2b

Figure 2c

Figure 2d

Figure 2e
Figure 2f

Patient 2

2a: Gigantomastia Breast-large pendulous breasts. Note shoulder ‘bra strap grooving’

2b: Yellow shading: Superomedial pedicle pre-operative planning

2c: Post reduction mammoplasty: Anterior view

2d: Left semi-lateral view pre-operative

2e: Left semi-lateral view post-operative

2f: Right lateral view post-operative
Patient 3: Pre and Post-operative Superomedial Pedicle Reduction Mammaplasty

Anterior View
Pre-Operative Markings

Post-Operative: 1 month Note: Vertical Scars

Figure 3a
Figure 3b

Lateral View
Pre-Operative

Post-operative

Figure 3c
Figure 3d
Patient 4: Right Breast Superomedial Pedicle Dissection
Macromastia

Anterior view: Preoperative Marking

- Pedicle de-epithelialized
- New NAC reduced to 4.5-5.5cm diameter
- Vertical pillar height: 6-8cm

Figure 4a

Figure 4b
Rotation of Pedicle outward and upward into the keyhole of the Wise Keyhole

Figure 4c
LIST OF ABBREVIATIONS

BBR: Bilateral breast reduction

SMP: Superomedial pedicle

NAC: Nipple areola complex

IMF: Inferior mammary fold

N-N: Nipple to suprasternal notch distance

N-IMF: Nipple to inframammary fold distance

PI: Protease inhibitors

HIV: Human Immunodeficiency Virus

HAART: Highly Active Anti-Retroviral Therapy

s.c.: subcutaneous

ICN: Intercostal nerves
CHAPTER 1 - INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Historically, moderately large breasts have reflected a sign of womanliness and femininity, and displayed both their sexuality and a woman’s ability to nurture. Though a woman with breasts that are significantly larger than the aesthetic norm of her era, may be seen as unusual or deformed.

Breast amputation with free-nipple graft and numerous unilateral pedicled and bi-pedicled surgical reduction techniques are amongst the many current options for reducing large breasts. Some of the more severe complications of these reduction procedures include NAC and or skin flap necrosis, hypopigmentation change in sensitivity of the NAC.

Reduction mammoplasty improves body posture and decreases the perception of pain. [3]

Excessively large breasts, such as in gigantomastia is a disabling and unusual condition marked by extreme mammary gland enlargement. [4] Extremely large and pendulous breasts can be troublesome to a woman. They cause a broad spectrum of physical as well as psychological repercussions. Macromastic and gigantomastic breasts are usually pendulous and heavy with nipples and areolas pointing downward. [5][6] Clinically they have averagely bigger than normal, ptotic, descended, mammary glands, where most of the breast tissue hangs beneath the inframammary fold (IMF), additionally resulting in breast discomfort, ulceration and ‘bra-shoulder grooving’.

The candidate usually has a high BMI with a wider chest and pannus folds in the abdominal region.

Excessive breast hypertrophy results in uncomfortable mastalgia, neck, back and shoulder pain, postural distortion, can lead to skeletal problems in the IMF [5][6] and nerve paresthesia’s. Additionally, clothing may never fit well.

Large breasts place restrictions on participation in exercise and sport. [7][8]

They are often associated social stigmas which leads to loss of confidence, social discomfort, embarrassment and feelings of sexual inadequacy. In more severe cases the chest weight can cause breathing discomfort and difficulty, especially during supine lying.

The large breast size can dominate a woman’s appearance and contribute to a poor quality of life. [9][10] The cosmetic, physical defect potentially causes psychological and
emotional disturbances such as social awkwardness and depression. The hypertrophic breast size can dominate a woman's appearance and contribute to a poor life quality.[9][10]

Bilateral breast reduction (BBR) offers advantageous physical benefits. Potential psychological advantages are immense and contribute to improved body self-image, quality of life, sexual function, as well as improving related symptoms of anxiety and depression.[Error! Bookmark not defined.][11]

Hall-Findlay[12] outlined why gigantomastia breasts, warrant a careful understanding when considering choice of surgical reduction procedure. This requires a plan, individualized to the patient, pre-empting of physical changes which occur when reducing the volume and weight, and careful manipulation of the NAC.[12]

The approach to bilateral breast hyperplasia has traditionally been a surgical one, the first more primitive methods made their debut over 100 years ago.[13]

Thorek, in 1921[14] described the early departure into this realm, and endeavored to excise large amounts of the breast tissue surgically and transplant the NAC, for purely cosmetic reasons.

Some additional historic indications for breast amputation[15] and free grafting of the NAC, included gigantomastia and macromastia, older age group, poor wound-healing ability e.g., diabetes, chronic steroids systemic disease with poor microcirculation, and previous breast scarring which could compromise skin flap or pedicle tissue viability.

Attention to patient selection will limit the possible functional and cosmetic liabilities of the amputation and free nipple graft technique. It was not offered as an optimal choice for younger candidates who may want to breast-feed infants in the future, or if they don’t want to risk loss of nipple-areola sensation.

Courtis et al.[16] looked at patients undergoing different plastic surgical procedures on their breasts and assessed them before and after operations with respect to sensation from crude touch, light pressure, and pain. Those with extensive operations on the breast (the more skin and breast tissue removed) had greater postoperative decrease in sensation. Reduction mammoplasty and subcutaneous mastectomy were associated with decreased sensation in a significant number of patients. At two years, 15 percent of the patients still had impaired sensory perception, although crude touch and light pressure appreciation had returned. Many of these patients had normal erectility with normal, and even enhanced, sensuality.[16]

Robbins[17] in 1987, suggested the breast amputation procedure only for excisions greater than 1500 mg per breast, extreme skin laxity or nipple excessively far from the...
desired new position. In theory, breast amputation can remove a considerable amount of the mammary ducts and thus could also be beneficial in helping diminish the risk of subsequent breast cancer.

However, some valid reservations about breast reduction by amputation are as aforementioned for BBR, and including, diminished nipple sensibility, actual NAC loss and erectile response. Additionally, the possibility of flattening of the breast and patchy loss of pigmentation of the NAC are a concern. Often a suboptimal breast shape is an additional downside with amputation.

Medical hormonal manipulations to attempt to reduce massive breast hypertrophy are ineffective. Medical regimens have included Tamoxifen, progesterone, Bromocriptine, and testosterone.

Loss of weight alone, correlates with reduction in breast size, but does not alter body proportions or breast position and has not been shown to definitively relieve the symptoms of breast hyperplasia.[12]

Breast pedicle reconstructive reduction procedures has been shown to give relief to both functional and aesthetic problems associated with hyperplastic breasts.

Reduction mammoplasty with a pedicled technique aims to create proportionate, projecting breast mounds with minimal scars, whilst retaining normal sensation, erectile function and ideally the ability to breast feed.

The many methods for reduction mammoplasty have evolved in response to a wide spectrum of challenges. Reduction mammoplasty has both a reconstructive, aesthetic as well as a psychological component. The main indication for intervention is relief of pain and discomfort in the neck, back, and shoulder. Preoperative patient planning will reveal the most optimal pedicle choice, aiming at the best functional and cosmetic outcome for an individual. Patient satisfaction is usually immense, and most cases show early and favorable improvement. Numerous pedicled techniques exist. (Diagram 1 and 2).

Two choices need to be made: a. what skin incision pattern is to be selected? and b. what pedicle to choose to preserve the NAC on?

Usually quadrants other than that of the preserved pedicle, are surgically removed, the breast is shaped and redundant skin is excised. An entire array of approaches and surgical methods have been described to achieve the above-mentioned goals. Out of these, the Wise pattern[18] skin access with inferior pedicle breast reduction has been the most popular choice for reduction mammoplasty in recent years.[19] (Diagram 3)
However, the vertical pattern mammoplasty has its advantages and proponents too, due to the works of Lassus[20] Lejour[21] and Hall-Findlay[22] amongst others. Benelli[23] has advocated the circum-areolar access for the operation.

In cases of mild hypertrophy liposuction of the breast achieves significant and adequate size reduction.

The superior pedicles as techniques of BBR, including specifically the SMP, are recognized by many as being technically easier, and capable of resulting in a longer lasting cosmetic effect.[22] Though, traditionally the recommendation held true mainly for relatively small and moderate size BBRs.

Medium and long-term functional and aesthetic results post reduction mammoplasty reflect important parameters for assessing the efficacy of the different surgical techniques. The SMP techniques are reported to be reproducible, easy, and are able to produce a more appealing breast projection in moderate volume breast hypertrophy.[41] They also show reduced pseudoptosis of the inferior mammary pole compared to techniques using inferior pedicles.[24]

Results have not been previously published for the use of the SMP procedure in reduction of large or gigantomastia breasts with elongated NAC to suprasternal notch distances (N-N).

The objective of this study, therefore, was to ascertain the SMP reduction pattern efficacy in candidates with extremely large breasts, macromastia and gigantomastia and very long N-N distances, above 40cm.

1.1.1 Aetiology of Breast hypertrophy

Hyperplasia or hypertrophy of breast tissue due to the action of estrogen effect on breast tissue and also due to increased receptor sensitivity in breast tissue. The receptors are contained predominantly in the ductal epithelium, collagen and stroma of the breasts may have increased sensitivity to minimal concentrations of the estrogens and progesterone’s that regulate breast growth and development.[25]

1.1.1.1 Neonatal hypertrophy

It is a common finding in both male and female sex, characterized by a firm sub-areolar mass palpable in full term infants. It is etiologically related to circulating maternal hormones and also possible increased receptor sensitivity in target tissue of breast. A relationship exists between the presence of subcutaneous breast nodules and the level of gestational maturity.[25]
1.1.1.2 Genetic

The size of women's breasts is determined by several factors, including inherited genes. Some females may be genetically destined to have large breasts. And genetic predisposition may be worsened by an individual's weight gain and or pregnancy.

1.1.1.3 Virginal/ Juvenile mammary hypertrophy

The etiology unknown, a rare condition.

An alarmingly rapid breast enlargement during adolescence. These patients often have a high rate of recurrence rate following any type of surgical mammoplasty procedure to reduce the breasts.

1.1.1.4 Adolescence

Macromastia occurring in puberty is often idiopathic and usually multifactorial, or associated with obesity and hormonal imbalances. Breast cancer in adolescents is very rare and even less frequent in children.

1.1.1.5 Pregnancy and hormonal influences

Gigantomastia and macromastia have been described during pregnancy or weight gain periods, postpartum and middle age, following menopause or with commencement of the use of Hormonal replacement therapy (HRT).

1.1.1.6 Obesity

The American Board reports a 76% increase in BBR surgery over the period 2009-2014. [26]

The advent of ‘junk’ food all over the new world, has given rise to a massive and rapidly growing healthcare challenge, increasingly affecting developing countries. This alarming new trend rampant in South Africa, who now boasts twice the mean world obesity rates, and according to the report has evolved into the world’s third most obese population. [24] Almost two-thirds of the South African nation is obese or overweight and, while in first world countries, the obesity affliction also affects more commonly women compared to males. Alarmingly, 69.3% of female South Africans show unacceptably large levels of central accumulated adipose tissue, and greater than forty percent are show up as clinically obese, according to their BMI charts. The definition of clinical obesity is a BMI greater than 30. [27]

Plastic surgeons have felt the impact in the form of increasing numbers of patient requesting and general body reduction and contouring procedures, particularly for breasts.
1.1.1.7 Side effect of Protease inhibitors (PI) in HIV patients

In South African in 2013, 6.3 million people are reported to be living with HIV (Human Immunodeficiency Virus), with 42% adults on antiretroviral treatment in 2012-2013. [28]

Fat redistribution and lipoatrophy are the potentially damaging side effects of HAART [29] (Highly Active Anti-Retroviral Therapy).

Abnormal lipid deposition or lipodystrophy, namely fat redistribution and its complicationsthereof have become a burden for HIV infected patients taking HAART medication. [27]

HAART and combination therapy, specifically HIV-1 protease inhibitors (PIs) have drastically altered and prolonged the survival period of patients infected with HIV. The unfortunate side effects are those of an associated lipodystrophy syndrome. The syndrome is often characterized by selective excess fat deposition, more in some areas and loss of subcutaneous (s.c.) fat in other regions of the body. Lipodystrophy classically displays a central fat accumulation pattern including breast, abdomen, dorsal upper back, (dorsal hump), with simultaneous loss of s.c. fat tissue in other areas, specifically face and limbs.

1.1.1.8 Gigantomastia due to Penicillamine-D

The drug is used in the treatment of various diseases, including Scleroderma. One of the adverse, but rare side effects is breast hypertrophy. The breast enlargement is reversible and regresses when treatment stops. It has been proposed that penicillamine breaks down carrier proteins for estrogen and this results in increased circulating estrogen able to exact a local effect on breast tissue. [30]

1.1.1.9 Cowden Syndrome

Breast hypertrophy often occurs in Cowden’s syndrome, which multiple is characterized by multiple hamartomas and neoplasia’s.

1.1.1.10 Iatrogenic Causes

Include asymmetry due to unilateral benign and malignant mastectomy for breast diseases which can result in breast asymmetry.

1.1.2 Incidence

The American Board of Plastic surgeons [31] record breast reduction surgery as the 8th most common cosmetic procedure in 2013. They performed a total of 103 775 breast reductions in 2013.
1.1.3 Indications for Choosing a pedicled BBR for Macromastia/Gigantomastia

Reduction mammoplasty procedures are undertaken in a female who had the above described main complaints, and were free of surgical contra-indications, viz. uncontrolled comorbidities, large trauma to the breast, back or neck, or a history of improvement of breast hypertrophy with a simple body weight loss program. Relief of some of their symptoms, by manually elevating the breast weight off the chest wall, suggests a successful outcome if surgical reduction is undertaken. In addition, a history of breathing more comfortably upon standing from supine lying, support the diagnosis of symptomatic macromastia.

1.1.4 Objective

Surgical approach to Macromastia and Gigantomastia has historically been with breast amputation and free grafting of the NAC. This method, while for many represents an option in cases of excessively large breasts has, as mentioned, many disadvantages. Breast amputations pre-operative skin markings, illustrated in Diag. 10, uses the inverted t-technique, (described in 2.2 below). However instead of the wise-keyhole pattern it uses two diverging arms are drawn from the selected nipple point at an angle of 90 degrees, and vertical limb length is measured and designed to an average of 8cm height.

Indicated for women with gigantomastia, ≥ 2500g per side and or patients with complicating factors like increased age, or co-morbid illness where shorter operating times and low blood loss is required.\(^{[32]}\)

Some authors prefer breast amputation with a free nipple transfer when the NAC elevation is > 15cm.\(^{[32]}\)

Total breast amputation, markings illustrated in Diag. 10, uses the inverted t-technique, instead of the wise-keyhole pattern shown in Diagram 4. Two diverging arms are drawn from the selected nipple point at an angle of 90 degrees, limb length is measured to an average of 8cm.

A number of surgical methods to reduce large breasts have been successfully used. The optimal choice of operation for excessively large breasts, however, remains controversial amongst surgeons.\(^{[10]}\)

The primary objective of BBR surgery are to reduce breast size and volume, while still maintaining viability of the NAC and the breast skin flaps.\(^{[5]}\) It is vital to maintain the sensation of the NAC, and maintain its normal pigmentation, and to simultaneously produce a symmetrical, conical breast shape.\(^{[6]}\)
The larger the breast dimensions, the more difficult it is to safely achieve these objectives.

Of primary importance in achieving these objectives is the meticulous preservation of the relevant neuro-vascular supply to the NAC and breast skin flaps.

‘A constant battle between blood supply and tissue preservation’ is how Ralph Gilles described the quest of Plastic surgery.\(^7\) Reducing very large breasts is a fine balance between excision of a large amount of parenchymal tissue and skin, while still retaining functional viability of the tissue left behind.

The SMP technique was initially described by Orlando & Guthrie in 1975 for small and medium sized breast reductions \(^{11}\) Reduction sizedefined as mild >300 g resection, to the moderate = 300–800 g to the severe >800 g resection.

This technique was, in this study, applied to Macromastia and Gigantomastia breast, specifically those breasts with large excision weights and very long nipple to notch distances (N-N). Outcomes were measured in terms of post-operative preservation of NAC and breast skin flaps, sensation, shape, symmetry and projection.

1.1.5 Background

1.1.5.1 Concepts in Perforator Anatomy and Blood supply

a) Arterial Perforators

The arterial perforator supply of the female mammary gland is predominantly from the internal mammary artery perforators, 48,8%, 24,4% via the anterior IC perforators, 23.2% via the lateral thoracic perforators, in 2.4% the NAC is supplied by the Axillary artery branches.\(^{33}\)

Taylor and Corduff\(^{34}\) found that the perforator blood entering the mammary glands do so at a superficial level. Main source artery perforators enter the subcutaneous tissue, into the mammary gland and subsequently turn downwards to penetrate into the parenchyma. These originate from the Internal mammary/Internal thoracic network,\(^{34}\) together with the perforators from the lateral thoracic artery and the thoraco-acromial network. A single perforator emanating from the internal thoracic artery gives off one branch, consistently from the second or third intercostal space (ICS) and turns inferiorly and obliquely to approach the NAC.\(^{34}\) It is most commonly present at the breast meridian just beneath the skin at about 1 cm deep. This vessel supplies directly the superior and superomedial breast pedicles.\(^{34}\)

The viability of the NAC is maintained by preserving the microvascular integrity of the underlying dermo-glandular layer of the NAC. The surgical preservation of the dominant pedicle perforators from both the 2nd and 3rd interspaces includes a dual
axial supply to the SMP. A full thickness pedicle is maintained and incorporated into the superior and medial quadrants and a limited medial undermining is performed. Meticulous handling of the superficial tissue improves NAC preservation on a long pedicle. The pedicle is rotated laterally and outward, and then upward.

SMP demonstrates its versatility by incorporating a broad base superiorly as well as from the medial quadrant. The dual blood supply of the flap would hence allow the gigantomastic breast to be safely manipulated.

Post-operative NAC survival correlates directly with the patency of the blood supply of the distal most tip of the SMP, viz. the furthest point from the arterial source supply.

b) Venous Drainage
Usually veins accompany arteries and their perforators. However, those supplying the pectoralis muscle, which provide the perforators to the inferior breast pedicle do not all consistently have an accompanying vein.[33] The veins form a superficial, concentrated venous plexus in the skin surface and the areola. Significant damage to this venous system occurs if deep circumferential incisions are placed in the areola.[35]

Breast pedicle designs, such as an elongated superior pedicle, which may require folding of the pedicle risks viability of its venous return. Pressure of the arterial inflow may be sufficient to overcome the folded pedicle; however, return of venous flow would suffer from the compression pressure of folding. A good practice may be to preoperatively mark the veins and attempt to incorporate some of them in the pedicle design. This may secure the venous drainage of the flap.

1.1.5.2 Preserving Breast Sensation

The primary objective in surgical practice has focused on preserving blood supply and thereby viability of tissue. However, additionally it involves preserving also function and sensation of the breast. The NAC serves as a region of concentrated nerve supply, the sensory unit of the breast. Its preservation is an important indicator of surgical efficacy. It is a valuable part of women's psychology and body health image, making preservation of nipple sensation of the utmost importance.

Jaspers[36] studied the superficial innervation of the female mammary gland, and demonstrated its medial derivation from the 1st-4th intercostal nerves (ICN), anterior branches, the lateral derivation of the lateral cutaneous portions of the second to the seventh ICN. The NAC is predominantly, and uniformly, supplied via the lateral and anterior branches of the 4th intercostal nerve, which runs cutaneous. The superficial branches of the 3rd and 4th ICNs provide additional cutaneous supply.[36] This study illustrated the consistent and equivalent dual supply of the lateral and anterior
cutaneous portions derived from ICNs. Recommendations thereof, in order to avert disruption to both lateral and anterior cutaneous portions of ICNs, 3, 4 and 5, one should pay attention to these during surgical dissection. Specific attention is given to the 4th ICN which is the dominant nerve to the NAC. Riccio [37] proposed a breast zone where it is ‘unsafe’ to dissect during reduction mammoplasty and it should to be avoided to preserve nipple sensation.

The major innervation to the NAC is provided by the fourth ICN. Dissection should be avoided in the inferolateral breast quadrant or "unsafe zone", during breast surgical procedures including reduction mammoplasty, to reliably spare nipple sensation and maximize patient outcomes. Riccio [37] proposed a breast zone where it is ‘unsafe’ to dissect during reduction mammoplasty and it should to be avoided to preserve nipple sensation.

The initial doubt regarding the lateral cutaneous portion of the 4th ICN, as the predominant sensory supply to the NAC, has been clarified. It is the most common nerve to provide sensation to the NAC. What is however poorly understood, is the detailed anatomical structure of that innervation. A primary branch of the 4th ICN travels superficially, it is demonstrated to be an important nerve which runs initially on the fascia of the pectoralis muscle, then takes a nearly 90-degree rotation at the breast meridian and then runs downward in a vertical fashion from the posterior surface of the breast, to approach the NAC. This considered, it would be prudent to leave a lean fatty layer of tissue above the fascia of the pectoralis muscle when dissecting any full-thickness pedicle, so as to maintain the sensibility to the NAC.

The fourth ICN gives off a lateral cutaneous branch which is additionally supplied by other lesser branches. The branches from the anterior cutaneous nerve initially runs a superficial course and terminates medially to the NAC border. In this instance in order to maintain the sensibility of the NAC, a pedicle based in the medial quadrant would thus not be required to be a full thickness flap.

A smaller and much less important contribution to sensation is made by small supraclavicular nerves branches.

Gigantomastia and Macromastia patients may experience changes in sensation as the breast size grows and expands. The postulated cause was thought to be a weight traction-pulling force damage to the sensory branches, or the resultant diminished density of nerve fibers, however both these were refuted in a paper by Greuse in 2004.

A dual hypothesis was considered by Godwin. Firstly, the diminished sensibility could result from sensory nerve fiber neuropraxia, consequent to a traction-pulling force due to the heavy, pendulous breast parenchymal weight. These second hypothesis thereafter postulated that the NAC widened by tissue expansion due to the large volume of

37
mammary tissue resulting in a correlated diminished concentration of sensory fibers per surface area and thus diminished overall sensation.

The nipple and areola are not similar in their nerve supply. The areola is a, pliable thin structure which lends itself to easy traction as the mammary gland expands and thus experiences a simultaneous reduction in sensory fiber concentration. The nipple is less able to stretch and widen with mammary hyperplasia, it is also a tighter, more compact structure. The nipple demonstrates neither changes of sensory perception nor an alteration of fiber concentration with gland ptosis or an expanding mammary size. They showed that neither the theory of traction-pull damage to the fibers of sensation, or the diminished fiber concentration, individually can fully account for the perceived breast loss of sensation noted by individuals with breast hypertrophy. They instead postulated that subjective numbness perceived by patients was multifactorial, and importantly, included dissatisfaction with body habitus and patient interpretation of loss of areola sensation as also affecting the nipple. It is this may affect their overall perception of NAC sensation.

Le Roux used CT analysis to radiographically demonstrated nerves in a superomedial breast specimen that have been defined with fine mapping wires. The nerves supplying the NAC become superficial at a length just greater than 3 cm from the NAC and at a depth of 2 mm. The nerves arise deep and become superficial to traverse in a plane just below the dermis. The design of the SMP is most likely to capture the anterior intercostal nerves 2 to 5 to the medial breast, branches 4 and 5 supply the NAC. Hence the superficial breast tissue must be preserved to enhance capture of this nerve supply network.
CHAPTER 2 - PATIENTS & METHODS

2.1 Patient Selection

The study was a retrospective record review of patients who had macromastia and gigantomastia, and had undergone a SMP technique of breast reduction surgery, performed at the Rand Clinic and Chris Hani, Baragwaneth hospitals between 2008 and 2012.

Inclusion criteria were healthy females, aged between 19 and 59 years, with no previous breast surgery, BMI ≤ 31 kg, and non-smokers. Other inclusion criteria required a breast resection weight of greater than 1500g per breast, and a N-N distance of greater than 40 cm. Women with poorly controlled co-morbid illnesses were excluded. Patients were allocated study numbers, instead of names or hospital numbers, to protect their identity. Photographs were taken without facial view. Procedures were performed at the Rand Clinic and Chris Hani, Baragwaneth hospitals, Johannesburg, over a four-year period, 2008-2012.

2 surgeons performed all procedures. Approval was obtained from the Human Research Ethics committee, Medical University of the Witwatersrand.

(Clearance certificate number: M130236).

According to protocol, data was collected retrospectively, bilateral breast reduction (BBR) patients with Macromastia and Gigantomastia size breasts, who had undergone a superomedial pedicle (SMP) pattern reduction mammoplasty were collected and data collated. The objective was to show the efficacy of the SMP for the safe surgical reduction mammoplasty of excessively large breasts. Patient records were evaluated.

The cohort selected were women presenting with macromastia and gigantomastia, large, pendulous breasts with varying complaints of headache, back, neck, shoulder and upper thoracic pain and discomfort, including inflammatory skin problems, difficulty exercising, psychological manifestations and loss of self-esteem due to their large breast size.

Inclusion criteria were healthy females, with age ranging from 19-59 years. BMI ≤ 31, non-smokers. Specifically, those with breast resection weights > 1500g per breast, and nipple to suprasternal notch distance (N-N) > 40 cm. Exclusion criteria were women with BMI ≥ 32 or greater, smokers and poorly controlled co-morbid illnesses. Major trauma to back, neck or chest were also excluded.

2.2 Surgical Approach
The pre-operative patient assessment followed routine guidelines for standard BBR patient preparation.\cite{5}

2.2.1 Skin Markings (figure 1)

The patient is marked in the standard manner for BBR with SMP and Wise pattern skin closure.\cite{5} For excessively large breasts special attention is given to mark the candidate in an upright position.

- The patients were marked in the standing position
- The new NAC height is marked on the breast meridian.
- A deliberate decision was taken to err on marking the new NAC site lower, rather than too high. The NAC was marked at a slightly low average height, of 23-24 cm.

2.2.2 Operative technique

2.2.2.1 Areolar Opening

A key-hole template design was used. The opening for the areola was designed at the top of a key-hole pattern at the initial preoperative marking stage. First the new NAC level is determined by a combination of placing the top of the NAC at the anterior projection of the IMF and diagonal height from the suprasternal notch. The template design results in a circle when it is completed, with a pre-measured circumference of 16 to 18 cm. A 16 cm keyhole circumference delivers a 5 cm NAC diameter. (see Diagram 4: White circle, 1b).

A circumference greater than 20 cm will result in enlargement of the areolar diameter widening of the scar at the circumference.

The pedicle is, full thickness, based superomedially and reaches the chest wall meridian. The flap base is fashioned in such a way that that fifty percent of the base is in the window opening of the NAC and other fifty percent runs alongside the skin vertical resection line of the inverted T pattern. This assists with ease of inset. It fashions a good superomedial pillar. Keep the base as wide as possible in the superomedial quadrant, so as to capture more blood supply while still making allowance for the pedicle to rotate away from the midline into the top of the keyhole of the Wise pattern. Avoid torsion. It is wise to delineate the superficial veins initially, if possible, such that the design of the pedicle would include superficial venous drainage.

2.2.2.2 The Breast Pedicle

The superomedial pedicle is designed and planned as a full-thickness pedicle.
De-epithelialization is performed while leaving a border circumferentially around the areolar edge.

The superomedial based pedicle is dissected, descending to the level of the chest wall by cutting cautery or scalpel. The flap is beveled at its superior margin so as to leave a wide stage of support for the NAC. A larger, fuller pedicle will not assist in delivering a full upper pole, instead, it may make it more difficult to inset. It is however prudent not to excise too much of the parenchyma superiorly, except cases where the upper pole is excessively full.

2.2.2.3 Excision of Excess Breast Parenchyma

The Wise pattern marking guides the skin as well as the parenchymal resections. The tissue is undermined from the IMF upward. Parenchymal resections are done inferiorly. The lower, horizontal ellipse of breast tissue is removed by beveling outwards beneath the skin laterally and medially and undermining down to the fascia of the pectoralis muscle, extending down to the IMF.

Inferiorly, vertical and horizontal ellipses of parenchymal tissue are removed en-bloc. Of importance to note in this method, is to limit the extent by which the skin is undermined from the underlying breast parenchyma in both the medial and lateral vertical pillars, keep the pedicle base broad in the superomedial quadrant. It is crucial to leave a thin to moderately thickness fatty layer of tissue beneath the undersurface of the dermis i.e. approximately 1-2 cm. Breast tissue resection is removed, beveling outward extensively on both the lateral and medial side to a lesser extent. Specifically, the lateral breast pillar is thinned out, while the medial pillar is kept comparatively full. The NAC is preserved and the parenchyma under the dermis is maintained at a minimum of 2 cm thickness.

The lateral and medial pillars should measure 6-7 cm in length, according to the objectively planned final breast shape and volume. Vertical pillar sutures are used to provide additional shaping of the breast.

The IMF usually rises 1-2 cm post-operatively, compared to its original position, especially laterally. The parenchymal tissue along the IMF therefore needs to be excised directly intraoperatively, and especially just lateral to the meridian parenchymal tissue must be adequately removed. Leaving too much subcutaneous fat here will contribute to puckering. It must be noted that puckering postoperatively is rather a challenge of too much tissue subcutaneously, rather than too much skin.

If the deeper subcutaneous tissue layer is not removed in the inferior pole, a pucker will persist. The superficial tissue is preserved. The skin is excised according to the Wise keyhole design guideline.
2.2.2.4 **The Superomedial Breast Pedicle Inset**

Pedicle rotation occurs laterally and outwards and hence easily reaches into the top of the keyhole without kinking or compression. The inferior border of the superomedial pedicle rotated upwards and outwards then becomes the medial pillar border.

The new NAC is preserved on a dermo-glandular pedicle based superior and medially.

Closure of the new areolar circumference is performed using a Monocryl 3/0, which is buried. It is unnecessary to undermine the dermal layer at the base of the pedicle at closure. The flaps timeously turned into a superior position once the areolar circumference is closed inferiorly. Before final in setting of the NAC, the pillars are closed.

2.2.2.5 **Pillar Closure**

Both vertical pillars are designed at 6-8 cm. From the left and right side of the breast these pillars are pulled towards the center vertical midline of the breast, with pillar sutures. They are so used to provide additional shaping of the breast. Sutures are inserted intermittently along the vertical length of the opening. The pillars are closed with Monocryl3/0, suture which is placed into the fibrous subcutaneous part of the breast parenchyma.

Pillar suturing is started from inferior to superior once the vertical pillars are brought together. The new central vertical line will form the perpendicular limb of the final inverted T-scar on the reduced breast. The first suture rotates the pedicle into position, by taking it from its inferior position and placing it into the top of the key-hole. It is unnecessary to put the deep tissues under tension, the initial pillar suture, placed at the base, is fairly superficial.

2.2.2.6 **Closure of the Keyhole Incision**

The skin envelope will dictate the breast shape. Monocryl 3/0, buried and interrupted, is used to approximate the deep dermis. It permits skin adaptation to the new shape rather than attempt to deal with the pucker by suturing it down to the chest wall. The possibility of suturing the pucker first time into the right position is low, and hence it will take months to smooth out. Meticulous hemostasis reduces the chances of hematoma, one of the main causes of delayed wound healing. The final, detailed shaping is performed in a curvilinear manner to fashion like a curve on a spherical surface. The skin envelope was closed in the regular inverted T-pattern.

Monocryl 3/0, interrupted, buried sutures are inserted into the deep dermis to ensure that the vertical limb closes in the line of the meridian.
A subcuticular Monocryl 4/0, suture is used to achieve the final skin closure. Suture bites that are too deep will gather the skin too tightly. The surgeon must be aware of delayed skin edge healing when large bites are taken, it can result due to blood vessel constriction.

The skin is closed along the inverted T with a 3–0 Monocryl, subcuticular.

While gathered skin or puckering laterally will stretch out with time to some degree, cheat away dog ears from lateral to medial as they have a tendency to gather laterally. Tension is avoided during closure.

Postoperative dressings to support the breast are essential, with a window facility to inspect the nipple and areola complex, without opening the dressing. Additional post-operative care is as for routine post BBR care. A snugly fitting bra is worn immediately post operatively and the patient is advised to continue to do so for a period of 3 months.

2.2.2.7 Methods of testing of NACs’ sensory competence.

The NAC sensation was crudely tested by means of a cotton bud stroked in each of 5 quadrants, Diagram 10.

Patient was asked to close their eyes and then respond by ‘yes’ or ‘no’ to being stroked lightly, by the examiner each of the 5 quadrants of the NAC.

The test was performed once pre-operatively, and then at first dressing change on approximately day 5, at 6 weeks, then on average of 1 year later at their last and final consultation

2.2.2.8 Methods of assessing post-operative aesthetic outcome

The aesthetic outcome of the breast was sub-divided into shape, symmetry, projection and scar formation. The allocation of ‘poor’, ‘fair’, ‘good’ and ‘excellent’ was purely the opinion of 4 specialists involved in breast surgery. They were shown anterior and lateral views photographs, taken at approximately 1 year post-operatively. They were asked to look at symmetry, projection, shape and scar formation and then categorize each patient outcome.
3.1 Table 1: Patient data

<table>
<thead>
<tr>
<th>Age</th>
<th>BMI</th>
<th>Right Nipple to notch</th>
<th>Left Nipple to notch</th>
<th>Right Nipple to *IMF</th>
<th>Left Nipple to IMF</th>
<th>Right Weight of breast tissue removed</th>
<th>Left Weight of breast tissue removed</th>
<th>Upward movement NAC: Left</th>
<th>Upward movement NAC: Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>29</td>
<td>49.0</td>
<td>48.0</td>
<td>23.0</td>
<td>22.0</td>
<td>1750</td>
<td>1720</td>
<td>26.0</td>
<td>23.0</td>
</tr>
<tr>
<td>38</td>
<td>27</td>
<td>44.0</td>
<td>43.0</td>
<td>19.0</td>
<td>19.5</td>
<td>1650</td>
<td>1795</td>
<td>21.0</td>
<td>20.0</td>
</tr>
<tr>
<td>35</td>
<td>28</td>
<td>42.8</td>
<td>43.8</td>
<td>18.0</td>
<td>18.0</td>
<td>1620</td>
<td>1659</td>
<td>20.8</td>
<td>21.8</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>42.5</td>
<td>42.9</td>
<td>20.0</td>
<td>20.5</td>
<td>1800</td>
<td>1890</td>
<td>20.5</td>
<td>20.9</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>46.0</td>
<td>45.0</td>
<td>20.0</td>
<td>19.5</td>
<td>1670</td>
<td>1790</td>
<td>23.0</td>
<td>22.0</td>
</tr>
<tr>
<td>35</td>
<td>27</td>
<td>40.5</td>
<td>39.0</td>
<td>17.0</td>
<td>17.5</td>
<td>1800</td>
<td>1800</td>
<td>19.5</td>
<td>20.0</td>
</tr>
<tr>
<td>31</td>
<td>28</td>
<td>43.7</td>
<td>43.8</td>
<td>20.5</td>
<td>22.0</td>
<td>1950</td>
<td>1990</td>
<td>20.7</td>
<td>20.8</td>
</tr>
<tr>
<td>39</td>
<td>35</td>
<td>41.0</td>
<td>41.5</td>
<td>18.0</td>
<td>18.0</td>
<td>1790</td>
<td>1700</td>
<td>19.0</td>
<td>19.5</td>
</tr>
<tr>
<td>32</td>
<td>29</td>
<td>40.8</td>
<td>42.5</td>
<td>23.0</td>
<td>25.0</td>
<td>1600</td>
<td>1700</td>
<td>18.8</td>
<td>20.5</td>
</tr>
<tr>
<td>54</td>
<td>26</td>
<td>41.0</td>
<td>42.0</td>
<td>23.0</td>
<td>24.0</td>
<td>1820</td>
<td>1850</td>
<td>19.0</td>
<td>20.0</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>47.0</td>
<td>48.0</td>
<td>21.0</td>
<td>21.0</td>
<td>1680</td>
<td>1410</td>
<td>24.0</td>
<td>25.0</td>
</tr>
<tr>
<td>42</td>
<td>31</td>
<td>48.0</td>
<td>49.0</td>
<td>27.0</td>
<td>28.0</td>
<td>2670</td>
<td>2720</td>
<td>25.0</td>
<td>26.0</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>45.0</td>
<td>46.0</td>
<td>24.0</td>
<td>23.0</td>
<td>2333</td>
<td>2200</td>
<td>22.0</td>
<td>23.0</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>43.8</td>
<td>43.0</td>
<td>17.0</td>
<td>18.0</td>
<td>2200</td>
<td>2100</td>
<td>22.8</td>
<td>20.0</td>
</tr>
<tr>
<td>32</td>
<td>29</td>
<td>41.0</td>
<td>42.0</td>
<td>21.0</td>
<td>21.0</td>
<td>1900</td>
<td>1800</td>
<td>18.0</td>
<td>19.0</td>
</tr>
<tr>
<td>37</td>
<td>25</td>
<td>46.0</td>
<td>46.0</td>
<td>28.0</td>
<td>28.0</td>
<td>1700</td>
<td>1800</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>46</td>
<td>30</td>
<td>38.0</td>
<td>40.0</td>
<td>22.0</td>
<td>23.0</td>
<td>1850</td>
<td>1700</td>
<td>16.0</td>
<td>18.0</td>
</tr>
<tr>
<td>26</td>
<td>32</td>
<td>46.0</td>
<td>46.0</td>
<td>25.0</td>
<td>26.0</td>
<td>1700</td>
<td>1700</td>
<td>24.0</td>
<td>24.5</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>46.0</td>
<td>47.0</td>
<td>23.0</td>
<td>23.0</td>
<td>1400</td>
<td>1380</td>
<td>23.0</td>
<td>24.0</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>49.0</td>
<td>49.0</td>
<td>28.0</td>
<td>28.0</td>
<td>1260</td>
<td>1260</td>
<td>26.0</td>
<td>26.0</td>
</tr>
<tr>
<td>24</td>
<td>31</td>
<td>42.0</td>
<td>43.0</td>
<td>24.0</td>
<td>24.0</td>
<td>1310</td>
<td>1330</td>
<td>19.0</td>
<td>20.0</td>
</tr>
<tr>
<td>42</td>
<td>29</td>
<td>47.0</td>
<td>47.0</td>
<td>21.0</td>
<td>22.0</td>
<td>1600</td>
<td>1640</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>23</td>
<td>32</td>
<td>49.5</td>
<td>49.0</td>
<td>25.0</td>
<td>25.0</td>
<td>2190</td>
<td>2100</td>
<td>26.5</td>
<td>26.0</td>
</tr>
<tr>
<td>19</td>
<td>24</td>
<td>43.0</td>
<td>44.0</td>
<td>23.0</td>
<td>24.0</td>
<td>1750</td>
<td>1650</td>
<td>20.0</td>
<td>21.0</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td>45.0</td>
<td>44.0</td>
<td>22.0</td>
<td>22.5</td>
<td>1850</td>
<td>1900</td>
<td>22.0</td>
<td>21.0</td>
</tr>
<tr>
<td>21</td>
<td>28</td>
<td>46.0</td>
<td>46.5</td>
<td>24.0</td>
<td>25.0</td>
<td>2100</td>
<td>2130</td>
<td>24.0</td>
<td>24.5</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>47.0</td>
<td>48.0</td>
<td>28.0</td>
<td>29.0</td>
<td>1990</td>
<td>1800</td>
<td>24.0</td>
<td>25.0</td>
</tr>
<tr>
<td>18</td>
<td>26</td>
<td>46.0</td>
<td>44.0</td>
<td>25.0</td>
<td>24.0</td>
<td>2200</td>
<td>2100</td>
<td>23.0</td>
<td>21.0</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>47.0</td>
<td>47.5</td>
<td>26.0</td>
<td>27.0</td>
<td>2300</td>
<td>2370</td>
<td>24.0</td>
<td>24.5</td>
</tr>
<tr>
<td>49</td>
<td>24</td>
<td>44.0</td>
<td>44.0</td>
<td>23.0</td>
<td>23.5</td>
<td>2095</td>
<td>2100</td>
<td>21.0</td>
<td>21.0</td>
</tr>
</tbody>
</table>
3.2 Table 2: Complications

Early and late, experienced by women after SMP breast reduction surgery

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>% Right breast (n=31)</th>
<th>% Left breast (n=31)</th>
<th>Mean %</th>
<th>Total number of women affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early (Day 0-21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superficial NAC necrosis (≤15%)</td>
<td>13</td>
<td>10</td>
<td>11,5</td>
<td>11</td>
</tr>
<tr>
<td>Superficial NAC necrosis (>15%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Complete NAC necrosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T-Junction wound breakdown</td>
<td>19,4</td>
<td>29</td>
<td>24,2</td>
<td>8</td>
</tr>
<tr>
<td>Fat Necrosis</td>
<td>6,45</td>
<td>6,45</td>
<td>6,45</td>
<td>4</td>
</tr>
<tr>
<td>Decreased/ loss of NAC sensation</td>
<td>29</td>
<td>25,8</td>
<td>27,4</td>
<td></td>
</tr>
<tr>
<td>Late (mean time = 1 year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent sensation of NAC</td>
<td>3,2</td>
<td>6,45</td>
<td>4,8</td>
<td>3</td>
</tr>
<tr>
<td>Decreased sensation of NAC</td>
<td>19,4</td>
<td>13,5</td>
<td>16,4</td>
<td></td>
</tr>
<tr>
<td>Loss of NAC (partial or complete necrosis)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypopigmentation</td>
<td>12,9</td>
<td>19,4</td>
<td>16,1</td>
<td>6</td>
</tr>
<tr>
<td>Hyperpigmentation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3.3 Table 3: Quadrant division of NAC Light Touch Sensation change at 1 year

5 Quadrants: Upper, lower, central (nipple)

<table>
<thead>
<tr>
<th></th>
<th>% Absent</th>
<th>% Decr.</th>
<th>% Same</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nipple</td>
<td>3.2</td>
<td>19.4</td>
<td>77.4</td>
</tr>
<tr>
<td>Right upper</td>
<td>3.2</td>
<td>19.4</td>
<td>77.4</td>
</tr>
<tr>
<td>Right lower</td>
<td>3.2</td>
<td>19.4</td>
<td>77.4</td>
</tr>
<tr>
<td>Left lower</td>
<td>3.2</td>
<td>19.4</td>
<td>77.4</td>
</tr>
<tr>
<td>Left upper</td>
<td>3.2</td>
<td>19.4</td>
<td>77.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>% Absent</th>
<th>% Decr.</th>
<th>% Same</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nipple</td>
<td>6.45</td>
<td>16.1</td>
<td>77.4</td>
</tr>
<tr>
<td>Left upper</td>
<td>6.45</td>
<td>12.9</td>
<td>80.6</td>
</tr>
<tr>
<td>Left lower</td>
<td>6.45</td>
<td>12.9</td>
<td>80.6</td>
</tr>
<tr>
<td>Right lower</td>
<td>6.45</td>
<td>12.9</td>
<td>80.6</td>
</tr>
<tr>
<td>Right upper</td>
<td>6.45</td>
<td>12.9</td>
<td>80.6</td>
</tr>
</tbody>
</table>

*1 patient had increased sensation continued until week 6

3.4 Table 4: Breast Aesthetics after 1 year

(Mean Good=26.75, Poor = 4.25)

<table>
<thead>
<tr>
<th></th>
<th>Projection</th>
<th>Symmetry</th>
<th>Shape</th>
<th>Scar formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fair</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Good</td>
<td>23</td>
<td>29</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td>Excellent</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

** Independent Panel: shown final photographs of patients taken 1 year post-operative:D. Marchac (2012, Plastic surgeon, Private Practice), Dr. EA.Amaud, Hospital Necker Enfant Malades, Plastic surgeon), Dr.C. BeckerSurgeon, Hospital Americaine, Dr. L. Lepage, Anesthetist, Clinique Turin,Paris. **
3.5 Results Analysis

There were 31 patients who met the inclusion criteria for macromastia and gigantomastia breasts which had been surgically reduced by the SMP pattern. All procedures went well and all patients were discharged 1-2 days’ post operatively.

The mean(SD) age of the cohort was 29.3(9.27) years and a mean(SD) BMI of 28.1(2.5) kg. The mean(SD) weight removed from the right breasts was 1842 (0.31) g and from the left breasts was 1828(0.31) g. There was no significant difference in weight removed between the right and left breasts (p=0.4216, paired t-test).

The mean(SD) nipple to notch length (N-N) was 44.7(19.2)cm for the right breast and 44.8(20.1) cm for the left breasts with no significant difference (p=0.0707 paired t-test) between the right and left breasts The mean(SD) elevation distance of the nipple areola complex, (NAC), was 22.4(3.3) cm for the right breast and 22.8(3.3) cm for the left breast. The elevation distance for the left breasts was significantly longer than the right side (p=0.0023 paired t-test).

Complications were minor and self-limiting (table 2). All patients showed preserved NAC viability post operatively. (Diagram 6 & 7) There were no patients with superficial necrosis greater than 15% of the NAC surface area. In a quarter of patients there were limited areas of wound breakdown occurred over the T-junction during the first weeks. They were managed conservatively with wound dressings and prophylactic antibacterial gel. None required surgical intervention. Fat necrosis was clinically diagnosed in 4 breasts, during the postoperative periods not associated with skin necrosis. Patients complained of pain and redness of breast, no nipple discharge. Sonar examination confirmed small lumps (<4 cm) in unilateral breast. They were treated conservatively; surgery was not deemed necessary. No infections were recorded. One patient had an allergic reaction to the dressing tape.

Final NAC sensation was tested at a mean time of one year.95,2 % of NAC maintained sensation post operatively. Of these 14,5 % experienced a decrease. 4,8 % lost NAC sensation altogether as a result of surgery, (Table 3). The median extent of NAC hypopigmentation was 20%. No problems of NAC hyperpigmentation were recorded.(Table 2)

There was no significant difference over time in sensation changes for the right breast (p=0.1063) but a significant reduction for the left breast over the same period of time (p=0.0159 both Fishers Exact test)In terms of final outcome of contour and aesthetics,
at 1 year, patients were independently judged\(^1\) to have a good outcome, 74.2% good projection, 93.5% had good symmetry and 93.5%, had good shape (93.5%) and 83.8% of patients were judged to have a good scar formation. The rest of the patients had a fair result for these parameters, while no patients were judged as poor. (Table 4)

\(^1\) 2 independent Plastic surgeons, 1 Breast surgeon, 1 Anesthetist.
CHAPTER 4 - DISCUSSION

4.1 NAC Placing

Thenew NAC level on the breast, should be set over the of the chest-wall meridian or the breast meridian itself. If the line is drawn through the existing NAC position, the current study found that this can be ambiguous due to fact that the NAC may be placed either too laterolateral or too medial, and hence it is more accurate to use the meridian.

The chest midline is marked on the IMF line by placing a tape measure beneath the breasts of the patient, in the IMF. The top of the new NAC is positioned at the IMF level, projected anteriorly to the breast surface. Creating a cone shape of the breast as well as sliding the NAC superiorly, is achieved by suturing of the lateral and medial pillars converging centrally.

The IMF may rise postoperatively with this technique; hence the surgeon must avoid designing the patients’ new NAC too far up, especially in candidates with an IMF naturally very inferior. Higher NAC placement may be appropriate in breasts with a substantial upper pole fullness, however, this is unlikely in the macromastia or gigantomastia breast. The NAC placed on the concave slope of the upper quadrant of the gigantomastic breast will ultimately result in a postoperative NAC position that will ride too high on the breast and or point skyward.

Due to the pull of the various vectors on the NAC, it is more appropriate to position the new NAC at a slightly lower level on the larger breast and so avoid the possibility of what is commonly referred to as the ‘high riding nipple’.

The surgeon should avoid marking the new nipple position lower, rather than too high. The current study marked the new nipple a slightly lower mean height, of 23cm in this cohort.

4.2 Skin Resection Pattern

The skin envelope shapes the breast, though it is prudent not to remove too much skin. The actual design of the pedicle pattern and soft tissue resection is important in the approach to the skin resection. To locate the vertical center of the lower pole, the method of turning the mammary gland upward and inward which allows meridian location on one side, followed by upward and outward to allow meridian location on the other side, is used. Centrally these vertices make up the perpendicular limb of an ‘inverted T’ scar. The horizontal limbs of the Inverted-T extend laterally and medially in the IMF.
4.3 SMP pattern design

Designed full thickness in the superomedial quadrant, the pedicle descends to the meridian of the chest. As described, when the pedicle base is constructed, fifty percent of the vertical width is designed along the the line of vertical resection of the Inverted-T-pattern, while the other fifty percent of the base of the vertical flap lies in the NAC window. This assists with ease of insetting of the pedicle. It creates a fuller superomedial pillar. As the base is kept as wide as possible, it captures more perforator supply. The importance of noting and even marking the superficial veins during the initial marking stage, cannot be understated, as it ensures that the SMP is fashioned to capture some venous drainage superficially.

The decision of the width of the the base of pedicle must be done astutely, about a two: one ratio for pedicle length to pedicle width is recommended, though not always physically possible. The base in the superomedial quadrant is kept as wide as possible, while still making allowance for the pedicle to rotate away from the midline, into the top of the keyhole. This will also allow more arterial capture and include more venous drainage. However, too broad a base may make it difficult to rotate the pedicle inward without torsion. The extra tissue from the base forms a round surface platform to support the NAC, and helps prevent it from sinking inwards postoperatively. Though, pushing too much tissue up into the upper quadrant does not necessarily give more upper pole fullness, but may instead may result in a drop down and pseudo ptosis. An excess parenchyma in the upper pole will hamper ease of pedicle insertion into its keyhole.

4.4 The Breast Pedicle

The pectoralis fascia is not incised into despite the resection reaching down to the chest wall, the overlying muscle fascia is unveiled and careful attention is paid to preserving it. Failure to do so results in unnecessary intraoperative bleeding and postoperative pain, and may results in an increased risk of sensation loss. Gently remove tissue from the deep surface. The NAC is preserved and the parenchyma under the dermis is maintained at a minimum of 2 cm thickness. Preserve the superficial tissue.

The superomedial region provides not only the arterial supply to the SMP, but additionally, the fullness that prevents the NAC, and especially the areola from sinking inward. Tissue excision just lateral to the meridian is performed. With a long pedicle there is less danger of tension but, beware, the superomedial pedicle is floppy due to its length and it can easily be inadvertently undermined.
4.5 Drains and Antibiotics

Intravenous antibiotics are started at anesthetic induction and continued until drain removal. Drains can be taken out on the 1st post-operative day usually. Wound taping is performed for wound support. A snugly fitting bra is worn immediately postoperatively as described above. With no scientific merit in prolonged antibiotic treatment, these can be withdrawn after 5-7 days.

4.6 Tape, Bandages, and Compression

Postoperative dressings to support the breast are essential. A window facility can be created to inspect the nipple and areola without opening the entire dressing. ‘Steristrips’ are used to dress the incision lines. Firm ‘Primapore’ and or taping over the inferior area of the breast inferiorly provides light wound compression. Excess compression however, must be avoided.

4.7 Exploring Concepts

4.7.1 Tissue Parenchymal Pattern Versus Skin Resection Pattern

Breast reduction, it is divided into 2 parts, a. the skin resection pattern viz. either wise keyhole (Inverted-T scar), lateral, vertical or circum-areolar skin patterns are used, and b. the pedicle design, viz. superior, inferior, lateral, medial or central. A third option would be breast amputation with free nipple grafts. Many combinations of the first 2 are possible.

4.7.2 Parenchymal Shaping Versus Skin Brassiere

This type of breast reduction technique relies mainly on an envelope formed by the skin, which act as a brassiere to maintain breast shape and support.

There controversy relating to the effectiveness of using the envelope formed by the skin to maintain the postoperative breast contour, is long standing. Genetics and lifestyle dictate how much skin and dermis will stretch over a duration of time. These factors with the addition of gravity almost ensure that the ‘Inverted-T’ tends to fall downwards, to a greater extent versus bottoming out in the ‘vertical skin’ pattern, over time. Generally, a 5cm rule for the vertical limb length has been recommended to prevent bottoming out. It remains controversial as to whether it is a valid recommendation or if it comparatively just flattens the mound of the mammary gland and pulls it below the initial IMF height.

The current study elected to keep the vertical limb pillars at an average of 6-8cm, so as to allow adequate space in the lower pole to accommodate a larger amount of breast tissue.
4.7.3 What role does the parenchymal resection play?
Deciding which pedicle drops out comparatively more is debatable. When fashioning the medial pedicle, the parenchymal tissue in the inferior regions is excised laterally and medially. When the inferior pedicle is used, the surrounding parenchyma is removed, i.e. the superior tissue in the lateral and medial superior regions of mammary glands parenchyma is removed. \[42\] Does the inferior pedicle drop out more because its weight and position are more subject to gravity?

4.7.4 Do Breast Sutures to pectoralis fascia work?
Sutures placed from breast to breast parenchymal tissue hold to some degree, but there is no evidence to show long term suture capacity to hold between breast tissue on the fascia of the pectoralis fascia, these stitches don’t seem to hold promise.\[43\] As pectoralis fascia is thin and slippery, it will only provide a temporary increase of fullness in upper pole. Constriction of the tissue should be prevented by taking smaller bites in the fibrous subcutaneous tissue, which is maintained. Fat to fat placement of sutures are also ineffective.

4.7.5 Liposuction for fine contouring
Liposuction is often recommended for final symmetry of shape of the breast once the reduction mammoplasty is completed. Common areas of small excess or irregularity, often in the pre-axilla area and along the IMF and the chest wall laterally, are dealt with. It is often effective for the final tailoring. Liposuction was not, however, used as an adjunct in this cohort.

4.8 Anticipation of Complications
The most frequent complication is delayed wound healing.\[44\] Complications must be anticipated in reduction mammoplasty; percentages are reported to be as high as 53%.\[45\] (Diagram 10)

The chance of a complication increases as the quantity of resection increases. Of these, hematoma, fat necrosis, nipple necrosis, cellulitis and fungal dermatitis have been reported. Makki reported probably the highest percentage in a large series of women dissatisfied with their reduction mammoplasty surgery.\[46\] This study investigated long-term results, morbidity, and patient satisfaction after reduction mammoplasty. A comprehensive questionnaire was sent to 296 patients who underwent reduction mammoplasty. The response rate to the questionnaire was 55.4%. An average of 1,037 g of tissue was resected per breast. Seventy-eight percent of respondents listed the relief of physical symptoms of large breasts as their primary motivation for surgery. Ninety-one percent of subjects realized improvement of symptoms and 65% were asymptomatic. The overall
satisfaction rate was 67.6%, whereas 18.4% were dissatisfied and 14% were unsure. Minor complications that did not require further surgery were reported by 29% of subjects. Twenty-seven percent of respondents would have preferred to have more preoperative discussions with the surgeon, and 78% of subjects would recommend breast reduction to others.

Appearance of scars and asymmetry can also be causes for complaints.\[47\]

Despite the high percentage of complications,\[48\] most patients accept and recommend the procedure.\[49\]

Generally, the amount of breast tissue removed correlates directly with increased risk in poor wound healing. However, it is not clearly established, that women having a higher BMI, have a greater chance of complications from breast reduction surgery specifically.\[4\]

In general, surgical patients with high BMI, undergoing large or more complex procedures, antibiotic coverage is recommended for at least 5 days may be useful to prevent delayed wound healing and dehiscence.\[50\]

4.8.1 Nipple-areola malposition

Minor asymmetry of position, i.e. a difference of about a centimeter can be managed with a crescent excision on the desired border of the areola.\[5\]

Major asymmetry requires circumferential release of the NAC. An NAC which is set too high is a complex defect to reset. Whilst an NAC set too low may be corrected by crescentic excisions superiorly.

Often criticism of BBR has been the long term “bottoming out” and shape loss due to gravity’s effect on the weight of the breast. The genetic and the individual’s exposure to various environmental factors, result in the invariable stretch of the skin envelope, hence splaying of the breast scars.

There is no consensus on pre-emptive methods to prevent pseudoptosis or “bottoming out”, without impairing the cosmetic outcome. The inferior pole envelop enlarges with time, subject to factors already mentioned.

Hall Findley described her discontent with the long-term results of the inferior pedicle technique, with a vertical pattern scar breast reduction, due to its difficulty to maintain long term breast shape and projection.\[51\]

Unlike the inferior pedicle pattern, where the weight of the flap lower down pulls with a greater gravitational force, sinking the breast inferiorly, the location of the SMP allows instead a molding in the upper inner quadrant and is situated more superiorly.
in the breast. It gives an improved medial fullness, higher up, which amplifies the shape and projection of the breast.

Wound hypertrophy in the perpendicular limb of the inverted T-scar was common after reduction surgery. Up to 15% of all scars are reported to be thick, itchy or uncomfortable.\[3\] In this study pressure taping of the scars was used for several weeks and a snug fitting bra worn immediately post operatively for an intermediate period to give improved wound support.

4.8.2 Breast shape improvement using the medial pedicle, with the wise pattern skin resection

A great variety of challenges in breast reduction surgery have resulted in an evolution of techniques for breast reduction.

A range of anatomic deformities in gigantomastia and macromastia breasts were considered, which influenced a tailored and individualized surgical approach. Abramson showed that medial pedicle procedures have been shown to be dependable in extreme mammary hyperplasia.\[51\] They also showed this in their series of 88 patients undergoing BBR with a medial pedicle.\[52\] Wise pattern skin resection at one year had less ‘bottoming out’ and a lower complication rate versus inferior pedicle reductions with vertical scars.\[53\]

A complication rate of up to 20%, in the early post-operative phase and a delayed complication incidence of 20-30% was demonstrated by Beer with the Inverted-T scar breast reductions.\[54\]

Breast surgery candidates are prone to a similar complications risk profile that accompanies any surgical procedure, viz. bleeding, pulmonary emboli, pain, infection, seroma, thrombophlebitis, allergies to medications and poor scarring.

Specific potential complications include skin flap necrosis, skin or nipple loss, loss of sensation to NAC and or breast flaps, asymmetry, contour irregularities, high-riding nipples and bottoming out, inability to breastfeed, resecting too much or too little breast tissue, incision dehiscence, and less than optimal intermediate and long term scarring.

Additionally, the candidates’ requested or preferred volume, shape and appearance, although uncommon, may not be fulfilled with this technique. Dramatic post-operative weight loss may lead to further reduction in breast size, up to where on the rare occasion, a breast augmentation may have to be considered.
4.8.3 Nipple retraction
The current study sometimes noted a minimal nipple retraction seen as a result of tension in suture line or the weight of pedicle on the areola and it usually resolves in a few days. A grossly retracted nipple might need correction by releasing the dermal pedicle wherever the tension is more. If it persists for a long time, secondary correction may be advisable after 6 months, by division of the scar contracture.

In the wise pattern if the flaps are thinned excessively or wound closure is too tight, the chances of wound breakdown increases. This is most often found at the junction of vertical and horizontal suture lines, as at the Inverted-T suture junction line.

If the breakdown area is small, it is self-limiting. If larger and or associated with fat necrosis, surgical debridement and dressings are required until healing is complete and scar revision can be planned at a later date. A conservative approach of debridement and dressing until granulation tissue appears, then skin grafts required.

4.8.4 Hematoma
This is a common complication seen with all types of breast reduction. It can be prevented by meticulous hemostasis and although the patient must mobilize out of bed on day 1 postoperatively, excessive shoulder movements must be avoided for the patient for first 2-3 days post-operatively.

Meticulous intra-operative hemostasis is imperative.

When in doubt, it is advised perform exploration and hematoma evacuation under anesthesia with closed suction drainage. A hematoma is the number one cause leading to other wound problems. If left untreated, it can result in fat necrosis, skin sloughing, and nipple loss and or skin flap loss.

4.8.5 Nipple-areola necrosis
Potential necrosis of the NAC is a dreaded and unfortunate complication.

Internal mammary perforators provide the most reliable perforator supply to the NAC. \(^{(55)}\) (cf: Arterial Perforators page 31).

A planning and noting of the superficial venous drainage pattern during the initial marking process of the patient, as described in the surgical technique, will avert the potential for venous congestion.

Post operatively, a meticulous observation of the areolar circulation through dressing with a window facility in the first 48 hours would warn about this complication. If persistent cyanosis is noticed, identification of the problem and immediate surgical intervention may salvage the nipple. Sutures are removed as necessary, a hematoma
sought for and vascularity of the nipple reassessed. Some breast surgeons have described early conversion to a free nipple graft. The nipple has to be grafted onto de-epithelialized dermis, [4] not the underlying fat, at an early stage. The use of leeches for NAC had been described to improve venous congestion. [56]

If these immediate salvage methods measure fail, a delayed reconstruction of the nipple-areola is opted for or this can be the chosen first option if suture release and hematoma evacuation doesn’t work. The incidence of NAC necrosis varies and is related predominantly to a compromised vascular supply of the breast SMP itself, or the skin flaps which gives direct supply to the NAC distally.

In our cohort the NAC was elevated up to 26 cm with a mean of 21 cm of upward movement without significant loss of the NAC. There were no patients with superficial necrosis greater than 15% of the total NAC surface area. In a quarter of patients there were limited areas of wound breakdown occurred over the T-junction within the first weeks. They were all minor enough to resolve with wound dressings alone, and without surgical intervention.

4.8.6 Fat necrosis
Small areas may not require intervention especially when there is no skin necrosis. This dreaded complication is due to vascular compromise to the parenchyma with hemorrhagic necrosis. If skin and fat necrosis is excessive and associated with infection, surgical debridement, secondary closure is required.[57]

Grafting is done at a later date.

If the skin and nipple-areola complex are involved, discharge may be evident followed by cellulitis and fever. Healing is prolonged.

4.9 Nipple sensation
Dysesthesia over the nipple may persist for a year and then recovery usually occurs. Good sensibility has been reported with the SMP technique.[58]

Sexual sensibility is decreased at least in 50% of the subjects, but can recover.[59]

Though rare, improved sensation has been reported too.[60]

Our cohort recorded 1 patient with hypersensitivity at 6 weeks post operatively but this had resolved at the 1 year consultation time.

Santanelli in 2007, [61] in their study confirmed that some macromastia patients already have a reduced sensation and that the breast reduction surgery does not necessarily further worsen their breast sensibility. Their pedicle choice was however superolateral. With this pedicle technique, NAC sensibility might be slightly reduced.
They showed that breast sensation loss was less obvious in large-breast hyperplasias due to the comparative decreased sensibility preoperatively.

In a study comparing 39 breasts who had the inferior pedicles and 36 breasts who had a superior pedicle BBR, Hamdi showed at 6 months, in the 2 series of patients, that the mean value of NAC pressure sensation was similar.

Our cohort showed that sensation may was altered in the initial postoperative period in all or some the 5 NAC quadrants, probably due to postoperative swelling and or traction on the nerve. However, sensation recorded one year later reflect a favorable return of sensation to that of its pre-operative status. (Table 4).

Lejour’s technique of vertical reduction with a superior pedicle for moderately enlarged breasts regained their preoperative level of sensation, specifically pressure sensitivity, only after 1 year.

Nahabadien retained 98% of NAC sensation with use of medial pedicle pattern in a series of 45 hypertrophic breast reduction patients.

4.9.1 Shape and Projection and Scarring
The breast can be perceived as a cone shape.

Larger breasts with a larger volume require a reproducible dependable safe approach; the surgeons selected the Wise pattern skin resection and inverted T pattern closure. (Diagram 3).

While the superomedial pedicle mammoplasty with vertical-scar closure is growing in popularity, it is an efficient procedure, though rates of revision have been reported higher with certain skin resection patterns, namely the vertical pattern skin scar. Rinker showed in 2013, that the rates of revision can be improved with the choice of the inverted-T technique resection design in the group of gigantomastia and macromastia candidates who undergo SMP reduction technique. He showed in his review of 127 patients undergoing breast reduction using anSMP, that a reduction in revision rates can mean opting for an inverted-T skin pattern versus vertical scar reduction pattern, particularly in patients with an extended N-IMF distance. Neither the operative time or complication rates were significantly increased. Secondary breast deformity, changes in shape and bottoming out may be due to choice of wrong technique or error in judgment.

Minor but noticeable breast asymmetry can be treated with liposuction with good results. Larger asymmetry entails revision surgery, after a waiting period of at least 6 months. Pseudoptosis can be tackled with a horizontal elliptical excision from the inferior aspect.
4.9.2 Hypertrophied and symptomatic scars

Wound hypertrophy in and along the inverted T-scar, especially of the perpendicular limb is common after reduction surgery. Shermak et al., showed that up to 15% of all scars are reported to be thick, itchy or uncomfortable. [69]

Taping the scar for several weeks is a simple measure to offset the tendency. Scar hypertrophy can also be treated with intra-lesional steroid injections and silicone gel sheet pressure.

4.9.3 Secondary breast deformity

Larger asymmetry entails revision surgery, after at least 6 months. Pseudoptosis can be tackled with a horizontal elliptical excision from the inferior aspect. [70]

4.9.4 Minor breast asymmetry

If the asymmetry is small and minor, it can be treated with liposuction[71] or small excisions of ‘dog ears’ laterally, if necessary.

4.9.5 Nipple-areola malposition

A nipple set too high is the most challenging to reset.

Minor asymmetry of position, difference of about a centimeter can be managed with a crescentic excision on the desired border of the areola.[5] Major asymmetry requires circumferential surgical release of the NAC and re-setting.

The results of the current study showed that in 62 macromastia and gigantomastia breasts, with elongated N-N distances and large resection large weights, the SMP reduction mammoplasty was safely and efficaciously used.

A small number of breasts had early superficial necrosis and T-Junction breakdown. These symptoms were short lived and resolved with conservative wound management, without need for surgical revision.

No NACs were lost in this study cohort. Sensation returned to preoperative status in all but 2 patients, (3 breasts). These were not the same patients who had T-junction wound breakdown.

Independent opinion on aesthetic outcome assessed predominantly a ‘good’ poll in 90% patients. (Table 4). The scoring of the different specialists were not analyzed in terms of their scoring to their specialty or to each other.

In 2007 Davidson et al.[72], in a cohort of 216 breast reduction patients showed that the SMP with various skin patterns, was a safe reliable technique for small and moderate size reductions with different skin resection patterns, provided a consistent breast
shape, nipple viability and superomedial fullness. Their overall complication rate was 18%.

Finger[24], showed partial losses of the nipple areola complex (< 25%), decreased sensation in 15% in 148 patients (291 breasts) patients undergoing the SMP technique. Other complications were hypertrophic scars, nipple retraction, and dog-ears. Average blood loss was measured at 200 ml.

In 2010 Serra et al[73] reduced severe gigantomastia (defined by their study as >1200 g) with a modified superior pedicle. They described an ‘extension’ to the superior pedicle pattern, i.e. adding a medial component to the Wise pattern BBR. Their mean resection rate was 1450 g, with a low complication rate of 2% of patients requiring revision surgery. They demonstrated that by incorporating the quadrant on the medial side into their superior pedicle, viz. essentially a SMP, larger, and more voluminous reductions can safely be undertaken compared to other techniques. While the author describes a superior pedicle with medial extension, it is not clear exactly how much of the medial quadrant is included in their pedicle. The mean resection weight, 1450 g was smaller than our mean resection weight of 1835 g, and N-N mean distance of 44,75cm with a NAC mean elevation of 22,6 cm, no mean N-N distance is recorded in this report. However, they showed with their ‘modified SMP’ a low rate of revision surgical of 2%. In this study, there were no cases which required surgical revision.

This study complications rates were comparable with ours, namely partial superficial nipple necrosis in 11.5%. T-junction breakdown occurred in 24.2% of patients, no nipples were lost. A total of 6.4%, 2 patients, had absent sensation at 1 year, 83.8% of patients deemed their sensation to be exactly the same as before surgery after one year. 50% of those patients who had minor T-junction breakdown, and 55% of those patients who had partial NAC necrosis, also had a high BMI, ≥ 30. This is in keeping with Orlando and Guthrie, who supports the fact that candidates with a raised BMI are more likely to have slower wound repair post BBR surgery.[11]

In the current study patients with the longest N-N = 49,5 and 49 cm each side, did well, and showed neither NAC necrosis nor T-junction wound dehiscence. While the patient with the highest resection weight, 2670 g, showed minor T-junction wound breakdown, but no NAC necrosis and also her sensation was preserved. Additionally the small wound breakdown healed with regular wound dressings and did not require surgical revision.

Landau and Hudson[74] reviewed 61 Gigantomastia patients who had the SMP pattern reduction. The mean average resection weights were 1379 g, and the mean N-N lengths of 35 cm. They showed complication rates of 6.5% and 18% for partial areola necrosis and T-junction breakdown respectively. Our complication rate was higher, 11.5% and 24.2% respectively, but with larger breast resection volumes and longer N-
N lengths, i.e. mean breast resection weights of 1835 g and mean N-N = 44.12 cm. When comparing the 2 studies, the breast resection weight was larger by 33% and the N-N by 26%. While the complication rate increased by 34% and 76% for T-junction breakdown and NAC necrosis respectively.

When compared it shows that as the breast resection weight and N-N distances increased, the chance of complication rates increased. High BMI also correlated with a higher complication rate.
CHAPTER 5 - CONCLUSION

5.1 Outcome and Prognosis

Patients interviewed postoperatively expressed marked alleviation from their initial symptoms and expressed satisfaction with the outcome.

The majority of patients were advised to initiate or continue weight loss programs pre-operatively, it became easier to participate in such programs due to their own increased upper body mobility postoperatively. With a good quality, supportive sports bra, full unrestricted activities may be resumed once wounds have healed, usually 1 month after surgery.

There is diminished risk for "bottoming out" following this SMP procedure and better preservation of long-term breast contour.[75]

Beraldo[76] showed in women with breast hypertrophy, breast reduction surgery can improve sexual function and relieve depression. The study included 56 women with breast hypertrophy, 29 of whom underwent breast reduction and the rest of whom did not. Using the Female Sexual Function Index and Beck Depression Inventory, the investigators found that at 3 and 6-month follow-up, the breast reduction patients reported better sexual function, while at 6-month follow-up, they demonstrated better depression scores.

5.2 Limitations

A limitation are the relatively small numbers in this study 62 breasts, other study numbers reviewing breast reduction cohorts, have numbers over 80 breasts and some assess their patients for longer post-operative periods. A prospective study would be able to better look at a broader variety of factors, viz. a younger, pre-breastfeeding cohort of macromastia and gigantomastia breasts that looks at patient’s post-operative breast feeding ability, to study the specific effect of the SMP pattern of reduction on breastfeeding. Also the study design could better incorporate better record keeping at each visit, including polled patient opinion at each stage of the follow up.

The testing for post-operative NAC sensation could be improved in accuracy by expanding the different modalities of NAC sensation tested. This study only tested light touch. To be more comprehensive, deep touch, temperature and pressure should be tested.

Also the use of a grading system like: Female Sexual Function Index and Beck Depression Inventory and similar for example may give a greater insight to the lesser recorded sexual impact of massive breast hypertrophy and the alleviation of these problems post operatively.
There should ideally be guidelines given to the independent judges in future to improve uniformity of what constitutes the categories of ‘poor’, ‘fair’, ‘good’ and ‘excellent’ in terms of breast aesthetics, and while the currently study chose specialists involved in breast surgery, there was no standardization of each category.

Although the results of this study were favorable at a mean follow up of 1 year. Longer term follow up would reflect a more accurate and, more in-depth indication as to the longevity of breast shape and projection over time. While patients were unanimously satisfied with their new breasts, a standardized patient written paper poll was not performed and the authors felt that it would give a more committed accurate and standardized capture of their personal opinion. It could also record other parameters, like the impact surgery has on their breasts specifically, but also the impact on their overall psychology, lifestyle and postoperative daily functioning.

Reduction mammoplasty surgery generally enjoys excellent patient satisfaction levels. The SMP reduction mammoplasty used for macromastia and gigantomastia patients has shown similar outcomes and satisfaction levels. Knowledge of the anatomy, meticulous pre-operative planning, gentle tissue handling and anticipatory post-operative care will reduce the incidence of complications. Our data on the SMP presents a technique that is safe, efficacious, reliable and reproducible for macromastia and gigantomastia size breasts, specifically with elongated N-N lengths of > 40 cm, and resection weights > 1500 g per breast.

The viability and sensibility of NAC are well preserved, while simultaneously producing a good superomedial breast fullness and hence a good subjective shape. There was also good breast projection and symmetry with fair to good scarring, whilst still retaining nipple viability and sensation. However, complications may occur in patients with higher BMI. Parameters can be more streamlined in future and BMI maybe a factor to warrant individualized patient weight loss prior to BBR surgery. The authors believe that the SMP BBR provides a low complication profile for patients presenting with macromastia and gigantomastia type breast hypertrophy.
References

PMID: 25741497

The American Board reports a 76% increase in reduction mammaplasty surgery over the period 2009-2014 American Society of Plastic Surgeons Annual statistic report 2014

Spear Scott, Breast Reduction, Inverted T-Technique’ Grabb and Smith, Chapter 59, page 600.

39 Godwin Y1, Valassiadou K, Lewis S, Denley H.
Plast Reconstr Surg. 2004 May;113(6):1598-606. Investigation into the possible cause
of subjective decreased sensory perception in the nipple-areola complex of women
with macromastia.
PMID: 15114119

40 Roux le, MC, Kill BJ, Pan WR. Preserving the neurovascular pedicle in the Hall-
Findlay superomedial pedicle breast reduction: An anatomical study. 2010, J Plast

18(3): 21224.
PMCID: PMC2884717

42 Selected Reading in Plastic Surgery-Reduction Mammaplasty and Mastopexy.
Joshua Lemmon, Vol 10, No 19

43 Vertical Reduction Mammaplasty Using the Medial Pedicle Elizabeth J. Hall-
Findlay/Hall-Findlay EJ (2002) Vertical breast reduction with a medially based

44 Cunningham BL, Gear AJ, Kerrigan CL, Collins ED. Analysis of breast reduction
604.
PMID: 15861063

45 Davis GM, Ringler SL, Short K, Sherrick D, Bengtson BP. Reduction
mammaplasty: Long-term efficacy, morbidity, and patient satisfaction. Plast Reconstr
PMID: 7568486

46 Makki AS, Ghanem AA. Long-term results and patient satisfaction with reduction
PMID: 9788216

Yvonne N. Pierpont,1,2 Trish Phuong Dinh,2 R. Emerick Salas,1,2 Erika L. Johnson,1,2 Terry G. Wright,1,2 Martin C. Robson,2 and Wyatt G. Payne1, Review Article: Obesity and Surgical Wound Healing: A Current Review ISRN Obesity Volume 2014 (2014), Article ID 638936, page 13 http://dx.doi.org/10.1155/2014/638936

Serletti, Joseph M. MD; Reading, George MD; Caldwell, Elethea MD; Wray, R Christie MD
Long-term Patient Satisfaction Following Reduction Mammaplasty ANNALS OF PLASTIC SURGERY 28(4):363-5 • MAY 1992

DOI: 10.1016/j.bjps.2010.01.001

PMID: 11121316

Hamdi M1, Greuse M, De Mey A, Webster MH. Breast Sensitivity after Vertical Mammaplasty

PMID: 21294391

PMID: 18317123

DOI: [http://dx.doi.org/10.1111/tbj.12256.
PMID: n24750511

PMID: 25536204