Pathwidth and component number of links.

by

© Sizwe Mdakane

A research project submitted
in fulfillment of the requirements
for the degree of Master of Science

Department of Mathematics
University Of Witwatersrand

November 2014
Declaration

I declare that this Dissertation is my own, unaided work. It is being submitted for the degree of Master of Science at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other University.

______________________________ (Signature of candidate)

_______ day of ____________ 20 ____ in ________________
Abstract

Knot theory is a branch of algebraic topology that is concerned with studying the interesting geometrical structures known as knots. The idea of a knot in the theory of knots is entirely different from everyday’s idea of knots, that is, a knot has free ends. In knot theory a knot is defined as a knotted loop of string which does not have free ends unless we cut it using a pair of scissors.

The interesting aspect of knot theory is that it enables us to transfer techniques from graph theory, algebra, topology, group theory and combinatorics to study different classes of knots. In this dissertation we are only concerned with the relationship between knot theory and graph theory.

It is widely known in knot theory literature that a knot has a corresponding signed planar graph and that a signed planar graph also has a corresponding knot which depends on the signs of the edges of its signed planar graph. This provides a foundation of a solid relationship between knot theory and graph theory, and it allows for some of the notions in graph theory to be transferred to knot theory. In this dissertation we study the pathwidth and component number of links through their corresponding graphs.
Acknowledgements

I would like to express my gratitude to my supervisor Professor Eunice Gogo Mphako-Banda. I would like to thank her for all the support and guidance she has given me throughout this long and challenging task. She inspired confidence in me till the end of my dissertation. I will always consider her as my mentor.

I would also like to express my gratitude to my parents, Linda and Doris Mdakane for granting me the opportunity to pursue my MSc degree in mathematics. I would also like to thank my lovely girlfriend Kwarele Radebe for her constant support and belief in me. I would like to thank my younger brother Ntokozo Mdakane for his constant words of encouragement.

Lastly, I would like to thank my friends Phathuxolo Manana, Sphelele Zondo, Lulama Gqoloda, Tshepiso Mothlele, Mark Sias, Thabiso Letseli and Phuthang Makhupane for all the support they’ve given me during my difficulties, this dissertation will forever remind me of their words of encouragement.

Contents

Declaration ii

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Preliminaries ... 2

1.1.1 Graphs .. 3

1.1.1.1 Subgraphs and Supergraphs 10

1.1.1.2 Planar Graphs ... 11

1.1.1.3 Graph operations .. 14

1.1.1.4 Tutte polynomial .. 16

1.1.2 Knots ... 18

1.1.2.1 Composition of knots 21

1.1.3 How to extract planar graphs from knots and vice versa. ... 22

1.1.3.1 Checkerboard Method 22

2 Characterisation of pathwidth three graphs 27

2.1 Introduction ... 27

2.2 Pathwidth of a graph ... 27
3 Pretzel links, their pathwidth and bridge number

3.1 Introduction .. 40
3.2 Pretzel links .. 40
3.3 Pretzel links and pathwidth 45
3.4 Pathwidth vs Bridge Number of general links 51
 3.4.1 Bridge Number ... 51
 3.4.2 Famous Knots with Bridge number 3 in relation to their path-
 width .. 52
3.5 Pathwidth vs Bridge number of certain pretzel links 56

4 Component number of Pretzel links 58

4.1 Introduction .. 58
4.2 Tutte polynomial method 59
4.3 Deletion-Contraction method 63
4.4 Computing the component number of Pretzel links 65
Chapter 1

Introduction

Graph theory was discovered in 1736 by Leonhard Euler when he made an attempt to solve a prominent unsolved problem regarding the bridges in the city of Königsberg, see [7]. The problem is known today as the Königsberg Bridge Problem, and it is concerned about the existence of a walk that can cross each of the seven bridges of Königsberg exactly once, and this concern led Euler to his famous notion of Eulerian graphs, see [23]. In 1840, August Ferdinand Möbius made an important discovery of two classes of graphs, that is, the class of complete graphs and the class of bipartite graphs, see [23]. In the same year Kazimierz Kuratowski gave a proof that the complete graphs and bipartite graphs are planar through the use of recreational problems, see [23]. In 1847, Gustav Kirchhoff advanced the notion of trees and used it to solve a system of linear equations relating to electric networks, see [7]. In 1852, Thomas Guthrie discovered another prominent problem in graph theory known as the Four Color Problem, see [23]. The Four Color Problem was solved by Kenneth Appel and Wolfgang Haken after a century and this milestone was marked as the inception of graph theory, see [23]. Graph theory is known today as a prodigious mathematical field with many diverse applications, see [7] and [23].
Knot theory as we know it today began in late 1860s when William Thomson also known as Lord Kelvin claimed that atoms behaved more like knotted vortices in the ether, see [8]. This discovery by Lord Kelvin influenced Peter Guthrie Tait to research more about knots and his quest led him to the establishment of the first tabulation scheme of knots, see [8]. There are many mathematicians who contributed to the development of knot theory and amongst them was Carl Gauss Friedrich who was known for his famous paper titled A collection of knots, see [20]. In 1847 Johann Benedict Listing a PhD student who was supervised by Gauss also made an important contribution to the theory of knots by stating in his monograph, Vorstudien zur Topologie, that the right trefoil knot and the left trefoil knot are not equivalent, see [20]. Note that this was the same year Gustav Kirchhoff established his graph theoretic notion that has applications to electric networks, see [7]. Kirchhoff’s discovery was closely related to knot theory and this was shown after hundred years, see [20]. Knot theory today still remains a growing mathematical field with fascinating key applications to biology, chemistry and physics, see [1].

Overview of the dissertation

In Chapter 1, we give some basic definitions in graph theory and knot theory relevant to this work. In Chapter 2, we give some results on pathwidth of graphs. In Chapter 3, we give the pathwidth of pretzel links and we relate it to its bridge number if known. In Chapter 4, we count the number of components of pretzel links. The work in Chapter 2 and Chapter 3 have been submitted to Journal of Knot Theory and its ramifications as a single paper.

1.1 Preliminaries

In this chapter we will discuss some basic notions in graph theory and in knot theory. We will only define the notions which are relevant to this dissertation.
1.1.1 Graphs

In this section, we discuss basic concepts and notions in graph theory which are relevant to this dissertation. We refer the reader to [3] and [4] unless otherwise stated.

Definition 1.1.1. A graph H is a pair $(V(H), E(H))$, where $V(H)$ is a set which consists of elements known as vertices and $E(H)$ is a set which consists of two-element subsets of $V(H)$ known as edges. The two sets $V(H)$ and $E(H)$ are called the vertex set and the edge set, respectively.

In this dissertation we only consider finite graphs, thus $V(H)$ is a nonempty finite set of vertices and $E(H)$ is a finite set of edges consisting of unordered pairs of distinct vertices from $V(H)$. The vertex set is given by $V(H) = \{v_1, v_2, v_3, \ldots, v_k\}$ consisting of k vertices and the edge set is $E(H) = \{e_1, e_2, e_3, \ldots, e_n\}$ which consist of n two-element subsets of $V(H)$ and each edge e_i is of the form $\{v_a, v_b\}$ for all $i = 1, 2, \ldots, n$ and for all $a, b \in \{1, 2, \ldots, k\}$. There are various ways of denoting an edge, and in this dissertation we interchange between these two notations $\{v_i, v_j\}$ and v_iv_j.

Example 1.1.2. Let H be the graph shown in the diagram of Figure 1.1. Then the vertex set is given by $V(H) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$, and the edge set is given by $E(H) = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}\}$.

Definition 1.1.3. Let H be a graph. Then the number of vertices of H is denoted by $|H| = |V(H)|$, and it is called the order of a graph H and the number of edges is denoted by $\|H\| = |E(H)|$, and it is called the size of a graph H.

Example 1.1.4. By applying Definition 1.1.3 to the graph H shown in the diagram of Figure 1.1 we see that the order of the graph H is given by $|H| = 9$ and the size of the graph H is given by $\|H\| = 12$.

Definition 1.1.5. A pair of vertices $v_i, v_j \in V(H)$ are adjacent if $v_iv_j \in E(H)$, otherwise $v_i, v_j \in V(H)$ are nonadjacent.
Definition 1.1.6. If $v_i v_j \in E(H)$, then it is said that this edge is \textit{incident} to vertices v_i and v_j.

Remark 1.1.7. Note that a \textit{loop} is an edge which is \textit{incident} to a vertex $v_i \in V(H)$ twice. In the diagram of Figure 1.1 the edge e_6 is the \textit{loop}.

Definition 1.1.8. The \textit{degree} of a vertex $v \in V(H)$ denoted by $\text{deg}(v)$ or $d(v)$ is the number of edges in $E(H)$ incident to v.

Note that a vertex of degree zero is known as an \textit{isolated vertex} and a vertex of degree one is known as an \textit{end vertex}.

Remark 1.1.9. Note that a loop contributes 2 to the degree of a vertex which is incident to.

Example 1.1.10. Calculating the degree for some of the vertices of graph H shown in the diagram of Figure 1.1, we see that vertex v_1 has degree $d(v_1) = 3$, vertex v_9 is an \textit{isolated vertex} since it has degree zero, and vertex v_2 is an \textit{end vertex} since it has degree one. By Remark 1.1.9, the degree of vertex v_8, that is, $d(v_8) = 4$.

Figure 1.1: A general example of a graph G.
Remark 1.1.11. Let H be a graph. Then $\delta(H)$ denotes the \textbf{minimum degree} of H and $\Delta(H)$ denotes the \textbf{maximum degree} of H.

![Figure 1.2: A 3-regular graph.](image)

Definition 1.1.12. Let H be a graph which has all vertices with the same degree, that is, $\delta(H) = \Delta(H)$. Then H is said to be a \textbf{regular graph}.

Note that if a graph H has all vertices with degree r, then H is called an \textbf{r-regular graph}.

Example 1.1.13. In the diagram of Figure 1.1, we see that the graph H has $\Delta(H) = 5$ and $\delta(H) = 0$. The diagram in Figure 1.2 is an example of a 3-regular graph since each vertex has degree 3.

Definition 1.1.14. Let H be a graph. Then a \textbf{walk} in a graph H is defined as a non-empty alternating sequence $v_0a_0v_1a_1\cdots a_{q-1}v_q$ of vertices and edges in H such that $a_i = v_iv_{i+1}$ for all $i < q$.

Example 1.1.15. In the diagram of Figure 1.3 let $a_0 = AC$, $a_1 = CE$, $a_2 = EB$, $a_3 = BF$, then $Aa_0Ca_1Ea_2Ba_3F$ is an example of a \textbf{walk}.

Remark 1.1.16. Let H be a graph with a \textbf{walk} $v_0a_0v_1a_1\cdots a_{q-1}v_q$. If $v_0 = v_q$, then we say that a \textbf{walk} $v_0a_0v_1a_1\cdots a_{q-1}v_q$ is \textbf{closed}. In the diagram of Figure 1.3 let
Figure 1.3: A graph that has a walk $Aa_0Ca_1Ea_2Ba_3F$.

$a_0 = AC, a_1 = CE, a_2 = EB, a_3 = BA$, then we see that the walk $Aa_0Ca_1Ea_2Ba_3A$ is closed. The length of a walk is defined as the number of edges in a walk. For instance the walk $Aa_0Ca_1Ea_2Ba_3F$ has length 4. Note that the vertices and edges may be repeated in a walk. A trail is a walk with no repeated edges. A closed trail is called a circuit.

Definition 1.1.17. A path is a non-empty graph P which is formed by a vertex set $V(P) = \{v_0, v_1, \cdots, v_{k-1}, v_k\}$ and an edge set $E(P) = \{v_0v_1, v_1v_2, \cdots, v_{k-1}v_k\}$ where all the v_j’s are not equal.

Note that a path is a walk with no repeated vertices.

Figure 1.4: A path.
Remark 1.1.18. Let H be a graph shown in the diagram of Figure 1.4. Then we see that the path \mathcal{P} with the vertex set $V(\mathcal{P}) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ and the edge set $E(\mathcal{P}) = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}$ is given by

$v_1a_1v_2a_2v_3a_3v_4a_4v_5a_5v_6a_6v_7a_7v_8$.

The notion of length also applies to paths, and so we have that the number of edges of a path determine its length. Therefore the path \mathcal{P} shown in the diagram of Figure 1.4 is of length 7. We will denote by \mathcal{P}^k a path of length k and by \mathcal{P}_k a path with k vertices.

Definition 1.1.19. A path that starts and ends at the same vertex is called a cycle graph. We denote a cycle graph on n vertices by C_n.

In the diagram of Figure 1.4 we see that the path $v_2a_2v_3a_3v_4v_11a_11v_10a_9v_9a_8v_2$ is an example of a cycle.

Definition 1.1.20. A graph H which contains at least one cycle graph is called a cyclic graph. Otherwise H is called an acyclic graph.

![Figure 1.5: A connected graph.](image)

Definition 1.1.21. Let H be a graph. Then H is said to be connected if for any two vertices $v_i, v_j \in V(H)$ there is a path from v_i to v_j or vice versa. Otherwise we say that a graph H is disconnected.
The diagram in Figure 1.5 shows an example of a connected graph.

![Figure 1.6: A tree.](image)

Definition 1.1.22. A graph H is said to be a tree if H is connected and acyclic.

The diagram in Figure 1.6 shows an example of a tree.

Remark 1.1.23. Note that a forest is a disjoint union of trees.

![Figure 1.7: An example of a graph with a bridge or isthmus e^*.](image)

Definition 1.1.24. Let H be a graph. Then an edge $e \in E(H)$ is called a bridge or isthmus if its removal from the graph disconnects the graph H.

Example 1.1.25. Let H be the graph shown in the diagram of Figure 1.7, we see that the edge e^* is an example of a bridge or isthmus because its removal from H results in H being disconnected.
Definition 1.1.26. Let H be a graph. Then any two or more edges in $E(H)$ are said to be parallel if they are incident with the same pair of vertices which are in $V(H)$.

Example 1.1.27. In the diagram of Figure 1.1 edges e_3 and e_4 are parallel edges since they are incident with vertices v_8 and v_5.

Definition 1.1.28. Let H be a graph. Then H is said to be a multigraph if it has parallel edges between any pair of vertices $v_i, v_j \in V(H)$.

From Definition 1.1.28 we deduce that a graph H is a multigraph if its vertex set $V(H)$ is not a multiset and its edge set $E(H)$ is a multiset of two-element subsets of $V(H)$. Multigraphs are also allowed to have loops. The graph H shown in the diagram of Figure 1.1 is an example of a multigraph, because the vertices v_8 and v_5 have parallel edges e_3 and e_4 between them. This shows that $E(H)$ is a multiset.

Definition 1.1.29. A graph H is called a simple graph if both its finite vertex set $V(H)$ and its finite edge set $E(H)$ are not multisets.

The diagram in Figure 1.8 illustrates a general example of a simple graph. Unlike multigraphs, simple graphs are not allowed to have loops and parallel edges.
Definition 1.1.30. Let H and I be graphs. Then H is **isomorphic** to I, that is, $H \cong I$ if there exists a one-to-one and onto mapping $\phi : V(H) \to V(I)$ such that any two vertices $v_i, v_j \in V(H)$ of H are adjacent $\iff \phi(v_i), \phi(v_j) \in V(I)$ are adjacent in I.

The diagram in Figure 1.9 shows an example of two isomorphic graphs, H and I.

1.1.1.1 Subgraphs and Supergraphs

In this section we introduce the reader to the notions of **subgraphs** and **supergraphs**. For further details we refer the reader to [3].

![Figure 1.10: (a) A supergraph. (b) A subgraph.](image)
Let I be a graph with a vertex set $V(I)$ and an edge set $E(I)$. We say that a graph J with a vertex set $V(J)$ and an edge set $E(J)$ is a subgraph of I if $V(J) \subseteq V(I)$ and $E(J) \subseteq E(I)$. Note that for each edge $a = v_i v_j \in E(J)$ we have that $v_i, v_j \in V(J)$. Basically, a subgraph J is constructed from I by removing vertices and/or edges from I in such a way that when a vertex $v_i \in V(I)$ is removed, all the edges incident with v_i are also removed. When a graph J is a subgraph of a graph I, we call I a supergraph of J. The diagram of Figure 1.10 shows an example of a subgraph and its supergraph.

1.1.1.2 Planar Graphs

In this section we introduce the reader to the notion of planar graphs. We conclude this section by introducing an important class of planar graphs called the signed planar graphs. For further details we refer the reader to [1], [3] and [4] unless otherwise stated.

![Figure 1.11: A planar graph.](image)

Definition 1.1.31. A graph H is said to be a planar graph if it can be depicted in
the plane as a graph with no intersecting edges. Otherwise we say that a graph \(H \) is a **nonplanar graph**.

The diagram in Figure 1.11 is an example of a **planar graph**.

Definition 1.1.32. Let \(H \) be a planar graph, then the depiction of \(H \) in the plane divides the plane into regions known as **faces**.

The planar graph shown in the diagram of Figure 1.11 has the faces:

\[x_1, x_2, x_3, x_4, x_5, x_6, x_7 \text{ and } x_8. \]

In the diagram of Figure 1.11 the faces \(x_1, x_2, x_3, x_4, x_5, x_6 \) and \(x_7 \) are known as the **inner faces** and the face \(x_8 \) is known as the **outer face**.

Definition 1.1.33. Let \(H \) be a planar graph. Then any pair of faces \(x_i \) and \(x_j \) are said to be adjacent if they share one or more edges.

In the diagram of Figure 1.11 we see that the faces \(x_1 \) and \(x_2 \) are adjacent, \(x_1 \) and \(x_3 \) are adjacent, \(x_2 \) and \(x_3 \) are also adjacent.

Definition 1.1.34. Let \(H \) be a planar graph with faces \(x_1, x_2, x_3, \ldots, x_n \). Then a graph \(H^* \) is said to be a **dual graph** of \(H \) if \(H^* \) is formed by a pair \((V(H^*), E(H^*))\) where

\[V(H^*) = \{x_1, x_2, x_3, \ldots, x_n, \} \]

and

\[E(H^*) = \{x_ix_j : x_i \text{ and } x_j \text{ are adjacent faces } 1 \leq i, j \leq n\}. \]

Example 1.1.35. When we apply Definition 1.1.34 to diagram (a) shown in Figure 1.12 we start by assigning vertices to each face including the **outer face** as shown in diagram (b) of Figure 1.12. This is followed by joining **adjacent faces** with an edge as shown in diagram (a) of Figure 1.13. This process results in the **dual graph** shown in diagram (b) of Figure 1.13.
Figure 1.12: (a) A planar graph. (b) Assigning a vertex to each face.

Figure 1.13: (a) Joining neighbouring vertices with an edge. (b) A dual graph.

Figure 1.14: An outerplanar graph.
Definition 1.1.36. Let H be a planar graph. If H has a depiction in the plane such that all its vertices form part of the outer face, then H is called an outerplanar graph.

The diagram in Figure 1.14 is an example of an outerplanar graph.

![Figure 1.14: A depiction of an outerplanar graph.]

Definition 1.1.37. A signed planar graph is a graph whose underlying graph H has been assigned either a $+$ (positive) sign or a $-$ (negative) sign on its edges. The edges to which the $+$ or $-$ is assigned are called positive or negative edges.

The diagram in Figure 1.15 is an example of a signed planar graph. A signed planar graph that has been assigned a $+$ sign on all its edges will be considered to be the same as its underlying unsigned planar graph.

1.1.1.3 Graph operations

There are many graph operations which are known in the literature. In this section we discuss some graph operations which are relevant to this dissertation. We refer the reader to [3], [4] and [21] unless otherwise stated.

Let H be a graph. There are two basic graph operations, see Figure 1.16. These operations are as follows:
Figure 1.16: Edge deletion and edge contraction.

1. $H \setminus v_i$, which is the **vertex deletion** or the removal of the vertex v_i and all its incident edges from H;

2. $H \setminus e$, which is the **edge deletion** or the removal of the edge e from H and;

3. H/e, which is the **edge contraction** of the edge e, that is, e is removed and its incident vertices are merged, and this can lead to the occurrence of multiple edges and loops.

Example 1.1.38. Let H be the graph shown in diagram (a) of Figure 1.16. Then the graph $H \setminus c$ shown in diagram (b) of Figure 1.16 is constructed from H by removing the vertex c and its incident edges x and e. The graph $H \setminus e$ shown in diagram (c) of Figure 1.16 is constructed from H by removing the edge e from H. The graph H/e shown in diagram (d) of Figure 1.16 is also constructed from H by first removing the edge $e = bc$ and then merging the vertices incident with e, that is, $b = c$ and we obtain the new vertex v^*. Note that the vertex v^* is adjacent to the vertex a that had been adjacent to both b and c.

Definition 1.1.39. Let H be a graph. If a graph F can be constructed from H by vertex deletion, and/or edge deletion, and/or edge contraction, then F is said to be a **minor** of H.

15
In Figure 1.16, diagrams (b), (c) and (d) are **minors** of the graph H shown in Figure 1.16 diagram (a).

1.1.1.4 Tutte polynomial

We now turn to one of the most important notions in graph theory known as the **Tutte polynomial**. For this section we refer the reader to [6] and [24].

Definition 1.1.40. A **Tutte polynomial** $T(H, x, y)$ of a graph $H = (V(H), E(H))$ is a two-variable polynomial which is defined as follows:

$$
T(H, x, y) = \begin{cases}
1, & \text{if } E(H) = \emptyset \\
xT(H\setminus i, x, y), & \text{if } i \in E(H) \text{ is a bridge} \\
yT(H/i, x, y), & \text{if } i \in E(H) \text{ is a loop} \\
T(H\setminus i, x, y) + T(H/i, x, y), & \text{if } i \in E(H) \text{ is a neither a bridge nor a loop}
\end{cases}
$$

Definition 1.1.40 is known throughout graph theory literature as the deletion-contraction algorithm and this will be demonstrated when we apply it to a given graph. Note that the variables x and y of a **Tutte polynomial** are independent.

Example 1.1.41. In this example $H = \{v_1v_2, v_1v_4, v_2v_4, v_3v_4, v_4v_5\}$ denotes a graph and each element is an edge incident with its vertices, for example $v_1v_2 \in H$ is the edge of the graph H incident with vertices v_1 and v_2. In this example we calculate the **Tutte polynomial** $T(H, x, y)$ of the graph H and we refer to Figure 1.17 for each step of our calculation.

$$
T(H = \{v_1v_2, v_1v_4, v_2v_4, v_3v_4, v_4v_5\}, x, y) = xT(H_\alpha = H\setminus v_3v_4, x, y).
$$

$$
T(H_\alpha = \{v_1v_2, v_1v_4, v_2v_4, v_4v_5\}, x, y) = xT(H_\beta = H_\alpha\setminus v_4v_5, x, y).
$$

$$
T(H_\beta = \{v_1v_2, v_1v_4, v_2v_4\}, x, y) = T(H_\delta = H_\beta\setminus v_1v_4, x, y) + T(H_\epsilon = H_\beta/v_1v_4, x, y).
$$

$$
T(H_\delta = \{v_1v_2, v_2v_4\}, x, y) = xT(H_\lambda = H_\delta\setminus v_2v_4, x, y).
$$

$$
T(H_\epsilon = \{v_2v_4, v_4v_2\}, x, y) = T(H_\psi = H_\epsilon\setminus v_4v_2, x, y) + T(H_\theta = H_\epsilon/v_4v_2, x, y).
$$

$$
T(H_\lambda = \{v_1v_2\}, x, y) = xT(H_\lambda\setminus v_1v_2, x, y)
$$
Figure 1.17: Applying the Tutte polynomial recursive algorithm on a graph G.
= x(1) = x.

\[T(H_\psi = \{v_2v_4\}, x, y) = xT(H_\psi \setminus v_2v_4, x, y) = x(1) = x. \]

\[T(H_\theta = \{v_2v_2\}, x, y) = yT(H_\theta \setminus v_2v_2, x, y) = y(1) = y. \]

By backward substitution we get that the **Tutte polynomial** of the graph \(H = \{v_1v_2, v_1v_4, v_2v_4, v_3v_4, v_4v_5\} \) is given by \(T(H, x, y) = x^4 + x^3 + x^2y. \)

Note that in Example 1.1.41 the graphs \(H_\alpha, H_\beta, H_\delta, H_\epsilon, H_\lambda, H_\psi \) and \(H_\theta \) are all minors of \(H = \{v_1v_2, v_1v_4, v_2v_4, v_3v_4, v_4v_5\} \). The diagrams in Figure 1.17 show all these minors of \(H \).

1.1.2 Knots

The simplest (non-trivial) form of the theory of knots is concerned with the embedding of disjoint circles, it can be one or more disjoint circles, into three dimensional space. A **knot** might be defined to be such an embedding of a simple closed curve or a circle in three dimensional space. We can visualize it as a **knotted loop** of a string that cannot be untangled unless we cut it. An informal definition of a **knot** would be such a **knotted loop** of string with a crossing point being a single point. The concept of a **mathematical knot** is different from everyday’s idea of a **knot** where a knot is a piece of string with free ends. In this section we refer the reader to [1] and [14].

In this dissertation we will only consider **mathematical knots** and for simplicity we will just call them **knots**. We denote a **knot** by \(K \). The following definitions are some basic concepts in knot theory:

Definition 1.1.42. A **knot** \(K \) is a closed curve in space with no self-intersection anywhere.

In the theory of knots a closed curve in space that has no knot in it is regarded as the **unknot** or **trivial knot**, see Figure 1.18 diagram (b).
Definition 1.1.43. *The diagram of a knot K in two-dimensional space is called a knot projection.*

In Figure 1.18 diagram (a) is an example of a knot projection.

Definition 1.1.44. *A crossing point denoted by c, in a knot projection is the part where the knot projection crosses itself.*

At each crossing point one segment of the knot passes under the other segment. We will call the segment that passes under the underpass and we will call the the segment that passes over the overpass.

Definition 1.1.45. *Given a knot K, an orientation is established on K by choosing a direction to move around K. We then say that the knot K is oriented.*

An orientation on a knot K is commonly shown as the directed arrows along the knot projection in a given direction. An example of an oriented knot is shown in the diagram of Figure 1.19.

Definition 1.1.46. *Two or more disjoint knots which are tangled up together form a link.*
Figure 1.19: The oriented knot.

Figure 1.20: A link.

Figure 1.21: (a) Negative crossing and (b) Positive crossing.
The diagram of Figure 1.20 is an illustration of a link.

Remark 1.1.47. A crossing point c is negative if the overpass is rotated clockwise an angle $< \pi$ to align it with the underpass (such that the arrow heads coincide, see Figure 1.21 diagram (a)) and it is positive if the overpass is rotated anticlockwise an angle $< \pi$ to align it with the underpass (such that the arrow heads coincide, see Figure 1.21 diagram (b)).

1.1.2.1 Composition of knots

If we have two knot projections, we can form a new knot projection by removing a small arc from each knot projection and then joining the four endpoints by two new arcs. This new knot projection will be called the **composition** of the two knot projections. Let K_1 and K_2 be two disjoint knot projections, then their composition is denoted by $K_1 \# K_2$. An illustration of the operation of composition of two knot projections A and B shown in Figure 1.22 is given in Figure 1.23. This way of defining composition assumes that the two knot projections do not overlap and that the two small arcs that we remove are on the outside of each knot projection to avoid any crossings between the two knot projections. This definition further assumes that the two new arcs are chosen in such a way that they do not cross either the original knot projections or each other.

![Figure 1.22: Two disjoint knots A and B.](image)

21
Definition 1.1.48. A knot projection is said to be composite if it can be expressed as the composition of two nontrivial knots. If a knot cannot be expressed as the composition of any two nontrivial knots, we call it a prime knot.

In the diagram of Figure 1.23 the knot projection \(A \# B \) is an example of a composite knot projection.

Remark 1.1.49. The knots which formulate a composite knot are called the factor knots, for example the knot projections \(A \) and \(B \) shown in Figure 1.22 are examples of factor knots.

1.1.3 How to extract planar graphs from knots and vice versa.

In this section we look at how to extract a planar graph from a given knot and the reverse process. There are several methods for doing this, but in this section we only consider one method called the checkerboard shading. For further details we refer the reader to [1] and [14].

1.1.3.1 Checkerboard Method

For this method we assume that a given knot is projected onto a sphere other than a plane. Thus the knot divides the sphere into a finite number of regions, say, \(S_1, S_2, \ldots, S_n \). Starting with the outer unbounded region, the checkerboard method says that we must shade a given knot projection in an alternating manner,
see Figure 1.24. Note that there are only two possible checkerboard shadings for each knot. The diagram in Figure 1.24 demonstrates the two possible checkerboard shading of a trefoil knot.

To extract a graph from a knot we start by assigning a vertex v_k to each unshaded region, see Figure 1.24. Let’s say that the set of unshaded regions is $S_{k_1}, S_{k_2}, \ldots, S_{k_m}$. Then if two unshaded regions S_{k_i} and S_{k_j} meet at a crossing point c_p, then we join vertices v_i and v_j corresponding to regions S_{k_i} and S_{k_j} respectively by an edge e_k. The graph produced in this manner is a signed planar graph where the signs on the edges are induced by the type of a crossing point, as shown in the diagram of Figure 1.25.

Figure 1.24: Two possible checkerboard shadings.

Figure 1.25: A sign that an edge will take on depending on the type of crossing.
Following these steps for the knots shown in the diagram of Figure 1.24 and Figure 1.25 one should obtain graphs similar to Figure 1.26 respectively. Note that when we carry out the inverse checkerboard shading, that is, starting by shading the exterior region we obtain a dual graph of the planar graph we obtained by not shading the exterior region. This can be verified by checking the graphs in Figure 1.26 are duals of each other.

Figure 1.26: A graph and its dual graph.

Now, given a planar graph one may ask *is it possible to extract a knot projection corresponding to this planar graph?* The answer is yes! and it is done in the following way:

Given the planar graph shown in diagram (a) of Figure 1.27 we mark each edge with a cross as shown in diagram (b) of Figure 1.27 and then we join the adjacent crosses in the manner shown in diagram (c) of Figure 1.27.

After we are done joining the adjacent crosses we shade each region that has a vertex as shown in diagram (a) of Figure 1.28. Following the convention we have introduced earlier regarding the negative and positive crossings we arrive at the knot projection shown in diagram (b) of Figure 1.28.
Figure 1.27: Extracting knot from a given signed planar graph.
Figure 1.28: Extracting knot from a given signed planar graph.
Chapter 2

Characterisation of pathwidth three graphs

2.1 Introduction

Robert and Seymour [21] introduced the concept of pathwidth. In [13] Kinnersley proved a very useful result that we make use of, that is, the vertex separation number of a graph equals its pathwidth. The characterization of graphs with pathwidth at most two was studied by Barat, Hajnal, Lin and Yang, see [2]. Unfortunately, their definition of pathwidth does not correspond with the one that will be given in this dissertation.

In this chapter we begin by giving a definition of general pathwidth of a graph. We then state and prove a theorem on general pathwidth of a graph. Finally, we describe two classes of graphs and show that these classes of graphs have pathwidth three.

2.2 Pathwidth of a graph

We begin this section by introducing the notion of m-separation then the important definition of pathwidth of graphs. For further details, we refer the reader to [19].
Definition 2.2.1. Let H be a graph, $E_1(H)$, $E_2(H)$ be edge sets of H and $V(E_1(H))$, $V(E_2(H))$ be the sets of vertices incident with edges in $E_1(H)$ and $E_2(H)$ respectively. A pair $(E_1(H), E_2(H))$ is an m-separation if $|V(E_1(H)) \cap V(E_2(H))| \leq m$.

Definition 2.2.2. A graph H with k edges is said to have pathwidth m if and only if m is the minimum value such that there exists an ordering $a_1, a_2, a_3, \cdots, a_k$ where $(\{a_1, a_2, a_3, \cdots, a_i\}, \{a_{i+1}, a_{i+2}, \cdots, a_k\})$ is an m-separation for all $1 \leq i \leq k - 1$. We denote by $pw(H)$ the pathwidth of a graph H.

We state the following lemma without proof, and for further details we refer the reader to [19].

Lemma 2.2.3. Let the graph H be a planar graph without any isthmuses. Then $pw(H) = 2$ if and only if the graph H is an outerplanar graph.

We state and prove the following lemma which is of interest in proving other lemmas.

Lemma 2.2.4. Let C_n be a cycle graph on n vertices. Then the pathwidth of C_n is two, that is, $pw(C_n) = 2$.

Proof. It is clear that if we order the vertices of C_n, $v_1, v_2, v_3, \cdots, v_n$, such that v_i is adjacent to v_{i+1} and v_1 is adjacent to v_n. Then any subgraph of C_n with vertex set v_1, v_2, \cdots, v_i, is isomorphic to a path P_i for some $i \in \{1, 2, \cdots, n\}$ and $C_n \setminus P_i \cong P_j$ where $j = n + 1 - i$. Clearly, $|V(P_i \cap P_j)| = 2$. Assume that $pw(C_n) = 1$. Then there is an ordering a_1, \cdots, a_k of edges of C_n, such that for all $1 \leq i \leq k - 1$ the pair $(\{a_1, \cdots, a_i\}, \{a_{i+1}, \cdots, a_k\})$ is a 1-separation. But if $\{a_1, \cdots, a_i\}$ is a path then $C_n \setminus \{a_1, \cdots, a_i\}$ is also a path, hence the two paths $\{a_1, \cdots, a_i\}$ and $C_n \setminus \{a_1, \cdots, a_i\}$ intersect at two vertices. If $\{a_1, \cdots, a_i\}$ is a forest then $C_n \setminus \{a_1, \cdots, a_i\}$ is also a forest hence intersect at more than one vertices, which is a contradiction. \qed

We are in a good position to state and prove the following lemma.
Lemma 2.2.5. Let H be a graph. If $pw(H) = 1$ then H is a tree.

Proof. Assume H is not a tree and has pathwidth 1. Then H has a cycle C_n for some $n \in \mathbb{Z}$ as a subgraph. In any ordering of H, when we take the edge set E_1 and E_2 such that E_1 contains part of $E(C_n)$ and E_2 contains the remaining part of $E(C_n)$ not in E_1. Then by application of Lemma 2.2.4, we get vertex separation $|V(E_1) \cap V(E_2)| = 2$. Hence pathwidth of $H \geq 2$ which is a contradiction. \square

We illustrate the notion of pathwidth of a graph through the following example.

![Figure 2.1: A planar graph H.](image)

Example 2.2.6. Let $H = (V(H), E(H))$ be the graph shown in the diagram of Figure 2.1 with $E(H) = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8\}$ and $V(H) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$. Just to clarify the concept, if $E_1(H) = \{a_1, a_2, a_3, a_4\}$ and $E_2(H) = \{a_5, a_6, a_7, a_8\}$ then $V(E_1(H)) = \{v_1, v_2, v_3, v_4, v_5\}$ and $V(E_2(H)) = \{v_5, v_6, v_1, v_2, v_7\}$. To compute the pathwidth of the planar graph H, we maintain the order $a_2, a_3, a_4, a_5, a_6, a_1, a_8, a_7$ of its edges.
This order of edges gives us a 3-separation. But the planar graph H, is neither an outerplanar graph nor a tree, hence by Lemma 2.2.3 and Lemma 2.2.5 its pathwidth is not equal to 2 and it is certainly not equal to 1. Therefore the planar graph H has pathwidth 3.

An n-chain is a graph which is isomorphic to a path P_{n+1} thus a 2-chain is isomorphic to P_3.

Definition 2.2.7. Let H be a graph, we shall call a graph H' obtained by replacing every subgraph of H isomorphic to an i-chain, for some $i > 2$ by a 2-chain, a **source graph** of H.

$$|V(\{a_2\}) \cap V(\{a_3, a_4, a_5, a_6, a_1, a_8, a_7\})| = |\{v_2, v_3\} \cap \{v_3, v_4, v_5, v_6, v_1, v_2, v_7\}|$$

$$= |\{v_2, v_3\}| = 2.$$

$$|V(\{a_2, a_3\}) \cap V(\{a_4, a_5, a_6, a_1, a_8, a_7\})| = |\{v_2, v_4\} \cap \{v_4, v_5, v_6, v_1, v_2, v_7\}|$$

$$= |\{v_2, v_4\}| = 2.$$

$$|V(\{a_2, a_3, a_4\}) \cap V(\{a_5, a_6, a_1, a_8, a_7\})| = |\{v_2, v_3, v_4\} \cap \{v_5, v_6, v_1, v_2, v_7\}|$$

$$= |\{v_2, v_3\}| = 2.$$

$$|V(\{a_2, a_3, a_4, a_5\}) \cap V(\{a_6, a_1, a_8, a_7\})| = |\{v_2, v_3, v_4, v_5, v_6\} \cap \{v_1, v_6, v_5, v_2, v_7\}|$$

$$= |\{v_2, v_5, v_6\}| = 3.$$

$$|V(\{a_2, a_3, a_4, a_5, a_6\}) \cap V(\{a_1, a_8, a_7\})| = |\{v_2, v_3, v_4, v_5, v_6, v_1\} \cap \{v_1, v_2, v_5, v_7\}|$$

$$= |\{v_2, v_5, v_6\}| = 3.$$

$$|V(\{a_2, a_3, a_4, a_5, a_6, a_1\}) \cap V(\{a_8, a_7\})| = |\{v_2, v_3, v_4, v_5, v_6, v_1\} \cap \{v_5, v_7, v_2\}|$$

$$= |\{v_2, v_5\}| = 2.$$

$$|V(\{a_2, a_3, a_4, a_5, a_6, a_1, a_8\}) \cap V(\{a_7\})| = |\{v_2, v_3, v_4, v_5, v_6, v_1, v_7\} \cap \{v_2, v_7\}|$$

$$= |\{v_2, v_5\}| = 2.$$
To clarify the concept of a source graph, the diagrams in Figure 2.2 and Figure 2.3 are examples of a planar graph and its source graph, respectively.

Figure 2.2: A planar graph H.

Figure 2.3: H' a source graph of H.
We are in a position to state and prove the main theorem of this chapter on general pathwidth.

Theorem 2.2.8. Let H be a planar graph and let H' be its source graph. Then the pathwidth of H is equal to the pathwidth of H' i.e. $pw(H) = pw(H')$.

Proof. Without loss of generality, let the graph H' be a source graph of the graph H as shown in Figure 2.4. Let H^* be the parts of H and H' which are identical as shown in Figure 2.4. Let the edge set of H^* be $E(H^*)$ such that $E(H^*) = E_1(H^*) \cup E_2(H^*)$.

![Figure 2.4: The planar graph H and its source graph H'](image)

Let $E_1(H^*), a_1, a_n, E_2(H^*)$ be the ordering of edges of H' which gives an n-separation. Then by definition of n-separation, $E_1(H^*) = \{E_1(H^*), a_1\}$ and $E_2(H^*) = \{a_n, E_2(H^*)\}$ implies $|V(E_1(H^*)) \cap V(E_2(H^*))| \leq n$. Suppose that $a_1 = (v_1, v_p), a_n = (v_p, v_n)$ and $|V(E_1(H^*)) \cap V(E_2(H^*))| = j$ where $j \leq n$, then it is clear that

$$|V(E_1(H^*)) \cap V(E_2(H^*))| = j - 1$$

since $V(a_1) \cap V(a_n) = v_p$ hence $|V(a_1) \cap V(a_n)| = 1$. Now we construct the graph H from H' by adding a chain of $n - 2$-edges, a_2, \cdots, a_{n-1} between a_1 and a_n. Then the ordering of edges of H, $E_1(H^*), a_1, a_2, \cdots, a_{n-1}, a_n, E_2(H^*)$ then for all i it is clear that $|\{a_1, a_2, \cdots, a_i\} \cap \{a_{i+1}, \cdots, a_{n-1}, a_n\}| = 1$. Hence by applying Equation 2.1 and letting $E_1(H) = \{E_1(H^*), a_1, a_2, \cdots, a_i\}$ and $E_2(H) = \{a_{i+1}, \cdots, a_{n-1}, a_n, E_2(H^*)\}$ we get that $|V(E_1(H)) \cap V(E_2(H))| = j$. Hence it follows that we get an n-separation like for the graph H'. Thus $pw(H) = pw(H')$.

\[\square\]
We now define three classes of graphs and apply Theorem 2.2.8 to find the path-width of these classes of graphs. In the following Proposition 2.2.9, we let H_1 be the graph shown in the diagram of Figure 2.2.

Proposition 2.2.9. The pathwidth of the planar graph H_1 is 3.

Proof. For the planar graph H_1, its source graph H'_1 is shown in the diagram of Figure 2.3. By Theorem 2.2.8 it is sufficient to show that the pathwidth of the source graph H'_1 is 3. To find the pathwidth of the source graph H'_1, we follow the order $e_{x_1}, e_{y_1}, e_{y_2}, e_{x_2}, e_{x_3}, e_{y_3}, \ldots, e_{x_{n-2}}, e_{y_{n-2}}, e_{x_{n-1}}, e_{x_n}, e_{y_n}$ of its edges. Thus,

$$
|V\left(\{e_{x_1}\}\right) \cap V\left(\{e_{y_1}, e_{y_2}, e_{x_2}, \ldots, e_{x_n}, e_{y_n}\}\right)|
= |\{x, v^*_1\} \cap \{v^*_1, y, v^*_2, x, \ldots, v^*_n\}| \\
= |\{v^*_1, x\}| = 2.
$$

$$
|V\left(\{e_{x_1}, e_{y_1}\}\right) \cap V\left(\{e_{y_2}, e_{x_2}, \ldots, e_{x_n}, e_{y_n}\}\right)|
= |\{x, v^*_1, y\} \cap \{y, v^*_2, x, \ldots, v^*_n\}| \\
= |\{x, y\}| = 2.
$$

$$
|V\left(\{e_{x_1}, e_{y_1}, e_{y_2}\}\right) \cap V\left(\{e_{x_2}, \ldots, e_{x_{n-1}}, e_{x_n}, e_{y_n}\}\right)|
= |\{x, v^*_1, y, v^*_2\} \cap \{v^*_2, x, \ldots, v^*_n, y\}| \\
= |\{x, y, v^*_2\}| = 3.
$$

$$
|V\left(\{e_{x_1}, e_{y_1}, e_{y_2}, e_{x_2}\}\right) \cap V\left(\{e_{x_3}, \ldots, e_{x_{n-1}}, e_{x_n}, e_{y_n}\}\right)|
= |\{x, y, v^*_1, v^*_2\} \cap \{x, v^*_3, \ldots, v^*_{n-1}, v^*_n, y\}| \\
= |\{x, y\}| = 2.
$$

$$
|V\left(\{e_{x_1}, e_{y_1}, e_{y_2}, e_{x_2}, e_{x_3}\}\right) \cap V\left(\{e_{y_3}, \ldots, e_{x_{n-1}}, e_{x_n}, e_{y_n}\}\right)|
= |\{x, y, v^*_1, v^*_2, v^*_3\} \cap \{v^*_3, y, \ldots, x, v^*_{n-1}, v^*_n\}| \\
= |\{x, y\}| = 2.
$$

33
\[|\{x, y, v^*_3\}| = 3. \]
\[|\{x, y, v^*_1, v^*_2, \ldots, v^*_{n-1}, v^*_n\} \cap \{v^*_{n-1}, x, v^*_n, y\}| \]
\[|\{x, y, v^*_1, v^*_2, \ldots, v^*_{n-1}\}| = 3. \]
\[|\{x, y, v^*_1, v^*_2, \ldots, v^*_n\} \cap \{x, v^*_n, y\}| \]
\[|\{x, y\}| = 2. \]
\[|\{x, y, v^*_1, v^*_2, \ldots, v^*_{n-1}, v^*_n\} \cap \{v^*_n, y\}| \]
\[|\{y, v^*_n\}| = 2. \]

This order of edges gives us a 3-separation. But \(H'_1\) is neither an outerplanar graph nor a tree, thus by Lemma 2.2.3 and Lemma 2.2.5 \(H'_1\) has pathwidth greater than 2. Thus the minimal pathwidth of \(H_1\) is 3. By Theorem 2.2.8, we get \(\text{pw}(H'_1) = \text{pw}(H_1) = 3.\)

In the following Proposition 2.2.10, we let \(H_2\) be the graph shown in the diagram of Figure 2.5.

Proposition 2.2.10. The pathwidth of the planar graph \(H_2\) is 3.

Proof. Consider the planar graph \(H_2\) and its source graph \(H'_2\) as shown in Figure 2.5. By applying Theorem 2.2.8, we only need to compute the pathwidth of the source graph \(H'_2\). To compute the pathwidth of \(H'_2\), we follow the order

\[a_1, a_{11}, a_{1m}, a_2, a_3, a_{21}, a_{2m}, \ldots, a_h, a_{h+1}, a_{i1}, a_{im}, a_{h+2}, a_{h+3}, \ldots, a_{i-1}, a_j, a_l, a_{n1}, a_{nm} \]

of its edges. But \(H'_2\) is neither an outerplanar graph nor a tree, thus by Lemma 2.2.3 and Lemma 2.2.5 \(H'_1\) has pathwidth greater than 2. Thus,
\[|V(\{a_1\}) \cap V(\{a_{1_1}, a_{1_m}, \ldots, a_j, a_l, a_{n_1}, a_{n_m}\})| \]
\[= |\{v_{1_1}, v_{1_p}\} \cap \{v_{1_1}, v_{1_1}, v_{1_p}, \ldots, v_{y_1}, v_{y_m}\}| \]
\[= |\{v_{1_1}, v_{1_p}\}| = 2. \]
\[|V(\{a_1, a_{1_1}\}) \cap V(\{a_{1_m}, a_2, a_3, \ldots, a_l, a_{n_1}, a_{n_m}\})| \]
\[= |\{v_{1_1}, v_{1_p}, v_{1_1}\} \cap \{v_{1_1}, v_{1_p}, v_{2_p}, v_{1_1}, \ldots, v_{y_1}, v_{y_m}\}| \]
\[= |\{v_{1_1}, v_{1_p}, v_{1_1}\}| = 3. \]
\[|V(\{a_1, a_{1_1}, a_{1_m}\}) \cap V(\{a_2, a_3, a_{2_1}, a_{2_m}, \ldots, a_l, a_{n_1}, a_{n_m}\})| \]
\[= |\{v_{1_1}, v_{1_p}, v_{1_1}\} \cap \{v_{1_p}, v_{2_p}, v_{1_1}, \ldots, v_{y_1}, v_{y_n}\}| \]
\[= |\{v_{1_1}, v_{1_p}\}| = 2. \]
\[|V(\{a_1, a_{1_1}, a_{1_m}, a_2\}) \cap V(\{a_2, a_{2_1}, a_{2_m}, \ldots, a_l, a_{n_1}, a_{n_m}\})| \]
\[= |\{v_{1_1}, v_{1_p}, v_{1_1}, v_{2_p}\} \cap \{v_{1_1}, v_{2_1}, v_{2_2}, v_{2_p}, \ldots, v_{y_1}, v_{y_m}\}| \]
\[= |\{v_{1_1}, v_{2_p}\}| = 2. \]
\[|V(\{a_1, a_{1_1}, a_{1_m}, a_2, a_3\}) \cap V(\{a_2, a_2, a_3, \ldots, a_l, a_{n_1}, a_{n_m}\})| \]

Figure 2.5: The graph H_2 and its source graph H'_2.

35
This order of edges gives us a 3-separation and thus the source graph H'_2 has pathwidth 3. By Theorem 2.2.8, we get $pw(H'_2) = pw(H_2) = 3$.

In the following Proposition 2.2.11, we let H_3 be the graph shown in the diagram of Figure 2.6.

Proposition 2.2.11. The pathwidth of the planar graph H_3 is 3.

Proof. Consider the planar graph H_3 and its source graph H'_3 as shown in Figure 2.6. By applying Theorem 2.2.8, we only need to compute the pathwidth of the source graph H'_3. To compute the pathwidth of H'_3, we follow the order

$$a_1, a_{x_1}, a_{1_m}, a_2, a_{x_2}, a_{2_m}, a_3, \cdots, a_{k+1}, a_{x_1}, a_{1_m}, a_{k+2}, \cdots, a_{x_g}, a_{y_m}, a_n, a_{x_n}, a_{n_m}, a_{n+1}$$
Figure 2.6: The graph H_3 and its source graph H'_3.
of its edges. But \(H_3' \) is neither an outerplanar nor a tree thus by applying Lemma 2.2.3 and Lemma 2.2.5 \(H_3' \) has pathwidth greater than 2. Thus,

\[
\begin{align*}
|V(\{a_1\}) \cap V(\{a_{x_1}, a_{1_m}, a_2, \cdots, a_{n_m}, a_{n+1}\})| &= |\{x, v_1\} \cap \{x, v_{1_m}, v_{1_p}, v_{2_p}, \cdots, v_{n_p}\}| \\
&= |\{x, v_1\}| = 2. \\
|V(\{a_1, a_{x_1}\}) \cap V(\{a_{1_m}, a_2, \cdots, a_{n_m}, a_{n+1}\})| &= |\{x, v_1, v_{1_m}\} \cap \{v_{1_m}, v_{1_p}, v_{2_p}, \cdots, x, v_{n_p}\}| \\
&= |\{x, v_1, v_{1_m}\}| = 3. \\
|V(\{a_1, a_{x_1}, a_{1_m}\}) \cap V(\{a_{2}, \cdots, a_{k-1}, a_{x_g}, a_{g_m}, \cdots, a_{n_m}, a_{n+1}\})| &= |\{x, v_1, v_{1_m}, v_{2_p}\} \cap \{x, v_{2_m}, v_{2_p}, v_{2_p}, \cdots, v_{n_p}\}| \\
&= |\{x, v_2_p\}| = 2. \\
|V(\{a_1, a_{x_1}, a_{1_m}, a_2, a_{x_2}\}) \cap V(\{a_{2}, \cdots, a_{x_g}, a_{g_m}, \cdots, a_{n+1}\})| &= |\{x, v_1, v_{1_m}, v_{2_p}, v_{2_m}\} \cap \{v_{2_m}, v_{2_p}, v_{2_p}, \cdots, v_{3_p}, x, v_{n_p}\}| \\
&= |\{x, v_2_p, v_{2_m}\}| = 3. \\
|V(\{a_1, a_{x_1}, a_{1_m}, a_2, a_{x_2}, a_{2_m}\}) \cap V(\{a_{3}, a_{x_3}, a_{3_m}, \cdots, a_{k-1}, \cdots, a_{n+1}\})| &= |\{x, v_1, v_{1_m}, v_{2_p}, v_{2_m}\} \cap \{v_{2_p}, v_{3_p}, x, v_{3_m}, \cdots, v_{n_p}\}| \\
&= |\{x, v_2_p\}| = 2. \\
|V(\{a_1, a_{x_1}, a_{1_m}, a_2, a_{x_2}, a_{2_m}, a_3\}) \cap V(\{a_{x_3}, a_{3_m}, \cdots, a_{k-1}, \cdots, a_{n+1}\})| &= |\{x, v_1, v_{1_m}, v_{2_p}, v_{2_m}, v_{3_p}\} \cap \{x, v_{3_p}, v_{3_m}, \cdots, v_{n_p}\}| \\
&= |\{x, v_3_p\}| = 2. \\
|V(\{a_1, a_{x_1}, a_{1_m}, a_2, a_{x_2}, a_{2_m}, a_3, a_{x_3}\}) \cap V(\{a_{3_m}, \cdots, a_{k-1}, \cdots, a_{n+1}\})| &= |\{x, v_3_p\}| = 2.
\end{align*}
\]
\[\{x, v_{1p}, v_{1m}, v_{2p}, v_{2m}, v_{3p}, v_{3m}\} \cap \{v_{3p}, v_{3m}, \ldots, x, v_{np}\} \]
\[= \{|x, v_{3p}, v_{3m}\}| = 3. \]

\[|V\{a_1, a_{x1}, a_{1m}, \ldots, a_k, a_{xk}, \ldots, a_n\}\} \cap V\{a_{xn}, a_{nm}, a_{n+1}\}| \]
\[= \{|x, v_{1p}, v_{1m}, \ldots, v_{yp}, v_{kp}, v_{km}, \ldots, v_{yp}, v_{np}\} \cap \{x, v_{nm}, v_{np}\}| \]
\[= \{|x, v_{np}\}| = 2. \]

\[|V\{a_1, a_{x1}, a_{1m}, \ldots, a_n, a_{xn}\}\} \cap V\{a_{nm}, a_{n+1}\}| \]
\[= \{|x, v_{1p}, v_{1m}, \ldots, v_{yp}, v_{np}, v_{nm}\} \cap \{x, v_{nm}, v_{np}\}| \]
\[= \{|x, v_{nm}, v_{np}\}| = 3. \]

This order of edges gives us a 3-separation and thus the source graph \(H'_3\) has pathwidth 3. The pathwidth of the planar graph \(H_3\) is 3. \(\square\)
Chapter 3

Pretzel links, their pathwidth and bridge number

3.1 Introduction

Pretzel links are a class of links which are of increasing interest in Knot theory research. In [11] Jin and Zhang studied the zeros of the Jones polynomials for families of pretzel links. In [12] Kim and Lee studied some invariants of pretzel links, and the Conway polynomials of pretzel links are included in their study of these invariants. Furthermore, Zentner [25] studied the representation spaces of pretzel knots.

In this chapter we study pretzel links and graphs extracted from pretzel links. We begin by describing the underlying notion of twists in a link (or knot). Then we state and prove the main results of this chapter. We conclude the chapter by relating the bridge number and pathwidth of certain pretzel links.

3.2 Pretzel links

In this section we define and study pretzel links. From this section to the end of this dissertation we shall only talk of a link, where a knot is a link with one component,
For further details we refer the reader to [1] and [15].

Definition 3.2.1. A **twist** in a link is a part of a link which consists of strings which are twisted together once or more than once.

A twist is said to be **positive** if and only if at each crossing point of the twist the slope of the overpass is positive; otherwise it is said to be **negative**. The diagram (a) in Figure 3.1 is a positive twist and diagram (b) is a negative twist, see [1]. Twists are either **odd** or **even** depending on the number of crossing points of a given twist, see [1]. The diagrams (a) and (b) in Figure 3.1 are examples of odd twists since both of them have five crossing points. We shall refer to diagram (a) in Figure 3.1 as a 5-twist and diagram (b) in Figure 3.1 as a −5-twist.

![Figures](image)

Figure 3.1: (a) positive twist, (b) negative twist.

Definition 3.2.2. A **pretzel link** \((P_1, P_2, P_3, \cdots, P_n)\) is

(a) made up of three or more twist, denoted by the \(P\)s, connected together and
(b) the twists are connected in such a way that each northeast (NE) string connects to the adjacent northwest (NW) string, and each southeast (SE) string connects to the adjacent southwest (SW) string.

Figure 3.2: A \((P_1, P_2, P_3, \ldots, P_n)\) pretzel link and its source link.

A pretzel link is named according to the number of crossing points in each twist, see [15]. The diagram (a) in Figure 3.2 shows an example of a \((P_1, P_2, P_3, \ldots, P_n)\) pretzel link.
Recall that a source graph of a given planar graph H is obtained by replacing every subgraph of H isomorphic to an i-chain, for some $i > 2$, by a 2-chain. We define a **source link** as follows.

Definition 3.2.3. Let $L(H)$ be a link corresponding to a planar graph H and $L(H')$ be a link corresponding to the source graph of H, H'. Then we say $L(H')$ is a **source link** for $L(H)$.

To clarify the concept, diagrams (a) and (b) in Figure 3.2 are examples of a link and its **source link**, respectively.

We demonstrate how to extract a signed and an unsigned planar graph from pretzel links.

![Figure 3.3: A (4, 4, 3) pretzel link.](image)

Without loss of generality, consider the $(4, 4, 3)$ pretzel link shown in Figure 3.3. By applying the checkerboard method described in Chapter 1, Section 1.1.3.1 to the $(4, 4, 3)$ pretzel link shown in Figure 3.3, we obtain the signed planar graph shown in Figure 3.4.

The diagrams in Figure 3.5 are examples of a general (p, q, r) pretzel links. In particular, diagram (b) is the (p, q, r) pretzel link with a slight modification, that is, one of $|p|, |q|, |r|$ equal to 1 which is of interest, and will be discussed later in this dissertation.
Figure 3.4: A signed graph extracted from a $(4, 4, 3)$ pretzel link.

Figure 3.5: (a) The (p, q, r) pretzel link. (b) The (p, q, r) pretzel link with $|r|$ equal to 1.

Figure 3.6: The graph H.
The diagram of Figure 3.6 is an example of a planar graph that is extracted from the \((p,q,r)\) pretzel link using the checkerboard method described in Chapter 1, Section 1.1.3.1 with \(r = 1\).

3.3 Pretzel links and pathwidth

In this section we state and prove some theorems on the pathwidth of pretzel links. Let \(L(H)\) denote a link with an associated planar graph \(H\). It is known that \(L(H)\) has different link projections. So a link \(L(H)\) has different planar graphs associated to it. A quick example is a planar graph \(H\) and its dual graph \(H^*\), they represent the same link. A link \(L(H)\) associated to the planar graph \(H\), is said to have pathwidth \(m\) if \(H\) has pathwidth \(m\).

Definition 3.3.1. The **pathwidth of a link** \(L\), denoted by \(pw(L)\), is the least pathwidth of all the link projections of the link \(L\).

Proposition 3.3.2. Let \(K\) be a pretzel link \((p,q,r)\) with one of \(|p|, |q|, |r|\) equal to 1. Then \(K\) has pathwidth 2.

Proof. Without, loss of generality, we consider \(K\), the \((p,q,r)\) pretzel link, shown in diagram (b) of Figure 3.5 and its corresponding planar graph shown in Figure 3.6, we denote it by \(H\). We only need to show the case \(r = 1\) and the other two cases are similar. For the case \(r = 1\), to compute the pathwidth of the planar graph \(H\) we maintain the order

\[
e_r, e_{2r}, e_{3r}, e_{4r}, \ldots, e_{pr}, e_{(p+1)r}, e_{(p+2)r}, e_{(p+3)r}, \ldots, e_{(p+q-1)r}, e_{(p+q)r}, e_{(p+q+1)r}
\]

of its edges. Hence,

\[
|V\{e_r\} \cap V\{e_{2r}, e_{3r}, \ldots, e_{(p+q+1)r}\}| = |\{v_r, v_{2r}\} \cap \{v_r, v_{2r}, \ldots, v_{(p+q)r}\}|
\]
\[|\{v_r, v_{2r}\}| = 2.\]
\[|V(\{e_r, e_{2r}\}) \cap V(\{e_{3r}, e_{4r}, \ldots, e_{(p+q+1)r}\})| = |\{v_r, v_{2r}, v_{3r}\} \cap \{v_r, v_{3r}, \ldots, v_{(p+q)r}\}| = |\{v_r, v_{3r}\}| = 2.\]
\[|V(\{e_r, e_{2r}, e_{3r}\}) \cap V(\{e_{4r}, e_{5r}, \ldots, e_{(p+q+1)r}\})| = |\{v_r, v_{2r}, v_{3r}, v_{4r}\} \cap \{v_r, v_{4r}, v_{5r}, \ldots, v_{(p+q)r}\}| = |\{v_r, v_{4r}\}| = 2.\]
\[|V(\{e_r, e_{2r}, e_{3r}, e_{4r}\}) \cap V(\{e_{5r}, e_{6r}, \ldots, e_{(p+q+1)r}\})| = |\{v_r, v_{2r}, v_{3r}, v_{4r}, v_{5r}\} \cap \{v_r, v_{5r}, v_{6r}, \ldots, v_{(p+q)r}\}| = |\{v_r, v_{5r}\}| = 2.\]
\[\vdots \quad \vdots \quad \vdots \]
\[|V(\{e_r, e_{2r}, e_{3r}, \ldots, e_{pr}\}) \cap V(\{e_{(p+1)r}, e_{(p+2)r}, \ldots, e_{(p+q+1)r}\})| = |\{v_r, v_{2r}, v_{3r}, v_{4r}, v_{5r}, \ldots, v_{(p+1)r}\} \cap \{v_r, v_{(p+1)r}, \ldots, v_{(p+q)r}\}| = |\{v_r, v_{(p+1)r}\}| = 2.\]
\[|V(\{e_r, e_{2r}, \ldots, e_{pr}, e_{(p+1)r}\}) \cap V(\{e_{(p+2)r}, e_{(p+3)r}, \ldots, e_{(p+q+1)r}\})| = |\{v_r, v_{2r}, \ldots, v_{(p+1)r}\} \cap \{v_r, v_{(p+1)r}, \ldots, v_{(p+q)r}\}| = |\{v_r, v_{(p+1)r}\}| = 2.\]
\[|V(\{e_r, e_{2r}, e_{3r}, \ldots, e_{(p+1)r}\}) \cap V(\{e_{(p+2)r}, e_{(p+3)r}, \ldots, e_{(p+q+1)r}\})| = |\{v_r, v_{2r}, \ldots, v_{(p+1)r}, v_{(p+q)r}\} \cap \{v_{(p+q)r}, v_{(p+q-1)r}, \ldots, v_{(p+1)r}\}| = |\{v_{(p+1)r}, v_{(p+q)r}\}| = 2.\]
\[\vdots \quad \vdots \quad \vdots \]
\[|V(\{e_r, e_{2r}, e_{3r}, \ldots, e_{(p+q-1)r}\}) \cap V(\{e_{(p+q)r}, e_{(p+q+1)r}\})| = |\{v_r, v_{2r}, v_{3r}, v_{4r}, v_{5r}, \ldots, v_{(p+q)r}, v_{(p+1)r}\} \cap \{v_{(p+3)r}, v_{(p+2)r}, v_{(p+1)r}\}| = |\{v_{(p+1)r}, v_{(p+3)r}\}| = 2.\]
\[|V(\{e_r, e_{2r}, e_{3r}, \ldots, e_{(p+q)r}\}) \cap V(\{e_{(p+q+1)r}\})| = 46.\]
This order of edges gives us a 2-separation. Therefore, $pw(H) = 2$. But, it is clear that H is not a tree, therefore the pathwidth of H is greater than 1 by applying Lemma 2.2.5. Hence the pathwidth of H is equal to 2. By Definition 3.3.1, it follows that K, has pathwidth 2.

This result can also be verified by applying Lemma 2.2.3, since H in Proposition 3.3.2 is an outerplanar graph.

For the following Lemma 3.3.3, let H be the planar graph shown in the diagram of Figure 3.7.

Figure 3.7: A planar graph extracted from a (p, q, r) pretzel link.

Lemma 3.3.3. Let K be a pretzel link (p, q, r) with all of p, q, r not equal to 0 or ± 1. Then K has the corresponding planar graph H.

47
Proof. Without loss of generality, consider the \((p, q, r)\) pretzel link shown in Figure 3.5 diagram (a). Applying the checkerboard method described in Chapter 1, Section 1.1.3.1, to the \((p, q, r)\) pretzel link results in the planar graph \(H\).

We are in a position to state and prove the main results of this section.

Proposition 3.3.4. Let \(K = (p, q, r)\) be a pretzel link. Then \(K\) has pathwidth 3 if and only if all of \(|p|, |q|, |r|\) are strictly greater than 1.

Proof. ⇒ Assume that a \((p, q, r)\) pretzel link has pathwidth 3. If one of \(|p|, |q|, |r|\) is equal to 1 then a \((p, q, r)\) pretzel link has pathwidth 2, by Proposition 3.3.2. This contradicts the fact that \((p, q, r)\) pretzel link has pathwidth 3 and its corresponding planar graph has pathwidth 3. Hence, \(|p|, |q|, |r|\) are strictly greater than 1.

⇐ Assume that \(|p|, |q|, |r|\) are strictly greater than 1. Since \(|p|, |q|, |r|\) are strictly greater than 1, by Lemma 3.3.3 the planar graph corresponding to a \((p, q, r)\) pretzel link is as shown in the diagram of Figure 3.7, and to compute its pathwidth we follow the order

\[e_1, e_2, e_3, \cdots, e_p, e_{p+1}, e_{p+2}, \cdots, e_{p+q+r-2}, e_{p+q+r-1}, e_{p+q+r} \]

of its edges. Thus,

\[
|V(\{e_1\}) \cap V(\{e_2, e_3, \cdots, e_{p+q+r}\})| \\
= |\{v_1, v_2\} \cap \{v_1, v_2, \cdots, v_{p+q+r-1}\}| \\
= |\{v_1, v_2\}| = 2.
\]

\[
|V(\{e_1, e_2\}) \cap V(\{e_3, e_4, \cdots, e_{p+q+r}\})| \\
= |\{v_1, v_2, v_3\} \cap \{v_1, v_3, \cdots, v_{p+q+r-1}\}| \\
= |\{v_1, v_3\}| = 2.
\]

\[
|V(\{e_1, e_2, e_3\}) \cap V(\{e_4, e_5, \cdots, e_{p+q+r}\})| \\
= |\{v_1, v_2, v_3, v_4\} \cap \{v_1, v_4, v_5, \cdots, v_{p+q+r-1}\}| \\
= |\{v_1, v_4\}| = 2.
\]
\[
|V(\{e_1, e_2, e_3, e_4\}) \cap V(\{e_5, e_6, \ldots, e_{p+r}\})| \\
= |\{v_1, v_2, v_3, v_4, v_5\} \cap \{v_1, v_5, \ldots, v_{p+q+r-1}\}| \\
= |\{v_1, v_5\}| = 2. \\
\]
\[
|V(\{e_1, e_2, e_3, e_4, e_5\}) \cap V(\{e_6, e_7, \ldots, e_{p+q+r}\})| \\
= |\{v_1, v_2, v_3, v_4, v_5, v_6\} \cap \{v_1, v_0, v_7, \ldots, v_{p+q+r-1}\}| \\
= |\{v_1, v_6\}| = 2. \\
\]
\[
\vdots \quad \vdots \quad \vdots \\
|V(\{e_1, e_2, e_3, \ldots, e_p\}) \cap V(\{e_{p+1}, e_{p+2}, \ldots, e_{p+q+r}\})| \\
= |\{v_1, v_2, v_3, v_4, v_5, \ldots, v_{p+1}\} \cap \{v_1, v_{p+1}, \ldots, v_{p+q+r-1}\}| \\
= |\{v_1, v_{p+1}\}| = 2. \\
\]
\[
|V(\{e_1, e_2, e_3, \ldots, e_p, e_{p+1}\}) \cap V(\{e_{p+2}, e_{p+3}, \ldots, e_{p+q+r}\})| \\
= |\{v_1, v_2, \ldots, v_{p+2}\} \cap \{v_1, \ldots, v_{p+1}, \ldots, v_{p+q+r-1}\}| \\
= |\{v_1, v_{p+1}, v_{p+2}\}| = 3. \\
\]
\[
|V(\{e_1, e_2, e_3, \ldots, e_p, e_{p+1}, e_{p+2}\}) \cap V(\{e_{p+3}, \ldots, e_{p+q+r}\})| \\
= |\{v_1, v_2, \ldots, v_{p+1}, v_{p+2}, v_{p+3}\} \cap \{v_1, \ldots, v_{p+1}, \ldots, v_{p+q+r-1}\}| \\
= |\{v_1, v_{p+1}, v_{p+3}\}| = 3. \\
\]
\[
|V(\{e_1, e_2, e_3, \ldots, e_p, e_{p+1}, e_{p+2}, e_{p+3}\}) \cap V(\{e_{p+4}, \ldots, e_{p+r+1, \ldots, e_{p+q+r}}\})| \\
= |\{v_1, v_2, \ldots, v_{p+3}, v_{p+4}\} \cap \{v_1, v_{p+1}, v_{p+4}, \ldots, v_{p+q+r-1}\}| \\
= |\{v_1, v_{p+1}, v_{p+4}\}| = 3. \\
\]
\[
|V(\{e_1, e_2, \ldots, e_{p+r-1}\}) \cap V(\{e_{p+r}, e_{p+r+1}, \ldots, e_{p+q+r}\})| \\
= |\{v_1, v_2, v_3, \ldots, v_{p+r-1}, v_{p+r}\} \cap \{v_1, v_{p+1}, v_{p+r}, v_{p+r+1}, \ldots, v_{p+q+r-1}\}| \\
= |\{v_1, v_{p+r}, v_{p+1}\}| = 3. \\
\]
\[
|V(\{e_1, e_2, \ldots, e_{p+r}\}) \cap V(\{e_{p+r+1}, \ldots, e_{p+q+r-1}, e_{p+q+r}\})| \\
= |\{v_1, v_2, v_3, \ldots, v_{p+r}\} \cap \{v_1, v_{p+1}, v_{p+r+1}, \ldots, v_{p+q+r-1}\}| \\
= 49
\]
Proof. Without loss of generality, let \(H \) be a pretzel link with all the \(P_i \)'s not equal to 0 or \(\pm 1 \). Then \(H \) has pathwidth 3.

Let \(K = (P_1, P_2, P_3, \cdots, P_n) \) be a pretzel link with all the \(P_i \)'s not equal to 0 or \(\pm 1 \). Then \(K \) has pathwidth 3.

Theorem 3.3.5. Let \(K = (P_1, P_2, P_3, \cdots, P_n) \) be a pretzel link with all the \(P_i \)'s not equal to 0 or \(\pm 1 \). Then \(K \) has pathwidth 3.

Proof. Without loss of generality, let \(K = (P_1, P_2, P_3, \cdots, P_n) \), then its corresponding
planar graph is the planar graph H shown in Figure 3.8. By Proposition 2.2.9, graph H has pathwidth 3. Hence by Definition 3.3.1, K, has pathwidth 3.

3.4 Pathwidth vs Bridge Number of general links

In this section we introduce the reader to the famous notion of **bridge number** of a link and we relate it to the pathwidth of the link. For further details we refer the reader to [1].

3.4.1 Bridge Number

Let L be a link projection, then a **bridge** in a link projection, L, occurs in more than one section of L where we have one segment of L as an overpass in more than one crossing point of L, see diagram (a) of Figure 3.9.

![Diagram](a) (b)

Figure 3.9: (a) Occurrence of a bridge. (b) A knot that has 5 bridges

Then the **bridge number** of a given link, L, is defined as follows:

Definition 3.4.1. Let L be a link projection. Then the **bridge number**, $br(L)$, of a link projection L is given by the minimum number of **bridges** occurring in L.

51
The diagram (b) in Figure 3.9 is an example of a link projection with 5 bridges.

3.4.2 Famous Knots with Bridge number 3 in relation to their pathwidth

In this section we consider some of the well known links that have bridge number 3. Our purpose for doing so, is to try and compare their pathwidth with their bridge number. For further details of the links considered in this section we refer the reader to [16].

Figure 3.10: (a) 8_5 knot. (b) A 9_{16} knot.

Amongst other links with bridge number 3 we have the 8_5 knot and the 9_{16} knot, as shown in Figure 3.10. We compute the pathwidth of both the 8_5 knot and the 9_{16} knot. So we use the checkerboard method described in Chapter 1, Section 1.1.3.1 to extract the planar graph from each knot. We will compute the pathwidth of each knot separately.
Figure 3.11: (a) A planar graph extracted from the 8\textsubscript{5} knot. (b) A planar graph extracted from the 9\textsubscript{16} knot.

The diagrams of Figure 3.11 are illustrations of the planar graphs extracted from the 8\textsubscript{5} knot and the 9\textsubscript{16} knot, respectively, using the checkerboard method described in Chapter 1, Section 1.1.3.1. We now compute the pathwidth of the planar graphs shown in Figure 3.11 as follows:

Example 3.4.2. In computing the pathwidth of the planar graph shown in the diagram of Figure 3.11 diagram (a), we maintain the order

\[e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8 \]

of its edges.

\[
|V(\{e_1\}) \cap V(\{e_2, e_3, e_4, e_5, e_6, e_7, e_8\})| = |\{v_1, v_2\} \cap \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}|
\]

\[= |\{v_1, v_2\}| = 2. \]

\[
|V(\{e_1, e_2\}) \cap V(\{e_3, e_4, e_5, e_6, e_7, e_8\})| = |\{v_1, v_2, v_3\} \cap \{v_1, v_3, v_4, v_5, v_6, v_7\}|
\]

\[= |\{v_1, v_3\}| = 2. \]

\[
|V(\{e_1, e_2, e_3\}) \cap V(\{e_4, e_5, e_6, e_7\})| = |\{v_1, v_2, v_3, v_4\} \cap \{v_1, v_4, v_5, v_6, v_7\}|
\]

\[= |\{v_1, v_4\}| = 2. \]

\[
|V(\{e_1, e_2, e_3, e_4\}) \cap V(\{e_5, e_6, e_7, e_8\})| = |\{v_1, v_2, v_3, v_4, v_5\} \cap \{v_1, v_4, v_5, v_6, v_7\}|
\]

\[= |\{v_1, v_4, v_5\}| = 3. \]

\[
|V(\{e_1, e_2, e_3, e_4, e_5\}) \cap V(\{e_6, e_7, e_8\})| = |\{v_1, v_2, v_3, v_4, v_5, v_6\} \cap \{v_1, v_4, v_6, v_7\}|
\]

\[= |\{v_1, v_4, v_6\}| = 3. \]

53
\[|V(\{e_1, e_2, e_3, e_4, e_5, e_6\}) \cap V(\{e_7, e_8\})| = |\{v_1, v_2, v_3, v_4, v_5, v_6\} \cap \{v_1, v_4, v_7\}| = |\{v_1, v_4\}| = 2. \]

\[|V(\{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}) \cap V(\{e_8\})| = |\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\} \cap \{v_1, v_7\}| = |\{v_1, v_7\}| = 2. \]

This order of edges gives us a 3-separation and thus the planar graph shown in diagram (a) of Figure 3.11 has pathwidth 3.

Example 3.4.3. We now compute the pathwidth of the planar graph shown in the diagram of Figure 3.11 diagram (b), we maintain the order

\[e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9 \]

of its edges.

\[|V(\{e_1\}) \cap V(\{e_2, e_3, e_4, e_5, e_6, e_7, e_8\})| = |\{v_1, v_2\} \cap \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}| = |\{v_1, v_2\}| = 2. \]

\[|V(\{e_1, e_2\}) \cap V(\{e_3, e_4, e_5, e_6, e_7, e_8\})| = |\{v_1, v_2, v_3\} \cap \{v_1, v_3, v_4, v_5, v_6, v_7\}| = |\{v_1, v_3\}| = 2. \]

\[|V(\{e_1, e_2, e_3\}) \cap V(\{e_4, e_5, e_6, e_7\})| = |\{v_1, v_2, v_3, v_4\} \cap \{v_1, v_4, v_5, v_6, v_7\}| = |\{v_1, v_4\}| = 2. \]

\[|V(\{e_1, e_2, e_3, e_4\}) \cap V(\{e_5, e_6, e_7, e_8\})| = |\{v_1, v_2, v_3, v_4, v_5\} \cap \{v_1, v_4, v_5, v_6, v_7\}| = |\{v_1, v_4, v_5\}| = 3. \]

\[|V(\{e_1, e_2, e_3, e_4, e_5\}) \cap V(\{e_6, e_7, e_8\})| = |\{v_1, v_2, v_3, v_4, v_5, v_6\} \cap \{v_1, v_4, v_6, v_7\}| = |\{v_1, v_4, v_6\}| = 3. \]

\[|V(\{e_1, e_2, e_3, e_4, e_5, e_6\}) \cap V(\{e_7, e_8\})| = |\{v_1, v_2, v_3, v_4, v_5, v_6\} \cap \{v_1, v_4, v_7\}| = |\{v_1, v_4\}| = 2. \]

\[|V(\{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}) \cap V(\{e_8\})| = |\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\} \cap \{v_1, v_7\}| = |\{v_1, v_7\}| = 2. \]
This order of edges gives us a 3-separation and thus the planar graph shown in diagram (b) of Figure 3.11 has pathwidth 3.

Since we know that the 8_5 knot and the 9_{16} knot have bridge number 3, that is, $br(8_5) = br(9_{16}) = 3$ and path-with 3, this leads us to the question if a link has pathwidth 3 does that mean it has bridge number 3? We also see that the pretzel link has pathwidth 3 and again it leads us to this question does it have bridge number 3?. The Table 3.1 is a table which compares some known bridge number 3 links with their pathwidth, For further details we refer the reader to [16].

Table 3.1: Bridge number vs. pathwidth.

<table>
<thead>
<tr>
<th>Link (or Knot)</th>
<th>Bridge Number</th>
<th>pathwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>8_5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8_{10}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8_{15}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8_{16}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8_{17}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8_{18}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8_{19}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8_{20}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8_{21}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9_{16}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9_{22}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9_{24}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9_{25}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9_{28}</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
3.5 Pathwidth vs Bridge number of certain pretzel links

Another famous bridge 3 link is the (3, 3, 3) pretzel link. The diagrams in Figure 3.12 are the (3, 3, 3) pretzel link and its corresponding planar graph.

![Diagram](image)

Figure 3.12: (a) The (3, 3, 3) pretzel link. (b) The planar graph extracted from the (3, 3, 3) pretzel link.

Example 3.5.1. The computation of the pathwidth of the planar graph shown in Figure 3.12 diagram (b) is done by maintaining the order

\[e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9 \]

of its edges. Hence,

\[
\begin{align*}
|V(\{e_1\}) \cap V(\{e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9\})| & = |\{v_1, v_2\} \cap \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}| \\
& = |\{v_1, v_2\}| = 2.
\end{align*}
\]

\[
\begin{align*}
|V(\{e_1, e_2\}) \cap V(\{e_3, e_4, e_5, e_6, e_7, e_8, e_9\})| & = |\{v_1, v_2, v_3\} \cap \{v_1, v_3, v_4, v_5, v_6, v_7, v_8\}| \\
& = |\{v_1, v_3\}| = 2.
\end{align*}
\]

\[
\begin{align*}
|V(\{e_1, e_2, e_3\}) \cap V(\{e_4, e_5, e_6, e_7, e_8, e_9\})| & = |\{v_1, v_2, v_3, v_4\} \cap \{v_1, v_4, v_5, v_6, v_7, v_8\}| \\
& = |\{v_1, v_4\}| = 2.
\end{align*}
\]
Theorem 3.5.3. Let $K = (p, q, r)$ be a pretzel link with all of $|p|, |q|, |r|$ strictly greater than 1. If all of $|p|, |q|, |r|$ are pairwise coprime, then a pretzel link $K = (p, q, r)$ has bridge number 3.

We are now in a position to state the following main result of this chapter.

Theorem 3.5.2. Let $K = (p, q, r)$ be a pretzel link with all of $|p|, |q|, |r|$ strictly greater than 1. If all of $|p|, |q|, |r|$ are pairwise coprime, then a pretzel link $K = (p, q, r)$ has bridge number 3.

Proof. By Proposition 3.3.4 a pretzel link K has pathwidth 3 and by Theorem 3.5.2 K has bridge number 3. Therefore $\text{pw}(K) = \text{br}(K)$.

\Box

57
Chapter 4

Component number of Pretzel links

4.1 Introduction

The component number of a link is one of the invariants of link which is of interest in Knot theory research. There are many methods for determining the component number of links. Determining the component number of links has also been the topic of major interest in Knot theory research. In [5] Endo studied the component number of suspended trees. In [10] Jin, Dong and Tay have studied the component number of links corresponding to lattices. Jiang and Jin [9] have studied the component number of links corresponding to Sierpinski graphs.

In this chapter we consider two methods for computing the component number of a link. In particular, we describe the Tutte polynomial and the deletion-contraction methods for computing the component number of a given link. We will conclude this chapter by applying the deletion-contraction method to Pretzel links. In this dissertation we define the component number of links as follows:

Definition 4.1.1. Let \mathcal{L} be a link. Then the component number of \mathcal{L} denoted by $\zeta(\mathcal{L})$ is the number of components which form \mathcal{L}.

58
If the component number of \mathcal{L} is n we say that \mathcal{L} is an n-component link. The diagram of Figure 4.1 is an example of a 3-component link.

4.2 Tutte polynomial method

In this section we use the Tutte polynomial described in Chapter 1, Definition 1.1.40, to compute the component number of a link corresponding to an unsigned planar graph. We only compute the Tutte polynomial based on an unsigned planar graph corresponding to a link, since disregarding intentionally its signs will not change the number of components of a corresponding link, see [5].

Let $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$ be an unsigned planar graph and let $\mathcal{L}_{\mathcal{H}}$ denote the link projection corresponding to \mathcal{H}. Through the Tutte polynomial described in Chapter 1, Definition 1.1.40, of \mathcal{H} we can compute the component number of the link projection, $\mathcal{L}_{\mathcal{H}}$, corresponding to \mathcal{H}. This is done by evaluating the Tutte polynomial of an unsigned planar graph, \mathcal{H}, corresponding to a link projection, $\mathcal{L}_{\mathcal{H}}$, at $x = -1$ and $y = -1$. Thus we get that

$$T(\mathcal{H}, -1, -1) = (-1)^{|E(\mathcal{H})|} (-2)^{\zeta(\mathcal{L}_{\mathcal{H}}) - 1}$$

where $E(\mathcal{H})$ is the edge set of the unsigned planar graph, \mathcal{H}, and $\zeta(\mathcal{L}_{\mathcal{H}})$ is the component number of the link projection, $\mathcal{L}_{\mathcal{H}}$, corresponding to \mathcal{H}, see [22]. We demonstrate the Tutte polynomial method in the following example:
Figure 4.2: (a) The link \mathcal{L}_H. (b) The unsigned planar graph \mathcal{K}.
Figure 4.3: Tutte polynomial recursive algorithm on a graph H.
Example 4.2.1. Let $\mathcal{H} = \{v_1v_2, v_1v_4, v_2v_4, v_3v_4, v_4v_5\}$ be the unsigned planar graph shown in diagram (b) of Figure 4.2. The corresponding link of \mathcal{H}, $\mathcal{L}_\mathcal{H}$, is the diagram (a) of Figure 4.2. We calculate the Tutte polynomial $T(\mathcal{H}, x, y)$ of the unsigned planar graph \mathcal{H} corresponding to the link $\mathcal{L}_\mathcal{H}$. The computation of the Tutte polynomial is demonstrated in Figure 4.3, where each diagram represents the Tutte polynomial of that graph. Let $\mathcal{H} = \{v_1v_2, v_1v_4, v_2v_4, v_3v_4, v_4v_5\}$, $\mathcal{H}_\alpha = \mathcal{H} \setminus v_3v_4 = \{v_1v_2, v_1v_4, v_2v_4, v_4v_5\}$, $\mathcal{H}_\beta = \mathcal{H}_\alpha \setminus v_4v_5 = \{v_1v_2, v_1v_4, v_2v_4\}$, $\mathcal{H}_\delta = \mathcal{H}_\beta \setminus v_4v_5 = \{v_1v_2, v_1v_4\}$, $\mathcal{H}_\epsilon = \mathcal{H}_\beta \setminus v_1v_4 = \{v_2v_4, v_4v_2\}$, $\mathcal{H}_\lambda = \mathcal{H}_\delta \setminus v_2v_4 = \{v_1v_2\}$, $\mathcal{H}_\psi = \mathcal{H}_\epsilon \setminus v_4v_2 = \{v_2v_4\}$ and $\mathcal{H}_\theta = \mathcal{H}_\epsilon \setminus v_4v_2 = \{v_2v_2\}$. Hence we can write the Tutte polynomial,

$$T(\mathcal{H}, x, y) = xT(\mathcal{H}_\alpha, x, y)$$
$$= x^2T(\mathcal{H}_\beta, x, y)$$
$$= x^2[T(\mathcal{H}_\delta, x, y) + T(\mathcal{H}_\epsilon, x, y)]$$
$$= x^3T(\mathcal{H}_\lambda, x, y) + x^2T(\mathcal{H}_\psi, x, y) + x^2T(\mathcal{H}_\theta, x, y)$$
$$= x^3(x) + x^2(x) + x^2y$$
$$= x^4 + x^3 + x^2y.$$

Thus,

$$T(\mathcal{H}, -1, -1) = (-1)^4 + (-1)^3 + (-1)^2(-1) = 1 - 1 + 1(-1) = -1 = (-1)^5(-2)^{1-1}.$$

Therefore $|E(\mathcal{H})| = 5$ and $\zeta(\mathcal{L}_\mathcal{H}) = 1$ implying that the number of components of the link projection, $\mathcal{L}_\mathcal{H}$, is 1.

From Example 4.2.1 we see that the link projection $\mathcal{L}_\mathcal{H}$ has one component. A link with one component is called a knot, see [1]. Therefore $\mathcal{L}_\mathcal{H}$ in Example 4.2.1 is a knot.
4.3 Deletion-Contraction method

In this section we describe the deletion-contraction method which uses the **deletion** and **contraction** operations discussed in Chapter 1, Section 1.1.1.3. For a graph H it is known that an evaluation

$$T(H, -1, -1) = (-1)^{|E(H)|}(-2)^{\zeta(L_H) - 1}$$

where $\zeta(L_H)$ is the **component number** of the link, L_H, corresponding to the graph H. In this section we define a number $\Upsilon(L_H) = (-1)^{|E(H)|}(-2)^{\zeta(L_H) - 1}$ for an unoriented link projection, L_H, where $\zeta(L_H)$ is the component number of L_H and $E(H)$ is the edge set of H. By [17], $\Upsilon(L_H)$ has the following properties:

Proposition 4.3.1. If H is an unsigned planar graph then:

(a) $\Upsilon(L_H) = (-2)^{k-1}$ if H is an **empty graph** with k vertices. This implies that $\Upsilon(L_H) = 1$ if H is a graph with only one vertex.

(b) $\Upsilon(L_H) = -1$ if H is a bridge or a loop.

(c) $\Upsilon(L_H) = -\Upsilon(L_H \setminus t)$ if t is a loop in H.

(d) $\Upsilon(L_H) = -\Upsilon(L_H / t)$ if t is a bridge in H.

(e) $\Upsilon(L_H) = \Upsilon(L_H \setminus t) + \Upsilon(L_H / t)$ if t is neither a bridge nor a loop.

We state without proof the following theorem which describes the deletion-contraction method for computing the component number of a link projection corresponding to an unsigned planar graph. These operations are applied to a given unsigned planar graph, and do not change the number of components of the corresponding link, see [17]. Note that in the deletion-contraction method the number of isolated vertices is equal to the number of components, see [5]. In the following theorem **series pair** refers to two edges sharing one vertex that has degree 2 and **parallel pair** refers to parallel edges, see [17].

Theorem 4.3.2. If H is an unsigned planar graph then:
(a) \(\Upsilon(L_{3t}) = \Upsilon(L_{3t}/t/w) \) if \(t \) and \(w \) are a series pair in \(\mathcal{H} \).

(b) \(\Upsilon(L_{3t}) = \Upsilon(L_{3t}\backslash t\backslash w) \) if \(t \) and \(w \) are a parallel pair in \(\mathcal{H} \).

We demonstrate the application of Theorem 4.3.2 through the following example.

![Diagram](image1)

Figure 4.4: (a) The link \(L_{3t} \). (b) The unsigned planar graph \(\mathcal{H} \).

Example 4.3.3. The diagrams in Figure 4.4(a) and Figure 4.4(b) show the link \(L_{3t} \) and its corresponding unsigned planar graph \(\mathcal{H} \). The method is based on the unsigned planar graph \(\mathcal{H} \) as shown in the diagram of Figure 4.5. We start by contracting the edges \(a_1 \) and \(a_2 \) as they are a series pair, and this results in the diagram on the right-hand side of Figure 4.5(A). When we contract another series pair found in the diagram on the right-hand side of Figure 4.5(A), that is, edges \(a_3 \) and \(a_4 \) we get the diagram in Figure 4.5(B). In the diagram of Figure 4.5(B) \(e_1 \) and \(e_2 \) are loops so we delete them, \(a_5 \) and \(a_6 \) are a parallel pair, we delete these. This results in the diagram in Figure 4.5(C) with two isolated vertices and this implies that the link \(L_{3t} \) shown in the diagram of Figure 4.4(a) has two components.
4.4 Computing the component number of Pretzel links

In this section we describe how to compute the component number of a pretzel link \((P_1, P_2, \cdots, P_n)\). The component number of a general pretzel link is known, see [11].

We start by stating and proving the following lemma:

Lemma 4.4.1. Let \(H\) be a chain of \(n\) edges.

(a) If \(n\) is even, then contracting series pairs will result in a 2-chain before coming to a single vertex.

(b) If \(n\) is odd, then contracting series pairs will result in a 1-chain.

Proof. Without loss of generality, assume we have a chain with an even number of edges as shown in diagram (1) of Figure 4.6(a). Applying the deletion-contraction
method dicussed in Section 4.3, Theorem 4.3.2, on each series pair indicated by braces in diagram (1) of Figure 4.6(a), it is clear that we get a 2-chain shown in diagram (2) of Figure 4.6(a) and this happens when we choose not to contract the remaining series pair. Similarly, for an even number of edges shown in diagram (3) of Figure 4.6(b) we get a 1-chain shown in diagram (4) of Figure 4.6(b) when we repeatedly contract series pairs.

![Diagram](image)

Figure 4.6: Chain of \(n \) edges.

We are now in a good position to state and prove the following propositions that give the number of components of a pretzel link \((P_1, P_2, \cdots, P_n)\) which were stated and not proved in [11].

Proposition 4.4.2. Consider the pretzel link or pretzel knot \((P_1, P_2, \cdots, P_n)\).

\(1\) When all the \(P_i\)'s are odd, then \((P_1, P_2, \cdots, P_n)\) is a pretzel knot if and only if
(2) When all the P_is are odd, then (P_1, P_2, \ldots, P_n) is a pretzel link with two components if and only if n is even.

Proof. (1) Let us assume that we have a pretzel link (P_1, P_2, \ldots, P_n) as shown in Chapter 3, Figure 3.2, with all the P_is odd. Then the unsigned planar graph corresponding to (P_1, P_2, \ldots, P_n) is as shown in Chapter 3, Figure 3.8, and will have chains with odd number of edges. Without loss of generality, assume we have a chain with an odd number of edges, by Lemma 4.4.1 it is clear that contracting series pairs will result in a single edge. Thus if we repeat this process on each chain of the graph we have a bunch of n parallel edges. Therefore by applying the deletion-contraction method discussed in Section 4.3, Theorem 4.3.2 (b), we delete parallel pairs, repeatedly. Since n is odd there will be one edge remaining. When we continue applying the process by contracting the edge we remain with a single vertex. This implies that (P_1, P_2, \ldots, P_n) has one component and therefore it is a pretzel knot.

(2) Similarly, with all the P_is odd, we remain with a bunch of n parallel edges and since n is even, deleting pairs of parallel edges will result in two isolated vertices. Thus this implies that (P_1, P_2, \ldots, P_n) has two components and therefore it is a pretzel link.

Proposition 4.4.3. Consider the pretzel link or pretzel knot (P_1, P_2, \ldots, P_n). If there is some even P_i, then the component number of (P_1, P_2, \ldots, P_n) is equal to the number of even P_is.

Proof. Let us again assume that we have a pretzel link (P_1, P_2, \ldots, P_n) as shown in Chapter 3, Figure 3.2, with j number of odd P_is and k number of even P_is such that $j + k = n$. Then the unsigned planar graph corresponding to (P_1, P_2, \ldots, P_n) will be as shown in Chapter 3, Figure 3.8, and will have j number of odd chains and k number of even chains. Then by applying Lemma 4.4.1 the j odd chains will result in a bunch of j, 1-chains and the k, even chains will result in a bunch of k 2-chains.
Figure 4.7: j, 1-chains and k, 2-chains.
as shown in diagram (a) of Figure 4.7 without loss of generality. By applying the deletion-contraction method discussed in Section 4.3, Theorem 4.3.2 (b), we delete pairs of parallel edges. For the j odd chains, it will result in the graph shown in diagram (b) of Figure 4.7. Continuing with the process we contract one series pair which will result in the graph in diagram (c) Figure 4.7 with $k - 1$ pairs of parallel edges. Again, by Theorem 4.3.2 (b) we delete all the $k - 1$ parallel edges and we also delete the loop. We therefore remain with k vertices as shown in diagram (d) of Figure 4.7 and this implies that the component number of (P_1, P_2, \ldots, P_n) is k which is equal to the number of even P_ls.
Bibliography

