Declaration

I declare that this dissertation is my own, unaided work. It is being submitted for the Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

...
Signature of candidate

....................... day of 2012
Abstract

Microwave-assisted pre-treatment is a fast, selective and volumetric method used to activate catalysts. The advantages of using microwave radiation emanate from its ability to transfer energy directly to the reactive species (called molecular heating), thereby promoting transformations that are not possible using conventional heating. In this work the unique microwave heating properties have been used for the modification of iron-based Fischer-Tropsch catalysts in the solid state. The effect of the potassium loading on the microwave effect is presented.

A series of unsupported and silica supported iron FT catalysts were prepared using the continuous precipitation and the incipient wetness impregnation techniques. The amount of the potassium promoter was varied from 0.2 to 1.5 wt. % in the catalysts. Microwave pre-treatment (10 seconds, 450 W) was then done prior to catalyst characterization and evaluation. The bulk properties of the catalysts were characterized using XRF, BET, TPR, XRD, TEM and EDS techniques and the surface properties were determined by temperature programmed surface reaction-mass spectrometry (TPSR-MS). The results showed that microwave pre-treatment modified the surface but not the bulk properties of the K/Fe and the K/Fe/SiO$_2$ catalysts. Catalytic properties of the catalysts were evaluated using FTS and increases in the olefin selectivity and the α value were found with the microwaved catalysts. Differences in the data recorded for the microwaved and the non-microwaved samples were taken to be induced by microwave pre-treatment since all other parameters were kept constant in all reactions.

TPSR profiles (methane profiles) were used to study the carbon chemisorption behaviour of the catalyst surface. Peak areas were used to determine the type and amount of carbon species deposited on the catalyst. Microwave pre-treatment was seen to increase the amount of methane produced in the TPSR experiments, indicative of an increase in the number of active sites. The increase was observed to be dependant on the potassium loading in the catalyst. It is suggested that microwave modification promotes the migration of potassium ions to the surface of the catalyst. The effects of the microwave irradiation time and the catalyst preparation method were also investigated.
To my parents Eve Dzelewe Dlamini

And

the late Morris Mehlwengane Dlamini

And the rest of my family members

I love you all
Acknowledgements

My sincere gratitude goes to the following individuals and organizations:

My supervisors, Professor Mike S. Scurrrell and Professor Neil J. Coville, for their hospitality, enthusiasm, scientific input and mentorship throughout the project

The Fischer-Tropsch research group: Prof. L. Jewell, Dr. H. Xiong, Mahluli Moyo, Thabiso Phadi, Myrriam Motchelano and Ebrahim Mohiuddin

Dr. L. Linganiso for orientation on the project

Basil Chassouls and Tsepo for technical support

CATOMMAT research group for the fruitful discussions we had

The Wits School of Chemistry for providing research facilities

The DST/NRF Centre of Excellence in Catalysis (C*change) for funding

The microscopy unit for helping me with TEM and EDS analysis

My family for all the support they have given to me

Mphumangiphele Royal Kraal

University of the Witwatersrand

University of Swaziland

The Almighty God, with whom all things become possible
Presentation at seminars and conferences

Poster presentations

- University of the Witwatersrand Postgraduate Symposium 2009, Johannesburg
- CATSA Conference, November 2009, Cape Town
- University of the Witwatersrand Postgraduate Symposium 2010, Johannesburg
- CATSA Conference, November 2010, Bloemfontein

Oral presentations

- CATOMMAT Seminar, July 2009, Room C312, Humphrey Raikes Building, Wits University, Johannesburg
- C*change Symposium, November 2009, Cape Town
- CATOMMAT Seminar, April 2010, Room C312, Humphrey Raikes Building, Wits University, Johannesburg
- Fischer-Tropsch Symposium, May 2010, Richard Ward Building, Wits University, Johannesburg
- C*change Symposium, November 2010, Bloemfontein
- SACI Young Chemist Symposium, November 2010, University of Johannesburg

Honours and prizes won

- November 2010: Awarded best (1st place) MSc oral presentation at the South African Chemical Institute (SACI) Young Chemist Symposium hosted by SACI and the Royal Society of Chemistry at the University of Johannesburg
- Co-shared the last man standing award, CATSA 2009
Publications arising from this work

1. M. W. Dlamini, M. S. Scurrell, N. J. Coville, “Temperature programmed surface reaction as a means of investigating the microwave effect in precipitated Fischer-Tropsch synthesis catalysts” To be submitted

2. M. W. Dlamini, M. S. Scurrell, N. J. Coville, “The effect of potassium on microwave modified silica-supported Fischer-Tropsch synthesis catalysts” To be submitted
Contents

Declaration i
Abstract ii
Dedications iii
Acknowledgements iv
Presentations at seminars and conferences v
Publications arising from this work vi
Table of contents vii
List of Tables xiii
List of Figures xv
Abbreviations and acronyms xxii

Table of contents

Chapter 1: Microwave chemistry 1
1.1 Microwave heating 1
 1.1.1 Introduction 1
 1.1.2 Properties of microwave heating 3
 1.1.3 Fundamentals of microwave heating 5
 1.1.3.1 Dipolar polarization 5
 1.1.3.2 Ionic conduction 7
 1.1.3.3 Interfacial polarization 8
 1.1.4 Microwave irradiation methods 8
 1.1.4.1 Single-mode microwave devices 8
 1.1.4.2 Multi-mode microwave devices 10
 1.1.5 Temperature measurement in a microwave field 10
1.1.5.1 Shielded thermocouples 11
1.1.5.2 Infrared sensors 12
1.1.5.3 Fibre optic sensors 13
1.2 Microwave-enhanced chemistry 15
 1.2.1 Microwave-assisted organic reactions 15
 1.2.2 Microwaves in nanomaterials chemistry 16
 1.2.3 Microwaves in catalysis 19
 1.2.3.1 Oxidative coupling of methane to higher hydrocarbons 19
 1.2.3.2 Decomposition of hydrogen sulfide 20
 1.2.3.3 Fischer Tropsch synthesis 22
1.3 Concluding remarks 24
1.4 Aims and objectives 25
1.5 References 27

Chapter 2: Literature review: Fischer-Tropsch synthesis 31
2.1 History and background information 31
2.2 Industrialization of the Fischer-Tropsch process 32
2.3 The Fischer-Tropsch chemistry 34
 2.3.1 Reactions 34
 2.3.2 Proposed mechanisms 36
 2.3.2.1 Surface carbide mechanism 36
 2.3.2.2 Surface enol mechanism 37
 2.3.2.3 CO insertion mechanism 37
 2.3.2.4 Alkenyl mechanism 39
 2.3.3 Product selectivity 41
2.4 FT reactor technologies 43
 2.4.1 Fixed bed tubular reactor 44
2.4.2 Fluidized reactor 45
2.4.3 Slurry bubble column reactor 45

2.5 FTS catalysts 46
2.5.1 Active metals in FTS 46
 2.5.1.1 Iron 47
 2.5.1.2 Cobalt 48
2.5.2 The use of promoters 48
 2.5.2.1 Structural promoters 49
 2.5.2.2 Chemical promoters 49
 2.5.2.2.1 The effects of potassium in FTS 50

2.6 References 52

Chapter 3: Experimental methods 57

3.1 Catalyst preparation 57
 3.1.1 Unsupported catalysts 57
 3.1.2 Silica supported catalysts 57
 3.1.3 Microwave pre-treatment of catalysts 58

3.2 Catalyst characterization 59
 3.2.1 BET analysis by N₂ physisorption 59
 3.2.2 X-ray fluorescence (XRF) 59
 3.2.3 Transmission electron microscopy (TEM) 59
 3.2.4 Energy dispersive X-ray spectroscopy (EDS) 60
 3.2.5 Temperature programmed reduction (TPR) 60
 3.2.6 Powder X-ray diffraction (PXRD) 61
 3.2.7 Temperature programmed surface reaction-mass spectrometry (TPSR-MS) 62
 3.2.7.1 Calibration of the flame ionization detector using methane 64

3.3 Catalyst evaluation 65
3.3.1 Fischer-Tropsch reactor studies

3.3.1.1 Gases

3.3.1.2 FT reactor setup

3.3.1.3 Activity measurements

3.3.1.4 Product analysis

3.3.1.5 Mass balance calculations

3.4 References

Chapter 4: Solid-state microwave modification of precipitated Fischer-Tropsch catalysts: The effect of potassium

4.1 Introduction

4.2 Experimental

4.3 Results and discussion

4.3.1 Transmission electron microscopy (TEM)

4.3.2 Porosity studies

4.3.3 X-ray diffraction (XRD)

4.3.4 Temperature programmed reduction (TPR)

4.3.4.1 Non-microwave pre-treated samples

4.3.4.2 Microwave pre-treated samples

4.3.5 Temperature programmed surface reaction-mass spectrometry (TPSR-MS)

4.3.5.1 Blank run

4.3.5.2 The effect of potassium (no microwave pre-treatment)

4.3.5.3 The microwave pre-treatment effect

4.3.5.4 The effect of the MW irradiation time

4.4 Conclusion

4.5 References
Chapter 5: Microwave modification of silica supported Fischer-Tropsch catalysts: The effect of potassium

5.1 Introduction 105
5.2 Experimental 106
5.3 Results and discussion 106
 5.3.1 X-ray fluorescence (XRF) 107
 5.3.2 Transmission electron microscopy (TEM) 108
 5.3.3 BET analysis by N₂ physisorption 109
 5.3.4 Temperature programmed reduction (TPR) 111
 5.3.5 Temperature programmed surface reaction-mass spectrometry (TPSR-MS) 114
 5.3.5.1 Blank run 114
 5.3.5.2 The effect of potassium 115
 5.3.5.3 The microwave pre-treatment effect 117
 5.3.5.4 The effect of the MW irradiation time 126
 5.3.5.4.1 Temperature programmed reduction 126
 5.3.5.4.2 Temperature programmed surface reaction 128
 5.3.5.5 Microwave effect on the catalyst crystallite size: DP vs. IWI 129
 5.3.5.6 Methanator studies 132
 5.3.5.6.1 The effect of microwave pre-treatment 133
 5.3.6 Fischer-Tropsch synthesis 137
 5.3.6.1 The effect of potassium 137
 5.3.6.2 The effect of microwave pre-treatment 140
 5.3.6.3 The effect of the MW irradiation time 144
5.4 Conclusions 146
5.5 References 147

Chapter 6 General conclusions and recommendations 149
Appendices

Appendix A – TEM images of the catalysts

Appendix B – EDS spectrum

Appendix C – TPSR profiles
List of Tables

Chapter 1
Table 1.1 Loss tangents \((\tan \delta)\) of selected solvents (2.5 GHz, 20 °C) 7

Chapter 2
Table 2.1 Currently operating and announced FT plants, together with the industrial companies and countries involved, the catalyst technology used, the expected production levels (barrels per day, bpd) and the expected year of start-up 33
Table 2.2 Typical product selectivities from two Sasol processes 43
Table 2.3 Overview of characteristics of Ni-, Fe-, Co- and Ru-based FT catalysts 47

Chapter 4
Table 4.1 Average iron particle sizes in the catalysts with different loadings of potassium. Microwave pre-treatment conditions: 450 W power level, 10 seconds 77
Table 4.2 Textural properties of the catalyst as prepared before and after microwave pre-treatment 80
Table 4.3 Fe\textsubscript{2}O\textsubscript{3} crystallite sizes as determined using the Scherrer equation. Microwave pre-treatment conditions: 450 W power level, 10 seconds 83
Table 4.4 Reduction temperatures for the H\textsubscript{2}-TPR profiles shown in Figure 4.8 and Figure 4.9. Microwave pre-treatment conditions: 450 W power level, 10 seconds 85
Table 4.5 Relative percentage compositions of methane produced from the various carbon species when different weight percentages of potassium are loaded in the catalysts. These values were obtained in the non-microwaved samples 93
Table 4.6 A comparison of the relative percentage composition before and after microwave pre-treatment. Microwave pre-treatment conditions: 450 W power level, 10 seconds

Table 4.7 Reduction temperatures for the H₂ TPR profiles shown in Figure 4.20

Chapter 5

Table 5.1 Elemental compositions of the catalysts as determined by XRF

Table 5.2 Textural properties of the silica supported catalysts before and after microwave pre-treatment

Table 5.3 Reduction temperatures for the various silica supported catalysts

Table 5.4 Peak parameters and the total amount of CH₄ produced from the catalysts

Table 5.5 Peak parameters of individual carbon species and total CH₄ peak areas from the TPSR profiles of 0.2K/10Fe/SiO₂, 0.5K/10Fe/SiO₂, 0.7K/10Fe/SiO₂, 1.0K/10Fe/SiO₂ and 1.5K/10Fe/SiO₂-MW catalysts prior and after microwave pre-treatment

Table 5.6 TPR reduction temperatures obtained from Figure 5.13

Table 5.7 Total methane produced on the TPSR experiments using the 1.0K/10Fe/SiO₂ catalyst that was microwave pre-treated for varying periods

Table 5.8 Total methane produced values that were used to plot Figure 5.15

Table 5.9 Peak areas obtained when TPSR is performed via the methanator using a 0.7K/10Fe/SiO₂ catalyst

Table 5.10 Peak areas obtained when TPSR is performed via the methanator using a 1.0K/10Fe/SiO₂ catalyst

Table 5.11 Effect of potassium content on the catalyst activity and selectivity

Table 5.12 Effect of potassium content and microwave pre-treatment on catalyst activity and selectivity

Table 5.13 The effect of the MW irradiation time on FT activity and selectivity
List of Figures

Chapter 1

Figure 1.1 The electric and magnetic components of microwaves 2
Figure 1.2 Schematics of sample heating by (a) conduction and (b) microwaves 4
Figure 1.3 Generation of a standing wave pattern 9
Figure 1.4 Comparison of temperature measurement with different sensors in the temperature range: 28 °C to 65 °C. The fibre optic sensor (FO) and the metal sensor (MS) [shielded thermocouple] are placed directly into the stirred medium and their precision is ± 2 K. The IR sensor measures the temperature on the outer surface of the reactor 13
Figure 1.5 A scheme showing the production of aryl vinyl ketones from a corresponding quaternary ammonium salt 16
Figure 1.6 TEM images of silver nanoparticles produced using (a) microwave and (b) oil bath heating methods. Insert: The corresponding particle size distributions for the different heating methods 18
Figure 1.7 H₂S conversion as a function of temperature for (A) mechanically mixed catalyst and (B) an impregnated catalyst, under microwave and conventional heating conditions 21
Figure 1.8 SEM images of Co/SiO₂ catalysts (20kV, x4,500): (a) Silica support, (b) conventional heating catalyst and (c) microwave irradiation catalyst 23

Chapter 2

Figure 2.1 FTS product distribution as predicted by the ASF kinetic model 42
Figure 2.2 Possible reactors for FTS: (a) slurry bubble column reactor; (b) multi-tubular trickle bed reactor; (c) circulating; (d) fluidized-bed

Chapter 3

Figure 3.1 The Micromeritics AutoChem II 2920 chemisorption analyser 61
Figure 3.2 The experimental setup used for TPSR experiments 63
Figure 3.3 A methane calibration curve achieved by injecting volumes between 25 and 150 µL of 100% CH₄. Injections were done using a Hamiltonian-type gas syringe 64
Figure 3.4 The two online GCs that were used for the analysis of gaseous products. The GC on the left is fitted with an FID detector and the one on the right is fitted with a TCD detector 66
Figure 3.5 A schematic representation of the FT reactor setup 66
Figure 3.6 A trace for the calibration gas as recorded by the TCD GC 68
Figure 3.7 A trace for the calibration gas as recorded by the FID GC 68
Figure 3.8 A trace for the FTS products as recorded by the TCD GC 69
Figure 3.9 A trace for the FTS products as recorded by the FID GC 69

Chapter 4

Figure 4.1 TEM images of (a) 0.5 K/Fe and (b) 0.7 K/Fe catalysts. The corresponding particle size distributions are shown in (c) and (d) 75
Figure 4.2 TEM images of (a) 0K/Fe-MW and (b) 0.5K/Fe-MW catalysts. These samples were microwaved for 10 seconds (450 W). The corresponding particle size distributions are shown in (c) and (d) 76
Figure 4.3 Adsorption-desorption isotherms for unsupported 0K/Fe (a) without microwave pre-treatment and (b) after microwave pre-treatment. Microwave pre-treatment conditions: 450 W power level, 10 seconds. Adsorption curves are shown in black whereas desorption curves are shown in red 78
Figure 4.4 Adsorption-desorption isotherms for unsupported 0.7K/Fe catalysts (a) without microwave pre-treatment and (b) after microwave pre-treatment. Adsorption curves are shown in black whereas desorption curves are shown in red.

Figure 4.5 Adsorption-desorption isotherms for unsupported 1.5K/Fe catalysts (a) without microwave pre-treatment and (b) after microwave pre-treatment. Adsorption curves are shown in black whereas desorption curves are shown in red. Microwave pre-treatment conditions: 450 W power level, 10 seconds.

Figure 4.6 Pore size distribution of precipitated K/Fe catalysts, with potassium loadings of 0.2, 1.0 and 1.5 weight percentage. These pore size distributions were obtained from non-microwaved samples.

Figure 4.7 X-ray diffraction patterns for the various precipitated catalysts before microwave pre-treatment.

Figure 4.8 Reduction profiles of K/Fe-type catalysts prior to microwave pre-treatment, with potassium loadings of 0.2, 0.5, 0.7 and 1.5 wt. %.

TPR conditions: 5% H2/N2, 25 – 800 °C, 10 °C/min.

Figure 4.9 TPR profiles of 0.2 K/Fe-MW, 0.5 K/Fe-MW, 0.7 K/Fe-MW and 1.5 K/Fe-MW catalysts after microwave pre-treatment. Microwave pre-treatment conditions: 450 W, 10 seconds.

Figure 4.10 Increases in the first reduction temperature (Fe3+ → Fe2+) with an increase in the loading of potassium, as seen in TPR.

Figure 4.11 Effluent mole fractions of the components CH4, H2O (m/z = 17), H2O (m/z = 18), CO2 and CO formed during the TPSR experiment using the 1.5 K/Fe catalyst.

Figure 4.12 Methane profiles recorded during the TPSR experiment using (a) an FID detector and (b) a QMS spectrometer for the 1.5 K/Fe catalyst before MW.
Figure 4.13 TPSR profiles for CH$_4$ evolution for 0K/Fe, 0.2K/Fe, 0.5K/Fe, 0.7K/Fe, 1.0K/Fe and 1.5K/Fe catalysts. These profiles were recorded before MW treatment. The fitted Gaussian curves are shown as green dotted lines.

Figure 4.14 TPSR profiles for CH$_4$ evolution for 0K/Fe-MW, 0.2K/Fe-MW, 0.5K/Fe-MW, 0.7K/Fe-MW, 1.0K/Fe-MW and 1.5K/Fe-MW catalysts. Microwave pre-treatment conditions: 450 W power level, 10 seconds. The fitted Gaussian curves are shown as green lines.

Figure 4.15 TPSR profiles of (a) 0.5K/Fe and (b) 0.5K/Fe-MW showing the individual peak contributions from the various carbon species.

Figure 4.16 TPSR profiles of (a) 0.7K/Fe and (b) 0.7K/Fe-MW showing the individual peak contributions from the various carbon species.

Figure 4.17 TPSR profiles of (a) 1.0K/Fe and (b) 1.0K/Fe-MW showing the individual peak contributions from the various carbon species.

Figure 4.18 TPSR profiles of (a) 1.5K/Fe and (b) 1.5K/Fe-MW showing the individual peak contributions from the various carbon species.

Figure 4.19 Percentage increases in methane evolution induced by microwave pre-treatment for the various loadings of potassium.

Figure 4.20 Reduction profiles for the 0.7K/Fe catalyst that was microwaved for (a) 0 seconds, (b) 10 seconds and (c) 40 seconds.

Figure 4.21 Total peak areas corresponding to methane evolved from the 0.7K/Fe-FW catalyst. The catalyst was irradiated for 0 seconds, 10 seconds, 20 seconds, 40 seconds, 2 minutes, 5 minutes and 10 minutes.

Chapter 5

Figure 5.1 TEM images of 0.2K/10Fe/SiO$_2$ and 0.7K/10Fe/SiO$_2$ catalysts.
Figure 5.2 A typical EDS spectrum of a K/Fe/SiO$_2$ catalyst confirming the presence of iron

Figure 5.3 BET surface areas of microwave pre-treated and non- pre-treated catalysts of different loadings of potassium

Figure 5.4 H$_2$-TPR profiles for the catalysts of the composition xK/10Fe/SiO$_2$, x varies from 0 to 1.5 wt. %. These profiles were recorded before MW pre-treatment

Figure 5.5 A comparison of typical TPSR profiles obtained from an FID (—) and a QMS (—) that were performed simultaneously when using a silica supported catalyst

Figure 5.6 TPSR profiles of x K/10Fe/SiO$_2$-type catalysts, x varies from 0 to 1.5 wt. %

Figure 5.7 The effect of microwave pre-treatment on supported FT catalysts with varying promoter loadings

Figure 5.8 TPSR profiles of (a) 0.2K/10Fe/SiO$_2$ and (b) 0.2K/10Fe/SiO$_2$-MW catalysts. Pre-treatment conditions: 10 seconds, 450 W

Figure 5.9 TPSR profiles for 0.7K/10Fe/SiO$_2$ and 0.7K/10Fe/SiO$_2$-MW catalysts. Microwave pre-treatment conditions: 10 seconds duration, 450 W power level

Figure 5.10 TPSR profiles of 1.0K/10Fe/SiO$_2$ before and after microwave (MW) pre-treatment. Pre-treatment conditions: 10 seconds, 450 W

Figure 5.11 TPSR profiles of 1.5 K/10 Fe/SiO$_2$ before and after microwave (MW) pre-treatment. Pre-treatment conditions: 10 seconds, 450 W

Figure 5.12 Comparisons of methane formed in microwaved and non-microwaved samples as a function of potassium loading. All the catalysts are supported on silica and they contain 10 wt. % Fe

Figure 5.13 TPR profiles for a 1.0K/10Fe/SiO$_2$ catalyst that was microwave pre-treated for varying periods
Figure 5.14 Variations in methane content produced from the low temperature and the high temperature TPSR peaks as a function of the microwave irradiation time. The 1.0K/10Fe/SiO\textsubscript{2} catalyst was studied

Figure 5.15 Total CH\textsubscript{4} produced in the TPSR by the 1.0K/10Fe/SiO\textsubscript{2}-DP and the 1.0K/10Fe/SiO\textsubscript{2} catalysts that were irradiated for varying periods with microwaves

Figure 5.16 TPSR profiles indicating the effect of potassium on Fe/SiO\textsubscript{2} catalysts, prior to microwave pre-treatment. These experiments were performed in a GC fitted with a methanator that utilizes a nickel catalyst

Figure 5.17 TPSR profiles for the 0.7K/10Fe/SiO\textsubscript{2} and 0.7K/10Fe/SiO\textsubscript{2}-MW catalyst (a) before MW pre-treatment and (b) after 10 seconds of MW pre-treatment. Pre-treatment conditions: 450 W, 10 seconds

Figure 5.18 TPSR profiles for the 1.0K/10Fe/SiO\textsubscript{2} catalyst (a) before MW pre-treatment and (b) after 10 seconds of MW pre-treatment. Pre-treatment conditions: 450 W, 10 seconds

Figure 5.19 CO conversions for the 0.2K/10Fe/SiO\textsubscript{2}, 0.7K/10Fe/SiO\textsubscript{2} and 1.5K/10Fe/SiO\textsubscript{2} catalysts that were not microwaved

Figure 5.20 Steady state conversions for the various catalysts before microwave pre-treatment

Figure 5.21 CO conversions for the various microwave pre-treated catalysts. Pre-treatment conditions: 450 W power level, 10 seconds

Figure 5.22 A comparison of CO conversions for microwaved and non-microwaved samples obtained at steady state conditions
Appendix

Figure A1 TEM images of (a) 0K/Fe, (b) 0.2K/Fe, (c) 1.0K/Fe and (d) 1.5K/Fe catalysts. These catalysts were not pre-treated using microwave radiation

Figure B1 An EDS spectrum of the silica support

Figure C1 The effect of the microwave pre-treatment time on unsupported catalysts as studied using the TPSR. The 0.7K/Fe catalyst was used for these studies. The pre-treatment times are indicated on each graph

Figure C2 The effect of the microwave pre-treatment time on silica supported catalysts as studied using the TPSR. The 1.0K/10Fe/SiO₂ catalyst was used for these studies. The pre-treatment times are indicated on each graph
<table>
<thead>
<tr>
<th>Abbreviations and acronyms</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson, Schultz, Flory</td>
<td>ASF</td>
</tr>
<tr>
<td>Badische Anilin-und Soda Fabrik</td>
<td>BASF</td>
</tr>
<tr>
<td>Barrett-Joyner-Halenda</td>
<td>BJH</td>
</tr>
<tr>
<td>Brunauer, Emmet, Teller</td>
<td>BET</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>CO₂</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>CO</td>
</tr>
<tr>
<td>Carbon nanotube</td>
<td>CNT</td>
</tr>
<tr>
<td>Chain growth probability</td>
<td>α</td>
</tr>
<tr>
<td>Circulating fluidized bed</td>
<td>CFB</td>
</tr>
<tr>
<td>Conventional heating</td>
<td>CH</td>
</tr>
<tr>
<td>Degrees Celsius</td>
<td>°C</td>
</tr>
<tr>
<td>Deposition precipitation</td>
<td>DP</td>
</tr>
<tr>
<td>Energy dispersive X-ray spectroscopy</td>
<td>EDS</td>
</tr>
<tr>
<td>Fischer-Tropsch</td>
<td>FT</td>
</tr>
<tr>
<td>Fischer-Tropsch Synthesis</td>
<td>FTS</td>
</tr>
<tr>
<td>Flame ionization detector</td>
<td>FID</td>
</tr>
<tr>
<td>Fluidized fixed bed</td>
<td>FFB</td>
</tr>
<tr>
<td>Gas chromatograph</td>
<td>GC</td>
</tr>
<tr>
<td>Gas to liquids</td>
<td>GTL</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>H₂</td>
</tr>
<tr>
<td>International union of pure and applied chemistry</td>
<td>IUPAC</td>
</tr>
<tr>
<td>Iron</td>
<td>Fe</td>
</tr>
<tr>
<td>Iron (III) nitrate nonahydrate</td>
<td>Fe(NO₃)₃·9H₂O</td>
</tr>
<tr>
<td>Mass spectrometry</td>
<td>MS</td>
</tr>
<tr>
<td>Methane</td>
<td>CH₄</td>
</tr>
</tbody>
</table>
Microwave
Microwave-assisted organic synthesis
Mossbauer emission spectroscopy
Nitrogen
Oxidative coupling of methane
Percentage
Potassium
Powder X-ray diffraction
Quadrupole mass spectrometer
Sasol Advanced Synthol
Secondary ion mass spectrometry
Shell middle distillate synthesis
Temperature programmed reduction
Temperature programmed surface reaction- mass spectrometry
Thermal conductivity detector
Transmission electron microscopy
Ultra-high purity
Water gas shift
Watts
Weight percentage
X-Ray fluorescence

MW
MAOS
MES
N₂
OCM
%
K
PXRD
QMS
SAS
SIMS
SMDS
TPR
TPSR-MS
TCD
TEM
UHP
WGS
W
wt. %
XRF