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Chapter 3: A deeper analysis of the coupling 

capacitance 
 

1. Introduction 

 

In Chapter 2, a term called coupling capacitance was derived and given the 

symbol S. This coupling term was shown to be the dual of the mutual inductance 

term (usually known as M) to a large extent. This is arguably the most significant 

term of the three terms describing the coupled circuit, namely C1, C2 and S, 

primarily because it is a quantity that describes the extent of coupling between 

two separate circuits. In this chapter, a detailed analysis of the coupling term S is 

documented to explore the properties of this term and to compare it with the 

mutual inductance term M where appropriate. Experimental verification of 

specific scenarios is also provided. 

 

2. Coupling Terms 

 

In Chapter 2, the initial derived expression for the coupling capacitance term S 

takes the form shown in (1). Two levels of simplification of this expression were 

developed based on typical operating conditions, with the most simplified version 

fully independent of self-capacitances. Every version however, takes the form 

shown in (1), with f4, f5 and f6 each being a sum of various capacitors, i.e. f4, f5 and 

f6  are all positive terms and their definitions can be found in Appendix A. In 

order to analyse the coupling term in this chapter, the most complicated form (the 

original form) of the coupling term S will be used, so as not to neglect any 

information. 
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3. Analysis 

 

The denominator of the S term is a sum of both self-capacitors and inter-body-

capacitors, and thus cannot have a negative value. It can therefore either assume a 

positive non-zero value or a value equal to zero, and this depends on the physical 

construction of the four-body system. For the denominator to be zero, the four 

body system tends to the case where there is zero coupling between the input and 

output stages. Physically this means placing the two bodies comprising the output 

terminals far from the two bodies comprising the input terminals. We are 

primarily concerned with the coupled case in this dissertation, i.e. where the 

bodies are in proximity to each other such that the capacitances are not negligible, 

so we will only focus on the situation where the denominator is positive and 

greater than zero. In this case, the denominator can be seen purely as a scaling 

factor. 

 

The numerator, however, contains a negative sign. Theoretically then, it is 

possible to design systems that exhibit one of three types of coupling: positive, 

negative and zero. These are discussed below. 

 

3.1 Positive/Negative Coupling 

 

Before designing a system to have either positive or negative coupling, it is 

important to know exactly what the sign between the terms in the numerator of (1) 

represents in a physical system. In order to do this, it is perhaps useful to consider 

the well-known inductive coupled system given by (2). 
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In (2), the M term is the mutual inductance in the system, and shown in Chapter 2 

to be a dual to the S term in (1). However, it is not shown in textbooks to have a 

mathematical form like S in (1). Despite this, it can also have a positive or 

negative polarity and this arises from the physical winding direction of the coils 

comprising the system.  

 

The sign of the M term defines the polarity of the induced voltage with reference 

to the applied voltage, whilst maintaining positive current flow, i.e. if M is 

positive, then the induced voltage will have the same polarity as the applied 

voltage, whereas in the negative case the voltages have the opposite polarity. This 

is shown in Figure 1 and Figure 2. In the figures the red arrows show the defined 

positive current direction, and the red polarity markings show the defined positive 

voltage polarity. The blue polarity markings show the polarity of the induced 

voltage with reference to the applied voltage, and this corresponds to the sign of 

M. The placement of the dots is often used in circuit theory to denote the sign of 

M. 

 

Figure 1: Positive mutual inductance 
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Figure 2: Negative mutual inductance 

 

In order to physically achieve a negative value for M, it entails the winding of the 

secondary coil in a different direction to that of the primary coil, consequently 

changing the direction of flux coupling. However, due to the electrical isolation 

between the input and output, if an oppositely polarised voltage is required at the 

output, the terminals of the output can simply be interchanged without having any 

effect on the coupled circuit. The only case where the sign of the M term matters 

therefore is the case of where there is no electrical isolation between the input and 

output, for example in the autotransformer. In this case both the load and supply 

have a common reference, and the terminals of the output cannot be as easily 

swapped around to give an oppositely polarised voltage whilst maintaining the 

common reference in the supply and load circuits. 

 

Returning to the capacitive case, the coupled system is given by (3). 
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As a dual to the inductive case, in (3), the sign of the S term defines the direction 

of the induced current with reference to the applied current, whilst maintaining 
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positive voltage polarity i.e. if S is positive, then the induced current will have the 

same direction as the applied current, whereas in the negative case the currents 

have opposite directions. This is shown in Figure 3 and Figure 4. Similar to 

before, the red polarity markings show the defined positive voltage polarity, and 

the red arrows show the defined positive current direction. The blue arrows show 

the direction of the induced current with reference to the applied current, and this 

corresponds to the sign of S. The placement of the dots corresponds to the sign of 

S. 

 

Figure 3: Capacitive Coupling Positive 

 

 

Figure 4: Capacitive Coupling Negative 
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The dot polarity described for the inductive case can therefore be extended to the 

capacitive case. Based on the expression for S, it is evident that a negative value 

for S can indeed be obtained. The sign of S can therefore be likened to the 

winding direction in an inductively coupled system. By modifying the sign of S, a 

designer can change the “direction” of the electric flux coupling, consequently 

changing the direction of induced current flow, assuming constant voltage 

polarity.  

 

It was shown in the inductive case that the winding direction was irrelevant in the 

case of full electrical isolation between the input and output, due to the lack of a 

common reference point between the two stages. This is different to the capacitive 

case, however, as it was shown in Chapter 2 that the reference at infinity forms a 

common reference between the input and the output of the network, i.e. the 

capacitive coupling network always has a common reference. 

  

Taking the above into account, it is the fact that the system behaves like an 

electrically isolated system that is of great importance. This is because even 

though current can flow through the self-capacitors to infinity, the differential 

current requirement placed at the terminals means that the same current will have 

to flow back from infinity into the circuit. This is shown by the red arrows in 

Figure 5.  
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Figure 5: Current flow through the self-capacitors 

 

From a terminal perspective, then, the input and output terminals of the network 

appear to be electrically isolated from each other. We will refer to this type of 

electrical isolation as a pseudo-electrical isolation from this point forward. The 

output terminals can therefore easily be switched around to give a different 

polarity at the output if required, because at a circuit level, the supply and load 

circuits do not have a common reference. The sign of the S term is therefore 

irrelevant in the capacitively coupled system just as it is in the inductive system, 

despite the fact that the capacitive system is not electrically isolated in the true 

sense. In terms of design, the magnitude of the term is the only item of 

significance.  

 

It was shown earlier that the sign of the mutual inductance term M becomes 

relevant in the case of a common reference between the input and output circuits. 

It is shown in Chapter 4 that the physical connection of a common reference 
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between the input and output is not allowed by the capacitively coupled circuit 

model as it causes a violation of the balanced currents condition at the terminals 

of the network. Since this connection is not allowed, i.e. the model is not defined 

in this case; no further conclusion can be made as to the significance of the sign of 

S.  

 

Based on the above analysis, it can be concluded that the sign of S holds no real 

significance, but instead it is only the magnitude that is of any importance. This 

conclusion is valid for as long as the circuit is operated in a region for which the 

model is valid, i.e. with balanced currents at the input and output.  

 

The following experiments were done in order to validate the capacitive coupling 

model derived in Chapter 2. The first experiment is to test the model’s validity for 

an arbitrary setup, followed by experiments with coupling parameters which were 

designed to achieve a specific output. These include a system that exhibits 100 % 

coupling followed by a system that exhibits zero coupling. 

 

4. Experimental Validation – Arbitrary Coupling 

 

In order to verify the validity of the model for a system with non-zero coupling, a 

parallel-plate system consisting of four plates was constructed. A parallel-plate 

geometry was chosen because the mathematical expression for capacitance 

between parallel plates is very well defined in textbook theory. The setup 

comprised of a four-layer PCB with arbitrary plate sizes and 0.1 mm thick FR4 as 

the dielectric between the plates. The setup is shown in Figure 6 with a schematic 

in Figure 7.  
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Figure 6: The test structure 

 

 

 

Figure 7: The test structure schematic 

 

The geometrical properties of the structure are given in Table 1. As shown in the 

schematic, length is defined as the horizontal distance and breadth defined as the 

length into the page. The quantity d is the vertical distance between plates. The 

subscripts are used to show which geometrical dimensions correspond to specific 

capacitors, e.g. l12 is the horizontal length of the overlap between plates 1 and 2, 

b12 is the distance into the page of overlap between plates 1 and 2, and dxx is the 

vertical distance between any two plates. 
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Table 1: Parameters for test structure 

Parameter Magnitude 

l12 0 cm (no overlap) 

l13 3.9 cm 

l14 3.9 cm 

l23 3.6 cm 

l24 6 cm 

l34 2.1 cm 

b12 0 cm 

b13 3.8 cm 

b14 4.3 cm 

b23 3.8 cm 

b24 4.8 cm 

b34 3.8 cm 

dxx 0.1 mm 

�0 8.854 pF/m 

�D ~4 

 

In order to use the full model, the self-capacitances of the individual bodies, 

namely C11, C22, C33 and C44 need to be measurable. To achieve this, the parallel-

plate setup was put into a Faraday cage – the body of the cage forming the “earth” 

terminal.  

 

Using the physical dimensions in Table 1, it was possible to theoretically 

determine the six capacitances definable between the conductors. This was 

achieved by using standard parallel plate capacitor theory and the capacitors are 

shown in Table 2. The self-capacitance of each of the bodies cannot be easily 

predicted using geometrical parameters and thus no prediction was made. All the 

capacitor values were then verified experimentally using the measurement routine 

in Appendix B and this is shown in Table 2. 
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Table 2: Capacitor sizes for test layout 

Capacitor 

Name 

Capacitance Measured  Capacitance Predicted 

(nF) 

C12 0.003 nF 0.000 

C13 1.278 nF  1.262 

C14 1.524 nF 1.427 

C23 0.264 nF 0.410 

C24 2.494 nF 2.390  

C34 0.341 nF 0.324  

C11 0.000 pF No Prediction 

C22 12.00 pF No Prediction 

C33 12.00 pF No Prediction 

C44 1.225 pF No Prediction 

 

It is clear from Table 2 that there is good agreement between the predicted and 

measured capacitances. The differences can be attributed to fringing flux and 

inaccuracies in the construction process. 

 

Putting the measured capacitors from Table 2 into the expressions in Appendix A, 

the values for C1, C2 and S in the capacitive coupling model were calculated. The 

values for C1 and C2 were then measured directly using the routine in Appendix B. 

Using two separate load resistors, the value for S was inferred according to the 

routine detailed in Appendix B. All calculated and measured values are shown in 

Table 3. 

 

Measurements were taken using an Agilent precision LCR-meter for increased 

accuracy, with excitation at 1V 1kHz, to minimise inductive effects.  
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Table 3: Circuit Parameters for Arbitrary Coupling 

Parameter Measured 

Capacitance (nF) 

Calculated 

Capacitance (nF) 

Percentage 

Discrepancy -� 1.394 1.394 ��� -  1.458 1.459 ������� � -0.499 (inferred using 

50 k� load) 

-0.499 

��� 

� -0.499 (inferred using 

100 k� load) 

 

�

 

It is clear from Table 3 that the capacitive coupling model is an extremely 

accurate model of the electric field coupling which occurs in a four-body system.  

There is almost no discrepancy between the predicted and measured values within 

the resolution of the experiment. 

 

This level of accuracy was aided by the controlled environment in which the test 

structure was placed, as well as the fact that all electric field effects were taken 

into account, i.e. the self-capacitances of the various bodies were not neglected. 

An experiment where the structure was not placed in a Faraday Cage and the self-

capacitors were neglected is discussed in a later section. 

 

5. Experimental Validation – 100 % Coupling 

 

In Chapter 4, an expression describing the extent of coupling between the input 

and output of a coupled circuit is developed. This expression is given in (4). 

 

� � /01-�- 2 				3 4 /0 4 5       (4) 
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Given this expression, it appears to be theoretically possible to construct a system 

such that k’ = 1, i.e. a system which exhibits 100 % coupling. In order to do this, 

the process shown in Figure 8 was used, whereby a structure was designed such 

that only capacitors C13 and C24 would be significant. In order to do this, a circuit 

was set up using two capacitor elements in the layout of the bottom diagram in 

Figure 8. The magnitudes of these capacitors are shown in Table 4. 

Table 4: Capacitor Values 

Capacitor Name Capacitance (nF) 

C13 10 

C24 10  
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Figure 8: Circuit with 100 % Coupling 

 

For increased accuracy, the circuit was placed in a Faraday cage to allow the self-

capacitors to be easily measured. Following the measurement procedure in 

Appendix B, all capacitances were measured and this shown in Table 5. 
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Table 5: Capacitor values for circuit with 100 % Coupling 

Capacitor Name Capacitance Measured  

C12 2.500 pF 

C13 10.02 nF 

C14 0.890 pF 

C23 0.890 pF 

C24 9.991 nF 

C34 1.500 pF 

C11 3.240 pF 

C22 1.500 pF 

C33 3.240 pF 

C44 1.500 pF 

 

Putting the measured capacitors from Table 5 into the expressions in Appendix A, 

the values for C1, C2 and S in the capacitive coupling model were calculated. The 

values for C1 and C2 were then measured directly using the routine in Appendix B. 

Using two separate load resistors, the value for S was inferred according to the 

routine detailed in Appendix B. All calculated and measured values are shown 

in Table 6. 

Table 6: Circuit Parameters for 100 % Coupling 

Parameter Measured Capacitance 

(nF) 

Calculated 

Capacitance (nF) 

Percentage 

Discrepancy -� 5.005 nF 5.007 nF ������� -  5.004 nF 5.006 nF ������� � 5.002 nF (inferred using 

10 M� load) 

5.002 nF 

��� 

� 5.002 nF (inferred using 

560 k� load) 

 

�
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In Table 6 we see very good agreement between predicted and measured results. 

Using the parameters in Table 6 we can calculate the extent of coupling given by 

k’ in the expression in (4). This is shown in (5). 

 

/6 � 71�)�+ � 89:: ;<=89::8;<>89::?;< � 39@@@     (5) 

 

From (5) it is clear that the designed system exhibits close to 100 % coupling.  

 

6. Zero Coupling 

 

The coupling term S in a capacitive system can be made to have a zero magnitude. 

This is a system with bodies arranged such that the voltages and currents sum in 

such a way that despite the capacitance between the bodies, there is no apparent 

coupling between the input and the output. In order to achieve this, the numerator 

of the S term needs to be made equal to zero, i.e. based on (1), the relationship in 

(6) must hold. 

 �?�-� A �8�-� � 3        (6) 

 

The mathematics does not pose any restriction on a design which allows for (6) to 

hold, so the only possible limiting factor is the geometrical structure. A coupled 

system was designed to show that it is indeed possible, and this is discussed in the 

following section. 

 

6.1 Experimental Validation – Zero Coupling 

 

The aim of this design was a proof of concept rather than optimisation for a 

specific application. There are many applications for a zero-coupled capacitive 

system, and some are discussed concisely in Chapter 5.  
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Similar to the previous structure with arbitrary coupling, a parallel plate layout 

was chosen for simplicity. A schematic for the structure is shown in Figure 9. 

 

 

Figure 9: Schematic for structure with zero coupling 

 

Using an iterative design procedure, the parameters shown in Table 7 were 

obtained to give a system with zero coupling. The subscripts are used to show 

which geometrical dimensions correspond to specific capacitors, e.g. l12 is the 

horizontal length of the overlap between plates 1 and 2, bxx is the distance into the 

page of overlap between any two plates, and dxx is the vertical distance between 

any two plates.  
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Table 7: Parameters for system with zero coupling 

Parameter Magnitude 

l12 1 cm 

l13 2 cm 

l14 15 cm 

l23 2 cm 

l24 3 cm 

l34 0 cm (no overlap) 

bxx 10 cm 

dxx 0.01 mm 

�0 8.854 pF/m 

�D ~4 

 

In this experiment, the test structure was not placed in a Faraday cage, and thus 

the self-capacitances of the bodies could not be easily measured. It is shown later 

that in this particular case, the neglect of the self-capacitors does not have a major 

effect on the results. 

 

Using the routine in Appendix B which neglects self-capacitances, the magnitudes 

of the six inter-body capacitors were measured and these are shown in Table 8. 

 

Table 8: Capacitor sizes for zero-coupled layout 

Capacitor Name Measured Capacitance (nF) 

C12 0.094 

C13 0.457 

C14 0.933 

C23 0.403 

C24 0.741 

C34 0.006 
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Based on the measured capacitances, the expression in (6) is very close to zero as 

shown in (7). 

 �?�-� A �8�-� � BC9BD E 53� � F      (7) 

 

Using the measured capacitors, the values for C1, C2 and S were determined, and 

these are shown in Table 9. These parameters were also experimentally 

determined using the routine described in Appendix B. The experimental values 

are also provided in Table 9. 

 

Table 9: Circuit Parameters for zero-coupled layout 

Parameter Measured Capacitance (nF) Calculated 

Capacitance  

Percentage 

Discrepancy -� 0.720 nF 0.721 nF ��	���� -  0.571 nF 0.574 nF ��
�
�� � 15.62 pF (inferred using 220 k� 

load) 

14.52 pF 

��� 

 

It is clear from Table 9 that there is very good agreement between the values 

predicted using the model and the values which were measured directly. Although 

there is a 7 % discrepancy in the S parameter, this is considered acceptable as the 

order of magnitude of S is much smaller than that of the parameters C1 and C2. 

This slightly higher error level can be attributed to the difficulty of the inferred 

measurement – since S is so small (designed to be zero), the input impedance 

barely changes when a load is applied to the output. At this resolution, parasitic 

effects such as temperature drift become apparent and may have affected the 

measurement slightly. 

 

Since the capacitive coupling model used in this experiment was the simplified 

model which neglects self-capacitors, the high level of agreement between 

predicted and measured results show that in this case the neglect of self-capacitors 
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is a valid assumption. Evidently the relative magnitudes of the self-capacitors are 

much smaller than the inter-body capacitors, and this is achieved by the 

construction of the structure where the bodies had large overlap area and small 

inter-body distance. 

 

Using expression (4) to quantify the coupling of this system, we get (8). 

 

/6 � 71�)�+ � �89F G<=:9H :;<>:98H�;< � 393IJ     (8) 

 

Based on the results above, it is clear that it is indeed possible to construct a 

system which exhibits close to zero coupling as predicted by the model.  

 

7. Conclusion 

 

An in-depth analysis was done into the properties of the coupling capacitance S 

which forms part of the capacitive coupling network developed in Chapter 2. It 

was shown that although a designer can obtain positive, negative and zero 

coupling with a four-body system, there is no real significance in the sign of S as 

the output terminals can easily be switched to obtain a different voltage polarity. It 

was also shown that this holds regardless of the fact that the system is not fully 

electrically isolated, since it behaves like an electrically isolated system when the 

condition of balanced currents is enforced at the input and output terminals.  

 

Experimental verification of three capacitively coupled systems were documented. 

These included a case with arbitrary coupling between the input and output, a case 

with close to 100 % coupling and a case with close to zero coupling. All 

experimental evidence showed excellent agreement with the results predicted by 

the capacitive coupling circuit model. This shows that the model can indeed be 

used to describe the electrostatic behaviour of an arbitrary four body system.  

 


