In section 4.4.4.1 it was shown that the flow of material down the length of the mill is given by:

$$ \text{Flow} = (Z)(J)(dh/dx) $$

For a continuous system we can write:

$$ \text{Flow}(x,t) = (Z)(J(x,t))(\frac{dh(x,t)}{dx}) $$

where:

- $h(x,t) = \text{height of the mill charge at point } x \text{ along the mill and at time } t$
- $Z = \text{a constant}$
- $J(x,t) = \text{width of the charge surface at point } x \text{ along the mill and at time } t$

Assume that $J(x,t)$ is a constant in the region of operation (i.e. where σ is small), and, since the sign of
\[\frac{dh}{dx} \text{ is negative, to ensure that the overall flow is positive the overall flow equation must be:} \]

\[\text{Flow}(x, t) = -Z'(\frac{\partial h(x, t)}{\partial x}) \]

where:

\[Z' = (Z)(J(x, t)) \]

now

\[\frac{dm(x, t)}{dt} = \frac{\partial \rho A(x, t) \Delta x}{\partial t} = \text{Flow}(x, t) - \text{Flow}(x + \Delta x, t) \ldots A2.0 \]

where:

\[\frac{dm(x, t)}{dt} \text{ rate of change of mass at a point } x \text{ along the mill and at time } t \]

\[A(x, t) = \text{cross-sectional area of the charge at point } x \text{ along the mill at time } t \]

\[\rho = \text{density of mill charge} \]

A2.0 can be rewritten as:

\[\frac{\partial \rho A(x, t)}{\partial t} = \frac{\text{Flow}(x, t) - \text{Flow}(x + \Delta x, t)}{\Delta x} \]

or

\[\frac{\partial \rho A(x, t)}{\partial t} = \frac{\partial \text{Flow}(x, t)}{\partial x} = \frac{\partial h(x, t)}{\partial x} \]

but \(J(x, t) \) has been assumed constant, therefore the above equation becomes:

\[\frac{\partial A(x, t)}{\partial t} = Z' \left(\frac{\partial^2 h(x, t)}{\partial x^2} \right) \ldots \ldots \ldots \ldots \ldots A2.1 \]

Assuming that \(\sin \Theta = \Theta \) for values of \(\Theta \) in the operating region, (see Appendix 3 for an error analysis of this), it can be shown that:

\[h(x, t) = r + r_0(x, t) \ldots \ldots \ldots \ldots \ldots A2.2 \]

\[A(x, t) = \frac{1}{2} \pi r^2 + 2r^2 \Theta(x, t) \ldots \ldots \ldots \ldots \ldots A2.3 \]

Substituting A2.2 and A2.3 in A2.1, the following equation results:

\[2r \frac{\partial^2 \Theta(x, t)}{\partial t} = \frac{Z' \rho r^2 \Theta(x, t)}{\rho} \]

\[\frac{\partial^2 \Theta(x, t)}{\partial x^2} \]
Assumption 1:

\[J(h_p - h_q) = A_p - A_q \]

(for the mill approximately one half full)

Consider the above figure. The error of the assumption is due to the fact that the shaded regions are not included in the area calculation.

It can be shown that when the mill mass varies by 15% about the one half full point:

\[J = 0.993r \quad (0.7\% \text{ error}) \]

Therefore, in this case, the maximum error in area will be 1.4%.

In the case of a 30% variation about the one half full...
point:

\[\frac{J}{r} = 0.971r \]

resulting in a 6% error in area.

Assumption 2:

\[\sin \theta = \theta \text{ in the operating region of the mill.} \]

A 15% mill mass fluctuation means that \(\theta \) is 6.8°. This results in a 0.3% difference between \(\theta \) and \(\sin \theta \).

A 30% mill mass fluctuation means that \(\theta \) is 13.8°. This results in a 1% difference between \(\theta \) and \(\sin \theta \).
APPENDIX 4

DERIVATION OF BULK DENSITY FUNCTION

bulk density

\[\text{bulk density} = \frac{\text{total mass}}{\text{total volume occupied}} \]

\[\text{total mass} = MM + X_j + X_2 \]

\[\text{total volume occupied (assuming 4% voids)} = 1.4 \left(\frac{MM}{W} \right) \]

Therefore:

\[\text{bulk density} = \frac{W}{1.4 + \frac{W(X_j + X_2)}{1.4 (MM)}} \]
APPENDIX E

LIST OF FIGURES

1. Schematic Diagram of the Blyvooruitzicht Gold Mining Co. Limited’s Milling Circuit 6

2. Response of the Linear and non-Linear Blyvooruitzicht Simulators to a Step Change in Water Addition to the Head Tank (60 tons/hour to 120 tons/hour) 14

3. Response of the Linear and non-Linear Blyvooruitzicht Simulators to a Step Change in Rod Mill Feed (70 tons/hour to 50 tons/hour) 15

4. Schematic Diagram of the Buffelsfontein Gold Mining Co. Limited’s Milling Circuit 21

5. Response of the Buffelsfontein Simulator to a Step Change in Head Tank Water Addition (112 tons/hour to 224 tons/hour) 28

6. Response of the Buffelsfontein Simulator to a Step Change in Rod Mill Feed (100 tons/hour to 75 tons/hour) 29

7. Ideal Operation of the "Digicon" 36

8. Schematic Layout of the "Digicon" 37

9. Results of the Simulations of the Pebble Mill split into 3, 5 and 15 Sub-Mills under "Digicon" control 50

10. Results of Tests on the Blyvooruitzicht Simulator where Noise has been added to the Power Signal. (The 5 Sub-Mills Pebble Mill Power Model has been used) 52

11. Comparison of one Cycle of Responses of Buffelsfontein Simulator, under "Digicon" Control, with a Single Mill Model and a 5 Sub-Mills Model 55

12. Percentage Liberation of Gold in discretely sized crushed Ore 63

13. Controlled and Uncontrolled Responses of Buffelsfontein Circuit to a Step Change in Rod Mill Feed (100 tons/hour to 110 tons/hour). (Product size) 64
14. Controlled and Uncontrolled Responses of Buffelfontein Circuit to a Step Change in Rod Mill Feed (100 tons/hour to 110 tons/hour), (Circulating Load) ... 65

15. Schematic Diagram of Buffelfontein Circuit with Control Configurations included ... 67

16. Comparison of Responses of Buffelfontein Simulator to Set Point Control with Single Feed Back, "Parallel" Feed Back and "Cascaded" Feed Back, (Product Size) ... 69

17. Comparison of Responses of Buffelfontein Simulator to Set Point Control with Single Feed Back, "Parallel" Feed Back and "Cascaded" Feed Back, (Circulating Load) ... 70

18. Response of Buffelfontein Simulator to a Value of Set Point Control higher than 75% less than 75µm 72

19. Response of Buffelfontein Simulator to Set Point Control with Feed Back to Pump Speed from Product Size 73

20. Comparison of Controlled and Uncontrolled Responses of Buffelfontein Simulator to noisy Rod Mill Feed 74

21. Comparison of Product Size and Circulating Load of Buffelfontein Circuit under "Digicon" Control with Product Size and Circulating Load of Buffelfontein Circuit under Control of Alternative Controller ... 77

22. Comparison of Mill Power Characteristics of "Digicon" Controller with Mill Power Characteristics of Alternative Controller ... 78
LIST OF REFERENCES

25. Ragot, J., Kuesch, M. and de Goul, P. "TRANSIENT
STUDY OF A CLOSED GRINDING CIRCUIT". 2nd
IFAC Symposium on Automation in Mining, Mineral
and Metal Processing, Johannesburg, 13th - 17th
September, 1976.