DIAGNOSTIC AND CLINICAL EVALUATION OF INHIBITORS IN A COHORT OF HAEMOPHILIA PATIENTS IN A QUATERNARY CARE CENTRE

Yuen On Wan

A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Medicine in Haematology

Johannesburg, 2016
DECLARATION

I, Yuen On Wan declare that this research report is my own unaided work. It is being submitted for the degree of Master of Medicine in Haematology in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.

Yuen On Wan

On 6th day of June, 2016
DEDICATION

To my parents, Hinda and Stanley, for their wisdom and making me be who I am today.

To my husband, Graham, for his constant reassurance, love and support.

To my mentor and supervisor, Professor JN Mahlangu, for his ongoing encouragement and support throughout my educational journey and his passion for the field of haemophilia care.
PRESENTATION ARISING FROM THIS RESEARCH

Wan YO, Mahlangu JN.

Analytical performance of the Nijmegen assay using different buffered reagents.

Accepted for presentation at the World Federation of Hemophilia Congress, USA in 2016.
ABSTRACT

Background: Haemophilia A is a congenital bleeding disorder due to deficiency of clotting Factor VIII (FVIII) and is treated by replacement therapy using FVIII clotting factor concentrates. The most serious complication is the development of a neutralizing inhibitor to exogenous FVIII requiring treatment with a bypassing agent. Routine measurement of inhibitors is important in the diagnosis, therapeutic monitoring and surveillance of inhibitor patients. The testing of inhibitor is historically performed with the Bethesda assay (BA) which lacks specificity and reliability when it comes to the low-titre inhibitor ranges. The Nijmegen modification of the Bethesda assay (NA) was developed and proven superior to the BA. With routine inhibitor monitoring, the phenomenon of transient low-titre inhibitor is noted, they disappear spontaneously and patients do not require a change in treatment. The aim of this study was to validate NA in the routine National Health Laboratory Service (NHLS) haematology laboratory at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) and the haemophilia clinic at CMJAH using different buffered reagents and to determine the significance of the transient inhibitors using a cohort of inhibitor patients attending our haemophilia clinic. Methods: A total of 100 samples from both low- and high-titre inhibitor patients were collected in our centre over the period of 2007 to 2013 when patients had their routine clinic visits. Validation of NA, including the set-up and optimization of the NA, was done as described by Verbruggen (2014). The normal pooled plasma (NPP) and Dade® Citrol 1® Coagulation Control Level 1 (Citrol 1) were buffered with imidazole. Using either the NPP or Citrol 1, the NA was performed on 3 control samples (provided by External quality Control of diagnostic Assays and Tests (ECAT) foundation) and on all 100 patient samples. Precision
analysis was performed on a control sample to determine standard deviation (SD) and coefficient of variation (CV). Accuracy analysis was performed on patient-samples against BA and results expressed as bias and 95% confidence interval. Linearity analysis was performed in the low-titre range between 0 to 5 BU/mL. Clinical data of the corresponding patients were collected and analyzed to determine the clinical significance of transient inhibitor. **Results:** Of the 100 patient-samples, 100 were analyzed with NPP and 43 with Citrol 1. In the NA using NPP, the control plasma CV was 8.44% (95%CI of 0.77 ± 0.05) with a SD of 0.06. In the NA using Citrol 1, the control plasma CV was 10% (95%CI of 0.93 ± 0.02) and SD was 0.09. In the Bland-Altman plot of NA against BA using the NPP, the bias was 0.49 (95%CI of -8.1 to 9.1). The bias between NA and BA using Citrol 1 was 0.8 (95%CI of -6.8 to 8.5). The correlation coefficient of NA vs BA using the NPP was 0.93 and that of the NA vs BA analysis using the Citrol 1 was 0.76. All control plasma analyses using NPP buffered by 4M imidazole solution were within reference values whilst only 2 of 3 values were within the assigned values using Citrol 1. Only 3 of 20 high-titre inhibitor patients have a history of transient inhibitor. The inhibitors in the residual 44 patients with low titre inhibitors were of transient nature and these patients have not developed clinically significant inhibitors to date. **Conclusion:** In this analysis of patient and control samples with inhibitors, the analytical performance of the NA was comparable to BA. The performance of the Nijmegen assay with buffered pool plasma was better than that of the same assay using buffered Citrol 1. In this study, the presence of transient inhibitor did not seem to predict future inhibitor development in our haemophilia cohort.
ACKNOWLEDGEMENTS

I would like to express my great appreciation to the patients with haemophilia who were involved in this study as well as the following people and institutions who assisted me with this research report:

- My supervisor Professor Johnny Mahlangu for ongoing advice, encouragement and support throughout this project.

- Dr Bert Verbruggen and Dr Piet Meijer for the technical advice on the Nijmegen assay.

- Mr Jonas Shibambo for his guidance on the initial set-up of the Stago® instrument and inhibitor testing menu setup.

- Sr Bongi Mbele and Mr Kabelo Modisenyane from Charlotte Maxeke Johannesburg Academic Hospital Haemophilia Comprehensive Care Centre for the ongoing help with the patient aspect of this project.

- The National Health Laboratory Service and Faculty of Health Sciences Research Committee individual research grant for their financial contribution in the execution of this project.

I would also like to extend my thanks to the scientists, technologists and technicians of the cytogenetics and coagulation laboratory benches of the Department of Molecular Medicine & Haematology for their help in offering me the resources during the conduct of this study.
TABLE OF CONTENTS

DECLARATION .. ii

DEDICATION .. iii

PRESENTATION ARISING FROM THIS RESEARCH .. iv

ABSTRACT .. v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF FIGURES .. xiii

LIST OF TABLES ... xiv

ABBREVIATIONS .. xv

1 INTRODUCTION .. 1

1.1 Overview of haemophilia .. 1

1.1.1 Genetics of haemophilia .. 1

1.1.2 Clinical presentation .. 2

1.1.3 Diagnosis ... 3

1.1.4 Treatment ... 6

1.2 Complications of haemophilia treatment .. 6

1.3 Inhibitors .. 7

1.3.1 Types of inhibitor .. 7

1.3.1.1 Transient inhibitors ... 9

1.3.2 Definition of clinically relevant inhibitor development ... 10

1.3.3 Risk factors ... 10
1.3.3.1 Patient-related factors ... 11
1.3.3.1.1 Age ... 11
1.3.3.1.2 Severity of disease ... 11
1.3.3.1.3 Genetics .. 12
1.3.3.1.4 HIV status .. 13
1.3.3.2 Treatment-related factors .. 14
1.3.3.2.1 Prophylaxis .. 14
1.3.3.2.2 Age at first exposure to treatment .. 14
1.3.3.2.3 Intensity of treatment .. 14
1.3.3.2.4 Exposure days .. 15
1.3.3.2.5 Types of replacement products .. 15
1.3.3.3 Risk factors for acquired inhibitor development 17
1.3.4 Clinical significance .. 18
1.3.4.1 Morbidity and quality of life .. 18
1.3.4.2 Therapeutic management and cost of inhibitor patients 18
1.3.4.2.1 Management of haemorrhagic episodes 18
1.3.4.2.2 Long term management .. 19
1.4. Measurement of inhibitors .. 21
1.4.1 Bethesda assay (BA) and its limitations 21
1.4.2 Nijmegen modification of the Bethesda assay (NA) 23
1.5 Rationale for the study ... 25
2 MATERIALS AND METHODS ... 27

2.1 Study design and site .. 27

2.2 Study population ... 28

2.3. Blood samples handling .. 28

2.3.1 Blood samples collection .. 28

2.3.2 Samples Preparation and Storage ... 29

2.4 The Classic Bethesda Assay ... 29

2.5 Establishment of the Nijmegen Modification of the Bethesda Assay 33

2.5.1 pH measurement ... 33

2.5.2 Preparation of Imidazole buffer .. 33

2.5.3 FVIII inhibitor testing ... 33

2.5.4 Reagents storage and preparation ... 34

2.5.5 The Normal Pooled Plasma ... 35

2.5.6 Preparing a 4M imidazole solution at a pH of 7.4 35

2.5.7 Preparation of Buffered Normal Pooled Plasma / Citrol 1 35

2.5.7.1 Direct buffering of NPP/Citrol 1 with solid Imidazole 35

2.5.7.2 Buffering of NPP/Citrol 1 using 4M Imidazole solution 36

2.5.8 The Nijmegen Modification of the Bethesda Assay 36

2.5.9 Control samples .. 41

2.5.10 Precision Analysis ... 42

2.5.11 Accuracy Analysis ... 42
2.5.12 Linearity Analysis ... 43
2.5.13 Clinical data collection .. 43
2.5.14 Establishing the clinical significant cut-off value 44
2.5.15 Statistical Analysis .. 45
3 RESULTS .. 46
3.1. Laboratory validation: ... 46
3.1.1 NA (Direct buffering of NPP with solid Imidazole) 46
 3.1.1.1 Precision analysis ... 46
 3.1.1.2 Accuracy analysis ... 46
3.1.2 NA (Direct buffering of Citrol 1 with solid Imidazole) 47
 3.1.2.1 Precision analysis ... 47
 3.1.2.2 Accuracy analysis ... 48
3.1.3 NA (Buffering of NPP using 4M Imidazole solution) 48
 3.1.3.1 Precision analysis ... 48
 3.1.3.2 Accuracy analysis ... 49
 3.1.3.3 Linearity analysis ... 52
3.1.4 NA (Buffering of Citrol 1 using 4M Imidazole solution) 53
 3.1.4.1 Precision analysis ... 53
 3.1.4.2 Accuracy analysis ... 53
 3.1.3.3 Linearity analysis ... 57
3.2. Clinical correlation studies .. 57
4 DISCUSSION.. 61

4.1 Validation of NA using different buffered reagents ... 62

4.1.1 NA (Direct buffering with solid Imidazole).. 62

4.1.2 NA (using 4M Imidazole solution) .. 62

4.1.3 Other observations .. 64

4.2 Clinical correlation and low-titre transient inhibitors 64

4.3 Limitation of the study ... 65

4.4 Recommendation .. 65

5 Conclusion .. 67

APPENDICES .. 68

Appendix A Permission letter from CMJAH.. 68

Appendix B Ethics clearance certificate .. 69

Appendix C Turnitin result ... 70

REFERENCES.. 71
LIST OF FIGURES

Figure 1.1. Inheritance pattern of Haemophilia... 4
Figure 1.2. Kinetics of type 1 and type 2 inhibitors against Factor VIII.................. 8
Figure 1.3. Flow diagram of Bethesda Assay.. 22
Figure 1.4. Flow diagram of Nijmegen Assay.. 24
Figure 2.1. Flow diagram demonstrating the Bethesda Assay set up process..... 31
Figure 2.2. Flow chart demonstrating the setup of doubling dilutions.................. 32
Figure 2.3. Flow diagram demonstrating the Nijmegen set up process............. 38
Figure 3.1. Linear regression graph demonstrating NA using BNPP against BA. 50
Figure 3.2. Bland-Altman plot demonstrating accuracy between BA and NA with
BNPP. .. 51
Figure 3.3. Linearity analysis of NA with BNPP.. 52
Figure 3.4. Linear regression graph demonstrating NA using BC against BA..... 55
Figure 3.5. Bland-Altman plot demonstrating accuracy between BA and NA with
BC. ... 56
Figure 3.6. Linearity analysis of NA with BC... 57
Figure 3.7. Flow diagram indicating the number of patient files reviewed, exclusion
criteria and total number analyzed. ... 58
LIST OF TABLES

Table 1.1. Differences between allo- and autoantibodies... 9
Table 1.2. Risk of inhibitor development in PUPs and PTPs.. 11
Table 1.3. Incidence of inhibitor development with severity of haemophilia A.............. 12
Table 1.4. FVIII mutations and inhibitor prevalence of Haemophilia A.................... 13
Table 1.5. Prospective observational studies (RODIN, EUHASS, GTH PUP and SIPPET) results for inhibitor development... 16
Table 1.6. The advantages and disadvantages of aPCC (FEIBA®) and rFVIIa (NovoSeven®).. 19
Table 1.7. Cost of care in haemophilia patients with inhibitor... 21
Table 2.1. Scheme of Nijmegen Assay sample preparation... 39
Table 2.2. Bethesda Chart.. 41
Table 2.3. ECAT control samples and expected values with 2SD................................. 42
Table 3.1. Precision analysis of NA using BNPP.. 46
Table 3.2. Accuracy analysis of NA using BNPP (control samples) 47
Table 3.3. Precision analysis of NA using BC ... 47
Table 3.4. Analysis of NA using BC (control samples) ... 48
Table 3.5. Precision analysis of NA using BNPP.. 48
Table 3.6. Analysis of NA using BNPP (control sample) .. 49
Table 3.7. Precision analysis of NA using BC ... 53
Table 3.8. Analysis of NA using BC (control sample) ... 53
Table 3.9. Characteristics of patients analyzed... 59
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aPCC</td>
<td>Activated prothrombin complex concentrate</td>
</tr>
<tr>
<td>aPTT</td>
<td>Activated partial thromboplastin time</td>
</tr>
<tr>
<td>BA</td>
<td>Bethesda Assay</td>
</tr>
<tr>
<td>BC</td>
<td>Buffered Citrol 1® Coagulation Control Level 1</td>
</tr>
<tr>
<td>BDDRFVIII</td>
<td>B-domain-deleted recombinant factor VIII</td>
</tr>
<tr>
<td>BNPP</td>
<td>Buffered Normal Pooled Plasma</td>
</tr>
<tr>
<td>BU/mL</td>
<td>Bethesda unit per millilitre</td>
</tr>
<tr>
<td>CFC</td>
<td>Clotting factor concentrate</td>
</tr>
<tr>
<td>Citrol 1</td>
<td>Dade® Citrol 1® Coagulation Control Level 1</td>
</tr>
<tr>
<td>CMJAH</td>
<td>Charlotte Maxeke Johannesburg Academic Hospital</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>ECAT</td>
<td>External quality Control of diagnostic Assays and Tests Foundation</td>
</tr>
<tr>
<td></td>
<td>(Dobbeweg 1, 2254 AG Voorschoten, The Netherlands)</td>
</tr>
<tr>
<td>ER</td>
<td>Emergency room</td>
</tr>
<tr>
<td>EQAP</td>
<td>External Quality Assessment Programme</td>
</tr>
<tr>
<td>FEIBA</td>
<td>Factor Eight Inhibitor Bypassing Activity</td>
</tr>
<tr>
<td>FLRFVIII</td>
<td>Full-length recombinant factor VIII</td>
</tr>
<tr>
<td>FVIII</td>
<td>Factor VIII</td>
</tr>
<tr>
<td>FIX</td>
<td>Factor IX</td>
</tr>
<tr>
<td>HCCC</td>
<td>Haemophilia Comprehensive Care Centre</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C virus</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Overview of haemophilia

Haemophilia is a congenital bleeding disorder due to deficiency of a coagulation clotting factor. Deficiency of factor VIII (FVIII) is called Haemophilia A and occurs in 1 in 5000 live male births. Factor IX (FIX) deficiency is called Haemophilia B and occurs in 1 in 25 000 live male births\(^1\). Treatment of haemophilia is by replacement of the missing protein, which may be plasma derived or recombinant factor. Haemophilia patients are categorized into three groups depending on their baseline factor levels: mild (>5% - <40%) , moderate (1% - 5%) and severe (<1%)\(^2\).

1.1.1 Genetics of haemophilia

Haemophilia is a X-linked recessive inherited disorder (see Figure 1.1) where the mutated gene occurs on the X chromosome causing the expression of phenotype in males (only one X chromosome) and homozygous females. Mutation in the F8 gene leads to abnormal FVIII clotting factor production resulting in Haemophilia A and F9 gene mutations similarly result in Haemophilia B\(^3\).

The F8 gene is located cytogenetically on the long arm of the X chromosome at band Xq28. Two additional genes F8A and F8B are nested within intron 22 which is the largest intron within the F8 gene. The most common mutation in Haemophilia A involves intron 22 inversion due to homologous recombination\(^4\). F9 gene is also located on the long arm of the X chromosome but on band Xq27. The most common mutation in Haemophilia B result from single-base substitution\(^5\).
Acquired haemophilia is however not an inherited disorder but relates to the production of autoantibodies targeting specific coagulation factors such as FVIII and FIX. Causes include drugs, pregnancy, postpartum state, underlying autoimmune diseases and dermatological conditions or it can be idiopathic. The management of acquired haemophilia involves bypassing agents for acute bleeds and inhibitor eradication long term⁶.

1.1.2 Clinical presentation

The deficiency of clotting factor (FVIII or FIX) leads to bleeding due to impaired haemostasis. Clinical presentation depends on the severity of the disease. In mild haemophilia, patients are generally asymptomatic and bleeds often occur after trauma or surgery (delayed bleeding may be experienced after dental procedure). Individuals with mild haemophilia may present later in life if they have not had a haemostatic challenge⁷. In moderate haemophilia, individuals usually bleed after minor injury or invasive procedure. In the presence of a target joint, bleeding may be more frequent and spontaneous. In severe haemophilia, bleeds are usually disproportionate to the degree of trauma, spontaneously bleeding into joints is common. These individuals usually present early in life (within first year of life) with haemarthrosis, spontaneous haematoma in muscles or after invasive procedures (such as venepunctures and circumcision)⁸,⁹. Urogenital bleeds (kidney or bladder) are frequent in severe haemophilia and if managed appropriately, does not result in loss of renal function¹⁰. Although it is rare, spontaneous or post-traumatic intracranial haemorrhage is one of the most serious, life-threatening bleeding events in severe haemophilia which can occur at any age¹¹-¹³. Occasionally, intracranial haemorrhage can occur at birth¹⁴.
1.1.3 Diagnosis

The diagnosis of haemophilia is made by a combination of patient’s bleeding history, family history and laboratory testing.

Pertinent bleeding history in haemophilia includes bleeding symptoms, severity of bleeding and response to haemostatic challenges15. Family history may be negative in up to one third of haemophilia patients due to spontaneous mutation in F8 or F9 gene16.
Figure 1.1. Inheritance pattern of Haemophilia.

A. Carrier mother with unaffected father and possible offspring. B. Affected father with unaffected mother and possible offspring. C. Affected father with carrier mother and possible offspring. Symbols: □, unaffected male; ○, unaffected female; ⊙, carrier female; ■, affected male. Abbreviations: XY, father; XX^H, carrier mother; X^HY, father with haemophilia; XX, mother.
An approach to laboratory diagnosis includes a tiered approach starting with screening tests moving to definitive tests:

- Screening tests using:
 - prothrombin time (PT) for extrinsic coagulation pathway;
 - activated partial thromboplastin time (aPTT) for intrinsic coagulation pathway;
 - bleeding time;
 - platelet count and functions for platelet quantity and quality testing15.

- An isolated prolonged aPTT which corrects on mixing studies (by mixing 50% test plasma with 50% normal pooled plasma) indicate a factor deficiency. Individual factors such as FVIII and FIX should then be assayed. A normal aPTT does not exclude the diagnosis of mild haemophilia, therefore definitive testing such as factor activity should be performed regardless of aPTT results if clinically indicated. In the presence of FVIII deficiency, von Willebrand disease should be excluded15.

- If screening tests yield an isolated prolonged aPTT which does not correct, the presence of an inhibitor should be suspected. Inhibitor testing by Bethesda assay (BA) or Nijmegen modification of the Bethesda assay (NA) should be performed15.

- Genetic testing for specific mutations is indicated in most haemophilia patients once the diagnosis is made. It aids to predict the risk of inhibitor formation and identification of carrier status in female family members17.
1.1.4 Treatment

The principle to achieve haemostasis in haemophilia is to replace the missing clotting factor. Clotting factor concentrates (CFC) are the treatment of choice (i.e. FVIII concentrates for haemophilia A and FIX concentrates for haemophilia B). The CFC are available in plasma-derived and recombinant formulations. Other sources for clotting factors include activated prothrombin complex concentrate (aPCC), cryoprecipitate and fresh frozen plasma (FFP), but these are generally utilized when CFC are not available. In addition to CFC, other pharmacological agents, which include antifibrinolytics and desmopressin, showed variable success15.

1.2 Complications of haemophilia treatment

Clotting factor concentrate and many plasma-derived sources of clotting factor may give rise to transfusion-transmitted viral infections such as human immunodeficiency virus (HIV), Hepatitis B virus (HBV) and hepatitis C virus (HCV). Bacterial infections are possible because venous access is necessary15, 18.

Intra-articular joint and intramuscular bleeds are common and frequent in severe haemophilia. Inadequate and/or delayed CFC treatment and recurrent joint bleeds lead to progressive deterioration of joints and permanent joint deformities and dysfunction18.

The most serious and challenging complication of CFC replacement therapy in haemophilia is the development of antibodies (inhibitors) against replacement coagulation protein19 rendering the substitution factor therapy ineffective. A recent
systematic review demonstrated that the overall prevalence of inhibitors in the haemophilia population was 5% - 7%\(^{20}\). In the case of congenital haemophilia these are alloantibodies characterized by an anamnestic response and in acquired haemophilia these are autoantibodies\(^{21,22}\).

In up to 50% of haemophilia B patients with inhibitors, severe allergic reaction may occur to FIX concentrates administration\(^{15}\).

1.3 Inhibitors

Inhibitors are polyclonal high-affinity immunoglobulin G (IgG) antibodies against FVIII\(^{23,24}\) or FIX\(^{25}\). Inhibitors develop in ± 25-30% of severe haemophilia A and 3-5% in haemophilia B\(^{18}\).

1.3.1 Types of inhibitor

There are two types of inhibitors: Type 1 and Type 2. Type 1 inhibitors are alloantibodies that neutralize factor VIII in direct proportion to their concentration\(^{21}\) (see Figure 1.2). It is subdivided further into 2 types: high responding and low responding. High responding inhibitors are defined as those with high antibody titre of > 5 BU/mL which appear rapidly after factor exposure. Low responding inhibitors show little to no response upon exposure to factor and titres remain less than 5 BU/mL\(^{2,26}\). Type 2 inhibitors are usually autoantibodies that neutralize factor VIII rapidly initially, followed by a slow phase of inactivation where residual factor VIII can be measured\(^{21}\) (see Figure 1.2). The \textit{in vivo} autoantibody potency is poorly correlated with the residual FVIII measured \textit{in vitro}\(^{22}\). The differences between auto- and allo-antibodies are summarized in Table 1.1.
Figure 1.2. Kinetics of type 1 and type 2 inhibitors against Factor VIII.

Type 1 inhibitor shows a linear relationship between time incubated and neutralisation of Factor VIII activity with eventual complete neutralisation of Factor VIII. Type 2 inhibitor shows an initial neutralisation phase then a plateau with some residual Factor VIII (which can be detected *in vitro*). Adapted from Ma and Carrizosa²¹
Table 1.1. Differences between allo- and autoantibodies. Adapted from Green22

<table>
<thead>
<tr>
<th></th>
<th>Alloantibody</th>
<th>Autoantibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients type</td>
<td>Haemophilia</td>
<td>Non-haemophilia</td>
</tr>
<tr>
<td>Origin</td>
<td>Therapy-related</td>
<td>Spontaneous</td>
</tr>
<tr>
<td>Bleeding site</td>
<td>Predominantly Joints</td>
<td>Predominantly skin & soft tissue</td>
</tr>
<tr>
<td>Effect on haemostasis</td>
<td>Disrupt FVIII-FIX complex formation</td>
<td>Alter binding of VWF and phospholipids to FVIII</td>
</tr>
<tr>
<td>Kinetics</td>
<td>Type 1</td>
<td>Type 2</td>
</tr>
<tr>
<td>Acute Management</td>
<td><5 BU/mL: FVIII concentrates; >5 BU/mL: Bypassing agents</td>
<td>Bypassing agents</td>
</tr>
<tr>
<td>Long Term Management</td>
<td>Immune tolerance induction</td>
<td>Inhibitor Eradication with immunomodulatory therapies</td>
</tr>
</tbody>
</table>

Abbreviations: FVIII, factor VIII; FIX, factor IX, VWF, von Willebrand factor; BU/mL, Bethesda unit per millilitre.

1.3.1.1 Transient inhibitors

“Transient” inhibitors are low-titre antibodies that appear and disappear spontaneously over a non-defined amount of time without any specific intervention23, 27. These transient inhibitors represent 20-55% of all inhibitors reported in recombinant FVIII studies28, 29. Some literature defined transient inhibitors as inhibitors that spontaneously disappear within 6 months28. However, a recent prospective study suggests some of these low-titre inhibitors only eventually disappear over 3-6 years30. The presence of transient inhibitors in haemophilia patients suggests that possible natural tolerance occurred to the
given exogenous factor23, 27. There is not much literature available regarding the long term relevance of these inhibitors. It is also not clear if the transient inhibitors can predict future inhibitor development.

1.3.2 Definition of clinically relevant inhibitor development

Clinically relevant inhibitor development was defined by at least two positive inhibitor titre measurements with reduced \textit{in vivo} factor recovery31. A positive inhibitor titre is defined as ≥ 0.6 BU/mL. The predicted factor recovery 30 minutes after FVIII infusion is based on the assumption that 1IU of FVIII per kilogram of body weight will raise the FVIII level to 2%. A reduction of factor recovery is defined as less than 66% of the expected rise in factor level32.

1.3.3 Risk factors

Risk factors for inhibitor development in congenital haemophilia are multifactorial and include both genetic and acquired causes (see Table 1.2). Research conducted in PUP (previously untreated patients) for the development of inhibitors are important because these patients are FVIII naïve and therefore give a better indication of immunogenicity of CFC. In PUP research, both patient- and treatment-related factors contributing to the patients’ immune response to the exogenous FVIII are considered. In PTP (previously treated patients), the development of inhibitors is considered less likely as they are already tolerized to replacement CFC33, 34.
Table 1.2. Risk of inhibitor development in PUPs and PTPs\(^{33, 34}\).

<table>
<thead>
<tr>
<th>Previously untreated patients</th>
<th>Previously treated patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of first exposure</td>
<td>Product-related immunogenicity (including neo-epitopes in novel products)</td>
</tr>
</tbody>
</table>

Genetics
- Mutation type
- Polymorphisms
- Immune regulatory genes

Race

Family history

Environmental:
- Intense FVIII exposure
- Surgery
- Early introduction to prophylaxis

Abbreviations: PUP, previously untreated patients; PTP, previously treated patients.

1.3.3.1 Patient-related factors

1.3.3.1.1 Age

Inhibitor development is highest in children ≤ 5 years of age with a cumulative risk of 16%. A second peak is seen at an older age of ≥ 60 years with a cumulative risk of 36% by 75 years\(^{35, 36}\). The reason for inhibitor development at older age may be due to loss of tolerance and exposure to danger signals (such as surgery and intensive therapy) and immune dysregulation associated with advanced age\(^{35, 37}\).

1.3.3.1.2 Severity of disease

Haemophilia patients with severe disease have a significant higher incidence of inhibitor development than patients with mild to moderate disease. The prevalence
for the severe haemophilia population to develop inhibitors is 12% - 13%20, 35 and incidence of up to 30%20, 38 in severe haemophilia A and 2% - 5% in severe haemophilia B39. Incidence of inhibitor development as a function of severity of haemophilia is demonstrated in Table 1.3.

Table 1.3. Incidence of inhibitor development with severity of haemophilia A20, 39

<table>
<thead>
<tr>
<th>Haemophilia Severity</th>
<th>Incidence of inhibitor development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild/moderate haemophilia</td>
<td>2 – 8%</td>
</tr>
<tr>
<td>Severe haemophilia</td>
<td>Up to 30%</td>
</tr>
</tbody>
</table>

1.3.3.1.3 Genetics

The type of FVIII mutation is strongly correlated with the risk for inhibitor development. High risk mutations include large deletion, null mutation, nonsense mutation and introns 22 inversion (see Table 1.4). Large multidomain deletions are particularly associated with increased prevalence of high-titre inhibitor development. In addition, immune response gene polymorphism (e.g. involvement of interleukin 10 and tumor necrosis factor alpha) shows a contribution to inhibitor development40, 41.
Table 1.4. FVIII mutations and inhibitor prevalence of Haemophilia A\(^{41}\).

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Inhibitor prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large deletions</td>
<td></td>
</tr>
<tr>
<td>Multidomain</td>
<td>41</td>
</tr>
<tr>
<td>Single domain</td>
<td>25</td>
</tr>
<tr>
<td>Non sense mutations</td>
<td></td>
</tr>
<tr>
<td>Light chain</td>
<td>31</td>
</tr>
<tr>
<td>Heavy chain</td>
<td>17</td>
</tr>
<tr>
<td>Intron- 22 inversion</td>
<td>21</td>
</tr>
<tr>
<td>Small deletions</td>
<td>16</td>
</tr>
<tr>
<td>Missense</td>
<td></td>
</tr>
<tr>
<td>C1/C2 domain</td>
<td>5</td>
</tr>
<tr>
<td>Non C1/C2 domain</td>
<td>10</td>
</tr>
<tr>
<td>Splice site</td>
<td>17</td>
</tr>
</tbody>
</table>

In addition to the F8 gene mutations, a positive family history with inhibitor development as well as ethnicity (in particularly black and subgroup of Hispanic, Asian and Indian families) were associated with a higher incidence of inhibitor development\(^{42-45}\).

A recent study conducted in South Africa showed that black patients with haemophilia had a higher frequency of the intron 22 mutation and inhibitor development than white patients in South Africa. The findings support a significant association between inhibitor development, ethnicity and F8 gene mutation type\(^{46}\).

1.3.3.1.4 HIV status

Infection with the HIV, in the majority of haemophilia patients, is a consequence of transfusion transmission which predates the general screening methods used to
date. The impact of HIV on haemophilia has unprecedented high morbidity, however, some patients are long term non-progressors. There is no documented association between the HIV and incidence for inhibitor development35, 36.

1.3.3.2 Treatment-related factors

1.3.3.2.1 Prophylaxis

Factor replacement therapy can be given by two different strategies, namely: on-demand and prophylactic therapy. On-demand treatment is defined as factor replacement therapy given when bleeding has already occurred. Prophylactic therapy is factor replacement therapy given to prevent bleeding. On-demand treatment is associated with higher risk of developing inhibitor whilst prophylactic treatment seems to have a protective effective against inhibitor development38, 47. Prophylaxis, particularly in children appears to have a tolerizing effect with resultant low incident of inhibitors.

1.3.3.2.2 Age at first exposure to treatment

Younger age (especially <1 year of age) of the first exposure to replacement therapy is strongly associated with higher risk of inhibitor development45, 48, 49. This is in part because the immune system is not yet mature to differentiate self from non-self antigens.

1.3.3.2.3 Intensity of treatment

Inhibitor development in mild to moderate haemophilia patients are usually rare (risk of ~5\%)24. However, intensive factor therapy (in particular, via continuous infusion) is associated with increased incidence of inhibitor formation in children.
with mild or moderate disease. Intensive factor therapy is defined as high dose replacement therapy with CFC over a short period of time.

In adult patients, intensive treatment is commonly associated with surgery and the post-operative period. The intensive CFC treatment contributes to inhibitor formation in the non-severe adult haemophilia population.

Trauma, ischemia and tissue damage can cause inflammatory responses. These cell-damage associated molecule patterns (DAMPs) present danger signals that can stimulate inflammatory responses of the innate immune system that ultimately, but indirectly, lead to upregulation of antibody responses. It was proposed that avoiding these immunological danger signals decreased the development of inhibitors.

1.3.3.2.4 Exposure days

Most inhibitors tend to develop within 10-15 exposure days (but generally within 50 exposure days) to CFC in the severe haemophilia population. After 50-75 exposure days, the cumulative rate for inhibitor development reaches a plateau and the formation of inhibitor after 150 exposure days is very rare.

1.3.3.2.5 Types of replacement products

Multiple prospective observational studies (RODIN, EUHASS, GTH PUP study and PEDNET) and randomized controlled trials (SIPPET) have been conducted to study the relationship between inhibitor development and the type of replacement products (recombinant factor and plasma-derived factor products). See Table 1.5
for results. The SIPPET study showed rFVIII is associated with a 1.87-fold higher incidence for inhibitor development than pdFVIII products. In addition, switching between products does not make a difference to the development of inhibitors56-58.

Table 1.5. Prospective observational studies (RODIN, EUHASS, GTH PUP and SIPPET) results for inhibitor development29,58-60.

<table>
<thead>
<tr>
<th>Study</th>
<th>pdFVIII [n/N, cumulative incidence (%)]</th>
<th>rFVIII [n/N, cumulative incidence (%)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUHASS 2015</td>
<td>11/51 (21.6%)</td>
<td>97/366 (26.5%)</td>
</tr>
<tr>
<td>RODIN 2013</td>
<td>29/88 (33.1%)</td>
<td>148/486 (32.3%)</td>
</tr>
<tr>
<td>GTH 2003</td>
<td>11/49 (22%)</td>
<td>20/63 (32%)</td>
</tr>
<tr>
<td>SIPPET 2015</td>
<td>29/125 (26.7%)</td>
<td>47/126 (44.5%)</td>
</tr>
</tbody>
</table>

Abbreviations: pdFVIII, plasma derived factor VIII; rFVIII, recombinant factor VIII; n, number of positive patients; N, total number of patients in the study.

There are two types of recombinant CFC, namely full-length recombinant factor VIII (FLRFVIII) and B-domain-deleted/-truncated recombinant factor VIII (BDDRFVIII). The BDDRFVIII is a recombinant factor VIII product made with the B-domain (which is 908 amino-acid) removed except for a 14 amino-acid linker sequence (which is known as the SQ-peptide). Some authors suggest the function of the large and highly glycosylated B-domain is important for the intra-cellular processing and secretion of FVIII but unnecessary for coagulant activity61,62. Both efficacy and immunogenicity (i.e. inhibitor development) of BDDRFVIII have been shown to be similar to that of FLRFVIII in a few prospective studies and meta-analysis33,63,64.
1.3.3.3 Risk factors for acquired inhibitor development

Occasionally autoantibodies against factor VIII develop in non-haemophilia patients (acquired factor VIII inhibitors). Some of the reasons for development of autoantibodies include the following:

- HIV infection: very rare, only a few cases reported internationally and appears to be independent of treatment or CD4 count/degree of immunodeficiency65-67,
- pregnancy and postpartum state (8%) usually at term or early postpartum period, alteration of immune state of third trimester or parturition may be contributing to the development of inhibitors68-70,
- underlying autoimmune disorder (17-18%) such as rheumatoid arthritis (8%), systemic lupus erythematosus (6%) and Sjögren’s syndrome68,
- malignancy (12%) including both solid tumours (squamous cell carcinoma of lung, prostate, pancreas, colon and hypernephroma) and haematological malignancy (such as plasma cell dyscrasias and lymphoproliferative disorders) in both cancer and precancerous state68,69,
- drugs (5-10%) including interferon for the treatment of HCV, penicillin, sulfa drugs, phenytoin and chloramphenicol6,67,69,
- dermatological conditions (5%) such as psoriasis, pemphigus vulgaris, erythema multiforme and non-specific dermatosis which may be related to drug reaction or underlying autoimmune state68,
- idiopathic which comprises approximately 50% of the cases69,70.

1.3.4 Clinical significance

1.3.4.1 Morbidity and quality of life

Patient with inhibitors experience more difficulty in achieving haemostasis which leads to more frequent bleeding phenotype. Acute and chronic synovitis also contribute to the increased bleeding episodes. Musculoskeletal bleeds and orthopaedic procedures in inhibitor patients are significantly increased in comparison to patients without inhibitors\(^{39}\). Hospitalization, outpatient routine, emergency room (ER) visits and subsequently absence from work/school are noted to be higher in inhibitor patients. Significant amount of inhibitor patients reported chronic joint pain and reduced mobility which require walking aids or wheelchair usage. These complications resulted in general decreased QOL\(^{39, 71, 72}\).

1.3.4.2 Therapeutic management and cost of inhibitor patients

Management of inhibitor patients generally requires a highly trained team as well as resources that are not readily available. Overall, the therapeutic options for haemostasis, as well as inhibitor eradication/immune tolerance induction, are not optimal with unpredictable effectiveness\(^{24}\).

1.3.4.2.1 Management of haemorrhagic episodes

Treatment of acute bleeds should be provided as soon as possible. For patients with low-responding inhibitors, the treatment usually involved replacement therapy with CFC (at normal or higher dosage). Patient with high-titre inhibitors will require bypassing agents (such as aPCC/factor eight inhibitor bypassing activity (FEIBA\(^{\circledR}\)) or rFVIIa/NovoSeven\(^{\circledR}\) or both, see Table 1.6). Patients may respond better to one
than the other. Owing to the unpredictable response, general recommendation is not possible24, 41.

<table>
<thead>
<tr>
<th>Type of product</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>rFVIIa (NovoSeven®)</td>
<td>No known risk of viral transmission</td>
<td>Short half-life</td>
</tr>
<tr>
<td></td>
<td>Devoid of human serum or proteins</td>
<td>Risk of thrombosis</td>
</tr>
<tr>
<td></td>
<td>Absent anamnestic response</td>
<td></td>
</tr>
<tr>
<td>aPCC (FEIBA®)</td>
<td>Long half-life</td>
<td>Plasma-derived product</td>
</tr>
<tr>
<td></td>
<td>Virally inactivated</td>
<td>Possible thrombosis</td>
</tr>
<tr>
<td></td>
<td>Less expensive than rFVIIa</td>
<td>Response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allergic reaction</td>
</tr>
</tbody>
</table>

Abbreviation: rFVIIa, activated recombinant factor 7; aPCC, activated prothrombin complex concentrate.

1.3.4.2.2 Long term management

Long term management of high-titre patients are generally aimed at immune tolerance induction (ITI) in patients (mostly children) with alloantibodies and inhibitor eradication in adults with autoantibodies6, 24.

Eradication of autoantibodies involves the use of prednisone (1 mg/kg/day) alone or in combination with oral cyclophosphamide (1-2 mg/kg/day) as first line treatment74, 75. Rituximab is an anti-CD20 monoclonal antibody used alone or in combination with other immunosuppressant as first- or second-line therapy for autoantibodies eradication. In addition, calcineurin inhibitors and mycophenolate mofetil are used as alternatives to rituximab in patients who did not respond to the
first line treatment74. There is no recommendation for optimal immunosuppressive regimen and duration of treatment for autoantibodies eradication76.

Immune tolerance induction can be high (FVIII, 200 U kg-1 day-1) or low (50 U kg-1 thrice weekly) dose regimen and involves repeated doses of FVIII product and bypassing agent infusion with or without immunomodulation until the disappearance of alloantibodies24, 41. Dosage of the ITI, time between inhibitor diagnosis and initiation of ITI, maximum titre and age at treatment all affect the outcome. It was noted that high dose ITI has less bleeding complication than low-dose ITI77. If patients do not achieve tolerance by 2 years (i.e. inhibitor persisted), it is deemed as failure of ITI24, 78.

Short and long term management of inhibitor patients remain extremely expensive and estimated in the region of 18000 Euros per month79 (see Table 1.7).
Table 1.7. Cost of care in haemophilia patients with inhibitor. Adapted from Di Minno et al.79

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average annual concentrate costs 1.5- to 3-fold higher in inhibitor patients than in non-inhibitor patients</td>
<td></td>
</tr>
<tr>
<td>The highly expensive care provides a satisfactory quality of life in haemophilia with inhibitors</td>
<td></td>
</tr>
<tr>
<td>Monthly cost/patient ~18 000 €; ~50% of patients require <5000 € per month, only 2% needing >100 000 €</td>
<td></td>
</tr>
<tr>
<td>Costs of ITI: ~8-fold higher FVIII consumption and costs in patients with unfavourable prognosis</td>
<td></td>
</tr>
<tr>
<td>Mean annual costs of on-demand treatment in an inhibitor patient are 3-fold higher than in non-inhibitor patients</td>
<td></td>
</tr>
<tr>
<td>Mean ITI costs are 3-fold higher in high-responder than in low-responder children. Higher differences in adults</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: ITI, Immune tolerance induction.

1.4. Measurement of inhibitors

1.4.1 Bethesda assay (BA) and its limitations

The presence of inhibitor is most commonly diagnosed using the Bethesda Assay (BA) which was developed in 197519,80. The BA involves serial dilution of patient's plasma (containing the inhibitor) with normal pooled plasma (source of FVIII). The mixtures are then incubated at 37°C for 2 hours (allowing FVIII from NPP to be inactivated by inhibitor from test plasma). Residual clotting factor activity in the mixture is determined by standard one stage clotting assay.
Clinically relevant inhibitor development was defined by two positive-titre measurements (>0.6 BU/mL) with reduced factor recovery of <66% of expected rise. Bethesda Assay is sensitive, however lacks specificity and reliability in the low titre inhibitor range (defined as 0.4 – 5 BU/mL, but in particularly 0.4 – 1.0 BU/mL) owing to the following:

- pH of the test mixture increased to 8.4 – 8.6 during the 2-hour incubation in 37°C waterbath denaturing the FVIII;
- protein denaturation during the incubation period further decreasing FVIII activity.
- it was also noted that during serial dilution, the inhibitor activity increased proportionally despite no clinical evidence of an inhibitor.
Overall, the non-specific low-titre inhibitor measured is due to the presence of experimental artefact82, 83.

The Nijmegen modification (NA) of the Bethesda assay was therefore developed to improve the specificity and reliability for low titre inhibitor testing in 199582.

\subsection*{1.4.2 Nijmegen modification of the Bethesda assay (NA)}

The Nijmegen modification proposed two changes to the current Bethesda assay: (a) normal pooled plasma is buffered to pH7.4 with 0.1M imidazole buffer and (b) FVIII-deficient inhibitor-free plasma is used in the place of imidazole buffer (in our centre - Owren-Koller buffer)82. This is subsequently followed by serial dilution, incubation, residual clotting factor activity measurement and calculation of inhibitor level as per original BA.
These modifications improve the intrinsic buffering effect after serial dilution thereby improving the specificity and reliability of the test for low-titre inhibitor without altering the sensitivity. With the regards to high-titre inhibitors, NA offers the similar specificity to BA but the quantification is erroneous owing to the complex non-linear kinetics between FVIII and its inhibitors82, 84.

The inter-laboratory CV for NA is approximately 50% and had remained high over the years due to the differences in reagents used, normal pooled plasma as well as buffering methods. Centralized testing was recommended85, 86.

Additional recommendation of using 4M imidazole solution instead of solid imidazole for the buffering of incubation mixture was received in 2014 to further
standardize the NA to increase test specificity (Verbruggen, personal communication).

The frequently used cut-off value for both BA and NA is 0.6 BU/mL, however, owing to the increased specificity of the NA, the cut off value may be lower\(^87\).

Despite all attempts to improve the sensitivity and specificity of the NA, low-titre inhibitors are still being missed (in particularly late ITI and early post ITI periods). A low-titre FVIII inhibitor assay (LTA) was developed in 2012 which was based on the principle of NA with the following changes:

a) concentration of test plasma by selective protein filtration;

b) the ratio for incubation mixture was 3:1 (concentrated test plasma: BNPP);

c) residual FVIII activity was measured by the use of chromogenic substrates.

The LTA offers the lower limit of detection of 0.03 BU/mL which cannot be detected by BA or NA, however clinical significance of these inhibitor <0.6 BU requires further studies\(^87.88\).

1.5 Rationale for the study

In our centre, the currently used method for inhibitor measurement is the BA. Using this method, the estimated inhibitor frequency is 10-15% in the population attending the haemophilia treatment centre at the CMJAH. In view of the high treatment costs associated with management of inhibitors, it is important that the measurement is accurate and reliable. Using the BA, a large number of patients appear to have low levels of inhibitors with no clinical inhibitor effect. It is therefore
important to establish the clinical significance of these low level inhibitors using the more reliable NA.

The following objectives were set in order to achieve the above aim:

- To validate the NA against the BA in inhibitor measurement in a cohort of known inhibitor patients at the CMJAH Haemophilia Clinic;
- To establish the clinically significant inhibitor cut-off value using the Nijmegen assay for our laboratory;
- To retrospectively correlate borderline inhibitor levels obtained with BA and NA to the risk of development of low responding and high responding inhibitors.
2 MATERIALS AND METHODS

2.1 Study design and site

This study comprised of two parts:

The laboratory validation of the NA was a cross-sectional study whilst the clinical correlation was done retrospectively.

a) Laboratory: The method validation of the NA and establishing a clinically significant cut-off value as a cross-sectional study. This part of the study was conducted at the Department of Molecular Medicine and Haematology, National Health Laboratory Service, CMJAH. The validation of the NA also comprised of 2 parts where: 1) NA performed with buffered normal pooled plasma and 2) NA performed with buffered Dade® Citrol 1® Coagulation Control Level 1 (Siemens Healthcare Diagnostics, Newark, DE, USA).

b) Clinical correlation: Retrospective data analysis was performed to determine the correlation between borderline inhibitor level and bleeding phenotype, as well as the risk of high responding inhibitor development. This part of the study was carried out at the Haemophilia Comprehensive Care Centre, Area 294, CMJAH.

Permission to conduct this study, to use stored samples and to review patient’s files was given by the Chief Executive Officer of CMJAH and the Human Research Ethics Committee of the University of Witwatersrand, Johannesburg (see Appendix A for the permission letter and Appendix B for the ethics clearance certificate number M130539).
2.2 Study population

a) Laboratory: 100 stored samples collected between January 2007 and 2013 from patients previously tested with a positive inhibitor level, who attended HCCC, were utilized. The samples were collected during routine visits in diagnostic, treatment and/or monitoring follow-up of patients. Only the remaining samples after performing routine analyses were stored (refer to section 2.3 for samples handling).

b) Clinical correlation: Data from the patients of whom specimens were used in the validation study and known patients with high responding inhibitor, which were followed up at the CMJAH HCCC, were collected. Patients were of all ages and all visits in which inhibitor testing was performed were included.

2.3. Blood samples handling

2.3.1 Blood samples collection

5 or 10mL of blood were routinely collected in BD Vacutainer® Citrate Tubes with 3.2% buffered sodium citrate solution (BD Biosciences, San Jose, CA, USA) for inhibitor testing and/or monitoring as part of their full assessment while patients attended the clinic. The blood samples were taken by a trained haemophilia nurse or a haematology registrar using BD Vacutainer® Safety-Lok™ Blood Collection Sets with Luer Adaptors (BD Biosciences, San Jose, CA, USA) and BD Vacutainer® Holders (BD Biosciences, San Jose, CA, USA) to ensure that the samples were collected correctly.
2.3.2 Samples Preparation and Storage

The samples were centrifuged in a Hettich® Rotofix 32A (Hettich, Tuttlingen, Germany) centrifuge at 3500rpm (relative centrifugal force (RCF) of 1900 x g) for 15 minutes in order to obtain platelet poor plasma (PPP). Plasma was removed and aliquoted into separate plastic tubes and/or Nunc CryoTube® Vials (ThermoFisher Scientific, Massachusetts, USA). Routine inhibitor tests were performed. The remaining plasma samples, from patients who previously tested positive for inhibitor, were then stored in cryovials at -70°C until the validation study.

2.4 The Classic Bethesda Assay

The classic BA was performed according to the established method at the CMJAH using NHLS SOP: HAE0198. This entails the set of the following (see Figure 2.1):

a) Standard: 400 mcL of NPP was added to 400 mcL of Owren-Koller (STA® Owren-Koller, Diagnostica Stago, Asnières sur Seine, France) which served as the calibrator and the standard control.

b) Neat: 200 mcL of patient’s plasma was added to 200 mcL of NPP (1:1).

c) Serial dilutions (see Figure 2.2) were set up by adding 200 mcL of Owren-Koller in all the test tubes labelled 1:2 to 1:64 (in doubling quantity, more if required). A volume of 200 mcL of patient’s plasma was added to the 1:2 tube, tap-mixed and 200 mcL of the mixture pipetted out and put into the next dilution tube (1:4). Similar principle applies to the subsequent doubling dilutions – 200 mcL Owren-Koller and 200 mcL of the previous mixture, tap-mixed, move 200 mcL of the mixture to the next dilution tube. The extra 200 mcL after mixing of the final tube of desired dilution was discarded. Finally,
200 mcL of NPP was pipetted into all the dilution tubes.

All tubes were then mixed well, capped and incubated in a waterbath at 37°C for 2 hours. Factor FVIII assays were then performed on the post-incubated specimen using the “standard” tube as the calibrator. A residual FVIII activity of 25% - 75% was read off the Bethesda chart and multiplied with the dilution factor to obtain the inhibitor levels in Bethesda unit (BU/mL).
Abbreviations: NPP, Normal pooled plasma; BU/mL, Bethesda unit per millilitre.
Figure 2.2. Flow chart demonstrating the setup of doubling dilutions.

The flow chart shows how to setup doubling dilutions. Abbreviation: NPP, normal pooled plasma in BA or buffered normal pooled plasma in NA. Green, buffering agents (Owren-Koller in BA, FVIII deficient plasma in NA); blue, patient’s plasma.
2.5 Establishment of the Nijmegen Modification of the Bethesda Assay

2.5.1 pH measurement

All pH analyses of imidazole solution and plasma were performed on the pH/conductivity meter C561 (Consort, Turnhout, Belgium) in the cytogenetics branch of haematology laboratory at NHLS, CMJAH. The QC and maintenance for the pH meter were done according to NHLS SOPs namely NJHC0232 and FML0408.

2.5.2 Preparation of Imidazole buffer

All solid imidazole (Sigma-Aldrich, ≥99% (titration), crystalline, MW = 68.08, St. Louis, Missouri, USA) mass determinations were performed on the AE ADAM PGW Precision Balance (AE ADAM, Kingston, MK, UK) and Sartorius CPA 3245 (Sartorius, Göttingen, Germany) weight balance scales in the flow bench and the main laboratory respectively. The QC and maintenance of the scales were done according to NHLS SOPs namely GPL0062, FML0738, GPL2335 and NJHH0202.

2.5.3 FVIII inhibitor testing

All FVIII inhibitor analyses were performed on the STA-R Evolution® Expert Series (Diagnostica Stago, Asnières sur Seine, France) instrument in the coagulation bench of the haematology laboratory at the NHLS, CMJAH. The QC and maintenance of the instruments were performed according to the NHLS SOPs: GPL2472.
2.5.4 Reagents storage and preparation

The storage and preparation of the reagents were carried out according to the corresponding package inserts and NHLS SOP GPL2849.

- Partial thromboplastin time reagent (PTT Automate 5, Diagnostica Stago, Asnières sur Seine, France), FVIII deficient plasma (STA® Deficient FVIII, Diagnostica Stago, Asnières sur Seine, France), Owren-Koller buffer and CaCl₂ (STA- CaCl₂ 0.025M, Diagnostica Stago, Asnières sur Seine, France) were stored at 2-8°C and were expected to remain stable until the expiration date on the box label.

- Partial thromboplastin time reagent was reconstituted with 5mL of distilled water with a 30-minute stabilization time at room temperature (18 - 25°C) and mixed rigorously by turning the vial upside down 5-10 times to obtain a homogeneous solution before loading onto the analyser. On board stability was for 24 hours with the original perforated cap and the reconstituted reagent remained stable for 7 days at 2-8°C in the original capped vial.

- The STA® Deficient FVIII contains lyophilized citrated human plasma from which FVIII has been removed by selective Immuno-adsorption. The factor VIII deficient plasma was reconstituted with 1mL of distilled water with a 30-minute stabilization time at room temperature and then the vial was swirled gently to obtain a homogeneous solution before loading onto the analyser. On board stability is 4 hours. The FVIII deficient plasma was verified as part of the validation of the Stago analyser. This is confirmed by using a positive and negative commercial control prior to undertaking a FVIII assay as part of routine laboratory quality control.
• Owren-Koller buffer and CaCl$_2$ were ready for use (no stabilization time needed) with an on board stability of 72 hours without cap.

2.5.5 The Normal Pooled Plasma

The Normal Pooled Plasma was purchased from the South African National Blood Service (SANBS) (SANBS, Roodepoort, Johannesburg, South Africa) as “frozen Negative Plasma pooled” (PRU014, SANBS, RSA). Upon receiving the frozen pooled plasma, the unit was thawed in a 37˚C water bath. One millilitre aliquots were immediately prepared in cryo tubes and stored at -70˚C until used. The NPP was tested for PT and PTT to ensure its normality and serve as a baseline for subsequent monitoring.

2.5.6 Preparing a 4M imidazole solution at a pH of 7.4

The 4M imidazole solution at pH of 7.4 was prepared by adding crystalline imidazole into sterile water (Sabex, Boucherville, QC, Canada) then buffered with 10N HCl by titration to a pH of 7.4 (without changing the concentration/total volume of the desired mixture). The 4M imidazole solution was then stored in a closed plastic container in a 2-8˚C fridge for up to two months and used as required.

2.5.7 Preparation of Buffered Normal Pooled Plasma / Citrol 1

2.5.7.1 Direct buffering of NPP/Citrol 1 with solid Imidazole

The NPP/Citrol 1 was buffered by adding crystalline imidazole (Sigma-Aldrich, St. Louis, MO, USA) to obtain a concentration of 0.1M. The mixture was then titrated
to a pH of 7.4 by adding 1N HCl slowly. The BNPP and BC were then aliquoted into Cryo tubes and stored at -70°C until use.

2.5.7.2 Buffering of NPP/Citrol 1 using 4M Imidazole solution

The NPP/Citrol 1 was freshly buffered by adding the pre-prepared 4M imidazole solution at the ratio of 3.9mL NPP/Citrol1 to 0.1mL 4M imidazole solution in a plastic container. The mixture was then buffered with 10N HCl by titration to a pH of 7.4.

2.5.8 The Nijmegen Modification of the Bethesda Assay

The NA was performed by modifying the original BA SOP HAE0198.

Set-up (refer to Figure 2.3)

400 mcL of NPP and 400 mcL of FVIII deficient plasma was pipetted to the first plastic tube (labelled “STD”) which served as the calibrator and the standard control. 200 mcL of patient's plasma and 200 mcL of BNPP/BC was pipetted into the second plastic tube to act as the “neat” (1:1). Doubling dilutions (ranging from 1:1 to 1:64, more if required) was set up by pipetting 200 mcL of FVIII deficient plasma along with 200 mcL of patient plasma into a third plastic tube labelled 1:2. Next, 200 mcL of FVIII deficient plasma was added to 200 mcL of 1:2 dilution into a fourth plastic tube labelled 1:4 and thereof. The extra 200 mcL after mixing of the final tube of desired dilution was discarded. Finally, 200 mcL of BNPP/BC was pipetted into each of the series of dilution tubes (see Table 2.1 and Figure 2.2).
All tubes were then mixed well, capped and incubated in the waterbath at 37°C for 2 hours.
Figure 2.3. Flow diagram demonstrating the Nijmegen set up process

Abbreviations: NPP, Normal pooled plasma; Citrol 1, Dade® Citrol 1® Coagulation Control Level 1; HCl, Hydrochloric acid; M, mole per litre; N, normal.
Table 2.1. Scheme of Nijmegen Assay sample preparation.

<table>
<thead>
<tr>
<th>Tube</th>
<th>STD</th>
<th>Neat (1:1)</th>
<th>1:2</th>
<th>1:4</th>
<th>1:8</th>
<th>1:16</th>
<th>1:32</th>
<th>1:64</th>
<th>etc..</th>
</tr>
</thead>
<tbody>
<tr>
<td>F8 def (mcL)</td>
<td>200</td>
<td>X</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Patient plasma (mcL)</td>
<td>X</td>
<td>200</td>
<td>200</td>
<td>200 (1:2)</td>
<td>200 (1:4)</td>
<td>200 (1:8)</td>
<td>200 (1:16)</td>
<td>200 (1:32)</td>
<td></td>
</tr>
<tr>
<td>Mix & transfer (mcL)</td>
<td>X</td>
<td>X</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>BNPP/BC (mcL)</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Abbreviations: STD, standard control (calibrator); def, deficient; BNPP, buffered normal pool plasma; BC, buffered Dade® Citrol 1® Coagulation Control Level 1; X, add nothing in the tube; mcL, microlitre; etc., subsequent dilution tubes.
Post incubation

The STA-R Evolution® Expert Series was calibrated with the tube labelled “STD” with “FVIII INH” setting (assuming factor assay value of the standard control is 100%). After calibration is completed and passed, QC was performed by running a FVIII INH (essentially the same as factor assay which is a one-stage clot-based assay) on the same standard control to ensure the calibration of the analyser was correct and the result should be between 90-110%. Once QC passed, FVIII INH was then performed on the remaining incubated samples. The dilution of the samples that gave the residual factor within the range of 25%-75% were read off the Bethesda chart (see Table 2.2) and then multiplied by the dilution factor in order to obtain the inhibitor level in Nijmegen-Bethesda units (NBU).
Table 2.2. Bethesda Chart.

This chart is derived from the Bethesda graph which was based on the definition of the test plasma contains 1 BU/mL at 50% inhibition89.

<table>
<thead>
<tr>
<th>RESIDUAL FACTOR (%)</th>
<th>BETHESDA UNIT (BU/ML)</th>
<th>RESIDUAL FACTOR (%)</th>
<th>BETHESDA UNIT (BU/ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.42</td>
<td>49</td>
<td>1.03</td>
</tr>
<tr>
<td>74</td>
<td>0.451</td>
<td>48</td>
<td>1.05</td>
</tr>
<tr>
<td>73</td>
<td>0.47</td>
<td>47</td>
<td>1.08</td>
</tr>
<tr>
<td>72</td>
<td>0.49</td>
<td>46</td>
<td>1.12</td>
</tr>
<tr>
<td>71</td>
<td>0.51</td>
<td>45</td>
<td>1.15</td>
</tr>
<tr>
<td>70</td>
<td>0.54</td>
<td>44</td>
<td>1.18</td>
</tr>
<tr>
<td>69</td>
<td>0.55</td>
<td>43</td>
<td>1.23</td>
</tr>
<tr>
<td>68</td>
<td>0.56</td>
<td>42</td>
<td>1.25</td>
</tr>
<tr>
<td>67</td>
<td>0.59</td>
<td>41</td>
<td>1.28</td>
</tr>
<tr>
<td>66</td>
<td>0.60</td>
<td>40</td>
<td>1.33</td>
</tr>
<tr>
<td>65</td>
<td>0.62</td>
<td>39</td>
<td>1.36</td>
</tr>
<tr>
<td>64</td>
<td>0.65</td>
<td>38</td>
<td>1.40</td>
</tr>
<tr>
<td>63</td>
<td>0.66</td>
<td>37</td>
<td>1.44</td>
</tr>
<tr>
<td>62</td>
<td>0.70</td>
<td>36</td>
<td>1.47</td>
</tr>
<tr>
<td>61</td>
<td>0.72</td>
<td>35</td>
<td>1.52</td>
</tr>
<tr>
<td>60</td>
<td>0.74</td>
<td>34</td>
<td>1.55</td>
</tr>
<tr>
<td>59</td>
<td>0.75</td>
<td>33</td>
<td>1.60</td>
</tr>
<tr>
<td>58</td>
<td>0.80</td>
<td>32</td>
<td>1.64</td>
</tr>
<tr>
<td>57</td>
<td>0.82</td>
<td>31</td>
<td>1.69</td>
</tr>
<tr>
<td>56</td>
<td>0.83</td>
<td>30</td>
<td>1.71</td>
</tr>
<tr>
<td>55</td>
<td>0.85</td>
<td>29</td>
<td>1.77</td>
</tr>
<tr>
<td>54</td>
<td>0.89</td>
<td>28</td>
<td>1.82</td>
</tr>
<tr>
<td>53</td>
<td>0.91</td>
<td>27</td>
<td>1.87</td>
</tr>
<tr>
<td>52</td>
<td>0.95</td>
<td>26</td>
<td>1.93</td>
</tr>
<tr>
<td>51</td>
<td>0.98</td>
<td>25</td>
<td>2.00</td>
</tr>
<tr>
<td>50</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: BU/mL, Bethesda unit per millilitre.

2.5.9 Control samples

For precision, accuracy and linearity analyses, commercial samples (with assigned inhibitor values) were used (see Table 2.3). These samples were prepared and validated by the External quality Control of diagnostic Assays and Tests (ECAT) Foundation (Dobbeweg 1, 2254 AG Voorschoten, The Netherlands) External Quality Assessment Programme (EQAP).
Table 2.3. ECAT control samples and expected values with 2SD

<table>
<thead>
<tr>
<th>ECAT reference samples</th>
<th>Expected value</th>
<th>ECAT mean ±2SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH-24</td>
<td>0.5</td>
<td>0.0 - 1.2</td>
</tr>
<tr>
<td>INH-25</td>
<td>2.8</td>
<td>1.0 - 4.6</td>
</tr>
<tr>
<td>INH-26</td>
<td>6.1</td>
<td>2.1 - 10.1</td>
</tr>
</tbody>
</table>

Abbreviations: ECAT, ECAT foundation; SD, standard deviation; INH-24, -25, -26, ECAT control samples.

2.5.10 Precision Analysis

Precision is defined as the closeness of agreement (degree of scatter) between a series of measurements obtained from multiple sampling of the same homogeneous sample under the prescribed conditions\(^9\). The precision analyses were assessed by performing the NA using BNPP/BC eleven times within a single run. One value was excluded per analysis and the standard deviation (SD), coefficient of variation (CV) and confidence interval (CI) were then calculated.

2.5.11 Accuracy Analysis

The accuracy of an analytical procedure expresses the closeness of agreement between the value which is accepted either as a conventional true value or an accepted reference value and the value found\(^9\). The accuracy analysis for NA was assessed by:

a) the results from the NA of three control samples with different concentrations were compared with the accepted reference values provided by the ECAT foundation;
b) the results from the NA using BNPP of 100 patient samples and NA using BC of 43 patient samples with a range of different concentrations (negative to high) were compared to the results obtained from the BA.

The difference between the NA measured value and the accepted true value (BA) together with the % bias, 95% confidence intervals were then calculated and represented in the Bland-Altman plot. Correlation studies between NA measured value and accepted true value with R^2, Y-intercept and slope were calculated and represented by linear regression analysis.

2.5.12 Linearity Analysis

The linearity of an analytical procedure is its ability (within a given range) to obtain test results which are directly proportional to the concentration (amount) of analyte in the sample 90.

The linearity analyses were performed by constituting nine diluted samples covering the interested range (≤ 5BU) from a control sample (with a known concentration) using FVIII deficient plasma as diluent. The results obtained from NA were then compared against the expected concentrations of the diluted samples. The results were then plotted with correlation coefficient, y-intercept, slope of the regression line and residual sum of square calculated.

2.5.13 Clinical data collection

A clinical correlation study was carried out concurrently with the method validation. The clinical data collection included a retrospective review of clinical files,
laboratory results and clinical trial data of the patients correlating with the available samples as well as known patients with inhibitors. Patients with von Willebrand disease, haemophilia B, acquired haemophilia or those who did not have a corresponding sample were excluded in the final analyses.

Parameters including demographics (age, gender, race), severity of the haemophilia, HIV status, presence of “transient” inhibitor, type of treatment (on demand or prophylaxis), type of replacement product, dosage given and exposure days were collected and compared to inhibitor development. The inhibitor levels were compared to bleeding frequency and response to the bypassing agents of the patients.

In a subset of patients (known inhibitor patients), the association between the presence of “transient” inhibitor and the development of high responding inhibitor were analyzed by going through the available patients’ records and response to treatment documented in the patients’ files.

2.5.14 Establishing the clinical significant cut-off value

The NA measured inhibitor values were correlated with the clinical presentation. The data was plotted in a 2 x 2 contingency table and true positive rate (TPR), false positive rate (FPR), positive predictive value (PPV), F1 score and accuracy (ACC) were calculated. The clinically significant cut-off value was determined by plotting the data into a Receiver Operating Characteristic (ROC) curve and the area under the curves (AUC) values were calculated.
2.5.15 Statistical Analysis

Accuracy analyses (linear regression and Bland-Altman plot) and linearity analyses (linear regression) were performed using GraphPad Prism® version 6 for Mac (GraphPad Software, San Diego, CA). Precision analyses (SD, %CV and 95% CI) and clinical data analyses were performed with Numbers version 3.2 (Apple Inc, Cupertino, CA, USA).
3 RESULTS

3.1. Laboratory validation:

The NA method validation was performed using both normal pooled plasma as well as Citrol 1 (which is commercially available and more standardized) with the possibility of replacing NPP with Citrol 1.

3.1.1 NA (Direct buffering of NPP with solid Imidazole)

3.1.1.1 Precision analysis

The results of precision analysis using BNPP are shown in Table 3.1.

Table 3.1. Precision analysis of NA using BNPP

<table>
<thead>
<tr>
<th>Sample A</th>
<th>NA-BNPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.72</td>
</tr>
<tr>
<td>2</td>
<td>0.65</td>
</tr>
<tr>
<td>3</td>
<td>0.66</td>
</tr>
<tr>
<td>4</td>
<td>0.66</td>
</tr>
<tr>
<td>5</td>
<td>0.72</td>
</tr>
<tr>
<td>6</td>
<td>0.54</td>
</tr>
<tr>
<td>7</td>
<td>0.70</td>
</tr>
<tr>
<td>8</td>
<td>0.74</td>
</tr>
<tr>
<td>9</td>
<td>0.74</td>
</tr>
<tr>
<td>10</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Abbreviations: sample A, random biological sample; NA, Nijmegen Assay; BNPP, buffered normal pooled plasma.

Precision analysis of NA using BNPP showed a SD of 0.06, %CV of 9.3% and a 95% CI of 0.68 ± 0.04.

3.1.1.2 Accuracy analysis

The result of accuracy analysis using BNPP with ECAT control samples are shown in Table 3.2.
Table 3.2. Accuracy analysis of NA using BNPP (control samples)

<table>
<thead>
<tr>
<th>ECAT Reference sample</th>
<th>ECAT values (BU/mL)</th>
<th>BA (BU/mL)</th>
<th>NA with BNPP (NBU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH-24-reference</td>
<td>0.5</td>
<td>1.05</td>
<td>1.03</td>
</tr>
<tr>
<td>INH-25-reference</td>
<td>2.8</td>
<td>3.86</td>
<td>5.44</td>
</tr>
<tr>
<td>INH-26-reference</td>
<td>6.1</td>
<td>7.48</td>
<td>7.48</td>
</tr>
</tbody>
</table>

Abbreviations: ECAT, ECAT foundation; INH-24, -25, -26, ECAT inhibitor control samples; BA, Bethesda Assay; NA, Nijmegen Assay; BNPP, buffered normal pooled plasma; BU/mL, Bethesda unit per millilitre; NBU/mL, Nijmegen-Bethesda unit per millilitre.

3.1.2 NA (Direct buffering of Citrol 1 with solid Imidazole)

3.1.2.1 Precision analysis

The results of precision analysis using BC are shown in Table 3.3.

Table 3.3. Precision analysis of NA using BC

<table>
<thead>
<tr>
<th>SAMPLE A</th>
<th>NA-BC (NBU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>2</td>
<td>0.74</td>
</tr>
<tr>
<td>3</td>
<td>0.98</td>
</tr>
<tr>
<td>4</td>
<td>0.83</td>
</tr>
<tr>
<td>5</td>
<td>0.72</td>
</tr>
<tr>
<td>6</td>
<td>0.65</td>
</tr>
<tr>
<td>7</td>
<td>0.70</td>
</tr>
<tr>
<td>8</td>
<td>0.85</td>
</tr>
<tr>
<td>9</td>
<td>0.89</td>
</tr>
<tr>
<td>10</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Abbreviations: sample A, random biological sample; NA, Nijmegen Assay; BC, buffered Dade® Citrol 1® Coagulation Control Level 1; NBU/mL, Nijmegen-Bethesda unit per millilitre.

Precision analysis of NA using BC showed a SD of 0.1, %CV of 12.56 and 95% CI of 0.79 ± 0.02.
3.1.2.2 Accuracy analysis

The results of accuracy analysis using BC with the ECAT control samples are shown in Table 3.4.

Table 3.4. Analysis of NA using BC (control samples)

<table>
<thead>
<tr>
<th>ECAT reference samples</th>
<th>ECAT values (BU/mL)</th>
<th>BA (BU/mL)</th>
<th>NA with BC (NBU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH-24-reference</td>
<td>0.5</td>
<td>1.05</td>
<td>1.28</td>
</tr>
<tr>
<td>INH-25-reference</td>
<td>2.8</td>
<td>3.86</td>
<td>7.08</td>
</tr>
<tr>
<td>INH-26-reference</td>
<td>6.1</td>
<td>7.48</td>
<td>14.16</td>
</tr>
</tbody>
</table>

Abbreviations: ECAT, ECAT foundation; INH-24, -25, -26, ECAT inhibitor control samples; BA, Bethesda Assay; NA, Nijmegen Assay; BC, buffered Dade® Citrol 1® Coagulation Control Level 1; BU/mL, Bethesda unit per millilitre; NBU/mL, Nijmegen-Bethesda unit per millilitre.

3.1.3 NA (Buffering of NPP using 4M Imidazole solution)

3.1.3.1 Precision analysis

The results of precision analysis using BNPP are shown in Table 3.5.

Table 3.5. Precision analysis of NA using BNPP

<table>
<thead>
<tr>
<th>INH-24</th>
<th>NA-BNPP (NBU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.72</td>
</tr>
<tr>
<td>2</td>
<td>0.85</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>0.66</td>
</tr>
<tr>
<td>5</td>
<td>0.80</td>
</tr>
<tr>
<td>6</td>
<td>0.80</td>
</tr>
<tr>
<td>7</td>
<td>0.85</td>
</tr>
<tr>
<td>8</td>
<td>0.82</td>
</tr>
<tr>
<td>9</td>
<td>0.70</td>
</tr>
<tr>
<td>10</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Abbreviations: INH-24, ECAT control sample; NA, Nijmegen Assay; BNPP, buffered normal pooled plasma; NBU/mL, Nijmegen-Bethesda unit per millilitre.

Precision analysis of NA using BNPP showed a SD of 0.06, %CV of 8.44 and 95% CI of 0.77 ± 0.05.
3.1.3.2 Accuracy analysis

The results of accuracy analysis using BNPP with control sample are shown in Table 3.6.

Table 3.6. Analysis of NA using BNPP (control sample)

<table>
<thead>
<tr>
<th>ECAT reference sample</th>
<th>ECAT values (BU/mL)</th>
<th>BA (BU/mL)</th>
<th>NA with BNPP (NBU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH-24-reference</td>
<td>0.5</td>
<td>0.95</td>
<td>0.65</td>
</tr>
<tr>
<td>INH-25-reference</td>
<td>2.8</td>
<td>3.86</td>
<td>3.64</td>
</tr>
<tr>
<td>INH-26-reference</td>
<td>6.1</td>
<td>12.16</td>
<td>8.24</td>
</tr>
</tbody>
</table>

Abbreviations: ECAT, ECAT foundation expected value; INH-24, -25, -26, ECAT inhibitor control samples; BA, Bethesda Assay; NA, Nijmegen Assay; BNPP, buffered normal pooled plasma; BU/mL, Bethesda unit per millilitre; NBU/mL, Nijmegen-Bethesda unit per millilitre.

All three control samples showed measured values within ECAT assigned values.

One hundred patient samples were analysed using BNPP buffered with 4M imidazole solution. The results are shown in Figure 3.1 and Figure 3.2.
Figure 3.1. Linear regression graph demonstrating NA using BNPP against BA.

Abbreviations: BA, Bethesda Assay; NA, Nijmegen Assay; BU/mL, Bethesda unit per millilitre; NBU/mL, Nijmegen-Bethesda unit per millilitre; BNPP, buffered normal pooled plasma. Blue line represents linear regression between BA and NA with BNPP and the red dotted line represent the 95% confidence interval.

Correlation studies between NA (BNPP) and BA showed a $R^2 = 0.93$ (P-value < 0.0001), Y-intercept = -0.89 and slope of 1.06 ± 0.03.
Figure 3.2. Bland-Altman plot demonstrating accuracy between BA and NA with BNPP.

Abbreviations: BA, Bethesda Assay; NA, Nijmegen Assay; BNPP, buffered normal pooled plasma. Blue dotted line represents the bias and red dotted lines represent 95% confident interval.

Comparative study using the Bland-Altman plot showed a bias = 0.49, SD of bias = 4.4 and 95% limits of agreement from -8.13 to 9.11.

In addition, the NA with BNPP provides a sensitivity of 100%, specificity of 94.5%, false positive rate of 5.5% and false negative rate of 0%.
3.1.3.3 Linearity analysis

The results of linearity analysis using BNPP are shown in Figure 3.3.

Figure 3.3. Linearity analysis of NA with BNPP.

Abbreviations: NA, Nijmegen Assay, BNPP, buffered normal pooled plasma, BU/mL, Bethesda unit per millilitre; NBU/mL, Nijmegen-Bethesda unit per millilitre.

Linearity analysis of NA (BNPP) in lower ranges (0.2 - 5 BU/mL) shows $R^2 = 0.98$ (P-value <0.0001), Y-intercept = 0.01 and slope = 1.05 ± 0.05.
3.1.4 NA (Buffering of Citrol 1 using 4M Imidazole solution)

3.1.4.1 Precision analysis

The results of precision analysis using BC are shown in Table 3.7.

Table 3.7. Precision analysis of NA using BC

<table>
<thead>
<tr>
<th>ECAT INH 24</th>
<th>NA-BC (NBU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.03</td>
</tr>
<tr>
<td>2</td>
<td>1.05</td>
</tr>
<tr>
<td>3</td>
<td>1.03</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>0.83</td>
</tr>
<tr>
<td>6</td>
<td>0.83</td>
</tr>
<tr>
<td>7</td>
<td>0.85</td>
</tr>
<tr>
<td>8</td>
<td>0.83</td>
</tr>
<tr>
<td>9</td>
<td>0.95</td>
</tr>
<tr>
<td>10</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Abbreviations: INH-24, ECAT control sample; NA, Nijmegen Assay; BNPP, buffered normal pooled plasma; NBU/mL, Nijmegen-Bethesda unit per millilitre; max, maximum; min, minimal.

Precision analysis of NA with BC shows SD of 0.09, %CV of 10 and 95% CI of 0.93 ± 0.02.

3.1.4.2 Accuracy analysis

The results of accuracy analysis using BC with ECAT control samples are shown in Table 3.8.

Table 3.8. Analysis of NA using BC (control sample)

<table>
<thead>
<tr>
<th>ECAT reference samples</th>
<th>ECAT values (BU/mL)</th>
<th>BA (BU/mL)</th>
<th>NA with BC (NBU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH-24-reference</td>
<td>0.5</td>
<td>0.95</td>
<td>1.03</td>
</tr>
<tr>
<td>INH-25-reference</td>
<td>2.8</td>
<td>3.86</td>
<td>4</td>
</tr>
<tr>
<td>INH-26-reference</td>
<td>6.1</td>
<td>12.16</td>
<td>10.24</td>
</tr>
</tbody>
</table>

Abbreviations: ECAT, ECAT foundation expected value; INH-24, -25, -26, ECAT inhibitor control samples; BA, Bethesda Assay; NA, Nijmegen Assay; BC, buffered Dade® Citrol 1® Coagulation Control Level 1; BU/mL, Bethesda unit per millilitre; NBU/mL, Nijmegen-Bethesda unit per millilitre.
In the 2 ECAT samples with mean <5BU (INH-24 and INH-25) showed measured results within the ECAT assigned values, however, INH-26 showed a measurement outside of the assigned value.

Forty-three patient samples were analysed using Citrol 1 buffered with 4M imidazole solution. The results are shown in Figure 3.4 and Figure 3.5.
Figure 3.4. Linear regression graph demonstrating NA using BC against BA.

Abbreviations: BA, Bethesda Assay; NA, Nijmegen Assay; BU/mL, Bethesda unit per millilitre; NBU/mL, Nijmegen-Bethesda unit per millilitre; BC, buffered Dade® Citrol 1® Coagulation Control Level 1. Blue line represents linear regression between BA and NA with BC and the red dotted line represent the 95% confidence interval.

Correlation studies between NA (BC) and BA shows $R^2 = 0.76$ (P-value <0.0001), Y-intercept = 0.86 and slope of 0.54 ± 0.05.
Figure 3.5. Bland-Altman plot demonstrating accuracy between BA and NA with BC.

Abbreviations: BA, Bethesda Assay; NA, Nijmegen Assay; BC, buffered Dade® Citrol 1® Coagulation Control Level 1. Blue dotted line represents the bias and red dotted lines represent 95% confident interval.

Comparative study using the Bland-Altman plot shows a bias = 0.81, SD of bias = 3.9 and 95% limits of agreement from -6.84 to 8.46.
3.1.3.3 Linearity analysis

![NA-BC linearity analysis graph](image)

Figure 3.6. Linearity analysis of NA with BC.

Abbreviations: NA, Nijmegen Assay; BC, buffered Dade® Citrol 1® Coagulation Control Level 1; BU/mL, Bethesda unit per millilitre; NBU/mL, Nijmegen-Bethesda unit per millilitre.

Linearity analysis of NA (BC) in lower ranges (0.2 - 5 BU/mL) shows $R^2 = 0.97$ (P-value <0.0001), Y-intercept = 0.11 and slope = 1.18 ± 0.08.

3.2. Clinical correlation studies

In the clinical correlation studies, a total of 82 patient files were reviewed. Of which, 10 patients did not have corresponding samples and were therefore
excluded. In addition, patients with acquired haemophilia, haemophilia B and von Willebrand disease are also excluded (see Figure 3.7).

Figure 3.7. Flow diagram indicating the number of patient files reviewed, exclusion criteria and total number analyzed.
Table 3.9. Characteristics of patients analyzed.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Number</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>63</td>
<td>98.44</td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
<td>1.56</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African</td>
<td>37</td>
<td>57.81</td>
</tr>
<tr>
<td>White</td>
<td>24</td>
<td>37.50</td>
</tr>
<tr>
<td>Coloured</td>
<td>2</td>
<td>3.13</td>
</tr>
<tr>
<td>Indian</td>
<td>1</td>
<td>1.56</td>
</tr>
<tr>
<td>Severity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>9</td>
<td>14.06</td>
</tr>
<tr>
<td>Severe</td>
<td>55</td>
<td>85.94</td>
</tr>
<tr>
<td>Age group:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paeds (less than 16)</td>
<td>21</td>
<td>32.81</td>
</tr>
<tr>
<td>Adults</td>
<td>43</td>
<td>67.19</td>
</tr>
<tr>
<td>HIV status:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV +</td>
<td>4</td>
<td>6.25</td>
</tr>
<tr>
<td>HIV -</td>
<td>60</td>
<td>93.75</td>
</tr>
<tr>
<td>Known with inhibitor treated with a bypassing agent:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>20</td>
<td>31.25</td>
</tr>
<tr>
<td>No</td>
<td>44</td>
<td>68.75</td>
</tr>
<tr>
<td>Treatment strategy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prophylaxis</td>
<td>6</td>
<td>9.38</td>
</tr>
<tr>
<td>On demand</td>
<td>58</td>
<td>90.63</td>
</tr>
</tbody>
</table>

The 6 patients described in Table 3.9 who received prophylactic therapy were all paediatric patients. In addition, patients treated with bypassing agents were all receiving on-demand treatment.

Of the analyzed patients, patients with high titre-inhibitors treated with bypassing agents comprised of approximately one third. Only 3 of the 20 high-titre inhibitor patients had a clear history of presence of transient inhibitor prior to the development of clinically significant inhibitor. The remaining 17 high-titre inhibitor patients have incomplete data regarding the presence of transient inhibitor as
most of these patients are adult and they were diagnosed before routine inhibitor testing/monitoring was implemented. All 44 patients with previously recorded low-titre, most likely “transient” inhibitor have achieved haemostasis with normal dose CFC and did not required increased dosage of CFC nor bypassing agents to date.
4 DISCUSSION

Although haemophilia is a rare disorder, the management of and expertise required to manage these patients is a costly undertaking. The development of inhibitors (in particularly high titre) is one of the most serious complications of CFC treatment rendering standard replacement therapy useless. These inhibitors have unpredictable kinetics as well as variable patient responses to different bypassing agents making the management of these patients challenging.

Historically, the gold standard of inhibitor determination is by the Bethesda assay which was developed in the 1970’s. The nature (high sensitivity but lack of specificity) of Bethesda assay is deemed problematic particularly when it comes to low-titre inhibitors. In addition, with routine monitoring of inhibitors becoming more common, the phenomenon of transient inhibitors was discovered. In the 90’s, the Nijmegen modification of the Bethesda Assay was introduced and was proven to be more reliable than BA in low-titre ranges.

Aim of the study

Multiple studies82, 83, 91 have already been conducted and concluded that NA provides more reliable results in low titre ranges. However, LTA was in development recently88 and was suggested that it may be superior for post ITI monitoring. Nevertheless, the primary objective of this study was to validate the NA against BA in a cohort of patients with inhibitors (regardless of titre) as well as determining a clinically significant cut-off value for our laboratory. Another objective of this study was to determine the significance of the low-titre (possibly
transient) inhibitors (i.e. whether they eventually become clinically significant requiring treatment with a bypassing agent).

4.1 Validation of NA using different buffered reagents

4.1.1 NA (Direct buffering with solid Imidazole)

Most studies conducted previously were utilizing NPP as buffered reagent. In this study, the NA has been validated with both buffered NPP and Citrol 1 against BA. The NA was initially set up according to the publication by Verbruggen82 using direct buffering of fresh frozen pooled plasma/Citrol 1 with solid imidazole to a 0.1M concentration. The NPP/Citrol 1 was then adjusted to a pH of 7.4 with 1N HCl.

Precision analyses for both direct buffering with NPP or Citrol 1 were similar but NA (using BC) appeared to give us a higher mean, higher SD as well as higher %CV. When ECAT control samples (INH-24, -25 and -26) were analysed using NPP and Citrol 1 that were directly buffered, one level for NPP and all three for Citrol 1 were outside of the assigned values. This could possibly be explained by the variation or inaccuracy of measurement of imidazole powder and the dilutional effect with the use of 1N HCl during buffering (the volume required to achieve pH of 7.4 with 1N HCl was quite significant).

4.1.2 NA (using 4M Imidazole solution)

The use of 4M imidazole solution and a higher concentration of HCl (10N) to obtain pH of 7.4 seems to have eliminated the discrepancies in measurement. The precision analyses of NA buffered with 4M imidazole solution using NPP or Citrol 1
showed a better %CV when compared to the respective original (direct buffering) NA with NPP or Citrol 1.

Using the same ECAT control samples, NA with NPP obtained measured values within the assigned values using all three levels. Meanwhile, NA with Citrol 1 improved and only the high-titre level did not achieve a measured value within the assigned value. NA correlated well and was comparable with BA but the slope obtained with NPP was superior to Citrol 1. NA with NPP gave a smaller bias than Citrol 1, however both were within acceptable limits.

Linearity studies was only performed at the range of interest (i.e. low-titre inhibitor range of 0-5 BU/mL) revealing both NA with NPP and Citrol 1 were linear but NPP had a better slope being closer to the expected measurements than Citrol 1.

In general, NA with Citrol 1 appeared to give higher measurements than BA and NA with NPP. Another major difficulty experienced throughout this project was the QC and calibrating processes when using Citrol 1 in comparison to NPP. This could be explained by the fact that Citrol 1 is a lyophilized preparation. The FVIII in lyophilized preparations is less stable as compared to FVIII in fresh or frozen plasma (according to the package insert, the Citrol 1 is stable for 8 hours after reconstitution in closed vial at room temperature. Owing to the need for buffering as well as incubation, reconstituted Citrol 1 could not be kept in the original vial which could have contributed to FVIII instability. Moreover, FVIII can be inactivated during the buffering process resulting in an even lower FVIII level than NPP. For
the above reasons, the Citrol 1 arm of the study was terminated early due to technical difficulties and limited funding for reagents.

There is no other intra- or inter-laboratory data available in South Africa as this is the first NA set-up and validation performed.

4.1.3 Other observations

Of interest, 23 of 34 samples previously measured with lower-titre inhibitor when the sample was first submitted no longer have a measurable inhibitor. The significance of this discrepancy in measurement over time is uncertain. The remaining 11 samples with previously measured values, 9 of 11 samples were from known inhibitor patients treated with a bypassing agent demonstrating clinically significant low-titre inhibitors did not alter over time. Only 1 of 100 samples that showed no inhibitor on BA demonstrated a low-titre inhibitor on NA with NPP, but a measured value of 0.49 NBU/mL was nonetheless deemed negative when using the international cut off value of 0.6 NBU/mL.

In this study, the NA with NPP was comparable to BA and showed acceptable precision, accuracy and linearity but could not be demonstrated to be superior to the current BA.

4.2 Clinical correlation and low-titre transient inhibitors

Only 15% of the known inhibitor patients had transient inhibitors prior to the development of clinically significant inhibitors and required a change of treatment from CFC to bypassing agents.
The investigators could not conclusively demonstrate the presence of the transient inhibitor eventually becoming clinically significant. This phenomenon concurred with the suggestion of previous studies that the transient inhibitors represented the natural tolerance to the CFC given.

4.3 Limitation of the study

The samples were stored over several years and the acquired NPP was stored in -80°C for over 1 month; the investigators could not determine how much, if any, sample degradation has occurred which may have partly affected the results. Owing to the limited amount of reagents, the Citrol 1 arm of the study was terminated early limiting the sample size to be less than the NPP arm. In addition, the accuracy analyses were not performed in duplicate.

Both the lack of previous transient inhibitor studies and the lack of available data in known high-titre inhibitor patients (before the diagnosis was made) hinder the interpretation of the significance of transient inhibitors.

ROC curves for NA with NPP and Citrol 1 could not be established owing to the limited sample size.

4.4 Recommendation

The NA with Citrol 1 showed inferior results compared to NA with NPP. In addition, owing to the technical difficulties experienced, NA with Citrol 1 is not recommended for routine inhibitor testing. The NA performed with NPP buffered
with 4M imidazole solution could be implemented in our laboratory and could replace the current BA.

The international agreed cut of value of 0.6 NBU/mL should be used.

Only NPP and Citrol 1 were considered as buffered reagents when we designed the study, other buffered reagents (such as National Bioproducts Institute Bioplasma FDP or STA-Pool Norm) should be investigated as alternative to NPP.

Prospective long-term studies are needed to determine the nature and significance of the transient inhibitor.
5 Conclusion

In this validation assay using patient and control samples, the NA performed better when using 4M imidazole solution for both NPP and Citrol 1 when compared to NA using solid imidazole direct buffering. The performance of the Nijmegen assay with buffered pool plasma was better than that of the same assay using buffered Citrol 1.

The performance of the NA with BNPP is comparable to the currently used BA. However, the investigators cannot demonstrate the NA to be superior in this study.

While not conclusive, the results of this study suggests that the presence of transient low-titre inhibitor does not predict the development of future clinically significant inhibitors.
APPENDICES

Appendix A Permission letter from CMJAH

Dr. Yuen On Wan
Department of Haematology
University of Witwatersrand

Dear Dr. Wan

RE: “Diagnostic and clinical evaluation of inhibitors in a Cohort of Haemophilia patients in a quaternary care centre”

Permission is granted for you to conduct the above research as described in your request provided:

1. Charlotte Maxeke Johannesburg Academic hospital will not in anyway incur or inherit costs as a result of the said study.
2. Your study shall not disrupt services at the study sites.
3. Strict confidentiality shall be observed at all times.
4. Informed consent shall be solicited from patients participating in your study.

Please liaison with the Head of Department and Unit Manager or Sister in Charge to agree on the dates and time that would suit all parties.

Kindly forward this office with the results of your study on completion of the research.

Approved / not approved:

[Signature]

Dr. M. Mpfokeng
Acting Chief Executive Officer
6/02/2014
Appendix B Ethics clearance certificate

HUMAN RESEARCH ETHICS COMMITTEE (MEDICAL)
CLEARANCE CERTIFICATE NO. M130539

NAME: (Principal Investigator) Dr Yuen On Wan

DEPARTMENT: School of Pathology/Molecular Med & Haem.
National Health Laboratory Services

PROJECT TITLE: Diagnostic and Clinical Evaluation of Inhibitors in a Cohort of haemophilia Patients in a Quaternary Care Centre

DATE CONSIDERED: 31/05/2013

DECISION: Approved unconditionally

CONDITIONS:

SUPERVISOR: Prof JN Mahlangu

APPROVED BY: Professor PE Cleaton-Jones, Chairperson, HREC (Medical)

DATE OF APPROVAL: 31/05/2013

This clearance certificate is valid for 5 years from date of approval. Extension may be applied for.

DECLARATION OF INVESTIGATORS

To be completed in duplicate and ONE COPY returned to the Secretary in Room 10004, 10th floor, Senate House, University. I/we fully understand the conditions under which I am/we are authorized to carry out the above-mentioned research and I/we undertake to ensure compliance with these conditions. Should any departure be contemplated, from the research protocol as approved, I/we undertake to resubmit the application to the Committee. I agree to submit a yearly progress report.

Principal Investigator Signature

Date 20/07/2014

PLEASE QUOTE THE PROTOCOL NUMBER IN ALL ENQUIRIES
Appendix C Turnitin result

<table>
<thead>
<tr>
<th>Rank</th>
<th>Source</th>
<th>Similarity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>www.niceindia.net</td>
<td>1%</td>
</tr>
<tr>
<td>2</td>
<td>Submitted to University of the Western Cape</td>
<td>1%</td>
</tr>
<tr>
<td>3</td>
<td>"Abstracts", Journal of Thrombosis and Haemostasis, 2005.</td>
<td><1%</td>
</tr>
<tr>
<td>4</td>
<td>haem2.net</td>
<td><1%</td>
</tr>
<tr>
<td>5</td>
<td>wiredspace.wits.ac.za</td>
<td><1%</td>
</tr>
<tr>
<td>6</td>
<td>bloodjournal.hematologylibrary.org</td>
<td><1%</td>
</tr>
<tr>
<td>7</td>
<td>Don E. Pivonka. "Raman Analysis of Pharmaceuticals", Handbook of Vibrational Spectroscopy, 06/15/2007</td>
<td><1%</td>
</tr>
<tr>
<td>8</td>
<td>asheducationbook.hematologylibrary.org</td>
<td><1%</td>
</tr>
<tr>
<td>9</td>
<td>Favaloro, E. J., B. Verbruggen, and C. H.</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

29. Peyvandi F, Mannucci P, Garagiola I, et al. Source of Factor VIII replacement (plasmatic or recombinant) and incidence of inhibitory alloantibodies in previously untreated patients with severe hemophilia A: the multicenter randomized SIPPET study. 57th ASH Annual Meeting & Exposition; December 5-8; Orlando, FL2015.

