2 Literature Review

2.1 Chapter overview

2.2 Learning space

2.3 The need for performance evaluation of school of architecture buildings

2.4 The preferred attributes of an on-campus learning environment
 2.4.1 Interior layout and spaces
 2.4.2 External appearance and positioning
 2.4.3 Indoor environmental conditions
 2.4.4 Infrastructure and finishes
 2.4.5 Access, signage and way finding
 2.4.6 Space- and time management: legend or myth?

2.5 Debates in the field
 2.5.1 Boot camp or school of architecture?
 2.5.2 The ‘tyranny of the masses’?
 2.5.3 The value of rating systems

2.6 Data collection: Building Performance Evaluation
 2.6.1 Post Occupancy Evaluation
 2.6.2 Importance-Performance Analysis

2.7 Data analysis: Disconfirmation theory

2.8 Chapter summary
CHAPTER 2: LITERATURE REVIEW

2.1 CHAPTER OVERVIEW

Conducting this study required both desktop, and empirical research. The desktop research is represented in this literature review. The review is organised into four sections: the first, ‘Learning space, is an overview of the principles of ‘space’ and ‘place’ as they relate to places of learning; the second is ‘The attributes of an on-campus learning environment for students of architecture’ and is organised according to the framework of the survey questionnaire (Annexures A1 – B4, & H). The third and fourth sections address the theories, methods, and implementation of Building Performance Evaluation (BPE) models. The implementation of Post Occupancy Evaluation and Importance-Performance Analysis are illustrated with the use of significant examples and case studies. The outcomes of the quantitative research is illustrated with graphs and tables in Chapter 4.

2.2 LEARNING SPACE

Published literature in the field of quality assurance shows that adopting a learner-centred approach to service- and teaching practices is now a priority at many higher education (HE) institutions. The literature also indicates that the majority of research and resource applications are directed towards improving ‘soft’ services such as student applications and registration, but that relatively little attention is paid to finding out how physical spaces should be designed and adapted to support such practices. Yeo (2008:279) makes the point that learning in HE goes beyond the confines of the classroom, and that all those places where social interaction takes place, from laboratories to cafeterias, ought to be considered when researching learning spaces. The idea of place is so integrated in the general concept of learning that, as O’Connor and Bennett (2005:29) comment, even those learners who do not attend a physical campus, refer to their learning process as “going to college”.

Researchers are beginning to pay attention to the features of the physical learning space in an effort to understand the complex relationships between learners, the environment and learning outcomes (Oblinger, 2005). Burns (2001:4) believes that “the physical design of the campus makes a fundamental contribution to the pursuit of academic excellence”. Kolb and Kolb (2005a:205) agree about the value of space-user interaction: “To fully develop the whole person requires an educational culture that promotes diverse learning spaces and locomotion among them”. Unfortunately, administrators and policy makers often have little professional understanding of the psychological importance of place and even though the quality of physical facilities makes a “non-trivial, manageable contribute to educational outcomes” (Roberts et al, 2008:48), it receives much less attention than curricular design and teacher preparation (Graetz & Goliber, 2002:15).

Researchers disagree on the level of importance that learners place on their physical environment – Temple (2008:233) for example surmises that it may be important, but “only to a modest extent”. There is however, a strong body of work which proves that it is indeed important (cf. Acker & Miller, 2005; Burns, 2001; Oblinger, 2005; Myrick, [sa]; Misencik et al, 2005). To address the rapid change in technology and shifts in pedagogical theories today and to anticipate significant changes in the future, institutions are exploring flexible and adaptable approaches to learning spaces.

The life span of technologies, student cohorts, and academic curricula are much shorter than those of the buildings that house them. Those concerned with the making of learning places must plan well and make the most of any opportunities for improvement because the opportunity to make a learning place from scratch – through either new construction or extensive renovation – is particularly scarce (MacPhee, 2007:1; Miller, 2009:5). Considering this, and the cost and time related to construction, there is little room for mistakes by designers (Oblinger, 2005:15). The fact that some studies (cf. Derrick, 2003:5; Kolb & Kolb, 2005a:193; 2005b, slide 13 notes; Misencik et al, 2005:16; Temple, 2008) are inconclusive, should not encourage, and not discourage further research or experimentation by designers and educators alike. Planning mistakes are usually the result of budget and time constraints,
space limitations, and a failure to anticipate future usage (MacPhee, 2009:1). An integral part of the design and construction process should be ongoing formative assessment in the form of reviewing the goal (“How does this improve learning?”), and summative assessment (“Has the goal been successfully achieved?”) (Miller, 2009:3).

New experiences expose young adult learners to new environments, many of which seek to acculturate them into particular ways of thinking and acting. While some of these environments may encourage the seeking of knowledge and of learning, the university is the only one of those environments that seeks to inculcate a personal culture of academic learning. The importance of acculturating students to the academic learning environment has been touched upon in the Introduction. Institutional culture is a complex mix of physical, social, and historical context, and management- and support structures, and Salama (2009b:37) warns against the dangers of oversimplifying its dynamics and importance. Organisations such as architecture schools maintain their culture by acculturating its members to its established ways (O’Connor & Bennett, 2005:29) through traditions such as the design studio. The concept of architecture as “space for human activities” (Atmodiwirjo & Andri Yatmo, 2004), and an environment created by buildings is universally accepted by architects.

Whose space is it anyway?

Anthropometrics and ergonomics form an important part of architects’ studies, and yet seldom translate into suitable learning space design. Even if a vast amount of planning and preparation is made, this has no advantage if it is not realised in the physical structure. The impact of physical design on qualitative attributes such as ambience and atmosphere in places of learning is also often underestimated, and architects sometimes over emphasise “architecture” to the detriment of “learning place”. Salama (2009a:86) refers to “a dramatic gap between [architectural expression and user expectations], and Price et al (2003:213) to “a wide (and unbridged!) gulf between the architectural and pedagogical approaches”. Salama (2009a:83) believes that such inconsistencies exist because many critiques of architectural projects are essentially superficial, based on the architect’s statement of intent and on form-giving, symbolism, and aesthetic qualities and not on how well they perform or how well the needs of the building users are met in practice. See for example, this comment by Treib (2012, in print) on Mies van der Rohe’s (1956) building for the school of architecture at the Illinois Institute of Technology (Fig. 10 - 13):

Like most open multi-use spaces, Crown Hall was not without problems. Always on view, students were troubled by the effects of living in a fishbowl, the constant effort required to keep their workplaces tidy, and the lack of vertical surfaces for pinups and other personal use. Order was demanded by both the education to which they submitted themselves and by the architecture itself. Noise from simultaneous reviews, or even normal class instruction, permeated from the lower floor up. No less problematic was heat gain in the warm months—a complaint common in many subsequent buildings by Mies. Yet as a definitive pedagogical vision and statement about space and structure, the building could hardly be faulted [emphasis added].

In addition to the ubiquitous shortage of pinup space, the problem of privacy seems to be common at “famous” schools of architecture. An M.Arch student using the open-plan studios in Harvard University’s John Gund Hall comments widely on his blog about the new furniture provided in 2010. Not only is there now less space per student, but the new lower partitions results in “most people lament[ing] the loss of privacy. With large groups of tourists snapping photos in the trays at least a couple times a week, we may as well be starring in our own reality TV show” (see Fig. 37b, where a GSD student has constructed a roof over a workstation) (Chang, 2010:sp). The provision of a space which causes severe discomfort in its users is highly questionable at any time, but in a school of architecture this is unacceptable. A loss of privacy – what Nasar et al (2007:82) call “[a loss of] access to one’s self” has negative effects and can even result in students dropping out.

The concept of three-dimensional space is easy for architects to conceive. Designers of learning places should however as part of the design process, be open to the input of other disciplines. Designers who understand those factors that turn ‘space’ into learning ‘place’ for its intended users, can connect architecture to context and ensure that buildings are responsive to the needs of its users (Clark & Maher, 2005:2). Jorstad (2009) advise designers to find out how teachers teach and what they need to do so effectively. While even the most inexperienced of teachers can easily tell whether a space supports their teaching needs, points out Miller (2004:6), architects seldom consider asking their fellow professionals’
opinions. Geo-phenomenologists Hung, Stables and Bonnet (2008:9) propose that learners “should be encouraged to sense, feel, perceive, conceive, speculate, imagine school and thereby act and create in and towards it through as many kinds of experience as possible”.

The design studio as “the heartbeat of the school”

Across the world, architectural pedagogy is remarkably consistent in its belief in the centrality of the design studio in teaching delivery (Beisi, 2006:20; Clark & Maher, 2005; Duggan, 2004:71; Habraken, 2006:18; Kvan, 2000; Salama, 2008:102). Ahrentzen and Anthony (1993:16) consider the studio the “pulse” of any school of architecture. Despite this, teachers of architecture often complain about an unsatisfactory school “studio culture”, and that students do not spend enough time working in the school studios (Duggan, 2004:72). “Studio” in architecture school parlance, refers to both the educational activity and the space in which it takes place and its use is so ubiquitous that the true meaning of the construct may sometimes be lost. The section on “Studios”, in the Vital Signs Project on the Aronoff Centre at the University of Ohio states that:

The studios are probably the most important spaces within the College of Design, Architecture, Art, and Planning [DAAP]. When building the Aronoff Center for Design and Art addition to the DAAP complex, not only were additional studios provided but also most of the existing studios were also partially renovated. This effort was intended to establish “homes” for the numerous students who spend the majority of their time at school in their studios. The studios should contain basic needs of a “home” along with the requirements of an art and/or design studio. The studio needs to be spacious, providing an atmosphere that is conducive to interaction among students, while offering a personal work space. Territorially [sic] is an important issue in studios. One’s supplies and projects must be respected and protected [emphasis added].

The American Institute of Architecture Students defines ‘studio culture’ as “the experiences, behaviours, habits and patterns found within the campus-based architecture design studio” (AIAS, 2010). Expecting of students to change their habits and behaviour without first changing their experiences in the studio is unlikely to have the desired results. Duggan (2004:75) believes that “[d]ata, imagination and courage are often ‘all’ that is needed” (quotes added) to provide for the specific and changing needs of students.

Architectural education is particularly resource-hungry of both teaching hours and workspace (Duggan, 2004:71). To fully develop their learning skills, students need to move between “diverse learning spaces” (Kolb & Kolb (2005a:205). These ‘learning spaces’ can be framed as both methodological (ways of teaching and learning) and physical (the physical attributes of the learning place).

The design studio as “the sacred cow of architectural education”

There is a danger that teachers of architecture may consider themselves such experts in the design of spaces, that they do not open themselves to be influenced in their own use of teaching space. Traditional studio practice still conforms to the beliefs of Alexander et al (1977:414-5), that work spaces are best configured when they “organize work around
a tradition of masters and apprentices and support this form of social organization with a
division of the workplace into spatial clusters – one for each master and his [sic] apprentices
– where they can work and meet together”. Consider for example, the term ‘studio master’,
typically used to describe academic staff who facilitate studio learning activities.

Despite this tradition, support for the traditional design studio as the only format
for architectural education is not universal. Alexander et al’s (ibid.) approach, while
acknowledging the importance of group learning, was contrary even to concurrently
developing pedagogical theory (for example on communities of learning). In the early
1980s, organisational analyst Chris Argyris identified the “mastery ‐mystery” approach of
some studio masters as the underlying reason for why learners struggle to understand the
ideas and theories behind design decisions (Ahrentzen & Anthony, 1993:16). Habraken
(2006:18) refers to the design studio as the “sacred cow of architectural education” and
a growing group of theorists (e.g. Ahrentzen & Anthony, 1993; Beisi, 2006; Clark & Maher,
2005:2; Kvan, 2000) are lobbying for the development of alternative, more diverse, and
inclusive teaching methodologies that take place in more supportive environments. Figures
10 and 13 illustrate the change in studio culture at the school of architecture at IIT.

2.3 BUILDING PERFORMANCE EVALUATION OF
ARCHITECTURE SCHOOL BUILDINGS

It seems natural to assume that architecture schools, so often ‘landmark’ buildings on
campuses, function as impressively as educational buildings as they do as architectural
icons. The phenomenon of designing such schools with users’ specific needs in mind is
unfortunately unusual (Nasar et al, 2007:184) and poor design is not only tolerated
(Fisher, 2008:19), but also perpetuated (Nasar et al, 2007; Salama, 2009a; Fisher, 2008;
Lau & Yang, 2009). Good architects understand the importance of school culture (Salama,
2009b:37) and consider the dynamics of a particular school as part of the design process.
Unfortunately well‐meant aims often become entangled with those of the profession at
large, the institutional hierarchy or ultimately, with financial constraints. The result may
even be a strong architectural statement that is lauded by professionals – and loathed by
students. A case in point, is the Yale School of Art and Architecture (Fig. 14a), designed by
Paul Rudolf and opened in 1963:

This “Brutalist pile” is “[w]ithout question ... an icon of the Modern movement, a place,
a site, that remains awash in sentiment for all those driven spirits who, at the outset
of their careers, toiled within its concrete warren. To listen to some of them, you
would think that it incarnated nothing less than the spirit of Architecture itself” Gardner,
2008:[sp]).

This somewhat backhanded compliment may leave some doubt about public and even
professional opinion of the building, but Ouroussoff (2008:sp) unequivocally states that:

It is hard to think of a building that has suffered through more indignities than the Yale
School of Art and Architecture. On the day of its dedication in 1963, the architectural
historian Nikolaus Pevsner condemned the oppressive monumentality of its concrete
forms. Two years later the school’s dean brutally cut up many of the interiors, which he
claimed were dysfunctional. A few years after that a fire gutted what was left [resulting
in] heartless renovations... Windows and skylights were boarded over; additional levels
were stuffed between existing floors; large open studios were cut up into a warren of
cramped, airless workspaces. The effect was suffocating.
Amelar and Lewis (2009:54) refer to the original building as:
... insolent, [and] splendidly belligerent ... [f]ew were able to appreciate [it] when it opened in 1963; it seemed willfully [sic] provocative, as if its baffling spatial sequences and corrugated concrete walls were expressly devised to repulse understanding, let alone affection. As it happened, it existed in this shocking form for only a few years before it was mauled beyond recognition.

There are widespread rumours that the devastating fire which extensively damaged the building in 1969 (Fig. 14) was started by the architecture students themselves, as an expression of their dislike of the building (Amelar & Lewis, 2009:54; Nasar et al, 2007:31,184).

Poor design inevitably has negative results, and according to Nasar et al (2007:32) by the 1980s, the building was dirty, leaky, covered in pigeon droppings, thermally uncomfortable, and despite (or because of) poorly executed renovations, cramped for space. Whether these problems should be laid solely at the door of the original architect is debatable, for Charles Gwathmey (in Taylor, 2007:49), architect of the recent extensions, renovations and alterations to the building, believes that the complexity of the building was Paul Rudolff’s “architectural right”. Despite Gwathmey’s opinions, it seems that the negative responses to the original design had some positive results. In the November 2008 of the Yale Alumni Magazine, Robert Stern (2008), then head of the school, reported that “the [new] building is considered a masterpiece of modern architecture for its virtuosic use of the elements of mass, space, and light”.

Performance evaluation categories

Lützkendorf et al (2005:3) propose that user requirements can be divided into six major performance categories (Fig. 15). Of these, three categories contain the majority of the criteria that directly relate to this study (Table 1): functional, technical, and social performance.

Unfortunately, despite a large and long-standing body of research on student perceptions of service quality, higher education policy makers do not take the importance of consumer needs seriously enough (Gallifa and Batallé, 2010:158). The literature review highlights three primary factors that influence the quality of the experience of architecture students on university campuses:

1. The typical poor quality of spatial facilities available to schools of architecture (Bierut, 2006; Fisher, 2000; Lau & Yang, 2009; Nasar et al, 2007; Pearson, 2003; Rohan, 2000; Spooner, 2008);
2. Students’ opinions are seldom considered when decisions are made about the campus environment (Abu Ghazzeh, 1999; Crissman Ishler & Upcraft, 2005; Cubukcu & Isistan, 2011; Flutter & Rudduck, 1995; Iacovidoua, Gibbs & Zopiatis, 2009; Kasim & Dzakiria, 2011; Price, Matzdorf, Smith & Agahi, 2003); and
3. Architects seldom assess users’ opinions of existing buildings, so that lessons are not learned or shared within the profession (Clark, 2009; Nasar et al, 2007; Preiser, 2002; Preiser & Nasar, 2008; Riley, Kokkarinen, & Pitt, 2010; Salama, 2009a; Zimring, 1983).

These factors are explained in more detail the next section.
2.4 THE PREFERRED ATTRIBUTES OF THE ON-CAMPUS LEARNING ENVIRONMENT

In this section, those attributes that have been found to be important both in the literature review and through direct feedback, are discussed in detail.

2.4.1 Interior layout and spaces

Academic institutions and schools place much focus on the conceptualisation and organisation of teaching methods, but pay relatively little attention to the design of the physical space that surrounds, and supports learning. At the overall institutional level of management, it is easy to lose sight of the fact that the physical structures (the size, shape and arrangement of rooms) has as much influence on interaction and behavioural patterns as do teaching activities and procedures (Hornecker, 2005: [sp]). Space as the ‘context’ or ‘stage’ for learning should be configured to support collaboration and rich interaction between all the ‘actors’ (Dickson, 2003:86; Fulton, 1992:5; Graetz & Goliber, 2002:13; Gruenewald, 2003:625; Hornecker, 2005, [sp]; Iacucci & Wagner, 2003:6; Sagan, 2008:175; Temple, 2008:229; Weaver, 2006:115). It is interesting to note though, how many schools of architecture tend to fall prey to the same lack of concern for spatial quality.

Communal studios: the Beaux-Arts tradition lives on

Traditionally, studios in schools of architecture are large open communal spaces (Fig. 16a) that are shared by a student population from a wide variety of demographic or psychosocial backgrounds (Strange, 2000:21). Often, following the Bauhaus / Beaux-Arts tradition, activities relating to different sub-disciplines such as architectural- and related design, building construction- and technology, and urban- and landscape design occur simultaneously in the same studio space. Such communal studios, open for the use of all members of the school, is a concept almost as old as schools of architecture themselves. The University of Pennsylvania, started in 1903 and one of the oldest colleges of architecture in the US (MIT is the oldest program, started in 1868), started out with one large “drafting room” for all its thirty students.

The ‘open’ studio format has both positive and negative features (Table 2). The advantages of open spaces with few barriers include better communication and work flow. This approach also supports interaction and allows newer students to learn from more advanced ones (Gorgievski et al, 2010; Nasar et al, 2007:30-31).

Easier supervision of large open plan studios suits teachers well, but can cause student resentment. A lack of physical barriers also results in ambient noise, interruptions, and unpredictability in the environment, and Nasar et al (2007:82) suggest further research into this issue. To balance the apparent chaos that can result from seemingly uncontrolled and informal learning spaces, Duggan (2004:74) suggests that space usage be classified around learning activities, in stead of around specific academic programmes or study groups.
Social groups commonly form within larger communities. Over time these groups may become increasingly differentiated as some member characteristics such as demographics (e.g. sex, age, race) or psychosocial characteristics (e.g. personality types or learning styles) become more dominant (Strange, 2000:21). In general, strong group norms are desirable and if well managed can have a positive influence on studio culture (Table 2). The influence of spatial attributes on group formation are discussed in the following section.

Table 2: Summary: the advantages and disadvantages of large studio spaces

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>More efficient communication and work flow</td>
<td>Limited visual and acoustic privacy.</td>
</tr>
<tr>
<td>Easier supervision of large groups</td>
<td>Communal space shared by students with different needs and backgrounds may cause friction.</td>
</tr>
<tr>
<td>Novices are exposed to expert knowledge</td>
<td></td>
</tr>
</tbody>
</table>

Group spaces: creating communities of learning

The project-based assignments so extensively used in architectural education, encourage independent learning as well as group formation. The distinct advantages of communal open spaces have been illustrated, but studios should also allow groups the opportunity to form dedicated spaces where they can incubate and nurture complex projects (Fig. 16b). Place frames behaviour (Harrison & Dourish, 1996:3) so that people sharing a space often develop the trust and sense of belonging necessary to form a cohesive group and start behaving collectively (Gieryn, 2000:478; Wahlstedt et al, 2008:1024), when smaller spaces help people establish close social contact. (Gorgievsky et al (2007:208) refer to such spaces for 10 – 15 persons as “Club spaces”.) Furthermore, Maslow (1968, in Strange, 2000:23) believes that a sense of belonging is as important for self-actualisation as are physical safety and love. Group learning therefore optimises not only learning, but also the use of the physical learning environment (Fulton, 1992:4).

Based on the negative responses they found to open-plan staff workspaces at the Delft school of architecture, Gorgievsky et al (2010:220) point out that “subjective” safety and certainty increases when persons have control over their space on either individual, or group level. If properly understood, educators and spatial designers can positively manipulate student learning actions though this tendency towards group behaviour.

A positive way of using the tendency to form groups is promoting the formation of learning communities based not on the ‘expert and apprentices’ model propounded by Alexander et al(1977), but on configurations that tap the input of the whole group. Learning communities ensure that their members feel included and have a sense of belonging (Strange, 2000:24). Adult learners learn best when they belong to a peer group where they have access to common information and can reflect on, and discuss their learning actions so that informal learning can make up 70 – 80% of adult learning (Acker & Miller, 2005:5; Clark & Maher, 2005:2; Kuh et al, 2007:117; Utley, 2006:70). It is therefore not surprising that learning communities is one of the most effective support mechanisms for learners (Crissman Ishler & Upcraft, 2005:42). Novice learners can benefit from the experience of more experienced students in finding, analysing and converting information into knowledge.

Similar to communal spaces, group spaces can develop negative implications (Table 3). Spaces designed for group use should remain available for the use of all its members, without controlled or exclusive access. Gieryn (2000:478) and Gruenewald (2003:630) warn that when a powerful few gain power over a space, they often control movement and access, thereby further marginalising those without power. When “keep out signs” (real or imagined) are associated with a space, those with access are immediately empowered (Gruenewald, 2003:630).

As has been shown, spatial empowerment can be positive by creating solidarity, community and advantage (Gieryn, 2000:474). However, while exclusivity may make users feel more intimately linked to each other and a place, it can also restrict interaction. An understanding of group behaviour can be used to manage such situations: place attachment is a powerful factor of group cohesiveness and once a group no longer has access to the place where it formed, it will often disband (Gieryn, 2000:481).
Table 3: Summary: the advantages and disadvantages of group spaces

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity to incubate and nurture complex projects</td>
<td>Groups can differentiate from the class community to the point of complete separation.</td>
</tr>
<tr>
<td>Support the forming of cohesive groups</td>
<td>Groups develop ‘negative’ power over spaces.</td>
</tr>
<tr>
<td>Optimise the use of the learning environment</td>
<td>Bullying of ‘the other’, by strongly differentiated groups.</td>
</tr>
</tbody>
</table>

Individuals in the cacophony of collaboration

Creativity, as Duggan (2004:75) remarks, requires solitude as well as collaboration. The busy, noisy atmosphere that goes with communal student spaces does not suit all working needs or personality types. Many problematic studio designs are based on the misconception that social- and informal learning requires constant exposure to social interaction. This is far from the truth, and constant exposure can cause psychological stress. Gorgievsky et al (2010:207) refer to a place of one’s own, privacy, identity, status, and the ability to arrange one’s workspace to suit one’s personal needs, as “universal human needs”. Many learners therefore prefer to work individually, either as a temporary phase in their creative process, or because it is their preferred learning style. The “cacophony of collaboration” (Acker & Miller, 2005:9) should not impede silent scholarship, and work that requires concentration should be accommodated in small peaceful spaces (Fig. 17), instead of rooms configured for larger groups of people (Rasila et al, 2010:150). Jankowska and Atlay (2008:273) describe the ideal creative learning space as one that stimulates new ways of thinking by being private and dedicated, and different from the ‘usual’ working space in layout, and decoration. Areas formally intended for group use can provide spacious areas for individuals to spread out large drawings, or work on complex projects (Applegate, 2009:345).

The extent to which individuals have a pleasant experience when sharing a space with a larger group, depends on their fit with the preferred attitudes, values, and preferences of the majority. When a space is used (temporarily or permanently) by a highly differentiated user group, persons who do not share its dominant features can be pushed out of the environment (Strange, 2000:21). When groups treat someone who is “different” at the level of disability, group behaviour turns into bullying and if left unchecked can lead to people leaving the institution (Strange, 2000:20). Students who are very sensitive to noise, or require control over their learning environment may suffer psychological damage in large noisy studio spaces. Unless they are assisted to develop skills in working both collaboratively and individually (Yeo, 2008:281) their work may suffer or they may withdraw completely (Nasar et al, 2007:82). Network connectivity can be a valuable tool in accommodating a preference for solitude while still providing social interaction. The latter is important as extended solitude can lead to isolation or even depression (Duggan, 2004:75).

Figure 17: Individual study spaces allow for concentrated assessment preparation at stern University, Boston. The glass doors make a convenient message board. (www.flickr.com/photos/bryanallen/4446321350/)

Nixon’s (2007) research into the types of spaces preferred for tasks that require focussed writing and analysis showed that the attributes of convenient location, comfortable furniture, low level of distraction and long-hour availability are much more desirable than social connectedness, good lighting, or low noise levels. Conversely, those students in Nixon’s (ibid.) study who were working on image creation, exam preparation, and design presentations placed more emphasis on having help at hand and social contact.

Careful planning is required when devising workspace layouts that permit cognitive, visual, and acoustic privacy, as the following situation at the Global Energy Center at Stanford...
University illustrates: open plan spaces are required as part of natural ventilation and daylighting strategies, but a post-occupancy evaluation has indicated that the nature of the occupants’ work requires both focused individual attention and noisy group meetings. These “fundamentally conflict[ing]” (project architect, quoted in Gonchar, 2008: [sp]) acoustic- and spatial requirements were not considered in the design. The architect was subsequently required to work with the client in looking for ways to combine acoustical isolation with natural ventilation strategies.

There are many strategies to cope with problems of space allocation and layout, such as carefully assessing the spatial needs of students at different levels of seniority. Duggan (2004:75) observes that while first year students need the sense of belonging and identity that can be found in the studio; senior students on the other hand, prefer greater mobility. Senior students, Duggan adds, can find identity through regular connectivity and studio-based events. Gieryn (2000: 482) makes the poignant comment that “[t]o be without a place of one’s own – persona non locata – is to be almost non-existent”. Provision is usually made for senior (masters / “thesis”) students to have permanently assigned individual (“breakaway”) spaces but because of limited space such cubicles are seldom available for junior students, even on a temporary basis.

Personal identity: individualisation of spaces

Nasar et al (2007:55) observe that Crown Hall, the home of the school of architecture at IIT (Fig. 11) expresses flexibility and openness, but does not permit individual personalisation. “Mies may not have valued the latter”, they (ibid.) comment, “however many students do”. (Fig. 13, and Ch 2 cover page:11).

To suit the needs of developing projects and presenting work in the best possible way, architecture students need to continually adapt their work environment (Iacucci & Wagner, 2003:9). Where it is not possible or even desirable to provide students with individual spaces, an effective method of empowering the users of a particular space is to permit them to control their learning environment, its configuration, and the objects it contains. In an environment of increasing “genericness” (Hornecker, 2005:1), individual studio users therefore should – within boundaries acceptable to the bigger group – be allowed to express their identity and presence by adapting spaces to suit their own social and academic requirements (Clark & Maher, 2005:3; Duggan, 2004:74; Gruenewald, 2003:627, Misencik, 2005:[sp]).

Individualisation may lead to problems between groups or persons with different social norms (Harrison & Dourish, 1996:6) in the same studio space. Ahrentzen and Anthony (1993) for example point out that in class groups dominated by males, schools should take care to prevent the personalisation of spaces from becoming offensive to female students and staff. Montana State University’s Cheever Hall studio rules (MSU, [sa]: IIB) address this problem: “As this is a public building dedicated to the study of design of the physical environment, it is appropriate to project a professional image. Any graphic material that may be perceived as offensive, rude, or inappropriate is not permitted in the studio.”

As a result of the above, the formation of distinct groups within a larger community may lead to clashes on issues of ‘image’. While freedom of expression is to be encouraged as an outflow of creativity, the overall organisational culture should not be lost amongst those of smaller, possibly temporary groups. To maintain a balance, universities should provide what Gieryn (2000:480) terms a “territorialised normative order”. “Front of house” (ibid., 2000:479) areas where the wider institutional culture is exhibited, should be augmented with “backstage” spaces, where student groups can express their own culture with minimal control by campus maintenance authorities.

Elbow room: accommodation for large projects

As university student numbers are increasing year-on-year, all resources including space allocation are decreasing. This phenomenon bodes no good for resource-hungry, space-intensive academic disciplines such as architecture. The particular needs of design students include place “to present and perform, to have time and space for free play and daydreaming, and to generate a ‘different view’ ” (Iacucci and Wagner, 2003:7). Architecture students need large spaces, where they can continuously keep large-scale representations of their work at hand to explore qualities such as the scale, dimensionality, and ambience of their designs (ibid., 2003:3) (Fig. 18 & 19). Even within academic domains, each group has specific spatial needs. Architectural design studios typically house activities around
projects that are of enormous scale, requiring dedicated space for model building, design development, and both individual- and group activities over a long period of time (Oblinger, 2005:16) (Fig. 18). Physical space is thus a critical resource in architectural education.

What is not immediately obvious to outsiders, is the ‘pulse and release’ use of space or that the collective artefacts of the design process – drawings, models, electronic presentations – are often produced in different locations concurrently. Architecture students now seldom produce drawings at “full scale” on drawing boards, but rather work to ‘no’ scale computer-based drawings. Even during intermediate desk crits or pin-ups, only selected parts of the process are produced. For this reason, facilities managers who investigate the complaints of architecture schools about spatial needs often find themselves walking around empty studios and cannot be blamed for not paying serious attention to constant requests for more space.

It is only at formal assessments that a varied collection of drawings, photos, posters, models, projections and other presentation tools are assembled in one space. The space-related problems perceived by staff and students are caused by the “bottlenecks” (Duggan, 2004:73) on such days, when candidates vie for insufficient floor- and wall space. The result of this feast-and-famine situation is wasted space on non-assessment or -studio days, and overcrowding when all the physical outcomes of the design process are assembled. There are creative alternatives to resolve the space issues – as Duggan (2004:75) remarks, “[p]roblems are rarely caused or solved by space alone” – but finding those solutions do not form part of this study.

Open spaces for adaptable use

Institutions commonly focus on controlling and maintaining formal teaching spaces, but seldom pay enough attention to spaces that are informally used for learning. One of five critical requirements for successful schools of architecture identified by Nasar et al (2007:6), is a common gathering space for informal interaction and learning. An example of such use of space is found in an unexpected place: central London.

Students of the Architectural Association (AA) school in central London regularly incorporate Bedford Square, a public space on the north east side of the school (and adjoining the British Museum) into their ‘studio’ space (Fig. 21 - 22). It can even be said that the AA students use London as their informal studio. This is an excellent example of how schools short of space, can expand their areas. The AA school premises also include an internal courtyard that acts as a private multifunctional space (Fig. 19). A third type of open space, more protected from the weather, is located inside the building (Fig. 20).

Informal spaces are a form of adaptable space that are often ‘highjacked’ for use. Van Note Chism (2006:2.10) classifies informal spaces as those which are not clearly under the authority of any formal institutional entity, and which most people do not think of as learning spaces anyway. Care should be taken not to formalise the freedom of such space: MacPhee (2007:1) for example, describes informal spaces as “study areas for a group of 5 – 10 students with comfortable furniture … [near] high traffic areas or just outside classroom doors”. It is highly debatable whether such specifically defined spaces can allow for completely independent learning activity. Not only non-timetabled open spaces for spontaneous use, but also technically, and functionally flexible spaces are important (Rasila, 2010:149). Changing technology and services can rapidly make certain types of spaces obsolete or inadequate, necessitating reconfiguration to suit new spatial and teaching needs. Despite the problems with generic teaching space, Elfland et al (2006:[sp]) believe that they should be designed as generically as possible since flexibility of use allows the focus of interaction between teacher and learners to change easily in response to the requirements of the situation (Miller, 2009:4). Ideally, such spaces must also be suitable for adaptation to non-formal uses (Oblinger, 2005) such as social clubs.
The term “flexible space” is interpreted differently by learning space designers (e.g. Narum, 2004; Nasar et al. 2007). There are those who believe that ‘adaptable’ or ‘versatile’ are more appropriate descriptions, because the space is usually constructed of inflexible materials and contained within an inflexible physical environment. Versatile spaces can do many things well, and adaptable spaces can be easily changed to suit changing usage needs. Narum (2004:66) phrases the argument neatly: buildings must be “agile and open to new opportunities”.

At the outer limits of flexible design, is what Nasar et al. (2007:56) call a “kind of non-architecture” – large studio spaces that create the impression that the architect had simply given up on creating the complex and diverse teaching spaces required. An example of such as space, seems to be Knowlton Hall, at the Ohio State University (Fig. 23).
Safety: a place of free of threat, fear, or anxiety

Students have the right to feel safe on campus, in all the senses of the word. Two types of safety immediately come to mind: personal safety when using the campus and studios, and the safety of personal equipment and possessions. A third interpretation, often forgotten or discounted, is psychological safety. Yet social, psychological, and instructional variables also influence the impact of the physical environment on human wellbeing (Graetz & Goliber, 2002:15). Strange (2000:23-24) puts this well: “[f]reedom from physical harm is one thing; feeling safe is another”. Hung et al (2008:9-10) propose that for many, ‘home’ is associated with privacy and intimacy, but that schools are linked in students’ minds with opposite feelings. Ideally though, institutional facilities should also be seen as a place where “people feel safe and warm”, and where learners can experience an “ambience of ease, freedom and safety” (ibid.).

Ultimately, students who do not feel free from threat, fear, or anxiety cannot be expected to perform well academically (Strange, 2000:23). Psychological safety is a construct that is obviously largely beyond the scope of this study, except to emphasise that how ‘safe’ students feel, will influence their perception of the quality of a space. One such occurrence has been discussed, which is the ‘fit’ of individuals in spaces used by larger groups (... individual workspaces).

A space where psychological safety is often under threat, is the ubiquitous ‘crit space’. Very public critiques of their work can be a traumatic experience for architecture students, and many schools are designed around such ‘public’ spaces (Fig. 24 & 25). The feelings of students are reflected in the name of a crit room at University D (Fig. 26).

Psychological safety also includes freedom from sexual harassment, even if unintended. Ubiquitous internet access is desirable, but while access to potentially offensive material on institutional equipment can easily be controlled, access to for example pornography or hate sites on uncontrolled connections can lead to inadvertent or even planned exposure to uninvited content (Oblinger, 2005:17).
Every effort should be made to provide personal safety in all its forms, but universities also need to be especially sensitive about how the security services and installations are perceived. Factors such as surveillance (both overt and covert), enclosure, segregation, display and classification (Gieryn, 2000:475) can have both positive and negative influence the comfort of campus users. Montana State University (MSU, [sa]) enforces the following studio regulations:

- Twenty-four hour access to the studios is provided through a combination lock door, and new combinations are used at the beginning of each semester. This combination is only available to majors.
- The exterior doors may not be propped open.
- Any strangers noticed in the building after normal hours, must be addressed, or reported to campus security.
- All valuables, including all drafting equipment, are to be locked in desks or lockers.

The School of Architecture at the University of Hawaii (University of Hawaii, [sa]) requires:

- At least two people must be in studio during off peak hours.
- Sleeping is only permitted if there is at least one other person awake and working in the studio at the time.
- Studios and classrooms are to remain unlocked during normal business hours, and are to be locked during other hours.

Personal safety is becoming an increasingly important consideration for campus users. In a survey of educational places (a university and two schools) and office spaces, Rasila et al (2007) found that an average of seven percent of feedback referred to a feeling of security. The semi-public nature of educational buildings (Gorgievsky et al (2010:221) can negatively influence feelings of safety. The Noel-Levitz Student Satisfaction Inventory (Noel-Levitz, 2011: Appendix 2:2) indicates that in 2011, ‘Safety and Security’ had an importance of 6.32 on a 7-point rating scale, and a performance rating of 4.69 / 7. This indicates that on US campuses, students are feeling relatively safe, but one incident of injury or theft can negatively affect the satisfaction of entire groups of users.

2.4.2 External appearance and positioning

Much comment has been made about the conditions within the buildings that house schools of architecture, and it is relatively easy to measure such conditions against set criteria, as will be proven in later chapters. Measuring the quality of the exterior appearance of school of architecture buildings is an entirely different matter. Architecture school buildings arguably have to comply with higher design-related expectations than other educational buildings. Langdon (in Nasar et al, 2007:xiv) for example laments that while the University of Michigan building (designed by Robert S. Swanson, the nephew of Eero Saarinen) complies with most requirements expected of architecture schools, it has a critical shortcoming: “[t]he Art and Architecture Building was just there ... I’ve never heard people express delight about it or declare that it influenced their outlook”. As Langdon (ibid:xvi) says, “there is a need for more attention to the architecture of schools of architecture”.

Figure 26: The crit space at UD, labelled “Execution Hall” by students (Author, 29.11.2011).
Universities can avoid many design-related problems by implementing a rigorous appointment process that focuses primarily on a successful record of accomplishment in the design of academic buildings and of campus planning, rather than choosing an architect merely by reputation (Burns, 2001:3; Nasar et al., 2007:5).

Studies have shown that most learners are firstly concerned with the quality of teaching that they receive, and that only if this is completely satisfactory will they start showing an awareness of the physical environment (Temple, 2008:237). Far from seeing this as a reason not to consider the importance of the physical environment, architects and institutions of higher education should aspire to satisfy both the educational and environmental needs of campus users (Greenberg, 2007:2; Temple, 2008:234). This approach is unfortunately unusual, as criticism of facility design shows: Greenberg (2007:2) pronounces that a one-size-fits-all campus design by an international “starchitect” has the fitness for purpose of a “collection of trailers”. MacPhee (2007:15) agrees, adding that “it seems that you can only get variations on ... a current architectural trend” and that “[an architect] who arrives with a design in hand should be treated with caution” (ibid.:14). Unfortunately, ‘after-sales service’ seems to be a weakness in the architectural profession, for Gonchar (2008:160) is pushed to observe that “[o]nce the construction trailer is taken away, and the owner settles in, architects seldom systematically review a completed project to understand if it met its design objectives, [and] if the occupants are comfortable and productive”.

Steven Holl is a ‘starchitect’ who does not take designing a school of architecture lightly. Reflecting on the design of his multiple-award winning building at the University of Minnesota (Fig. 36), Holl is reported to have said that designing an architecture school is one of the most difficult of architectural commissions, because “[a]spiring to design a building which can add to the educational experience of architecture, is comparable to the problem of a brain surgeon operating on his own brain” (Holl, quoted in Logan, 2003:D1.2).

In opposition to Holl’s approach, is that of William W. Wurster, chairman of the College of Environmental Design at UC Berkeley and architect of its school building, Wurster Hall (completed in 1959) (Fig. 27a). This school building does not comply with requirements: students claim that “there’s good, bad, worse, and Wurster” (Nasar et al, 2007:33). Wurster would probably appreciate this opinion though, as he wanted the building “to look like a ruin that no [university manager] would like. It’s absolutely unfinished, rough, uncouth and brilliantly strong. This is the way architecture is best done... [w]hat I wanted was a rough building, not a sweet building...” (Nasar et al, 2007:32; Peters, 1979:41).
Nasar et al (2007:6) contend that good design can make an architectural statement and still fit into its environment. Thomas Fisher (2008:[sp]) concurs, commenting that:

The differences in the exterior aesthetics of architecture-school buildings reflect the differences among the faculty members and students within them, with evolutionary and revolutionary sensibilities coexisting in the curriculum. However, the often-negative response of casual observers to these buildings does raise the question of how much the discipline of architecture should inflict its internal debates on others. Where should we draw the line, architecturally, between academic freedom of expression and what borders on uncivil behaviour?

Fortunately, there are those who can challenge the ‘rules’ and yet create everything a school of architecture should be. Antoine Predock’s building for the School of Architecture and Planning in Albuquerque, New Mexico (Fig. 28 & 29) is designed around an inner atrium, and like the Walter L Smith building that houses Florida A&M University’s school of architecture, embraces the principle of “the building as teacher”. The atrium provides a private focus point for its users but the school also has a very public face: a two-story media screen for exhibiting student work is attached to the outside, and large glazed areas on the façade face the famous Route 66. While exposing the structure by having “[t]he guts of the building [hang] out, in an instructional sense” (Predock, in Gerfen, 2008: [sp]), the architect depends on unusually thick concrete walls (Fig. 29) for insulation rather than the more elaborate (and unsuccessful) systems at FAMU SoA (Fig. 43-7) and Qatar University (Fig. 35).

Attention to the surroundings: interdisciplinary interaction

On a campus-scale, some schools of architecture show a “remarkable lack of attention to their surroundings” (Fisher 2008:[sa]), a situation that reflects a disciplinary insularity and often stronger ties to other design disciplines than to the wider campus community. Schools of architecture are therefore often housed with other design- or art related disciplines. There is however little evidence that this is a successful approach. Yale has interpenetrating floor plates housing different disciplines, to encourage the intermingling of students. Unfortunately, the elevators in the ‘old’ Yale building were “notoriously inadequate” (Amelar & Lewis, 2009:54) so that no significant interaction between the ten floors and 37 different levels of the building was ever achieved.

Other school buildings resist interaction by being built around inward-facing courtyards e.g. at the universities of Minnesota, Arizona State, Manitoba, and Tennessee). No wonder that Nasar et al (2007:49) comment that the architectural profession tends to see itself “as apart from a part of [its] context”, and that this tendency towards inward-looking buildings is probably as much a result of architectural culture as of architectural design.
Beyond the building: outdoor spaces

Meeting students’ academic needs requires an array of on-campus facilities. Some, such as the library, faculty offices, and class- and seminar rooms, are obvious and usually receive much attention. To achieve a balanced learning environment, institutions should consciously provide places outside of the traditional classrooms and studios. Institutions can enhance their reputation and attract top students and teachers if they provide a pleasant outdoor learning and studying environment (Griffith, 1994; Myrick, 1995:3-4; Spooner, 2008:44). Ideally therefore, a campus environment is supportive of interactive, task-focused learning (Weaver, 2006:120; Wilson, 1995:3-4).

The value of “special, transformational, and even sacred” (Broussard, 2009:1) places must never be underestimated. Spiritual spaces or even simply landscaped gardens, are equally as important to student welfare but are often neglected. It is easy to lose sight of the importance of well designed and maintained landscaping and the places it creates in the campus milieu. The word ‘religious’ comes from the Latin verb religare, meaning to bind or reconnect. Depending on climate and season, favourable outside areas become congregation spots where the campus is experienced as place, and not a collection of buildings, thereby allowing building users to reconnect and to bind. Environments that offer access to, or even simply views of green spaces contribute to “fatigue attenuation” (Lau & Yang, 2009:67) by relieving mental stress, improving attention span, and encouraging physical exercise.

Because of the demands of “pop cultural imagery and appearance” (Gilson & DePoy, 2011:38), outdoor spaces often feature prominently in institutional branding campaigns and the social aspect of campus life is a common theme for promotional material. Broussard (2009:2) accurately observes that images selected for campus branding campaigns show not dormitories, classrooms, libraries, or students working late into the night, but the campus landscape with students walking and lounging in social situations. Despite its apparent importance to institutions, Salama (2009a:83) has found that very few studies addressing educational facilities even marginally consider the quality of outdoor spaces – ‘outside’ is simply not perceived as a place for learning, or studying. Fisher (2008:53) observes a recurring condition of under financed and poorly designed campus landscapes, which he considers particularly ironic around schools with courses in landscape architecture.

Neglecting the importance of maintaining campaign promises can cause severe dissatisfaction. The 2011 Student Satisfaction Inventory (Noel-Levitz, 2011: Appendix 2:5) indicates that when making their choice of university, students in the US rate ‘Campus appearance’ sixth out of the top nine criteria (Table 4). Should marketing promises turn out to be false, this can result in disappointment and resentment.

Table 4: US enrolment factors: ranked importance

<table>
<thead>
<tr>
<th>Factor</th>
<th>Rank</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>1</td>
<td>6.23</td>
</tr>
<tr>
<td>Academic reputation</td>
<td>3</td>
<td>5.98</td>
</tr>
<tr>
<td>Geographic setting</td>
<td>4</td>
<td>5.56</td>
</tr>
<tr>
<td>Campus appearance</td>
<td>6</td>
<td>5.31</td>
</tr>
<tr>
<td>Recommendations from family friends</td>
<td>8</td>
<td>4.90</td>
</tr>
<tr>
<td>Opportunity to play sports</td>
<td>9</td>
<td>3.58</td>
</tr>
</tbody>
</table>

(Source: Noel-Levitz, 2011: Appendix 2:5)

Research has shown that a significant proportion of learners use outdoor spaces to study, even if these are not ideal (Abu-Ghazzeh, 1999; Lau & Yang, 2009; Spooner, 2008:44). Yet, designers often consider outdoor spaces in terms of architecture: as form-giving elements with historic symbolism or aesthetic properties (Salama, 2009a:83); and their primary function – to be visually pleasing gathering spaces – remains forgotten.

To address this important need of campus users, campus managers should note favoured outdoor places and carefully maintain them. In Salama’s (2009a:89) study of the use of outdoor spaces at Qatar University for example, students report that because of the unsuitable design and poor maintenance of seating in courtyards they no longer use them. Students now habitually go to the student center, which even though less conveniently placed, is-
more comfortable. Care should however be taken not to extend institutional control to the extent that such places become overly formalised.

The degree to which architecture schools connect their interior environment to the exterior landscape varies dramatically (Fisher, 2008). There are excellent examples of campuses that support outdoor learning, such as the University of British Columbia (Vancouver, Canada) which provides outside learning spaces across campus (Fig. 30). Temple Hoyne Buell Hall, home of the school of architecture at the University of Illinois, provides an indoor winter garden (Fig. 31), as well as outdoor seating for use in summer.

The ‘other’ as human beings: places where students and teachers can relax together

Because of the long hours spent together in design studios, the relationship between architecture students and teachers is often less formal and in many cases much closer than in other disciplines. A safe, comfortable, and supportive physical environment that positively influences interaction amongst teachers and learners is much more important, Roberts et al (2008) (perhaps controversially) argue, than becoming overly concerned with general maintenance and service provision. On-campus social facilities should be considered as places where learning opportunities outside of the classroom can be supported and accommodated (Fig. 33).

The extent to which social interaction takes place, is a matter of personal preference. “Socially blended spaces” (Misencik et al, 2005:12) on campus “help to break down hierarchical barriers between professors and students [... and promote] conversation or at least the perception of one another as actual human beings”. While Strange (2000:26) calls for the formation of socially based campus sub groups with common interests, others (e.g. Misencik et al, 2005) also see a need in some campus users to maintain a social distance between different groups. Even for those who do not wish to move beyond the boundaries of academic involvement, simply sharing a “comfortable coffee shop” (Acker & Miller, 2005:8) can be more supportive of effective interaction than extended office hours.

To encourage the use of social gathering spaces, Nasar et al (2007:81) suggest that they be designed around food service facilities, have access to greenery (even moving water if possible), and be placed along major circulation routes and near main entrances.
2.4.3 Indoor environmental conditions

Not only the outdoor environment, but also the indoor environmental quality (IEQ) of many schools of architecture leaves much to be desired. Especially where early experimentation with natural lighting and ventilation systems were implemented (for example the light- and ventilation duct system at FAMU SoA [see Zimring, 1983 for a full report], and the light scoops installed over the classrooms at the University of Qatar [see Salama, 2009a]) (Fig. 35), these are often unsuccessful. The principle of “the building as teaching aid” may sound laudable, but when services are excessively experimental or exposed their appropriateness should be questioned. An unusually successful example is Antoine Predock’s architecture school building in Albuquerque that simply and successfully depends on orientation and thermal massing (Fig. 29).

The “sensual experiences” of smelling, hearing, feeling, and seeing (Rasila et al, 2010:147) greatly influence the overall atmosphere of an environment and ambient factors such as temperature, lighting levels, and acoustics therefore have an unquestionable influence on learners’ experience, and use of specific spaces (Graetz & Goliber, 2002:16; Jorstad, 2009; Musa et al, 2011:288; Nasar et al, 2007:201; Roberts et al, 2008:50-51). Despite their importance, potential problematic environmental conditions such as humidity causing drawings to curl (Zimring, 1983:46), and stale air in large studio spaces rarely receive the necessary design consideration, becoming what Nasar et al (2007:85) call the “Achilles heel” of most such buildings.

Lighting

Lighting quality affects students’ moods, behaviour, concentration, and therefore their learning. Fluorescent lighting causes a heightened state of physiological arousal and reduces sociability; dim lighting has a negative effect on self-awareness (Musa et al, 2011:288) (in other words, it causes users to fall asleep). Musa et al (ibid.) implemented an Importance-Performance Analysis of the daylighting, brightness, and glare levels in the
architecture studios of the University of Malaysia (Fig. 34). The overall results indicate that general lighting levels in the studio do not even comply with the relevant Malaysian Code of Practice on Indoor Air Quality. The researchers explain that the 100 percent difference between importance (blue bar) and performance (green bar) is because there is no natural day lighting in the studio (which also explains the low values of the attribute “glare”). The result of the student survey delivered both surprising and disturbing results: the third year students using the studios perceive the insufficient lighting levels as “normal” and acceptable and it does not influence the time they spend in the studio. As Musa et al. (ibid.) point out, “[t]his situation will affect the student ability to perceive visual stimuli in a short term and health in terms of students’ vision in a [sic] long run.”

Figure 34: IPA responses for daylight, glare and brightness in UKM architecture studios (Musa et al., 2011:292)

Thermal comfort

Comfortable thermal conditions are considered a “basic” design requirement by Nasar et al. (2007:6). Designers of service installations should consider anticipated activities when designing service installations or IEQ systems. In potentially crowded spaces or where groups will work together, ventilation levels should be increased, and the ambient temperature reduced (Graetz & Goliber, 2002:16). POEs at the School of Architecture, Florida A&M University (Zimring, 1983) and the University of Qatar (Salama, 2009a) report serious problems with “natural” ventilation systems. At FAMU, poorly operating thermal chimneys cause discomfort (Zimring, ibid:47); at the University of Qatar, the light scoops (Fig. 35) are permanently closed because of excessive dust ingress. Even that icon of architecture schools, the Dessau Bauhaus (Walter Gropius, 1926), may have forged technological breakthroughs with its glazed facades but a common complaint by its users was that, despite the advantages of excellent natural lighting, the interior became over heated (Nasar et al, 2007:30).

Figure 35: Dysfunctional light scoops adorn classroom roofs, University of Qatar (www.best-masters.com/)

Acoustics and noise

Noise is inextricably linked with dense student populations. The main problem with this is that stress levels are increased when building users cannot control noise in their environment, or suffer from a loss of auditory privacy (Nasar et al, 2007:82). As Applegate (2009:345) remarks, just because students like to make a noise themselves, does not mean that they want to be subjected to it. When group activities are taking place, noise is more acceptable but during lectures or crits, ambient noise can be troublesome (Graetz & Goliber, 2002:16). In studios, movable pinup boards acting as partitions allow those who prefer to visually and / or acoustically isolate themselves from the larger group, to do so.
The majority of schools that have large open spaces suffer from problems with poor acoustics (e.g. Crown Hall, IIT; Knowles Hall, Ohio State; Taubman College, University of Michigan) and the ‘clash’ between the requirements for open flexible space and noise control should be carefully considered at the design stage. At the University of Minnesota (Steven Holl, completed 2002) (Fig. 36) large open spaces are popular as communal crit areas, but ambient noise is a big problem (Nasar, 2007:1). The Vital Signs Report of the Aronoff Center (Vital Signs Report, 1998:[sp]) returned feedback results for ‘background noise’ in the atrium- and open stair crit areas as Excellent 6.45%, Very Good 16.13%, Good 19.35%, Fair 32.26%, Poor 32.26%.

Some universities include rules about noise in their studio regulations, for example Montana State University (MSU, [sa]) and the University of Hawaii [sa] which both enforce the use of earphones in studios.

2.4.4 **Infrastructure and finishes**

Infrastructure seems to be a consistently under-preforming university service. The “servicescape” (Rasila et al, 2010:150) of the learning environment should optimise the physical learning environment (Miller, 2009:4), and yet as the previous section showed, many schools suffer from serious problems with basic infrastructural factors such as thermal control, lighting, and acoustics. A lack of basic services, according to Nasar et al (2007:6) actively hinders activities in studios and crit spaces. The “abundant, high quality resources” demanded by MacPhee (2007:16) is unlikely to be found in most architecture studios.

Not only institutions underestimate the importance of infrastructure. Surveys of UK (1998) and US (1985) university applicants found that when applicants decide which university to attend, the quality of facilities lagged far behind course availability, overall image and social life. Conversely, a 1992 survey of second year students by Price et al (2003:214) found that the most criticised aspects of their university included poor facilities, overcrowding, security, and lighting. These findings indicate that while facilities are low on applicants’ priority lists, they are important to experienced students; further proof of the importance of the quality of facilities. The previous section provided an overview of intangible service attributes, while this section investigates tangible service attributes.

Seating and furniture

The fixed seating found in many seminar rooms, while being less expensive to install and maintain, does not answer the needs of contemporary teaching or learning approaches. It is well known that a comfortable learning space improves learners’ ability to pay attention and maintain an interest in their learning process (Bentham, 2008:73). Anyone who has seen a group of young adults relaxing, know that they prefer to lounge rather than to sit upright. Despite this common knowledge, cold, hard, and bare surfaces and seating are provided in the average university classroom and even on the greater campus (see Figs. 2,13,16a & 18). Such places can neither enrich students’ learning experience nor provide the breaks necessary to relieve tension (Lau & Yang, 2009).
The provision of wireless services for ubiquitous internet access is becoming widespread but the need for the correct, ergonomically designed furniture and seating to go with these is often not considered. Just as in formal computer laboratories, furniture in informal spaces should also be ergonomically suitable to allow for changing of posture, moving around, and adjustment to suit changing light conditions. Furniture that considers health and posture issues, and allows for a variety of physical conditions and body types including “atypical bodies”, and left-handed users should be provided as a matter of course (Acker & Miller, 2005:7; De Noriega & Gonzales, 2004:38; Gilson & DePoy, 2011:31).

To encourage the formation of communities of learning, group spaces should be provided with furniture that can be moved around easily, plenty of writing surfaces, good acoustics, and no central seminar table (i.e. no ‘master’) (Graetz & Goliber, 2002:13). The furniture should also be robust yet lightweight, and able to be moved noiselessly (De Noriega & Gonzales, 2004: 38) into what Spooner (2008:50) refers to as “sociofugal” configurations.

A masters student at Harvard’s Graduate School of Design (GSD) reports that the 2010 update of student workstation furniture was the first since 1972 (Chang, 2010: [sp]) (Fig. 37). Architecture schools often expect students to provide their own furniture needs beyond the very basic, and it is traditional to fill the space with old easy chairs, mattresses and other furniture (Fig. 38) to the extent that the studio rules of many schools specifically address this issue.

The Montana State University studio policy (MSU, [sa]: II F) stipulates under “Extraneous Furniture, Rugs, etc” that:

Due to severe space limits in the studio area, no extra furniture or personal belongings are permitted in the studio. Any personal property not removed at the end of the semester will be subject to disposal by the School with a minimum charge of $10.00 assessed to the student for disposal. Because of the difficulty in keeping area rugs, no rugs will be permitted in the studios.

Conversely, the University of Hawaii School of Architecture (UH, [sa]:2.9.2) openly encourages students to bring furniture into the studio, and regulations include that:

- Depending on the availability of furniture and student enrolment, the SoA will provide each student enrolled in an upper level studio with a minimum of one chair and one desk (emphasis added).
- Students may supplement what is provided by the SoA with their own furniture provided there is space available and ... consent has been obtained. Personal furnishings are subject to the SoA cleanup policy at the end of each semester [italics added].

Architecture students are notoriously demanding of furniture, to the extent that schools have to include in their policies rules such as: “Do not cut directly on desks, tables, or floors. Always use a cutting mat. Drilling and cutting tools cannot be used in the studios” (CED, [sa]:[sp]).
Considering the tradition of ‘studio living’ in schools of architecture, greater than average levels of consumption of food and drink in school spaces are common. Resilience, cleanability, and durability of surfaces are subsequently important design considerations to reduce furniture maintenance needs (Spooner, 2008:46). Schools react to this in different ways, and some (e.g. University of Hawaii and Liverpool University) simply do not permit eating in classrooms or even studios.

Connectivity and power supply

‘Net-savvy’ learners are used to being able to access electronic services at the click of a button and become easily frustrated when (non-) available technology prevents this. Provision for internet connectivity has therefore become one of the most important infrastructural requirements in architecture schools. Today’s learners are used to finding the information they need fast, in a socially interactive environment, and expect to receive immediate feedback (Skiba, 2006:3; Watts, 2005:340). Furthermore, students are constantly devising new ways in which to use new technologies (Johnson & Lomas, 2005:22).

With the “Googlization” (Acker & Miller, 2005:4) of information, information that was traditionally only available in libraries is now at the fingertips of learners wherever they need it, but only if they can access it. Net-savvy institutions make the most of this expended access to information by providing campus-wide Wi-fi services. The renovated studios in the School of Architecture at MIT, are not only networked for internet but also with ISDN lines for video conferencing.

The use of computer-generated work is all but ubiquitous and laptop computers need a constant power supply. The increasing number of computers (and other electronic equipment) tethered to the service network in buildings requires careful design consideration of not only electrical- and data reticulation, but also spatial organisation and furniture provision. Providing wireless (Wi-fi) computer access may very well prove more efficient despite relatively higher installation cost.

Maintenance

A comparison of Figure 38a, the individual space of a computer graphics masters student, to Figure 38b, that of an architecture student, shows the very different spatial habits inculturated by extended periods of time spent in architecture studios. As discussed, the ideal studio furniture can be moved and reconfigured easily, but as a result requires regular maintenance (Duggan, 2004:72). Even with regular care, the maximum life cycle of furniture is approximately eight to ten years (Johnson & Lomas, 2005:22). As architecture students make ‘heavy’ use of their desks, some schools have to draw official attention to the results of abuse – Montana State University (MSU, [sa]: II Equipment care) includes in its studio regulations that: “Every dollar the School spends on maintenance and repair is one less dollar available for educational resources. Students will be held financially responsible for any damage done to the building or equipment” and “[n]o cutting is permitted on any table, counter, or desk top surface. A cutting board ... is required of every student in a studio course”.

Students are required to respect their equipment, and so are schools of architecture. Regular maintenance, and keeping up with furniture needs not only reflects a respect for the learning environment and its users, it also makes economic sense, for as Acker and Miller (2005:8) remark, it is much easier to change furniture than to break down walls.

Figure 38a (left): The ordered, sparse, and tidy study cubicle of a computer graphics masters student, compared to Figure 38b (right): The messy, lived-in study cubicle of an architecture masters student (www.flickr.com/photos/ms_cwang/74053152/)
2.4.5 Access, signage and way finding

One of Nasar et al’s (2007:6) five critical concepts for good school design is “[m]ake it easy for people to find their way around” and they believe that schools of architecture should have exemplary accessibility features. This is unfortunately seldom the case. Ramps are the primary non-mechanical facility to enable wheelchair movement, yet they are often treated as architectural design elements so that their real function – access, connections, wayfinding – become lost. Once again, Peter Eisenman’s Aronoff Center at the University of Ohio, Cincinnati (Fig. 39) provides an excellent case in point. Nasar et al (2007:2) believe that the difficulties experienced by visitors and particularly disabled persons in getting around, is the result of intrinsic design problems.

Eisenman’s design “[was] driven by a powerful social vision. The relationship between the various floors is meant to foster a sense of solidarity among the students, to engender a big, embracing community of vibrant souls” (Ouroussoff, 2008:[sp]). Unfortunately, the ramps in the building are so complex that they “disorient and impede[d] access, even as [they try] to connect people and activities” (Nasar et al, 2007:53). As the original building has 37 separate levels, navigation demands constant awareness, and “the inattentive do so at their peril” (Scanlan, 2009:[sp]). To add ‘injury to insult’, the central atrium was initially rimmed by seven wide, deceptive steps, which “unfortunately” (ibid.), after years of unwitting people tumbling into this ‘pit’, had to be levelled off. The Vital Signs Project (1998:[sp]) reports that “the new atrium is evidently one of the most versatile and aesthetically interesting spaces the new addition has to offer”.

Often overlooked, are simple strategies such as providing views to the outside to help people orientate themselves within the building (Nasar et al, 2007:85). To relieve the stress, anxiety, and frustration caused by poor signage, improvised hand-made signs litter circulation routes. To avoid this eye sore, designers can easily augment signage by simple cues such as differentiation in colour schemes and the positioning of landmarks can make it easier to make a mental map of complex interiors (Nasar et al, 2007:83). A positive aspect of the new addition to the Aronoff Center for Design and Art is the use of contrasting textures at crossroads, as a visual cue (Fig. 39).

Access for disabled persons should include not only ease of moving around inside the building but also ease of getting to the building (Rasila et al, 2010:146), but campus way finding is to the benefit of everyone. At the University of Qatar, Salama (2009a:86) found that even senior students and staff find it difficult to reach their destinations. An anecdote by Jack Nasar (in Nasar et al, 2007:7) illustrates how design approaches can play havoc with usability: an (unnamed) campus architect refused to include signage on a university campus because he wanted to “force” lost visitors to interact with campus users by asking for directions.

2.4.6 Space- and time management: legend or myth?

There seems to be a common belief that architecture students are simply incapable of managing their time- and space needs. Students and even qualified architects enjoy swapping anecdotes of spending round-the-clock hours in their studios so that their student life experience sometimes seems to resemble a “boot camp experience, with relatively little time to spend outside its walls” (Nasar et al, 2007:45; see also Zimring, 1983:47). There are indications that this trend may be changing, as some students are now showing
a preference to use the studio as a social space. The studio is seen as a place to make quick contact with other students and with teaching staff (Duggan, 2004:72; Gorgievsky et al, 2010:208), but they can find better facilities and more comfortable workspace elsewhere.

Yeo (2008:279) makes an important observation here – it is not only necessary that facilities are provided, but also that they are available when needed. Many students report that they would work in the studios beyond school hours for the convenience of the additional space, privacy, and reduced distraction that those times offer; but find that the support facilities they need such as printing and food, are not available then. If they have to pack up their work and leave campus to find food or take a break from working, they usually prefer to return to their living places rather than to the studio.

Duggan (2004:74) reports on an (unnamed) school of architecture that solved its space-use problems by “decoupling” studio space from unit groups. Accepting that senior students seldom make full use of their studio space, the school retains ‘live-in’ space via a large first year studio and a small number of small lockable studios for seniors. Short-term use ‘drop-in’ space for use by students from all years is provided in large, infrastructure- and technology-intensive studios. The balance of the space is shared as classrooms with the larger university, a solution that supports Nasar et al’s (2007:46) point of view that architecture schools need relative few specialised spaces and many large, open, and relatively generic studios.

2.5 DEBATES IN THE FIELD

Theories that question the traditional teacher-learner relationships inevitably meet with some resistance. The studio master despite his/her typical close relationship with students, is still the ‘master’. In this section, some of the debates around the changing relationships between universities and students, and its impact on the teacher-learner relationship are unpacked, and both sides of these arguments considered. No particular “side” is taken, although the sympathies of the researcher leans towards the view of the architecture student as a equal member of the community of learning, and the as client of the university.

2.5.1 Boot camp or school of architecture?

Nasar et al (ibid:56) observe that “[i]t’s a paradox of architectural education that students may thrive in the most casual and even slightly decrepit quarters, perhaps because such facilities may allow a certain freedom and accommodate the intense use – designing, eating, and sleeping – of the studio.” Not everyone is equally concerned over the fact that

Figure 40: Architecture student sleeping under his desk, University of Tokyo (http://texasatime-rachel.blogspot.com/2010/08/arrival.html)
many, including some iconic, schools are poor examples of architectural design. It even appears that for some, poor environmental conditions are just one part of the “boot camp experience” (Nasar et al., 2007:45) that architecture students traditionally ‘survive’. Iacucci and Wagner (2003:12) believe that teachers and spatial designers should resist the urge to provide students with their personal concept of the ‘perfect’ space with the ‘ideal’ furniture and configuration. Learners, they (ibid.) propose, should have to struggle with the constraints of a space to interpret, and configure it into their own ‘place’.

One journalist (Gardner, 2008:12) comments that “[m]ore than any other American building, the home of the Yale School of Architecture holds a special, numinous place in the hearts of architects throughout the world”, yet goes on to refer to the “suspicious fire” in 1969 as “what may have been the single most incendiary act in the history of architectural criticism” (Fig. 14). Gardner (ibid.) expresses the hope that the extensively remodelled building will be “far more amenable to human habitation than it has ever been before”. From the above statements, it appears as though the profession feels an almost perverse pride in the negative criticism that is heaped upon the schools that serve it. On the other side of the argument is the irrefutable proof of students’ dissatisfaction with the conditions in their schools, as identified in POEs of schools of architecture (Fisher, 2008: [sp]; Nasar et al., 2007; Chapter 4 of this study).

If the studio is to be more than a place to make quick contact with other students and with teaching staff (Duggan, 2004:72), with better facilities and more comfort to be found off campus, schools must make more effort to compete with those alternatives. In response to office layouts at the Delft school of architecture, one respondent said that “[t]he main objective is beauty, how [people want] to work plays a minor part”; a comment repeated by a student from UC (see Chapter 3 and 4 in this document) who believes that extensive alterations to the school were “designed to look nice on photographs - not with students’ needs in mind” (See Annexure G2).

Yeo (2008:271) explains the anomaly of architecture schools with poor facilities and yet good reputations: the shortcomings of one service can be offset by the strengths of

Figure 41a (left) A high-ceilinged studio at the Architectural Association School, London is flooded with light (www.aaschool.ac.za), while in Figure 41b (right): a studio is dark, low-ceilinged and, inexplicably, painted dark green (Author, 29.11 2011)
another. Customers, propose Yeo (ibid.) are willing to modify their expectations of service delivery if they are assured that the total product is of high quality and standing. Note for example, the comments of senior students at the University College London’s Bartlett School of Architecture that “each architecture school has a different ethos. Some schools, such as the one at the University of Bath, are big on engineering and practical skills. Others, such as the one at the University of Cambridge, are sticklers for architectural history. And the Bartlett? ‘They do the crazy stuff...’” (Dyckhoff, 2009, [sp]).

Not only students, but also many professionals disagree with the ‘bad is better’ approach to school facilities provision. Fisher (2008:[sp]) believes that as many schools of architecture do receive relatively good responses about their interior environments, the problem must be solvable. Simple solutions, well known to office planners (providing smaller breakaway spaces in open plan areas, managing daylight and task lighting, comfortable furniture and acoustic control), “apply just as much to open architecture studios” (ibid.). Studios need not be decrepit if they are carefully designed, managed, and maintained.

2.5.2 The ‘tyranny of the masses’?

A continuing debate within both the fields of service provision evaluation and the higher education (HE) sector centres on the delineation of the ‘client’ body (in other words, whether students should be acknowledged and treated as the primary clients of the university) (Angell et al, 2007; Lewis, 2004:7; Law, 2010:260; Yeo, 2008:269). Those who on principle object to a teaching delivery approach of ‘the customer is always right’, explain Angell et al (2007:239), believe that it (negatively) interferes with the traditional relationship between teacher and learner. Angell et al (ibid.) point out that this point of view takes greatly narrows the entire student experience, which stretches far beyond academic confines.

Students pay universities for their education, which makes them clients of the university with the right to have reasonable requirements met. Students are also aware of the value attached to studying at certain universities. Even 18-year-olds at the Bartlett School, London, talk about the “edge” a Bartlett degree will give them in the jobs market, and a fellow student makes a poignant statement: “The art market is flooded. Here you get to see a tutor every week. Some places you see them once a term. After all, we’re paying for the education” (emphasis added) (Dyckhoff, 2009:[sp]). Yeo (2009:269) discusses the issue of “students as customers” and presents these alternative views: Rhinehart (1993, ibid.) contrasts the importance of the views of students as part of the input and output of the learning process, with that of the eventual employer as the customer of the learning process outcome. Joseph and Joseph (1998, ibid.) place students in the position of primary beneficiaries of education and therefore as the primary customers. Law (2010:258) identifies the crux of the argument: education reform and the expansion of access to higher education has led to an increasing tendency to treat students as the primary consumers “and as a result extending the traditional view of educational quality”.

In an extensive review of student feedback mechanisms for use in quality assurance, Law (2010) found evidence of “fundamental doubts” (ibid.:252) about students’ capacity for assessing teaching effectiveness. This point of view may have some value, as students seldom have a sufficient understanding of ‘the bigger picture’ to assess complex systems of which they form a part. O’Neill and Palmer (2004:40) nonetheless believe that pedagogically sound teaching can be combined with student-friendly, high quality student support. “Unfortunately”, they (ibid.) comment, “a coalition of interests, including academics, politicians and the media, has had an observed tendency to hold out examples of student friendliness as being evidence of the ‘dumbing down’” of their education. According to Law (2010:261), using valid and reliable instruments to survey an entire student population, and systematically documenting their opinions of their learning experience year-on-year, will allow comparisons and therefore permit assessment of the true value of such surveys.

By no means does this argument propose that the campus should become “an alternative to Club Med” or even enter an “amenities arms race” (Weinberg, 2005:[sp]) in an attempt to attract students to campus. The top-ranked US B Arch program in 2011, Cornell, demanded a tuition fee of $41,541 (Cramer, 2011:58). Very few schools can hope to justify such fees and schools need to devise methods to achieve better outcomes with fewer resources. That students are customers of the university is not in question. How much power this gives them over decisions and policies, will be debated for a long time. That their opinion
is a valuable tool in improving the service provided by the university has been proven. Ultimately, Nasar et al (2007:62) comment, it all comes down to values. Whose values, they ask, and what criteria do architects (and by extension, universities) subscribe to? This complex issue will not be debated here, however Nasar et al’s (ibid.) conclusion is supported – that a design based on democratic values representing “bottom-up, inclusive, human-oriented, and user and client involvement concerned with meaning and context”, must ultimately work for and please the majority of campus users.

2.5.3 The value of rating systems

In the 2011 DesignIntelligence rating of America’s top architecture schools, the University of Michigan was in top position. In 2012, they share eighth place with the University of Pennsylvania. From this anomaly it can be deduced that the application of generic rating systems to schools of architecture is at best questionable, and at worst misleading. Cramer (2007:[sp]), when discussing the results of an annual large-scale survey of architecture schools, reports that “[t]he survey staff recognizes the subjectivity and fallibility of the survey process and has continually (over the course of the last nine consecutive surveys) made careful analysis and quality reviews to improve upon the consistency and value of the survey”. It is argued that if, after nine years, the survey is still considered subjective and fallible, externally administered surveys are neither an appropriate method of discovering strengths and weaknesses within schools, nor of devising a strategic improvement process. However, as rating systems are increasing in popularity, the advantages and disadvantages of such surveys are briefly discussed here.

Rating systems, while not yet as widely used in South Africa as in for example the US or UK, are increasingly used by potential students in deciding which HE institution to attend. Most university ranking systems are based primarily on research output. As research is a weak area in architectural practice, architecture schools cannot hope to compete with those in science- or law faculties for institutional attention on that basis. Forsyth (2008:12) refers to this as a “key dilemma” faced by architecture schools and poses the question of how schools can position themselves in the value system of their universities.

For as long as established schools in top rated universities continue to attract the top candidates, smaller or newer schools cannot compete on a level playing field. Schools within elite universities can at least benefit from the halo effect of the overall institution. Less popular schools from less illustrious institutions, should consider alternative “paths to prominence” (Forsyth, 2008:16), for as Forsyth (ibid.:19) remarks, “[t]here is surely more to architecture than [employing elite design teachers or preparing students for employment in large firms]”. With the bias of ranking systems towards research, important influences on the learning experience such as active learning programs, enriching experiences, and excellent campus environments do not receive the attention that they are due (ibid.).

Despite the apparent inappropriateness of applying existing ranking systems to schools of architecture, there is a similarly apparent need for quality measures and benchmarking in the field. Langdon, in Nasar et al’s (2007:xiii) meta-analysis of schools of architecture in the US and Europe, points out the radical differences to be found in the physical facilities offered by schools of architecture. In its November 2011 edition, Architectural Record published its annual list of “America’s best architecture schools” (Cramer, 2011:55). In this article, Cramer (2007, 2011), four years after first acknowledging that the system is flawed, again comments that “[although] any ranking is bound to be controversial, we can’t escape the fact that there are better and worse schools”; that “[r]esearch reveals clearly that the profession cares deeply about education” and finally, that “[o]f course, there are significant differences among schools”. Forsyth (2008) identified five typologies of ranking systems that apply to schools of architecture: reputational, assessments by employers of graduates, quantity of cited publications, combinations of the above, and selected subsets of the above (Table 5).

By identifying niche markets and specialisations smaller schools can build up word-of-mouth reputations and attract students by offering a learning experience not available at other schools.
Table 5: Ranking system typologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Based on</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Reputational</td>
<td>Prestige, name-brand visibility, historical visibility, institutional identity, the halo effect of real accomplishments. Benefit schools with specialisations and niches.</td>
</tr>
<tr>
<td>2 Employer assessments</td>
<td>Employer experience with graduates, how well schools prepare students for professional practice. Data collection is complicated, usually only large commercial practices are surveyed.</td>
</tr>
<tr>
<td>3 Publication and citation counts</td>
<td>Publication data are collected through computerised databases. Publications are not a key output for design / architecture academics.</td>
</tr>
<tr>
<td>4 Complex / multiple / multi-faceted</td>
<td>A single overall score calculated based on for example teacher seniority and qualifications, entry requirements, spending per student, student/teacher ratio, student destination post-completion, post graduate numbers, and student diversity (British Research Assessment Exercise for planning). Data collection is complicated and results are open to debate.</td>
</tr>
<tr>
<td>5 Uncombined</td>
<td>Multiple performance indicators can be collated that allow for schools to be assessed on selected subsets based on the needs or interests of the user. Not an overall ranking system and allows valuing of schools that have alternative missions and specialisations.</td>
</tr>
</tbody>
</table>

(Adapted from Forsyth, 2008:13 -16)

2.6 DATA COLLECTION: BUILDING PERFORMANCE EVALUATION

Building Performance Evaluation is an umbrella term for a range of methods of evaluating the success of buildings in use. Instruments used in the field include Building Evaluation, Building-in-Use Assessments, Environmental Audits, Environmental Design Evaluations, Facilities Performance Evaluation, Facility Assessment, Post Occupancy Evaluation, and Universal Design Evaluation. With so many related methods, theories and instruments, it is not surprising that Lützkendorf et al (2005:1) comment that “little consensus [exists], as to which building performance evaluation criteria and methodologies might best apply in which situations” and go on to conclude that there is a growing need to build on these different approaches to create a more comprehensive standardized and universal methodology to state requirements, describe and choose performance indicators, and compare the two in order to verify that the building product or service performs as required.

Similar to the literature review for this study, not Zimring et al (2010:sp), Gonchar (2008:163), or Lützkendorf et al (2005) have found industry-wide accepted definitions, or standardised methods for conducting such evaluations. As concise a description as any is Preiser’s (2002), that the overall aim of Building Performance Evaluation is a holistic, process-oriented approach to the evaluation of buildings in use. Zimring et al (ibid.) try to bring some clarity to the field by proposing these generic aims for BPE processes:

- To better understand the impact of early design decisions on long-term efficiency and effectiveness of buildings; and
- To better understand the impact of building delivery processes and decisions on user satisfaction.

Preiser (2002:9) explains that Universal Design Evaluation is currently the most in-depth BPE method, taking not only facilities, but also the forces that shape them (e.g. political, economic, social), into account. POE in the other hand, is a “softer” (ibid.:10) approach, implemented to obtain an insight into the experiences and perceptions of the users of a building in their everyday use of it. Post Occupancy Evaluation is arguably the best known
and most published method of BPE, and is the method selected for use in this study. The following uses of POE as proposed by Zimring et al. (2010) are relevant to both the immediate and long term aims of this study:

Quick-response surveys are implemented to support settling into, and fine-tuning of buildings two to three months after occupancy. Surveys typically include a questionnaire, structured interviews, and feedback to managers and users. The aim of this abbreviated evaluation is to support organised feedback and prioritise ways to increase client comfort.

Decision-focused evaluations can help designers to make specific important programming or design decisions; be used to diagnose problems in troubled projects; and assess new programs, technologies and design approaches.

Evaluations for design guides establish key decisions and components for repeated building types, and identify best research and practices;

Evaluations for creating a knowledge base link facilities decisions to key decision drivers; make evaluation information easily accessible; and allow stakeholders to identify lessons learned in the field.

This study falls primarily into the last category, as stated in the research goal: an attempt to answer questions about what architecture school buildings should be, and how that knowledge can be created. In conclusion to the evaluation process undertaken at Florida A&M University School of Architecture, Zimring (1983) suggests that once an initial POE has been completed, a broad based and on-going evaluation program need not be expensive as long as existing methodologies are carefully coordinated and includes a multi-disciplinary team.

2.6.1 Implementing Post Occupancy Evaluation

For this study, Post Occupancy Evaluation (POE) has been selected as the method to gather data on student satisfaction, with attribute performance at schools of architecture. Figure 42 illustrates POE and Importance-Performance Analysis (IPA) as complementary instruments, as both include a component of the assessment of building attribute performance from the point of view of the user. An I-P matrix (Fig. 7) is an effective method of presenting the results of a Post Occupancy Evaluation. (IPA is discussed in detail in 2.6.2 Importance-Performance Analysis.) POE in turn, is an effective method of generating attribute criteria for the purpose of IPA.

Definitions of POE vary from the concise: “[e]valuating the performance of buildings after they have been occupied” (Tanyer and Pembegül, 2010:241), to the more extensive: “the process of evaluating buildings in a systematic and vigorous manner after they have been built and occupied for some time” (Preiser et al, 1988) to the discipline specific: “a systematic study of buildings in use to provide architects with information about the performance of their designs and building owners and users with guidelines to achieve the best out of what they already have” (RIBA, Research Steering Group, 1991, cited in Tanyer and Pembegül, 2010:241-2).

The specific term ‘Post Occupancy Evaluation’ has been in general use for approximately 30 years. The first building performance evaluations were done in response to the problems found in post-WWII institutional buildings, and public housing projects (Meir et al, 2009;
Riley et al, 2010; Tanyer & Pembegül, 2010). Problems were so prevalent in ‘care’ buildings such as hospitals and mental institutions that they were felt to be hindering, rather than helping patients’ convalescence.

A particular weakness of the early evaluations, was that they were based on once-off case studies of individual buildings (Preiser, 2002:sp). This situation improved in the 1970s and 1980s, when an increase in cross-building studies made benchmarking and comparison between buildings and typologies possible. Cross-disciplinary studies also became more common, and the link between occupant behaviour and the built environment is now better understood, and more readily accepted (Cooper, Ahrentzen & Hasselkus, 1991). By the 1980s POE was still done as case studies but also as part of primary research and as a method of providing feedback across a range of disciplines to organisations and institutions (Cooper et al, 1991; Vischer, 2002). Vischer’s (2002) research has shown that in the UK and the US, POE is now widely used as both a method to provide performance feedback to stakeholders and for empirical research. In Europe and Japan though, it is more specifically applied as an academic research methodology to broaden the scientific knowledge base of building performance.

Despite the acknowledged value of POE and its apparent acceptance by other professions, the architectural profession has not embraced the concept. Feedback / evaluation has been in and out of the RIBA Plan of Works document since 1965. What started as a mere suggestion in “The Architect and His [sic] Office” (RIBA, 1962) that information about the experiences of building users should be gathered and considered in the design process, was formalised as Stage M – the feedback stage, in 1965. RIBA now acknowledged that there was a lack of scientific study of buildings in use, and architects were encouraged to inspect completed buildings together with their clients within two to five years of completion. This was seen as a way to improve service to future clients and through dissemination of the findings, to increase the scientific knowledge base of the discipline (Tanyer & Pembegül, 2010). The inclusion of this formal (though not compulsory) feedback stage by architects did not last long though, and by 1978, the stage was again omitted from the Plan of Works. In 2006, Stage M (now known as ‘Stage L Post Practical Completion’) was once again included, but it is still only recommended. Stage L2 includes assisting building users during initial occupation, and Stage L3 entails reviewing the building performance in use.

The Building Research Establishment (BRE Trust, 2012:[sp]) considers POE a necessary part of the architect’s service as it completes the feedback loop of the building procurement life cycle. The BRE also considers the requirements set out in Part L to still be rather vague. Regular assessments, they believe, should ensure more efficient building operation over a potential whole life of sixty years or more. In the RIBA online journal, Gary Clark (2009) comments that:

> It is 44 years since the RIBA led the way in post occupancy evaluation (POE) with the inclusion of Stage M: Feedback within the RIBA plan of work in 1965. Nevertheless, its implementation has been patchy. Most studies have been by academics, service engineers and facility managers … increasing requirement for POE by government funding agencies will ensure feedback is firmly back on the agenda. The question is: Will the architectural profession be interested, or able to lead the debate? [emphasis added].

A positive indication of future support, is that in ‘The RIBA outlines its priorities for the new government’, Ruth Reed, president of RIBA, states that “[w]e need stringent new-build performance standards and improved post-occupancy evaluation” (Reed 2010).

Theorists have attempted to analyse reasons for the disinterest towards POE within the architectural profession, and it is generally believed that questions around payment is the primary issue. The problem lies within the ownership of the process – both from the point of view of payment, and of taking responsibility for any flaws or mistakes that may be uncovered in the process (Gonchar 2008; Riley et al, 2010; Tanyer and Pembegül, 2010). Zimring et al (2005:[sp]) acknowledge that there are reasons for doubting the effectiveness of POE:

- The cost- and time implications of conducting an in-depth evaluation;
- The necessary skills for conducting a complex POE may not be available;
- Professionals often do not like to have their work judged by other professionals;
- It is sometimes difficult to establish a clear link between user assessments (which are necessarily qualitative) and the attributes of the physical environment;
- The relationship between facility design and BPE is complex and fuzzy.
These possible objections are addressed in the following section.

Professional practitioners should be willing (if not legally required) to expose their work to scrutiny. It is necessary, argues Lippman (2010:1), that existing ‘best practice’ in the design of learning facilities be challenged. The possible objections listed by Zimring et al (ibid.) are reasonable, but careful planning and appropriate decisions can counteract many of these:

1. When evaluation is implemented within a school of architecture the typical cost of the process is reduced, as the target population is easily accessible. Schools and teachers can also implement the evaluation as a student project (see the precedent studies that follow). The use of an instrument that has been developed along theoretical principles, and tested in the field, makes the need for great expertise redundant (and at the same time fosters such expertise). Should quantitative measurements be required (e.g. temperature, light, noise) it can be assumed that within a university context access to the necessary equipment and expertise will be relatively easy to obtain.

2. It is true that professionals do not like to have their work critically assessed, but a well‐designed POE, based on valid criteria is a fair basis for evaluation. Furthermore, IPA as a reporting instrument takes some of the sting out of the tail of evaluation feedback, as successful attributes are as clearly identified as those that may be performing poorly.

3. It can be argued that while the complex link between users’ perception of performance and actual performance cannot be scientifically determined, the proposed method is at worst, no less subjective than critiques based on writers’ perceptions.

The precedent studies that follow are of the application of POE at schools of architecture or at institutions of higher education in general. They show that POE is a valuable tool in identifying specific attributes of a learning environment that do not satisfy user needs. It is also shown to be an effective method of making students of architecture more aware of the long-term effects of design decisions – both good and bad. These examples were selected for close investigation, as they reflect real insights into the state of architecture school buildings, and provided much guidance in the process of developing, designing and interpreting the results of the current study. The first, by a task team under the directorship of Craig Zimring, at the Florida A&M University (FAMU) School of Architecture is the earliest example of such a study that could be found. Following in chronological order are three POE projects that were conducted partly, or in whole as student projects: The Vital Signs Project at the Aronoff Center (1998); ‘Lessons learned from schools of architecture’ (2007); and ‘The secret life of buildings’ at Wurster Hall, UC Berkley (2010).

POE precedent 1: Florida A&M University School of Architecture (Zimring et al, 1983)

In December 1984, the FAMU SoA (Florida Agricultural and Mechanical University School of Architecture) relocated from the inadequate Bannaker Building, to the new Walter L Smith Building (Fig. 43-4; 46-7). The new 5 946m² building was designed to accommodate 400 students and 85 teaching- and administrative staff members (Greer, 1985:16).

Published in book form (Zimring, 1983), the 70-page official report follows the process from its inception at the pre-move stage in 1981 to the final follow-up evaluation one year after moving in, in 1985. The evaluation was done by a team of experienced evaluators made up of academics at Georgia Tech and an independent architecture practice, Min Kantrowitz Associates.

Articles and reports about the process of creating the Walter L Smith Building brings to light a litany of errors – almost a guide of how not to go about the process of commissioning, designing and constructing a building. Despite every effort on the part of the client, the funding body, and the evaluation team to ensure the best possible end product, the final building has attracted “numerous complaints from architecture students who often inhabit the building around the clock” (Zimring, 1983:47).

The building during pre-design phase and while in use was the subject of close scrutiny because the demanding brief required for example, innovative natural lighting- and ventilation systems and visible service systems to act as a teaching tool. With the twin goals of assessing both the building delivery process and the quality of the completed building, the evaluation process followed two phases: the first extended beyond the school building itself, and described the overall Florida State building procurement process. Phase Two focussed expressly on the SoA building and comprised four stages:
Stage 1: Pre-move. This stage included evaluating the existing facilities in the Bannaker Building to determine goals for and expectations of the new building (Zimring, 1983:15); monitoring the selection of the architect; and documenting the design architect’s intentions and decisions for purposes of later comparison (White, 1985:13).

Stage 1 also required quantitative research on the physical conditions such as temperature, light, and noise levels in the Bannaker Building. Use patterns were also monitored – when, how and by whom the building was used (Fig. 45).

Spatial studies in the Bannaker building included classrooms, offices, staff work spaces, circulation elements, and exterior use areas (White, 1985:15). A broad range of data gathering methods was used: walkthroughs, interviews, on-site observations, and discussion meetings with faculty.

Stage 2: Construction monitoring. The main purpose of Stage 2, according to White (ibid.:13), was to evaluate how deviations from the original design may have affected the long-term performance of the new building. The team analysed programming documentation, monitored the construction process, attended site meetings, interviewed the construction team and recorded field notes.

During Stage 2 the team interviewed the architect several times to assess whether the requirements as set out in the competition brief were being met. The POE report highlights serious shortcomings in the design process. Client concerns about the complexity of the design, poor durability and water tightness of the building (based on incomplete and incorrect technical drawings), and the overall clarity of the working drawings, were raised early on (Zimring, 1985:45).

Stage 3: Settling in. Ten weeks after occupation of the new building, the research team visited the school to assess whether the reality of the new school building compared favourably with expectations and the stated design intent.

Stage 3 performance indicators reports White (ibid.), included building-related issues such as image, function, space size, shape and proportion, adjacencies (relationships between spaces), furniture, materials and finishes, durability, and maintenance. Occupant-related indicators encompassed access, safety and security, efficiency, comfort, productivity, privacy and overall satisfaction. Quantitative research included comparisons between the process documentation and the final product on a space-by-space basis (Zimring, 1983:28). Physical measurements of environmental conditions were also made, but the team found that these are so changeable that unless almost continuous monitoring can be done over a long time, such measurements were not worth the cost, effort, and time required to make them.

Stage 4: One year after occupancy. During this in-depth stage of the evaluation process, the team conducted another walk-through with building users.

Based on the initial survey, the task team had identified the following evaluation issues to be addressed in Stage 4 (adapted from Zimring, 1983:16):

1. Does the building provide a high impact, forward-looking image that can be a positive symbol for the school? The desire was that the new building should “communicate to students the School’s approach toward architecture (Zimring, 1983:32).

2. Does the building function well for all users, regarding:
a. Day-to-day activities of the school
b. Serving as a teaching tool
c. Security of persons and possessions
d. Encouragement of formal and informal social interaction.

3. Does the building perform well technically, regarding:
 a. HVAC (heating, ventilation and air conditioning)
 b. Flexibility for all required purposes
 c. Maintenance, upkeep and long-term operation.

4. Building delivery:
 a. Impacts of special design requirements on design, programming and architect selection
 b. Changes during the construction process
 c. Consequences of problems with the building delivery process on occupancy.

To obtain this information, published articles, and the school’s promotional material were also scrutinised (Zimring, 1983:25).

Discussion

In light of the outcomes of the project as reflected in the official report, the architect selection process is briefly outlined first. FAMU held a design competition that was won by Clements/Rumpel Associates (Fig. 44), despite jury reservations that the passive energy system in their design seemed overly ambitious (a concern that would prove all too true). The client did not initially consider this a big problem, because the competition brief specified that the winning architect was expected to put aside the original design, and begin afresh with a new design in close consultation with the evaluation team. This did not happen because of early misunderstandings about the requirements for changes to the competition design, fees for redesign, and a generally poor client-architect relationship (Zimring, 1985:44). The independent evaluation team found that the completed building was conceptually identical to the competition entry; that the architect resisted attempts by the client to have the building significantly redesigned; that the ventilation system was dysfunctional; and that according to the client “the overriding concern of the architect in the design of the construction details was the appearance of the building” (ibid:44).

Figure 44a: Birds-eye view and Figure 44b: Floor plan, of the FAMU School of Architecture winning competition entry by Clements/Rumpel Associates, 1981 (Greer, 1985:16)
Findings by the evaluation team included that: The POE process had definite benefits, such as that evaluation findings helped the school to fine tune the new building to suit users’ needs; the process and the publications that followed drew positive attention to the school; and there was greatly increased awareness of POE within the school. The last factor was largely because both staff and students had been involved in the overall research process, including data gathering and -analysis (Zimring, 1983:15). Another benefit was the timely attention that was drawn to the extensive long-term maintenance requirements of the materials and finishes used in the building. The exposure of services (e.g. HVAC and energy systems) was deemed a potentially valuable teaching tool even though it interfered with one of the main design requirements: large open spaces for flexible and adaptable use.

As in the Bannaker Building, lighting and ventilation in the new building were still problematic: the metal halide lights in the new studios were noisy and inefficient, and this combined with insufficient natural lighting caused the studios to be “dark and stuffy” (Zimring, 1983:33).

A particularly significant finding was that the architect considered “symbolic appearance” as more important than “the goal of increasing space for each student thereby making it appropriate for the activities that go on in a school of architecture” (Greer, 1985:14). Despite the many shortcomings of the design and construction process, the study indicates that the award-winning building (the building has won a Florida American Institute of Architects Award for Design, as awarded by a jury of internationally known architects) is generally liked by its users.

The team suggested that subsequent demonstration programs are implemented both at FAMU SoA and other buildings to further demonstrate the value of Post Occupancy Evaluation. Following are examples of studies conducted by architecture students, as well as a meta-study published in book form.
POE precedent 2: The Vital Signs Project, Aronoff Center, 1998

The Aronoff Center for Design and Art, designed by Peter Eisenman, is a “landmark” building located at the north west corner of the main campus of the University of Cincinnati, Ohio (Fig. 48). The Center, completed in 1996, is an extension and consolidation of the complex of three previously existing buildings that had collectively housed the College of Design, Architecture, Art, and Planning (DAAP).

The Vital Signs Project, an extensive POE of the extension, was result of a 1998 student project initiated by Professors David Lee Smith and Wolfgang Preiser. Six students coordinated the POE, with the assistance of the student body and staff. The project included measurements of physical building performance, user surveys, and a lively online discussion group. The final report was published online (Vital Signs Project, 1998) and the overview that follows is based on that report.

The purpose of the POE was to determine if the new addition met the needs of the users (students, teachers, and staff). The study examined architectural-, lighting-, and mechanical systems with specific attention to energy use, occupant well-being, and the art and science of creating space. Even though already aging, the POE report serves as a particularly appropriate precedent for the current study.

The project exposed students to a wide range of research activities: they planned, conducted, and interpreted the results of the evaluation. They collected data by conducting surveys, and doing walk-through evaluations; and obtained qualitative information by interviewing the on-site Project Architect, senior academics, the head of DAAP facilities department, and the head librarian. The input of these knowledgeable project stakeholders revealed significant concerns that often remain concealed in such complex projects.

In the report, each space was described in terms of its physical and psychological attributes (Table 6), and illustrated. Space reports referred to:

- Design intent (the aesthetic and experiential intentions as outlined by Eisenman);
- Programmatic intent (the requirements of the particular space identified during the design development phase);
- Technical elements (basic health, safety, and welfare parameters);
- Functional elements (access for personnel and equipment, security, parking, and adequate spatial capacity for the activities to be accommodated);
- Behavioural elements (link between occupants’ activities and satisfaction with the physical environment); and
- Internal/External influences (phenomena that the user would expect in the space, but which were not present).

Figure 48: The main entrance to the Aronoff Center. The new extension is to the right and the existing building is to the left of the photo. (http://chronicle.com/blogs/buildings/files/2010/10/)

Figure 49: Fifth and Sixth floor plans, Aronoff Center, clearly indicating the complex circulation routes and warren-like layout (www.daapspace.daap.uc.edu/rooms/
The evaluations did not indicate much satisfaction with studio conditions (Table 6). The research team made the importance of satisfactory studio conditions clear:

The studios are probably the most important spaces within the College of Design, Architecture, Art, and Planning. When building the Aronoff Center for Design and Art addition to the DAAP complex, not only were additional studios provided but most of the existing studios were also partially renovated. This effort was intended to establish “homes” for the numerous students who spend the majority of their time at school in their studios. The studio needs to be spacious, providing an atmosphere that is conducive to interaction among students, while offering a personal work space. Territorially is an important issue in studios. One’s supplies and projects must be respected and protected.

When surveyed about the various aspects of the studios, most students rated them only between fair and good.

Table 6: Typical studio space reporting, Aronoff Center

<table>
<thead>
<tr>
<th>“Human” criteria</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Intent:</td>
<td>Technical Report:</td>
</tr>
<tr>
<td>Desk space/personal space, natural light, pin-up space, storage space, security, cleaning receptacles, and walking space are all necessary.</td>
<td>Desk space per student needs to be larger, clean-up space is adequate, storage space is small, and not enough pin-up space. Natural light is provided through large windows.</td>
</tr>
<tr>
<td>Survey and Interview Data:</td>
<td>Excellent 8%, Good 36%, Fair 40%, Poor 16%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“Facilities” criteria</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Intent:</td>
<td>Technical Report:</td>
</tr>
<tr>
<td>Natural light important for art work</td>
<td>Natural light from windows, artificial placed well throughout room giving necessary lighting.</td>
</tr>
<tr>
<td>Artificial light necessary to supplement during day & night</td>
<td>Windows need to be large and of thick-paned glass to allow natural light</td>
</tr>
<tr>
<td>Survey and Interview Data:</td>
<td>Excellent 11%, Good 47%, Fair 31%, Poor 11%</td>
</tr>
</tbody>
</table>

Program Intent:	Technical Report:
Covered walls to reduce the echo effect and are needed to give clear resonance.	Studio 6245: Considered bad acoustics, partitions in middle do no good. Harsh materials, and ECS noise. General levels between 55-57 dB. Background levels between 45-52 dB. Hallway levels at 60 dB.
Survey and Interview Data:	Excellent 6%, Good 46%, Fair 32%, Poor 16%

Program Intent:	Technical Report:
Needs to be close to all resources necessary for studio and long hour usage (restrooms, vending, and exits)	Close to emergency exits and stairways. Close walking distance to other important parts of building: bathrooms, elevator, water fountain.
Desks, partitions, storage space, trash receptacles and cleaning space Socialization areas	Desks, partitions, and storage are provided, but small proportions. Critique space is small and cramped.

Program Intent:	Technical Report:
Adequate air flow (cfm) for long hours of drawing and construction of projects	Studio 6245: The duct work is exposed and suspended from the ceiling. It is not very sturdy and obstructs students plugging cords into outlets. Having the duct work exposed creates additional noise. The cold air returns are located on the wall adjoining the hallway. Due to no natural ventilation, the ECS provides the primary source of air circulation for the rooms.
Survey and Interview Data:	Excellent 7%, Good 47%, Fair 33%, Poor 14%

| **Program Intent:** | Technical Report: |
| Air Quality: Excellent 0%, Good 20%, Fair 13%, Poor 67% | Survey results were: Excellent 7%, Good 36%, Fair 39%, Poor 18% |

| **Program Intent:** | Technical Report: |
| Odour: Excellent 7%, Good 36%, Fair 39%, Poor 18% | Temperature not appropriate for activities |

Environmental Control Systems:
- Adequate air flow (cfm) for long hours of drawing and construction of projects
- Comfortable temperature (20 – 22.2°C) for activities
- Survey and Interview Data:
 - Excellent 7%, Good 47%, Fair 33%, Poor 14%
 - Temperature: Excellent 7%, Good 47%, Fair 33%, Poor 14%
 - Air Quality: Excellent 0%, Good 20%, Fair 13%, Poor 67%
 - Odour: Excellent 7%, Good 36%, Fair 39%, Poor 18%

Acoustics:
- Program Intent:
 - Covered walls to reduce the echo effect and are needed to give clear resonance.
 - Survey results were: Excellent 6%, Good 46%, Fair 32%, Poor 16%
 - Technical report:
 - Studio 6245: Considered bad acoustics, partitions in middle do no good. Harsh materials, and ECS noise. General levels between 55-57 dB. Background levels between 45-52 dB. Hallway levels at 60 dB.
 - Walls are made of drywall. Floors are linoleum tile making them easy to clean, and ceilings have artificial lighting.
 - Natural light is sometimes let in through large windows.

Interior Finishes:
- Program Intent:
 - Walls have to be made of a resilient material, durable and easily cleaned
 - Windows need to be large and of thick-paned glass to allow natural light
 - Technical Report:
 - Walls are made of drywall. Floors are linoleum tile making them easy to clean, and ceilings have artificial lighting.
 - Natural light is sometimes let in through large windows.

Specialization within Building/Space Types:
- Program Intent:
 - Needs to be close to all resources necessary for studio and long hour usage (restrooms, vending, and exits)
 - Desks, partitions, storage space, trash receptacles and cleaning space Socialization areas
 - Technical Report:
 - Close to emergency exits and stairways.
 - Close walking distance to other important parts of building: bathrooms, elevator, water fountain.
 - Desks, partitions, and storage are provided, but small proportions.
 - Critique space is small and cramped.
Survey and Interview Data:
Lighting is supplemented by large windows, but still needs to be brighter.
Trash cans and sinks are provided, but socialization space is needed.
Survey results were: Excellent 5%, Good 50%, Fair 36%, Poor 9% (Adapted from www.daapspace.daap.uc.edu/~smithdl/VitalSignsWeb/)

The graphs of responses to attributes of the overall building such as “aesthetics of the interior” (Fig. 50a), “flexibility of use” (Fig. 50b), and “wayfinding” (Fig. 50c) seem to support Yeo’s (2008:271) proposal that attributes with high satisfaction responses can balance those with low satisfaction. These findings are also similar to findings of a study of the same building by Nasar et al (2007), in whose study the attributes wayfinding (score 3.36 / 7) and circulation (score 3.79 / 7) were issues of much discontent, despite interior aesthetics (score 5.32 / 7), and relationships (score 4.65 / 7) receiving relatively high ratings. Users are apparently still appreciative of the aesthetics created by the complex interior, despite the subsequent problems experienced with circulation.

Methodology
The coordinating student group met bi-weekly to plan their strategy, complete individual research, discuss various relevant aspects of the building and report together as a group, and to compose assigned sections within the report. In completing the POE process, the student research group followed the following steps:

- Research of previous post-occupancy evaluations (POE’s) of the Aronoff Center conducted by Professor Preiser and other students;
- Review and augmentation of projects completed for the subject ‘Environmental Technology’, which investigated lighting and acoustics levels, thermal comfort and other scientific data that was collected on the building systems;
- Conducting additional tests to determine lighting levels, ambient noise levels and airflow, and comparing results to code requirements and/or industry standards;
- Researching the theoretical development of the design by Peter Eisenman through books, magazines and interviews;
- Acquiring and examining the technical drawings;
- An “intuitive” walk-through conducted by each team member, taking into consideration past experience while using the building, exploration of the facility and speaking with both students and staff members;
- Distributing survey forms to students, teachers, and staff; inputting frequency of response into a spreadsheet and calculating percentages and drawing conclusions from data;
• Interviewing influential stakeholders;
• Photographing the various evaluated spaces to provide a sample perspective, and highlight particular issues;
• Gathering of findings and creating a paper report in addition to the required website project.

From the extensive amount of data presented in the report, the technical assessments and the conclusions, it is clear that students in the school (or at least those directly involved) were very well prepared for user-sensitive design practice. This study is a valuable example (both of intent and of methodology) to any school of architecture that wishes to implement a POE and/or include POE in its curriculum.

POE precedent 3: Lessons learned from schools of architecture: Nasar et al., 2007

Jack Nasar, Wolfgang Preiser and Thomas Fisher (Nasar et al., 2007) conducted a meta-POE of seventeen schools of architecture and design across the US, UK and Europe. The results are published in a book titled Designing for designers: lessons learned from schools of architecture. In their study the authors asked, and answered, in-depth questions about the facilities provided by schools of architecture. The study was done because the authors could find among all the systematic reviews of architectural education, none that critiqued the buildings which house schools of architecture (ibid.:3). They explain that they “... saw the need for a knowledge base to guide designs for schools of design, a knowledge base that would serve practice and education in schools of design, provide guidance for other university and non-university facilities, and stand as a broader model for an evidence-based and forward-looking design process” (ibid.:4).

The authors (ibid.:1) point out that many universities seek to enhance their reputation by commissioning “signature architects” to design landmark buildings. These iconic structures are often praised and awarded with prizes, even before construction, only to result in buildings that poorly serve their users (refer to FAMU SoA, above).

Schools included in the study are the Bauhaus in Dessau (Walter Gropius 1925-1926), the winter school of The Frank Lloyd Wright School of Architecture at Taliesin West in Scottsdale (Frank Lloyd Wright 1937), Crown Hall at the Illinois Institute of Technology in Chicago (Mies van der Rohe 1956), and the University of Houston (Philip Johnson 1956). More recent buildings include the Aronoff Center at the University of Cincinnati (Peter Eisenman 1996), the College of Architecture and Landscape Architecture at the University of Minnesota (Steven Holl 2002), and Knowlton Hall at Ohio State University (Scogin/Elam 2004). Some designs, they (ibid.:3) report, worked well (e.g. that of the University of Texas), while other did not (e.g. the University of Sydney). Particularly useful, is the summary of “Lessons Learned” included in each evaluation. Here, the authors concisely summarise their findings, and make suggestions for improvements. The summaries are collated and further explained with the help of statistical data in Appendix B of the book. At the end of the book, not only the survey instrument (Appendix A), but also an in depth ‘user guide’ is provided, thereby sharing the methodology with those researchers or even interested architectural educators who wish to replicate the study. As reference is made elsewhere to several of the school buildings evaluated in the book, individual cases are not discussed here.

POE precedent 4: The Secret Life of Buildings, University of California Berkeley, 2010

For this POE, second year architecture students examined architectural, lighting, and mechanical systems in existing buildings across the UC Berkeley campus. Particular attention was paid to energy use, occupant well-being, and architectural space making. Wurster Hall, the controversial building housing the school of architecture was evaluated under the categories public lighting, ventilation, and water usage.

Students were required to devote two hours to finding information on the actual performance of the building as opposed to its designer’s intent or various forms of speculation. The data was to include:

1. Basic identification of the selected building
2. A succinct statement of the student’s research intent
3. Findings and their source
4. An accounting of where they looked for information (including dead ends).

A reading of the lively communication on the online project blog indicates that students became intensely involved (see Petuskey, 2010). The final report collated from all the student research is no longer available online.
2.6.2 Importance-Performance Analysis

In this section Importance-Performance Assessment (IPA) is presented as an effective, and in the context of this study appropriate, method for conducting a performance gap analysis. How the I-P matrix forms part of the process of developing strategic responses to given problematic situations is explained with the use of precedents. A brief history is included to provide background and context. Applications of I-P matrix analysis can be found in Chapter 4: Results, Reports, and Discussions.

IPA is operationalised with a two-axis model (Fig. 7, 51) that combines both performance- and importance indicators. The latter are included to gain additional insight into how efficiently and appropriately resources are being spent, and to improve change strategies. To obtain both importance- and performance data, the standard POE method is adapted, as explained in Chapter 3.

The aims of the analysis are to:
- **evaluate** user expectations: the importance of selected attributes from the user’s perspective;
- **assess** user satisfaction: how those attributes perform from the user’s perspective;
- **develop** strategies to satisfy user demands.

With reference to the terminology used in this section: IPA has been developed for use in the marketing industries and its terminology (such as ‘client’, consumer,’ and ‘service provider) reflects that context. To retain consistency with the literature, some of these terms are used in this document. ‘Students’ are sometimes referred to as ‘clients’ (or ‘users’ or ‘learners’) depending on the context, and the university or school of architecture is sometimes termed the ‘service provider’. The debate around whether it is appropriate to consider students as clients of the university has been discussed previously (2.5.2 The tyranny of the masses?).

Importance is widely accepted to be “a reflection by consumers of the relative value of different quality attributes” (O’Neill & Palmer, 2004:43). Kwok and Warren (2005:5) however admit that in the field of facilities management there is no generally accepted definition of ‘performance’. They prefer Atkin et al’s (2000, in *ibid.*) definition; “the level of service delivered to clients against agreed standards and targets set out in the service specifications and service level agreements”.

The designers, owners, and managers of buildings can achieve a competitive edge when they understand which performance attributes are most important to users, and how users assess that performance (Tanyer & Pembegül, 2010:246). To achieve this understanding, evaluators need proper quality assessment methods that can be used in various contexts without the need for extensive adaptation (Yeo, 2008:283). IPA is an instrument that, as Tanyer and Pembegül (2010:248) point out, has been applied over a long time and in a number of settings with relatively little modification.

Anyone who has implemented student response instruments understands that recent assessment experiences can positively or negatively influence the responses. Yeo (2008:272) believes that the IPA method of “[a]sking students to consider their expectations as well as their experiences provides an opportunity for reflection based on personal desires and contextual considerations”, is a built-in defence mechanism against student response bias. Using IPA, Yeo (*ibid.*) believes, makes it less likely that recent assessment experiences will cloud responses and ensures that ratings and feedback by students are more objective and less erratic.

The development of the Importance-Performance Analysis model

IPA is a model for reporting customer satisfaction and identifying those primary service attributes a service provider should focus on. The results allow universities or schools to identify areas of strength (where students report high satisfaction in areas of high importance) and challenges (where students indicate low satisfaction in areas of high importance).

The first article that refers to “Importance-Performance Analysis” is a brief research report by Martilla and James, in 1977. Despite three and a half decades of heated debates, regular criticism and several interpretations to suit the needs of particular disciplines, industries, and statisticians, their traditional model is still extensively used. In their seminal article,
Martilla and James explain IPA as “an easily-applied technique for measuring attribute performance and performance [to] further the development of effective marketing programs” (ibid., 1977:77).

Their research indicated that firms often research client satisfaction with specific features of their products or service. It also showed that when using poorly designed research instruments, managers often find that 1) it is difficult to understand the practical significance of the research findings, and 2) only one side of the equation is determined – either how satisfied clients are with a service, or how important certain attributes are to them. Martilla and James realised that a structured reporting model was needed - one that makes intuitive sense rather than providing feedback in terms of complex constructs such as “coefficients of determination”. For their research project, Martilla and James collected data with a questionnaire on the importance and performance of services delivered by car dealerships. A short 4-point rating scale was used, anchored at 1 = Fair performance and 4 = Excellent performance, and 1 = Slightly important to 4 = Extremely important. The performance data were assigned to x-values and the importance data to y-values and these data pairs plotted on a scattergram referred to as an “Importance-Performance matrix” (Fig. 51). They labelled the X-(horizontal) axis ‘Performance’ (Fair – Excellent) and the Y- (vertical) axis ‘Importance’ (Slightly – Extremely).

The developers of this model claim that its graphic nature that allows for an easily interpreted feedback mechanism, is one of its strongest features. They labelled the four quadrants of the matrix from A to D, as per Table 8.

For a practical illustration of the interpretation this model, consider Table 7, that lists importance and performance data for four typical attributes of a studio in a school of architecture (natural light, noise control, ceiling finish, and pinning boards). The results of (Table 7) are plotted on a scattergram, as seen in Figure 51. In the current study, the I-P matrix is generated using a Microsoft Excel scattergram with the axes crossing at (3.5,3.5) which is the midpoint score on the seven-point rating scale.

Table 7: Performance and importance data table

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Performance (X values)</th>
<th>Importance (Y values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural light</td>
<td>4.5</td>
<td>6.0</td>
</tr>
<tr>
<td>Noise control</td>
<td>3.4</td>
<td>3.45</td>
</tr>
<tr>
<td>Ceiling finish</td>
<td>6.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Pinning boards (number)</td>
<td>2.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

(1 = Low importance/performance, 7 = High importance/performance)

By comparing the labelled quadrants of the I-P matrix, to Table 8, it is straightforward to identify which attribute should be attended to most urgently: the number of pinning boards, as it falls in Quadrant A (‘Concentrate here’). Further expenditure on ceiling finishes, falling in Quadrant D and therefore already performing beyond its level of importance, should be carefully considered. Spending resources on ceilings and not on more pinning boards will not only make no difference to studio conditions, it will be a waste. Furthermore, it may even cause resentment on the side of the users of the studio.
Tanyer and Pembegül (2010:247) explain this phenomenon: attributes considered less important (quadrants C and D) have a lesser influence on overall satisfaction, while attributes that are more important (quadrants A and B) play a more critical role in general perception of service quality. Decision makers should therefore consider the knock-on effects of their actions: making changes to one attribute will influence the importance of others (Deng, 2008:256). Still referring to Figure 51, this means that spending money on noise control would probably be much more effective than on spending it on improving natural lighting (although less beneficial than on providing better pin-up facilities). Continuous maintenance of ceilings and particularly of windows is required to ensure continued satisfaction.

In summary, attributes that fall within Quadrant B are strategic strengths, and provide an opportunity for celebration and positive reinforcement within the school (Noel-Levitz, 2011:5). Attributes falling in Quadrant A should be seen as opportunities to redirect resources and refocus dialogue around students’ primary concerns.

Table 8 Interpretation of the quadrants of the I-P matrix

<table>
<thead>
<tr>
<th>Quadrant</th>
<th>Suggested actions</th>
</tr>
</thead>
</table>
| A | **Concentrate here**
| | **B**
| | These attributes are **critical for improvement** – they are very important but **performance is rated low** by the clients. These attributes are **major weaknesses** in the service provision and should significantly increase satisfaction if improved.
| | **C**
| | These attributes are **targeted for immediate intervention** (Deng, 2008:254; Tontini & Picolo, 2010:573). Lewis (2004:4) suggests shifting resources from D to A, to achieve this.
| | **D**
| | **A**
| | **B. Keep up the good work**
| | Customers much value these and are satisfied with the service. These attributes bestow a competitive advantage (Tontini & Picolo, 2010:566) and **appropriate effort** is being expended (Lewis, 2004:1). Deng (2008:254) warns that far from being bypassed for attention, they should be maintained, leveraged, and heavily promoted. Tontini and Picolo (2010:573) warn that if performance is reduced here, major customer dissatisfaction can result.
| | **C**
| | **D. Possible overkill**

Positioning of matrix axes

Martilla and James (1977:79) realised that the positioning of the axes can have an important influence on the interpretation of the matrix. This is because the graph axes indicate “frontiers” (Tontini & Picolo, 2010:573) between improvement categories. Different studies show different attitudes to placement: Tontini and Picolo (2010:579) place their dividing lines at (0,0) which is the neutral / midpoint of their nine-point scale (−4 to +4) (Fig. 52). Tanyer and Pembegül (2010:254) (Fig. 53) use an ordinary Cartesian graph (not a scattergram), and place the axes at (3.0,3.0) as a starting point, thereby cutting off areas which are not populated by data pairs. (This strategy was also applied by Tontini and Picolo.)

IPA is of course not without its detractors, notably Law (2010). Law bases his assessment on a literature review, using arguably outdated material. From this, he deduces that “the P – I [Performance - Importance] difference-score model should be on equally shaky theoretical foundation [as the P – E model] and it is quite surprising to find an almost uncritical acceptance of this model in the IPA literature” (2010:259 – 260). Law (ibid.) also criticises the dynamic nature of axis positioning and considers it an indication that the I-P grid is still “somewhat underdeveloped”.

Footnotes:

2 For a detailed explanation of P – E models such as SERVQUAL, refer to Kitcharoen, 2004; and Kasim & Dzakiria, 2001 below; and to ‘Disconfirmation theory’ (2.7: Data analysis.)
Tontini and Picolo (2010:574) take a more positive approach to IPA, proposing that a “soft approach” to axis positions, permits the analyst to consider final positioning relative to borderline cases. A somewhat more sympathetic overview of IPA methodology can also be found in Bacon (2003).

Kasim and Dzakiria (2011:23), O’Neill and Palmer (2004) and Lewis (2004) all point out that few IPA studies include sufficient qualitative data to make survey results better understood. This shortcoming is addressed in the data collection process for the current study, by including several open ended questions to further expand on scale-based responses.

There are many examples of the use of IPA as a research instrument in the higher education field and the method is used as the basis for nation-wide student satisfaction surveys both in the UK and in the US. The following examples of Importance-Performance Analysis studies were selected, as they are all in some way similar to the current study: 1) The Noel-Levitz Student Satisfaction Survey is used for surveys across different colleges; 2) O’Neill and Palmer (2004) did ground-breaking work in testing the use of IPA in the Higher Education sector; 3) Kitcharoen (2004) combined IPA with another research method (SERVQUAL); 4) Lewis (2004) did a small-scale evaluation of resource expenditure on a university course; 5) Silva and Fernandes (2010) studied quality attribute performance from students’ perspective; and 6) Kasim and Dzakiria (2011) used IPA to study external campus facilities.

IPA Precedent 1: The Noel-Levitz Student Satisfaction Inventory

The Noel-Levitz Student Satisfaction Inventory (SSI) is a commercially available instrument, developed for use by colleges in the US. The 2011 SSI report contains the satisfaction- and importance ratings of 81,094 students gathered from 2008 – 2011 (Noel-Levitz, 2011: Appendix 2:2). Twelve categories containing 79 items are included, of which two are common to this study: Safety and Security, and Campus life. A focussed survey on university selection reveals that geographic setting and campus appearance rank higher in importance than recommendation of the institution by others.

Noel-Levitz (2011:11) have found that institutions which respond to the ‘strength’ and ‘challenge’ indicators benefit from their actions. Successful participation in a national benchmark initiative requires regular surveys, reviewing and sharing the results, responding to challenges with new initiatives, and closing the feedback loop by communicating what has been accomplished.

The Noel-Levitz SSI is a suitable precedent study for large scale and longitudinal studies of student satisfaction. Its focus however is the complete student experience and as such, it is not sufficiently finely differentiated on aspects of the physical learning environment to be used as a framework for this study.
IPA Precedent 2: O’Neill and Palmer, 2004

O’Neill and Palmer (2004) published one of the first studies on the use of IPA in a higher education environment. They deducted from existing client satisfaction studies that not only academic strength but also the quality of support services affect whether students recommend a university to others. To understand this phenomenon they researched students’ attitudes towards the quality of service provided by administrative support mechanisms at a large state university in Western Australia.

When selecting and implementing a method to measure student perceptions of service quality, O’Neill and Palmer found that many of these techniques were too costly, too complicated, or inappropriate for what they wanted to measure. They also found that many methods had become so strongly geared toward psychometric performance, that there remained little regard for their practical value. The challenge for evaluators, explain Kwok and Warren (2005:2) is measuring importance, and measuring what is important, rather than becoming overly concerned with the process of measurement. An important part of O’Neil and Palmer’s (ibid.) study, in addition to the importance of service quality, was their investigation of whether IPA as a measurement instrument is both psychometrically and practically sound. O’Neill and Palmer’s goal was similar to the goal of the present study, and is therefore discussed in more detail.

As for the studies by Kitcharoen (2004), and Kasim and Dzakiria (2011), attribute variables were based on the 22 items of the original SERVQUAL (see ‘Disconfirmation theories’). In keeping with similar survey adaptations, a series of three focus groups was conducted to adapt the SERVQUAL scales to suit their research goals. In the interest of instrument validity, O’Neill and Palmer asked the focus groups to consider each survey item and suggest alternatives. (It is interesting to note, that even though the groups were specifically required to consider ‘soft’ service quality factors, one of the items which strongly emerged was “aesthetically pleasing environment”.) The refined scale items, combining performance and importance, were compiled in a self-completion questionnaire. Attributes were listed on a five-point Likert scale anchored between 1 = Strongly disagree and 5 = Strongly agree for performance; and 1 = Low importance to 5 = High importance for importance.

O’Neill and Palmer administered the questionnaires within the normal classroom setting with the co-operation of academic staff, and also surveyed students at a number of central points on the campus. The process took one week. Of the 500 questionnaires handed out, 368 usable returns were returned, representing a valid response rate of 76.5 per cent. Using students in an almost ‘captive’ environment facilitated this high response.

The researchers report that the instrument performed well in terms of both reliability and validity. This indicates that when done with care and concern for the questionnaire design process, adaptations of existing and proven methodologies can be successful. Analysis of response results indicated varying levels of importance attached to different administrative support functions. The researchers could therefore conclude which attributes would benefit most from improvement efforts. The positioning of the axes in the I-P matrix (Fig. 54) should be noted: both were moved beyond the halfway mark. Moving the axes to 3.0,3.5 would place ‘Process’ in Quadrant B and requiring no further action while ‘Empathy’ would fall into quadrant A with ‘Process’, both requiring urgent attention. This underscores the importance of the positioning of the axes is for strategic decisions. ‘Tangibles’ is however firmly and safely positioned within quadrant D and will require only occasional review to ensure that it remains there.

A critical observation by O’Neill and Palmer of their own study, is the lack of a qualitative component in their final questionnaire (a finding echoed by Kasim & Dzakiria, 2011). Purely quantitative analysis, they observe, did not explain why the observed ratings had occurred.

"Figure 54: IP matrix of service quality attributes at a large Western Australian university (O’Neill & Palmer, 2004:48)"
The timing of questionnaires is also in their opinion significant: while a first year student may still be smarting from problems with application and registration (and therefore rate relevant attributes within the ‘process’ and ‘empathy’ categories very low), a more senior student may be much more concerned with tangibles such as library services and assess these more critically. This indicates an advantage in the current study: all the students surveyed are senior students and are likely to have broadly similar concerns. They can also be expected to be more concerned with the tangible attributes being tested.

A particularly important outcome of O’Neill and Palmer’s (2004) study is that it supports the hypothesis that IPA is a potentially valid method with great practical value for both assessing, and directing quality improvement efforts in schools of architecture. Healthy debates may continue around the definitive characteristics of constructs such as ‘performance’ and ‘quality’ and the ‘one best way’ to evaluate the data, but in practice, IPA can be seen to “identify how educational services are performing, pin-point specific problem areas and help target corresponding improvement efforts” (O’Neill & Palmer, 2004:49).

IPA Precedent 3: Kitcharoen, 2004

Kitcharoen’s (2004) cross-institutional investigation took a similar methodological stance to the current study. Kitcharoen used a combination of SERVQUAL and IPA to compare staff and students’ perceptions about service quality (for a more detailed discussion of SERVQUAL, see 2.7 Disconfirmation theory). Data was gathered from both target groups at 26 Thai universities. 384 students (n=207 136) and 357 university staff members (n=5 600) were surveyed to find out if there is a difference between student and staff perceptions, and whether perception of service quality correlates with satisfaction. A modified SERVQUAL questionnaire with a 5-point rating scale was used.

A self-administered questionnaire was mailed to staff members but students were asked to complete a questionnaire in person. The outcomes of Kitcharoen’s study correlated with those of Silva and Fernandes’s (2010) research: that there are differences in perceptions of service performance by staff and students. Designers of surveys, and decision makers using IPA should take this difference into careful consideration when making decisions about their target population, the data they intend to gather, and therefore questionnaire design. Incidentally, study results also indicated that students’ satisfaction with service quality positively affected pride in their universities.

IPA Precedent 4: Lewis, 2004

Lewis (2004) conducted an IPA to identify how resources could best be allocated to address possible shortcomings in a university course. The study was conducted on first- and second year classes in mechanics at the University of Wollongong, Australia.

The reason for selecting IPA as the research method was to combine “ubiquitous, but often one-dimensional” (Lewis, 2004:2) performance ratings with importance ratings so that greater insight could be applied when developing change strategies. Lewis added a series of “importance” related questions to a standard teaching evaluation questionnaire. These were rated on a five-point Likert scale.

All the results were clustered in quadrant B (Fig. 55a and b), raising the concern that the students had not been discerning enough in their assessments. To address this problem, Lewis (ibid.:5) relocated the X and Y axes from (0,0) to (2.5,4.0) (Fig. 55b) which resulted in a much more differentiated data scatter. This adjustment to the positioning of the axes made a significant difference to many of the attributes, changing their status from quadrant B to quadrant D and in two cases even to quadrant A.
A criticism of the presentation of the data, is that without graphically delineated boundaries clear interpretation of the positioning of data points is not easy.

Lewis (ibid.:7), like Kitcharoen (2004) and Silva and Fernandes (2010), acknowledges that additional research is necessary to differentiate the attitudes of different user groups. These differences were not formally examined in Lewis’s study but he (ibid.:8) concludes that IPA, even with its acknowledged weaknesses, provides a broader base for evaluation in higher education than performance evaluation alone.

IPA Precedent 5: Silva and Fernandes, 2010

Silva and Fernandes (2010) collected data from 695 undergraduate students at the Polytechnic Institute of Bragança (Portugal). The questionnaire on general aspects, the library, computer laboratory facilities, academic services, teaching aspects, undergraduate programs, and external relations was administered in their classrooms. Results show that the students are generally satisfied with their institution (Fig. 56). The results however, as for Lewis (2004), are clustered in quadrant B, and an even higher performance than importance score was registered for each of the items (performance mean of 4.34 / 5).

Silva and Fernandes conclude that policy and quality improvement plans can be based on IPA results, but warn that results should not be generalised and that differences in priorities between target groups should be taken into consideration when decisions are made. A valuable exercise for Silva and Fernandes may be to apply Lewis’s (2004) method of re-dividing the results into four quadrants to achieve more significant result differentiation.

IPA Precedent 6: Kasim and Dzakiria, 2011

Kasim and Dzakiria (2011) used IPA to assess the quality of recreation provision at the Northern University of Malaysia (NUM). Data were collected from 1,214 first- to fourth year students across various disciplines. Similar to the studies by Kitcharoen (2004) and O’Neill and Palmer (2004), categories for the questionnaire were based on the SERVQUAL instrument (see 2.7 Disconfirmation theory).

The study evaluated the accessibility, adequacy, suitability, availability, and benefit of recreation services on a five-point Likert scale. To improve qualitative insight, two open-ended questions were included. Similar to most IPA studies, the purpose was to: 1) evaluate the importance of selected attributes from the users’ perspectives (i.e. user expectations); 2) assess the performance of how those attributes perform from the user’ perspectives (i.e. user satisfaction); 3) develop an Importance-Performance Matrix; and 4) recommend which attributes to maintain, improve, give less priority to or even ignore.

Together with the I-P matrix (Fig. 57), paired sample t-tests showed a significant difference between the level of importance and satisfaction. (Paired sample t-tests are performed by subtracting the importance values from the performance values for the same question.)
Kasim and Dzakiria claim that their study provides further proof of the usefulness of I-P analysis by providing both a snapshot image, and an overall picture of the tested conditions. Such information they claim, can help managers to identify problem areas, and formulate suggestions to improve the situation. They also emphasise that sole dependence on I-P analysis is not enough and that quantitative findings must be supported with qualitative data from open-ended questions.

Summary and discussion

The foregoing case studies indicate many of the positive, as well as the negative aspects of Importance-Performance Analysis. SERVQUAL (see 2.7 Disconfirmation theory) was successfully adapted for use in three of the studies (Kasim & Dzakiria, 2011; Kitcharoen, 2004; O’Neill & Palmer, 2004), while one study was an adaptation of a tried and tested student satisfaction survey (Lewis 2004).

Two of the studies highlight the importance of qualitative data to provide a context for the quantitative data (Kasim & Dzakiria, 2011; Lewis, 2004).

Two of the studies resulted in a consistent attribute grouping in quadrant B (Lewis, 2004; Silva & Fernandes, 2010). Rather than taking this outcome at face value, researchers should follow Lewis’ (2004) method of re-analysing that quadrant under a stronger lens. Including qualitative data in the questionnaire should also provide deeper insight into respondents’ attitudes.

Kitcharoen’s (2004) findings that different stakeholders have different points of view about the quality of the same spaces, is definitive proof that different questionnaires have to be developed for testing each target group.

Despite identifying some inevitable shortcomings in the method, the researchers of all six studies concluded that IPA is a suitable method to identify areas of strength and weakness in the service provided by HE institutions. As no significant indicators were found in any of the six case studies that IPA is not valid and reliable, its suitability for achieving the research aims of this study has been confirmed.

2.7 DISCONFIRMATION THEORY

‘Disconfirmation’ theories aim to measure quality of service by comparing client expectations of products or services, to the perceived quality of delivery. Whether it is even possible to measure a subjective construct such as quality, is still a topic of much research and debate. Quality evaluation is a relatively new concept in higher education, and as O’Neill and Palmer (2004:40) observe, “[t]he term ‘quality’ did not exist in the lexicons of most universities until a couple of decades ago”. Gallifa and Batallé (2010:157) believe that “discovering student perceptions of quality may be a quest”, to which Cramer (2011:55) laconically adds “there are better and worse schools [but] quality is hard to measure”. Yeo (2008:268) explains that the lack of standardisation of measurement of quality is because each customer’s expectation of service quality is different, and varies from situation to situation.

Disconfirmation theory is a complex construct, but the following section aims to provide a simplified explanation. By implementing the equation $P – E$ (perception-minus-expectation) to performance and satisfaction data, researchers seek to confirm or disconfirm the presence of customer satisfaction. (Statisticians call this type of comparison a ‘paired sample t-test’). SERVQUAL was the first major instrument developed to measure disconfirmation.

Originally developed in 1985 by Parasuraman, Berry and Zeithaml (Parasuraman et al, 1991), SERVQUAL has been customised to form the basis of many subsequent instruments to measure service quality (e.g. Angell et al, 2008; Kasim & Dzakiria, 2011; Wright & O’Neill, 2002). As implied in the name, the SERVQUAL model measures five categories of ‘service quality’ attributes. Yeo (2008:270-271) attempts to relate the general SERVQUAL service qualities to those particular to HE institutions (Table 9).

Yeo (2008) find the ‘tangibles’ category problematic, as “service performance should go beyond tangible forms”. It is argued however, in terms of the parameters of this study, that tangible service provision can incorporate the quality of the physical environment that supports teaching and learning.
Table 9: Service quality attribute categories

<table>
<thead>
<tr>
<th>Service quality attribute</th>
<th>Traditional SERVQUAL interpretation</th>
<th>HE environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>Consistently delivering the promised service</td>
<td>Reliable service provision that complies with promises made in branding campaigns and course brochures</td>
</tr>
<tr>
<td>Responsiveness</td>
<td>The ability to update, adjust or customize the contents and delivery of a service</td>
<td>Responsiveness to the shifting needs of students</td>
</tr>
<tr>
<td>Assurance</td>
<td>The capability of the service provider to deliver the promised service</td>
<td>Assurance that the more important the service standard, the less tolerance for mistakes</td>
</tr>
<tr>
<td>Empathy</td>
<td>A caring and customer centred ‘soft’ environment</td>
<td>An empathetic approach to contextual requirements such as limited class sizes and the need for individual attention</td>
</tr>
<tr>
<td>Tangibles</td>
<td>The ‘hardware’, or infrastructure</td>
<td>The physical on-campus learning environment</td>
</tr>
</tbody>
</table>

(Adapted from: Angell et al, 2008; Kasim & Dzakiria, 2011; Wright & O’Neill, 2002; Yeo, 2008).

To address the perceived shortcomings of SERVQUAL, Cronin and Taylor (1992 & 1994, cited in Law, 2010:259) developed an alternative instrument called SERVPERF (“service performance”). SERVPERF circumvents the issues surrounding the measurement of expectation by simply omitting it from the model and is therefore conceptually linked to Post-Occupancy Evaluation, but not to Importance-Performance Analysis or the aim of this study.

Not all researchers in the field of service quality measurement agree with disconfirmation theory. Some (Angell et al, 2008:238; Wright & O’Neill, 2002) strongly support the concept. Others believe that the theory is inherently flawed because it is impossible to objectively assess expectation after experience (Cronin & Taylor, 1992, in Angell et al, 2008:238); or that I-P theorists are simply not critical enough of their theoretical underpinnings (Law, 2010). To address Cronin and Taylor’s (ibid.) objection, Tanyer and Pembegül (2010) asked respondents in their research project to complete two questionnaires: one on the importance of selected attributes before “the consumption experience” (ibid.:248) and another, on the performance of the service after the experience. This method is possible where the experience is relatively brief – in their study, attending a convention. Students at a school of architecture, who are likely to attend one school only, cannot knowledgeably frame expectations beforehand; and after up to seven years of study they are unlikely to be able to accurately revisit their initial expectations. This approach is therefore not considered a practical option for implementation in the current study.

Law’s (2010) misgivings about the validity of IPA theory is not shared here. Based on the foregoing reviews of literature and case studies, it is proposed that there is by now a wide enough body of published work on its theoretical constructs and empirical research to indicate that IPA is a valid methodology for measuring and reporting gaps in service provision.

KANO’S MODEL AND DERIVATIVES

One of the most widely supported criticisms of the original IPA model of Martilla and James (1977) is that it assumes a linear relationship between the importance and performance of an attribute’s performance. As the outcomes of this study lends weight to this criticism, it is discussed in some detail here.

Some researchers (e.g. Arbore & Busacca, 2010; Deng, 2008; Tontini & Picolo, 2010) believe that in most situations the relationship between importance- and performance ratings for an attribute is non-linear and asymmetrical. Three models based on this theory were reviewed, and preliminary conclusions drawn about the suitability of their application in the current study. One of the first indications of a major move toward changes to the original Martilla and James IPA model was an article published in 1984 by Dr Noriaki Kano and a team of fellow researchers, called “Attractive quality and must-be quality”.

“Attractive” qualities on the other hand, will “delight” customers if they are provided but will not disappoint if they are not provided. An example of an ‘excitement factor’ is the digital fabrication lab at the Taubmann College of Architecture and Planning, University of Michigan (Fig. 59) – just the name, FAB lab, is an indication of its impact on student satisfaction. The attribute categories in the Kano model and its derivatives are summarised in Table 10.

Similar to the previously discussed SERVQUAL model, the original Kano model divides service quality into five categories: attractive, one-dimensional, must-be, indifference, and reverse (Deng, 2008:255). In subsequent models, this framework was simplified into a three-part structure of basic, performance, and excitement factors (Table 10). When studying the Kano Model (Fig. 58) it is clear that Kano et al acknowledge that there are attributes that have a straightforward linear performance. Following are three case studies of research based on the Kano model: the Student Satisfaction Approach that is directly based on Kano et al, Deng’s Fuzzy set theory that claims to statistically derive accurate importance values; and Tontini and Picolo’s Improvement Gap Analysis that questions the accuracy of implicitly stated importance and performance ratings.

Table 10: Kano model - attribute categories

<table>
<thead>
<tr>
<th>Kano model category</th>
<th>Alternative categories</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attractive</td>
<td>Excitement factors, satisfiers</td>
<td>Increase satisfaction if provided, but do not cause dissatisfaction if not provided; excellent performance has a greater impact than poor performance; critical when performance is high, irrelevant when performance is low; often rated lower in importance than basic and performance attributes.</td>
</tr>
<tr>
<td>One-dimensional</td>
<td>Performance</td>
<td>Linear relationship. Better performance results in greater satisfaction; poor performance results in dissatisfaction;</td>
</tr>
<tr>
<td>Must-be</td>
<td>Basic factors, dissatisfiers</td>
<td>The basic functions of a service; minimum requirements that produce dissatisfaction when not provided but do not result in satisfaction if provided or even exceeded; non-performance has a negative impact on satisfaction but excellent performance does not improve satisfaction; often rated with inflated importance; crucial when performance is low, unimportant when performance is high. Deal breakers, clients won’t consider service without this attribute.</td>
</tr>
<tr>
<td>Indifference</td>
<td></td>
<td>Not of interest or concern to customers, customers simply don’t care.</td>
</tr>
<tr>
<td>Reverse</td>
<td></td>
<td>Customers would prefer not to have this, may even pay not to have it. Presence is dissatisfying, absence is satisfying.</td>
</tr>
</tbody>
</table>

(Adapted from Deng, 2005; Tontini and Picolo, 2010)
The Student Satisfaction Approach

The Student Satisfaction Approach (SSA), developed by the University of Central England (UCE) in Birmingham, is directly based on the Kano Model. It is particularly interesting to note that the SSA questionnaire content is not fixed, but annually re-populated with the results of focus-group discussions and analysis of comments made in the previous year’s questionnaires (Kane et al., 2008: 136; Law, 2010:257; Westney, 2007:2). The SSA is therefore strong in the category of “responsiveness” (see Table 9) by acknowledging the importance of student input into survey design, and the dynamic nature of student needs and priorities. Results are analysed and used to design targeted improvement strategies at both institutional and departmental levels.

Kane et al (2008:136) consider the major attributes of the SSA to be: 1) the research focuses on the total learning experience as defined by students; 2) satisfaction and importance ratings are examined to identify which areas are important for students, and 3) areas that are important to students but where they are dissatisfied, are priority areas for management intervention.

A criticism that can be levelled at the SSA, is that despite a very intricate feedback mechanism, it is based on scales that only differentiate three levels of importance, and five levels of performance. The SSA seems to be an ideal instrument for its particular application, which is to routinely collect a great deal of data from a large number of respondents. Its classification- and interpretation methods are however more complex than that of the classic I-P matrix and for that reason, while the SSE is acknowledged as an excellent example of collecting student satisfaction data and implementing the results in an effective and transparent manner, it is not appropriate for the current smaller scale study.

Kano’s model has motivated a number of studies to prove his hypothesis that the relationship between performance and importance is not linear or symmetrical. The common theory underlying these studies is that statistically derived importance ratings are more accurate than explicitly stated ratings (i.e. those that are gathered directly through questionnaires). As Tontini and Picolo (2010:567) observe, in most cases attributes are rated more important than what they rationally are. The next two case studies address this concern.

Fuzzy set theory

Deng’s (2008) model of Fuzzy Importance-Performance Analysis (FIPA) is based on the premise that human perception is ‘fuzzy’, rendering the method of assessing attribute importance in traditional IPA psychometrically invalid. Fuzzy theory was first introduced by Zadeh in 1965 and is applied to problems where uncertainty exists, explains Deng (ibid.:256). In the case of IPA the uncertainty exists around the fact that human judgements of the same situation vary significantly. Temple (2008:238) astutely observes that students are more likely to complain if they are dissatisfied, than to compliment if they are satisfied. Linguistic assessment methods (e.g. 1 = Unimportant), Deng (ibid.) believes, are problematic as the same word can have very different meanings for different respondents. Subsequently, “the use of binary logic and crisp numbers to describe human perceptions or attitudes fails to address fuzziness” (Deng, 2008:254). He then proceeds to propose a three factor, partial correlation, natural logarithmic transformation model to interpret human perceptions.

FIPA relies on a complex process of “fuzzifying” importance rating scores for individual respondents. These scores are then “defuzzified” (ibid.:258) using “some necessary arithmetic” (ibid:260) to arrive at “crisp” performance and importance values for each respondent, for each attribute. These data pairs – directly measured performance values and statistically derived importance values – are then plotted on a standard I-P matrix.

Deng (2008:259) claims that the advantages of his method are that 1) statistically derived importance data reduces the inaccuracy of ‘fuzzy’ importance values, and 2) the data collection questionnaire is much shortened. This is because only performance data are gathered directly from respondents, and multivariate normal correlation is used to implicitly derive the importance values. While Deng has empirically tested his model, there has not been a comparative traditional IPA study to prove his claims that FIPA is superior to traditional IPA. There is thus no conclusive proof that some additional qualitative data cannot make the statistical and mathematical complexities of fuzzy theory redundant.

Tontini and Picolo (2010:570) also express doubt that the method is unfailingly accurate. For these reasons, Deng’s model was not selected as a data interpretation tool for this study.
Improvement gap analysis

Tontini and Picolo (2010) developed their Improvement Gap Analysis (IGA) model to overcome the limitations of traditional IPA. Similar to Deng (2008) they believe that if left unmanipulated, explicitly stated performance and importance opinions may lead to poor or even wrong improvement decisions. They (ibid.:567) claim that attributes with low variation in importance among customers are typically rated as less important than those with significant variation. In other words, respondents with a particular grievance or requirement will rate that attribute with greater importance than they would if they were satisfied or unconcerned. Tontini and Picolo (ibid.) propose that by assessing the performance of one service provider relative to that of its competitors, it is possible to direct resources most effectively to improve competitiveness. The crux of the IGA model is that when the performance of a basic attribute (Fig. 60) is equal to that of a competitor (or the industry in general) and already performing adequately, increasing its performance will not result in a strategic advantage (ibid.:568).

The IGA model requires respondents to compare experiences in a general context (for example, with all supermarket chains) with their experiences in a specific context (e.g. with a new supermarket). As architecture students very often attend only one school, this type of assessment is not feasible. The IGA model is therefore not considered suitable for application in the current study.

The IGA model is an adaptation of an earlier model, the Competitive Analysis of the Improvement Gap (CAIG), developed by Tontini and Silveira (Tontini & Picolo, 2010:570). CAIG compares the performance of organisations relative to each other with the purpose of assessing how one organisation can improve its competitive advantage over the other/s. In the case of the current study, such an analysis is possible as the required data is available, but it is not in line with the research goal of this study. It is of course, a possible basis for future studies based on the data gathered with the measurement tools being developed.

2.8 CHAPTER SUMMARY

This chapter was structured around two main elements. In the first part, an overview of the literature on spaces and places in which learning takes place was followed by a review of the preferred attributes of an on-campus learning environment for students of architecture. The impact of physical design on the quality of places of learning was reinforced. It was proposed that a tendency to design architecture schools without users’ specific needs in mind, is in part the cause of the typical poor quality of spatial facilities in such schools. Debates in the fields relating to the research were discussed.

The second part of the chapter focused on the principles of Post Occupancy Evaluation and Importance-Performance Analysis, which were illustrated with the use of precedent studies. Criticism of IPA, and alternative models was briefly reviewed.

Despite shortcomings (which are further discussed in Chapter 4: Results, Reports and Discussions) it is concluded that despite some shortcomings, POE and IPA are suitable research instruments for achieving the goals of this study.