LIST OF FIGURES

- Figure 1: Diagram showing an interactive model for thermal coal production 24
- Figure 2: Production cost ranges of various thermal coal export mines in South Africa. (Wood Mackenzie, June 2012) ... 30
- Figure 3: Supply FOB Cost curve per country (Schernikau et al., 2010) 31
- Figure 4: Self-regulating cycle in (coal) raw-material supply; after: Thieleman et al. (2007) .. 33
- Figure 5: Illustrating distribution of the remaining reserves in the R.S.A. (Spurr 2006) ... 35
- Figure 6: Illustrating the rank distribution in South Africa (Spurr 2006) 35
- Figure 7: Logistical railway infrastructure within the coalfields of South Africa. Eberhard (2011) .. 37
- Figure 8: Water precipitation and scarcity map in South Africa 42
- Figure 9: Indicative carbon capture and storage costs according to the IEA (2012). 44
- Figure 10: Classification of trace elements according to their behaviour during combustion or gasification (picture originally from Couch, 1995) 47
- Figure 11: Thermal export and domestic coal price trends (Wood-Mackenzie 2012). .. 50
- Figure 12: Bell distribution of costs of thermal export mines in South Africa. From Data Wood Mackenzie Operation Cost Report September 2012 51
- Figure 13: Bell distribution of costs of thermal export mines plant production costs in South Africa. From Data Wood Mackenzie Operation Cost Report September 2012 .. 52
- Figure 14: Division of core samples for analysis from ISO 14180 55
- Figure 15: Continuous reconciliation of resources (de Klerk, 2006) 56
- Figure 16: Illustrating the coal formation with rank classification (after Spurr 2006). 70
- Figure 17: Mayer Curve evaluation for coal (by Dryzmala 2007) 72
- Figure 18: Illustrating the geometrical characteristics of the M-curve derived by King (1990) and the approach at a 20% ash content. 73
Figure 19: Illustrating different levels of beneficiation. Adapted from Leonard (1988).

Figure 20: Illustrating the washability densimetric comparison between typical South African, Indian and German coal. (Kamal for the UK Department of Trade & Industry, 2001)

Figure 21: Dryzmala, Optimal range of particle size for separation by different separation methods. *low intensity (LI), ** high intensity (HI), *** high gradient magnetic field (HG))

Figure 22: Epm performance of separators on various feed size distributions

Figure 23: Illustration of Rotary Breaker operation (after Wills 2011)

Figure 24: Illustration of a Bradford type Rotary Breaker (after Wills 2011)

Figure 25: Illustration of Double Roll Crusher (after Wills 2011)

Figure 26: Double Roll crusher with hood removed illustrating crusher teeth. (Shumar crushers)

Figure 27: Illustration of Jaw Crusher (Telsmith crushers)

Figure 28: Illustration of a Single Roll Crusher (Leonard 1991)

Figure 29: American Ring Roll Crusher (www.osborne.co.za)

Figure 30: Picture of Bivi-TEC Screen. de Korte, G.J. (2008)

Figure 31: Illustrating the predicted epm’s of dense medium cyclones and baths respectively with varying feed sizes (Wills 2006).

Figure 32: Illustrating the Batac Coal Jig (Saunders 2002)

Figure 33: Illustration of a ROM Jig

Figure 34: Characteristics utilised by dry coal beneficiation techniques

Figure 35: Multicell Schematic Diagram (Opperman 2002)

Figure 36: Conceptual 3D layout of Briquette Plant

Figure 37: Illustration of chemical cleaning plant using high temperature chemical cleaning (Leonard 1991)

Figure 38: Schematic diagram of the zones in tailings and waste rock dumps

Figure 39: Trace element reduction compared to ash and forms of sulphur reduction (Akers 1998)
Figure 40: Trace element cleaning potential coal beneficiation for Pittsburgh coals (Davidson 1998). .. 108

Figure 41: Schematic of mineral transformation during combustion and gas-solid partitioning of trace elements (Thorwardt 2007). .. 110

Figure 42: Influence of lower quality coal on total coal utilisation chain (Juniper, 1995). ... 110

Figure 43: Wet FGD Scrubber Module, from Gupta (2007). .. 111

Figure 44: Metal Oxides in the ash acting as bulk to ash deposits and unwanted bonding/fluxing agents (after Gupta 2007). .. 112

Figure 45: Thermal coal supply and demand curve. D = Demand Curve Scenario, S = Supply Curve Scenario, P = Price Scenario .. 114

Figure 46: Influence of pollution externalities on marginal cost. MC=Marginal Cost of Pollution, MB=Marginal Benefit of Pollution, Q=Optimal Quantity of Pollution (after Dahl 2007). ... 115

Figure 47: Coal LCA System, adapted from National Renewable Energy Laboratory – Report on Life Cycle Assessment of Coal Fired Power Generation Plants (NREL 2007). ... 116

Figure 48: Witbank coalfield No. 4 seam stratigraphy .. 122

Figure 49: Waterberg Upper Ecca Stratigraphy, (Dorlant, 2012) 124

Figure 50: Illustrating the conveyor falling stream mechanical sampler and mechanism. .. 126

Figure 51: Illustrating the sampling point from sampler discharge. 127

Figure 52: An illustration of the flotation plant and mechanical slurry stream samplers with which the samples were taken. The plant consists of three modules of three sets of primary and secondary cells each. ... 127

Figure 53: Flow diagram for division of test samples for analysis from ISO 13909-4. .. 129

Figure 54: Illustrating sample splitting and crushing/liberation to facilitate preparation for various analyses. .. 130

Figure 55: Washability equipment and testing method (from Habetinejad, 2012) 131

Figure 56: An illustration of the dense medium washing baths used at ALS 131

Figure 57: An illustration of the Denver flotation cell utilised to do the bench scale flotation tests. .. 132
Figure 58: Experimental procedure during release analysis................................... 133
Figure 59: The QEM SCAN microscope used for the minerogical investigations... 134
Figure 60: Illustration of the ICP MS spectrometer at UIS analytical services....... 135
Figure 61: Illustrating the microwave digestion experimental setup. 135
Figure 62: Illustration of the petrographic microscopes and vitrinite reflectance measurement configuration respectively. ... 136
Figure 63: Summary of samples, test work and analyses. 137
Figure 64: Typical ROM Coal PSD of the Witbank Coalfield No. 4 Seam 141
Figure 65: Typical ROM Coal PSD of the Waterberg Upper Ecca. 142
Figure 66: Partitioning of arsenic content comparison....................................... 144
Figure 67: Partitioning of Mercury content comparison 145
Figure 68: Reduction potential of various trace elements though beneficiation - Witbank Coalfield No. 4 Seam ... 149
Figure 69: Reduction potential of various trace elements - Waterberg Upper Ecca 150
Figure 70: Composite washability of WITBANK COALFIELD NO. 4 SEAM 151
Figure 71: Composite washability of WATERBERG UPPER ECCA 151
Figure 72: Composite washability of (Vereeniging) ROM 152
Figure 73: Witbank Coalfield No. 4 Seam ash grade-recovery curve from release analysis .. 153
Figure 74: Witbank Coalfield No. 4 Seam CV grade-recovery curve from release analysis .. 154
Figure 75: Trace element reduction through froth flotation of Witbank Coalfield No. 4 Seam ultra-fine material. ... 155
Figure 76: Bulk mineralogy of the Witbank Coalfield No. 4 Seam samples........ 158
Figure 77: QEMSEM images of pyrite in Witbank Coalfield No. 4 Seam 159
Figure 78: QEMSEM images of kaolinite in Witbank Coalfield No. 4 Seam 160
Figure 79: QEMSEM images of dolomite & dolomite in Witbank Coalfield No. 4 Seam .. 161
Figure 80: Bulk mineralogy of the Waterberg coal samples 163
Figure 81: Liberation of pyrite in the Waterberg Upper Ecca 164

Figure 82: QEMSEM images of pyrite distribution in Waterberg Upper Ecca........ 165

Figure 83: QEMSEM images of kaolinite distribution - Waterberg Upper Ecca…… 166

Figure 84: QEMSEM images of finely distributed calcite & dolomite in the Waterberg Upper Ecca. ... 167

Figure 84: Fuel ratio vs. Vitrinite content for WITBANK COALFIELD NO. 4 SEAM and Waterberg Upper Ecca ... 167

Figure 85: Carbominerite distribution at various washing RD’s for the Witbank Coalfield No. 4 Seam and Waterberg Upper Ecca. ... 168

Figure 86: Maceral distribution at various density fractions – Witbank Coalfield No. 4 Seam .. 169

Figure 87: Vitrinite and CV relationship through liberation analysis for the Witbank Coalfield No. 4 Seam ... 169

Figure 88: Maceral distribution at various density fractions – Waterberg Upper Ecca .. 170

Figure 89: Vitrinite and CV relationship in Waterberg Upper Ecca through liberation analysis ... 170

Figure 90: Partitioning of microlithotypes in Witbank Coalfield No. 4 Seam 171

Figure 91: Partitioning of microlithotypes in Waterberg Upper Ecca 172

Figure 92: Trace element origin and associations ... 173

Figure 93: Sulphur distribution at various thermal coal export grades (4000-6000 NAR CV) – Witbank Coalfield No. 4 Seam ... 174

Figure 94: Witbank Coalfield No. 4 Seam Pyrite Association 175

Figure 95: Witbank Coalfield No. 4 Seam Kaolinite Association 176

Figure 96: Witbank Coalfield No. 4 Seam Vitrinite & Organic Sulphur Association 176

Figure 97: Sulphur distribution at various thermal coal export grades (4000-6000 NAR) - Waterberg Upper Ecca ... 177

Figure 98: Waterberg Upper Ecca Pyrite Association .. 178

Figure 99: Waterberg Upper Ecca Kaolinite Association 178

Figure 100: Waterberg Upper Ecca Vitrinite & Organic Sulphur Association 179
Figure 125: Sulphur Recovery curve for WBUE in various liberation size fractions.

Figure 126: Mayer curve distribution of sulphur for the Waterberg Upper Ecca..

Figure 127: Energy Recovery potential at various liberation size fractions - WC4S204

Figure 128: Combustible Recovery potential in various liberation size fractions WC4S

Figure 129: Energy recovery potential for different liberation size fractions in the WBUE

Figure 130: Combustible Recovery at various liberation size fractions

Figure 131: Conventional Single Stage dense medium processing circuit with Wemco Drum and DSM Cyclone.

Figure 132: Double Stage conventional dense medium processing design with Wemco Drums and DSM Cyclones.

Figure 133: Conventional dense medium DSM Cyclones circuit

Figure 134: Dry screening and wet de-stoning circuit for domestic power consumption

Figure 135: Complete dry processing circuit using either XRT sorting or the FGX separator (mainly for domestic production)

Figure 136: Combined Dry and Wet processing circuit for coarse and medium size feed respectively.

Figure 137: Conventional circuit to treat fines (-0.5+0.15 mm), using a screen bowl centrifuge.

Figure 138: Proposed Three Product Cyclone circuit. Note that the primary product drain and rinse screen can be modified to allow for a split screen. The split screen would allow for the discharge of the primary and middling product separately.

Figure 139: Proposed conventional fines processing circuit to treat the -0.5+0.15 mm and -150 micron material

Figure 140: Advanced circuit optimum sulphur and ash reduction

Figure 141: Witbank Coalfield No. 4 Seam mineral rejection curve

Figure 142: Waterberg Upper Ecca mineral rejection curve

Figure 143: Forms of sulphur washability distribution for the Waterberg Upper Ecca
Figure 144: Forms of sulphur washability distribution for the Witbank Coalfield No. 4 seam ... 226

Figure 145: Distribution of Nitrogen on the washability curve, with Volatile content and Fuel Ratio .. 227

Figure 146: Witbank Coalfield No. 4 Seam Carbon Emissions per Energy Unit gained - Wet processing ... 228

Figure 147: Witbank Coalfield No. 4 Seam Carbon Emissions per Energy Unit gained - Dry ... 229

Figure 148: Waterberg Upper Ecca - Carbon Emissions per Energy Unit gained – Wet .. 230

Figure 149: Relative Operating & Maintenance costs in a coal fired power station for different quality coals (Juniper 1995) ... 231

Figure 150: FGD Modelled OPEX at various product sulphur contents - Witbank Coalfield No. 4 Seam Export scenario ... 232

Figure 151: FGD Modelled OPEX at various product sulphur contents - Waterberg Upper Ecca Export scenario ... 233

Figure 152: FGD Modelled OPEX at various product sulphur contents - Free State Domestic Power supply scenario ... 233

Figure 153: Steam Coal Index FOB Prices for RB1, until July 2012 ... 235

Figure 154: Techno-economic approach for process models ... 236

Figure 155: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for Conventional Dense Medium Cyclones for the coarse and medium sized fractions ... 247

Figure 156: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for Conventional Dense Medium Bath for the coarse fraction & DSM Cyclones for the medium fraction ... 247

Figure 157: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for Conventional Jigs for the coarse fraction & DSM Cyclones for the medium fraction ... 247

Figure 158: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for dry FGX Separation for the coarse fraction & DSM Cyclones for the medium fraction ... 248
Figure 159: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for dry XRT Sorting for the coarse fraction & DSM Cyclones for the medium fraction.............. 248

Figure 160: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for dry screening of medium to fines fraction with coarse fraction wash with DSM Cyclones only.. 249

Figure 161: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for dry screening of medium to fines fraction with coarse fraction wash only with DMS bath only. 249

Figure 162: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for dry screening of medium to fines fraction with coarse fraction beneficiation with ROM and Batac Jigs. 249

Figure 163: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for dry screening of medium to fines fraction with coarse fraction beneficiation with a FGX separator..................... 250

Figure 164: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Grade Thermal Export Products for dry screening of medium to fines fraction with coarse fraction beneficiation with a XRT Sorter. 250

Figure 165: Witbank Coalfield No. 4 Seam - Economic Value vs. Energy Recovery for Different Lower Grade Thermal Products as a Secondary Product (5500-4500 NAR), and a 6000 NAR Primary Product. ... 251

Figure 166: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for Conventional Dense Medium Cyclones... 252

Figure 167: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for Jigs & Cyclones .. 252

Figure 168: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for FGX & Cyclones ... 253

Figure 169: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for XRT Sorter & Cyclones .. 253

Figure 170: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for Conventional Dense Medium Cyclones for domestic thermal production............ 254

Figure 171: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for Conventional Dense Medium Bath & Cyclones for domestic thermal production... 255

Figure 172: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for Jigs & Cyclones for domestic thermal production ... 255
Figure 173: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for FGX & Cyclones for domestic thermal production ... 256

Figure 174: Waterberg Upper Ecca - Economic Value vs. Energy Recovery for XRT Sorter & Cyclones for domestic thermal production ... 256

Figure 175: Free State (Vereeniging) - Economic Value vs. Energy Recovery for Conventional Dense Medium Cyclones for domestic thermal production 257

Figure 176: Free State (Vereeniging) - Economic Value vs. Energy Recovery for Conventional Dense Medium Cyclones & Baths for domestic thermal production . 258

Figure 177: Free State (Vereeniging) - Economic Value vs. Energy Recovery for Water Jigs & Dense Medium for domestic thermal production 258

Figure 178: Free State Vereeniging - Economic Value vs. Energy Recovery for Dry FGX Separator & Dense Medium for domestic thermal production 259

Figure 179: Free State (Vereeniging) - Economic Value vs. Energy Recovery for Dry XRT Sorting & Dense Medium for domestic thermal production 259

Figure 180: Low versus High Grade Thermal Coal Export positives and negatives. ... 260

Figure 181: Illustrating the analysis algorithm required to adequately address the determination of product to be produced ... 261