Nerve degeneration within the dental pulp after segmental osteotomies in the baboon (*Papio ursinus*)

JF Lownie, *PE Cleaton-Jones, tLP Fatti, MA Lownie and *M Forbes

Division of Maxillo-Facial and Oral Surgery, Department of Surgery, University of the Witwatersrand, *MRC/University of the Witwatersrand Dental Research Institute and tDepartment of Statistics and Actuarial Science, University of the Witwatersrand, Johannesburg, Wits, 2050.

Keywords: degeneration; pulp; osteotomy.

SUMMARY

Following dentofacial surgical procedures, teeth in segments often do not sense thermal or electric stimuli. This study was undertaken to assess changes in the neural component of the dental pulp after posterior maxillary and mandibular segmental osteotomies, with or without interpositional autogenous bone grafting, in 26 Chacma baboons. Innervation was assessed histologically immediately after operation, and at 3, 6, 12 and 18 months. Statistically significant differences were present between the experimental and control groups. Even after 18 months no nerves were present in any of the mandibular teeth. In maxillary teeth, 50 per cent had demonstrable nerves in the graft group and 40 per cent in the no graft group. As nerve degeneration was present in the experimental teeth, patients should be warned of possible change in tooth sensibility, following these operations. Careful post-operative follow up for long periods in humans following dentofacial surgical procedures is thus essential.

INTRODUCTION

The nerves in the dental pulp, both myelinated and non-myelinated, follow the course of blood vessels. Somatic afferent nerves are myelinated and branch into smaller fibres as they reach the periphery of the pulp to form a dense neural plexus in the subodontoblastic region. Here they lose their myelin sheath to become free nerve endings (Avery, 1987; Berkowitz, Holland and Moxham, 1992). The terminal branching into free nerve endings in the subodontoblastic layer is only a histological feature once root formation has been completed (Mjör and Fejerskov, 1979). Non-myelinated nerves are from the autonomic nervous system. They supply the pulp vessel walls and are associated with vasocontrol (Avery, 1987). The nerves enter the teeth at the apex and can be damaged during surgery.

The Le Fort I osteotomy has become a widely used technique for correcting deformities in the maxilla in either the horizontal or vertical planes. (Summers and Booth, 1975; Vedtofte and Nattestad, 1989). Nerve supply to the pulps of teeth in these segments must be damaged because it is well known that teeth in the mobile segments do not respond to thermal or electrical stimuli immediately after segmental osteotomy (Leibold, Tilson and Rask, 1971; Summers and Booth, 1975). It is assumed that in most cases this is temporary and that the teeth do not show any signs of a compromised blood supply as assessed by colour change in the crown of the tooth (Daniel, White and Proffit, 1971; Pepersack, 1973, Kohn and White, 1974).

Various methods are available to clinicians to assess the sensibility of pulpal tissue. These include a clinical examination of the teeth with emphasis on coronal discoloration (Hutchinson, Robinson and MacGregor, 1972; Kohn and White, 1974), thermal assessment (Theissen and Guernsey, 1976, De Jongh, Barnard and Birnie, 1986), electrical stimulation (Reynolds, 1966; Bhaskar and Rappaport, 1973; Tajima, 1975; Kahnberg and Engstrom, 1987; Vedtofte and Nattestad, 1989), radiographic examination to assess pulpal pathology (Pepersack,
The objectives of the present study were firstly to assess the nerve degeneration of the pulp following posterior segmental maxillary and mandibular osteotomies and secondly to assess the effect of inter-positional bone grafting on nerve degeneration.

MATERIALS AND METHODS

Prior to undertaking this research, the protocol was approved by the Animal Ethics Committee of the University of the Witwatersrand, Johannesburg.

Twenty-six adolescent female baboons were selected for this study and were divided into 4 groups of 6 animals each and one group of 2 animals. The baboons were anaesthetized with intermittent intravenous sodium pentobarbitone sodium and spontaneously breathed room air through an oro-tracheal tube. After cleaning, shaving and draping, a maxillary segmental osteotomy was performed by exposing the buccal surface of the maxilla and by using a fine fissure bur making the necessary osteotomy cuts (Fig. 1). The osteotomized maxillary segment containing the two premolars plus first and second molar teeth was then fully mobilized but remained pedicled on the palatal mucosa. A gap measuring 10mm x 5mm was cut in the residual basal bone above the two premolar teeth to create a defect into which autogenous bone harvested from the iliac crest was placed. The dental-osteovascular segment was then immobilized into its original position using direct intra-osseous wiring.

A similar procedure was carried out in the mandible, however, the osteotomized segment contained the two premolars and only the first molar tooth (Fig. 2). The horizontal bone cut was placed above the neurovascular bundle. As for the maxilla, autogenous bone was placed below the apex of the first premolar tooth. A control operation was performed on the non-osteotomized side of each maxilla and mandible. During this, the buccal aspect of the bone was exposed by raising a mucoperiosteal flap, but no bone cuts were made. All wounds were sutured and the animals were placed on a soft diet with adjunctive antibiotic and analgesic therapy. Immediately after operation 2 baboons were killed with an intravenous lethal dose of sodium pentobarbitone, then 6 baboons were killed at each post-operative period of 3, 6, 12 and 18 months. All were perfused with a mixture of physiological saline plus fine barium sulphate followed by 10 per cent buffered formalin plus barium sulphate. The entire maxilla and mandible were removed, trimmed and all teeth in both the osteotomized and control segments prepared for histological examination. Each tooth with associated alveolar bone was decalcified in a Hydrochloric acid/Formic acid solution then embedded in Medim-Plast wax. Teeth were all sectioned longitudinally at 6μm. Step serial sections containing the entire pulp chamber, radicular as well as coronal pulp were selected and stained with a modified Protogral peroxide technique (Loots et al., 1979) for axons. This technique was controlled by staining neural tissue harvested from rats. Only sections from teeth with vital pulp tissue were selected for assessment. Any teeth with pulp necrosis or where the pulp chamber had been obliterated by osteodentine and/or secondary dentine formation were excluded from the study. Each section was examined under a Univar microscope.
Fig. 2: Diagram of osteotomy cuts in the maxilla.

Fig. 1: Diagram of osteotomy cuts and graft recipient site in the mandible.

(Reichert, Vienna, Austria) with a 10x eyepiece. The presence of nerve fibres was recorded as — in the apical 1/3 only, in the entire root pulp or in the entire pulp chamber. Assessment of the presence or absence of nerve fibres was made at 3 specific areas on each slide namely the junction of the apical 1/3 and remaining radicular pulp, the junction of the radicular and coronal pulp and as close as possible to the odontoblast layer at the highest point in the coronal pulp (Fig. 3). The observations were entered on computer coding forms designed for the study, transferred into an IBM 3081K32 mainframe computer via magnetic tape and analysed using SAS (1989). The histological observations were discrete random variables which were recorded for each section of tooth examined. The number of sections varied from 12 to 25 per tooth depending on the size of the tooth. In order to avoid inappropriate, inflated sample sizes for intergroup comparisons, mean scores were determined for each tooth. The mean values were then rounded off into discrete values. A linear logistic analysis (Proc CATMOD) was carried out with the presence of nervous tissue at each tooth level as dependent variable and individual baboon, post-operative time, experimental group and jaw as independent variables. The critical level of statistical significance was p<0.05.

RESULTS

A total of 210 teeth comprising 93 experimental and 26 control maxillary teeth as well as 65 experimental and 26 control mandibular teeth was prepared for examination. Of these 21 (10 per cent) were discarded as unsuitable for histological examination. Five were ruined by a malfunctioning tissue processor, the remaining 16 had either unacceptable cutting artifacts or the pulp chamber was obliterated by osteodentine. A total of 3 600 sections was examined from 189 teeth. Because the numbers of teeth in each experimental group, i.e. graft, no graft and control were small for each jaw, all teeth were combined in order for the statistical analysis to be relevant. In the presentations of results X² indicates the chi-squared value for each dependant variable included in the linear logistic analysis, df indicates the degrees of freedom and is followed by the probability value.

The percentage teeth with nerve fibres in the pulp tissue of the entire root pulp for mandibular teeth is shown in Figure 4. Immediately after operation all but one tooth had nerves. Thereafter nerve fibres in control teeth remained relatively constant except for a decrease to 83 per cent at the 12 month post-operative period. In both the graft and no graft groups there was a rapid decline in nerves, none were present after 6 months in the no graft group and after 12 months in the graft group.
At the end of the experiment, at 18 months, no nerve fibres could be identified in any of the experimental mandibular teeth. The results were identical for the entire pulp chamber.

The percentage teeth with nerve fibres in the entire root pulp for maxillary teeth is shown in Figure 5. A less dramatic pattern was seen than in the mandibular teeth in that some nerves were present in some teeth at each time period but were less in the graft and no graft groups than in the control group. 50 per cent of experimental teeth had nerve degeneration after 18 months. Nerves were present in the entire pulp chamber in only 20 per cent of teeth after 12 months (Fig. 6).

Linear logistic analysis for the presence of nerve tissue in the root pulp showed statistically significant differences between all 3 experimental groups i.e., graft, no graft and control for apical 1/3 ($X^2=23.85$, df=2, $P=0.001$) and complete root pulp ($X^2=27.12$, df=2, $P=0.001$). As far as post-operative timing was concerned, however, no statistically significant difference was apparent. Concerning the entire pulp chamber, there were statistically significant differences between all three experimental groups ($X^2=23.61$, df=2, $P=0.001$) as well as for post-operative time ($X^2=17.11$, df=4, $P=0.001$).

DISCUSSION

Both myelinated and non-myelinated nerves are present in the pulpal tissue. Myelinated axons transmit sharp pain and non-myelinated nerves are associated with vascular channels (Avery, 1987). In this study no differentiation was made between the two types of fibres.

The fact that nerve fibres were present in all but one tooth, which demonstrated pre-existing fibrosis of the pulp immediately post-operatively, confirms that the histological technique was well controlled as no time was available for nerve degeneration to occur.

The overall results of this study were similar to those reported by Holland and Robinson (1986) who showed that the nerve fibres in the apical portion of teeth following segmental osteotomy in cats was only 36 per cent of that found in control teeth. Bailey et al., (1993) have reported that regeneration of nerve fibres does not occur following surgical transection of roots of teeth in experimental animals. The results of the present study support this finding for mandibular teeth, however, some maxillary teeth showed innervation throughout the entire pulp chamber. The explanation for this difference is that because the apices of the mandibular teeth are closer to the inferior alveolar neurovascular bundle, the horizontal bone cut is closer to the apices of the mandibular teeth. There is more space above the maxillary teeth, so the horizontal bone cut may be further from the periapical area. In the mandibular teeth in the current study some of the apices could easily have been damaged by the rotary instruments during an attempt to avoid the neurovascular bundle. This would cause degeneration for the reasons described by Bailey et al., (1993).
The observation that in some sections of control teeth nerve fibres could not be positively identified requires comment. The exact reason is not clear. There is considerable anatomical variation between animals in the proximity of the apices of the buccal roots of the maxillary second premolar and first molar to the surface of the cortical bone. It is postulated that damage to the apices of these teeth might have occurred as a result of raising the mucoperialial flap, even although no bone cuts were made.

A similar anatomical variation could account for the one instance when this occurred related to one mandibular tooth 12 months post-operatively.

That the number of nerves present in the graft group of maxillary teeth was greater than in the no graft group is probably because the horizontal bone cut was closer to the apices of the molar teeth in the no graft group with a greater likelihood of apical damage. This emphasizes the need to place horizontal bone cuts in Le Fort I osteotomies, and all segmental procedures, as far above the apices of the teeth as possible — certainly at least 5 mm (Bell, 1969).

The prevalence of nerve fibres being greater in the entire root than in the entire pulp chamber indicates that the degenerative process was self limiting. It can only be speculated that the reason for the fluctuating percentages of teeth with nerve fibres present is possibly variation between the experimental animals. Since it is unlikely that animal experimental studies will exceed the 18 months of the current investigation, clinicians need to do long-term follow-ups of tooth sensibility in patients who have had segmental osteotomies.

CONCLUSIONS
This primate study has shown that degeneration of nerve fibres in the pulp occurs following segmental surgical procedures. The number of nerve fibres present in experimental teeth is always less than those in control teeth even after relatively long follow up periods. The operative procedures in man corresponding to the experimental procedures in this study, would be anterior and posterior segmental osteotomies in both jaws as well as the Le Fort I osteotomy and total mandibular subapical osteotomy. There must be careful planning of sites of bone cuts, particularly in the mandible, in individual patients to minimize damage to nerves entering the pulp. In addition, patients need to be told that tooth sensibility is likely to change after operation. Long term follow up of patients undergoing these procedures is necessary to establish whether sensibility lost or diminished after operation will return.

ACKNOWLEDGEMENTS
The authors wish to thank the staff of the Central Animal Service, University of the Witwatersrand, Johannesburg for their assistance with the operative procedures and post-operative care of the animals. Also to staff of the Dental Research Institute of the Medical Research Council and the University of the Witwatersrand, Johannesburg for assistance in preparing the histological sections. We are indebted to Dr H Coleman of the Department of Oral Pathology for his guidance with the histological assessment, and finally to Mrs Carmen Mulder for typing the manuscript.

REFERENCES