Antifungal effect of *Punica granatum* L (pomegranate) peel and seed extracts and the effect of peel extract on the virulence factors of *Candida albicans*
DECLARATION

I, Treasure Fundisiwe Mbatha declare that this dissertation is my own work. It is being submitted for the degree of the Master of Medicine to the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other university.

I declare that this thesis has the approval of The Committee for Research on Human Subjects (Medical). Ethical clearance certificate numbers M000402 and W-CJ-131101-1.

.. (Signature of candidate)

......................... Day of September 2015
DEDICATION

In memory of my Mom and grandmother

Doreen Thobile Mbatha
(1968-2000)

Caroline Bikwaphi Mbatha
(1933-2013)
ABSTRACT

Oral candidiasis which is commonly observed in immune compromised individuals, is caused by *Candida albicans*. Pathogenicity of *C. albicans* is dependent on virulence factors such as adherence to surfaces including host tissues, formation of hyphae and the production of hydrolytic enzymes. *C. albicans* isolated from HIV positive patients are known to express greater virulence and are considered to be more virulent than isolates from HIV negative patients. Antifungal drugs are available, but in recent years *C. albicans* has developed resistance to some of these drugs which has necessitated search for newer antifungal compounds. Medicinal plants can be an excellent resource for the discovery of new therapeutic drugs. *Punica granatum* (pomegranate) which is grown worldwide is known to have antimicrobial properties. Some studies have shown that at high concentrations

P. granatum has antifungal properties. However, high concentrations are difficult to maintain in body cavities with secretions. Therefore, this study investigated the antifungal properties of the peel and seeds of *P. granatum* and the effect of peel extract on the virulence properties of *C. albicans* isolated from HIV positive and HIV negative patients.

P. granatum was collected, fruit peel and seeds were separated, dried and pulverised. Extracts were prepared using various solvents and yields were calculated. Antifungal properties was determined against 10 strains of *C. albicans* isolated from the oral cavities of each of the HIV positive and HIV negative patients using a microdilution technique. Minimum inhibitory concentrations and minimum fungicidal concentrations were recorded. Subinhibitory concentration (3.125 mg/ml) of methanol extract of *P. granatum* was selected and its effect
on the adherence ability, germ tube formation and the production of phospholipase, proteinase and lipase by *C. albicans* was investigated using well described laboratory techniques.

For the fruit peel, methanol (0.67g/1g of dry powder) proved to be the best solvent for the crude extraction. For the seeds, hexane, dichloromethane/methanol and ethyl acetate produced the best yield (0.2 g/1g of powder). For the peel, minimal inhibitory concentration and minimal fungicidal concentration values of the ethanol, acetone, hexane, ethyl acetate and water against all the test isolates was 1.56 mg/ml. The lowest minimal inhibitory concentration and minimal fungicidal concentration of 0.39 mg/ml was obtained with ethyl acetate solvent. For the seeds, the median minimal inhibitory concentration and minimal fungicidal concentration values of the ethanol, acetone, hexane and water against all the test isolates was 1.56 mg/ml.

All the test isolates showed an adherence property to the oral epithelial cells. In the *C. albicans* isolated from HIV positive and HIV negative patients adherence was reduced by the plant extract from 331 to 321 cells (p=>0.05) and from 242.9 to 213.3 cells (p=>0.05) respectively. Germ tube formation by the *C. albicans* isolated from HIV positive patients and HIV negative patients was significantly reduced by the plant extract, from 68.7 to 51.1 cells (26% reduction – p<0.01) and 72.4 to 38.4 cells (34% reduction – p<0.01) respectively. In the presence of plant extract, the production of phospholipase by the *C. albicans* isolated from HIV positive patients and HIV negative patients either increased or decreased by 1 to 4% which was not significant. The plant extract reduced the production of proteinase by the *C. albicans* isolated from HIV positive patients and HIV negative patients by 2 to 3% which was also not significant. Similarly, production of lipase by the isolates from both the groups was reduced by 6 to 9% (p=>0.05). The reduction in the adherence ability, germ tube formation and the production of hydrolytic enzymes was not significantly different between the isolates from HIV positive and HIV negative patients.

High concentrations of crude extract of *P. granatum* peel have an antifungal effect and subtherapeutic concentrations can inhibit the germ tube formation which is necessary in the
pathogenesis of oral candidiasis. Therefore, pomegranate peel has a potential to be developed into a therapeutic agent, although further research is required.

PUBLICATIONS AND PRESENTATIONS

1. Poster presentation: Antifungal properties of *Punica granatum* (Pomegranate) against *Candida albicans*. Faculty Research Day, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa, 2014.

2. Poster presentation: Antifungal properties of *Punica granatum* (Pomegranate) against *Candida albicans*. 6th Cross-Faculty Graduate Symposium, University of minimal inhibitory concentration and minimal fungicidal concentration the Witwatersrand, Johannesburg, South Africa, 2014.
ACKNOWLEDGEMENTS

I would like to express my gratitude to my co-supervisor Professor Mrudula Patel from the Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand whom I cannot thank enough. She made studying at Wits much easier for me and gave me hope when I had given up. I thank her for her continuous patience and going the extra mile to ensure my project is completed on time. She has been a remarkable supervisor and I’ll forever be grateful.

Secondly I would like to thank my supervisor Mrs Zandiswa Gulube (Department of Clinical Microbiology and Infectious Diseases, school of Pathology, Faculty of Health Sciences, University of the Witwatersrand) for giving me this research topic and the opportunity to study. I appreciate her guidance and assistance with the study.

I would also like to thank the Thuthuka National Research Foundation for the financial support which was granted to my supervisor Mrs Z. Gulube.

I would like to acknowledge the staff members of the Infection Control Laboratory, Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty
of Health Sciences, University of the Witwatersrand, who kindly and patiently donated their oral epithelial cells required for this study.

I thank Dr Marietha Nel, Senior Research Scientist from department of Surgery for editing and proofreading my thesis, and providing valuable input.

LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>PUBLICATIONS AND PRESENTATIONS</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS AND ACRONYMS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION & LITERATURE REVIEW

1 Introduction 1
1 Literature review

1.1 *Candida albicans*

1.1.1 Morphology and cultural characteristics

1.1.2 Cell wall and morphogenesis

1.1.3 Virulence factors

1.1.3.1 Adherence

1.1.3.2 Germ tube or hyphae formation

1.1.3.3 Phospholipase (PL) production

1.1.3.4 Aspartic Proteases (Saps) production

1.1.3.5 Lipase (LP) production

1.1.3.6 Endocytosis

1.2 Candidiasis

1.2.1 Oral candidiasis

1.2.2 Treatment of oral candidiasis

1.2.2.1 Antifungal agents

1.2.2.2 Combination therapy

1.2.2.3 Alternative approach

1.3 Medicinal plants

1.3.1 *Punica granatum L*

1.3.1.1 Pomegranate peel

1.3.1.2 Pomegranate seed

1.4 Aim

1.5 Objectives
CHAPTER 2: MATERIALS AND METHODS

2.1 Cultures and inocula 21
2.2 Plant Material and preparation of extracts 21

2.3 Minimal Inhibitory concentration (MIC) and Minimum Fungicidal Concentration (MFC) 23
2.4 Adherence assay 23
2.5 Germ tube assay 25
2.6 Phospholipase assay 26
2.7 Proteinase assay 27
2.8 Lipase assay 29
2.9 Statistical analysis 30

CHAPTER 3: RESULTS

3.1 Punica granatum (Pomegranate) crude peel and seed extract yield 32
3.2 Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentrations (MFC) of crude peel extract 34
3.3 Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentrations (MFC) of crude seed extract 36
3.4 Effect of P. granatum fruit peel on the adherence of C. albicans isolated from HIV positive and HIV negative patients to epithelial cells 42
3.5 Effect of P. granatum fruit peel on the germ tube formation by
C. albicans isolated from HIV positive and HIV negative patients 45

3.6 Effect of P. granatum fruit peel on the production of phospholipase by C. albicans isolated from HIV positive and HIV negative cells 48

3.7 Effect of P. granatum fruit peel on the production of proteinase by C. albicans isolated from HIV positive and HIV negative patients to epithelial cells 50

3.8 Effect of P. granatum fruit peel on the production of lipase by C. albicans isolated from HIV positive and HIV negative patients to epithelial cells 59

CHAPTER 4: DISCUSSION

4.1 Antifungal properties of P. granatum 65
4.1.1 Extraction yield 65
4.1.2 Minimum inhibitory concentration study 65
4.2 Effect of P. granatum on the adherence ability of C. albicans 67
4.3 Effect of P. granatum on the germ tube formation by C. albicans 69
4.4 Effect of P. granatum on the phospholipase production by C. albicans 71
4.5 Effect of P. granatum on the proteinase production by C. albicans 73
4.6 Effect of P. granatum on the lipase production by C. albicans 75
4.7 Use of P. granatum and pathogenesis of C. albicans in the oral cavity 76

CHAPTER 5: CONCLUSIONS, LIMITATIONS TO THE STUDY AND FUTURE RESEARCH

5.1 Conclusions 79
5.2 Limitations of the study 79
5.3 Future research 80

REFERENCES 81

APPENDICES 101
Appendix 1 Composition and preparation of media 101
Appendix 2 Statistical analysis 104
Appendix 3 Ethical clearance certificates 114

LIST OF FIGURES
Figure 1.1 *C. albicans* colonies on Sabouraud agar 3
Figure 1.2 Cell wall structure of *C. albicans* 4
Figure 1.3 Lipase and breakdown of cell wall lipids (Stehr *et al*.; 2003) 11
Figure 1.4 Small tree of *Punica granatum* (Pomagranate) 17
Figure 2.1 *Punica granatum* (pomegranate): a) Fresh fruit, b) dried and pulverized peel, c) dried and pulverized seeds 22
Figure 2.2 Light microscope picture showing *C. albicans* attached to epithelial cells at 40x magnification 25
Figure 2.3 Phospholipase activity on an Egg Yolk Media 27
Figure 2.4 Proteinase activity on the Bovine Serum albumin Agar (BSA) plate 29
Figure 2.5 Lipase production on 1% tributyrin enriched Sabouraud agar 30
Figure 2.6 Study design 31
Figure 3.1 Effect of a subinhibitory concentration of methanol peel extract of *P. granatum* on the adherence by *C. albicans* isolated from HIV positive and HIV negative patients 44
Figure 3.2 Effect of a subinhibitory concentration of methanol peel extract of *P. granatum* on the germ tube (GT) formation by *C. albicans* isolated from HIV positive and HIV negative patients 47
Figure 3.3 Effect of a subinhibitory concentration of methanol peel extract of *P. granatum* on the production of phospholipase by *C. albicans*
isolated from HIV positive and HIV negative patients

Figure 3.4 Effect of a subinhibitory concentration of methanol peel extract of *P. granatum* on the production of proteinase by *C. albicans* isolated from HIV positive and HIV negative patients

Figure 3.5 Effect of a subinhibitory concentration of methanol peel extract of *P. granatum* on the production of lipase by *C. albicans* isolated from HIV positive and HIV negative patients

Figure 4.1 Study design and results - *P. granatum* and *C. albicans* isolated from HIV positive and HIV negative patients

LIST OF TABLES

Table 3.1 The dry weight of peel extracts of *Punica granatum* 33

Table 3.2 The dry weight of seed extracts of *Punica granatum* 33

Table 3.3 MIC and MFC of pomegranate peel extracts against *C. albicans* isolated from HIV positive patients 36

Table 3.3a MIC and MFC of pomegranate peel extracts against *C. albicans* isolated from HIV positive patients (continue) 37

Table 3.4 MIC and MFC of pomegranate peel extracts against *C. albicans* isolated from HIV negative patients 38

Table 3.4a MIC and MFC of pomegranate peel extracts against *C. albicans* isolated from HIV negative patients (continue) 39

Table 3.5 Summary of Median MIC and MFC of crude peel extract against *C. albicans* isolated from HIV positive patients 40

Table 3.6 Summary of Median MIC and MFC of crude peel extract against *C. albicans* isolated from HIV negative patients 41

Table 3.7 MIC and MFC of pomegranate seed extracts against *C. albicans* isolated from HIV positive patients 42
Table 3.7a MIC and MFC of pomegranate seed extracts against *C. albicans* isolated from HIV positive patients (continue) 43

Table 3.8 MIC and MFC of pomegranate seed extracts against *C. albicans* isolated from HIV negative patients 44

Table 3.8a MIC and MFC of pomegranate seed extracts against *C. albicans* isolated from HIV negative patients (continue) 45

Table 3.9 Summary of Median MIC and MFC of crude seed extract against *C. albicans* isolated from HIV positive patients 46

Table 3.10 Summary of Median MIC and MFC of crude seed extract against *C. albicans* isolated from HIV negative patients 47

Table 3.11 Effect of a subinhibitory concentration of methanol peel extract of *P. granatum* on the adherence by *C. albicans* isolated from HIV positive and HIV negative patients 49

Table 3.12 Effect of a subinhibitory concentration of methanol peel extract of *P. granatum* on the germ tube (GT) formation by *C. albicans* isolated from HIV positive and HIV negative patients 51

Table 3.13 Effect of a subinhibitory concentration of methanol peel extract of *P. granatum* on the production of phospholipase by *C. albicans* isolated from HIV positive patients 53

Table 3.14 Effect of a subinhibitory concentration of methanol peel extract of *P. granatum* on the production of phospholipase by *C. albicans* isolated from HIV negative patients 54

Table 3.15 Effect of a subinhibitory concentration of methanol peel extract of *P. granatum* on the production of phospholipase by *C. albicans* isolated from HIV positive and HIV negative patients 54

Table 3.16 Effect of a subinhibitory concentration of methanol peel extract of *P. granatum* on the production of proteinase by *C. albicans*
isolated from HIV positive patients

Table 3.17 Effect of a subinhibitory concentration of methanol peel extract of

P. granatum on the production of proteinase by _C. albicans_

isolated from HIV negative patients

Table 3.18 Effect of a subinhibitory concentration of methanol peel extract of

P. granatum on the production of proteinase by _C. albicans_

isolated from HIV positive and HIV negative patients

Table 3.19 Effect of a subinhibitory concentration of methanol peel extract of

P. granatum on the production of lipase by _C. albicans_ isolated

from HIV positive patients

Table 3.20 Effect of a subinhibitory concentration of methanol peel extract of

P. granatum on the production of lipase by _C. albicans_ isolated from HIV negative patients

Table 3.21 Effect of a subinhibitory concentration of methanol peel extract of

P. granatum on the production of lipase by _C. albicans_ isolated

from HIV positive and HIV negative patients
LIST OF ABBREVIATIONS AND ACRONYMS

API: Profile Index
ATCC: American Type Culture Collection
Als: Agglutinin-like sequence
CFU/ml: Colony Forming Units per millilitre
CHX: Chlorhexidine Gluconate
CO₂: Carbon Dioxide
C. albicans: Candida albicans
C. krusei: Candida krusei
C. parapsilosis: Candida parapsilosis
Da: Dalton
DMSO: Dimethyl Sulphoxide
DNA: Deoxyribonucleic Acid
g: Gram
g/ml: Gram per millilitre
GC-MS: Gas chromatography- mass spectrometry
HPLC: High performance liquid chromatography
HIV: Human Immunodeficiency Virus
HWP1: Hyphal wall protein 1
Hrs: Hours
IgG: Immunoglobulin G
kDa: Kilo Dalton
LP/LIP: Lipase
MFC: Minimum Fungicidal Concentrations
MIC: Minimum Inhibitory Concentrations
mg: Milligram
mg/ml: Milligram per millilitre
min: Minutes
ml: Millilitre
mM: Millimolar
NMR: Nuclear magnetic resonance
OD: Optical Density
PBS: Phosphate Buffered Saline
Ppm: Parts per million
PL: Phospholipase
Pz: Phospholipase activity
Pr: Proteinase activity
PI: Lipase activity
rpm: Revolutions per minute
SAB: Sabouraud dextrose agar
Saps: Aspartic proteases
spp: Species
TLC: Thin Layer Chromatography
WHO: World Health Organization
µg/ml: Microgram per millilitre
µl: Microlitre
µm: Micrometre