Fig 7.3 Plot of Bit Errors vs S/N for a = 1000
during testing that even with no injected noise, while running the modem unsynchronised to the data as explained above, using the circuit of Fig 7.1, random errors appeared. These are attributed to the fact that the data and sampling clocks were not synchronised. As above, the indications are that the results might differ for the case where synchronised clocks are feasible.

On the question of choice of convergence coefficient, it is recommended that the value of 1000 be employed. Although the error rate is higher with this value, as stated above in Section 7.2, it reduces the likelihood of equaliser latch-up. This value is the lowest possible which prevents latch-up, yet returns an acceptable error performance.
This is an important area in terms of the intended application of the modem to long distance, multilink circuits. Although each stage of a link is pre- or post-equalised by means of fixed passive equalisers, it is not in general possible accurately to equalise any given circuit. Thus a channel has a built in error producing component in addition to noise, usually low, less than -30 dBm under worst case conditions except faults, measured wideband. Additionally, when maintenance is carried out on lines, characteristics may change, resulting in an unpredictable error performance. It is therefore highly desirable that the modem described here is able, through its adaptive equalisation capability, to adjust its operation to suit these time-varying channels.

Tests were carried out on the modem for tolerance to group delay. These were performed without any additional noise to avoid clouding the results. The circuit used for these tests is shown in Fig 7.4. The channel was simulated by an equaliser set up to simulate a channel with an amplitude response as flat as possible, but with a group delay representative of a real channel. The equaliser used is a Convex C30 with independently variable delay and amplitude characteristics over a frequency range 600 Hz to 3000 Hz. Figures 7.5 and 7.6 show the amplitude and group delay responses of the channel as used. Note the delay between the mark and space frequencies. A more exaggerated response was tried, at which the modem also ran, but to obtain results from which comparisons could be drawn between different convergence factors, it was felt preferable to allow the modem to operate slightly below the extreme at which almost continuous errors occurred.

It is appreciated that the channel shown is only one example of many possible channel shapes, but this shape was considered sufficiently representative to determine whether an adaptive equaliser provides any benefit in
Five convergence factors were tested, ranging from 0 (no adaptation) through to 4000. At each, ten tests were run using 10^7 bits and the bit errors noted, and then a single run with 10^8 bits. The results show that errors they tend to occur in bursts. This is because before the data test set loses synchronisation, there is usually a run of individual errors, but as synchronisation is lost, a burst of errors is registered before the counter is blocked. Counter unblocking occurs again only when the tester resynchronises. This causes large differences between data runs, but these average out overall and in the longer test are not so apparent.

The results are presented in Tables 7.2 and 7.3. Note in Table 7.3 the total errors without adaptation. It is

Fig 7.5 Amplitude Response of "channel" as simulated compensating for delay distortion.
Fig 7.6 Group Delay Response of "channel" as simulated

Table 7.2 Error Rate for Simulated Channel

<table>
<thead>
<tr>
<th>Test No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>549</td>
<td>559</td>
<td>323</td>
<td>479</td>
<td>427</td>
<td>774</td>
<td>404</td>
<td>365</td>
<td>354</td>
<td>473</td>
</tr>
<tr>
<td>500</td>
<td>168</td>
<td>119</td>
<td>254</td>
<td>232</td>
<td>179</td>
<td>194</td>
<td>217</td>
<td>111</td>
<td>193</td>
<td>247</td>
</tr>
<tr>
<td>1000</td>
<td>91</td>
<td>109</td>
<td>171</td>
<td>229</td>
<td>97</td>
<td>84</td>
<td>226</td>
<td>56</td>
<td>86</td>
<td>185</td>
</tr>
<tr>
<td>2000</td>
<td>155</td>
<td>79</td>
<td>221</td>
<td>197</td>
<td>193</td>
<td>125</td>
<td>156</td>
<td>257</td>
<td>182</td>
<td>239</td>
</tr>
<tr>
<td>4000</td>
<td>307</td>
<td>34</td>
<td>174</td>
<td>259</td>
<td>132</td>
<td>191</td>
<td>205</td>
<td>144</td>
<td>311</td>
<td>224</td>
</tr>
</tbody>
</table>
Table 7.3 Summary of Results and Equaliser Coefficients After Adaptation

<table>
<thead>
<tr>
<th>Test</th>
<th>Total of 10^n</th>
<th>Average of 10^n</th>
<th>Equaliser Coefficients Normalised against 300000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10^2</td>
<td>10^3</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>4692</td>
<td>469.2</td>
<td>4313</td>
</tr>
<tr>
<td>500</td>
<td>1920</td>
<td>192.0</td>
<td>1911</td>
</tr>
<tr>
<td>1000</td>
<td>1416</td>
<td>141.6</td>
<td>1867</td>
</tr>
<tr>
<td>2000</td>
<td>1764</td>
<td>176.4</td>
<td>1807</td>
</tr>
<tr>
<td>4000</td>
<td>2033</td>
<td>203.3</td>
<td>1802</td>
</tr>
</tbody>
</table>

clear that the equaliser offers a definite improvement in error rate. The value of convergence coefficient as stated above, was chosen as 1000, giving a fair compromise between rapid convergence for group delay variation, and reasonable performance in noise.

It is also interesting to note the effect of delay on the equaliser coefficients. There is a clear change in the equaliser's action as it compensates for the delay. The emphasis is placed on the first and third coefficients, the second and fourth not changing much relatively, but the fifth almost vanishing. It is interesting to note that the odd coefficients are those corresponding to "1's", and that it this frequency which suffers more delay relative to the other. It appears as if the equaliser attempts to emphasize the mark to compensate for the delay it suffers from the channel.
3. CONCLUSION

3.1 Results

The requirement was to produce an FSK modem to operate on non-standard frequencies, at 1200 bd, over various multilink channels. An implicit requirement is that the device shall have a low bit error rate in the presence of possibly large levels of noise, or over a channel with poor delay characteristics, or a combination of both.

The design presented here produces results which will meet the requirements in most cases, the obvious area for attention being the noise performance. From the results obtained in Chapter 7, it can be seen that an improvement of say 3 dB in the noise performance of the system may be desirable, but not a necessity.

The modem returns very satisfactory results under conditions of severe group delay, already indicating a useful achievement in this area. This has been ascribed to the excellent delay characteristics of transversal filters, employed throughout the system, and only achievable in the flexible forms presented here by using digital processing.
Suggestions for Further Work

Several areas lend themselves to further concentrated development. One is the receiving or channel filter. It has been stated that the optimum filter is a cosine shape, but as has been shown, there is an improvement to be gained by using a filter with a slightly different shape. It may be possible to further improve the error rate by investigating the filter to find the optimum shape.

The post detection filter may be another area where a different approach may reap benefits, likewise the equaliser. The approach taken here, using 5 coefficients and 33 delays was adopted to save processing time and memory. It may be beneficial, however, to examine the possibility of spacing the coefficients by 4 samples instead of 3, i.e. there would be 9 coefficients and 33 delays. This may give improved rejection of intermediate interference components.

A method of reducing the effects of jitter may offer an interesting area of study, as this is an inherent problem with all sampled data systems. An improvement here would certainly be visible in the error rate of the modem, but probably not in the tolerance to delays.

It is clear therefore, that the coverage presented here is limited to the basic concept, and the proof of its viability, and that many avenues remain open for detailed further examination on this topic.
3.3 Work Done

This paper has taken a close look at a very specific application of signal processing, digital signal processing to be specific, viz the design of a modem. Modem design offers some interesting challenges to the designer in that the characteristics of the channel play a large part in determining whether or not a design will perform as expected, or better or worse. Many aspects are unpredictable without large quantities of mathematics which can only attempt to predict the end result.

Previous work on the subject of data transmission has been considered as the logical basis for the discussion presented here. This is developed upon, taking into account the peculiarities of the system requirements.

Each aspect of the design of an FSK modem has been considered in detail from the transmitter through the receiving filter, FM detector, post detection filter and adaptive equaliser, presenting the problems encountered in their development and their solution. The result is a modem which compares very favourably with the existing modem, especially in tolerance to group delay.

Concluding, then, this area of study offers many interesting possibilities for utilising the flexibility of digital processes in achieving improved performances from devices previously thought to be firmly in the analog domain.
9. REFERENCES

Design a Transversal Bandpass Filter with a 3 dB bandwidth of 1000 Hz with a centre frequency of 1500 Hz. Assume a sampling frequency of 8 kHz. Group delay should be flat.

Start by designing a low-pass filter whose total pass-bandwidth is equal to that of the desired bandpass filter. This should be emphasised as the actual bandwidth of a low-pass filter is twice the cut-off frequency. Since the transformation applied to a low-pass filter to convert it to bandpass is the Fourier Transform frequency shifting property, this will transform the whole band of negative and positive frequencies to the higher frequency. Design therefore a low-pass prototype with a cut-off frequency of 500 Hz = f_L.

The coefficients of a transversal filter are simply points on the impulse response of the desired filter.

To obtain adequate stopband rejection with freedom from large ripples, at least the first zero-crossing on either side of the origin should be included. This means that 17 coefficients should be allowed, although the outer coefficients will be zero as the sampling frequency is an exact multiple of the cut-off frequency. These coefficients will lie on the curve

$$g(t) = \frac{\sin 2\pi f_L t}{2\pi f_L t}$$ \hspace{1cm} A.1
where \(t = nT_{\text{sample}} \quad n=-8, -7, \ldots, 0, \ldots, 7, 8 \) \hspace{1cm} A.2

\[a_n = \frac{\sin \left(\frac{2\pi nT_{\text{sample}}}{2} \right)}{2^n \cdot n_{\text{sample}}} \] \hspace{1cm} A.3

The resulting coefficients are:

Table A.1 Coefficients as derived from A.3

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>0.00000</td>
</tr>
<tr>
<td>-7</td>
<td>0.139215</td>
</tr>
<tr>
<td>-6</td>
<td>0.300106</td>
</tr>
<tr>
<td>-5</td>
<td>0.470529</td>
</tr>
<tr>
<td>-4</td>
<td>0.63662</td>
</tr>
<tr>
<td>-3</td>
<td>0.784214</td>
</tr>
<tr>
<td>-2</td>
<td>0.900317</td>
</tr>
<tr>
<td>-1</td>
<td>0.974496</td>
</tr>
<tr>
<td>0</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

The calculated response given by these coefficients is shown below.

As can be seen, the stopband ripple is quite severe, averaging about 40 dB below the passband. This is unsatisfactory, and is the result of a truncated series. Application of a Hamming window to the coefficients of Table A.1 results in a much better stopband rejection. The Hamming window is

\[h(t) = 0.54 + 0.46 \cos \left(\frac{2\pi t}{T} \right) \quad \text{for} \quad |t| \leq \frac{T}{2} \] \hspace{1cm} A.4

where \(T = 2T_L \)

and when the coefficients are scaled according to the Hamming window weightings the following coefficients are obtained.

Fig A.4 Decibel response of filter using the coefficients of Table A.1
Table A.2 The coefficients scaled by \(h(t) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>0.00000</td>
</tr>
<tr>
<td>-7</td>
<td>.0160119</td>
</tr>
<tr>
<td>-6</td>
<td>.0644423</td>
</tr>
<tr>
<td>-5</td>
<td>.171257</td>
</tr>
<tr>
<td>-4</td>
<td>.343775</td>
</tr>
<tr>
<td>-3</td>
<td>.561524</td>
</tr>
<tr>
<td>-2</td>
<td>.779016</td>
</tr>
<tr>
<td>-1</td>
<td>.940373</td>
</tr>
<tr>
<td>0</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

The response calculated from these coefficients is shown below

Fig A.5 Decibel response of filter using the coefficients of Table A.2

It can be seen that the stopband ripple is substantially reduced and that this filter is now suitable for transforming to bandpass by means of 4.10 viz

\[
a_n = a_n \times 2 \cos 2\pi n f_m
\]

\[f_{\text{sample}} \]

\(n = -11, -10, \ldots, -1, 0, 1, \ldots 10, 11 \)

where \(f_m \) is the bandpass centre frequency.

The resulting coefficients are shown in Table A.3

Table A.3 The final bandpass coefficients

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>0.00000</td>
</tr>
<tr>
<td>-7</td>
<td>-0.012549</td>
</tr>
<tr>
<td>-6</td>
<td>.0911735</td>
</tr>
<tr>
<td>-5</td>
<td>.31644</td>
</tr>
<tr>
<td>-4</td>
<td>-2.96117E-06</td>
</tr>
<tr>
<td>-3</td>
<td>-1.03756</td>
</tr>
<tr>
<td>-2</td>
<td>-1.10169</td>
</tr>
<tr>
<td>-1</td>
<td>.719732</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
The response of the bandpass filter can be seen below in Fig A.6.

As can be seen from the figure, the result is a fairly sharp bandpass filter. Unfortunately, though, the 3 dB points are not quite correct. Two means are possible to try and correct this. One is to use Kaiser windows with different coefficients until one is found which gives the desired bandwidth. Second is to increase the bandwidth of the low-pass prototype filter and use the same windows as in this example. The use of a Kaiser window with a small Kaiser coefficient results in a filter with a potentially sharper roll-off. The stopband ripples are also higher, so there is a trade-off between roll-off and ripple. A better means of ensuring rapid roll-off is to use more coefficients, but this depends on the time constraints placed on the system.

It should be noted that the group delay is flat, except for small inconsistencies which are due either to rounding errors in the display routine, or where the amplitude response is almost undefined due to a very high attenuation.

The Filter Design package routines used in this example were IDLP for the original coefficients of Table A.1, CWIN resulting in Table A.2, and ILPBP to give Table A.3. SETX was used to set the frequency axis up, GDZC to calculate the responses, and DEGDOUT to display the results.
APPENDIX B: THE MODEM SIMULATION ROUTINE

As discussed in Chapter 6, the simulation routine written in BASIC is presented here.

10 REM INITIALISE ALL ARRAYS AND VARIABLES, AND READ IN FILTER COEFFICIENTS
20 DEFINT A,B,J-N,S
30 F5=9600
40 PI=3.14159
50 G=IN=.5
60 XA=.01
70 YO=0
80 Y1=2*PI*1050/F5
90 Y2=2*PI*875/F5
100 DIM XIMP(23),XPDF(15),INFLTR(23),PDF(15),DINF(3)
110 DIM SEQ(9),XDINF(3),EQ(33),XEQ(33),CHF(3),XCH(3)
120 REM
130 REM READ IN ALL THE COEFFICIENTS
140 FOR I=1 TO 3:SEQ(I)=I:NEXT I
150 FOR I=1 TO 3:READ DINF(I):NEXT I
160 FOR I=1 TO 23:READ INFLTR(I):NEXT I
170 FOR I=1 TO 15:READ PDF(I):PDF(I)=PDF(I):NEXT I
180 FOR I=1 TO 33:READ EQ(I):NEXT I
190 FOR I=1 TO 3:READ CHF(I):NEXT I
200 REM
210 REM USER ENTRY OF VARIABLES
220 INPUT "NO. OF BITS IN TEST";NBITS
230 INPUT "TYPE OF SEQUENCE 1:1(1),7:1(2),1:7(3),PR(4)";L
240 REM
250 REM PR SEQUENCE GENERATOR - 511 bit PR sequence
260 FOR K=0 TO NBITS
270 IF K MOD 100=0 THEN LPRINT K
280 FOR I=1 TO 33 STEP 3
290 IF I=1 THEN 400
300 IF L=2 OR L=3 THEN 360
310 IF SEQ(9)=SEQ(5) THEN S=0 ELSE S=1
320 SEQ(J+1)=SEQ(J)
330 FOR J=0 TO 8
340 SEQ(1)=S
350 GOTO 410
360 S=K MOD 2
370 IF S=1 THEN S=1
380 IF L=3 THEN IF S=1 THEN S=0 ELSE S=1
390 GOTO 410
400 S=K MOD 2
410 FOR A=1 TO 8
420 REM
430 REM INPUT DATA FILTER
440 DFOUT=0:XDINF(1)=S
450 FOR J=3 TO 1 STEP -1
460 DFOUT=DFOUT+DINF(J)*XDINF(J)
470 IF J>1 THEN XDINF(J)=XDINF(J-1)
480 NEXT J
490 REM
500 REM FSK TRANSMITTER
510 Y0=Y0+Y1+Y2*DFOUT
520 FSKIP=SIN(Y0)

530 REM
540 REM CHANNEL SIMULATING FILTER
550 FOR J=3 TO 1 STEP -1
560 FSKIP=FSKIP+CHF(J)*XCH(J)
570 IF J>1 THEN XCH(J)=XCH(J-1)
580 NEXT J
590 XCH(1)=FSK1.

600 REM
610 REM NOISE GENERATOR
620 XNOISE=GAIN*2*(RND-.5)
630 FSKIP=FSKIP+XNOISE

640 REM
650 REM INPUT FILTER
660 INFOUT=0:XINF(1)=FSKIP
670 FOR J=3 TO 1 STEP -1
680 INFOUT=INFOUT+INFLT(J)*XINF(J)
690 IF J>1 THEN XINF(J)=XINF(J-1)
700 NEXT J
710 REM
720 REM LIMITER
730 IF INFOUT>0 THEN DIFFIN=1 ELSE DIFFIN=0

740 REM
750 REM DIFFERENTIATOR AND ENVELOPE DETECTOR
760 PDFIN=ABS(DIFF2-DIFFIN):DIFF2=DIFFIN

770 REM
780 REM POST DETECTION FILTER
790 PDFOUT=0:XPDF(1)=PDFIN
800 FOR J=15 TO 1 STEP -1
810 PDFOUT=PDFOUT+PDF(J)*XPDF(J)
820 IF J>1 THEN XPDF(J)=XPDF(J-1)
830 NEXT J
840 PDFOUT=PDFOUT/2.50645-1

850 REM
860 REM EQUALISER
870 EGOUT=0:XEQ(1)=PLP0UT
880 FOR J=3 TO 1 STEP -3
890 EGOUT=EGOUT*EC(J)*XE0(J)
900 NEXT J

910 REM
920 REM SLICER
930 IF EGOUT>0 THEN SOUT=1 ELSE SOUT=-1
940 CORR=-(EGOUT-SOUT)*XA
950 FOR J=3 TO 1 STEP -3
960 EQ(J)=EQ(J)+XE0(J)*CORR
970 NEXT J
980 FOR J=3 TO 2 STEP -1
990 XEQ(J)=XE0(J-1)
1000 NEXT J
1010 PRINT TAB(25):SOUT/(SOUT+1)/2;EGOUT
1020 NEXT A
1030 PRINT "COUNT,DIN,DOJT:";K;S;SOUT
1040 NEXT K
1050 PRINT CHR$(7)
1060 GOTO 220
1070 END

1080 REM
1090 REM DATA INPUT FILTER COEFFICIENTS
1100 DATA .25,.5,.25

1110 REM
1120 REM INPUT FILTER COEFFICIENTS
1130 DATA -.00516992,.0485119,.119303,.0158904,-.229235,-.145084,.0167147,.384957,-1.00781,-.558389,1.05243,2.1.05243,-.558389,-1.00781,-.384957,.0167147,-.145084,-.229235,-.0158904,.119303,.0485119,-.00516992

1140 REM
1150 REM PDF COEFFICIENTS
1160 DATA .0623596,.169765,.320113,.5,.635956,.343327,.960338,1,.960333,.843327,.635956,.5,.320113,.169765,.0623596

1170 REM
1180 REM EQUALISER COEFFICIENTS
1190 DATA .172103,0,0,0,0,0,0,.990076,0,0,0,0,0,0,0,0,4.72413,0,0,0,0,0,0,-.907739,0,0,0,0,0,0,.159846

1200 REM
1210 REM CHANNEL SIMULATOR COEFFICIENTS
1220 DATA .710752,-.64733,.310679
Two Programmable Array Logic devices are used in the circuit of the modem, one as a data multiplexer, the other as an I/O chip select controller, and for miscellaneous gates. Their state tables are presented here.

Table C.1 State Table for 16LS PAL Used as Data Multiplexer

There are two select lines: SL1 and SL2, which can take up three different combinations.

<table>
<thead>
<tr>
<th>SELECT Switch</th>
<th>Switch Centred</th>
<th>Switch Up</th>
<th>Switch Down</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SL1=1:SL2=1</td>
<td>SL1=1:SL2=0</td>
<td>SL1=0:SL2=1</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxD1</td>
<td>TxD2</td>
<td>TxD3</td>
<td>0</td>
</tr>
<tr>
<td>RTS1</td>
<td>RTS2</td>
<td>RTS3</td>
<td>Q</td>
</tr>
<tr>
<td>RxD2</td>
<td>RxD1</td>
<td>0</td>
<td>TxD3</td>
</tr>
<tr>
<td>RLS2</td>
<td>RLS1</td>
<td>0</td>
<td>RTS3</td>
</tr>
<tr>
<td>RxD3</td>
<td>0</td>
<td>RxD1</td>
<td>TxD2</td>
</tr>
<tr>
<td>RLS3</td>
<td>1</td>
<td>RLS1</td>
<td>RTS2</td>
</tr>
</tbody>
</table>

Table C.2 State Table for 20L10 PAL Used as I/O Selector

Only the I/O section is defined below. Unless otherwise indicated, the outputs are always "1".

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ : WE : DEN : QUT0 : IN0 : QUT1 : IN1</td>
<td></td>
</tr>
<tr>
<td>0 : 0 : 1</td>
<td>0</td>
</tr>
<tr>
<td>0 : 1 : 0</td>
<td>0</td>
</tr>
<tr>
<td>1 : 0 : 1</td>
<td>0</td>
</tr>
<tr>
<td>1 : 1 : 0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table C.3 Power Supply Connections of Major Devices

The power connections for these devices are not indicated on the drawing for clarity. All power connections should be decoupled to ground by a 100nF capacitor per device, per supply. Where two grounds are indicated, the first is analog ground, the second digital ground. These are connected together in circuit.

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>Gnd</th>
<th>+5V</th>
<th>-5V</th>
<th>+12V</th>
<th>-12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD 574</td>
<td>9,15</td>
<td>1</td>
<td>-</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>AD 667</td>
<td>5,16</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>TMS 320</td>
<td>10</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1488</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>1489</td>
<td>7</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2912</td>
<td>15,11</td>
<td>9</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16LS3</td>
<td>10</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20L10</td>
<td>12</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>74LS04</td>
<td>7</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>74LS74</td>
<td>7</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>74LS273</td>
<td>10</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>74LS374</td>
<td>10</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>82S191</td>
<td>12</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
APPENDIX D: MODEM PROGRAM LISTING

*PROTOTYPE MODEM FOR 1200 bd FSK.
*
* This version operates at a sampling frequency of 9600Hz.
*
* This program synthesises a 1200 bd FSK modem. The sampling
* frequency is 9600Hz; the mark and space frequencies are
* 1050Hz and 1925Hz respectively.
*
* IDT 'M96'

* NCONST EQU 8 No. of Input Filter Coefficients
NCINF EQU 23
NCPDF EQU 15 No. of Post Detection Filter Coefs
NCEQ EQU 5 No. of Equaliser Coefficients
*
NX1 EQU NCINF/2 +1
NX2 EQU NCPDF/2 +1
NX3 EQU NCEQ
NCOEF EQU NX1 + NX2 + NX3
*
LPCEOF EQU 4069 Represents .993477 AS A Q12 Fraction
*
* Port Definition
*
FSKIP EQU 0
FSKOP EQU 0
DATAIP EQU 1
DATAOP EQU 1
TESTIP EQU 1
FLAGOP EQU 1
*
* Constants in Data RAM
*
<table>
<thead>
<tr>
<th>DSEG</th>
<th>BSS</th>
<th>CONSTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XINF</td>
<td>NCINF-1</td>
<td>Locations for Input Filter Delays</td>
<td></td>
</tr>
<tr>
<td>XINFN</td>
<td>1</td>
<td>Last Input Filter Delay Position</td>
<td></td>
</tr>
<tr>
<td>XPDF</td>
<td>NCPDF-1</td>
<td>Locations for PDF Delays</td>
<td></td>
</tr>
<tr>
<td>XPDFN</td>
<td>1</td>
<td>Last PDF Delay Location</td>
<td></td>
</tr>
<tr>
<td>XEQ</td>
<td>32</td>
<td>Equaliser Delays</td>
<td></td>
</tr>
<tr>
<td>XEQN</td>
<td>1</td>
<td>Last Equaliser Delay</td>
<td></td>
</tr>
<tr>
<td>INFLTR</td>
<td>NCINF/2</td>
<td>Locations for Input Filter Coef</td>
<td></td>
</tr>
<tr>
<td>INFILN</td>
<td>1</td>
<td>Last Input Filter Coef</td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td>NCPDF/2</td>
<td>Locations for Post Det Filter Coefs</td>
<td></td>
</tr>
<tr>
<td>PDFN</td>
<td>1</td>
<td>Last PDF Coefficient</td>
<td></td>
</tr>
<tr>
<td>EQ</td>
<td>4</td>
<td>Equaliser Coefficients</td>
<td></td>
</tr>
<tr>
<td>EQN</td>
<td>1</td>
<td>Last Equaliser Coefficient</td>
<td></td>
</tr>
<tr>
<td>TEMP1</td>
<td>1</td>
<td>Temporary Register 1</td>
<td></td>
</tr>
<tr>
<td>TEMP2</td>
<td>1</td>
<td>Temporary Register 2</td>
<td></td>
</tr>
<tr>
<td>SIGENV</td>
<td>1</td>
<td>Filtered Rectified Signal</td>
<td></td>
</tr>
<tr>
<td>SIGLIM</td>
<td>2</td>
<td>Limiter Output and DIFF Delays</td>
<td></td>
</tr>
<tr>
<td>DATIN</td>
<td>3</td>
<td>Input Data</td>
<td></td>
</tr>
<tr>
<td>DATOUT</td>
<td>1</td>
<td>Output Data</td>
<td></td>
</tr>
<tr>
<td>FSKOUT</td>
<td>1</td>
<td>Output FSK</td>
<td></td>
</tr>
</tbody>
</table>
ANGMEM BSS 1 Angle
ONE BSS 1 Constant of Value 1
TSTMSK BSS 1 Mask for Special Control Inputs
ANGMSK BSS 1 Angle Mask
REF BSS 1 '1' or '0' Decision Level
RMPDIF BSS 1 Differential Increment
RAMPHI BSS 1 Angle Increment for High Freq
CARREF BSS 1 Carrier Detect Reference
A BSS 1 Equaliser Convergence Coefficient

DEND

RORG

B MODEM

B WTINT

DTBLE DATA 1 The Value One
DATA >00F0 Test Mask
DATA >FFF Angle Mask
DATA >5060 '1' or '0' Decision Level
DATA -93 Differential Angle Increment Divided by 4
DATA 821 MARK (High) Freq Angle Increment
DATA >DDO Carrier Detect Reference Level
DATA -1000 Equaliser Convergence Coefficient

COEF EQU $001

Filter Coefficients

CINFIL DATA 16384,8622,-4574,-8256,-3154,137
DATA -1189,-1878,-130,978,397,-42
CPDF DATA 16384,15734,13907,11239,8192,5245
DATA 2781,1022

CEQ DATA 1500,-6000,30000,-6000,1500

Sine Table

TBLE DATA 0,804,1606,2404,3196,3981,4756,5520,6270,7005,7723
DATA 8423,9102,9760,10394,11003,11585,12140,12665,13160
DATA 13623,14053,14449,14811,15137,15426,15679,15893,16069
DATA 16207,16305,16364,16384

DATA 16364,16305,16207,16069,15893,15679,15426,15137
DATA 14811,14449,14053,13623,13160,12665,12140,11585
DATA 11003,10394,9760,9102,8423,7723,7005,6270,5520,4756
DATA 3981,3196,2404,1606,804,0

DATA -804,-1606,-2404,-3196,-3981,-4756,-5520,-6270,-7005
DATA -7723,-8423,-9102,-9760,-10394,-11003,-11585,-12140
DATA -12665,-13160,-13623,-14053,-14449,-14811,-15137
DATA -15426,-15679,-15893,-16069,-16207,-16305,-16364
DATA -16384

69,-15426
DATA -15137,-14811,-14449,-14053,-13623,-13160,-12665
DATA -12140,-11585,-11003,-10394,-9760,-9102,-8423,-7723 d-2
DATA -7005,-6270,-5520,-4756,-3981,-3196,-2404,-1606,-804

* * Initialise On-Board RAM to Zero's

MODEM LARK ARO,143
LARP 0
ZAC
ZMEM SACL *
BANZ ZMEM

* * Load the Constants into Data Memory

* LARK ARO,ONE
LARK AR1,NCONST-1 No. of Constants
LACK DTBLE
READK LARP 0
TBLR *,1
ADD ONE
BANZ READK

* * Test for Special Requirements

* IN TEMP1,TESTIP These may be test tones, 200bd/1200bd etc
LAC TSTMSK up to 16 different operations. The settings
AND TEMP1 on the DIP switches determine the operation
SACL TEMP1 to be executed

* * Read the Filter Coefficients into Data RAM

* LARK ARO,INFLTR
LARK AR1,NCOEF
LACK COEF
RDCOEF LARP 0
TBLR *,1
ADD ONE
BANZ RDCOEF
LARP 0

* SOVM Set Overflow Mode

LOOP NOP
EINT
NOP
NOP
NOP
B LOOP

* * Implement the Actual Modem

WTINT

READ IN XINF,FSKIP Read Input FSK Ready for
LAC ONE,15 Input Filter
XOR XINF
SACL XINF Invert Sign Bit
IN DATIN,DATAIP Read Data in
LAC ONE,15
XOR FSKOUT
SACL FSKOUT
OUT FSKOUT,FSKOP Output FSK
LAC ONE,7
XOR DATOUT Flip the Overflow Bit
SACL DATOUT
OUT DATOUT,DATAOP Output Data

* Filter the Input (See Section 4.5.1)
* Input Filter for 1200 bd Modem. Has Bandwidth from
* 1000Hz to 2000Hz. The Coefficients are Stored in the
* Name INFIL, and the Delayed Values in XINF.

* INFIL ZAC
LT XINFN
MPY INFILN
LTD XINFN-1
MPY INFILN-1
LTD XINFN-2
MPY INFILN-2
LTD XINFN-3
MPY INFILN-3
LTD XINFN-4
MPY INFILN-4
LTD XINFN-5
MPY INFILN-5
LTD XINFN-6
MPY INFILN-6
LTD XINFN-7
MPY INFILN-7
LTD XINFN-8
MPY INFILN-8
LTD XINFN-9
MPY INFILN-9
LTD XINFN-10
MPY INFILN-10
LTD XINFN-11
MPY INFILN-11
LTD XINFN-12
MPY INFILN-12
LTD XINFN-13
MPY INFILN-13
LTD XINFN-14
MPY INFILN-14
LTD XINFN-15
MPY INFILN-15
LTD XINFN-16
MPY INFILN-16
LTD XINFN-17
MPY INFILN-17
LTD XINFN-18
MPY INFILN-18
LTD XINFN-19
MPY INFILN-19
LTD XINFN-20
MPY INFILN-20
LTD XINFN-21
MPY INFILN-21
LTD XINFN-22
MPY INFILN-22
APAC

* SACH TEMP1,1 Save Filter Output

* The Carrier Detector (See Section 4.6.1)
* Rectify the Signal

ABS
SACH TEMP2,1
LAC TEMP2,5

* Low Pass Filter the Rectified Signal

FIL LT SIGENV
MPYK LPCOEF
APAC SACH SIGENV,4

* Implement Carrier Detect

SUB CARREF,12
BGEZ CARR
ZAC
SACL DATOUT
B OFLOW
CARR LACK 2
SACL DATOUT

* Frequency Discriminator (See Section 4.5.2)

* Limiter for use with Frequency Discriminator

LAC TEMP1
BGEZ POS
ZAC
SUB ONE,14
SACL SIGLIM
B DIFFTTE
POS LAC ONE,14
SACL SIGLIM

* Differentiate the Incoming FSK

DIFFTTE LAC SIGLIM+1,14
SUB SIGLIM,14
DMOV SIGLIM

* Detect the Signal

ABS
SACH XPDF,1

* Implement Post Detection Filter (See Section 4.5.3)

* The Coefficients are Stored in PDF, and the Delayed Values in XPDF.

PDFIL ZAC XPDFN
LT XPDFN
MPY PDFN
LTD XPDFN-1
MPY PDFN-1
LTD XPDFN-2
MPY PDFN-2
LTD XPDFN-3
MPY PDFN-3
LTD XPDFN-4
MPY PDFN-4
LTD XPDFN-5
Adaptive Equaliser (See Section 4.5.4)

Implement Equaliser Portion

Detect Data at Output of Equaliser

Calculate the error signal

- Adjust the signal to be symmetrical about zero.

```plaintext
* SUB REF, 15
SACH XEQ, 1

* ZAC
LT XEQN
MPY EQN
LTA XEQN-8
MPY EQN-1
LTA XEQN-16
MPY EQN-2
LTA XEQN-24
MPY EQN-3
LTA XEQN-32
MPY EQ
SACH TEMPI, 1

* BGZ ZERO
LAC ONE
B DOUT
ZERO ZAC
DOUT ADD DATOUT
SAACL DATOUT

* LAC TEMPI
BGZ HI
ADD ONE, 12 e=x-s
B CORR
HI SUB ONE, 12 e=x-s
CORR SAACL TEMPI
LT TEMPI
MPY A
PAC
SACH TEMPI, 1 -ae
```
* Adjust Coefficients

* LT TEMP1

* 5
ZALH EQN
MPY XEQN
APAC
ADD ONE, 15
SACH EQN

* 4
ZALH EQN-1
MPY XEQN-8
APAC
ADD ONE, 15
SACH EQN-1

* 3
ZALH EQN-2
MPY XEQN-16
APAC
ADD ONE, 15
SACH EQN-2

* 2
ZALH EQN-3
MPY XEQN-24
APAC
ADD ONE, 15
SACH EQN-3

* 1
ZALH EQ
MPY XEQ
APAC
ADD ONE, 15
SACH EQ

* Implement Equaliser Delays

DMOV XEQN-1
DMOV XEQN-2
DMOV XEQN-3
DMOV XEQN-4
DMOV XEQN-5
DMOV XEQN-6
DMOV XEQN-7
DMOV XEQN-8
DMOV XEQN-9
DMOV XEQN-10
DMOV XEQN-11
DMOV XEQN-12
DMOV XEQN-13
DMOV XEQN-14
DMOV XEQN-15
DMOV XEQN-16
DMOV XEQN-17
DMOV XEQN-18
DMOV XEQN-19
DMOV XEQN-20
DMOV XEQN-21
DMOV XEQN-22
DMOV XEQN-23
DMOV XEQN-24
DMOV XEQN-25
DMOV XEQN-26
DMOV XEQN-27
DMOV XEQN-28
DMOV XEQN-29
DMOV XEQN-30
DMOV XEQN-31
DMOV XEQN-32

* Check for Overflows

OFLOW BV OVFLOW (See Section 4.6.3)

* FSK Modulator (See Section 4.3)

MOD LAC ONE,1
AND DATIN
BZ RTSLOW
LAC ONE
AND DATIN
SACL DATIN
ADD DATIN+1,1
ADD DATIN+2
DMOV DATIN+1
DMOV DATIN
SACL TEMPI
LAC RAMPHI
LT TEMP1
MPY RMPDIF
APAC ADD ANGMEM
AND ANGMSK
SACL ANGMEM
LAC ANGMEM,11
SACH TEMPI

LACK TBLE
ADD TEMP1

TBLR FSKOUT

OUTSIN EINT
RET

RTSLOW ZAC FSKOUT
SACL
B OUTSIN

OVFLOW SOVM
ADD ONE,7
B MOD

END
All the coefficients listed below, have been normalised with respect to the largest, in this case, always the central coefficient.

Table E.1 Coefficients of Modem Channel Input Filter

<table>
<thead>
<tr>
<th>n</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.00256348</td>
</tr>
<tr>
<td>2</td>
<td>0.0242310</td>
</tr>
<tr>
<td>3</td>
<td>0.0596924</td>
</tr>
<tr>
<td>4</td>
<td>-0.00793457</td>
</tr>
<tr>
<td>5</td>
<td>-0.114624</td>
</tr>
<tr>
<td>6</td>
<td>-0.0725708</td>
</tr>
<tr>
<td>7</td>
<td>0.00836182</td>
</tr>
<tr>
<td>8</td>
<td>-0.192505</td>
</tr>
<tr>
<td>9</td>
<td>-0.503906</td>
</tr>
<tr>
<td>10</td>
<td>-0.279175</td>
</tr>
<tr>
<td>11</td>
<td>0.526245</td>
</tr>
<tr>
<td>12</td>
<td>1.00000</td>
</tr>
<tr>
<td>13</td>
<td>0.526245</td>
</tr>
<tr>
<td>14</td>
<td>-0.279175</td>
</tr>
<tr>
<td>15</td>
<td>-0.503906</td>
</tr>
<tr>
<td>16</td>
<td>-0.192505</td>
</tr>
<tr>
<td>17</td>
<td>0.00836182</td>
</tr>
<tr>
<td>18</td>
<td>-0.0725708</td>
</tr>
<tr>
<td>19</td>
<td>-0.114624</td>
</tr>
<tr>
<td>20</td>
<td>-0.00793457</td>
</tr>
<tr>
<td>21</td>
<td>0.0596924</td>
</tr>
<tr>
<td>22</td>
<td>0.0242310</td>
</tr>
<tr>
<td>23</td>
<td>-0.00256348</td>
</tr>
</tbody>
</table>
Table E.2 Post Detection Filter Coefficients

<table>
<thead>
<tr>
<th>n</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0623779</td>
</tr>
<tr>
<td>2</td>
<td>0.169739</td>
</tr>
<tr>
<td>3</td>
<td>0.370129</td>
</tr>
<tr>
<td>4</td>
<td>0.500000</td>
</tr>
<tr>
<td>5</td>
<td>0.685974</td>
</tr>
<tr>
<td>6</td>
<td>0.848316</td>
</tr>
<tr>
<td>7</td>
<td>0.960327</td>
</tr>
<tr>
<td>8</td>
<td>1.000000</td>
</tr>
<tr>
<td>9</td>
<td>0.960327</td>
</tr>
<tr>
<td>10</td>
<td>0.946816</td>
</tr>
<tr>
<td>11</td>
<td>0.685974</td>
</tr>
<tr>
<td>12</td>
<td>0.500000</td>
</tr>
<tr>
<td>13</td>
<td>0.320129</td>
</tr>
<tr>
<td>14</td>
<td>0.169739</td>
</tr>
<tr>
<td>15</td>
<td>0.0623779</td>
</tr>
</tbody>
</table>

Table E.3 Equaliser Start-Up Coefficients

<table>
<thead>
<tr>
<th>n</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.050000</td>
</tr>
<tr>
<td>2</td>
<td>-0.200000</td>
</tr>
<tr>
<td>3</td>
<td>1.000000</td>
</tr>
<tr>
<td>4</td>
<td>-0.200000</td>
</tr>
<tr>
<td>5</td>
<td>0.050000</td>
</tr>
<tr>
<td>n</td>
<td>Coefficient</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>0.0170727</td>
</tr>
<tr>
<td>2</td>
<td>0.0191253</td>
</tr>
<tr>
<td>3</td>
<td>-0.00682835</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.0289580</td>
</tr>
<tr>
<td>6</td>
<td>-0.00436069</td>
</tr>
<tr>
<td>7</td>
<td>-0.0541745</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.0208515</td>
</tr>
<tr>
<td>10</td>
<td>-0.243289</td>
</tr>
<tr>
<td>11</td>
<td>-0.551940</td>
</tr>
<tr>
<td>12</td>
<td>-0.288645</td>
</tr>
<tr>
<td>13</td>
<td>0.530200</td>
</tr>
<tr>
<td>14</td>
<td>1.00000</td>
</tr>
<tr>
<td>15</td>
<td>0.530200</td>
</tr>
<tr>
<td>16</td>
<td>-0.288645</td>
</tr>
<tr>
<td>17</td>
<td>-0.551940</td>
</tr>
<tr>
<td>18</td>
<td>-0.243289</td>
</tr>
<tr>
<td>19</td>
<td>0.0208515</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>-0.0541745</td>
</tr>
<tr>
<td>22</td>
<td>-0.00436069</td>
</tr>
<tr>
<td>23</td>
<td>0.0289580</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>-0.00682835</td>
</tr>
<tr>
<td>26</td>
<td>0.0191253</td>
</tr>
<tr>
<td>27</td>
<td>0.0170727</td>
</tr>
</tbody>
</table>
APPENDIX F: TMS 32010 SPECIFICATIONS AND INSTRUCTION SET

The pinouts, internal architecture, and full instruction set are summarised in the following pages. Note that the actual device in use is the TMS 32010, without internal ROM, and consequently, pin 3, the MC/MP pin, is held low.

Fig F.1 Block Diagram of the TMS 320M10
Table F.1 TMS 32010 Pin Descriptions

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{cc}</td>
<td>30</td>
<td>IN</td>
<td>Supply voltage (+5 V NOM)</td>
</tr>
<tr>
<td>V_{ss}</td>
<td>10</td>
<td>OUT</td>
<td>Ground reference</td>
</tr>
<tr>
<td>X2/CLKIN</td>
<td>8</td>
<td>IN</td>
<td>Crystal input pin for internal oscillator (X2). Also input pin for external oscillator (CLKIN).</td>
</tr>
<tr>
<td>X1</td>
<td>7</td>
<td>OUT</td>
<td>Crystal input pin for internal oscillator</td>
</tr>
<tr>
<td>CLKOUT</td>
<td>6</td>
<td>OUT</td>
<td>Clock output signal. The frequency of CLKOUT is one-fourth of the oscillator input (external oscillator) or crystal frequency (internal oscillator). Duty cycle is 50 percent.</td>
</tr>
<tr>
<td>WE</td>
<td>31</td>
<td>OUT</td>
<td>Write Enable. When active (low), WE indicates that valid output data from the TMS32010 is available on the data bus. WE is only active during the first cycle of the OUT instruction and the second cycle of the TBLW instruction (see Section 3.4.3). MEN and DEN will always be inactive (high) when WE is active.</td>
</tr>
<tr>
<td>DEN</td>
<td>32</td>
<td>OUT</td>
<td>Data Enable. When active (low), DEN indicates that the TMS32010 is accepting data from the data bus. DEN is only active during the first cycle of the IN instruction (see Section 3.4.3). MEN and WE will always be inactive (high) when DEN is active.</td>
</tr>
<tr>
<td>MEN</td>
<td>33</td>
<td>OUT</td>
<td>Memory Enable. MEN will be active low on every machine cycle except when WE and DEN are active. MEN is a control signal generated by the TMS32010 to enable instruction fetches from program memory. MEN will be active on instructions fetched from both internal and external memory.</td>
</tr>
<tr>
<td>SIGNAL</td>
<td>PIN</td>
<td>I/O</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>RS</td>
<td>4</td>
<td>IN</td>
<td>Reset. When an active low is placed on the RS pin for a minimum of five clock cycles, DEN, WE, and MEN are forced high, and the data bus (D15 through D0) is tristated. The program counter (PC) and the address bus (A11 through A0) are then synchronously cleared after the next complete clock cycle from the falling edge of RS. RS also disables the interrupt, clears the interrupt flag register, and leaves the overflow mode register unchanged. The TMS32010 can be held in the reset state indefinitely.</td>
</tr>
<tr>
<td>INT</td>
<td>5</td>
<td>IN</td>
<td>Interrupt. The interrupt signal is generated by applying a negative-going edge to the INT pin. The edge is used to latch the interrupt flag register (INTF) until an interrupt is granted by the device. An active low level will also be sensed. (See Section 2.10.)</td>
</tr>
<tr>
<td>BIO</td>
<td>9</td>
<td>IN</td>
<td>I/O Branch Control. If BIO is active (low) upon execution of the BIOZ instruction, the device will branch to the address specified by the instruction (see Section 2.9).</td>
</tr>
<tr>
<td>MC/MP</td>
<td>3</td>
<td>IN</td>
<td>Microcomputer/Microprocessor Mode. A high on the MC/MP pin enables the microcomputer mode. In this mode, the user has available 1524 words of on-chip program memory. (Program memory locations 1524 through 1535 are reserved.) The microcomputer mode also allows an additional 2560 words of program memory to reside off-chip. A low on the MC/MP pin enables the microprocessor mode. In this mode, the entire memory space is external, i.e., addresses 0 through 4095. (See Section 2.3.1.)</td>
</tr>
<tr>
<td>D15</td>
<td>18</td>
<td>I/O</td>
<td>D15 (MSB) through D0 (LSB). The data bus is always in the high-impedance state except when WE is active (low).</td>
</tr>
<tr>
<td>D14</td>
<td>17</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>16</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>15</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>14</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>13</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>12</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>11</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>10</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>20</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>21</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>22</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>23</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>24</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>25</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>26</td>
<td>I/O</td>
<td></td>
</tr>
</tbody>
</table>
Author Andrews Donald Graham
Name of thesis A Software Engineering Approach To Digitally Synthesised Modem Using A Texas Instruments Tms320 Signal Processor. 1985

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.