Assessing Groundwater Access by Trees Growing above Contaminated Groundwater Plumes Originating from Gold Tailings Storage Facilities

by

M Govender

MSc (Hydrology)

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Restoration and Conservation Biology Research Group
School of Animal, Plant and Environmental Sciences
University of the Witwatersrand
Johannesburg

Supervisor: Dr P.J. Dye
Co Supervisor: Prof. E.T.F. Witkowski

Submitted: September 2011
Deep-level gold mining in the Witwatersrand Basin Goldfields (WBG) of central South Africa is characterised by the production of extensive unlined tailings storage facilities (TSFs) comprising large quantities of pulverised rock and water contaminated with salts and a wide range of other inorganic pollutants (Weiersbye et al., 2006). There are more than 200 such TSFs covering a total area of more than 400 km² (Rosner et al., 2001), and significant contaminated “footprint” areas occur after removal and reprocessing of the original TSFs (Chevrel et al., 2003). It is estimated that the Witwatersrand Basin contains six billion tons of gold and uranium tailings (Chevrel et al., 2003), 430 000 tons of uranium (Council of Geoscience, 1998; Winde, 2004a; b; c) and approximately 30 million tons of sulphur (Witkowski and Weiersbye, 1998a). An estimated 105 million tons of waste per annum is generated by the gold mining industry within the WBG (Department of Tourism, Economic and Environmental Affairs, 2002; Chamber of Mines of South Africa, 2004).

A major environmental problem resulting from deep level mining in the WBG is the contaminated water that seeps from TSFs into adjacent lands and groundwater. Van As (1992) reported on the significant environmental hazards resulting from the storage of highly pulverised pyrite rock waste in TSFs (Straker et al., 2007). Adjacent lands become polluted through near-surface seepage, and this is enhanced by the movement of polluted groundwater in shallow aquifers that are commonly 1-30 m below ground (Funke, 1990; Hodgson et al., 2001; Rosner et al., 2001; Naicker et al., 2003). The impact of the mines and the TSFs extends far beyond their localities (Cogho et al., 1990). The Vaal River catchment receives a large proportion of the pollutants from WBG mining activities, with consequent acidification and salinisation of surface and ground waters. Salt discharges to the Vaal River were estimated to be 170 000 t/annum (Best, 1985), whereas discharges from the Free State gold mines south of the Vaal catchment were estimated at 350 000 t/annum of salts (Cogho et al., 1990). Concern also exists over the spread of dangerous contaminants such as uranium, chromium and mercury (Coetzee et al., 2006; Winde, 2009).
Engineering solutions to these problems are hindered by the large sizes and great extent of TSFs, the high and indefinite costs involved, and the typically low hydraulic conductivity in affected aquifers, which makes the “pump and treat” option impractical. An alternative phytoremediation strategy is to establish belts or blocks of trees in strategic areas surrounding the TSFs in order to reduce the seepage of contaminated water into adjacent lands and groundwater bodies. The major reasons why trees are likely to have a greater impact on seepage water than the existing grasslands that characterise the area around most TSFs in the WBG, are that some tree species have the potential to develop very deep root systems and to continue transpiring water throughout the year. This is in contrast to seasonally dormant grasslands. In addition, some tree species are known to be tolerant to salts and other pollutants. Trees are thus potentially able to reach deep water tables, take up large quantities of water, and remove some of the pollutants in this water. It is crucial for a successful implementation of this strategy to know on what sites trees are able to access mine seepage water, and consequently maintain a high year-round rate of water use. If this access is limited, then growth and water use will be curtailed during the long winter dry season, and control of seepage will be considerably below potential.

A primary aim of this study was to develop methodologies to discriminate between water-stressed and non-water-stressed trees currently growing in three gold mining districts (Welkom, Vaal River, West Wits) within the WBG. This information was required to assess what site types are likely to support adequate tree growth and permit high rates of water use and seepage control. The tree species selected were those most widely occurring in these areas, and include the non-native species *Eucalyptus sideroxylon* A. Cunningham ex Woolls and *Eucalyptus camaldulensis* Dehnhardt, as well as the indigenous species *Searsia lancea* L.f. Various remote sensing technologies including leaf-level spectroscopy, satellite and airborne remote sensing images were evaluated for their usefulness in detecting levels of winter-time water stress. Four commonly used ground-truthing techniques (predawn leaf water potential, leaf chlorophyll fluorescence, leaf chlorophyll and carotenoid pigment content, and leaf water content) were used for localised measurements of plant water stress and for ground-truthing of remotely sensed data on 75 sample sites and 15 sample sites. This study provided a unique opportunity to test and compare the use of stress reflectance models.
derived from different remote sensing data acquired at different spatial and spectral resolutions (i.e. multispectral and hyperspectral) for the same geographical location.

The use of remote sensing to examine the spectral responses of vegetation to plant stress has been widely described in the scientific literature. A collation of published spectral reflectance indices provided the basis for investigating the use of hand-held remote sensing technology to detect plant water stress, and was used as a stepping stone to further develop spectral plant water stress relationships for specific tree species in this study. Seventy seven spectral reflectance indices and specific individual spectral wavelengths useful for detecting plant water stress, plant pigment content, the presence of stress related pigments in vegetation, and changes in leaf cellular structure, were investigated using hand-held spectroscopy. Ground-based measurements of plant water stress were taken on 75 sample trees. In this study, the measurement of predawn leaf water potential has been identified as a key methodology for linking remotely sensed assessments of plant water stress to actual plant water stress; a reading of -0.8 MPa was used to separate stressed trees from unstressed trees in the landscape (Cleary and Zaerr, 1984). The results of the predawn leaf water potential measurements ranged from -0.56 to -0.68 MPa at unstressed sites, and from -0.93 to -1.78 MPa at stressed sites. A novel approach of using spectral reflectance indices derived from previous studies was used to identify specific indices which are applicable to South Africa and to the three species investigated in the WGB. Maximal multiple linear regression models were derived for all possible combinations of plant water stress measurements and the 77 spectral reflectance indices extracted from leaf-level spectral reflectance data, and included the interactions of district and species. The results of the multiple linear regression models indicated that the (695/690) index, DATT index (850-710)/(850-680), near infra-red index (710/760) and the water band (900/970) index performed well and accounted for more than 50% of the variance in the data. The stepwise regression model derived between chlorophyll b content and the DATT index was selected as the “best” model, having the highest adjusted $R^2$ of 69.3%. This was shown to be the most robust model in this application, which could be used at different locations for different species to predict chlorophyll content at the leaf-level.
Satellite earth observation data were acquired from two data sources for this investigation; the Hyperion hyperspectral sensor (United States Geological Survey Earth Resources Observation Systems) and the Proba Chris pseudo-hyperspectral sensor (European Space Agency). The Hyperion sensor was selected to obtain high spatial and spectral resolution data, whereas the Proba Chris sensor provided high spatial and medium spectral resolution earth observation data. Twelve vegetation indices designed to capture changes in canopy water status, plant pigment content and changes in plant cellular structure, were selected and derived from the satellite remote sensing imagery. Ground-based measurements of plant water stress undertaken during late July 2004 were used for ground-truthing the Hyperion image, while measurements undertaken during July 2005 and August 2005 were used for ground-truthing the Proba Chris images. Predawn leaf water potential measurements undertaken for the three species, ranged from -0.42 to -0.78 MPa at unstressed sites, and -0.95 to -4.66 MPa at stressed sites. Predawn leaf water potentials measured for *E. camaldulensis* trees sampled in species trials in Vaal River were significantly different between stressed and non stressed trees (t = 3.39, 8df, P = 0.009). In contrast, *E. camaldulensis* trees sampled near a pan within the Welkom mining district, which had greater access to water but were exposed to higher concentrations of salts and inorganic contaminants, displayed differences in total chlorophyll content (t = -2.20, 8df, P = 0.059), carotenoid content (t = -5.68, 8df, P < 0.001) and predawn leaf water potential (t = 4.25, 8df, P = 0.011) when compared to trees sampled on farmland. *E. sideroxylon* trees sampled close to a farm dam in the West Wits mining district displayed differences in predawn leaf water potential (t = 69.32, 8df, P < 0.001) and carotenoid content (t = -2.13, 8df, P = 0.066) when compared to stressed trees further upslope away from the water source. Multiple linear regressions revealed that the predawn leaf water potential greenness normalised difference vegetation index model, and the predawn leaf water potential water band index model were the “best” surrogate measures of plant water stress when using broad band multispectral satellite and narrow-band hyperspectral satellite data respectively. It was concluded from these investigations that vegetation indices designed to capture changes in plant water content/plant water status and spectral changes in the red edge region of the spectrum, performed well when applied to high spectral resolution remote sensing data. The greenness normalised difference vegetation index was considered to be a fairly robust index, which was
highly correlated to chlorophyll fluorescence and predawn leaf water potential. It is recommended that this index has the potential to be used to map spatial patterns of wintertime plant stress for different genera/species and in different geographical locations.

Airborne remote sensing surveys were conducted to investigate the application of high spatial resolution remote sensing data to detect plant water stress. Multispectral airborne imagery was acquired by Land Resource International (PTY) Ltd, South Africa. Ground-based measurements of plant water stress were carried out during July and August 2005. Four individual spectral bands and two vegetation spectral reflectance indices, which are sensitive to changes in plant pigment content, were derived from the processed multispectral images viz. red, green, blue and near-infrared spectral bands and the normalised difference vegetation index (NDVI) and greenness normalised difference vegetation index (GNDVI). The results of the multispectral airborne study revealed that carotenoid content together with the green spectral waveband resulted in the “best” surrogate measure of plant water stress when using broad-band multispectral airborne data.

Airborne remote sensing surveys were conducted by Bar-Kal Systems Engineering Ltd, Israel, to investigate the application of hyperspectral airborne imagery to detect plant water stress. Six vegetation spectral reflectance indices designed to capture changes in plant pigment and plant water status/content, were derived from the processed hyperspectral images. When using airborne hyperspectral data, predawn leaf water potential with the normalized difference water index was selected as the most appropriate model. It was concluded, upon evaluation of the multiple linear regression models, that the airborne hyperspectral data produced several more regression models with higher adjusted $R^2$ values ($R_a^2$ range 6.2 - 76.2%) when compared to the airborne multispectral data ($R_a^2$ range 6 - 50.1).

Exploration of relationships between vegetation indices derived from leaf-level, satellite and airborne spectral reflectance data and ground-based measurements used as “surrogate” measures of plant water stress, revealed that several prominent and recurring spectral reflectance indices could be applied to identify species-specific plant water stress within the
Welkom, Vaal River and West Wits mining districts. The models recommended for mapping and detecting spatial patterns of plant water stress when using different sources of remote sensing data are as follows:

- the chlorophyll b DATT spectral reflectance model when derived from leaf-level spectral reflectance data, can be applied across all three mining districts
- the predawn leaf water potential GNDVI spectral reflectance model and predawn leaf water potential water band index spectral reflectance model when utilising satellite multispectral and hyperspectral remote sensing data
- carotenoid content green band spectral reflectance model can be used for airborne multispectral resolution data
- predawn leaf water potential NDVI spectral reflectance model is best suited for airborne high spatial and hyperspectral resolution data.

These results indicate that measurements of predawn leaf water potential and plant pigment content have been identified as key methodologies for ground-truthing of remotely sensed data and can be used as surrogate measures of plant water stress.

Some preliminary research was undertaken to evaluate if wood anatomy characteristics could be used as a non-destructive and rapid low-cost survey approach for identifying trees which are experiencing long-term plant stress. Seventy two wood core samples were extracted and analysed. Predawn leaf water potential measurements were used to classify stressed and unstressed trees. Relative differences in radial vessel diameter, vessel frequency and wood density were examined. Comparison of the radial vessel diameter and vessel frequency measurements revealed significant differences in three of the five comparative sampling sites (p <0.05). The results of the density analyses were significantly different for all five comparative sampling sites (p < 0.01). In general, trees experiencing higher plant water stress displayed smaller vessel diameters, compared to less stressed or healthy trees. Sites which were influenced by high levels of contaminated water also displayed smaller vessel diameters, indicating that the uptake of contaminants could affect the wood anatomy of plants. Trees considered to be experiencing higher plant water stress displayed higher vessel frequency. This preliminary study showed that plant stress does influence the wood
anatomical characteristics (radial vessel diameter, vessel frequency and wood density) in E. camaldulensis, E. sideroxylon and S. lancea in the three mining districts.

Spatial patterns of trees, mapped in the three gold mining districts, Welkom (27°57’S, 26°34’E) in the Free State Province, Vaal River (26°55’S, 26°40’E) located in the North West Province, and West Wits (26°25’S, 27°21’E) located in Gauteng, which were not experiencing winter-time water stress were correlated to site characteristics such as average soil depth, percent clay in the topsoil, groundwater chloride and sulphate concentrations, total dissolved solids, electrical conductivity and groundwater water level. The spectral reflectance model derived between predawn leaf water potential and the green normalised difference vegetation index using broad-band multispectral Proba Chris satellite data was used to map spatial patterns of unstressed trees across the three mining districts. Very high resolution (75 cm) multispectral airborne images acquired by LRI in 2005 were used to demarcate and classify vegetation using the maximum likelihood supervised classification technique. Interpolated surfaces of groundwater chloride and sulphate concentrations, total dissolved solids, electrical conductivity, pH and groundwater table levels were created using the kriging geostatistical interpolation technique for each mining district. Random sample analyses between stressed and unstressed trees were extracted in order to determine whether site characteristics were significantly different (using t-tests). Site characteristic surfaces which were significantly different from stressed areas were spatially linked to trees which were not experiencing winter-time plant water stress for each tree species investigated in each mining district. This spatial correlation was used to make recommendations and prioritise sites for the establishment of future block plantings. Analysis of the site characteristic data and the geophysical surveys undertaken in the three mining districts which provided detailed information on groundwater saturation and an indication of the salinity conditions, confirmed the presence of relatively shallow and saline groundwater sources. This would imply that tree roots could access the relatively shallow groundwater even during the dry winter season and assist in containing contaminated groundwater seeping into surrounding lands.
Keywords: airborne imagery, ground-based measurements of plant water stress, hyperspectral, leaf-level spectroscopy, multispectral, satellite imagery, spatial patterns of unstressed trees, spectral reflectance indices
DECLARATION

The work described in this thesis was carried out for post-graduate degree purposes within the School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg under the supervision of Dr P.J. Dye, Prof E.T.F. Witkowski and Prof. F. Ahmed. It has also contributed towards an externally funded contract research project which was undertaken by a larger project team.

I wish to certify that the work reported in this thesis is my own original and unaided work, except where specific acknowledgment is made.

7 September 2011

Signed by Marilyn Govender   Date
ACKNOWLEDGEMENTS

I would like to thank the Mine Woodlands Project (School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa), the South African Department of Trade and Industry (THRIP funding), AngloGold Ashanti Ltd and the CSIR for support and funding of this study.

I would like to acknowledge and thank the following organisations, institutions, and individuals for the technical assistance and support during field campaigns:

- The University of Witwatersrand for the use of the chlorophyll fluorescence meter.
- AngloGold Ashanti for assistance during predawn field measurements.
- The Agricultural Research Council for the use of the ASD spectrometer and for use of national land-type soils data.
- The CSIR for the use of the wood corer, the Forestry and Forest Products Group for undertaking the wood anatomy and density measurements and the geophysical specialists from the Stellenbosch office for undertaking the resistivity measurements.
- Access to the Horticulture Laboratory from the University of Kwa-Zulu Natal, Pietermaritzburg, for the analysis of chlorophyll and carotenoid pigment contents from leaf samples.
- Land Resource International (PTY) Ltd and Bar-Kal Systems Engineering Ltd for their services when conducting the respective multispectral and hyperspectral airborne remote sensing surveys.
- Africa Geo-Environmental Services (AGES), School of Animal Plant and Environmental Sciences at Witwatersrand University (APES) and Anglogold Ashanti for the use of relevant hydrochemistry and soils data.
- Ms Isabel Weiersbye and Dr Peter Dye for their advice, guidance and support during field campaigns.
- Mr Joshua Xaba and Mr Alistair Clulow for their technical assistance during field measurements.
I would like to express my sincere appreciation to:

Prof F. Ahmed and Dr P.J. Dye for their supervision and guidance throughout this research.
Prof. E.T.F. Witkowski and Dr I. Weiersbye for their comments, support and guidance in this study.

Prof. A. Fossey for her most valuable supervision, mentorship and advice; specifically in the principles of scientific writing.

Mr H. Dicks for his statistical guidance and supervision.

My colleagues from the CSIR for their valuable advice and support.

The European Space Agency (ESA ®) for their support with remote sensing data through the Tiger Initiative.

My family for their unending support, love and encouragement, and finally to:

My husband Mevelin, and my two very special girls, Jadean and Ceann, for their love, support and understanding which helped make the completion of this thesis possible.

The fear of the Lord is the beginning of wisdom, and knowledge of the Holy One is understanding (Proverbs 9:10). I can do all things through him who gives me strength (Philippians 4:13).
# CONTENTS

ABSTRACT ............................................................................................................. i
DECLARATION ...................................................................................................... ix
ACKNOWLEDGEMENTS .......................................................................................... x
TABLES .................................................................................................................. 4
FIGURES .................................................................................................................. 6

## CHAPTER 1. GENERAL INTRODUCTION
1.1 Research problem .......................................................................................... 9
1.2 Research strategy .......................................................................................... 13
1.3 Aims and objectives ....................................................................................... 14
1.4 Hypotheses .................................................................................................... 17
1.5 Reporting structure ......................................................................................... 17

## CHAPTER 2. TREE SPECIES SELECTION AND STUDY AREAS
2.1 Introduction .................................................................................................. 19
2.2 Selection of tree species ................................................................................ 19
2.3 Mining districts ............................................................................................. 21
2.4 Sampling sites ............................................................................................... 25

## CHAPTER 3. REVIEW OF COMMONLY USED REMOTE SENSING AND GROUND-BASED TECHNOLOGIES TO MEASURE PLANT WATER STRESS
3.1 Introduction .................................................................................................. 31
3.2 Brief overview of plant water stress interactions ........................................ 33
3.3 Detection of plant water stress using remote sensing ............................... 37
  3.3.1 Spectral indicators of plant chlorophyll content .................................. 43
  3.3.2 Spectral indicators of plant water content .......................................... 44
  3.3.3 Factors affecting spectral reflectance from leaf to canopy scales .......... 46
3.4 Detection of plant water stress using ground-based measurements ........ 49
  3.4.1 Predawn leaf water potential ................................................................. 50
  3.4.2 Leaf chlorophyll fluorescence ............................................................... 52
  3.4.3 Chlorophyll and carotenoid pigment concentration .......................... 55
  3.4.4 Leaf water content ................................................................................ 56
  3.4.5 Comparison of ground-based measurement techniques of plant water stress 58
3.5 Concluding remarks

CHAPTER 4. SPECTROSCOPY AS A TOOL FOR IDENTIFYING PLANT WATER STRESS AT THE LEAF-LEVEL

4.1 Introduction

4.2 Materials and methods
   4.2.1 Sampling design
   4.2.2 Ground measurements of plant water stress
      4.2.2.1. Predawn leaf water potential
      4.2.2.2. Leaf chlorophyll fluorescence
      4.2.2.3. Leaf chlorophyll and carotenoid pigment content
      4.2.2.4. Leaf water content
   4.2.3 Leaf spectral reflectance measurements
      4.2.3.1. ASD hand-held spectral measurements at leaf-level
      4.2.3.2. Vegetation spectral reflectance indices derived from leaf-level spectral measurements
   4.2.4 Analysis of data

4.3 Results
   4.3.1 Ground-based measurements of plant water stress and leaf spectral reflectance
   4.3.2 Relationships identified at the leaf-level
      4.3.2.1. Maximal models identified at leaf-level
      4.3.2.2. Model refinements using stepwise regression
      4.3.2.3. Selection of the best model
      4.3.2.4. Validation of the selected model

4.4 Discussion

4.5 Conclusions

CHAPTER 5. EVALUATION OF MEDIUM TO HIGH RESOLUTION SATELLITE EARTH OBSERVATION DATA TO DETECT SPATIAL PATTERNS OF PLANT WATER STRESS

5.1 Introduction

5.2 Materials and Methods
   5.2.1 Selection and requisition of satellite earth observation data
   5.2.2 Selection and derivation of vegetation spectral reflectance indices
   5.2.3 Analysis of data

5.3 Results
   5.3.1 Ground-based measurements of plant water stress
   5.3.2 Relationships identified using multispectral satellite data
      5.3.2.1. Maximal models identified using multispectral satellite data
      5.3.2.2. Model refinements using stepwise regression
      5.3.2.3. Selection of the best multispectral satellite model
      5.3.2.4. Validation of the best model using multispectral satellite data
   5.3.3 Relationships identified using hyperspectral satellite data
      5.3.3.1. Maximal models identified using hyperspectral satellite data
      5.3.3.2. Model refinements using stepwise regression
      5.3.3.3. Selection of the “best” model derived from hyperspectral satellite data
ASSESSING GROUNDWATER ACCESS BY TREES GROWING ABOVE CONTAMINATED GROUNDWATER PLUMES ORIGINATING FROM GOLD TAILINGS STORAGE FACILITIES

5.3.3.4. Validation of the "best" model derived from hyperspectral satellite data 121
5.4 Discussion 123
5.5 Conclusions 125

CHAPTER 6. EVALUATION OF AIRBORNE MULTISPECTRAL AND HYPERSONCTRAL REMOTE SENSING DATA TO DETECT SPATIAL PATTERNS OF PLANT WATER STRESS 126

6.1 Introduction 127
6.2 Materials and methods 129
  6.2.1 Airborne remote sensing surveys 129
  6.2.2 Spectrometer measurements 132
  6.2.3 Selection and derivation of the vegetation spectral reflectance indices 132
  6.2.4 Analysis of data 134
6.3 Results 135
  6.3.1 Relationships identified using airborne multispectral data 135
    6.3.1.1. Maximal models identified using airborne multispectral data 135
    6.3.1.2. Model refinements using stepwise regression 138
    6.3.1.3. Selection of the best model derived from airborne multispectral data 138
    6.3.1.4. Validation of the best airborne multispectral data 140
  6.3.2 Relationships identified using airborne hyperspectral data 142
    6.3.2.1. Maximal models identified using airborne hyperspectral data 142
    6.3.2.2. Model refinements using stepwise regression 143
    6.3.2.3. Selection of the best model derived from airborne hyperspectral data 143
    6.3.2.4. Validation of the best model derived from airborne hyperspectral data 145
6.4 Discussion 147
6.5 Conclusions 148

CHAPTER 7. CORRELATION OF PLANT STRESS PATTERNS TO SITE CHARACTERISTICS IN THREE GOLD MINING DISTRICTS IN CENTRAL SOUTH AFRICA 150

7.1 Introduction 152
7.2 Materials and methods 153
  7.2.1 Vegetation classification 153
  7.2.2 Mapping spatial patterns of unstressed trees 158
  7.2.3 Creation of spatial layers of site characteristic data 167
7.3 Results 168
  7.3.1 Differences between the site characteristic data of stressed and unstressed sites 168
7.4 Discussions and recommendations for future plantings 174
7.5 Conclusions 190

CHAPTER 8. GENERAL SYNTHESIS, CONCLUSIONS AND RECOMMENDATIONS 193

8.1 Literature review concluding statements 193
ASSESSING GROUNDWATER ACCESS BY TREES GROWING ABOVE CONTAMINATED GROUNDWATER PLUMES ORIGINATING FROM GOLD TAILINGS STORAGE FACILITIES

8.2 General synthesis on vegetation spectral reflectance indices  194
8.3 Concluding remarks  196
8.4 Recommendations  197

REFERENCES  200

APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Review paper</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Protocols for ground-based measurements of plant water stress</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Results of the complete regression analysis</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Observation points used to create interpolated hydrochemistry surfaces</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>Interpolated surfaces used to characterise unstressed sites in each mining district</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>Differences in xylem vessel characteristics and wood density resulting from plant stress</td>
</tr>
</tbody>
</table>

TABLES

Table 2.1 Characteristics of the tree species sampled in this study. (Compiled from Poynton, 1979; Venter and Venter, 1996). 21
Table 2.2 Description of the Welkom, Vaal River and West Wits mining districts. 23
Table 2.3 Description of sample sites in the Welkom (W), Vaal River (VR) and West Wits (WW) mining districts. (Data obtained through field surveys and from AngloGold Ashanti, 2004). 29
Table 3.1 Some milestones in the historical development of the relationships of vegetation spectral reflectance characteristics in specific regions of the electromagnetic spectrum. 40
Table 3.2 Advantages and disadvantages of four ground-based methods for measuring plant water stress. 58
Table 4.1 Spectral wavelengths and reflectance indices used in the leaf-level analysis. 68
Table 4.2 Measurements of plant stress undertaken in the Welkom, Vaal River and West Wits mining districts during July 2004. 75
Table 4.3 Adjusted $R^2$ values ranked in descending order for each maximal model derived between plant water stress measurement ($Y$) and spectral reflectance index ($X$) resulting from leaf-level data. 83
Table 4.4  Comparison of the maximal and stepwise regression models obtained in the leaf-level analysis, for the three models with the highest adjusted $R^2$ values exceeding 50%. .......................... 87

Table 4.5  Validation models used in the leaf-level analysis to predict chlorophyll b. ......................... 90

Table 5.1  Spectral wavelengths and reflectance indices derived from the satellite earth observation data. 103

Table 5.2  Ground measurements of plant stress undertaken during July 2005 in the Welkom, Vaal River and West Wits mining districts. ......................................................... 106

Table 5.3  Ground measurements of plant stress undertaken during August 2005 in the Welkom, Vaal River and West Wits mining districts. ............................................................ 108

Table 5.4  Adjusted $R^2$ values, ranked in descending order, for each maximal model determined between plant water stress methods (Y) and spectral reflectance index (X) derived from Proba Chris satellite data. .......................... 113

Table 5.5  Comparison of the maximal and stepwise regression models derived using Proba Chris satellite data. ................................................................. 114

Table 5.6  Validation models derived from multispectral satellite data used to predict predawn leaf water potential. ................................................................. 117

Table 5.7  Adjusted $R^2$ values, ranked in descending order, for each maximal model derived between plant water stress measurement (Y) and spectral reflectance index (X) derived from Hyperion satellite data. .......................... 119

Table 5.8  Comparison of the maximal and stepwise regression models, obtained in the Hyperion satellite data analysis for the three models with the highest adjusted $R^2$ values exceeding 50%. .......... 120

Table 5.9  Validation models, derived from hyperspectral satellite data, used to predict predawn leaf water potential in the West Wits mining district. ......................................................... 122

Table 6.1  Spectral wavelengths and reflectance indices derived from the airborne multispectral and hyperspectral remote sensing data. ................................................................. 133

Table 6.2  Adjusted $R^2$ values, ranked in descending order, for each maximal model derived between plant water stress measurement (Y) and spectral reflectance indices (X) derived from airborne multispectral data. ................................................................. 137

Table 6.3  Validation models used to predict carotenoid content using airborne multispectral data. ......... 141

Table 6.4  Adjusted $R^2$ values, ranked in descending order, for each maximal model determined between plant water stress measurement (Y) and the spectral reflectance indices (X) derived from airborne hyperspectral data. ................................................................. 142

Table 6.5  Comparison of the maximal and the step-wise regression models, derived from the airborne hyperspectral data, with the highest adjusted $R^2$ values exceeding 50%. ......................... 143

Table 6.6  Validation models used to predict predawn leaf water potential, using airborne hyperspectral data. ......................................................................................... 146

Table 7.1  Accuracy assessments of the supervised classifications for the Vaal River mining district. ....... 155

Table 7.2  Accuracy assessments of the supervised classifications for the Welkom mining district. ......... 156
Table 7.3  Accuracy assessments of the supervised classifications for the West Wits mining district.  ____156

Table 7.4  Best performing spectral reflectance models derived from leaf, satellite and airborne remote sensing data.  ____158

Table 7.5  Comparisons (mean+standard deviation) of the site characteristics geology, soils, salinity and groundwater table level between stressed and unstressed trees of Eucalyptus camaldulensis and Searsia lancea in the Welkom mining district. Differences between stressed and unstressed trees per species were tested using t-tests (P<0.05).  ____169

Table 7.6  Comparisons (mean+standard deviation) of the site characteristics geology, soils, salinity and groundwater table level between stressed and unstressed trees of Eucalyptus camaldulensis and Searsia lancea in the Vaal River mining district. Differences between stressed and unstressed trees per species were tested using t-tests (P<0.05).  ____171

Table 7.7  Comparisons (mean+standard deviation) of the site characteristics such as geology, soils, salinity and groundwater table level between stressed and unstressed trees of Eucalyptus camaldulensis and Eucalyptus sideroxylon in the West Wits mining district. Differences between stressed and unstressed trees per species were tested using t-tests (P<0.05).  ____172

Table 7.8  Descriptive statistics (minimum, maximum, mean, standard deviation) of the site variables geology, soils, salinity and groundwater table level used to characterise unstressed trees per species in each mining district.  ____174

FIGURES

Figure 2.1  Geographical location of the mining districts selected for the study demarcated in red, in relation to South Africa.  ____22

Figure 2.2  Geological formations within (a) Vaal River and (b) West Wits study areas. (Data obtained from AngloGold Ashanti, 2004).  ____25

Figure 2.3  Sampling sites selected in each mining district. Shaded circles represent the location of each sampling site (Google Earth, 2008).  ____27

Figure 2.4  Sampling sites in Welkom (a and b), West Wits (c and d) and Vaal River (e to i) mining district. Arrows represent the location of trees at each sampling site in each mining district. Samplings sites are illustrated as stands of trees (a, b, c, f), small-plot species trials (d), clumps (e, g) and rows of trees (h, i). (Images obtained from Land Resources International, 2005).  ____28

Figure 3.1  Typical reflectance sensitivities as controlled by leaf pigments, cell structure and water content. (Adapted from Gaussman, 1977).  ____39

Figure 4.1  Box plots of plant water stress measurements a) predawn leaf water potential, b) photochemical efficiency, c) chlorophyll a content, d) chlorophyll b content e) total chlorophyll (a+b) content and f) carotenoid content for Vaal River, Welkom and West Wits.  ____78

Figure 4.2  Box plots of plant water stress measurements a) predawn leaf water potential, b) photochemical efficiency, c) chlorophyll a content, d) chlorophyll b content e) total chlorophyll (a+b) content and...
f) carotenoid content for the three tree species E. camaldulensis, E. sideroxylon and S. lancea.

Figure 4.3 Typical average leaf reflectance spectra with standard deviation error bars (a) E. camaldulensis measured in Vaal River near the Western Complex tailing storage facility, (b) E. sideroxylon measured in West Wits and, (c) S. lancea measured in Welkom.

Figure 4.4 Standardised residual plot of fitted values of chlorophyll b content using the DATT spectral reflectance model.

Figure 5.1 Box plots of plant water stress measurements a) predawn leaf water potential, b) photochemical efficiency, c) total chlorophyll (a+b) content, d) carotenoid content and e) relative leaf water content undertaken for Vaal River, Welkom and West Wits in July 2005.

Figure 5.2 Box plots of plant water stress measurements a) predawn leaf water potential, b) photochemical efficiency, c) total chlorophyll (a+b) content, d) carotenoid content and e) relative leaf water content measured for E. camaldulensis, E. sideroxylon and S. lancea in July 2005.

Figure 5.3 Standardised residual plot of fitted values of predawn leaf water potential using the green normalised difference vegetation spectral reflectance model.

Figure 5.4 Standardised residual plot of fitted values of predawn leaf water potential using water band spectral reflectance model.

Figure 6.1 Location of multispectral and hyperspectral surveys in the Welkom, Vaal River and West Wits mining districts. Multispectral survey areas are patterned, while hyperspectral survey areas are unshaded.

Figure 6.2 Standardised residual plot of fitted values of carotenoid content using the green waveband spectral reflectance model.

Figure 6.3 Standardised residual plot of fitted values of predawn leaf water potential spectral reflectance model.

Figure 7.1 Spatial patterns of unstressed Eucalyptus camaldulensis sites mapped in the Welkom mining district using the Predawn leaf water potential and the Green normalized difference vegetation index derived from Proba Chris satellite imagery.

Figure 7.2 Spatial patterns of unstressed Searsia lancea sites mapped in the Welkom mining district using the Predawn leaf water potential and the Green normalized difference vegetation index derived from Proba Chris satellite imagery.

Figure 7.3 Spatial patterns of unstressed Eucalyptus camaldulensis sites mapped in the Vaal River mining district using the Predawn leaf water potential and the Green normalized difference vegetation index derived from Proba Chris satellite imagery.

Figure 7.4 Spatial patterns of unstressed Searsia lancea sites mapped in the Vaal River mining district using the Predawn leaf water potential and the Green normalized difference vegetation index derived from Proba Chris satellite imagery.

Figure 7.5 Spatial patterns of unstressed Eucalyptus camaldulensis sites mapped in the West Wits mining district using the Predawn leaf water potential and the Green normalized difference vegetation index derived from Proba Chris satellite imagery.
Figure 7.6 Spatial patterns of unstressed Eucalyptus sideroxylon sites mapped in the West Wits mining district using the Predawn leaf water potential and the Green normalized difference vegetation index derived from Proba Chris satellite imagery.

Figure 7.7 A shaded selection of unstressed areas in the Welkom mining district recommended for planting Eucalyptus camaldulensis and Searsia lancea tree species. The graded scale represents the maximum (light grey) and minimum (black) values of site characteristic data representative of these unstressed areas.

Figure 7.8a Dankbaar Pan resistivity sampling site in the Welkom mining district, (clockwise) arrows in the picture represent the location of trees at each sampling site; the block demarcated in red represents the resistivity sampling area; unstressed areas mapped in green and the resistivity profile observed at the sampling site.

Figure 7.8b Boet Van Der Berg Farm resistivity sampling site in the Welkom mining district, (clockwise) arrows in the picture represent the location of trees at each sampling site; block demarcated in red represents the resistivity sampling area; unstressed areas mapped in green and the resistivity profiles observed on the farm at the S. lancea and E. camaldulensis sampling areas.

Figure 7.9 A shaded selection of unstressed areas in the Vaal River mining district recommended for planting Eucalyptus camaldulensis and Searsia lancea tree species. The graded scale represents the maximum (light grey) and minimum (black) values of site characteristic data representative of these unstressed areas.

Figure 7.10 Western Complex resistivity sampling site in the Vaal River mining district, (clockwise) arrows in the picture represent the location of trees at each sampling site; block demarcated in red represents the resistivity sampling area; unstressed areas mapped in green and the resistivity profile observed near the tailing storage facility.

Figure 7.11 A shaded selection of unstressed areas in the West Wits mining district recommended for planting Eucalyptus camaldulensis and Eucalyptus sideroxylon tree species. The graded scale represents the maximum (light grey) and minimum (black) values of site characteristic data representative of these unstressed areas.

Figure 7.12a Deelkraal farm resistivity sampling site in the West Wits mining district, (clockwise) arrows in the picture represent the location of trees at each sampling site; block demarcated in red represents the resistivity sampling area; unstressed areas mapped in green and the resistivity profile observed at the site.

Figure 7.12b Elandsridge resistivity sampling site in the West Wits mining district, (clockwise) arrows in the picture represent the location of trees at each sampling site; block demarcated in red represents the resistivity sampling area; unstressed areas mapped in green and the resistivity profile observed downslope from the tailing storage facility.
CHAPTER 1.
GENERAL INTRODUCTION

1.1 RESEARCH PROBLEM

In South Africa deep-level gold mining is characterised by the production of extensive tailing storage facilities (TSFs), which contain large quantities of slimes consisting of pulverised rock and water contaminated with salts and a wide range of other inorganic pollutants (Weiersbye et al., 2006). Approximately 400 km$^2$ of the Witwatersrand Basin gold fields are covered with more than 200 gold TSFs (Rosner et al., 2001) and contaminated areas left behind after removal and reprocessing of the original TSFs (Chevrel et al., 2003). It is estimated that the Witwatersrand Basin contains six billion tons of gold and uranium tailings (Chevrel et al., 2003), 430 000 tons of uranium (Council of Geoscience, 1998; Winde, 2004a; b; c) and approximately 30 million tons of sulphur (Witkowski and Weiersbye, 1998a). In South Africa approximately 488 million tons of waste is generated by the mining industry per year (Gaia, 2003). Of this waste, 105 million tons per annum is generated by the gold mining industry in the Witwatersrand Basin at an average rate of 200 tons of waste per ton of gold (Department of Tourism, Economic and Environmental Affairs, 2002; Chamber of Mines of South Africa, 2004).

Van As (1992) reported on the significant environmental hazards resulting from the storage of highly pulverised pyrite rock waste in TSFs within the gold and uranium mining regions of South Africa (Straker et al., 2007). Lands adjacent to such TSFs become polluted through near-surface seepage, and this is enhanced by the movement of polluted groundwater in shallow aquifers that are commonly 1-30 m below ground (Funke, 1990; Hodgson et al., 2001; Rosner et al., 2001; Naicker et al., 2003). Environmental degradation spreads far beyond the TSFs in the form of dust pollution (Van As et al., 1992) as well as seepage from TSFs, and impacts severely on nutrient cycling in polluted soils (Witkowski and Weiersbye, 1998b; Weiersbye et al., 2006). Furthermore, TSFs are highly susceptible to erosion as they are elevated above the ground with steep slope angles (Mizelle et al., 1996).
Erosion losses are as much as 30 times more from the slopes of gold TSFs than from agricultural fields, and may exceed 500 tons per hectare per year (Blight, 1991).

The impact of the mines and the TSFs extends far beyond their localities as a result of dust pollution and the extent of groundwater plumes (Cogho et al., 1990). It has been estimated that 400 ML/day of water passes through all the major gold mines, with 260 ML/day passing into groundwater and 130 ML/day into surface waters (Pulles, 1992). The Vaal River catchment receives a large proportion of the pollutants from gold mining activities, with consequent acidification and salinisation of surface and ground waters. Total pollution discharges to the Vaal River catchment were estimated to be at a rate of 170 000 t/annum of salts (Best, 1985), whereas discharges from the Free State gold mines beyond the Vaal catchment were estimated at 350 000 t/annum of salts (Cogho et al., 1990).

The total dissolved solid (TDS) concentrations of three plumes were reported for Welkom in the Free State Province, at Vaal River located in the North West Province, and at West Wits located in Gauteng, in South Africa (Vivier et al., 2001). The TDS of the Mahemspruit plume in Welkom averaged 18 000 mg/l and extends over 30 000 ha (Van Rensburg, 2001). The Bokkamp-West Complex groundwater plume in Vaal River near Orkney was reported to have a mean TDS concentration of 3 500 mg/l (Vivier et al., 2001) which underlies an area of 1800 ha, and the West Wits groundwater plume near Carletonville underlies a larger area compared to Bokkamp-West Complex groundwater plume with TDS concentrations of 1000 to 3000 mg/l (Vivier et al., 2001). These TDS concentrations indicate that this water should not be utilised for farming or for drinking purposes.

The application of engineering solutions to the problem of the spread of contaminants is generally impractical. Lining of TSFs to prevent rainfall infiltration and reduce seepage is not always feasible due to the high cost of materials, probability of failure of the lining and inability to repair lined TSFs (United States Environmental Protection Agency, 1997). TSFs could continue to leak water from their cores for decades to come, even if their surfaces are covered. Furthermore, due to the vast areas covered by TSFs, the method of pumping and treating contaminated groundwater is an impractical solution, as costs would necessarily
continue to be incurred long after mine closure (United States Environmental Protection Agency, 1997).

The Mine Woodlands Project is aimed at assessing the feasibility of establishing trees in belts and blocks close to the TSFs and across major seepage routes in order to contain groundwater seepage and reduce movement of pollutants to streams and rivers. The purpose of these tree belts is to absorb and transpire greater quantities of water than the grasslands and wetlands presently in close proximity to the TSFs, thereby reducing water table depths and slowing lateral flow into the surrounding lands. The trees will also be used for pollutant sequestration around the TSFs.

Many tree species continue transpiring water throughout the year. This is in contrast to seasonally dormant grasslands and wetlands (Dye et al., 2005; Bell, 2006). Many tree species also have the ability to develop deep root systems that are able to penetrate fissured subsoil strata to reach groundwater (Bell, 2006). Therefore, such species would annually absorb and transpire greater quantities of water than seasonally dormant shallow rooted grasslands and wetland plants.

Some tree species also have physiological characteristics that allow them to grow in polluted soils and water (Dickinson et al., 2000; Meagher et al., 2000). Such species of trees can take up and sequester a significant proportion of contaminants in the tree biomass (Pepper and Craig, 1986). In addition, certain species are tolerant of saline conditions which may develop in the rooting zone as large quantities of groundwater are absorbed by the tree roots over time (George et al., 1999). Therefore the use of tree belts to contain groundwater seepage and reduce the movement of pollutants to streams and rivers has been promoted (Pepper and Craig, 1986; George et al., 1999; Dickinson et al., 2000; Meagher et al., 2000).

Various species trials and block plantings have been established at different locations in the Welkom, Vaal River and West Wits mining districts. In 2002, approximately 20 species of indigenous and 20 species of non-native trees were planted (Weiersbye et al., 2002). There are several existing laws which ensure that landowners and users have a legal obligation to
control invader plants and weeds on their lands; this includes regulation in terms of the Conservation of Agricultural Resources Act, 1983 (ACT No. 43 of 1983). The Conservation of Agricultural Resources Act (CARA) regulates various activities that may have an impact on agricultural resources, including water sources, and deals directly with the combating of invader plants and weeds. Regulations 15 and 16 under this Act, which concern problem plants, were amended during March 2001. CARA is currently in the process of being revised by the Department of Agriculture Forestry and Fisheries. The amended regulations make provision for four groups: declared weeds (Category 1 plants), plant invaders (Category 2 and Category 3 plants) and indicators of bush encroachment. The first three groups consist of undesirable alien plants and are covered by Regulation 15. Bush encroachers, which are indigenous plants that require sound management practices to prevent them from becoming problematic, are covered separately by Regulation 16.

Category 1 may not occur on any land or on any inland water surface in South Africa except with written permission or in an approved bio control reserve. Category 2 are plants with the proven potential of becoming invasive, but which nevertheless have certain beneficial properties that warrant their continued presence in certain circumstances which includes several species of pines, wattles, eucalyptus, that are more commonly grown for commercial purposes or viable woodlots, fire belts, building material, animal fodder or soil stabilisation. Category 3 are generally ornamental plants which may be retained but no new planting, trade or propagating of these plants are permitted. Therefore, non-native tree species selected for planting comprised mainly CARA-listed (Category 2) acacias, poplars, pines and eucalypts (Weiersbye et al., 2002). These species were selected because of their potential for fast growth and survival in the harsh highveld environment. The success of these plantings, and future block plantings, depends on the trees quickly establishing contact with the groundwater. Should they fail, rates of growth and water use will be severely limited by low rainfall and low soil water availability, and the trees will be ineffective in reducing the rate of spread of the polluted water.

There is limited information to indicate where tree roots will be able to penetrate down to groundwater, and which sites will prove unsuitable due to impenetrable subsoils, deep or no
water tables, or poor groundwater quality. Due to the low mean annual rainfall characteristic of these regions, ranging from 497 to 651 mm, attempts to establish trees on unsuitable sites which may be characterised by deep or no water tables, impenetrable soils or poor groundwater quality could lead to considerable planting losses. Therefore, knowledge of the relation between site types, and the ability of stands of trees to access groundwater and survive is crucial. Important site characteristics are likely to include depth to water table, subsoil permeability, the extent of fissuring in the rock strata, groundwater electrical conductivity levels, the presence of impervious soil and subsoil layers, and the degree to which the site is influenced by surface water drainage patterns (Weiersbye et al., 2002).

The purpose of this study is to develop an understanding of remote sensing technologies which will contribute to detecting trees which are not experiencing winter-time water stress, and which could lead to identifying potential sites which could assist in the sustainable containment or reduction of contaminated seepage water from TSFs.

1.2 RESEARCH STRATEGY

The Mine Woodlands Project was initiated in 2001 to investigate hydrological control and pollutant sequestration on and beyond the TSFs using trees in belts and blocks planted close to the TSFs to contain contaminated mine water (Weiesbye et al., 2002). It is hoped that such information will be used to develop plans for mine closure, which are based on appropriate geochemical and geohydrological backgrounds. As new mining operations are commissioned and developed, in some older mines the ore-extracting activities of the mines cease and are closed. However, from an environmental perspective, true closure may often only be achieved long after the mine operations have ceased and involves extensive planning which includes rehabilitation plans and close collaboration with regulatory authorities inorder to obviate any negative environmental consequences and satisfy regulatory requirements (AngloGold Ashanti, 2004a). A component of the Mine Woodlands Project, covered by this research, involved the measurement and detection of plant water stress using remote sensing technologies, and the recommendation of suitable sites for future block
plantings, where trees would most likely not experience stress during the dry season, thereby resulting in higher annual evapotranspiration and a greater impact on seepage containment.

The research strategy was based on the principle that differences in tree water status during the dry season are likely to be the best indicators of groundwater access by trees (Bordiert, 1994; O’Grady et al., 1999; Timmermans and Meijerink, 1999). Several different techniques are available for measuring the degree of water stress experienced by trees. This strategy was based on the assumption that one of the most practical and convenient techniques for this purpose was to utilise remote sensing to detect differences in the spectral reflectance properties of leaves and canopies. The literature shows that such changes are readily detected in a wide range of plant species, and that they are generally linked to the degradation of leaf chlorophyll (Curran et al., 1990; Gitelson and Merzylak, 1996; Lichtenthaler et al., 1996; Blackburn, 1998a; Blackburn, 1998b; Blackburn, 1999; Datt, 1999; Stone et al., 2001) and often the results being specific to the tree species investigated.

Although the main focus of the research was to measure and detect plant water stress using remote sensing technologies with ground-truthing techniques, the influence of specific elements, namely chloride and sulphate concentrations in the groundwater, was recognised as important, as several studies on the surrounding lands and water systems of the Welkom, Vaal River and West Wits mining district have illustrated increasing salinity levels over the years (Roos and Pieterse, 1995; Viver et al., 2001; Naicker et al., 2003; Winde et al., 2004a,b,c).

1.3 AIMS AND OBJECTIVES

The principal aim of this thesis was to develop an understanding and evaluate various remote sensing technologies which could contribute to detecting trees which are not experiencing winter-time plant water stress, potentially resulting in higher annual evapotranspiration and a greater impact on contaminated seepage water. This could lead to identifying and prioritising sites for the establishment of future plantings to assist in containing and reducing contaminated seepage water from the TSFs.
This was broken down into a series of more specific aims:

1. Identify trees which were stressed and unstressed during the dry winter season using four commonly used ground-based measurements of plant water stress and various remote sensing technologies.
2. Evaluate different remote sensing technologies operating at different spatial and spectral scales for predicting spatial patterns of trees not experiencing winter-time plant water stress (unstressed trees).
3. Link the spatial distribution of unstressed trees to particular site characteristics that may be recognised and used to prioritise sites for the establishment of future block plantings.

In order to achieve these aims, the following research objectives were identified:

1. To characterise the most common non-native (alien) and indigenous tree species growing in close proximity to TSFs as stressed or unstressed, using four commonly used ground-based measurements of plants water stress, viz. predawn leaf water potential, relative leaf water content, chlorophyll and carotenoid pigment, and chlorophyll fluorescence.
2. To acquire spectral reflectance data using hand-held spectroscopy, satellite and airborne remote sensing data sources from both stressed and unstressed sample trees occurring on a range of WBC gold mining sites.
3. To extract and derive from each remote sensing data source, the individual spectral reflectance wavelengths and vegetation spectral reflectance indices, which have been shown in the literature to be useful for detecting plant water stress, plant pigment content, the presence of stress related pigments in vegetation, and changes in leaf cellular structure.
4. To use multiple linear regressions to investigate spectral models for predicting plant water stress when using indices derived from the hand-held, satellite and airborne
remote sensing data and the four commonly used ground-based measurements of plant water stress.

5. To evaluate and select appropriate spectral models when using earth observation data (airborne and satellite) to map the spatial distribution of trees that were not stressed during the dry season.

6. To link and analyse the spatial distribution of unstressed trees (groundwater linked trees) in relation to particular site characteristics such as average soil depth, percent clay in the topsoil, groundwater chloride and sulphate concentrations, total dissolved solids, groundwater electrical conductivity and groundwater water level.

7. Use remote sensing and geographical information system analyses to make spatial recommendations on a selection of sites/locations within the three mining districts where tree plantations are likely to avoid dry season stress, potentially have higher annual evapotranspiration and could then assist in the sustainable containment or reduction of contaminated seepage water from TSFs.

In this study, it is assumed that trees currently growing in close proximity to TSFs that have free access to groundwater will not experience plant water stress during the dry winter season (Bordiert, 1994; O’Grady et al., 1999; Timmermans and Meijerink, 1999).

Trees growing in stands or blocks (such as those saplings planted in recent years and more envisaged in future tree belts) are expected to experience a relatively higher degree of competition from neighbouring trees, and without access to groundwater, would experience dry season water stress more readily than trees growing singly or in isolated rows (Shackleton, 2002; Lawes et al., 2008; Meyer et al., 2008; Giovanni, 2009). Although patterns of stress development in closed-canopy plantations are expected to be very informative about the accessibility of groundwater to tree roots (Hatton et al., 1998; Dye et al., 2001), unfortunately stands or blocks of mature trees are scarce at present in the WBG mining areas. Thus, this research was heavily dependent on trees growing singly, in rows or in small groups, which experienced lower levels of competition from neighbouring plants. Furthermore, these trees would have had a greater opportunity for extending root systems
laterally, and the link between dry season tree water stress and groundwater accessibility might have been influenced, and was considered when interpreting the results.

1.4 HYPOTHESIS

The two hypotheses proposed for this research study were:

- Trees with access to contaminated groundwater plumes will exhibit certain physiological and structural differences to trees with no access to such groundwater. It was hypothesised that trees with no access to groundwater, those which are considered to be experiencing dry season water stress, will exhibit different spectral reflectance characteristics with lower predawn leaf water potentials (more negative), lower relative leaf water content, lower leaf chlorophyll content, lower leaf chlorophyll fluorescence and reduced xylem vessel diameters.

- It was also hypothesised that the characteristics of sites on which trees have access to groundwater can be used as the criteria for site suitability for the establishment of future tree belts.

1.5 REPORTING STRUCTURE

The information contained in this thesis has been partitioned into reviews and research chapters, which will be submitted to accredited journals for publication.

In Chapter 1 the research background and problem, research strategy, aims and objectives and hypotheses are presented.

Chapter 2 describes the tree species and study areas selected for this study.

Chapters 3 to 6 present the content of individual research papers. These chapters, together with chapter 7, comprise the core of this study.
Chapter 3 is a review of ground-based and remote sensing-based methods to detect plant water stress in plants.

Chapter 4 reports on the potential of hand-held spectroscopy as a tool for identifying plant water stress at the leaf-level. The results of the hand-held spectrometry measurements and ground-truthing used to interpret leaf spectral reflectance characteristics are presented and discussed in this chapter.

Chapters 5 provides a broader evaluation of satellite remote sensing technologies to detect patterns of winter-time plant water stress, together with the results of concurrent ground-truthing measurements.

Chapters 6 reports on the multispectral and hyperspectral airborne investigations which were undertaken to detect and map spatial patterns of winter-time plant water stress.

Chapter 7 presents the analysis of spatial patterns of trees not experiencing winter-time plant stress inferred from remote sensing investigations to site characteristics in the WBG mining environments. This chapter includes recommendations on which sites are most suitable for tree establishment around TSFs to reduce contaminated groundwater table levels and seepage.

Chapter 8 is a consolidation of the entire research study providing a general synthesis, concluding remarks, and recommendations relating to the research.

References associated with each chapter are listed after chapter 8.

Given that most of these chapters are structured in order to be published as journal papers, there is some degree of repetition in terms of the study sites and methods, although this has been kept to a minimum. Differences in xylem vessel and wood density characteristics resulting from plant stress are presented and discussed in Appendix 6.
CHAPTER 2.
TREE SPECIES SELECTION AND STUDY AREAS

2.1 INTRODUCTION

In this research, tree species were selected for sampling in the AngloGold Ashanti mining districts in the Gauteng, North-West and Free State Provinces. Within each mining district, sampling sites were selected for ground-based measurements of plant water stress and remote sensing surveys.

2.2 SELECTION OF TREE SPECIES

Only a few tree species are able to grow and survive in the harsh conditions experienced in the mining environments. Tree plantations or large stands of mature trees are scarce in the WBG mining areas. Therefore, stands or blocks of trees within the study areas districts are limited, with some clumps or rows of indigenous and non-native tree species growing in close proximity to TSFs.

Research studies on the indigenous and non-native tree species appropriate for the mining environment was undertaken in the Sustainable Vegetation of Gold Slimes Dam Project (Weiersbye, 2002). These studies provided scientific information for the selection and production of plant species for the silvicultural and geohydrological trials in the Mine Woodlands Project. Indigenous species were preferred compared to non-native and invasive plant species. However, research suggests that certain non-native species, particularly Eucalyptus and Pinus species, transpire larger quantities of water than indigenous species (Dye, 2002; Whitehead and Beadle, 2004).

Several criteria were considered when selecting trees species for the Mine Woodlands project, which included: plant availability, easy establishment and ability to stabilise the
landscape, fast growth to promote early contact with groundwater, deep rooted systems, high transpiration rates, high tolerance to high electrical conductivity levels, heavy metals, low nutrient levels and frost, low invasive potential, reasonable wood quality, indications of good survivorship under current TSF conditions, ability to reduce infiltration and recharge of groundwater sources, reduce wind erosion, and capable of pollutant sequestration (Weiersbye and Witkowski, 1998a; Weiersbye et al., 2006). The non-native tree species *Eucalyptus sideroxylon* A. Cunningham ex Woolls, *Eucalyptus camaldulensis* Dehnhardt, and the indigenous species *Searsia lancea* L.f., which are relatively common throughout these mining areas, and which have displayed good survivorship to many of the factors listed above, were selected for this study.

*E. camaldulensis* and *E. sideroxylon* are native to Australia, but have been distributed throughout the world, including countries in southern Africa such as Angola, Botswana, Lesotho, Malawi, Mozambique, Zimbabwe and South Africa (Poynton, 1979). Eucalypts, in general, are adapted to a wide range of climates occurring naturally from latitude 7º 00´N to 43º 39´S and from sea level to about 1 800 m (Poynton, 1979). They grow in regions where rain falls only during the warmer months, to regions in which rainfall is uniformly distributed or confined to the cooler seasons of the year (Poynton, 1979). Furthermore, they also grow in humid forested areas, where rainfall averages 3 000 mm or more per year, as well as in semi-desert regions in which less than one tenth of such mean annual rainfall is expected (Poynton, 1979).

*S. lancea* is indigenous to Zambia, Zimbabwe, Swaziland and parts of South Africa. This species has adapted to the lower rainfall regions of southern Africa (Venter and Venter, 1996). It grows in the Western Cape Province, with a mean annual rainfall of 348 mm, as well in the Free State Province, with a mean annual rainfall of 532 mm (Schulze et al., 1997). *S. lancea* is particularly common in the Vaal River (VR) and Welkom (W) area, but less common in West Wits (WW) area. This species has been planted in rows along the perimeter of numerous TSFs to provide partial screening. It also occurs in the drier regions of the Kalahari and Karoo and is often found in suburbs or gardens of southern Africa (Venter and Venter, 1996). The three species *E. camaldulensis*, *E. sideroxylon* and *S. lancea* chosen for this study are known to generally grow well on sites that are in close proximity to
the TSFs and thus clearly have the necessary physiological characteristics to ensure their survival. They are all evergreen with dense canopies, which potentially promote continuous and high evaporation rates throughout the year. The eucalyptus species are fast growing, and are highly tolerant of arid or infertile sites, and acidic or saline soils (Poynton, 1979). *S. lancea* is also characterised as being hardy, frost resistant and is also highly adaptable to poorly drained soil conditions. Table 2.1 provides a list of the characteristics of the three species as reported by Poynton (1979) and by Venter and Venter (1996).

**Table 2.1** Characteristics of the tree species sampled in this study. (Compiled from Poynton, 1979; Venter and Venter, 1996).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th><em>Eucalyptus camaldulensis</em></th>
<th><em>Eucalyptus sideroxylon</em></th>
<th><em>Searsia lancea</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>Common name</td>
<td>River red gum</td>
<td>Red ironbark</td>
<td>African sumac or Karee</td>
</tr>
<tr>
<td>Family</td>
<td>Myrtaceae</td>
<td>Myrtaceae</td>
<td>Anacardiaceae</td>
</tr>
<tr>
<td>Deciduous/ Evergreen</td>
<td>Evergreen</td>
<td>Evergreen</td>
<td>Evergreen</td>
</tr>
<tr>
<td>Form</td>
<td>Tall, single stemmed</td>
<td>Tall, single stemmed</td>
<td>Round, single or multi-stemmed, dense canopy when young</td>
</tr>
<tr>
<td>Leaf shape and colour</td>
<td>Lance shaped, simple 250 mm long, blue grey colour</td>
<td>Lance shaped, simple, dull greyish colour</td>
<td>Trifoliate (compound with 3 leaflets), lance shaped leaflets, dark green above and pale green below</td>
</tr>
<tr>
<td>Leaf texture</td>
<td>Membranous, thick and leathery</td>
<td>Membranous, thick and leathery</td>
<td>Leathery</td>
</tr>
<tr>
<td>Mature tree height (m)</td>
<td>30 – 40</td>
<td>10 – 30</td>
<td>7</td>
</tr>
<tr>
<td>Non-native/Indigenous</td>
<td>Non-native</td>
<td>Non-native</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Wood type</td>
<td>Hard</td>
<td>Very hard</td>
<td>Hard</td>
</tr>
<tr>
<td>Bark type</td>
<td>Smooth bark, white or greyish in colour, except at the trunk base where often the bark is rough</td>
<td>Hard furrowed bark, dark brown to black colour</td>
<td>Coarse textured bark, dark grey or brown colour</td>
</tr>
</tbody>
</table>

**2.3 MINING DISTRICTS**

The three gold mining districts located in central and north-western South Africa investigated in this study include Welkom (27°57’S, 26°34’E) in the Free State Province,
Vaal River (26°55´S, 26°40´E) located in the North West Province, and West Wits (26°25´S, 27°21´E) located in Gauteng (Figure 2.1).

Figure 2.1  Geographical location of the mining districts selected for the study demarcated in red, in relation to South Africa.

A general description of each mining district, which includes the geographical location, altitudinal range, rainfall and climate, dominant vegetation, geology and soils characteristics of these districts, is listed in Table 2.2.
### Table 2.2  Description of the Welkom, Vaal River and West Wits mining districts.

<table>
<thead>
<tr>
<th>Mining District</th>
<th>Geographical Coordinates (dm)</th>
<th>Mean Altitude Range (m)</th>
<th>Mean Annual Rainfall (mm)</th>
<th>Mean Annual Temperature (ºC)</th>
<th>Mean Maximum Temperature (ºC)</th>
<th>Mean Minimum Temperature (ºC)</th>
<th>Dominant Vegetation Type</th>
<th>Dominant Biomes</th>
<th>Dominant Bioregions</th>
<th>Geology</th>
<th>Soils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welkom</td>
<td>27°57´S, 26°34´E</td>
<td>1258 - 1293</td>
<td>497</td>
<td>16</td>
<td>38.7</td>
<td>-10</td>
<td>Vaal-Vet Sandy Grassland; Western Free State Clay Grassland; Highveld Salt Pans</td>
<td>Grassland Biome; Azonal Vegetation</td>
<td>Dry Highveld Grassland Bioregion; Inland Saline Vegetation</td>
<td>Ecca shales</td>
<td>eutrophic soils with a high base status and, non calcareous structured soils with a high clay concentration</td>
</tr>
<tr>
<td>Vaal River</td>
<td>26°55´S, 26°40´E</td>
<td>1481 - 1522</td>
<td>573</td>
<td>17</td>
<td>35.9</td>
<td>-8.4</td>
<td>Vaal-Vet Sandy Grassland; Vaal Reefs Dolomite Sinkhole Wetland</td>
<td>Grassland Biome</td>
<td>Dry Highveld Grassland Bioregion</td>
<td>Chert rich dolomite and dolomite and sand</td>
<td>eutrophic and mesotrophic shallow and often occur over hard weathering rock, traces of lime</td>
</tr>
<tr>
<td>West Wits</td>
<td>26°25´S, 27°21´E</td>
<td>1540 - 1599</td>
<td>651</td>
<td>18</td>
<td>34.7</td>
<td>-8</td>
<td>Carletonville Dolomite Grassland; Gauteng Shale Mountain Bushveld</td>
<td>Grassland Biome; Savanna Biome</td>
<td>Dry Highveld Grassland Bioregion; Central Bushveld Bioregion</td>
<td>Chert rich dolomite and shale</td>
<td>eutrophic and mesotrophic occurrence of lime is common</td>
</tr>
</tbody>
</table>
The topography of all three districts is relatively flat. A distinct rainfall gradient is apparent across the three districts (Mucina and Rutherford, 2006). Mean annual rainfall, estimated over a 30-year period for Welkom, Vaal River and West Wits, ranges from 497 to 651 mm (South African Weather Service, 2006), with high inter-annual variability (25-30%) and high evapotranspiration potentials, between 2-2.5 times higher than the rainfall (Lynch and Schulze, 2006).

The mining districts are classified according to three dominant biomes viz. grassland, savanna and azonal vegetation (Mucina and Rutherford, 2006). Present regional land uses include cattle ranching, game farming, agricultural crop farming such as maize and sunflower, but does not include commercial forestry plantations. Commercial forestry is unsuited to these areas, given the low annual rainfall and cold winter temperatures. However, some small stands, rows and isolated trees do exist along some water courses, farm boundaries and in areas adjacent to TSFs through planting and natural establishment.

The underlying geology in Welkom is predominantly Ecca shales (Vegter, 1995). Predominant geological formations in Vaal River and West Wits study areas include dolomite and sand, chert-rich dolomite and shale, as shown in Figure 2.2 (AngloGold Ashanti, 2004).
The soils in Welkom can be described as eutrophic, with a high base status, and non-calcareous structured soils with a high clay concentration (ISCW, 1993). In Vaal River and West Wits the soils are predominantly eutrophic and mesotrophic, are shallow and often occur over hard weathering rock (ISCW, 1993). The occurrence of lime is common in the West Wits region; however, soils with a high base status with traces of lime are characteristic of the Vaal River study area (ISCW, 1993).

2.4 SAMPLING SITES

Although tree plantations are rare in these mining districts, sample sites were selected from stands, single trees or rows of trees and small-plot species trials in each mining district (Dye, 2004; I. Weiersbye, 2005 pers comm.). Fifteen sample sites were selected across the three mining districts; four each in the Welkom and West Wits districts and seven in the Vaal
River district (Figure 2.3). Five sample trees were selected at each sampling site, making a total of 75 sample trees across the three mining districts.

The following criteria were used in the selection of the sampling sites (Figure 2.3):

- Stands, single trees or rows of trees and small-plot species trials were used that covered a range of conditions, which included different levels of groundwater contaminants and concentrations of total dissolved solids (I. Weiersbye, 2004; 2005 pers comm.).
- Sites were selected to maximise the chance of incorporating extremes of high and low water availability to the trees (P. Dye, 2004 pers comm.). The validity of this sampling strategy is supported by similar studies, in which an assumption of linearity between ground-truth measurements and reflectance indices between the extremes of high and low tree water availability is made (Young and Wallis, 1985; Allen and Nakayama, 1988; Stimson et al., 2005; Eitel et al., 2006).
- Trees experiencing high water stress during the dry season were initially identified from leaf colour and canopy density. Predawn leaf water potential measurements were then used to confirm the degree of plant water stress in the tree species investigated in this study. A reading of -0.8 MPa was used to separate stressed trees from unstressed trees (Cleary and Zaerr, 1984).
The density and spatial arrangement of trees were variable across each mining district. Examples of the spatial arrangement of trees are shown in Figure 2.4. Stands comprised of established trees in rows arranged in a block design (Figures 2.4a, b, c, f), small-plot species trials consisted of young planted trees (Figures 2.4d), clumps representing a group of self-established trees with no fixed spatial arrangement (Figures 2.4e, g) and a row representing a single arrangement of established trees (Figures 2.4h, i).
A general description of each sampling site, its geographic location, spatial arrangement, average tree heights and diameter at breast height, measured in July 2004 is listed in Table 2.3.
### Table 2.3 Description of sample sites in the Welkom (W), Vaal River (VR) and West Wits (WW) mining districts. (Data obtained through field surveys and from AngloGold Ashanti, 2004).

<table>
<thead>
<tr>
<th>Mining District</th>
<th>Tree Species</th>
<th>Geographic Coordinates (dd)</th>
<th>Spatial Arrangement</th>
<th>Average Tree Height ± SD (m)</th>
<th>Average DBH ± SD (cm)</th>
<th>General Site Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W EC</td>
<td>-28.03052; 26.51879</td>
<td>Stand</td>
<td>6.9 ± 3.1</td>
<td>37.5 ± 19.9</td>
<td>Shale, eutrophic soils, farmland</td>
<td></td>
</tr>
<tr>
<td>W EC</td>
<td>-27.96743; 26.55001</td>
<td>Stand</td>
<td>9.1 ± 2.8</td>
<td>39.7 ± 7.6</td>
<td>Shale, eutrophic and non calcareous soils, high water availability, near pan</td>
<td></td>
</tr>
<tr>
<td>W SL</td>
<td>-28.03361; 26.51199</td>
<td>Row</td>
<td>7.3 ± 0.6</td>
<td>53.3 ± 13.7</td>
<td>Shale, eutrophic soils, farmland</td>
<td></td>
</tr>
<tr>
<td>W SL</td>
<td>-27.96695; 26.55075</td>
<td>Single</td>
<td>5.9 ± 1.6</td>
<td>51.1 ± 24.4</td>
<td>Shale, non calcareous soils, high water availability, near pan</td>
<td></td>
</tr>
<tr>
<td>WW ES</td>
<td>-26.43969; 27.32871</td>
<td>Stand</td>
<td>8.3 ± 3.1</td>
<td>29.6 ± 13.6</td>
<td>Shale, non calcareous soils, high water availability, farm dam, shallow groundwater table &lt; ~ 5 m</td>
<td></td>
</tr>
<tr>
<td>WW ES</td>
<td>-26.43899; 27.33024</td>
<td>Stand</td>
<td>6.6 ± 1.9</td>
<td>16.5 ± 7.8</td>
<td>Shale, non calcareous soils, lower water availability</td>
<td></td>
</tr>
<tr>
<td>WW EC</td>
<td>-26.43207; 27.36888</td>
<td>Small-plot species trial</td>
<td>4.0 ± 0.5</td>
<td>11.3 ± 2.9</td>
<td>Shale, non calcareous soils, higher water availability, riparian zone</td>
<td></td>
</tr>
<tr>
<td>WW EC</td>
<td>-26.43158; 27.36155</td>
<td>Small-plot species trial</td>
<td>3.9 ± 0.3</td>
<td>10.4 ± 1.3</td>
<td>Shale, non calcareous soils, low water availability</td>
<td></td>
</tr>
<tr>
<td>VR EC</td>
<td>-26.90590; 26.69330</td>
<td>Clump</td>
<td>9.2 ± 1.9</td>
<td>13.6 ± 3.5</td>
<td>Dolomite, meso-eutrophic soils, high total dissolved solids</td>
<td></td>
</tr>
<tr>
<td>VR EC</td>
<td>-26.99288; 26.78289</td>
<td>Stand</td>
<td>7.4 ± 2.2</td>
<td>31.4 ± 13.2</td>
<td>Dolomite, eutrophic soils, deep groundwater table ~ 20 m</td>
<td></td>
</tr>
<tr>
<td>VR EC</td>
<td>-26.92922; 26.68182</td>
<td>Clump</td>
<td>2.7 ± 1.3</td>
<td>6.9 ± 4.1</td>
<td>Andesite, eutrophic soils, close to tailing storage facility</td>
<td></td>
</tr>
<tr>
<td>VR EC</td>
<td>-26.92970; 26.62100</td>
<td>Clump</td>
<td>6.2 ± 0.5</td>
<td>19.8 ± 4.3</td>
<td>Andesite, eutrophic soils, close to tailing storage facility</td>
<td></td>
</tr>
<tr>
<td>VR EC</td>
<td>-26.99332; 26.78250</td>
<td>Row</td>
<td>9.0 ± 1.7</td>
<td>46.6 ± 13.4</td>
<td>Dolomite, eutrophic soils, high water availability, water channel</td>
<td></td>
</tr>
<tr>
<td>VR SL</td>
<td>-26.92301; 26.69820</td>
<td>Row</td>
<td>6.1 ± 0.8</td>
<td>46.0 ± 28.4</td>
<td>Quartzite, meso-eutrophic soils, low total dissolved solids</td>
<td></td>
</tr>
<tr>
<td>VR SL</td>
<td>-26.93418; 26.69592</td>
<td>Row</td>
<td>5.6 ± 1.2</td>
<td>30.2 ± 13.9</td>
<td>Dolomite, meso-eutrophic soils, high total dissolved solids, higher water availability</td>
<td></td>
</tr>
</tbody>
</table>

SD = Standard Deviation; DBH = Diameter at breast height; EC = E. camaldulensis; ES = E. sideroxylon; SL = S. lancea

W = Welkom; VR = Vaal River; WW = West Wits
CHAPTER 3.
REVIEW OF COMMONLY USED REMOTE SENSING AND GROUND-BASED TECHNOLOGIES TO MEASURE PLANT WATER STRESS

Sections of this review have been published by GOVENDER, M., DYE, P.J., WEIERSBYE, I.M., WITKOWSKI, E.T.F. and AHMED, F., 2009, Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA, 35, 739-750. A reprint of the review paper is provided in Appendix 1.

ABSTRACT

This review provides an overview of the use of remote sensing data, the development of spectral reflectance indices for detecting plant water stress, and the usefulness of field measurements for ground-truthing purposes. Reliable measurements of plant water stress over large areas are often required for management applications in the fields of agriculture, forestry, conservation and land rehabilitation. The use of remote sensing technologies and spectral reflectance data for determining spatial patterns of plant water stress is widely described in the scientific literature. Airborne, space-borne and hand-held remote sensing technologies are commonly used to investigate the spectral responses of vegetation to plant stress. Earlier studies utilised multispectral sensors which commonly collect four to seven spectral bands in the visible and near-infrared region of the electromagnetic spectrum. Advances in sensor and image processor technology over the past 3 decades now allow for the simultaneous collection of several hundred narrow spectral bands resulting in more detailed hyperspectral data. The availability of hyperspectral data has led to the identification of several spectral indices that have been shown to be useful in identifying plant stress. Such studies have revealed strong linear relationships between plant pigment concentration and the visible (VIS) and near-infrared (NIR) reflectance, while plant water content has been linked to specific bands in the short-wave infrared (SWIR) region of the spectrum.
Ground-truthing is essential to identifying useful reflectance information for detecting plant water stress, and four commonly used ground-based methods viz. predawn leaf water potential, leaf chlorophyll fluorescence, leaf pigment concentrations and leaf water content are reviewed for their usefulness and practical application.

**Key words**: leaf chlorophyll fluorescence, leaf-water content, plant pigment concentrations, plant water stress, predawn leaf water potential, remote sensing

### 3.1 INTRODUCTION

All living organisms, including plants need an adequate supply of water to ensure both their growth and survival. Water in plants is required for vital processes such as photosynthesis, respiration and nutrient uptake. Plants absorb water from the soil through their roots, which is then transported to their stems, leaves and flowers for the maintenance of the different vital processes. When water supply is insufficient, plants may suffer water stress, which could then compromise their growth and survival.

Water stress in plants is a complex physiological response to the limited availability of water to a plant. When plants suffer from water stress, a series of harmful plant water interactions occur, which may disrupt a plant’s physiology. These include a decrease in cell water potential, cell turgor and relative water content (Hsiao, 1973).

The available water to plants is usually expressed in terms of water potential. Water potential is commonly assessed by measuring predawn leaf water potential, a direct measure of plant water stress. Measurements at predawn directly evaluate the water status of the plant, because during night time conditions of zero transpiration, plant water potential equilibrates to the available soil water (Cleary and Zaerr, 1984). Cleary and Zaerr (1984) suggested that a predawn leaf water potential of less than -0.8 MPa is an indication of stressed vegetation. Indirect measurements may also be used to detect plant water stress.
The more commonly used techniques include measurements of relative leaf water content, plant chlorophyll pigment content and chlorophyll fluorescence. Other, less frequently applied field measurements include variations in trunk or stem diameters or even xylem vessel characteristics. Although characterising cavitation in xylem vessels is potentially a useful technique for understanding the response to water stress in a plant, this method is time-consuming, costly and not suitable for use over large spatial scales. It has been shown in many plant species that roots are more vulnerable to cavitation than stems, and thus root cavitation is more suited to characterise plant water stress between species (Sperry and Saliendra, 1994; Alder et al., 1996; Hacke and Sauter, 1996; Linton et al., 1998).

Reliable detection and prediction of plant water stress is desirable for numerous agricultural, forestry, conservation and land rehabilitation applications. Various remote and ground-based technologies are available for the measurement of plant water stress.

Remote sensing technologies using spectral reflectance data have increasingly been used for determining spatial patterns of plant water stress (Yamasaki and Dillenburg, 1999; Ceccato et al., 2001; Sims and Gamon, 2002; Pu et al., 2003; Jackson et al., 2004; Stimson et al., 2005; Chun-Jiang et al., 2006; Clay et al., 2006; De Tar et al., 2006; Eitel et al., 2006; Fitzgerald et al., 2006; Harris et al., 2006; Sepulcre-Cantó et al., 2006; Campbell et al., 2007). Important advantages of remote sensing technologies include cost-effectiveness, efficiency in displaying spatial patterns on a variety of scales, and versatility in revealing a variety of structural and physiological characteristics of water stressed plants. Despite numerous successful case studies, the selection of suitable remote sensing methodologies and reflectance algorithms remain difficult, due to the influence of vegetation diversity and site conditions on vegetation spectral reflectance.

This paper reviews the detection of plant water stress using remote sensing technologies and ground-based techniques commonly used to identify water stress in plants, and which are suitable for ground-truthing remotely-sensed imagery.
No distinction is made between the technologies used for acquiring the remote sensing data, but rather the focus is on highlighting vegetative spectral difference which has been used to detect plant water stress. The ground-based techniques reviewed include measurements of predawn leaf water potential (Dixon, 1914), leaf chlorophyll fluorescence (Müller, 1874), leaf water content (Weatherley, 1950) and leaf pigment concentrations (Lichtenthaler, 1987).

3.2 BRIEF OVERVIEW OF PLANT WATER STRESS INTERACTIONS

Understanding how plants respond to water stress, salt and co-occurring stresses is complex but important in evaluating their performance during conditions of reduced water availability and in the protection of natural vegetation. Water stress is known to alter several physiological, morphological and anatomical processes, as well as triggering defense mechanisms in many plant species (Silva et al., 2009). Responses to water stress conditions have been first observed through changes in leaf and stem water potential, water content, turgor pressure and stomatal conductivity, with subsequent changes reported in transpiration, photosynthesis and photochemistry rates (Angelopoulos et al., 1996). Defense mechanisms have also be observed which can include a reduction in transpiration rates to control water loss, root generated chemical signals through the synthesis of organic solutes and other gene relations (Chaves et al., 2009). Wilting a visual symptom of water stress however only occurs when a plant loses water, its vessels contract and turgor pressure on the cell walls is reduced resulting in the cells becoming flaccid and wilting.

Investigations of plants under water stress have reported considerable decreases in leaf water potential (more negative values) and turgor pressure, followed by progressive stomatal closure, reduced carbon dioxide assimilation and transpiration, with subsequent decline in photosynthetic and photochemistry rates (De Menezes et al., 2004). The latter responses are largely ascribed to stomatal restrictions on the supply of carbon dioxide to the leaf, inactivation of photosynthetic processes hence lower pigment concentrations, inhibition of primary photochemistry and declining chlorophyll fluorescence activity (Boyer et al., 1987; Angelopoulos et al., 1996; Chaves et al., 2009).
The reduction in photosynthetic rates commonly observed in plants under water deficit conditions range from the restriction on carbon dioxide diffusion into the chloroplast, through limitations on stomata opening which is mediated by shoot- and root-generated hormones, and on the mesophyll transport of carbon dioxide, to alterations in leaf photochemistry and carbon metabolism. These effects vary according to the intensity and duration of the stress as well as with the leaf age; older leaves being more affected by drought and accumulating higher amounts of salt and the plant species (Chaves et al., 2009). Under conditions of water stress, photosynthetic pigment composition such as chlorophyll and carotenoid pigment contents decrease, with chlorophylls shown to decline more rapidly than carotenoids (Sikuku et al., 2010). Hence due to the importance of photosynthetic pigments in correct plant functioning, variations in chlorophyll a, chlorophyll b, total chlorophyll and carotenoids are commonly used to provide information concerning the physiological status of plants (Netondo, et al., 2004). Pirzad et al. (2011) showed that water stress resulted in significant decreases in chlorophyll content (chlorophyll a, b and total chlorophyll concentrations), light harvesting chlorophyll a/b protein and relative leaf water content, with total chlorophyll content being reduced by as much as 55%.

Similar trends have been observed with photochemistry rates illustrating a reduction in primary photochemistry and chlorophyll fluorescence under conditions of water stress. Significant decreases in Fv/Fm ratio ($P < 0.05$) and significant increases in the Fo values ($P < 0.05$) were shown (Pirzad et al., 2011). Alterations to these chlorophyll fluorescence expressions under water stress represent damage to the photosystem II reaction centers, triggering reduced photosynthetic capacity and photochemical efficiency (Pirzad et al., 2011).

A chemical communication between the roots and shoots including stomata movement, which triggers a growth substance produced in the roots called ABA, has also been reported linked to the reduced transpiration rates and stomatal conductance after periods of water stress. ABA increases in the roots and is transported to the shoot through the xylem, causing stomatal closure (Gomes et al., 2004; Silva et al., 2009). Thomas and Emus (1999) found that ABA accumulation in the leaves of *Eucalyptus tetrodonta* contributed towards a decrease in stomatal conductance.
Transgenic and molecular biology studies on plant responses to water stress and phospholipid-based signalling has emerged as a component of drought-responsive signal pathways (Mane et al., 2011). During periods of water stress, stomata close, there is a reduction in water loss as well as gas exchange, leading to reduced carbon assimilation and to a near optimization of carbon assimilation in relation to water supply (Mane et al., 2011). Using transcriptome analysis, several new genes regulated by progressive drought were identified and genes whose expression may be part of the phospholipid-based signalling pathway were also found, suggesting that further exploration of process regulated by transgenic genes is required.

During periods of water stress plants also have the ability to maintain functioning but at a reduced capacity. Several studies indicate that woody species display different tolerances to water stress, with some trees still functioning even during severe droughts, at a very low level of physiological activity and much lower plant water potentials (Tyree et al., 2003; Greven et al., 2009; Wagner et al., 2011). As water availability in the soil decreases, the transpiration rate also decreases, as a result of stomatal closure. The instantaneous control of transpiration is an important defense mechanism used by many species in arid environments to avoid excessive water loss and possible death by dehydration (Silva et al., 2009). Osmotic adjustment is considered an important mechanism to allow for the maintenance of water uptake and cell turgor under stress conditions. Olive trees typically use osmotic adjustment as a stress avoidance mechanism to maintain turgor potential between the tissues (Dichio et al., 2006), with leaf water potential below 4 MPa. Olive trees can lose almost 40% of their tissue water content and still maintain their re-hydration capacity, due to the establishment of a high gradient of water potentials between the tissues, roots, and soils, which allows the trees to take up water even at soil potentials below permanent wilting point (Greven et al., 2009). Few species would be able to continue water uptake at a stem water potential of less than 4.0 MPa.

Other defense mechanisms triggered in plants under water stress include alterations in the diffusion of carbon dioxide from the sub-stomatal cavities to carboxylation sites which thus contribute towards the maintenance of photosynthetic rates despite the low stomatal
conductance. Also observed under water deficit conditions are increases in stomata density and the number of smaller sized mesophyll cells of the leaf resulting in improved control of water loss (Silva et al., 2009).

Although Eucalyptus species have evolved in a dry environment, changes in plant water status strongly influence their growth and physiology (Batchelard, 1986; Metcalfe et al., 1990). Predawn leaf water potential has been used to estimate changes in minimum levels of water stress, with measurements from Eucalyptus illustrating values less than 4 MPa (White et al., 2000). This measure of plant water status often assumes equilibrium in water potential at the soil–root interface though this may not always be the case (Whitehead and Beadle, 2004).

In *E. camaldulensis* and *E. nitens*, the high stomatal sensitivity is associated with in-elastic tissues and in *E. camaldulensis*, its capacity to access groundwater. As leaf water potential becomes more negative with soil drying, manipulation of both osmotic and elastic properties occurs to sustain a positive turgor pressure over a wider range of water stress conditions. In-elastic tissues that promote rapid loss of turgor are associated with a high stomatal sensitivity and drought avoidance. Such characteristics are an essential pre-requisite for matching species to sites where the major limitation to growth is available water and in combining species for managing the use of water throughout the soil profile, including groundwater recharge (White et al., 2000).

Several studies have reported on the ability of tree root systems to access water. Whitehead and Beadle (2004), showed that the roots of Eucalyptus trees comprise of a widely spreading lateral system just below the soil surface and a deep tap root system in young trees that develops deep sinker roots as the trees mature. Roots are described as being opportunistic and grow along gradients of increasing water availability for considerable distances. Measurements from *Eucalyptus grandis* trees exposed to progressive water stress showed that trees abstracted water to 8 m depth, while 9 year old trees obtained most of their water from depths below 8 m and deep drilling revealed that live roots reached 28 m below the surface (Dye, 1996). Dye (1996) concluded that water is recharged possibly by infiltration along old root channels. In a comparative study of four Eucalyptus species in close
proximity, at different leaf water potentials during the dry season, results indicated that varying strategies were adopted by the species in accessing water from the soil profile, were two were reliant on parts subjected to large changes in soil water content and two used water from the capillary fringe (White et al., 2000). Whitehead and Beadle (2004) showed that transpiration and evaporation for four Eucalyptus species planted in contour belts were effective at reducing groundwater recharge with minimal competition for water with adjacent crops. Dawson and Pate (1996) reported on the adaptation of deep rooted trees to access different sources of water from within the soil profile in relation to seasonal water availability, were Eucalyptus globulus and Eucalyptus camaldulensis accessed groundwater using sinker roots in the summer, but the proportion of groundwater in stems were found to be greater in Eucalyptus camaldulensis (26-47%) compared to Eucalyptus globulus (9-15%). When roots of Eucalyptus camaldulensis and Eucalyptus platypus grow through layers of soil with different water contents, they are able to redistribute water between the layers by transferring significant quantities along gradients of water potential (Burgess et al., 2001).

According to Burgess et al. (2001), the direction of the movement of water termed hydraulic lift may be upwards or downwards depending on the timing of rainfall and availability of water stored in different layers and has many ecological benefits including reduced waterlogging of surface soils during wet periods, increased water content in deeper soil layers during dry periods and improved nutrient availability.

3.3 DETECTION OF PLANT WATER STRESS USING REMOTE SENSING

Remote sensing data are often described by their spatial and spectral properties or resolutions. Spatial resolution is the size of a pixel recorded in the remote sensing image, and could range from 1 m (higher spatial resolution) to 1000 m (lower spatial resolution). Spectral resolution is related to the width and number of wavelength bands recorded by the remote sensing system, with lower spectral resolutions often representing a fewer broad spectral bands such as multispectral data, and higher spectral resolutions representing sometimes more than a hundred narrow spectral bands such as hyperspectral data. These terms are often referred to in following sections and chapters.
During the 1980s, the application of remote sensing technologies for plant and environmental studies became widespread. These studies made use of low spatial and spectral resolution multispectral data. Multispectral remote sensing data commonly consist of four to seven broad spectral bands in the visible (VIS) and near infrared (NIR) regions of the electromagnetic spectrum. These datasets were acquired using airborne, satellite and ground-based spectrometers. Early airborne systems consisted of a multispectral camera mounted on board a small aircraft or helicopter which collected three to four spectral bands. Spectrometers at this time were bulky, heavy instruments which were not easily transportable in the field. Therefore most spectral measurements were taken in laboratories.

Remote sensing technologies have advanced significantly over the past 10 to 15 years. With the development of hyperspectral remote sensing technologies, researchers have benefited from significant improvements in the spectral and spatial properties of the data, thus allowing for more detailed plant and environmental studies. These technologies acquire many hundreds of spectral bands across the spectrum from 400 to 2500 nm. Such hyperspectral technologies also use airborne, satellite and hand-held spectrometers.

Airborne hyperspectral imagers, such as the commonly used Casi or Hymap imagers, acquire high spectral and spatial resolution images. A distinct advantage of most airborne imagers is their capability to acquire at least two hundred or more spectral bands at less than 5 m spatial resolution. However, airborne imagery is generally more costly than satellite imagery, due to the logistical costs associated with flight surveys and the costs of hiring airborne hyperspectral or multispectral imagers. Advances in spectrometry have resulted in state-of-the-art portable field instruments which allow for the collection of hand-held hyperspectral signatures from 400 to 2500 nm. The Hyperion sensor is currently the only hyperspectral satellite system available for research.

In recent years, there has been an expanding body of literature concerning the relationship between the spectral reflectance properties of vegetation and the structural characteristics of vegetation and pigment concentration in leaves. The spectral characteristics of vegetation are governed primarily by scattering and absorption characteristics of the leaf internal structure and biochemical constituents, such as pigments, water, nitrogen, cellulose and lignin (Asner,
1998; Coops et al., 2002). Pigments are the main determinants controlling the spectral responses of leaves in the visible wavelengths (Gaussman, 1977). Chlorophyll pigment content, in particular, is directly associated with photosynthetic capacity and productivity. Reduced concentrations of chlorophyll are indicative of plant stress (Curran et al., 1992). On the other hand, cellular structure and water content of leaves are the main determinants in the near- and shortwave-infrared wavelengths as shown in Figure 3.1.

![Figure 3.1](image)

**Figure 3.1** Typical reflectance sensitivities as controlled by leaf pigments, cell structure and water content. (Adapted from Gaussman, 1977).

Over the years research findings have advanced our understanding of vegetation in relation to plant stress. Table 3.1 summarises findings since the early 1980s, highlighting specific regions of the electromagnetic spectrum and their relations to vegetation spectral reflectance properties. Many of the earlier studies highlighted specific regions of the spectrum such as the VIS and NIR regions, which could be used in vegetation studies. More recent work has highlighted the importance of specific regions such as the red edge (maximum slope of vegetation reflectance from 690 to 740 nm) for predicting plant stress (Clay et al., 2006; Fitzgerald et al., 2006; Blackburn, 2007; Campbell et al., 2007). The extent of the literature is indicative of the importance of relationships between plant stress and both plant chlorophyll and water content. Plant chlorophyll and water content have thus been used as ‘surrogates’ of plant stress, under the assumption that decreases in chlorophyll and water content are indicative of plant stress. Therefore, in remote sensing studies numerous individual spectral bands and vegetation spectral reflectance indices have been used to predict plant chlorophyll content and water content.
Table 3.1: Some milestones in the historical development of the relationships of vegetation spectral reflectance characteristics in specific regions of the electromagnetic spectrum.

<table>
<thead>
<tr>
<th>Region of the Spectrum</th>
<th>Vegetation Spectral Reflectance Characteristics</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS, NIR and MIR</td>
<td>Pigments, cellular structure and water content of leaves.</td>
<td>Gaussman (1977)</td>
</tr>
<tr>
<td>1550 to 1750 nm</td>
<td>Correlation of MIR reflectance to leaf water contents.</td>
<td>Tucker (1980)</td>
</tr>
<tr>
<td>SWIR (1400 to 2500 nm)</td>
<td>Reflectance is influenced by liquid water in plant tissue.</td>
<td>Tucker (1980), Ceccato et al. (2001)</td>
</tr>
<tr>
<td>VIS</td>
<td>Changes in red, green and blue reflectance due to chloroplast deterioration.</td>
<td>Murtha (1982)</td>
</tr>
<tr>
<td>Red Edge</td>
<td>Movement of red edge towards shorter wavelengths during senescence or stress induced chlorosis.</td>
<td>Collins et al. (1983), Rock et al. (1988), Milton et al. (1989)</td>
</tr>
<tr>
<td>Red Edge</td>
<td>Red edge defined from 690 to 740 nm is also sensitive chlorophyll content.</td>
<td>Horler et al. (1983), Curran et al. (1990), Blackburn (1999)</td>
</tr>
<tr>
<td>Red Wavelengths</td>
<td>Displacement in the slope of the red wavelengths towards longer wavelengths as chlorophyll content increases.</td>
<td>Horler et al. (1983)</td>
</tr>
<tr>
<td>Thematic Band 5 to 7 (1550 – 1750 nm and 2080 – 2350 nm)</td>
<td>Ratio of Band 5 to 7 highly correlated with water content of soils and vegetation.</td>
<td>Musick and Pelletier (1986; 1988)</td>
</tr>
<tr>
<td>VIS and NIR</td>
<td>Estimated chlorophyll a, b and total carotenoid content using equations and specific extinction coefficients.</td>
<td>Lichtenthaler (1987)</td>
</tr>
<tr>
<td>Red Edge</td>
<td>Increase in the relative proportion of chlorophyll a will result in movement of red edge towards longer wavelengths, independent of total chlorophyll content and vice versa.</td>
<td>Guyot and Baret (1988)</td>
</tr>
<tr>
<td>NIR (700 – 1300 nm) and MIR (1300 – 2500 nm)</td>
<td>Detection of plant water stress in oak, sweet gum and conifers.</td>
<td>Hunt and Rock (1989)</td>
</tr>
<tr>
<td>820 and 1600 nm</td>
<td>Significant relationship between the equivalent water thickness and a moisture stress index between reflectance value measured at 1600 nm and reflectance value measured at 820 nm.</td>
<td>Hunt and Rock (1989)</td>
</tr>
<tr>
<td>Red Edge</td>
<td>Chlorophyll content of branches of Slash Pine (<em>Pinus elliottii engelms</em>) predicted using red edge.</td>
<td>Curran et al. (1990)</td>
</tr>
<tr>
<td>VIS (491-575 nm); Red (647-760 nm)</td>
<td>Increased reflectance in response to plant stress regardless of the stress agent.</td>
<td>Carter (1993)</td>
</tr>
<tr>
<td>860 nm and 1240 nm</td>
<td>Normalised difference water index as an estimate of vegetation water content.</td>
<td>Gao (1995)</td>
</tr>
<tr>
<td>Region of the Spectrum</td>
<td>Vegetation Spectral Reflectance Characteristics</td>
<td>Author(s)</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>550, 700 and longer than 750 nm</td>
<td>Specific wavelengths sensitive to pigment variations and chlorophyll assessment at leaf level for maple and chestnut leaves.</td>
<td>Gitelson and Merzlyak (1996)</td>
</tr>
<tr>
<td>Reflectance at 550 and 700 nm, and 500 and 670 nm</td>
<td>Highly correlated in yellow-green to dark green leaves.</td>
<td>Gitelson and Merzlyak (1996)</td>
</tr>
<tr>
<td>Maximum reflectance at 750 nm, lowest reflectance between 400 to 500 nm.</td>
<td>Highly correlated in chestnut leaves.</td>
<td>Gitelson and Merzlyak (1996)</td>
</tr>
<tr>
<td>670-680 nm</td>
<td>Reflectance at 670-680 nm was insensitive to chlorophyll a above 70 mg m^{-2} in tobacco leaves (Nicotiana tabacum L.) due to saturation of the relationship between light absorption and pigment concentration.</td>
<td>Lichtenthaler et al. (1996)</td>
</tr>
<tr>
<td>VIS, NIR</td>
<td>Reflectance at wavelengths with high absorption coefficients should be more sensitive to low concentrations of chlorophyll a, while spectral regions with low absorption should be more sensitive to higher chlorophyll a concentrations.</td>
<td>Lichtenthaler et al. (1996), Blackburn (1999)</td>
</tr>
<tr>
<td>550, 700 and 750 nm</td>
<td>The reflectance indices (R750/R700 and R750/R550) were identified as having strong linear relationships with total chlorophyll concentration at the leaf scale in horse chestnut (Aesculus hippocastanum L.) and Norway maple (Acer platanoides L.) leaves.</td>
<td>Lichtenthaler et al. (1996), Gitelson and Merzlyak (1996), Gitelson et al. (2002), Blackburn (1999)</td>
</tr>
<tr>
<td>SWIR (1530 and 1720 nm)</td>
<td>Reflectance is influenced by liquid water in plant tissue and can be used as an estimate for vegetation water content.</td>
<td>Foutry and Baret (1997)</td>
</tr>
<tr>
<td>VIS, NIR, SWIR</td>
<td>Variability in tissue optical properties is wavelength dependent. Green foliage lowest variation in VIS, highest NIR. Standing litter minimum variation in VIS and NIR, highest in SWIR Woody stems lowest variation in SWIR, highest in NIR.</td>
<td>Asner (1998)</td>
</tr>
<tr>
<td>650, 635, and 470 nm</td>
<td>Concentrations of chlorophyll a, chlorophyll b, and carotenoids were best correlated with reflectance indices (R_{650}, R_{635}, and R_{470}), respectively in the leaves of four deciduous tree species at different stages of senescence.</td>
<td>Blackburn (1998a)</td>
</tr>
<tr>
<td>676 and 810 nm</td>
<td>Chlorophyll a and chlorophyll b concentrations were strongly correlated with reflectance index (R676) in the visible wavelengths and reflectance index (R810) in the near-infrared on bracken (Pteridium aquilinum) canopies. Possible correlation to canopy structural development which has a direct influence on near-infrared reflectance.</td>
<td>Blackburn (1998b)</td>
</tr>
<tr>
<td>740 to 820 nm; 680 and 760 nm</td>
<td>Higher reflectance values between 740 to 820 nm; and more pronounced maximum slope between 680 and 760 nm (red edge) is related to vegetation with healthier green leaf development i.e. higher biomass and leaf area index.</td>
<td>Lelong et al. (1998), Jacquemoud (1993), Baret and Jacquemoud (1994), Baret et al. (1994), Filella and Penuelas (1994)</td>
</tr>
<tr>
<td>Red and NIR</td>
<td>Relation between water deficiency (stress) to spectral features in the 740 to 820 nm and red edge range in wheat.</td>
<td>Lelong, et al. (1998)</td>
</tr>
<tr>
<td>Region of the Spectrum</td>
<td>Vegetation Spectral Reflectance Characteristics</td>
<td>Author(s)</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Red Edge</td>
<td>The first derivative of pseudo absorbance, (\gamma (\log \frac{1}{\text{Reflectance}})), was highly correlated with canopy pigment concentration per unit area in the red edge region. Canopy and leaf scale concentrations per unit mass of chlorophyll a, chlorophyll b, and carotenoids were strongly related to (\gamma (\log \frac{1}{\text{Reflectance}})) and the second derivative of pseudo absorbance (\nabla \gamma (\log \frac{1}{\text{Reflectance}})), but different wavelengths were optimal at each scale.</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>VIS</td>
<td>Moderately correlated to chlorophyll concentration.</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>VIS (Green) and NIR</td>
<td>Ratio indices highly correlated to chlorophyll concentration.</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Red Edge</td>
<td>Wavelength position of red edge related to chlorophyll concentration, and characteristics of the amplitude of the first and second derivatives of reflectance and pseudo absorbance were more strongly correlated with chlorophyll.</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Red, NIR (850 nm, 710 nm, 680 nm)</td>
<td>Vegetation indices used to predict chlorophyll content of eucalypt vegetation at the leaf and crown scale.</td>
<td>Datt (1999)</td>
</tr>
<tr>
<td>850, 710 and 680 nm</td>
<td>850, 710 and 680 nm wavelengths produced the highest correlations with leaf chlorophyll content.</td>
<td>Datt (1999)</td>
</tr>
<tr>
<td>Red Edge</td>
<td>With decreasing chlorophyll content, senescence or stressed induced chlorosis the red edge moves to shorter wavelengths, and is due to a reduction in the depth and breadth of the chlorophyll absorption feature.</td>
<td>Stone et al. (2001), Rock et al. (1988), Datt (1999)</td>
</tr>
<tr>
<td>VIS, NIR</td>
<td>Relationships between spectral reflectance properties of Eucalypt vegetation and a range of physiological and morphological parameters. Results indicate a shift of red edge towards shorter wavelengths with decreasing chlorophyll content.</td>
<td>Stone et al. (2001)</td>
</tr>
<tr>
<td>900 and 970 nm</td>
<td>Water index is derived from the ratio between reflectance measured at 900 nm and 970 nm and used as a measure of plant water content.</td>
<td>Champagne et al. (2003)</td>
</tr>
<tr>
<td>VIS, NIR and Red Edge</td>
<td>Universal broad leaf chlorophyll indices using the PROSPECT model</td>
<td>le Maire et al. (2004)</td>
</tr>
<tr>
<td>NIR, Red Edge</td>
<td>Canopy level spectral and thermal estimation of water status and nitrogen content using spectral and thermal indices.</td>
<td>Fitzgerald et al. (2006)</td>
</tr>
<tr>
<td>NIR and VIS</td>
<td>Degree of water stress strongly correlated to spectral bands from VIS and NIR regions viz. 686, 811, 860, 850 bands using hyperspectral and multispectral data.</td>
<td>De Tar et al. (2006)</td>
</tr>
<tr>
<td>Thermal bands</td>
<td>Detection of water stress using thermal remote sensing imagery.</td>
<td>Sepulcre-Cantó et al. (2006)</td>
</tr>
<tr>
<td>NIR and SWIR</td>
<td>Indices formulated from the weaker NIR liquid water absorption bands (980 and 1200) are linear in response to moisture fluctuations, and are strongly correlated to hydrological measures. Could be used to estimates near-surface and surface wetness at the landscape scale.</td>
<td>Harris et al. (2006)</td>
</tr>
</tbody>
</table>

\(\text{VIS} = \text{Visible}; \text{NIR} = \text{Near Infrared}; \text{MIR} = \text{Middle Infrared}; \text{SWIR} = \text{Shortwave Infrared}\)
3.3.1 Spectral indicators of plant chlorophyll content

In stressed vegetation, leaf chlorophyll content decreases, thereby changing the proportion of light-absorbing pigments, leading to less overall absorption of light, which affects the spectral reflectance signatures of plants (Murtha, 1982; Zarco-Tejada et al., 2000). This leads to a reduction in green reflection and an increase in red and blue reflections, resulting in changes in the normal spectral reflectance patterns. Thus, detecting changes from the normal spectral reflectance patterns is the key to interpreting plant water stress.

Specific reflectance wavelengths in the red and near infrared region of the spectrum, which are sensitive to plant chlorophyll pigment variation, have been identified. Reflectance from 550 and 700 nm show maximum sensitivity to a wide range of chlorophyll contents (Curran et al., 1990; Carter, 1993; Gitelson and Merzlyak, 1996; Lichtenthaler et al., 1996, Datt, 1999). However, there is little agreement on the optimum wavelengths to be used in the remote assessment of plant chlorophyll content.

Indices have been derived using a combination of specific reflectance wavelengths for the remote assessment of chlorophyll content (Curran et al., 1990; Jacquemoud, 1993; Baret and Jacquemoud, 1994; Baret et al., 1994; Filella and Penuelas, 1994; Gitelson and Merzlyak, 1996; Lichtenthaler et al., 1996; Blackburn, 1998a; Blackburn, 1998b; Lelong et al., 1998; Blackburn, 1999; Datt, 1999; Stone et al., 2001; Coops et al., 2003). These indices have been typically derived through correlations between leaf reflectance and leaf chlorophyll content, and are often developed for a single species with constant leaf size and shape, leaf surface and internal structure (Datt, 1999). However, the relationship between chlorophyll content and leaf or canopy reflectance is not necessarily generic, and caution needs to be taken when applying these indices over different vegetation types or biomes for the prediction of plant water stress (Coops et al., 2003).

In the remote assessment of plant water stress, total chlorophyll and chlorophyll $a$ content have been identified as key spectral indicators. Chlorophyll $a$ absorbs strongly in the red wavelengths because of electron transitions of the chlorophyll molecules. As the chlorophyll concentration increases, there is an apparent displacement in the slope of the red
wavelengths towards longer wavelengths (Horler et al., 1983). However, in a stressed plant there is a shift towards shorter wavelengths, often reported as the “blue shift” (Carter, 1993). The interdependence of chlorophyll $a$ and total chlorophyll provide an appropriate measure of changes in spectral reflectance due to plant water stress. If the relative proportion of chlorophyll $a$ were to increase, there would be a movement of the red edge to longer wavelengths, independent of total chlorophyll content. Likewise, a decrease in the relative proportion of chlorophyll $a$ would result in a movement of the red edge to shorter wavelengths, also independent of total chlorophyll content. However, the effect of a changing $\frac{\text{chlorophyll } a}{\text{chlorophyll } b}$ ratio on the red edge is likely to be minor, and has proved difficult to observe compared to the effect of the total chlorophyll content (Guyot and Baret, 1988). Therefore, red reflectance is considered a reliable metric for total chlorophyll content and changes in leaf pigments (Horler et al., 1983).

When chlorophyll content is used as a measure of plant water stress, the placement and shape of the spectral red-edge are important indicators of plant water stress (Horler et al., 1983, Curran et al., 1990, Blackburn, 1999; Blackburn, 2007). This relationship is used to explain the movement of the red edge to shorter wavelengths during different expressions of plant water stress, such as senescence or stress-induced chlorosis (Collins et al., 1983; Rock et al., 1988; Milton et al., 1989; Clay et al., 2006; Campbell et al., 2007).

### 3.3.2 Spectral indicators of plant water content

Plant water content at the leaf and canopy scales are often estimated using reflectance data from the near infrared (NIR), middle infrared (MIR) and short wave infrared (SWIR) regions of the electromagnetic spectrum (Tucker, 1980; Hunt and Rock, 1989; Gao, 1995; Zarco-Tejada et al., 2003; Jackson et al., 2004; Shen et al., 2005; Chun-Jiang et al., 2006). Specific spectral bands and spectral indices designed to capture changes in plant water content have been derived using a combination of spectral bands from the NIR, MIR and SWIR regions.

NIR and MIR spectral bands are highly correlated to water content of vegetation and soils (Tucker, 1980; Hunt and Rock, 1989; Musick and Pelletier, 1986; 1988). Spectral bands from these regions have been used to differentiate stressed trees from non-stressed trees (Tucker, 1980; Hunt and Rock, 1989; Musick and Pelletier, 1986; 1988). In these regions of
In the SWIR region (1400 to 2500 nm), field measurements have shown significant changes to this region of the spectrum resulting from changes in the water content of plants (Tucker, 1980; Ceccato et al., 2001). Several relationships have been identified between specific spectral bands in the SWIR region, and different ground-based measurements of plant water stress such as relative water content, leaf water potential, stomatal conductance, and cell wall elasticity (Foutry and Baret, 1997; Pu et al., 2003). In particular, Foutry and Baret (1997) reported that the spectral wavelengths at 1530 and 1720 nm are most appropriate for assessing plant water content.

Several spectral indices have been derived to detect changes in plant water content for the remote assessment of plant water stress. The sensitivity of such spectral indices to changes in plant water content is influenced by the leaf internal structure. Therefore, some spectral indices may not be suitable for the detection of low or moderate levels of plant water stress (Eitel et al., 2006). Two spectral indices that have been successfully used are the normalised difference water index (Gao, 1995) and the water band index (Penuelas et al., 1995).

The normalised difference water index (Gao, 1995) is commonly used and accepted as an accurate estimate of plant water content. This index consists of the ratio of the difference between reflectance measured at 860 and 1240 nm, and the sum of reflectance measured at 860 and 1240 nm respectively (Gao, 1995). At these narrowband wavelengths, vegetation canopies have similar radiation scattering properties, but slightly different liquid water absorption properties. Therefore, this index has been successfully applied to detect plant water content remotely for various tree species (Gao, 1995; Jackson et al., 2004; Stimson et al., 2005; Eitel et al., 2006). On the other hand, the water band index is derived from the
ratio of reflectance measured at 900 nm and 970 nm (Penuelas et al., 1995). This spectral index has been correlated with ground-based measurements of plant water content at both the leaf and canopy scales. It is, however, more sensitive to leaf water content than the water content of the whole plant. This is advantageous in agricultural applications, where leaf water content changes more noticeably in response to drought conditions than the water content of the entire plant biomass (Champagne et al., 2003).

### 3.3.3 Factors affecting spectral reflectance from leaf to canopy scales

The levels of spectral reflectance from a plant leaf or canopy are determined by a variety of factors. The factors that play a role in the spectral reflectance from a plant leaf or canopy include:

- type of species,
- site,
- age of plant or foliage,
- nutrient status,
- leaf orientation,
- effects of variable irradiance,
- geometrical arrangement of the object/scene,
- orientation of the ground surface in relation to the location of the sun,
- remote sensing device or sensor, and
- meteorological conditions (Asner, 1998; Coops et al., 2003).

Their individual or combined effects are relevant to ground-based field spectrometers, airborne and satellite remote sensing technologies.

Remote sensors differ extensively in their ability to discriminate targets. Spatial resolution varies from less than a metre to several kilometres, with some models requiring input parameters from various data sources with different spatial resolutions (Chen, 1999). Furthermore, vegetation cover can be highly heterogeneous spatially, with the variability within a pixel likely to introduce uncertainties when processing and applying remote sensing imagery at different spatial resolutions (Jiang et al., 2006).
Spectral data collected at the leaf scale usually contain the least amount of variability and are most easily correlated to ground-truthing measurements at the same spatial scale. Ground-truthing of remote sensing surveys is often undertaken at the leaf scale, due to the complexity of ground-truthing at higher spatial scales, and the difficulty in mimicking the significant variability in canopy reflectance. Therefore, spectral features and relationships which have been identified at the leaf scale, in conjunction with ground-truthing experiments have often also been applied generically at canopy and landscape scales (Mohammed et al., 1997; Datt, 1999; Zarco-Tejada et al., 2000; Coops et al., 2003).

Despite the difficulty in mimicking whole-canopy reflectance, attempts have been made by stacking leaves on top of each other for below-canopy spectral measurements (Blackburn, 1999; Datt, 1999; Coops et al., 2003). The disadvantage of the leaf stacking method is that it is unable to represent the absolute radiation interactions which occur at the canopy scale. It also fails to replicate, for example, canopy architecture, leaf angle distribution, the reflectance of trunks and branches, and the contribution of the wider canopy outside of the instrument field of view. Thus its use is limited. It does, however, assist in controlling the impact of variables such as background reflectance, irradiation levels and sun-target sensor geometry, which do affect spectral reflectance measurements at the canopy scale.

Remote sensing applications at landscape and ecosystem scales require the evaluation and monitoring of multiple species at multiple spatial and temporal scales in order to better understand species interactions and community dynamics, both of which have important implications under changing environmental conditions (Marignani et al., 2007). Validation of different types of remote sensing data is usually dictated by their spatial resolution (Zwart and Bastiaassen, 2007), with fine resolution products (<100 m) such as Landsat being adequately validated with ground-based measurements. However, as the spatial resolution of the remote sensing data decreases, resulting in coarser resolution products such as MODIS (1000 m in thermal band), using ground-based measurements is very difficult because of the scale disparity between ground or point measurements and the coarse spatial resolution imagery. Therefore remote sensing research has developed over the years to utilize ground-based measurements to validate high resolution remote sensing imagery and thereafter using
the high resolution remote sensing imagery to validate and up-scale or aggregate coarse or low resolution remote sensing data (Zwart and Bastiaassen, 2007; Choi et al., 2009).

Many studies regarding the effect of up-scaling remote sensing datasets have been reported (Zarco-Tejada et al., 2003; Marignani et al., 2007; Zwart and Bastiaassen, 2007; Choi et al., 2009; Hong et al., 2009; He and Mui, 2010). During an aggregation or up-scaling process, the raster spatial data are reduced to a smaller number of data pixels covering the same spatial extent. It is generally recognized that data aggregation modifies the statistical and spatial characteristics of the data (Bian et al., 1999). Since the total number of pixels is reduced, the variance and frequency distribution of the sampled data at a reduced spatial resolution may deviate from the original data set (Bian et al., 1999).

Several methods exist for scaling land surface and vegetation parameters from leaf to canopy levels including direct extrapolation, canopy integrated methods and modelling approaches. The extrapolation method is the simplest way to scale remote sensing data from the leaf to the canopy level. Empirical estimation or extrapolation methods use uni-variate or multi-variate models to scale the target properties of plants such as biochemical content from leaf to a canopy level (He and Mui, 2010). Empirically based methods apply leaf level relationships between reflectance or reflectance indices and land surface or vegetation parameters directly to the canopy level spectral reflectance data measured by airborne or satellite sensors.

The canopy integrated methods are applied by multiplying vegetation parameters at the leaf level with the corresponding canopy biophysical parameters such as leaf biochemical content, leaf area index or biomass. Similar applications have derived parameters such as canopy chlorophyll content by multiplying leaf chlorophyll content with biomass within an area covered by a pixel. The major assumption of the canopy integrated method is that all leaves in the plant have the same biochemical content (He and Mui, 2010).

Physically based methods or models have also been developed which involve the use of radiative transfer models such as SAILH, PROSPECT or LEAFMOD to estimate the biometric properties and biochemical content from leaf to canopy and over larger spatial
scales (Glenn et al., 2008). Such models include assumptions and commonly use inputs on the leaf characteristics, geometry of vegetation in the field of view, and the nature of the surrounding environment including weather conditions. Airborne and satellite data sets have contributed significantly to scaling various land surface and vegetative parameters from leaf to canopy and stand levels, as vegetation parameters are clearly not uniform at increasing spatial scales, varying in vegetation type, its state, spatial distribution and canopy composition (He and Mui, 2010). Physically based models require the application of inversion models in order to retrieve vegetation characteristics from reflectance data. Commonly used inversion algorithms include numerical optimization methods, look-up table approaches, artificial neural network methods, and support vector machine regression (Glenn et al., 2008). Vegetation indices have also been used in temporal vegetation or land surface studies or as inputs into models such as soil-vegetation-atmosphere transfer, surface energy balance or global climate models, to estimate a wide variety of canopy attributes such as net primary production and evapotranspiration. Such applications simplify the task of modelling complex landscapes (Glenn et al., 2008).

Removal of atmospheric and background interferences is necessary when processing remote sensing data. Various types of calibration models can be applied depending upon the quantity and quality of calibration data recorded during the remote sensing acquisition surveys. Alternatively, the removal of atmospheric and background interferences could be omitted when vegetation spectral reflectance indices, which account for differences in atmospheric and background effects, were applied in sparsely vegetated environments (Giannico, 2004). Furthermore, the magnitude of atmospheric and background interferences is greater as spatial resolution decreases from ground to stand and canopy levels; and spectral resolution increases from multispectral to hyperspectral data.

3.4 DETECTION OF PLANT WATER STRESS USING GROUND-BASED MEASUREMENTS

Simple, quick and portable ground-truthing methods are needed for the measurement of plant water stress. Commonly-used techniques address aspects of the plant water status and plant pigment condition.
3.4.1 Predawn leaf water potential

Predawn leaf water potential measurements, often undertaken with a pressure chamber, are of significant value when determining plant water stress. At predawn, xylem water potential has equilibrated with soil water potential after a night of negligible transpiration. At this time, plant water potential is usually at its minimum for the day (Cleary and Zaerr, 1984).

The pressure chamber is most commonly used for estimating leaf water potential, having the advantage of simplicity, reliability, instantaneous measurements, low capital cost and portability (Scholander et al., 1965; Boyer, 1968; Ritchie and Hinckley, 1975). The equipment design has not changed significantly over the past four decades since Scholander et al. (1965) used this technique to measure the water relations of trees and shrubs. However, this technique is considered slow and time-consuming for any commercial or operational applications (Jones, 2004).

Measurement of predawn leaf water potential has gained wide acceptance among researchers. It is commonly used as a plant water stress indicator (Aranda et al., 2005; Nortes et al., 2005; Intrigliolo and Castel, 2006; Pellegrino et al., 2006) and has also been used to describe the water status of different species within a habitat (Scholander et al., 1965; Lamont and Witkowski, 1995). It has been shown that species within the same habitats differ in predawn leaf water potentials (Witkowski et al., 1992; Lamont and Witkowski, 1995), while predawn leaf water potentials often differ within a single species between different habitats, and with leaf age (Witkowski et al., 1992) and plant size (Lamont et al., 1994). Typical plant water potential measurements of unstressed plants range from -0.15 MPa for plants under saturated soil conditions and low atmospheric demand (Cleary and Zaerr, 1984) to -2.0 MPa for ‘tank’ plants such as cactus, which can store water (Scholander et al., 1965). Conversely, stressed plants such as creosote bush and juniper growing in more arid regions could achieve plant water potentials of -8.0 MPa (Scholander et al., 1965), while for desert plants it can be much higher. Predawn leaf water potential measurements have also been successfully used in agricultural applications to evaluate plant water stress. Such applications have included estimates of total transpirable soil water and assessments of crop water stress resulting from irrigation scheduling of grapevine field sites and fruit orchards (Intrigliolo et al., 2006; Pellegrino et al., 2006). Predawn leaf water potentials have also
been coupled with stem water potential measurements and fluctuations in trunk diameters to quantify water stress of young almond trees for irrigation management (Nortes et al., 2005).

Despite the wide application of predawn pressure chamber measurements, numerous sources of error and measurement problems have been identified (Ritchie and Hinckley, 1975). These sources of error need to be minimised in order to ensure accurate readings, and can be grouped into four categories viz. speed of measurement in the field, accurate selection and processing of samples, reduction in pressurisation problems with the chamber, and correct identification of the end point.

In the field, speed of measurement is of major importance. Moisture loss between time of sampling and measurement must be minimised (Ritchie and Hinckley, 1975; Turner, 1988; Campbell, 1990; Hsiao, 1990; Smith and Prichard, 2003). Measurements should take place directly after excision of the plant sample. If this is not possible, samples should be enclosed in plastic bags immediately after cutting, and stored in a cool dark place until required. However, if time delays occurred between predawn sampling and actual measurements, this could result in inaccurate estimates of predawn water potential (Clear and Zaerr, 1964; Turner, 1988).

Great care should be taken in selecting and processing samples. It is important to standardise the sampling process with respect to leaf age and development stages when comparing between plant species (Witkowski et al., 1992). Damaged samples (crushed leaf petiole or torn leaf blades) and re-cutting of sample stems (Scholander et al., 1965) lead to a break in the tension in the xylem water, and should thus be avoided (Clear and Zaerr, 1964; Turner, 1988). Furthermore, the portion of the leaf or stem external to the seal in the pressure chamber unit must be minimised to reduce exclusion errors (Miller and Hansen, 1975; Hsiao, 1990).

Several technical guidelines must be adhered to in order to reduce pressurisation problems with the chamber. Failure to achieve pressure equilibrium should be addressed by ensuring that the seal used in the pressure chamber is made of rubber that is sufficiently elastic to fill the indentations of irregularly shaped petioles, but not so soft that it disintegrates under
pressure. For very irregular petioles, a quick-setting silicon compound can be used. However, this slows down the number of leaves that can be measured (Turner, 1988). High pressure grease or a silicon adhesive compound should be used on the stopper to prevent or reduce leakage and to prevent leaf damage. Studies on the optimal rates of pressurisation of the chamber and the effects of rapid pressure and heat accumulation within the chamber have shown that fast rates of pressurisation can lead to both underestimates or overestimates of water potential, depending on the gradients of water potential in the sample (Waring and Cleary, 1967; Blum et al., 1973; Tyree and Dainty, 1973; Turner, 1981). Therefore Turner (1981) suggested an average pressurisation rate of 0.025 MPas⁻¹. Furthermore, caution must be taken in the use of the compressed gas with the pressure chamber. Pressure release valves protect the pressure gauges, and also help prevent over-pressurisation of the chamber (Turner, 1988). A binocular microscope or safety glasses should be used to protect the operator’s eyes if any material is forced out through the seal during pressurisation (Turner, 1988).

Correct identification of the endpoint, when the xylem sap just returns to the cut surface of the xylem, is critical for accurate estimation of the water potential (Ritchie and Hinckley, 1975; Turner, 1988; Campbell, 1990; Hsiao, 1990; Smith and Prichard, 2003). Use of binocular microscope or magnifying glass is necessary to minimise poor recognition of the endpoint.

Field equipment required for leaf water potential measurements is relatively easy to setup within a specific location, but can be cumbersome when there are many sample sites which are not in close proximity to each other. When accounting for the time required for setting up the instrument, gathering of samples and the actual measurement at predawn, only a limited number of measurements are possible within this timeframe. Therefore, from a practical viewpoint, this method is more appropriate for localised measurements, as compared to large scale measurements.

3.4.2 Leaf chlorophyll fluorescence

Over the past decade, chlorophyll fluorescence kinetics has been used more extensively to provide considerable information on the organisation and function of the photosynthetic
apparatus (Govindjee et al., 1981). Information is gathered more readily and can be sampled more often outside the laboratory using portable optical systems and compact chlorophyll fluorescence meters.

The functioning of the photosynthetic apparatus is dependent on the process of photosynthesis, whereby light energy is absorbed and converted into organic compounds. Several environmental factors, including water, light and nutrients, affect this process and may lead to plant stress. Therefore, the photosynthetic apparatus has been recognised as being a good indicator of stress and stress adaptation of a plant (Salisbury and Ross, 1992; Strasser and Tsmilli-Michael, 2001), which is associated with the measurement of chlorophyll fluorescence (Strasser et al., 2001). Also, because changes in chlorophyll fluorescence may occur before any physical signs of tissue or chlorophyll deterioration are manifested in the plant, stress can be detected before the onset of physical damage (Lichtenthaler et al., 2007).

Chlorophyll fluorescence measurements can be described using the typical phases of a fluorescence transient. During a typical fluorescence transient, the fluorescence rises rapidly from a ground state, O (or F₀), when all electron acceptors are fully oxidised, or open, to a maximum level, P (or Fₘ), when all electron acceptors are highly reduced, or closed and are unable to accept and transfer electrons (Rolando and Little, 2003). Various parameters representing subsequent phases in a typical fluorescence transient can yield information on how stress affects the functioning of the photosynthetic system (Strasser et al., 2001; Rolando and Little, 2003). Photochemical efficiency is a common parameter used to assess the effect of environmental stresses on the photosynthetic mechanism (Strasser and Tsmilli-Michael, 2001). The photochemical efficiency of photosystem II (PSII) is estimated by Fᵥ/Fₘ, which is the ratio of variable fluorescence (Fᵥ) to maximum fluorescence (Fₘ). Most healthy plants exhibit Fᵥ/Fₘ values around 0.8 (Peterson et al., 2001).

Most studies on the applications of chlorophyll fluorescence have utilised the Fᵥ/Fₘ ratio as an indicator of water stress (Govindjee et al., 1981; Havaux and Lannoye, 1983; Ögren, 1990; Van Rensburg et al., 1996; Van der Mescht et al., 1997; Lu and Zhang, 1999; Peterson et al., 2001; Rolando and Little, 2003; Cifre et al., 2005). In these studies, it has been well
documented that at the chloroplast level, the function of the thylakoid membrane is sensitive to environmental stress (Öquist, 1987). Studies which have focused on deep rooted non-native tree species have suggested that the decrease in $F_v/F_m$ was due to drought induced injury to the thylakoid structures affecting photosynthetic electron transport (Van Rensburg et al., 1996; Van der Mescht et al., 1997; Lu and Zhang, 1999). These results have indicated that $F_v/F_m$ of drought stressed trees was lower than the control trees, especially in the more drought intolerant trees. Van Rensburg et al. (1996) found that the decrease in $F_v/F_m$ was due largely to an increase in $F_o$, an indication of permanent damage to the PSII. PSII appears to be particularly sensitive to a number of stress factors including freezing temperatures and drought (Öquist and Wass, 1988). Rolando and Little (2003) also showed a decrease in $F_v/F_m$ of water stressed *Eucalyptus grandis* seedlings, resulting from a rise in $F_o$ and a decrease in $F_m$. Since this ratio is a reflection of the maximum yield of primary photochemistry, $F_v/F_m$ is also used as an indicator of tree or seedling vigour.

Water stress leads to several changes in the photosynthetic apparatus of plants. Low water potential has been observed to cause a decrease in the quantum yield of $O_2$ evolution in chloroplasts and leaves from sunflower plants, a decrease in the ability of the coupling factor isolated from spinach leaves to bind fluorescent nucleotides, and a decrease in the ratio of the maximum to the minimum fluorescence in the red algae *Porphyrs sanjuanensis* (Govindjee et al., 1981). Data presented on the relationship between maximum to minimum fluorescence ratios and the water potential of leaves of *Nerium oleander*, *Atriplex triangularis* and *Tolmiea menziesii* suggest that water stress blocks electron flow to the reaction center chlorophyll $a$ of PSII (Govindjee et al. (1981). It was clear from these results that the ratio of maximum to minimum fluorescence decreases from a high value of 4.0 in well-watered *Nerium oleander* plants (water potential -0.8 MPa) to a low value of 1.1 in a severely stressed plant (water potential -3.9 MPa). In all cases examined, the ratio decreased as the water potential decreased. Because of these results, Govindjee et al. (1981) concluded that water stress inhibited electron flow of PSII in the three species examined, and that this ratio serves as a qualitative indicator of leaf water potential.

Chlorophyll fluorescence ratios have gained increased acceptance in recent years, and is commonly measured using hand-held relatively low-cost portable instruments which are
simple, rapid and non-destructive (Peterson et al., 2001; Strasser et al., 2001; Strasser and Tsmilli-Michael, 2001; Rolando and Little, 2003; Cifre et al., 2005; Lichtenthaler et al., 2007). With the development of an internal saturating light source in portable field fluorescence meters, chlorophyll fluorescence measurements can now be undertaken at any time of the day, from shaded or sunlit leaf samples.

Chlorophyll fluorescence measurements can be used in conjunction with other techniques as a relatively quick initial screening method for assessing plant stress within a localised area. There have also been significant advances in the application of chlorophyll fluorescence at larger spatial scales over the past decade, allowing for spatial detection of chlorophyll fluorescence parameters using laser-based fluorometers (Ounis et al., 2001; Cifre et al., 2005). Such technological improvements in chlorophyll fluorescence measurements may complement the ground-truthing of remote sensing imagery. However, further investigations are needed to establish its applicability for different crops growing under different conditions (Cifre et al., 2005). A disadvantage is that these instruments have not yet been designed for commercial or operational use.

3.4.3 Chlorophyll and carotenoid pigment concentration

Plant pigment concentrations vary with species, ecotype and phenology, and are also affected by season and various kinds of natural and anthropogenic stresses (Gitelson and Merzylak, 1997). Healthy plants, those capable of maximum growth, are generally expected to have higher chlorophyll pigment concentrations than unhealthy plants. Reduced chlorophyll concentrations are often associated with stressed plants, with variations in total chlorophyll to carotenoid ratios used as indicators of stress in plants (Netto et al., 2005; Lichtenthaler et al., 2007). Carotenoids play an important role in protecting the photosynthetic apparatus, and regulate the flow of energy into and out of the photosynthetic system (Sims and Gamon, 2002; Netto et al., 2005). Two commonly used approaches have been adopted to quantify chlorophyll and carotenoid pigment concentrations in plants, viz. conventional chemical methods and field chlorophyll meters. Conventional chemical methods of pigment quantification require destructive sampling and time-consuming laboratory analyses, compared to chlorophyll meters which are simple, portable field instruments which save time and resources. Both applications are more suited for localised
ground-based measurements, but have also been used to ground-truth remote sensing imagery.

Conventional laboratory methods used for estimating chlorophyll and carotenoid pigment concentrations are seen as the most accurate methods, provided correct sampling and laboratory procedures are followed. These methods make use of spectrophotometry for estimating pigment concentrations in plant extractions via the linear absorption characteristics of these pigments in polar extractants at specific wavelengths. Concentrations are calculated taking cognisance of the extractant and the specific extinction coefficients as described in Lichtenthaler (1987). Two precautions are recommended when sampling, and during laboratory analysis: rapid and efficient collection of samples which must be frozen immediately using liquid nitrogen to prevent pigment deterioration, and minimal loss of pigment during laboratory extraction and dilution procedures in order to reduce the variability of the results. If the research is taking place in remote areas, liquid nitrogen could be substituted with sufficient dry ice or ice packs.

Chlorophyll meters are portable field instruments that allow for non-destructive repetitive sampling, and have been used successfully to estimate the chlorophyll content of many plant species (Schaper and Chacko, 1991; Netto et al., 2005; Pinkard et al., 2006). A chlorophyll index derived from two peak reflectance wavelengths, 650 nm and 940 nm, is used to estimate the observed chlorophyll content in a sample. However, several factors affecting chlorophyll concentration such as the type of plant species, leaf weight, leaf age and growing conditions may influence the relationship between the chlorophyll index and actual chlorophyll concentration. Therefore, calibration curves are required for many species, site and experimental conditions (Pinkard et al., 2006).

3.4.4 Leaf water content

Relative leaf water content is an indirect and gross estimate of the changes in the water content in leaves through precise weight measurements (Canny and Huang, 2006). Most water in leaves reside in mesophyll cells. Volumetric changes in these cells occur as the balance shifts between the rate of evaporation from leaves and the rate of water supply to the leaves. Volumetric changes in the leaves of plants affect many internal plant conditions such
as tension in the cell walls, exchange of water and carbon dioxide across cell membranes, osmotic pressure of vacuole contents, cell and tissue turgor, cell-to-cell contact and transport of water.

Measurements of relative water content from leaf tissues are commonly used to assess the water status of plants (Barrs and Weatherley, 1962; Catsky, 1969; Turner, 1981; Joly, 1985; Yamasaki and Dillenburg, 1999; Shen et al., 2005; Canny and Huang, 2006). The relative leaf water content is expressed as the ratio of three weight determinations, viz. fresh weight, dry weight and turgid weight of the leaf sample. It is calculated as the ratio of fresh weight minus dry weight to turgid weight minus dry weight. It is important that sampling procedures are meticulous to prevent evaporative losses of water from the leaf samples (Barrs and Weatherley, 1962; Catsky, 1969; Turner, 1981; Joly, 1985; Yamasaki and Dillenburg, 1999; Shen et al., 2005; Canny and Huang, 2006). Samples must also be stored immediately in plastic bags and stored in a cool, dark place to reduce moisture loss prior to fresh weight measurements. Furthermore, the validity of relative water content measurements depends on the precision of the three weight determinations; a reliable estimate of turgid weight being the most critical (Joly, 1985).

A typical water absorption curve shows a high initial rate of absorption, followed by a prolonged period of slow absorption (Yamasaki and Dillenburg, 1999). The amount of water initially absorbed has been commonly interpreted as being the amount of water needed to compensate for the water deficit of the plant tissue. Further water absorption would be driven by cell expansion, so that mass changes occurring during this phase would not be used in the estimation of the relative water content of the sample. Therefore, an accurate measurement of turgid weight should be determined at the end of the first initial absorption of water (Yamasaki and Dillenburg, 1999).

Water absorption periods usually recommended for conifers range from 12 to 48 hours, which is much longer than the 4 hour period usually required for most broad leaved plants (Yamasaki and Dillenburg, 1999). To reduce water absorption periods, leaf disks are commonly used instead of whole leaves (Barrs and Weatherley, 1962). This method may however, also allow more water infiltration through intercellular spaces, thereby resulting in
a greater water absorption per unit of leaf mass and an underestimation of the relative water content when compared to whole leaves (Barrs and Weatherley, 1962; Joly, 1985).

Measuring the relative leaf water content of plants is a simple yet time consuming process. Comparative measurements between stressed and unstressed plants should be undertaken during the late morning, when differences in water potentials between plants would be the greatest. Due to these time constraints this method is most appropriate for localised ground-truthing measurements.

3.4.5 Comparison of ground-based measurement techniques of plant water stress

This review suggests that all four ground-based measurements, viz. predawn leaf water potentials, chlorophyll fluorescence, chlorophyll and carotenoid pigment concentrations and leaf water content, can be used successfully to measure or assess plant water stress. However, these four ground-based methods are not suitable for large spatial scale sampling, and would be most useful for localised studies or as ground-truthing techniques for remote sensing applications. Sampling protocols for ground-truthing applications are dependent upon the spatial scales at which the remote sensing studies are being undertaken, viz. leaf, canopy, stand or landscape scale and thus sample sizes will differ accordingly. A summary of some of the advantages and disadvantages of each ground-based method is listed in Table 3.2.

Table 3.2 Advantages and disadvantages of four ground-based methods for measuring plant water stress.

<table>
<thead>
<tr>
<th>Ground-based Method for Measuring Plant Water Stress</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predawn leaf water potential</td>
<td>Simple, reliable, instantaneous measurement, low capital cost, portable, direct indication of plant water stress. All parts of plant at predawn should be at same water potential.</td>
<td>Slow and time-consuming for landscape-scale measurements; not suitable for use over large spatial scales; can be cumbersome when sampling sites not in close proximity to each other; destructive sampling. Pre-dawn sampling is inconvenient.</td>
</tr>
<tr>
<td>Leaf chlorophyll fluorescence</td>
<td>Hand-held portable, light weight field instruments, simple, rapid non-destructive sampling, relatively low capital cost, internal saturating light source present in latest models, measurements can be taken at any time of the day, technology advances for remote sensing applications using laser-based fluorometers.</td>
<td>Not designed for use over large spatial scales.</td>
</tr>
</tbody>
</table>
These four ground-based measurements vary in their practical use as well as in the physiological processes measured. Differences in these methods, as well as the processes measured may be affected by different sources of variability, which in turn may affect the strength of the relationship to spectral indices (Stimson et al., 2005). As a result strong relationships may exist between certain ground measurements and spectral indices, while others may be poorer for a specific plant species. For example, the water band index derived by Gao (1995) focussed on water content of vegetation and therefore could be correlated more strongly to leaf water content measurements compared to plant pigment concentrations and vice versa.

Different ground-based measurements of plant water stress may be preferred, depending upon the research conditions under which a particular method is being applied. For airborne and satellite remote sensing vegetation studies, ground-truthing techniques which are cost effective, efficient and reliable and can be applied over large spatial scales within a reasonable time-frame of acquiring the remote sensing images, would be preferred. Under such research conditions, measurements of chlorophyll fluorescence or leaf water content would be more suited. On the other hand, measurements of predawn leaf water potential or chlorophyll pigment concentrations could be used for smaller-scale intensive sampling. However, should costs be a constraining factor, predawn leaf water potential measurements would be preferred over laboratory analyses of plant chlorophyll pigment concentrations.

In summary, it is recommended that a more complete but practical approach to assessing plant water stress is adopted through the use of at least one ground-based measurement, viz. plant pigment concentrations, chlorophyll fluorescence or relative leaf water content to identify gradients in plant stress, and to then undertake predawn leaf water content measurements along this gradient, specifically to identify the extremes in plant water stress.
3.5 CONCLUDING REMARKS

This review demonstrates that there has been extensive research on the detection and measurement of plant water stress using ground-based and remote sensing technologies.

Ground-based techniques are more suited for localised measurements and for ground-truthing of remotely sensed data. Remote sensing research has identified several individual spectral bands and vegetation spectral reflectance indices which have been used to detect plant water stress. Many of the earlier studies have focused on broad spectral bandwidths and it recommended that plant stress researchers utilise the spectral findings to investigate further the potential of narrow hyperspectral bandwidths to detect and interpret patterns of plant stress. Furthermore, the importance of the red edge, defined as the region between 690 and 740 nm, has gained increasingly more attention over the years, and is seen as one of the most important regions of the spectrum when investigating plant stress. It is also recommended that the results from hyperspectral studies should be incorporated in multispectral systems and technologies to allow for specialised high spectral resolution investigations to be undertaken with reduced data volumes in a cost-effective manner. Most spectral indices have been derived for a single species with constant leaf size and shape, leaf surface and internal structure, implying that their usefulness varies with respect to species and site conditions. Therefore, the most commonly used indices reported in the literature must be evaluated against ground-truthing data. Ground-truthing of remote sensing data is not an easy task, especially when considering different temporal and spatial scales. Depending upon the scale at which an investigation is being undertaken, it is recommended that a practical approach to assessing plant water stress is adopted through the use of at least one ground-based measurement, viz. plant pigment concentrations, chlorophyll fluorescence or relative leaf water content to identify gradients in plant stress, and to then undertake predawn leaf water content measurements along this gradient, specifically to identify the extremes in plant water stress.
CHAPTER 4.
SPECTROSCOPY AS A TOOL FOR IDENTIFYING PLANT WATER STRESS AT THE LEAF-LEVEL

ABSTRACT

The purpose of this study was to investigate the potential of hand-held spectroscopy as a tool for identifying plant water stress at the leaf-level. Seventy seven spectral reflectance indices and specific individual spectral wavelengths useful for detecting plant water stress, plant pigment content, the presence of stress related pigments in vegetation, and changes in leaf cellular structure, were investigated in this study. The objective was to investigate relationships between leaf spectral reflectance data and ground-based measurements of plant water stress, such as predawn leaf water potential, leaf chlorophyll fluorescence, chlorophyll and carotenoid pigment content and relative leaf water content. Finally, spectral models which could be used to detect plant water stress in three tree species, *Eucalyptus camaldulensis*, *E. sideroxylon* and *Searia lancea* in the Welkom, Vaal River and West Wits mining districts were identified.

Four commonly used ground-truthing techniques; predawn leaf water potential, leaf chlorophyll fluorescence, leaf chlorophyll and carotenoid pigment content and leaf water content, were used to measure plant water stress in the 75 sample trees. Leaf spectral reflectance measurements were taken with a hand-held spectrometer, from which spectral reflectance indices were then calculated. Multiple linear regression was applied to investigate the interactions between the districts and species, and their respective spectral reflectance indices and plant water stress measurements. The “best” models for each plant water stress measurement and the best model across all combinations of spectral reflectance indices and plant water stress measurements resulting from the stepwise regression, were selected using the highest adjusted $R^2$ value and the significance of the F (ANOVA) and t (t-test) probability values.
The results of the ground-based measurements of plant water stressed revealed that predawn leaf water potential measurements ranged from -0.56 to -0.68 MPa at unstressed sites, and from -0.93 to -1.78 MPa at stressed sites. Predawn leaf water potential measurements revealed higher (more negative) values at West Wits, and lower (less negative) values at Vaal River. The median photochemical efficiency ratios of all three districts were similar ranging between 0.6 and 0.7. The distribution of the data measured for chlorophyll a, chlorophyll b, total chlorophyll content and carotenoid content followed a similar amplitudinal pattern for each mining district. For all four measurements the highest upper quartile and median values were measured at Welkom, and the lowest lower quartile values at Vaal River. Maximal multiple linear regression models were derived for all possible combinations of plant water stress measurements and the 77 spectral reflectance indices extracted from leaf-level spectral reflectance data. The results of the multiple linear regression models indicated that the \((695/690)\) (Carter, 1994), \((850-710)/(850-680)\) (Datt, 1999), near infra-red index \((710/760)\) (Carter, 1994), and the water band index \((900/970)\) (Penuelas et al., 1997) performed well and accounted for more than 50% of the variance in the data.

The principal conclusion was that the stepwise regression model derived between chlorophyll b content and the DATT index was selected as the “best” model, having the highest adjusted \(R^2\) of 69.3%. This model has been shown to be the most robust model in this study, which could be used at different locations for different species to predict chlorophyll content at the leaf-level.

**Keywords**: carotenoid pigment content, leaf chlorophyll, leaf chlorophyll fluorescence, leaf water content, plant water stress, predawn leaf water potential, spectral reflectance indices, spectroscopy

### 4.1 INTRODUCTION

Numerous studies have yielded information on the use of spectral reflectance characteristics to describe plant water status and plant water stress (Gao, 1995; Gitelson and Merzlyak, 1996; Datt, 1999; Ceccato et al., 2001; Coops et al., 2003; Stimson et al., 2005; Eitel et al.,
2006). Several individual spectral reflectance wavelengths and vegetation spectral reflectance indices have been reported that are sensitive to changes in pigment content, leaf water content, leaf water potentials and chlorophyll fluorescence ratios (Ceccato et al., 2001; Sims and Gamon, 2002; Coops et al., 2003; Pu et al., 2003; Jackson et al., 2004; Stimson et al., 2005; Eitel et al., 2006). Commonly used vegetation spectral reflectance indices include the water band index (WBI) (Penuelas et al., 1995); normalised difference water index (NDWI) (Gao, 1995); the normalised difference vegetation index (NDVI) (Tucker, 1979); green NDVI and red edge NDVI (RENDVI) (Sims and Gamon, 2002); red edge position (REP) (Curran et al., 1990) and the plant senescence reflectance index (PSRI) (Merzlyak et al., 2003a). However, vegetation spectral reflectance indices have usually been derived for a specific species and specific sites (Datt, 1999; Eitel et al., 2006). Therefore, caution is necessary when applying spectral indices over different vegetation types or biomes for which these relationships have not been established and might not be valid (Coops et al., 2003).

The aim of this study was to investigate the potential of hand-held spectroscopy as a tool for identifying plant water stress during the dry winter season in *E. camaldulensis*, *E. sideroxylon* and *S. lancea* in the Welkom, Vaal River and West Wits mining districts. The spectral responses to plant water stress in the three tree species were investigated by undertaking leaf-level spectral reflectance signatures and ground-based measurements of plant water stress undertaken at the same time on the same sample trees during the dry winter season. Relationships between individual spectral wavelengths and spectral reflectance indices derived from the leaf-level spectral data and the measurements of predawn leaf water potential, leaf chlorophyll fluorescence, chlorophyll and carotenoid pigment content and relative leaf water content were then investigated. Ultimately, leaf-level plant water stress spectral relationships valid for the three species studied were identified.

### 4.2 MATERIALS AND METHODS

Leaf spectral reflectance measurements and ground-based measurements of plant water stress were undertaken on the three species *E. camaldulensis* and *E. sideroxylon* and *S. lancea* in the Welkom, Vaal River and West Wits mining districts, during late July 2004. Details of the tree samples and the collection sites have been provided in Chapter 2.
The step by step details of the procedures of each ground-based plant water stress measurement used, viz. predawn leaf water potential, leaf chlorophyll fluorescence, chlorophyll and carotenoid pigment content (including equations), and relative leaf water content, are presented in Appendix 2.

4.2.1 **Sampling design**

Stands or blocks of trees within the study areas of the WBGs are limited, with some clumps or rows of indigenous and non-native tree species growing in close proximity to TSFs. Although tree plantations are rare in these mining districts, sample sites were selected from stands, single trees or rows of trees and small-plot species trials in each mining district (Dye, 2004; I. Weiersbye, 2005 pers comm.) and as illustrated in section 2.4. Fifteen sample sites each comprising of five sample trees, were selected across the three mining districts, totally 75 sample trees across the three mining districts.

The 75 sample trees selected represented the three species *E. camaldulensis*, *E. sideroxylon* and *S. lancea*, and these were sampled for plant water stress during the dry winter season in July 2004 using ground-based measurements of plant water stress and leaf spectroscopy. Sample trees were categorised as either stressed (low water availability), or unstressed (high water availability). Sample trees with lower water availability were differentiated from trees with higher water availability through visual inspection of leaf colour and canopy density using hazard tape and metal tags, and their coordinates recorded using a global positioning system. Thereafter, the categorisation of the trees was confirmed using predawn leaf water potential measurements. A threshold reading of -0.8 MPa was used as a criterion to separate stressed (more negative) from unstressed (less negative) trees (Cleary and Zaerr, 1984).

4.2.2 **Ground measurements of plant water stress**

Four commonly used ground-truthing techniques were used to measure plant water stress in the 75 sample trees.
4.2.2.1. *Predawn leaf water potential*

Predawn leaf water potential measurements provide a direct measurement of plant water stress. Measurement of predawn leaf water potential using a pressure chamber has gained wide acceptance among researchers, and is commonly used as a plant water stress indicator (Aranda *et al.*, 2005; Nortes *et al.*, 2005; Intrigliolo and Castel, 2006; Pellegrino *et al.*, 2006).

During late July 2004, leaf water potentials were measured each day before dawn (between 12:00 am and 5:30 am) using a PMS pressure chamber unit (PMS Instrument Company, 2750 N.W. Royal Oaks Drive, Corvallis, Oregon, USA). Five replicate leaf samples were excised from each sample tree, a total of 375 samples (five samples from each of seventy five trees) for the three mining districts. For each ground-based measurement, fully expanded leaves were sampled at a height of between 1.5 and 2 m above the ground at different points around the canopy to represent different aspects and daytime illumination. Leaf samples were immediately placed in plastic bags, sealed and kept cool until time of measurement, which occurred within one hour of sampling. Measurements were recorded to the nearest 0.05 MPa.

4.2.2.2. *Leaf chlorophyll fluorescence*

Photosynthetic efficiency is a good indicator of the degree of stress and stress adaptation in plants (Strasser and Tsmilli-Michael, 2001). The photochemical efficiency of photosynthetic system II is estimated by $F_v/F_m$, which is the ratio of variable fluorescence ($F_v$) to maximum fluorescence ($F_m$). Most healthy plants exhibit $F_v/F_m$ values around 0.8 (Peterson *et al.*, 2001).

Leaf chlorophyll fluorescence was measured with a portable OS5-FL chlorophyll fluorometer (Opti-Sciences, 164 Westford Rd, Tyngsboro, MA01879), utilising an external light source. To standardise the sampling procedure, five replicate attached leaves were sampled from the same sample trees during daylight hours (between 8:30 am and 4:00 pm). A total of 375 chlorophyll fluorescence measurements (five samples from each of seventy five trees) were collected from the sample sites.
4.2.2.3. **Leaf chlorophyll and carotenoid pigment content**

A relative measure of plant chlorophyll and carotenoid pigment content has been used as an indicator of plant vigour and stress (Curran *et al.*, 1990; Gitelson and Merzlyzak, 1996; Lichtenthaler *et al.*, 1996; Zagolski *et al.*, 1996), with the assumption that a decrease in chlorophyll content is indicative of some level of plant stress.

Five replicate leaf samples were excised from each sample tree, a total of 375 samples (five samples from each of seventy five trees) from all sites. Leaf samples were excised and sealed immediately in zip lock bags, and kept frozen using ice packs to prevent pigment degradation prior to laboratory analysis. Frozen leaf samples were transported to the laboratory and analysed within seven days. Pigments were extracted with 100% methanol and then quantified using a spectrophotometer, and their relative pigment contents were derived using the accepted equations developed by Lichtenthaler (1987).

4.2.2.4. **Leaf water content**

Measurements of the relative water content of leaf tissue are commonly used to assess the water status of plants (Yamasaki and Dillenburg, 1999; Shen *et al.*, 2005; Canny and Huang, 2006). Relative leaf water content is commonly expressed as the ratio of fresh weight minus oven-dry weight to the turgid weight minus dry weight of the leaf sample.

The first trial measurements of relative leaf water content was undertaken at the Deelkraal site in the West Wits mining district during July 2004. *E. sideroxylon* trees were sampled at two locations at the Deelkraal site, near a farm dam (-26.43969; 27.32871) and further upslope within the same stand (-26.43899; 27.33024). Five replicate leaf samples were excised from each sample tree, a total of 50 samples (five samples from each of ten trees) for the Deelkraal site. Leaves were sampled for relative leaf water content measurements before midday, between 9 am and 11:30 am. Fresh weight measurements were undertaken immediately in the field after the leaf samples were cut and were then immersed in water. Turgid weight was obtained after samples had rehydrated to full turgidity, and was measured.
at least 24 hours later. Samples were oven dried at 60ºC for 24 hours, after which the dry weight measurements were determined.

4.2.3 Leaf spectral reflectance measurements

Leaf spectral reflectance measurements were taken with a hand-held Analytical Spectral Device (ASD) spectrometer (Analytical Spectral Devices Inc, 5335 Sterling Drive, Suite A, Boulder, Colorado80301, USA). The ability of such field spectrometers to sample the electromagnetic spectrum at a high spectral resolution allows for narrow-band individual spectral wavelengths and several spectral indices associated with stress detection to be investigated at the leaf-level.

4.2.3.1 ASD hand-held spectral measurements at leaf-level

The ASD spectrometer measures contiguous spectral signatures from 350 nm to 2500 nm. Due to atmospheric effects, the instrument was calibrated with a white reference at each site and between sampling, depending on the prevailing cloud cover. All leaf spectral signatures were measured between 10:00 am and 2:00 pm, under clear skies and full sunlight. To minimise differences in background reflectance, attached leaf-bearing branches were bunched together to permit a solid target of overlapping leaves to be presented to the field spectrometer. Under conditions of poor sunlight resulting from canopy shading effects, branches were cut and immediately overlaid and sampled in an area of full sunlight. To obtain a representative leaf spectral measurement from each tree, five measurements each consisting of five replicate spectrometer readings (total of 375 readings across all three mining districts) were measured. Spectrometer measurements were undertaken at different points around the tree canopy to represent different aspects.

4.2.3.2 Vegetation spectral reflectance indices derived from leaf-level spectral measurements

Seventy seven spectral reflectance indices and specific individual spectral wavelengths useful for detecting plant water stress, plant pigment content, the presence of stress related pigments in vegetation, and changes in leaf cellular structure, were investigated in this study (Table 4.1). For each of the 75 sample trees, the individual spectral wavelengths were
extracted from the spectral reflectance signatures. Spectral indices were then calculated using ENVI 4.1 (Research Systems Inc., 2005) and Microsoft Excel.

Table 4.1  Spectral wavelengths and reflectance indices used in the leaf-level analysis.

<table>
<thead>
<tr>
<th>Common name for spectral index or spectral region of the spectrum</th>
<th>Spectral Reflectance Ratio or Index (nm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carter index</td>
<td>(695/760)</td>
<td>Carter (1994)</td>
</tr>
<tr>
<td>Gamon and Surfus index</td>
<td>(600-700)/(500-600)</td>
<td>Gamon and Surfus (1999)</td>
</tr>
<tr>
<td>Infrared red reflectance plateau</td>
<td>850</td>
<td>Gausman and Allen (1973)</td>
</tr>
<tr>
<td>Reflectance at 750 nm</td>
<td>750</td>
<td>Datt (1999)</td>
</tr>
<tr>
<td>Reflectance at 710 nm</td>
<td>710</td>
<td>Carter (1994)</td>
</tr>
<tr>
<td>Green reflectance peak</td>
<td>550</td>
<td>Strachan et al. (1999)</td>
</tr>
<tr>
<td>Reflectance at 680 nm</td>
<td>680</td>
<td>Strachan et al. (1999)</td>
</tr>
<tr>
<td>Reflectance ratio 750/710</td>
<td>(750/710)</td>
<td>Datt (1999)</td>
</tr>
<tr>
<td>Reflectance ratio 850/550</td>
<td>(850/550)</td>
<td>Schepers et al. (1996)</td>
</tr>
<tr>
<td>Reflectance ratio 850/710</td>
<td>(850/710)</td>
<td>Datt (1999)</td>
</tr>
<tr>
<td>Reflectance ratio 865/552</td>
<td>(865/553)</td>
<td>Blackburn (2002)</td>
</tr>
<tr>
<td>Photochemical reflectance index (PRI)</td>
<td>(531-570)/(531+570)</td>
<td>Sims and Gamon (2002)</td>
</tr>
<tr>
<td>Red edge normalised difference vegetation index (RENDVI)</td>
<td>(750-705)/(750+705)</td>
<td>Sims and Gamon (2002)</td>
</tr>
<tr>
<td>Canopy normalised difference vegetation index</td>
<td>((800-900)-(671-674))/((800-900)+(671-674))</td>
<td>Stylistinski et al. (2002)</td>
</tr>
<tr>
<td>Reflectance ratio 695/690</td>
<td>(695/690)</td>
<td>Carter (1994)</td>
</tr>
<tr>
<td>Reflectance ratio 605/760</td>
<td>(605/760)</td>
<td>Carter (1994)</td>
</tr>
<tr>
<td>Reflectance ratio 710/760</td>
<td>(710/760)</td>
<td>Carter (1994)</td>
</tr>
<tr>
<td>Reflectance ratio 710/419</td>
<td>(710/420)</td>
<td>Carter (1994)</td>
</tr>
<tr>
<td>Reflectance ratio 710/670</td>
<td>(710/670)</td>
<td>Carter (1994)</td>
</tr>
<tr>
<td>Reflectance ratio 520/420</td>
<td>(520/420)</td>
<td>Carter (1994)</td>
</tr>
<tr>
<td>Reflectance ratio 605/420</td>
<td>(605/420)</td>
<td>Carter (1994)</td>
</tr>
<tr>
<td>Reflectance ratio 520/760</td>
<td>(520/760)</td>
<td>Carter (1994)</td>
</tr>
<tr>
<td>Reflectance ratio 476</td>
<td>476</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance ratio 632</td>
<td>632</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance ratio 800</td>
<td>800</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance index (800-476)</td>
<td>(800-476)</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance index (800-632)</td>
<td>(800-632)</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance index (800-680)</td>
<td>(800-680)</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance ratio log(800)/476</td>
<td>log(800)/476</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance ratio log(800)/550</td>
<td>log(800)/550</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance ratio log(800)/632</td>
<td>log(800)/632</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance ratio log(800)/680</td>
<td>log(800)/680</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance ratio 476/800</td>
<td>(476/800)</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance ratio 550/800</td>
<td>(550/800)</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance ratio 632/800</td>
<td>(632/800)</td>
<td>Blackburn (1999)</td>
</tr>
<tr>
<td>Reflectance ratio 680/800</td>
<td>(680/800)</td>
<td>Blackburn (1998b)</td>
</tr>
<tr>
<td>Reflectance ratio (800-680)/(800+680)</td>
<td>(800-680)/(800+680)</td>
<td>Blackburn (1998b)</td>
</tr>
<tr>
<td>Inflection point</td>
<td>First value which crosses the x axis between 640 and 740 nm</td>
<td>Sims and Gamon (2002)</td>
</tr>
</tbody>
</table>
A statistical analysis of the plant water stress measurements collected in July 2004 was undertaken to produce a comparative summary for all species, across all three mining districts, per species for each mining district, and between species and mining districts for each of the ground-based methods used in this study. Spectral reflectance measurements obtained for each sample tree were averaged to produce average spectral reflectance signatures per species for each sampling site.
Simple linear regression has been the most accepted and more commonly used approach to investigate possible trends or relationships between spectral reflectance measurements and specific plant or environmental response variables (Blackburn, 1999; Datt, 1999; Champagne et al., 2003; De Tar et al., 2006; Blackburn, 2007). However, in many biological situations additive and interactive effects of predictor and response variables are anticipated (Quinn and Keough, 2002). Therefore linear regression is often used to investigate additive and interactive effects between variables, and to develop models for prediction. In this study, multiple linear regression was applied to investigate the interactions between the districts and species, and their respective spectral reflectance indices and plant water stress measurements, using Genstat (11th edition, 2008).

The general maximal multiple linear regression model, applied with the interactions can be illustrated as follows:

\[
Y(i) = X(i) + L(i) + S(i) + L(i) X(i) + S(i) X(i)
\]  
\[(4.1)\]

where

- \(Y(i)\) represents the plant water stress measurements;
- \(X(i)\) the spectral indices;
- \(L(i)\) represents the districts and;
- \(S(i)\) represents the species.

The maximal multiple regression model illustrated by Equation (4.1) was represented as follows:

\[
Y(i) = b_0 + b_1 X(i) + a_1 L_1 + a_2 L_2 + g_1 S_1 + g_2 S_2 + d_1 L_1 X(i) + d_2 L_2 X(i) + e_1 S_1 X(i) + e_2 S_2 X(i)
\]  
\[(4.2)\]

where

- \(b_0\) represents the constant or intercept;
- \(b_1\) slope and;
- \(a, g, d, e\) the regression coefficients.
The following statistical approach was adopted to select the best or most appropriate linear regression models and eliminate poor combinations of spectral reflectance indices (X) and plant water stress measurements (Y):

- **Evaluation of maximal models identified at leaf-level**
  - The maximal regression models for all combinations of X and Y variables were calculated using Equation (4.2) programmed in Genstat (11th edition, 2008).
  - For each maximal regression model the adjusted $R^2$ values were extracted into an Excel spreadsheet.
  - The adjusted $R^2$ values were ranked for each X and Y combination.
  - All plant water stress techniques (Y variables) with the adjusted $R^2$ value less than 50% were eliminated.
  - From the remaining X and Y combinations, the three highest adjusted $R^2$ maximal models were selected.

- **Refinements to the models using stepwise regression**
  - All subsets/stepwise regression methods were programmed in Genstat (11th edition, 2008) and used to determine the best statistical model for the selected X and Y combinations.
  - For each stepwise regression model the adjusted $R^2$ values were extracted into an Excel spreadsheet.
  - The adjusted $R^2$ values for the maximal models were compared with their corresponding stepwise regression models to determine any improvement in the models.

- **Selection of the best model**
  - The “best” models, i.e. best maximal model for each plant water stress measurement (Y), and the best model across all combinations of X and Y resulting from the stepwise regression, were selected using the highest adjusted $R^2$ value and the significance of the F (ANOVA) and t (t-test) probability values.

- **Validation of the selected model in order to verify the robustness of the model parameters:**
  - Three validation exercises were performed to assess the robustness of the model parameters.
For each validation exercise, 10 random samples were excluded from the sample dataset, i.e., every 5th, 6th and 7th sample. Regressions models were fitted for each validation subset and these models were used to predict plant water stress measurements (Y) using the excluded spectral reflectance indices (X).

 Significant differences between Y predict and Y measured were determined using a t-test for paired samples.

4.3 RESULTS

4.3.1 Ground-based measurements of plant water stress and leaf spectral reflectance

Sample trees at the 15 sites that were initially categorised as either stressed (low water availability) or unstressed (high water availability) through visual inspection, and thereafter confirmed using predawn leaf water potential measurements, are presented in Table 4.2. Predawn leaf water potential measurements ranged from -0.56 to -0.68 MPa at unstressed sites, and from -0.93 to -1.78 MPa at stressed sites. At Vaal River, five E. camaldulensis sites were sampled, which comprised three stressed sites with predawn leaf water potential readings below -0.9 MPa, whereas at the two unstressed sites predawn leaf water potential readings were above -0.5 MPa. However, when corresponding measurements of leaf chlorophyll fluorescence, leaf chlorophyll content and leaf carotenoid content were compared between stressed and unstressed sites, these measurements did not follow the same pattern.

An assessment of comparative sampling sites, (sites within the same geographic location, in the same mining district and for the same species) revealed a relative increase in leaf chlorophyll fluorescence, leaf chlorophyll content and leaf carotenoid content for less stressed trees with relatively higher predawn leaf water potentials. An assessment of the comparative E. camaldulensis sampling sites 3 and 4 in Vaal River and E. sideroxylon sampling sites 8 and 9 in West Wits demonstrate these differences.
Ground-based measurements of *E. camaldulensis* trees sampled near a tailing storage facility, sample sites 3 and 4 in Vaal River, showed significant differences between healthier (unstressed) and more stressed trees for total leaf chlorophyll content (*t* = 2.43, 8df, *P* = 0.041), chlorophyll a content (*t* = 2.45, 8df, *P* = 0.040), chlorophyll b content (*t* = 2.34, 8df, *P* = 0.047), carotenoid content (*t* = 4.16, 8df, *P* = 0.006), and predawn leaf water potential (*t* = 3.03, 8df, *P* = 0.086).

Similarly, healthier *E. sideroxylon* trees sampled close to a farm dam in the West Wits mining district, sampling sites 8 and 9, displayed significant differences in chlorophyll b content (*t* = -1.92, 8df, *P* = 0.091), chlorophyll fluorescence (*t* = 1.95, 8df, *P* = 0.087) and predawn leaf water potential (*t* = 26.0, 8df, *P* < 0.001) compared to stressed trees. Furthermore, the *E. sideroxylon* trees sampled near the farm dam were also found to have a mean relative leaf water content of 63% ± 0.066, in comparison to trees sampled further upslope away from the water source, which had a mean relative leaf water content of 54% ± 0.064 (*t* = -5.31, 48df, *P* < 0.001).

In contrast, *S. lancea* trees sampled near the pan, which had greater access to water but were exposed to higher concentrations of salts and inorganic contaminants, displayed significant differences in total chlorophyll content (*t* = -4.38, 8df, *P* = 0.002), chlorophyll a content (*t* = -3.87, 8df, *P* = 0.005), chlorophyll b content (*t* = -5.90, 8df, *P* < 0.001), chlorophyll fluorescence (*t* = -3.02, 8df, *P* = 0.017) when compared to trees sampled on farmland within the Welkom mining district. Measurements of plant water stress; total chlorophyll content, chlorophyll a content, chlorophyll b content and chlorophyll fluorescence; were higher for trees sampled on farmland compared to trees sampled near the pan.

An analysis of the mean values of predawn leaf water potential indicate that *E. sideroxylon* unstressed trees sampled in West Wits experienced greater plant water stress (-0.944 MPa ± 0.03620(*t* = 26, 8df, *P* < 0.001) compared to *E. camaldulensis* trees sampled in Vaal River which appeared to experience less plant water stress (-0.6949 MPa ± 0.0688 (*t* = 3.03, 2df, *P* = 0.086). Mean values of leaf chlorophyll fluorescence measurements per species per mining district were relatively similar, ranging from 0.550 to 0.687, indicating subtle differences
between species, mining districts, and stressed and unstressed sites. Unstressed sample sites also appeared to reflect a higher variance in carotenoid content (CV = 69.55 %) and less variance in total leaf chlorophyll content (CV = 36.01%).

Table 4.2/...
### Table 4.2  Measurements of plant stress undertaken in the Welkom, Vaal River and West Wits mining districts during July 2004.

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Mining District</th>
<th>Tree Species</th>
<th>Geographic Coordinates (dd)</th>
<th>Site Classification according to Predawn Leaf Water Potential Measurements</th>
<th>Site Description</th>
<th>Predawn Leaf Water Potential (MPa)</th>
<th>Leaf Chlorophyll Fluorescence (ratio of variable to maximal fluorescence)</th>
<th>Leaf Chlorophyll (a+b) Content (mg/l)</th>
<th>Leaf Carotenoid Content (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>Std Dev.</td>
<td>Mean</td>
<td>Std Dev.</td>
</tr>
<tr>
<td>1</td>
<td>VR</td>
<td>EC</td>
<td>-26.95590; 26.69330</td>
<td>Stressed</td>
<td>Dolomite, meso- eutrophic soils, high TDS</td>
<td>-1.07</td>
<td>0.18</td>
<td>0.660</td>
<td>0.140</td>
</tr>
<tr>
<td>2</td>
<td>VR</td>
<td>EC</td>
<td>-26.94288; 26.78289</td>
<td>Stressed</td>
<td>Dolomite, eutrophic soils, deep groundwater table ~ 20m</td>
<td>-0.93</td>
<td>0.26</td>
<td>0.817</td>
<td>0.025</td>
</tr>
<tr>
<td>3</td>
<td>VR</td>
<td>EC</td>
<td>-26.93922; 26.68182</td>
<td>Stressed</td>
<td>andesite, eutrophic soils, close to TSF</td>
<td>-0.96</td>
<td>0.25</td>
<td>0.503</td>
<td>0.074</td>
</tr>
<tr>
<td>4</td>
<td>VR</td>
<td>EC</td>
<td>-26.92970; 26.62100</td>
<td>Unstressed</td>
<td>andesite, eutrophic soils, close to TSF</td>
<td>-0.68</td>
<td>0.11</td>
<td>0.662</td>
<td>0.108</td>
</tr>
<tr>
<td>5</td>
<td>VR</td>
<td>EC</td>
<td>-26.99332; 26.78280</td>
<td>Unstressed</td>
<td>Dolomite, eutrophic soils, high water availability, water channel</td>
<td>-0.57</td>
<td>0.10</td>
<td>0.794</td>
<td>0.033</td>
</tr>
<tr>
<td>6</td>
<td>VR</td>
<td>SL</td>
<td>-26.92301; 26.69820</td>
<td>Stressed</td>
<td>Quartzite, meso- eutrophic soils, low TDS</td>
<td>-1.07</td>
<td>0.18</td>
<td>0.508</td>
<td>0.163</td>
</tr>
<tr>
<td>7</td>
<td>VR</td>
<td>SL</td>
<td>-26.93418; 26.69592</td>
<td>Stressed</td>
<td>Dolomite, meso- eutrophic soils, high TDS, higher water availability</td>
<td>-1.18</td>
<td>0.22</td>
<td>0.592</td>
<td>0.137</td>
</tr>
<tr>
<td>8</td>
<td>WW</td>
<td>ES</td>
<td>-26.43969; 27.32871</td>
<td>Stressed</td>
<td>shale, non calcarious soils, high water availability, farm dam, shallow groundwater table &lt;~ 5m</td>
<td>-0.95</td>
<td>0.07</td>
<td>0.714</td>
<td>0.034</td>
</tr>
<tr>
<td>9</td>
<td>WW</td>
<td>ES</td>
<td>-26.43899; 27.33024</td>
<td>Stressed</td>
<td>shale, non calcarious soils, lower water availability</td>
<td>-1.78</td>
<td>0.25</td>
<td>0.637</td>
<td>0.116</td>
</tr>
<tr>
<td>10</td>
<td>WW</td>
<td>EC</td>
<td>-26.43207; 27.36888</td>
<td>-</td>
<td>shale, non calcarious soils, higher water availability, riparian zone</td>
<td>-</td>
<td>-</td>
<td>0.549</td>
<td>0.147</td>
</tr>
<tr>
<td>11</td>
<td>WW</td>
<td>EC</td>
<td>-26.43158; 27.36155</td>
<td>-</td>
<td>shale, non calcarious soils, low water availability</td>
<td>-</td>
<td>-</td>
<td>0.566</td>
<td>0.129</td>
</tr>
<tr>
<td>12</td>
<td>W</td>
<td>EC</td>
<td>-26.30352; 26.51879</td>
<td>Unstressed</td>
<td>shale, eutrophic soils, farmland</td>
<td>-0.56</td>
<td>0.08</td>
<td>0.699</td>
<td>0.059</td>
</tr>
<tr>
<td>13</td>
<td>W</td>
<td>EC</td>
<td>-27.96743; 26.55001</td>
<td>Stressed</td>
<td>shale, eutrophic and non calcarious soils, high water availability, near pan</td>
<td>-1.48</td>
<td>0.42</td>
<td>0.580</td>
<td>0.123</td>
</tr>
<tr>
<td>14</td>
<td>W</td>
<td>SL</td>
<td>-28.03361; 26.51199</td>
<td>Stressed</td>
<td>shale, eutrophic soils, farmland</td>
<td>-1.37</td>
<td>0.34</td>
<td>0.728</td>
<td>0.129</td>
</tr>
<tr>
<td>15</td>
<td>W</td>
<td>SL</td>
<td>-27.96695; 26.55075</td>
<td>Stressed</td>
<td>shale, non calcarious soils, high water availability, near pan</td>
<td>-1.31</td>
<td>0.25</td>
<td>0.577</td>
<td>0.129</td>
</tr>
</tbody>
</table>

**Means per species per district**

Mean value for *E. camaldulensis* for Vaal River
-0.84  | 0.18  | 0.687  | 0.076  | 8.194  | 1.627  | 2.224  | 0.382  

Mean value for *S. lancea* for Vaal River
-1.13  | 0.20  | 0.530  | 0.150  | 9.524  | 2.350  | 2.402  | 0.640  

Page 75
## Assessing Groundwater Access by Trees Growing Above Contaminated Groundwater Plumes Originating from Gold Tailings Storage Facilities

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Mining District</th>
<th>Tree Species</th>
<th>Geographic Coordinates (dd)</th>
<th>Site Classification according to Predawn Leaf Water Potential Measurements</th>
<th>Site Description</th>
<th>Predawn Leaf Water Potential (MPa)</th>
<th>Leaf Chlorophyll Fluorescence (ratio of variable to maximal fluorescence)</th>
<th>Leaf Chlorophyll (a+b) Content (mg/l)</th>
<th>Leaf Carotenoid Content (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>Std Dev.</td>
<td>Mean</td>
<td>Std Dev.</td>
</tr>
<tr>
<td>Mean value for <em>E. sideroxylon</em> for West Wits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.37</td>
<td>0.16</td>
<td>0.676</td>
<td>0.075</td>
</tr>
<tr>
<td>Mean value for <em>E. camaldulensis</em> for West Wits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.02</td>
<td>0.25</td>
<td>0.640</td>
<td>0.091</td>
</tr>
<tr>
<td>Mean value for <em>E. camaldulensis</em> for Welkom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.34</td>
<td>0.30</td>
<td>0.653</td>
<td>0.129</td>
</tr>
<tr>
<td>Mean value for <em>S. lancea</em> for Welkom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.34</td>
<td>0.30</td>
<td>0.653</td>
<td>0.129</td>
</tr>
</tbody>
</table>

*W* = Welkom; *VR* = Vaal River, *WW* = West Wits; *EC* = *E. camaldulensis*; *ES* = *E. sideroxylon*; *SL* = *S. lancea*
Box plots were used to further represent the distributions of the plant water stress measurements for each technique within each mining district. Figure 4.1 illustrates the variability of predawn leaf water potential, photochemical efficiency ratio, chlorophyll a, chlorophyll b, total chlorophyll content and carotenoid content per mining district. Predawn leaf water potential measurements revealed higher (more negative) values at West Wits (-1.360 MPa ±0.4419), and lower (less negative) values at Vaal River (-0.843 MPa± 0.2538) (Figure 4.1a). The medians and upper quartiles of predawn leaf water potential measurements were higher (more negative) for Welkom and West Wits, indicating that trees which experienced higher plant water stress were located in these two districts, when compared to Vaal River. Conversely, the photochemical efficiency ratios measured at Vaal River were highly variable and incorporated the range of values recorded at Welkom and West Wits (Figure 4.1b). However, the median photochemical efficiency ratios of all three districts were similar ranging between 0.6 and 0.7. The highest upper quartile photochemical efficiency value was measured at Vaal River, in agreement with the less negative predawn leaf water potential measurements, indicating that healthier trees were experiencing lower plant water stress. The distribution of the data measured for chlorophyll a (Figure 4.1c), chlorophyll b (Figure 4.1d), total chlorophyll content (Figure 4.1e) and carotenoid content (Figure 4.1f) followed a similar amplitudinal pattern for each mining district. For all four measurements the highest upper quartile and median values were measured at Welkom, and the lowest lower quartile values were measured at Vaal River.

Figure 4.1/...
Figure 4.1  Box plots of plant water stress measurements a) predawn leaf water potential, b) photochemical efficiency, c) chlorophyll a content, d) chlorophyll b content e) total chlorophyll (a+b) content and f) carotenoid content for Vaal River, Welkom and West Wits.
The distributions of winter-time plant stress measurements collected per tree species were also investigated in this study. Box plots were used to illustrate similarities and differences of predawn leaf water potential, chlorophyll fluorescence, chlorophyll and carotenoid content measured for *E. camaldulensis*, *E. sideroxylon* and *S. lancea* (Figure 4.2). *E. sideroxylon* trees appeared to have the highest (more negative) upper quartile (-0.938 MPa) and median (-1.345 MPa), and largest variability (0.195 MPa) in predawn leaf water potentials (Figure 4.2a). However, this species displayed the least variation in photochemical efficiency (CV = 8.984)(Figure 4.2b), chlorophyll a (CV = 10.422)(Figure 4.2c), chlorophyll b (CV = 12.010)(Figure 4.2d), total chlorophyll content (CV = 9.467)(Figure 4.2e) and carotenoid content (CV = 6.284)(Figure 4.2f). The distribution of the data for chlorophyll a, chlorophyll b, total chlorophyll content and carotenoid content for each of the three tree species followed a similar amplitudinal pattern, with the highest values measured for *S. lancea* and the lowest values measured for *E. camaldulensis*. The range of median values for photochemical efficiency (0.643; 0.692; 0.626), total chlorophyll content (10.19; 9.107; 8.96) and carotenoid (2.575; 2.427; 2.684) were similar for all three species sampled.

*Figure 4.2/...*
Figure 4.2 Box plots of plant water stress measurements a) predawn leaf water potential, b) photochemical efficiency, c) chlorophyll a content, d) chlorophyll b content e) total chlorophyll (a+b) content and f) carotenoid content for the three tree species *E. camaldulensis*, *E. sideroxylon* and *S. lancea*. 
Average leaf spectral reflectance signatures were obtained for each of the fifteen sampling sites. In general, trees that were experiencing some degree of plant water stress displayed a higher leaf spectral reflectance curve across the spectrum compared to unstressed trees. Figure 4.3 demonstrates the spectral reflectance patterns observed at comparative sampling sites for *E. camaldulensis* near the Western Complex tailing storage facility in Vaal River, *E. sideroxylon* in West Wits and *S. lancea* in Welkom.

Figure 4.3  Typical average leaf reflectance spectra with standard deviation error bars (a) *E. camaldulensis* measured in Vaal River near the Western Complex tailing storage facility, (b) *E. sideroxylon* measured in West Wits and, (c) *S. lancea* measured in Welkom.

Leaf spectral reflectance signatures obtained for trees at a lower or more negative predawn leaf water potential (-0.96; -1.78; -1.31 MPa), also displayed a lower chlorophyll content, as presented in Table 4.2. Trees at lower or more negative predawn leaf water potential were considered to be experiencing some degree of plant water stress with the *E. camaldulensis* and *E. sideroxylon* trees (Figure 4.3a and 4.3b) visually displaying characteristics of yellow brown leaf colour, lower canopy density, greater distance from available water source when compared to trees with a higher predawn leaf water potential (-0.68; -0.95; -1.37 MPa).
4.3.2 **Relationships identified at the leaf-level**

Results from the multiple linear regressions were evaluated through the analysis of maximal models identified using leaf-level spectral reflectance data, refinements to the models using stepwise regression and the selection and validation of the “best” or most appropriate models.

**4.3.2.1. Maximal models identified at leaf-level**

Maximal multiple linear regression models were derived for all possible combinations of plant water stress measurements and the 77 spectral reflectance indices extracted from leaf-level spectral reflectance data, calculated using Equation (4.2) programmed in Genstat (11th edition, 2008). The maximal models, which included the interactions of district and species, were ranked in descending order for each plant water stress measurement (Table 4.3). The adjusted \( R^2 \) values ranged from a maximum of 68.0% for chlorophyll b content and (695/690) spectral reflectance index to a minimum of 2.8 for carotenoid content and (465/565) spectral reflectance ratio.
Table 4.3  Adjusted $R^2$ values ranked in descending order for each maximal model derived between plant water stress measurement ($Y$) and spectral reflectance index ($X$) resulting from leaf-level data.

<table>
<thead>
<tr>
<th>Chlorophyll a (nm)</th>
<th>Chlorophyll (a + b) (nm)</th>
<th>Chlorophyll b (nm)</th>
<th>Carotenoid (c+x) (nm)</th>
<th>Chlorophyll fluorescence (Fv/Fm) (nm)</th>
<th>Predawn leaf water potential (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral reflectance index (nm)</td>
<td>Adjusted $R^2$ for maximal model</td>
<td>Spectral reflectance index (nm)</td>
<td>Adjusted $R^2$ for maximal model</td>
<td>Spectral reflectance index (nm)</td>
<td>Adjusted $R^2$ for maximal model</td>
</tr>
<tr>
<td>695/690</td>
<td>55.2</td>
<td>695/690</td>
<td>57.9</td>
<td>695/690</td>
<td>68.0</td>
</tr>
<tr>
<td>710/760</td>
<td>51.7</td>
<td>710/760</td>
<td>54.6</td>
<td>710/760</td>
<td>65.5</td>
</tr>
<tr>
<td>850-710</td>
<td>50.8</td>
<td>850-710</td>
<td>51.8</td>
<td>850-710</td>
<td>62.8</td>
</tr>
<tr>
<td>710/850</td>
<td>47.7</td>
<td>710/850</td>
<td>51.0</td>
<td>710/850</td>
<td>62.7</td>
</tr>
<tr>
<td>RENDVI</td>
<td>47.7</td>
<td>RE;NDVI</td>
<td>50.6</td>
<td>RE;NDVI</td>
<td>62.6</td>
</tr>
<tr>
<td>750/710</td>
<td>43.9</td>
<td>750/710</td>
<td>49.1</td>
<td>750/710</td>
<td>62.5</td>
</tr>
<tr>
<td>680/695</td>
<td>45.3</td>
<td>680/695</td>
<td>48.2</td>
<td>680/695</td>
<td>62.3</td>
</tr>
<tr>
<td>695/680</td>
<td>45.2</td>
<td>695/680</td>
<td>48.1</td>
<td>695/680</td>
<td>61.9</td>
</tr>
<tr>
<td>PRI</td>
<td>43.3</td>
<td>PRI</td>
<td>47.3</td>
<td>PRI</td>
<td>61.0</td>
</tr>
<tr>
<td>CARTER</td>
<td>42.1</td>
<td>CARTER</td>
<td>45.2</td>
<td>850/710</td>
<td>60.7</td>
</tr>
<tr>
<td>850/710</td>
<td>41.2</td>
<td>850/710</td>
<td>45.0</td>
<td>850/710</td>
<td>60.1</td>
</tr>
<tr>
<td>CNDVI</td>
<td>39.1</td>
<td>CNDVI</td>
<td>42.5</td>
<td>CNDVI</td>
<td>58.7</td>
</tr>
<tr>
<td>680/690</td>
<td>35.0</td>
<td>Inflection</td>
<td>40.0</td>
<td>CNDVI</td>
<td>57.5</td>
</tr>
<tr>
<td>Inflection</td>
<td>34.1</td>
<td>680/690</td>
<td>37.2</td>
<td>710/680</td>
<td>56.5</td>
</tr>
<tr>
<td>632/800</td>
<td>32.7</td>
<td>710/680</td>
<td>37.2</td>
<td>680/710</td>
<td>55.9</td>
</tr>
<tr>
<td>710/680</td>
<td>32.7</td>
<td>632/800</td>
<td>36.9</td>
<td>605/760</td>
<td>55.8</td>
</tr>
<tr>
<td>WBI</td>
<td>32.6</td>
<td>605/760</td>
<td>36.8</td>
<td>632/800</td>
<td>55.4</td>
</tr>
<tr>
<td>605/760</td>
<td>32.4</td>
<td>680/710</td>
<td>35.2</td>
<td>680/690</td>
<td>53.9</td>
</tr>
<tr>
<td>680/710</td>
<td>30.4</td>
<td>WBI</td>
<td>34.8</td>
<td>NDVI</td>
<td>52.4</td>
</tr>
<tr>
<td>800-550</td>
<td>27.9</td>
<td>710/420</td>
<td>30.4</td>
<td>WBI</td>
<td>52.3</td>
</tr>
<tr>
<td>850-680</td>
<td>27.5</td>
<td>695/420</td>
<td>31.1</td>
<td>710/680</td>
<td>52.0</td>
</tr>
<tr>
<td>800-632</td>
<td>27.1</td>
<td>800-550</td>
<td>31.0</td>
<td>664/870</td>
<td>51.8</td>
</tr>
<tr>
<td>710/420</td>
<td>27.0</td>
<td>605/420</td>
<td>30.6</td>
<td>Slope Red Edge</td>
<td>51.6</td>
</tr>
<tr>
<td>Chlorophyll a (Y)</td>
<td>Chlorophyll (a + b) (Y)</td>
<td>Chlorophyll b (Y)</td>
<td>Carotenoid (c+x) (Y)</td>
<td>Chlorophyll fluorescence (Fv/Fm)</td>
<td>Predawn leaf water potential (Y)</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Spectral reflectance index (nm)</td>
<td>Adjusted R² for maximal model</td>
<td>Spectral reflectance index (nm)</td>
<td>Adjusted R² for maximal model</td>
<td>Spectral reflectance index (nm)</td>
<td>Adjusted R² for maximal model</td>
</tr>
<tr>
<td>695/420</td>
<td>26.8</td>
<td>850-680</td>
<td>30.6</td>
<td>log (800/476)</td>
<td>51.6</td>
</tr>
<tr>
<td>605/420</td>
<td>25.7</td>
<td>664/870</td>
<td>30.4</td>
<td>605/420</td>
<td>51.2</td>
</tr>
<tr>
<td>664/870</td>
<td>25.5</td>
<td>800-632</td>
<td>30.2</td>
<td>710/420</td>
<td>50.8</td>
</tr>
<tr>
<td>800/476</td>
<td>25.2</td>
<td>(870-664)/(870+664)</td>
<td>29.9</td>
<td>695/420</td>
<td>50.2</td>
</tr>
<tr>
<td>800/680</td>
<td>25.0</td>
<td>Slope Red Edge</td>
<td>29.4</td>
<td>800-550</td>
<td>50.0</td>
</tr>
<tr>
<td>(870-664)/(870+664)</td>
<td>24.9</td>
<td>NDWI</td>
<td>29.1</td>
<td>NDVI</td>
<td>49.6</td>
</tr>
<tr>
<td>Slope Red Edge</td>
<td>24.1</td>
<td>800-476</td>
<td>28.5</td>
<td>850-680</td>
<td>49.6</td>
</tr>
<tr>
<td>NDWI</td>
<td>24.0</td>
<td>800-680</td>
<td>28.4</td>
<td>800-632</td>
<td>49.2</td>
</tr>
<tr>
<td>710/670</td>
<td>22.8</td>
<td>710/670</td>
<td>28.2</td>
<td>680/800</td>
<td>49.1</td>
</tr>
<tr>
<td>870</td>
<td>21.8</td>
<td>NDVI</td>
<td>26.5</td>
<td>680/850</td>
<td>49.0</td>
</tr>
<tr>
<td>NDVI</td>
<td>21.1</td>
<td>870</td>
<td>25.6</td>
<td>(870-664)/(870-664)</td>
<td>48.9</td>
</tr>
<tr>
<td>850</td>
<td>21.0</td>
<td>680/800</td>
<td>25.4</td>
<td>(800-680)/(800+680)</td>
<td>48.6</td>
</tr>
<tr>
<td>680/800</td>
<td>19.8</td>
<td>680/632</td>
<td>25.1</td>
<td>800-476</td>
<td>48.5</td>
</tr>
<tr>
<td>680/850</td>
<td>19.5</td>
<td>R850</td>
<td>24.9</td>
<td>710</td>
<td>48.2</td>
</tr>
<tr>
<td>(800-680)/(800+680)</td>
<td>19.3</td>
<td>(800-680)/(800+680)</td>
<td>24.9</td>
<td>800-680</td>
<td>48.2</td>
</tr>
<tr>
<td>465/664</td>
<td>19.2</td>
<td>465/664</td>
<td>24.3</td>
<td>565/870</td>
<td>48.1</td>
</tr>
<tr>
<td>800</td>
<td>18.9</td>
<td>800</td>
<td>23.1</td>
<td>550/670</td>
<td>47.3</td>
</tr>
<tr>
<td>750</td>
<td>16.6</td>
<td>550/670</td>
<td>21.7</td>
<td>870</td>
<td>47.3</td>
</tr>
<tr>
<td>550/670</td>
<td>15.7</td>
<td>565/870</td>
<td>21.5</td>
<td>850</td>
<td>47.1</td>
</tr>
<tr>
<td>565/870</td>
<td>15.5</td>
<td>750</td>
<td>20.9</td>
<td>850/880</td>
<td>47.1</td>
</tr>
<tr>
<td>565/664</td>
<td>14.5</td>
<td>565/664</td>
<td>20.4</td>
<td>465/664</td>
<td>46.9</td>
</tr>
</tbody>
</table>
### ASSESSING GROUNDWATER ACCESS BY TREES GROWING ABOVE CONTAMINATED GROUNDWATER PLUMES ORIGINATING FROM GOLD TAILINGS STORAGE FACILITIES

<table>
<thead>
<tr>
<th>Chlorophyll a (Y)</th>
<th>Chlorophyll (a + b) (Y)</th>
<th>Chlorophyll b (Y)</th>
<th>Carotenoid (c+x) (Y)</th>
<th>Chlorophyll fluorescence (Fv/Fm) (Y)</th>
<th>Predawn leaf water potential (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted R² for maximal model</td>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted R² for maximal model</td>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted R² for maximal model</td>
</tr>
<tr>
<td>850/680</td>
<td>14.1</td>
<td>850/680</td>
<td>20.2</td>
<td>550/760</td>
<td>46.7</td>
</tr>
<tr>
<td>550/420</td>
<td>12.7</td>
<td>550/760</td>
<td>19.0</td>
<td>565/664</td>
<td>46.3</td>
</tr>
<tr>
<td>550/760</td>
<td>12.7</td>
<td>550/420</td>
<td>18.6</td>
<td>800</td>
<td>46.3</td>
</tr>
<tr>
<td>465/565</td>
<td>12.4</td>
<td>465/565</td>
<td>18.5</td>
<td>632</td>
<td>46.0</td>
</tr>
<tr>
<td>Maximum Red Edge</td>
<td>12.2</td>
<td>Maximum Red Edge</td>
<td>17.7</td>
<td>465/565</td>
<td>45.7</td>
</tr>
<tr>
<td>520/420</td>
<td>11.4</td>
<td>520/420</td>
<td>17.5</td>
<td>Maximum Red Edge</td>
<td>45.5</td>
</tr>
<tr>
<td>GNDVI</td>
<td>10.1</td>
<td>GNDVI</td>
<td>16.5</td>
<td>550/800</td>
<td>45.4</td>
</tr>
<tr>
<td>GAMON and SURFUS</td>
<td>9.8</td>
<td>710</td>
<td>16.3</td>
<td>710/420</td>
<td>45.2</td>
</tr>
<tr>
<td>520/760</td>
<td>9.8</td>
<td>GAMON and SURFUS</td>
<td>16.1</td>
<td>GNDVI</td>
<td>45.2</td>
</tr>
<tr>
<td>710</td>
<td>9.1</td>
<td>520/760</td>
<td>16.1</td>
<td>750</td>
<td>45.2</td>
</tr>
<tr>
<td>log (800/476)</td>
<td>8.1</td>
<td>750/550</td>
<td>14.7</td>
<td>750/550</td>
<td>45.2</td>
</tr>
<tr>
<td>log (800/550)</td>
<td>8.1</td>
<td>632</td>
<td>14.5</td>
<td>850/350</td>
<td>45.2</td>
</tr>
<tr>
<td>750/550</td>
<td>7.8</td>
<td>865/553</td>
<td>14.5</td>
<td>520/760</td>
<td>44.6</td>
</tr>
<tr>
<td>632</td>
<td>7.6</td>
<td>850/550</td>
<td>14.1</td>
<td>GAMON and SURFUS</td>
<td>44.4</td>
</tr>
<tr>
<td>865/553</td>
<td>7.5</td>
<td>log (800/476)</td>
<td>13.9</td>
<td>520/420</td>
<td>44.3</td>
</tr>
<tr>
<td>log (800/680)</td>
<td>7.5</td>
<td>log (800/550)</td>
<td>13.9</td>
<td>465/870</td>
<td>43.9</td>
</tr>
<tr>
<td>850/550</td>
<td>7.1</td>
<td>log (800/680)</td>
<td>13.4</td>
<td>664</td>
<td>43.8</td>
</tr>
<tr>
<td>Chlorophyll a (Y)</td>
<td>Chlorophyll (a + b) (Y)</td>
<td>Chlorophyll b (Y)</td>
<td>Carotenoid (c+x) (Y)</td>
<td>Chlorophyll fluorescence (Fv/Fm) (Y)</td>
<td>Predawn leaf water potential (Y)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Spectral reflectance index (nm)</td>
<td>Adjusted R² for maximal model</td>
<td>Spectral reflectance index (nm)</td>
<td>Adjusted R² for maximal model</td>
<td>Spectral reflectance index (nm)</td>
<td>Adjusted R² for maximal model</td>
</tr>
<tr>
<td>476/800</td>
<td>6.6</td>
<td>476/800</td>
<td>13.2</td>
<td>476/800</td>
<td>43.2</td>
</tr>
<tr>
<td>465/870</td>
<td>6.5</td>
<td>465/870</td>
<td>13.1</td>
<td>465/870</td>
<td>43.1</td>
</tr>
<tr>
<td>log (800/632)</td>
<td>6.2</td>
<td>log (800/632)</td>
<td>12.5</td>
<td>log (800/550)</td>
<td>43.1</td>
</tr>
<tr>
<td>(870-565)/(870-664)</td>
<td>5.2</td>
<td>(870-565)/(870-664)</td>
<td>11.9</td>
<td>log (800/632)</td>
<td>43.0</td>
</tr>
<tr>
<td>465</td>
<td>4.8</td>
<td>664</td>
<td>11.7</td>
<td>GreenPeak</td>
<td>42.8</td>
</tr>
<tr>
<td>476</td>
<td>4.8</td>
<td>GreenPeak</td>
<td>11.6</td>
<td>550</td>
<td>42.6</td>
</tr>
<tr>
<td>664</td>
<td>4.8</td>
<td>465</td>
<td>11.2</td>
<td>(870-664)/(870+664)</td>
<td>42.5</td>
</tr>
<tr>
<td>GreenPeak</td>
<td>4.7</td>
<td>476</td>
<td>11.1</td>
<td>log (800/680)</td>
<td>42.5</td>
</tr>
<tr>
<td>550</td>
<td>4.6</td>
<td>550</td>
<td>11.0</td>
<td>680</td>
<td>42.4</td>
</tr>
<tr>
<td>565</td>
<td>4.1</td>
<td>565</td>
<td>10.9</td>
<td>465</td>
<td>42.1</td>
</tr>
<tr>
<td>680</td>
<td>4.0</td>
<td>680</td>
<td>10.7</td>
<td>476</td>
<td>42.1</td>
</tr>
</tbody>
</table>
Carotenoid content and chlorophyll fluorescence having a maximum of 48.9% and 44.1% respectively were eliminated. It is interesting to note that selected spectral reflectance indices (e.g. 695/690, DATT, 710/760, 750/710, 680/695, 695/680, PRI and 476/800 spectral reflectance indices) were ranked the same for total chlorophyll content, chlorophyll a and chlorophyll b content. For chlorophyll b content, twenty nine spectral reflectance models were derived which accounted for more than 50% variance in the data. However, only 1 model with an adjusted R² greater than 50% existed for predawn leaf water potential and therefore all remaining combinations for this measurement were eliminated. In general, the (695/690) index, DATT index (850-710)/(850-680), near infra-red index (710/760) and the water band (900/970) index performed better and accounted for more than 50% of the variance in the data.

4.3.2.2. Model refinements using stepwise regression

Stepwise regression used to refine the three selected maximal models resulted in predominant increases in adjusted R² values. Adjusted R² values for the stepwise regression ranged from a maximum of 69.3% for chlorophyll b DATT spectral reflectance index, to a minimum of 53.4% for chlorophyll a (710/760) spectral reflectance index (Table 4.4). There were no differences between the maximal and stepwise regression models for total chlorophyll (a+b) and (695/690) spectral index, and predawn leaf water potential and water band index.

Table 4.4 Comparison of the maximal and stepwise regression models obtained in the leaf-level analysis, for the three models with the highest adjusted R² values exceeding 50%.

<table>
<thead>
<tr>
<th>Spectral reflectance index (nm) (X)</th>
<th>Maximal model</th>
<th>Stepwise model</th>
<th>Adjusted R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>695/690</td>
<td>55.2</td>
<td>54.8</td>
<td>Spectral reflectance index (nm) (X)</td>
<td>695/690</td>
<td>57.9</td>
<td>57.9</td>
<td>Adjusted R²</td>
<td>65%</td>
<td>67.8</td>
<td>69.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATT</td>
<td>54.6</td>
<td>56.5</td>
<td>Spectral reflectance index (nm) (X)</td>
<td>695/690</td>
<td>57.9</td>
<td>57.9</td>
<td>Adjusted R²</td>
<td>65%</td>
<td>67.8</td>
<td>69.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>710/760</td>
<td>54.6</td>
<td>53.4</td>
<td>Spectral reflectance index (nm) (X)</td>
<td>695/690</td>
<td>57.9</td>
<td>57.9</td>
<td>Adjusted R²</td>
<td>65%</td>
<td>67.8</td>
<td>69.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The DATT spectral reflectance index performed well across all three measurements of chlorophyll pigment content, resulting in the highest adjusted R² values for chlorophyll a content (56.5%), total chlorophyll content (59.0%) and chlorophyll b content (69.3%). The
stepwise regression model derived between chlorophyll b content and the DATT index was selected as the “best” model, having the highest adjusted $R^2$ of 69.3%.

4.3.2.3. Selection of the best model

The multiple regression analysis using leaf-level spectral reflectance data resulted in chlorophyll b as the best “surrogate” measure of plant water stress. The general, multiple linear regression model resulted in three species-specific models as shown below:

\[
\text{Chlorophyll b} = -1.449 + 4.6 \times \text{(DATT)} + 2.82 \times \text{(S1)} - 1.90 \times \text{(S2)} - 4.31 \times \text{(S1)(DATT)} + 3.80 \times \text{(S2)(DATT)}
\]

\[F_{5,69} = 34.34; \text{Fprob}<0.001; R^2 = 0.693\%\]  

For \( E. \ camaldulensis \) where \( S1=S2=0 \):

\[
\text{Chlorophyll b} = -1.449 + 4.6 \times \text{(DATT)}
\]

(4.3.1)

For \( E. \ sideroxylon \) where \( S1=1 \) and \( S2=0 \):

\[
\text{Chlorophyll b} = 1.371 + 0.29 \times \text{(DATT)}
\]

(4.3.2)

For \( S. \ lancea \) where \( S1=0 \) and \( S2=1 \):

\[
\text{Chlorophyll b} = -3.349 + 8.4 \times \text{(DATT)}
\]

(4.3.3)

Results of the complete regression analysis, which includes a summary of the analysis of variance and estimates of parameters for the multiple linear regression model from which Equation (4.3) was derived, is detailed in Appendix 3. Species-specific linear models depicted by Equations (4.3.1), (4.3.2) and (4.3.3) were characterised by positive slopes indicating that chlorophyll b content increases with an increase in the DATT spectral reflectance index. Regression models for \( E. \ camaldulensis \) and \( S. \ lancea \) included negative y intercepts.
Differences between the observed and predicted chlorophyll b content determined, using the model reported in Equation (4.3), were assessed using a standardised residual plot of predicted or fitted values of chlorophyll b content (Figure 4.4). The standardised residual plot indicated a slight curvature in the fitted values of chlorophyll b. The variability in the data increased midway relative to those at either extreme end of the plot. Residuals were smaller at lower fitted values of chlorophyll b, and were much higher as fitted values of chlorophyll b increased, resulting in a “funnel shaped” standardised residual plot.

![Standardised residual plot of fitted values of chlorophyll b content using the DATT spectral reflectance model.](image.png)

Figure 4.4 Standardised residual plot of fitted values of chlorophyll b content using the DATT spectral reflectance model.

The “funnel” shaped residual plot indicated that prediction errors could increase at higher values of chlorophyll b content. There appeared to be no apparent outliers in this data.

4.3.2.4. Validation of the selected model

The chlorophyll b DATT spectral reflectance model was validated using a practical and commonly used method of re-fitting the regression model with a certain percentage of data being excluded (Brieman and Spector, 1992). The validation process was repeated three
times, with 10 random samples excluded for each run. The randomly selected subsets of spectral reflectance data used to predict chlorophyll b content with actual corresponding measurements of chlorophyll b content are shown in Table 4.5. General multiple regression models for each validation dataset were not identical, and were represented by different slopes and intercepts for each tree species (Table 4.5). Thus, the robustness of the relationship identified between chlorophyll b and the DATT spectral reflectance index was also evaluated.

Table 4.5 Validation models used in the leaf-level analysis to predict chlorophyll b.

<table>
<thead>
<tr>
<th>Species</th>
<th>Fitted Models</th>
<th>DATT index (X)</th>
<th>Chlorophyll b measured (Y)</th>
<th>Chlorophyll b Predicted (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. lancea</td>
<td>1.087 + 8.882(DATT)</td>
<td>0.757040</td>
<td>2.146720</td>
<td>3.121029</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.592559</td>
<td>1.822520</td>
<td>1.660109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.850549</td>
<td>3.673230</td>
<td>3.951576</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.686441</td>
<td>1.668320</td>
<td>2.493969</td>
</tr>
<tr>
<td>E. camaldulensis</td>
<td>-1.283 + 4.302(DATT)</td>
<td>0.628253</td>
<td>1.774220</td>
<td>1.419744</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.746743</td>
<td>2.500210</td>
<td>1.929488</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.694845</td>
<td>2.228460</td>
<td>1.706223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.545473</td>
<td>0.559356</td>
<td>1.063625</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.708332</td>
<td>2.158090</td>
<td>1.764244</td>
</tr>
<tr>
<td>E. sideroxylon</td>
<td>1.457 + 8.492(DATT)</td>
<td>0.707907</td>
<td>1.885000</td>
<td>1.536286</td>
</tr>
<tr>
<td>Run2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. lancea</td>
<td>-3.05 + 8.014(DATT)</td>
<td>0.753490</td>
<td>2.080180</td>
<td>2.988469</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.833186</td>
<td>4.228290</td>
<td>3.627153</td>
</tr>
<tr>
<td>E. camaldulensis</td>
<td>-1.390 + 4.494(DATT)</td>
<td>0.722075</td>
<td>1.843630</td>
<td>1.855005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.727966</td>
<td>2.012290</td>
<td>1.881479</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.694845</td>
<td>2.228460</td>
<td>1.732633</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.709202</td>
<td>1.455560</td>
<td>1.797154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.755636</td>
<td>1.462090</td>
<td>2.005828</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.758381</td>
<td>2.861890</td>
<td>2.018164</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.601954</td>
<td>1.182100</td>
<td>1.315181</td>
</tr>
<tr>
<td>E. sideroxylon</td>
<td>1.31 + 8.634(DATT)</td>
<td>0.653175</td>
<td>1.660140</td>
<td>1.541224</td>
</tr>
<tr>
<td>Run3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. lancea</td>
<td>-3.394 + 8.398(DATT)</td>
<td>0.634649</td>
<td>2.420840</td>
<td>1.935782</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.783957</td>
<td>3.866980</td>
<td>3.189671</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.686153</td>
<td>2.189670</td>
<td>2.368313</td>
</tr>
<tr>
<td>E. camaldulensis</td>
<td>-1.414 + 4.568(DATT)</td>
<td>0.596656</td>
<td>1.166340</td>
<td>1.311525</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.746743</td>
<td>2.500210</td>
<td>1.997122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.415406</td>
<td>0.402482</td>
<td>0.483575</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.709202</td>
<td>1.455560</td>
<td>1.825635</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.729556</td>
<td>1.371890</td>
<td>1.918612</td>
</tr>
<tr>
<td>E. sideroxylon</td>
<td>1.116 + 8.438(DATT)</td>
<td>0.566637</td>
<td>1.567940</td>
<td>1.511513</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.728498</td>
<td>1.330390</td>
<td>1.624492</td>
</tr>
</tbody>
</table>
T-tests were used to determine if there were differences between measured and predicted values of chlorophyll b content. The statistical tests for all three validation runs confirmed that there were no significant differences between measured and predicted chlorophyll b content (Run1 (t = -0.13, 9df, P = 0.902, r = 0.76); Run2 (t = 0.15, 9df, P = 0.885, r = 0.79) and Run3 (t = 0.08, 9df, P = 0.937, r = 0.92). Furthermore, the Pearson correlation coefficients indicated a high correlation between measured and predicted values of chlorophyll b content (r > 0.7).

4.4 DISCUSSION

In this study, statistical relationships were derived between spectral reflectance indices derived from leaf-level spectral reflectance data, and physical ground-based measurements used as “surrogate” measures of plant water stress. An analysis of the multiple linear regression models indicated that four prominent and recurring spectral reflectance indices could be applied to identify plant water stress within the three mining districts. Two general trends were identified when using spectral reflectance indices derived from leaf-level spectral reflectance data to detect plant water stress:

- Three spectral indices derived from the red and near-infrared regions of the electromagnetic spectrum were identified as useful spectral indicators of plant water stress, and could be linked to plant chlorophyll content.
- A spectral index designed to capture changes in plant water content was correlated to measurements of predawn leaf water potential.

In this investigation, three spectral reflectance indices with a strong dependence on spectral changes in the red and near-infrared regions of the electromagnetic spectrum, namely (695/690) (Carter, 1994), (850-710)/(850-680) (Datt, 1999) and (710/760) (Carter, 1994), were correlated to chlorophyll a, chlorophyll b and total chlorophyll (a+b) content. All three relationships confirmed that a relationship exists between spectral bands extracted from the red and near-infrared regions (680, 695, 690, 710, 760, 800 nm), including the red-edge region defined from 690 to 740 nm. Furthermore, this finding corroborates previous studies in which it was found that reflectance bands within the red edge, and indices designed to
capture spectral differences in this region, move to shorter wavelengths as plant chlorophyll content decreases and vice versa (Curran et al. 1990; Clay et al. 2006; Campbell et al. 2007; Mutanga and Skidmore, 2007). Stepwise regression analyses (section 4.3.2.2 and 4.3.2.3) resulted in the chlorophyll b DATT spectral reflectance model being selected as the “best” or most appropriate model from this study, which could be used as a surrogate for identifying plant water stress.

The positive relationships that were established between plant chlorophyll content and the \((850-710)/(850-680)\) spectral reflectance index for *Eucalyptus* trees confirmed the findings of Datt (1999) and Coops et al. (2003), and it was shown that this relationship was also valid for *S. lancea* in the selected mining areas. Such vegetation indices, or band ratios, have often been developed using a combination of reflectance bands which are both highly sensitive and insensitive to pigment content, in order to enhance the spectral effects of the highly sensitive bands (Datt, 1998). Most often near infrared bands are used as the insensitive bands, since pigments do not absorb near infrared radiation (Datt, 1998). Several studies have shown reflectance in the region of 550 and 700 nm to be most sensitive to a wide range of chlorophyll contents (Curran et al. 1990; Gitelson and Lichtenthaler et al. 1996; Gitelson and Merzlyak, 1996; Gitelson and Merzlyak, 1997; Datt, 1999), and reflectance at 850 nm to be most insensitive to chlorophyll content (Datt, 1999). According to Datt (1999), this index is fairly robust, being insensitive to the effects of leaf scattering on reflectance, and relates strongly to the variation in reflectance caused by chlorophyll absorption. It is thus recommended that this index be tested across other species as well, as it was significant across all species and all sites in this study.

The popular water band index, which was derived to capture changes in plant water content, was found to be correlated to measurements of predawn leaf water potential in plants. This finding corroborates the use of remote sensing technologies to detect spectral differences in plant water content specifically using spectral indices derived from leaf-level spectral reflectance data (Gao, 1995; Champagne et al., 2003; Zarco-Tejada et al., 2003; Jackson et al., 2004; Shen et al., 2005; Chun-Jiang et al., 2006). Furthermore, many studies have advanced the estimation of plant water content using hyperspectral remote sensing, and have investigated the use of narrow band spectral reflectance indices and specifically, the 970 nm
spectral band as a spectral indicator of plant water stress (Gao, 1995; Penuelas et al., 1997; Champagne et al., 2003). This study supports such research were subtle relationships between plant water content and spectral reflectance data were enhanced with the use of narrow-band or hyperspectral remote sensing data.

4.5 CONCLUSIONS

This study has shown that significant linear relationships (Fprob < 0.001) do exist between ground measurements of plant water stress, viz. predawn leaf water potential, leaf chlorophyll content and changes in spectral reflectance at the leaf-level. These changes were best illustrated using spectral reflectance indices such as (850-710)/(850-680), (695/690), (710/760) indices derived from the near infrared and red edge regions of the spectrum, and the water band index. In this investigation of hand-held spectral reflectance data, the spectral model derived between chlorophyll b pigment content and the (850-710)/(850-680) (Datt, 1999) spectral reflectance index was selected as the “best” model for detecting plant water stress in the three mining districts. This relationship confirmed that leaf spectral reflectance characteristics can be linked to plant water stress. Therefore, based on these relationships, which were derived for the three species E. camaldulensis, E. sideroxylon and S. lancea within the Welkom, Vaal River and West Wits mining districts, trees which access water during the dry winter period are expected to display significantly different spectral relationships compared to trees which do not access ground water. Multiple linear regressions were used to determine the interactions between species and the effects of the three locations of the mining districts. Species-specific relationships were produced which could be applied across all three mining districts. In general, the reflectance index (850-710)/(850-680) has been shown to be the most robust model in this study which could be used at different locations for different species to predict chlorophyll content at the leaf-level.
CHAPTER 5.
EVALUATION OF MEDIUM TO HIGH RESOLUTION SATELLITE EARTH OBSERVATION DATA TO DETECT SPATIAL PATTERNS OF PLANT WATER STRESS

ABSTRACT

The purpose of this study was to evaluate the use of satellite remote sensing imagery of different spatial and spectral resolutions to predict spatial patterns of plant water stress over the same geographical areas.

Satellite earth observation data were acquired from two data sources for this investigation; the Hyperion hyperspectral sensor and the Proba Chris pseudo-hyperspectral sensor. The Hyperion sensor was selected to obtain high spatial and spectral resolution data, whereas the Proba Chris sensor provided high spatial and medium spectral resolution earth observation data. Twelve vegetation indices designed to capture changes in canopy water status, plant pigment content and changes in plant cellular structure, were selected and calculated from the satellite remote sensing imagery. Ground-based measurements of plant water stress, which included measurements of predawn leaf water potential, leaf chlorophyll fluorescence, chlorophyll and carotenoid pigment content and relative leaf water content, were undertaken on Eucalyptus camaldulensis, E. sideroxylon and Searia lancea in the Welkom, Vaal River and West Wits mining districts. Measurements undertaken during late July 2004 were used for ground-truthing the Hyperion image, while those undertaken during July 2005 and August 2005 were used for ground-truthing the Proba Chris images. Multiple linear regressions were derived to investigate the interactions between the districts and species and their respective spectral reflectance indices derived from the satellite images and the ground-based measurements of plant water stress.
Predawn leaf water potential measurements ranged from -0.42 to -0.78 MPa at unstressed sites, and -0.95 to -4.66 MPa at stressed sites. Predawn leaf water potentials measured for *E. camaldulensis* trees sampled on the species trials in Vaal River were significantly different between stressed and non-stressed trees ($t = 3.39$, 8df, $P = 0.009$). In contrast, *E. camaldulensis* trees sampled near the pan within the Welkom mining district, which had greater access to water but were exposed to higher concentrations of salts and inorganic contaminants, displayed differences in total chlorophyll content ($t = -2.20$, 8df, $P = 0.059$), carotenoid content ($t = -5.68$, 8df, $P < 0.001$) and predawn leaf water potential ($t = 4.25$, 8df, $P = 0.011$) when compared to trees sampled on farmland. *E. sideroxylon* trees sampled close to a farm dam in the West Wits mining district displayed differences in predawn leaf water potential ($t = 69.32$, 8df, $P < 0.001$) and carotenoid content ($t = -2.13$, 8df, $P = 0.066$) compared to stressed trees further upslope away from the water source. Predawn leaf water potential together with greenness normalised difference vegetation index spectral reflectance index resulted in the “best” surrogate measure of plant water stress when using broad-band multispectral satellite data. The model selected using narrow-band hyperspectral satellite data indicated that strong relationships exists between predawn leaf water potential, which is a direct measure of plant water stress, and the water band index, which is designed to capture changes in plant water content.

It was concluded from this study that vegetation indices designed to capture changes in plant water content/plant water status and spectral changes in the red edge region of the spectrum performed well when applied to high spectral resolution remote sensing data. The greenness normalised difference vegetation index was considered to be a fairly robust index, which was highly correlated to chlorophyll fluorescence and predawn leaf water potential. It is recommended that this index has the potential to be used to map spatial patterns of winter-time plant stress for different genera/species and in different geographical locations.

**Keywords**: carotenoid pigment content, chlorophyll pigment content, leaf chlorophyll fluorescence, plant water stress, predawn leaf water potential, relative leaf water content, satellite imagery, spectral reflectance indices
5.1 INTRODUCTION

A spatial evaluation of sites where existing trees have access to groundwater during the dry winter season would provide valuable information for future tree plantings. Sites with similar site characteristics could then be targeted to ensure effective removal of large volumes of groundwater, and optimal containment of contaminated seepage water. In this study, alternative technologies for measuring the degree of water stress experienced by trees that are less time consuming and more practical for large scale spatial mapping, were considered.

Reliable estimation of agronomical and biophysical parameters such as leaf area index, absorbed photosynthetically active radiation, water content and the surface energy balance from local to regional scales is crucial for many applications including ecosystem assessments and crop management, weather forecasting, hydrological modelling, irrigation scheduling, water resource management, and climate change research. Numerous models have been developed using remote sensing, which permits spatially distributed mapping of the agronomical, biophysical and surface energy balance parameters over large areas, with the ambition of developing reliable, robust and cost-effective methods for land and vegetation assessments (Stark, 2001; Zarco-Tejada et al., 2003; Marignani et al., 2007; Zwart and Bastiaassen, 2007; Glenn et al., 2008; Choi et al., 2009; Hong et al., 2009; He and Mui, 2010). Ultimately, such methodologies and approaches could support the decision making process and which could add value in land use and catchment management.

Remote sensing data from satellite based sensors have the potential to provide detailed information on land surface and vegetation parameters, to assess the degradation of habitats and better manage natural resources at local to regional scales. One of the important vegetation parameters that has been successfully derived from remote sensing data is the spatial estimates of actual evapotranspiration required for sustainable management of water resources as well as for a better understanding of water exchange processes between the land surface and the atmosphere (Zwart and Bastiaassen, 2007; Hong et al., 2009). Ground measurements of evapotranspiration like many other land surface and vegetation parameters
over a range of space and time scales are difficult to obtain due to the time and cost involved. However, more widely available are large amounts of remotely sensed satellite data such as Land remote sensing satellite Enhanced Thematic Mapper Plus (Landsat ETM+), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Geostationary Orbiting Environmental Satellite (GOES) all of variable spatial, temporal, and spectral resolutions. Scaling of these datasets, up-scaling or aggregation and down-scaling or disaggregation has been employed in the application of satellite remote sensing data to estimate land surface and vegetation conditions (Bastiaanssen et al., 2005; Allen et al., 2007). Hong et al. (2009) reported on the up-scaling of Landsat satellite data (30 m spatial resolution) to MODIS (250 m spatial resolution) as input into the Surface Energy Balance Algorithm for Land (SEBAL) to estimate regional estimates of evapotranspiration. This model was also extended to produce estimates of crop biomass production, so that crop yield, water use and water productivity can be obtained in an integrated way (Zwart and Bastiaanssen, 2007) using both the National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR) at 1 km low spatial resolution and Landsat satellite images at a 30 m high spatial resolution. Remote sensing in combination with crop production models has been acknowledged to be a powerful tool for estimating crop yields at various spatial scales, within fields, between fields and on a regional scale. Up-scaling procedures were performed using simple averaging and nearest neighbour resampling techniques. The advantages of using different sensors are combined in this methodological framework where high and low resolution products are integrated to calculate total seasonal evapotranspiration and biomass production at field level (Zwart and Bastiaanssen, 2007).

Ground-based measurements can provide accurate and representative values of land surface or vegetation parameters such as chlorophyll content, water potential, biomass or evapotranspiration for different land cover types, but such point data cannot be easily extrapolated to produce accurate maps over a landscape or region, due to natural variability in the physical properties of the vegetation, soil and climatic conditions. To address this need, there has been a major effort over the past several years to develop and refine remote
sensing based models such as canopy reflectance and energy balance models that provide spatially distributed maps using satellite data (Choi *et al.*, 2009). A few of these have been promoted as having operational capabilities.

A few widely accepted canopy reflectance models include SAILH and PROSPECT. Canopy reflectance models are also used for estimating biometric properties over large areas. Such models include assumptions about the leaf property data used as input, the geometry of the shrubs and trees in the field of view, and the nature of the surrounding environment, including climatic conditions. Examples of remote sensing based surface energy balance models include the Two-Source Energy Balance (TSEB) model, Mapping EvapoTranspiration at high Resolution using Internalized Calibration (METRIC), Trapezoid Interpolation Model and SEBAL. The above mentioned surface energy balance models have different levels of complexity and input requirements, but all have operational capabilities (Choi *et al.*, 2009).

A significant benefit of using high resolution airborne or satellite remote sensing imagery is the relatively ‘pure’ smaller pixels of canopy, shadow and soil that can be obtained. Some remote sensing studies however, have successfully estimated the percentage of vegetative cover present in a pixel using leaf area index derived from higher resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI), spectral un-mixing and textural analysis. Therefore, selecting the remote sensing data of an appropriate spatial resolution is certainly a determining factor, as the size of the vegetation patches in relation to the pixel size is extremely important.

Vegetation indices to monitor terrestrial landscapes by satellite sensors were first developed in the 1970s and have been highly successful in assessing vegetation condition, foliage, land cover, phenology, and processes such as evapotranspiration and primary productivity. Although many variations exist, many vegetation spectral reflectance indices are a ratio of the reflection of light in the red and near-infrared regions of the electromagnetic spectrum in order to separate the landscape into water, soil, and vegetation. Vegetation indices derived from robust satellite data products are computed the same way across all pixels in time and
space, regardless of surface conditions. As ratios, they can be easily cross-calibrated across sensor systems, ensuring continuity of data sets for long-term monitoring of the land surface and climate-related processes. A global record of NDVI data since 1981 from the NOAA AVHRR has contributed to significant global climate, ecosystem and agricultural studies. A new generation of vegetation index data derived from MODIS satellite data has been inter-calibrated with AVHRR NDVI, and provides near daily coverage of the earth at 250 m pixel resolution.

Vegetation indices are now indispensable tools in land cover classification, climate- and land use change detection, drought monitoring, and habitat loss, to name just a few applications. Vegetation indices have been used to combine ground data and vegetation indices to scale biophysical, biochemical and physiological processes over larger areas. When ground-based measurements are available, remote sensing data can also serve as a scaling tool rather than as a complete physical model. Many remote sensing applications have linked the spectral properties of vegetation to plant water status and plant water stress (Carter, 1993; Gao, 1995; Gitelson and Merzlyak, 1996; Lichtenhaler et al. 1996; Gitelson and Merzlyak, 1997; Blackburn, 1999; Datt, 1999).

In this study, the use of remote sensing data, which are commercially available and could potentially be operationally used in the future, were investigated. Over the past thirty years, significant progress has been made on the use of remotely sensed data from satellite-based sensors and cameras for retrieval of information useful for several environmental, agricultural and water management applications. This chapter investigates an approach of using satellite based images of different spatial and spectral resolutions to predict spatial patterns of plant water stress. This study provided a unique opportunity to investigate the importance of improved image resolution and spectral density over the same geographical districts.

Medium to high spatial and spectral resolution remote sensing datasets were selected to identify and provide detailed spectral information on small stands, rows or even clumps of trees characteristic of the mining districts. Imagery was obtained from the hyperspectral...
Hyperion sensor and the pseudo-hyperspectral Proba Compact High Resolution Imaging Spectrometer (CHRIS) sensor. These data sources permitted mapping of a variety of vegetation spectral reflectance properties that were further enhanced using vegetation spectral reflectance indices, some of which have been correlated to plant water stress.

5.2 MATERIALS AND METHODS

A description of the tree species, mining districts and sampling sites selected for this study are discussed in Chapter 2. Sampling sites within the three mining districts, Welkom, Vaal River and West Wits, were used for ground-based measurements of plant water stress and as ground-truthing sites for the remote sensing surveys. Ground-based measurements of plant water stress were undertaken on the three species *E. camaldulensis*, *E. sideroxylon* and *S. lancea* in the Welkom, Vaal River and West Wits mining districts during late July 2004 (as presented and discussed in Chapter 4, section 4.3.1, Table 4.2), and was used for ground-truthing the Hyperion image, while measurements undertaken during July 2005 and August 2005 were used for ground-truthing the Proba Chris images. The field sampling procedures of each ground-based plant water stress measurement used, *viz.* predawn leaf water potential, leaf chlorophyll fluorescence, chlorophyll and carotenoid pigment content and relative leaf water content are described in Chapter 4, whereas the step by step details of the protocols are presented in Appendix 2.

5.2.1 Selection and requisition of satellite earth observation data

Large stands or blocks of trees and tree plantations are rare in these mining districts, therefore high spatial and spectral resolution remote sensing data was required to identify and provide detailed information for small stands, single trees or rows of trees and small-plot species trials in each mining district. There is currently very few commercially available satellite earth observation data sources which could provide remote sensing data of a high spatial and spectral resolution on a temporal scale that could be used in any future operational applications.
Satellite earth observation data were acquired from two data sources for this investigation; the Hyperion hyperspectral sensor (United States Geological Survey Earth Resources Observation Systems) and the Proba Chris pseudo-hyperspectral sensor (European Space Agency). The Hyperion sensor was selected to obtain high spatial and spectral resolution data, whereas the Proba Chris sensor provided high spatial and medium spectral resolution earth observation data. Free Proba Chris data were obtained through the European Space Agency, Tiger Initiative in Africa, which was established to promote the use of space technologies for improved water resources management in Africa.

The satellite earth observation data were acquired during 2004 and 2005. The Hyperion image was acquired for the West Wits mining district during early August 2004. This image was a 42 by 7.7 km scene, at a 30 m spatial resolution, and comprised of 242 calibrated and uncalibrated spectral bands ranging from 357 nm to 2576 nm. The 196 calibrated bands were converted to absolute radiance by applying a scaling factor of 40 and 80 to the visible and short-wave infrared spectral bands respectively (Beck, 2003). Calibrated wavelengths ranged from 498.04 to 993.17 nm for the visible and near infrared region and 1194.97 to 2395.5 nm for the short-wave infrared region.

Proba Chris data has been classified into five imaging modes, each model comprising of a list of pre-selected spectral bands. Mode 4 characterised as the chlorophyll band set was acquired in this study. Although a total of four Proba Chris images were planned for acquisition for the Welkom, Vaal River and West Wits mining districts during July and August 2005, only the Vaal River images were acquired, due to an increased demand for Proba Chris data from various countries participating in the Tiger initiative. Proba Chris images for Welkom were thus obtained during early October 2005, and for West Wits during late November 2005, and were flagged when correlating to ground truthing measurements undertaken during the dry-season months of July and August 2005. All Proba Chris images were characterised by 13 x 13 km scenes, at a 17 m spatial resolution, and comprised of 18 spectral bands ranging from 485.6 nm to 796.1 nm. These are most commonly used when requiring high spatial resolution data for vegetation studies.
Both the Hyperion and Proba Chris radiance images were atmospherically corrected by applying a flat field technique. This technique normalises the spectrum of each pixel in the respective image, using the average spectrum from a region of flat reflectance within the scene. The technique assumes that all the spectral features in the flat field region are due to the atmosphere and the solar spectrum. The respective radiance images were then divided by the flat field average spectrum, effectively removing the shape of the solar spectrum and atmospheric scattering and absorptions. The flat field atmospheric correction was applied to the Hyperion and Proba Chris images using the automated software options as provided in Spectral Analysis with ENVI 4.1 (2005).

Reflectance data were geometrically corrected, using georeferenced airborne imagery which extended across the research sites, and all images were projected to WGS 84, LO27 datum. All image processing was undertaken using ENVI 4.1 and Erdas Imagine 8.7 software packages.

5.2.2 Selection and derivation of vegetation spectral reflectance indices

Ten vegetation indices designed to capture changes in canopy water status, plant pigment content and changes in plant cellular structure, were selected for this investigation. Three of the ten indices were selected to describe the spectral changes in the plant water status and plant water content. The remaining seven indices provided a measure of the overall amount and quality of photosynthetic material present in the vegetation, the presence of stress related pigments in vegetation, and changes in leaf cellular structure. All ten selected indices reflect spectral changes in the visible, red and near infrared regions of the electromagnetic spectrum, which infer variability in plant physiological properties that might be indirectly caused by changes in plant water status. Table 5.1 provides a summary of the selected vegetation indices used in this study.
Table 5.1  Spectral wavelengths and reflectance indices derived from the satellite earth observation data.

<table>
<thead>
<tr>
<th>Common name for spectral index or spectral region of the spectrum</th>
<th>Spectral Reflectance Ratio or Index (nm)</th>
<th>Reference</th>
<th>Closest wavelengths used to derive indices from Proba Chris data</th>
<th>Closest wavelengths used to derive indices from Hyperion data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green normalised difference vegetation index (GNDVI)</td>
<td>(750-550)/(750+550)</td>
<td>Gitelson <em>et al.</em> (1996)</td>
<td>(748.4-551.2)/(748.4+551.2)</td>
<td></td>
</tr>
<tr>
<td>Normalised difference vegetation index (NDVI)</td>
<td>(750-676)/(750+676)</td>
<td>Tucker (1979)</td>
<td>(748.4-679.9)/(748.4+679.9)</td>
<td></td>
</tr>
<tr>
<td>Red edge normalised difference vegetation index (RENDVI)</td>
<td>(750-705)/(750+705)</td>
<td>Sims and Gamon (2002)</td>
<td>(748.4-703.2)/(748.4+703.2)</td>
<td>(752.43-701.55)/(752.43+703.2)</td>
</tr>
<tr>
<td>Carter index</td>
<td>(695/760)</td>
<td>Carter (1994)</td>
<td>(697.2/755.3)</td>
<td>691.37/762.6</td>
</tr>
<tr>
<td>Red edge position (REP)</td>
<td>Wavelength @ max derivative of red edge derived between 640 to 740 nm</td>
<td>Curran <em>et al.</em> (1990)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemical reflectance index (PRI)</td>
<td>(531-570)/(531+570)</td>
<td>Sims and Gamon (2002)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indices sensitive to changes in plant pigment content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water band index (WBI)</td>
</tr>
</tbody>
</table>

| Indices sensitive to changes in plant water content/plant water status and plant cellular structure |

5.2.3  **Analysis of data**

A statistical analysis of the plant water stress measurements collected in July 2005 and August 2005 was undertaken to produce a comparative summary of the means for each sample site per species within each mining district, and per species for each mining district, and between species and mining districts for each of ground-based methods used in this study. Statistical averages were determined using a spreadsheet package, while graphical plots were produced using Genstat (11th edition, 2008).
Multiple linear regressions were derived to investigate the interactions between the districts and species and their respective spectral reflectance indices derived from the satellite images and the ground-based plant water stress measurements using Genstat (11th edition, 2008). The maximal regression model and the statistical procedure adopted in the selection of the “best” model while eliminating poor combinations of spectral reflectance indices (X) and plant water stress measurements (Y) as depicted in Chapter 4 (section 4.2.4), were applicable to this satellite remote sensing study. The highest adjusted $R^2$ value, and the significance of the F and t probability values were statistical measures used in the selection of the “best” multiple linear regression model. Significant differences between predicted and measured plant water stress measurements were determined using a t-test for paired samples.

5.3 RESULTS

5.3.1 Ground-based measurements of plant water stress

Because Proba Chris images were acquired at different times of the year, ground-truthing measurements were thus also undertaken at two different times, in order to increase the correlation between plant water stress measured on the ground and that observed using the satellite remote sensing data. The levels of plant water stress for the two datasets are presented in Table 5.2 and Table 5.3.

Measurements of predawn leaf water potential obtained in July 2005, were used to characterise sites, ranging from -0.42 to -0.78 MPa at unstressed sites, and -0.95 to -4.66 MPa at stressed sites. Corresponding measurements of leaf chlorophyll fluorescence, leaf chlorophyll content and leaf carotenoid content when compared between stressed and unstressed sites, did not follow the same pattern (Table 5.2 and Table 5.3). Instead, relative differences in ground-based measurements of plant water stress were identified to be a function of the locality and tree species under investigation.

An assessment of comparative sampling sites, sites within the same geographic location, in the same mining district and for the same species, revealed a relative increase in leaf
chlorophyll fluorescence, leaf chlorophyll content and leaf carotenoid content for less stressed trees with relatively higher predawn leaf water potential readings. These relative increases are illustrated, for example, by the comparative *E. camaldulensis* sampling sites 1 and 2 in Vaal River, *E. sideroxylon* sampling sites 7 and 8 in West Wits (Table 5.2), and by the equivalent comparative sampling sites 1 and 2, and 5 and 6 in Table 5.3.
### Table 5.2  Ground measurements of plant stress undertaken during July 2005 in the Welkom, Vaal River and West Wits mining districts.

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Mining District</th>
<th>Tree Species</th>
<th>Geographic Coordinates (dd)</th>
<th>Site Description</th>
<th>Site Classification according to Predawn Leaf Water Potential Measurements</th>
<th>Predawn Leaf Water potentials (MPa)</th>
<th>Relative Leaf Water Content (%)</th>
<th>Leaf Chlorophyll Fluorescence (Fv/Fm)</th>
<th>Leaf Chlorophyll Content (mg/l)</th>
<th>Leaf Carotenoid Content (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VR</td>
<td>EC</td>
<td>-26.98859; 26.77658</td>
<td>dolomite, meso-eutrophic soils, species trials, plot 3</td>
<td>unstressed</td>
<td>-0.67 ± 0.17</td>
<td>66.34 ± 15.00</td>
<td>0.666 ± 0.094</td>
<td>11.029 ± 1.752</td>
<td>1.599 ± 0.257</td>
</tr>
<tr>
<td>2</td>
<td>VR</td>
<td>EC</td>
<td>-26.98896; 26.77676</td>
<td>dolomite, meso-eutrophic soils, species trials, plot 9</td>
<td>unstressed</td>
<td>-0.71 ± 0.15</td>
<td>49.87 ± 10.23</td>
<td>0.537 ± 0.207</td>
<td>8.233 ± 3.374</td>
<td>1.210 ± 0.383</td>
</tr>
<tr>
<td>3</td>
<td>VR</td>
<td>EC</td>
<td>-26.92922; 26.68182</td>
<td>andesite, eutrophic soils, close to TSF</td>
<td>stressed</td>
<td>-1.97 ± 0.33</td>
<td>57.04 ± 5.27</td>
<td>0.462 ± 0.212</td>
<td>8.039 ± 2.187</td>
<td>1.224 ± 0.249</td>
</tr>
<tr>
<td>4</td>
<td>VR</td>
<td>SL</td>
<td>-26.99185; 26.77592</td>
<td>dolomite, eutrophic soils, high water availability, water channel</td>
<td>stressed</td>
<td>-1.05 ± 0.12</td>
<td>68.53 ± 11.05</td>
<td>0.644 ± 0.139</td>
<td>10.022 ± 1.770</td>
<td>1.603 ± 0.208</td>
</tr>
<tr>
<td>5</td>
<td>VR</td>
<td>SL</td>
<td>-26.92301; 26.69820</td>
<td>quartzite, meso- eutrophic soils, low TDS</td>
<td>stressed</td>
<td>-0.95 ± 0.15</td>
<td>45.50 ± 8.74</td>
<td>0.423 ± 0.215</td>
<td>7.304 ± 2.694</td>
<td>1.217 ± 0.247</td>
</tr>
<tr>
<td>6</td>
<td>VR</td>
<td>SL</td>
<td>-26.93478; 26.69592</td>
<td>dolomite, meso- eutrophic soils, high TDS, high water availability</td>
<td>stressed</td>
<td>-1.46 ± 0.17</td>
<td>57.80 ± 10.01</td>
<td>0.538 ± 0.195</td>
<td>8.877 ± 2.551</td>
<td>1.157 ± 0.191</td>
</tr>
<tr>
<td>7</td>
<td>WW</td>
<td>ES</td>
<td>-26.43969; 27.32871</td>
<td>shale, non-calcarious soils, high water availability, farm dam, shallow groundwater table (~ 5m)</td>
<td>unstressed</td>
<td>-0.73 ± 0.05</td>
<td>66.66 ± 6.69</td>
<td>0.719 ± 0.052</td>
<td>11.600 ± 1.264</td>
<td>1.537 ± 0.213</td>
</tr>
<tr>
<td>8</td>
<td>WW</td>
<td>ES</td>
<td>-26.43599; 27.33024</td>
<td>shale, non-calcarious soils, lower water availability</td>
<td>stressed</td>
<td>-4.66 ± 0.12</td>
<td>52.93 ± 11.88</td>
<td>0.675 ± 0.133</td>
<td>12.502 ± 1.669</td>
<td>2.081 ± 0.189</td>
</tr>
<tr>
<td>9</td>
<td>WW</td>
<td>EC</td>
<td>-26.43147; 27.36904</td>
<td>shale, non-calcarious soil, mediala trial</td>
<td>unstressed</td>
<td>-0.51 ± 0.06</td>
<td>82.56 ± 11.94</td>
<td>0.700 ± 0.089</td>
<td>11.407 ± 1.552</td>
<td>1.504 ± 0.161</td>
</tr>
<tr>
<td>10</td>
<td>WW</td>
<td>EC</td>
<td>-26.42508; 27.37172</td>
<td>shale, non-calcarious soil, trial near garage</td>
<td>unstressed</td>
<td>-0.78 ± 0.05</td>
<td>72.75 ± 15.35</td>
<td>0.524 ± 0.176</td>
<td>14.033 ± 1.377</td>
<td>1.978 ± 0.169</td>
</tr>
<tr>
<td>11</td>
<td>WW</td>
<td>EC</td>
<td>-26.44070; 27.34495</td>
<td>shale, non-calcarious soil, trial on road</td>
<td>unstressed</td>
<td>-0.42 ± 0.06</td>
<td>74.38 ± 14.56</td>
<td>0.603 ± 0.172</td>
<td>15.655 ± 2.125</td>
<td>2.380 ± 0.221</td>
</tr>
<tr>
<td>12</td>
<td>W</td>
<td>EC</td>
<td>-28.03052; 26.51879</td>
<td>shale, eutrophic soils, farmland</td>
<td>unstressed</td>
<td>-0.59 ± 0.12</td>
<td>67.58 ± 4.73</td>
<td>0.593 ± 0.110</td>
<td>12.239 ± 1.462</td>
<td>1.818 ± 0.227</td>
</tr>
<tr>
<td>13</td>
<td>W</td>
<td>EC</td>
<td>-27.96743; 26.55001</td>
<td>shale, eutrophic and non calcarious soils, high water availability, near pan</td>
<td>stressed</td>
<td>-1.87 ± 0.61</td>
<td>71.87 ± 15.24</td>
<td>0.643 ± 0.143</td>
<td>13.130 ± 1.392</td>
<td>1.835 ± 0.177</td>
</tr>
<tr>
<td>14</td>
<td>W</td>
<td>SL</td>
<td>-28.03361; 26.51199</td>
<td>shale, eutrophic soils, farmland</td>
<td>stressed</td>
<td>-1.67 ± 0.27</td>
<td>59.98 ± 3.56</td>
<td>0.315 ± 0.115</td>
<td>10.729 ± 2.818</td>
<td>1.931 ± 0.327</td>
</tr>
<tr>
<td>15</td>
<td>W</td>
<td>SL</td>
<td>-27.96695; 26.55075</td>
<td>shale, non calcarious soils, high water availability, near pan</td>
<td>stressed</td>
<td>-1.12 ± 0.19</td>
<td>68.15 ± 12.04</td>
<td>0.481 ± 0.181</td>
<td>9.019 ± 1.827</td>
<td>1.594 ± 0.284</td>
</tr>
</tbody>
</table>

**Means per species per district**

- **Mean value for E. camaldulensis for Vaal River**: -1.12 ± 0.22 57.75 ± 10.17 0.555 ± 0.171 9.100 ± 2.438 1.344 ± 0.296
- **Mean value for S. lancea for Vaal River**: -1.15 ± 0.15 57.28 ± 9.93 0.535 ± 0.183 8.734 ± 2.338 1.326 ± 0.215
- **Mean value for E. sideroxylon for West Wits**: -2.70 ± 0.09 59.80 ± 9.29 0.697 ± 0.093 12.051 ± 1.467 1.809 ± 0.201

---

Page 106
<table>
<thead>
<tr>
<th>Site No.</th>
<th>Mining District</th>
<th>Tree Species</th>
<th>Geographic Coordinates (dd)</th>
<th>Site Description</th>
<th>Site Classification according to Predawn Leaf Water Potential Measurements</th>
<th>Predawn Leaf Water potentials (MPa)</th>
<th>Relative Leaf Water Content (%)</th>
<th>Leaf Chlorophyll Fluorescence (Fv/Fm)</th>
<th>Leaf Chlorophyll Content (mg/l)</th>
<th>Leaf Carotenoid Content (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>Mean value for <em>E. camaldulensis</em> for West Wits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.57</td>
<td>0.06</td>
<td>76.56</td>
<td>13.95</td>
<td>0.609</td>
</tr>
<tr>
<td>Mean value for <em>E. camaldulensis</em> for Welkom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.23</td>
<td>0.37</td>
<td>69.73</td>
<td>9.99</td>
<td>0.618</td>
</tr>
<tr>
<td>Mean value for <em>S. lancea</em> for Welkom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.40</td>
<td>0.23</td>
<td>64.07</td>
<td>7.80</td>
<td>0.398</td>
</tr>
</tbody>
</table>

*W = Welkom; VR = Vaal River, WW = West Wits; EC = E. camaldulensis; ES = E. sideroxylon; SL = S. lancea*
Table 5.3  Ground measurements of plant stress undertaken during August 2005 in the Welkom, Vaal River and West Wits mining districts.

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Mining District</th>
<th>Tree Species</th>
<th>Geographic Coordinates (dd)</th>
<th>Site Description</th>
<th>Site Classification according to Predawn Leaf Water Potential Measurements undertaken in July 2005</th>
<th>Relative Leaf Water Content (%)</th>
<th>Leaf Chlorophyll Fluorescence (Fv/Fm)</th>
<th>Leaf Chlorophyll Content (mg/l)</th>
<th>Leaf Carotenoid Content (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
<td>Std. Dev.</td>
</tr>
<tr>
<td>1</td>
<td>VR</td>
<td>EC</td>
<td>-26.98859; 26.77658</td>
<td>dolomite, meso-eutrophic soils, species trials, plot 3</td>
<td>unstressed</td>
<td>79.48</td>
<td>5.72</td>
<td>0.603</td>
<td>0.136</td>
</tr>
<tr>
<td>2</td>
<td>VR</td>
<td>EC</td>
<td>-26.92922; 26.68182</td>
<td>andesite, eutrophic soils, close to TSF</td>
<td>stressed</td>
<td>58.16</td>
<td>6.26</td>
<td>0.409</td>
<td>0.166</td>
</tr>
<tr>
<td>3</td>
<td>VR</td>
<td>SL</td>
<td>-26.92301; 26.69820</td>
<td>quartzite, meso- eutrophic soils, low TDS</td>
<td>stressed</td>
<td>65.21</td>
<td>9.64</td>
<td>0.490</td>
<td>0.163</td>
</tr>
<tr>
<td>4</td>
<td>VR</td>
<td>SL</td>
<td>-26.93418; 26.69592</td>
<td>dolomite, meso- eutrophic soils, high TDS, higher water availability</td>
<td>stressed</td>
<td>78.59</td>
<td>12.06</td>
<td>0.435</td>
<td>0.173</td>
</tr>
<tr>
<td>5</td>
<td>WW</td>
<td>ES</td>
<td>-26.43969; 27.32871</td>
<td>shale, non calcarious soils, high water availability, farm dam, shallow groundwater table &lt;~ 5m</td>
<td>unstressed</td>
<td>63.68</td>
<td>6.08</td>
<td>0.748</td>
<td>0.031</td>
</tr>
<tr>
<td>6</td>
<td>WW</td>
<td>ES</td>
<td>-26.43899; 27.33024</td>
<td>shale, non calcarious soils, lower water availability</td>
<td>stressed</td>
<td>53.92</td>
<td>12.15</td>
<td>0.446</td>
<td>0.188</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>EC</td>
<td>-28.03052; 26.51879</td>
<td>shale, eutrophic soils, farmland</td>
<td>unstressed</td>
<td>64.75</td>
<td>7.24</td>
<td>0.647</td>
<td>0.096</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>EC</td>
<td>-27.96743; 26.55001</td>
<td>shale, eutrophic and non calcarious soils, high water availability, near pan</td>
<td>stressed</td>
<td>62.05</td>
<td>12.57</td>
<td>0.664</td>
<td>0.106</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>SL</td>
<td>-28.03361; 26.51199</td>
<td>shale, eutrophic soils, farmland</td>
<td>stressed</td>
<td>62.75</td>
<td>4.14</td>
<td>0.497</td>
<td>0.144</td>
</tr>
</tbody>
</table>

Means per species per district

Mean value for *E. camaldulensis* for Vaal River: Mean value for *S. lancea* for Vaal River: Mean value for *E. sideroxylon* for West Wits: Mean value for *E. camaldulensis* for Welkom: Mean value for *S. lancea* for Welkom:

W = Welkom; VR = Vaal River, WW = West Wits; EC = *E. camaldulensis*; ES = *E. sideroxylon*; SL = *S. lancea*
Statistical tests confirmed that significant differences in plant water stress measurements did exist between selected comparative sampling sites. Predawn leaf water potentials measured for *E. camaldulensis* trees sampled on the species trials in Vaal River were significantly different between stressed and unstressed trees (*t* = 3.39, 8df, *P* = 0.009). In contrast, *E. camaldulensis* trees sampled near the pan in the Welkom mining district, which had greater access to water but were exposed to higher concentrations of salts and inorganic contaminants, displayed significant differences in total chlorophyll content (*t* = -2.20, 8df, *P* = 0.059), carotenoid content (*t* = -5.68, 8df, *P* < 0.001) and predawn leaf water potential (*t* = 4.25, 8df, *P* = 0.011) when compared to trees sampled on farmland within the same district. *E. sideroxylon* trees sampled close to a farm dam in the West Wits mining district displayed significant differences in predawn leaf water potential (*t* = 69.32, 8df, *P* < 0.001) and carotenoid content (*t* = -2.13, 8df, *P* = 0.066) when compared to stressed trees further upslope away from the water source.

Box plots were used to represent the distributions of the plant water stress measurements undertaken in July 2005. Figure 5.1 illustrates the variability of predawn leaf water potential, photochemical efficiency ratio, total chlorophyll and carotenoid content and relative leaf water content per mining district. The highest (more negative) predawn leaf water potential measurements measured at West Wits (>4MPa) were classed as outliers in Genstat 11 (2008), compared to lower negative values recorded at Vaal River and Welkom (Figure 4.1a). The median photochemical efficiency ratios were similar for Vaal River and Welkom, ranging between 0.5 and 0.6, while the highest upper quartile photochemical efficiency value was measured at West Wits, which indicated healthier trees experiencing lower plant water stress (Figure 4.1b). Total chlorophyll and carotenoid content measurements followed a similar pattern for each mining district, with the highest upper quartile values measured at West Wits, and the lowest lower quartile values measured at Vaal River (Figure 4.2c and d). The ranges in relative leaf water content values were smallest for Welkom when compared to Vaal River and West Wits (Figure 4.1e). However, median values of relative leaf water content were similar for all three mining districts.
Figure 5.1 Box plots of plant water stress measurements a) predawn leaf water potential, b) photochemical efficiency, c) total chlorophyll (a+b) content, d) carotenoid content and e) relative leaf water content undertaken for Vaal River, Welkom and West Wits in July 2005.

Similarities and differences in plant water stress measurements undertaken for the three tree species were also investigated. The box plots in Figure 5.2 represent the range, upper and
lower quartiles and medians measured for predawn leaf water potential, chlorophyll fluorescence, chlorophyll and carotenoid content and leaf water content measured per tree species in July 2005. *E. sideroxylon* trees appeared to have the highest (more negative) upper quartile and median, and largest variability in predawn leaf water potentials (Figure 5.2a). However, this species displayed the least variation in photochemical efficiency (Figure 5.2b) and total chlorophyll content (Figure 5.2c). The range in predawn leaf water potentials measured for *E. camaldulensis* and *S. lancea* was smaller, with the lowest values recorded for *E. camaldulensis*. In contrast, the highest upper quartile values for total chlorophyll content were measured for *E. camaldulensis* and the lowest lower quartile values for *S. lancea*. The distribution of carotenoid content measurements were similar, with the highest upper quartile measured for *E. sideroxylon*, and the lowest lower quartile measured for *S. lancea* (Figure 5.2d). Median values for carotenoid content for all three species ranged between 1.25 and 2 mg per g. Median values of relative leaf water content ranged between 0.6 and 0.7 for all three species (Figure 5.2e). However, the highest value was measured for *E. camaldulensis*, and the lowest value for *E. sideroxylon*. 
Figure 5.2 Box plots of plant water stress measurements a) predawn leaf water potential, b) photochemical efficiency, c) total chlorophyll (a+b) content, d) carotenoid content and e) relative leaf water content measured for *E. camaldulensis*, *E. sideroxylon* and *S. lancea* in July 2005.
5.3.2 Relationships identified using multispectral satellite data

Multiple linear regression analyses between plant water stress measurements and spectral indices derived from high spatial and medium spectral resolution Proba Chris satellite images were investigated.

### 5.3.2.1 Maximal models identified using multispectral satellite data

Maximal regression models were derived between measurements of plant water stress and the four spectral reflectance indices, normalised difference vegetation index (NDVI), green (GNDVI) and red edge (RENDVI) normalised difference vegetation indices, and the Carter index derived from Proba Chris multispectral imagery (Table 5.4). Adjusted $R^2$ values, which were ranked for plant water stress measurement, ranged from a maximum of 84.8% for predawn leaf water potential and green normalised difference vegetation index to a minimum of 20.0% for chlorophyll fluorescence and the Carter index.

<table>
<thead>
<tr>
<th>Chlorophyll (a + b) (Y)</th>
<th>Leaf water content (Y)</th>
<th>Carotenoid (c+x) (Y)</th>
<th>Chlorophyll fluorescence (Fv/Fm) (Y)</th>
<th>Predawn leaf water potential (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted $R^2$ for maximal model (%)</td>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted $R^2$ for maximal model (%)</td>
<td>Spectral reflectance index (nm) (X)</td>
</tr>
<tr>
<td>RENDVI</td>
<td>47.6</td>
<td>GNDVI</td>
<td>34.1</td>
<td>NDVI</td>
</tr>
<tr>
<td>NDVI</td>
<td>45.4</td>
<td>NDVI</td>
<td>32.9</td>
<td>CARTER</td>
</tr>
<tr>
<td>CARTER</td>
<td>44.2</td>
<td>RENDVI</td>
<td>27.9</td>
<td>GNDVI</td>
</tr>
<tr>
<td>GNDVI</td>
<td>40.8</td>
<td>CARTER</td>
<td>26.1</td>
<td>RENDVI</td>
</tr>
</tbody>
</table>
Maximal regression models derived with chlorophyll (a+b) content, leaf water content and carotenoid content did not account for at least 50% of the variance in the data, and were therefore excluded from further analyses. Four models remained after this elimination process. These included the chlorophyll fluorescence and GNDVI (adjusted $R^2 = 63.5\%$), and predawn leaf water potential and GNDVI (adjusted $R^2 = 84.8\%$), RENDVI (adjusted $R^2 = 50.5\%$) and NDVI (adjusted $R^2 = 53.9\%$).

5.3.2.2. Model refinements using stepwise regression

Stepwise regression was used to refine the four remaining maximal regression models. The adjusted $R^2$ value for chlorophyll fluorescence and GNDVI increased from 63.5% to 64.8%. Similarly, for predawn leaf water potential and NDVI, the adjusted $R^2$ value increased from 53.9 to 54.5%.

Table 5.5 Comparison of the maximal and stepwise regression models derived using Proba Chris satellite data.

<table>
<thead>
<tr>
<th>Chlorophyll fluorescence (Fv/Fm) (Y)</th>
<th>Predawn leaf water potential (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted $R^2 (%)$</td>
</tr>
<tr>
<td>GNDVI</td>
<td>Maximal model</td>
</tr>
<tr>
<td></td>
<td>63.5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the stepwise regression modeling, the GNDVI index performed well for both measurements of plant water stress. The maximal regression model derived between predawn leaf water potential and GNDVI with the highest adjusted $R^2$ of 84.8% was selected at the “best” model resulting from the multispectral satellite data.

5.3.2.3. Selection of the best multispectral satellite model

Predawn leaf water potential together with GNDVI spectral reflectance index resulted in the “best” surrogate measure of plant water stress when using broad-band multispectral satellite
The general statistical model which resulted in six site- and species-specific models are reported below:

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Equation</th>
<th>Significance</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predawn leaf water potential = -4.169 + 28.22(GNDVI) + 5.025 (S1) + 2.798 (S2) + (-60.29)(S1)(GNDVI)+(-23.54)(S2)(GNDVI)+ (0.690)(L1) + (3.239)(L2) +(-13.58)(L1)(GNDVI) + (-25.39)(L2)(GNDVI)</td>
<td>(5.1)</td>
<td>(F_{9,65} \approx 46.73; F_{prob} &lt; 0.001; R^2 = 84.8)</td>
<td></td>
</tr>
<tr>
<td>For <em>E. camaldulensis</em> in Vaal River where L1=L2=0 and S1=S2=0:</td>
<td>Predawn leaf water potential = -4.169 + 28.22(GNDVI)</td>
<td>(5.1.1)</td>
<td></td>
</tr>
<tr>
<td>For <em>S. lancea</em> in Vaal River where L1=L2=0, S1=0 and S2=1:</td>
<td>Predawn leaf water potential = -1.371 + 4.68(GNDVI)</td>
<td>(5.1.2)</td>
<td></td>
</tr>
<tr>
<td>For <em>E. camaldulensis</em> in Welkom where L1=1, L2=0 and S1=S2=0:</td>
<td>Predawn leaf water potential = -3.479 + 14.64(GNDVI)</td>
<td>(5.1.3)</td>
<td></td>
</tr>
<tr>
<td>For <em>S. lancea</em> in Welkom where L1=1, L2=0, S1=0 and S2=1:</td>
<td>Predawn leaf water potential = -0.681 + (-8.9)(GNDVI)</td>
<td>(5.1.4)</td>
<td></td>
</tr>
<tr>
<td>For <em>E. camaldulensis</em> in West Wits where L1=0, L2=1 and S1=S2=0:</td>
<td>Predawn leaf water potential = -0.93 + (2.83)(GNDVI)</td>
<td>(5.1.5)</td>
<td></td>
</tr>
<tr>
<td>For <em>E. sideroxylon</em> in West Wits where L1=0, L2=1, S1=1 and S2=0:</td>
<td>Predawn leaf water potential = 4.095 + (-57.46)(GNDVI)</td>
<td>(5.1.6)</td>
<td></td>
</tr>
</tbody>
</table>
The full regression analysis depicted by Equation (5.1), which includes a summary of the analysis of variance and estimate of parameters for the multiple regression model is illustrated in Appendix 3.

Differences between the observed and predicted predawn leaf water potential, using Equation (5.1), were assessed using a standardised residual plot of fitted values of predawn leaf water potential (Figure 5.3). The standardised residual plot indicates a cluster of fitted values at the lower and higher predawn leaf water potentials. However, the majority of the fitted values are clustered at lower predawn leaf water potential, indicating that the data could be skewed. Residuals tend to be smaller at higher predawn leaf water potentials (more negative), and larger at lower predawn leaf water potentials (less negative).

Figure 5.3 Standardised residual plot of fitted values of predawn leaf water potential using the green normalised difference vegetation spectral reflectance model.
Validation of the best model using multispectral satellite data

The predawn leaf water potential GNDVI spectral reflectance model was validated using the method of re-running the fitted regression model with a percentage of the data excluded. Three validation runs were used, with 10 random samples excluded from each run. Subsets of data which were used in the validation exercise are listed in Table 5.6.

### Table 5.6 Validation models derived from multispectral satellite data used to predict predawn leaf water potential.

<table>
<thead>
<tr>
<th>Mining District</th>
<th>Species</th>
<th>Fitted Models</th>
<th>GNDVI index (X)</th>
<th>Predawn leaf water potential measured (Y)</th>
<th>Predawn leaf water potential predicted (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Run 1</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>E. camaldulensis</em></td>
<td>-4.280+29.04(GNDVI)</td>
<td>0.091</td>
<td>-1.698</td>
<td>-1.645</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.115</td>
<td>-0.832</td>
<td>-0.936</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.115</td>
<td>-0.606</td>
<td>-0.936</td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>S. lancea</em></td>
<td>-1.37+4.9(GNDVI)</td>
<td>0.053</td>
<td>-0.788</td>
<td>-1.108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.122</td>
<td>-1.184</td>
<td>-0.774</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.014</td>
<td>-1.590</td>
<td>-1.440</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>E. camaldulensis</em></td>
<td>-3.177+12.03(GNDVI)</td>
<td>0.175</td>
<td>-0.818</td>
<td>-1.068</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.160</td>
<td>-0.488</td>
<td>-1.257</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>S. lancea</em></td>
<td>-0.267-12.11(GNDVI)</td>
<td>0.088</td>
<td>-2.000</td>
<td>-1.332</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.030</td>
<td>-1.292</td>
<td>-0.629</td>
</tr>
<tr>
<td><strong>Run 2</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>E. camaldulensis</em></td>
<td>-4.647+32.66(GNDVI)</td>
<td>0.115</td>
<td>-0.722</td>
<td>-0.886</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.115</td>
<td>-0.632</td>
<td>-0.886</td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>S. lancea</em></td>
<td>-1.338+3.95(GNDVI)</td>
<td>0.123</td>
<td>-1.020</td>
<td>-0.851</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.003</td>
<td>-1.490</td>
<td>-1.349</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>E. camaldulensis</em></td>
<td>-3.743+15.97(GNDVI)</td>
<td>0.175</td>
<td>-0.818</td>
<td>-0.943</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.139</td>
<td>-1.190</td>
<td>-2.208</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>S. lancea</em></td>
<td>-0.434-12.74(GNDVI)</td>
<td>0.095</td>
<td>-1.450</td>
<td>-1.641</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.139</td>
<td>-1.190</td>
<td>-2.208</td>
</tr>
<tr>
<td>West Wits</td>
<td><em>E. camaldulensis</em></td>
<td>-0.931+2.74(GNDVI)</td>
<td>0.172</td>
<td>-0.482</td>
<td>-0.460</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.147</td>
<td>-0.330</td>
<td>-0.527</td>
</tr>
<tr>
<td>West Wits</td>
<td><em>E. sideroxylon</em></td>
<td>3.802+-55.76(GNDVI)</td>
<td>0.097</td>
<td>-0.684</td>
<td>-1.605</td>
</tr>
<tr>
<td><strong>Run 3</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>E. camaldulensis</em></td>
<td>-4.121+27.28(GNDVI)</td>
<td>0.115</td>
<td>-0.424</td>
<td>-0.980</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.115</td>
<td>-0.838</td>
<td>-0.980</td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>S. lancea</em></td>
<td>-1.384+5.07(GNDVI)</td>
<td>0.037</td>
<td>-0.842</td>
<td>-1.196</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.122</td>
<td>-1.050</td>
<td>-0.768</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.014</td>
<td>-1.590</td>
<td>-1.457</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>E. camaldulensis</em></td>
<td>-3.626+15.04(GNDVI)</td>
<td>0.147</td>
<td>-0.512</td>
<td>-1.943</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.095</td>
<td>-1.450</td>
<td>-1.568</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>S. lancea</em></td>
<td>-0.889-7.17(GNDVI)</td>
<td>0.048</td>
<td>-0.850</td>
<td>-1.231</td>
</tr>
<tr>
<td>West Wits</td>
<td><em>E. camaldulensis</em></td>
<td>-0.938+2.97(GNDVI)</td>
<td>0.078</td>
<td>-0.730</td>
<td>-0.705</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.172</td>
<td>-0.570</td>
<td>-0.427</td>
</tr>
</tbody>
</table>
Significant differences between measured and predicted values of predawn leaf water potential were assessed using a t-test. The results of the t-test for Run1 ($t = -0.12, 9$df, $P = 0.911, r = 0.43$) and Run3 ($t = 1.62, 9$df, $P = 0.139, r = 0.53$) were not significant, compared to Run3 ($t = 1.99, 9$df, $P = 0.078, r = 0.68$), which was significant at the 10% level.

5.3.3 **Relationships identified using hyperspectral satellite data**

Spectral relationships were investigated between measurements of plant water stress and spectral indices derived from Hyperion satellite imagery. This study provided a unique opportunity to compare the results obtained from the multiple linear regression analyses, using broad multispectral bands compared with narrow-hyperspectral bands.

5.3.3.1. **Maximal models identified using hyperspectral satellite data**

Maximal regression models were determined between plant water stress measurements and eight vegetation spectral reflectance indices derived from Hyperion hyperspectral imagery (Table 5.7). Adjusted $R^2$ values were ranked for each plant water stress measurement, and ranged from a maximum of 90.5% for predawn leaf water potential and water band index to a minimum of 1.7% for chlorophyll (a+b) content and the normalised difference vegetation index. Models missing in Table 5.7 were a result of sampling points which were clustered at the edge of the image, and which did not contain the full complement of spectral bands. Therefore certain vegetation spectral reflectance indices could not be derived due to the missing spectral values.

*Table 5.7/*...
Table 5.7  Adjusted $R^2$ values, ranked in descending order, for each maximal model derived between plant water stress measurement (Y) and spectral reflectance index (X) derived from Hyperion satellite data.

<table>
<thead>
<tr>
<th>Chlorophyll (a+b) (Y)</th>
<th>Leaf water content (Y)</th>
<th>Carotenoid (c+x) (Y)</th>
<th>Chlorophyll fluorescence (Fv/Fm) (Y)</th>
<th>Predawn leaf water potential (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted R² for maximal model (%)</td>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted R² for maximal model</td>
<td>Spectral reflectance index (nm) (X)</td>
</tr>
<tr>
<td>MSI</td>
<td>27.9</td>
<td>REP</td>
<td>63.0</td>
<td>WBI</td>
</tr>
<tr>
<td>RENDVI</td>
<td>26.4</td>
<td>PSRI</td>
<td>53.4</td>
<td>NDVI</td>
</tr>
<tr>
<td>NDII</td>
<td>18.0</td>
<td>CARTER</td>
<td>49.2</td>
<td>MRESR</td>
</tr>
<tr>
<td>PSRI</td>
<td>12.6</td>
<td>RENDVI</td>
<td>41.6</td>
<td>MSI</td>
</tr>
<tr>
<td>CARTER</td>
<td>10.2</td>
<td>MRESR</td>
<td>34.1</td>
<td>NDII</td>
</tr>
<tr>
<td>REP</td>
<td>3.9</td>
<td>MSI</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td>NDVI</td>
<td>1.7</td>
<td>WBI</td>
<td>28.7</td>
<td>NDVI</td>
</tr>
</tbody>
</table>

Vegetation spectral reflectance models which did not account for at least 50% of the variance in the data were excluded from further analyses. Measurements of chlorophyll (a+b), carotenoid content and chlorophyll fluorescence which achieved maximum adjusted $R^2$ of 27.9%, were eliminated. Three maximal regression models were selected from this investigation for the stepwise regression analysis.

5.3.3.2.  Model refinements using stepwise regression

The stepwise regression modeling in this investigation resulted in no further refinements to the existing maximal models. The adjusted $R^2$ values remained the same as shown in Table 5.8. The maximal model determined between predawn leaf water potential and the water band index which obtained the highest adjusted $R^2$ of 90.5%, was selected as the “best” model derived using hyperspectral satellite data.

Table 5.8/...
Table 5.8  Comparison of the maximal and stepwise regression models, obtained in the Hyperion satellite data analysis for the three models with the highest adjusted $R^2$ values exceeding 50%.

<table>
<thead>
<tr>
<th>Spectral reflectance index (nm)</th>
<th>Maximal model</th>
<th>Stepwise model</th>
<th>Predawn leaf water potential (Y)</th>
<th>Adjusted $R^2$ (%)</th>
<th>Maximal model</th>
<th>Stepwise model</th>
</tr>
</thead>
<tbody>
<tr>
<td>REP</td>
<td>63.0</td>
<td>63.0</td>
<td>WBI</td>
<td>90.5</td>
<td>90.5</td>
<td></td>
</tr>
<tr>
<td>PSRI</td>
<td>53.4</td>
<td>53.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The selected model indicates that strong relationships exists between predawn leaf water potential, which is a direct measure of plant water stress, and the water band index, which is designed to capture changes in plant water content.

5.3.3.3. Selection of the “best” model derived from hyperspectral satellite data

The multiple regression analysis using hyperspectral satellite data resulted in a simple linear model between predawn leaf water potential and the water band spectral index. This model did not include any interactions between species or districts can be reported as follows, with detailed regression analysis listed in Appendix 3:

\[
\text{Predawn leaf water potential} = 21.20 - 23.0 \times \text{WBI} \tag{5.2}
\]

\[
(F_1,18 \approx 182.07; F_{\text{prob}} < 0.001; R^2_a = 90.5\%)
\]

Differences in observed and predicted values of predawn leaf water potential when using the spectral model represented by Equation (5.2) were investigated using a standardised residual plot of fitted values of predawn leaf water potential. The plot of residuals against fitted values of predawn leaf water potential indicated that there seems to be four clusters of sample groups (Figure 5.4). The residuals indicate a non-random distribution of sample points, with one sample group at higher (more negative) predawn leaf water potential and three sample groups at lower (less negative) predawn leaf water potentials.
There appeared to be no apparent outliers in the data. However the residual plot of fitted values of predawn leaf water potential indicated that the linear regression model may inadequately represent the data.

5.3.3.4. **Validation of the “best” model derived from hyperspectral satellite data**

The predawn leaf water potential and water band index spectral reflectance model for the West Wits mining district was validated, using the method of repeatedly re-running the fitted regression model with a percentage of the data excluded. Three validation runs were used, with 4 random samples excluded from each run. Subsets of data which were used in the validation exercise are listed in Table 5.9.
### Table 5.9 Validation models, derived from hyperspectral satellite data, used to predict predawn leaf water potential in the West Wits mining district.

<table>
<thead>
<tr>
<th>Species</th>
<th>Fitted Models</th>
<th>WBI index (X)</th>
<th>Predawn leaf water potential measured (Y)</th>
<th>Predawn leaf water potential predicted (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Run 1</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. camaldulensis</td>
<td>20.03 – 2.85 (WBI)</td>
<td>0.95152</td>
<td>-0.482</td>
<td>-0.712</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.97191</td>
<td>-0.41</td>
<td>-1.178</td>
</tr>
<tr>
<td>E. sideroxylon</td>
<td>20.03 – 2.85 (WBI)</td>
<td>0.92197</td>
<td>-0.676</td>
<td>-0.037</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11607</td>
<td>-4.566</td>
<td>-4.472</td>
</tr>
<tr>
<td><strong>Run 2</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. camaldulensis</td>
<td>21.2 – 23 (WBI)</td>
<td>0.95152</td>
<td>-0.498</td>
<td>-0.685</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.97191</td>
<td>-0.438</td>
<td>-1.154</td>
</tr>
<tr>
<td>E. sideroxylon</td>
<td>21.2 – 23.0 (WBI)</td>
<td>0.92197</td>
<td>-0.77</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11607</td>
<td>-4.514</td>
<td>-4.470</td>
</tr>
<tr>
<td><strong>Run 3</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. camaldulensis</td>
<td>20.81 – 2.59 (WBI)</td>
<td>0.95152</td>
<td>-0.502</td>
<td>-0.685</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.97191</td>
<td>-0.46</td>
<td>-1.145</td>
</tr>
<tr>
<td>E. sideroxylon</td>
<td>20.81 – 2.59 (WBI)</td>
<td>0.92197</td>
<td>-0.752</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11607</td>
<td>-4.8</td>
<td>-4.402</td>
</tr>
</tbody>
</table>

T-tests were used to determine if there were differences between measured and predicted values of predawn leaf water potential. The statistical tests for all three validation runs confirmed that there were no significant differences between measured and predicted predawn leaf water potential (Run 1 (t = 0.23, 3df, P = 0.836, r = 0.957); Run 2 (t = 0.08, 3df, P = 0.944, r = 0.952) and Run 3 (t = -0.21, 3df, P = 0.847, r = 0.956)). Pearson correlation coefficients indicated a high correlation between measured and predicted values of predawn leaf water potential (r > 0.7).
5.4 DISCUSSION

The multiple linear regression modeling identified significant (Fprob < 0.001) spectral relationships which represented at least 50% of the variation in the data, for predawn leaf water potential, carotenoid content, chlorophyll fluorescence and leaf water content. Potential spectral reflectance indices derived using the satellite remote sensing data, which were highlighted from this investigation, included the NDVI, GNDVI, RENDVI, WBI, REP and PSRI.

Three vegetation indices, which are sensitive to changes in plant pigment content and reflect spectral differences in the visible region of the spectrum, performed well when applied to the multispectral satellite data, represented by high spatial and medium resolution Proba Chris data. These indices included the normalised difference vegetation index, the greenness normalised difference vegetation index and the red edge normalised difference vegetation index, and are often grouped as broadband greenness vegetation indices. In this study these indices have performed better when applied to broader or lower level spectral resolution data. The importance of the spectral wavelengths 550, 676, 705, 750, 760 nm that were used to derive the indices, have been highlighted in this investigation by their linkage to changes in plant pigment contents and the inference of plant stress (Curran et al., 1990; Carter, 1993; Baret et al., 1994; Filella and Penuelas 1994; Gitelson and Merzlyak, 1996; Lichtenthaler et al., 1996; Blackburn, 1998b; Lelong et al., 1998; Blackburn, 1999; Gitelson et al., 2002).

Three vegetation indices performed well when applied to the hyperspectral satellite data obtained for the West Wits mining district, which was represented by the Hyperion high spatial and spectral resolution image. The water band index, which reflects spectral changes in the near-infrared regions of the electromagnetic spectrum, has been characterised as being sensitive to changes in plant water content, was linked to changes in predawn leaf water potentials. While the REP and PSRI indices have been characterised as being sensitive to changes in plant pigment content, were linked to changes in leaf water content. These results support the findings of recent studies which have utilised high spectral resolution remote sensing data and have highlighted the importance of specific regions of the spectrum such as
the red edge when investigating plant stress (Clay et al. 2006; Fitzgerald et al. 2006; Blackburn 2007; Campbell et al. 2007). Therefore, the results from the Hyperion high spectral resolution study, which has shown a link between the red edge position and measurement of leaf water content, corroborates the importance of this region of the spectrum for plant water stress studies.

In this study, a subset of the spectral reflectance indices, which were investigated using hand-held spectral reflectance data as shown in Chapter 4, were successfully applied to high spatial and medium to high spectral resolution satellite data. Some general trends which were identified from the use of satellite data to detect possible relationships with plant water stress were:

▪ Vegetation indices designed to capture changes in plant water content/plant water status and spectral changes in the red edge region of the spectrum performed well when applied to high spectral resolution remote sensing data.
▪ The greenness normalised difference vegetation index was considered to be a fairly robust index, which was highly correlated to chlorophyll fluorescence and predawn leaf water potential.
▪ The broadband vegetation indices, which capture changes in the visible region of the electromagnetic spectrum and are sensitive to changes in plant pigment content, performed well when applied to the medium spectral resolution remote sensing data.
▪ The greenness normalised difference vegetation index has the potential to be used to map spatial patterns of winter-time plant stress for different genera/species and in different geographical locations.
▪ Predawn leaf water potential measurements were found to be strongly correlated to spectral indices derived from high and medium spectral resolution satellite data.

These satellite investigations together with the findings from the hand-held spectral reflectance data, confirm that a range of broadband and narrowband spectral reflectance indices performed differently when applied to various forms of multispectral and hyperspectral remote sensing datasets.
5.5 CONCLUSIONS

These results demonstrate the potential for using satellite remote sensing imagery to detect and map spatial patterns of plant water stress within the Welkom, Vaal River and West Wits mining districts. Several spectral relationships, which are sensor, site- and tree species-specific, have been identified and could be used to map plant water stress over the vegetated areas within each district. Furthermore, the degree of stress can be ascertained using the predictive relationships derived between ground-based measurements of plant water stress; predawn leaf water potential, leaf chlorophyll fluorescence, and leaf water content and respective vegetation spectral reflectance indices. The investigation of high spatial and medium to high spectral resolution satellite data has highlighted the importance of the visible and near-infrared and red-edge region of the electromagnetic spectrum. A key finding is that vegetation indices, which are sensitive to spectral differences in vegetation as a result of changes in plant water content/plant water status and plant pigment content, are important when investigating plant water stress using satellite remote sensing data.
CHAPTER 6.
EVALUATION OF AIRBORNE MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING DATA TO DETECT SPATIAL PATTERNS OF PLANT WATER STRESS

ABSTRACT

The aim of this study was to evaluate the potential of using multispectral and hyperspectral airborne remote sensing imagery to detect plant water stress. The benefits of different platforms of remote sensing technologies have been recognised and therefore their various capabilities for detecting and mapping spatial patterns of plant water stress in the mining areas have been investigated.

Remote sensing airborne surveys were conducted by Land Resource International (PTY) Ltd, South Africa and Bar-Kal Systems Engineering Ltd, Israel, to respectively investigate the application of multispectral and hyperspectral airborne imagery to detect plant water stress. Ground-based measurements of plant water stress, predawn leaf water potential, leaf chlorophyll fluorescence, chlorophyll and carotenoid pigment content and relative leaf water content were carried out during July and August 2005. Ten individual spectral bands and vegetation spectral reflectance indices which are sensitive to changes in plant pigment content and plant water status/content were calculated from the airborne remote sensing imagery. Multiple linear regressions were used to investigate the interactions between the districts and species, and their respective spectral reflectance indices and plant water stress measurements.

The results of the multispectral airborne study revealed that carotenoid content together with the green spectral waveband resulted in the “best” surrogate measure of plant water stress when using broad-band multispectral airborne data. However, when using airborne
hyperspectral data, predawn leaf water potential with the normalized difference water index was selected as the most appropriate model. Upon evaluation of the multiple linear regression models, it was concluded, that the airborne hyperspectral data produced several more regression models with higher adjusted $R^2$ values ($R_a^2$ range 6.2 - 76.2%) compared to the airborne multispectral data ($R_a^2$ range 6 - 50.1). Therefore, preference was given to hyperspectral airborne data sources based on the many stronger multiple linear relationships which were derived in this study.

**Keywords**: airborne remote sensing data, carotenoid pigment content, hyperspectral, multispectral, plant water stress, predawn leaf water potential, spectral reflectance indices

### 6.1 INTRODUCTION

The relevance of remote sensing technologies in southern Africa has grown over the past two decades, and has become a vital component of several research and commercial applications, including mining exploration, environmental monitoring, geological mapping, agriculture management, energy efficiency and other applications. Several different types of platforms and sensors have been tested and utilised including digital photography, multispectral or hyperspectral satellite and airborne sensors, radar and lidar scanners and magnetic sensors. Multispectral sensor systems commonly collect data in four to seven broad spectral bands from the visible (VIS) and near-infrared (NIR) regions of the spectrum, while hyperspectral sensor systems allow the collection of several hundred narrow spectral bands across the spectrum. Advancements in airborne remote sensing technologies have allowed for both multispectral and hyperspectral images to be acquired at much higher spatial resolutions of less than 5m, when compared to satellite systems. Therefore, even though the spectral resolutions of airborne and satellite systems are similar, differences in these two platforms are strongly dependent on the spatial resolutions at which the remotely sensed images are acquired. However, it is important to note that airborne remote sensing systems are costly to obtain for research applications. Currently in South Africa, a platform exists only for multispectral airborne imagers such LREye (Land Resource International (PTY) Ltd, South Africa) or ArcEagle (Agricultural Research Council, South Africa), while hyperspectral
airborne imagers such as AISA-ES sensor (Bar-Kal Systems Engineering Ltd, Israel), CASI (Hyperspectral Imaging Ltd, Canada) and HYPMAP (HyVista Cooperation, Australia) must be sourced from international organisations or consultants.

Considerable effort has been put into interpreting spectral data used to calculate vegetation indices for remotely mapping temporal and spatial variations in vegetation structure, as well as certain biophysical parameters. As mentioned in the previous chapters many indices are based on the principle of combining information contained in the red and near infrared region exploiting the spectral differences between these two regions of the spectrum. However, indices do perform differently as a result of band selection or width, changes in near infrared reflectance due to canopy geometry, phenological conditions or due to non-photosynthetic background contribution, essentially being factors influenced by the spectral and spatial resolutions of the remote sensing data (Tucker et al., 1980; Gitelson et al., 2002; Jackson et al., 2004). As a result, relationships based on near infrared reflectance are usually species-specific, due to the dependence on factors such as canopy architecture, cell structure and leaf inclination. In contrast, reflectance in the visible region is less species-specific, because it is governed mainly by pigment content and composition such as chlorophyll content (Chappelle et al., 1992; Gitelson and Merzlyak, 1996). Canopy reflectance is influenced by a number of factors, such as variation in soil properties (Bannari et al., 2008), canopy geometry (Curran et al., 1990), and leaf distribution, density and structure. With the use of reference end-members, spectral un-mixing has been employed to model reflectance data as mixtures of green vegetation, non-photosynthetic vegetation, soils and shade, essentially modelling the combination of spectra of components in the field of view (Baret et al., 1994).

In this study, the benefits of different platforms of remote sensing technologies have been recognised and therefore their various capabilities for detecting and mapping spatial patterns of plant water stress in the mining areas have been investigated. In chapters 4 and 5, the use of hand-held and satellite remote sensing data at different spatial and spectral resolutions were evaluated. This study (chapter 6) presented a unique opportunity to undertaken both a
multispectral and hyperspectral airborne remote sensing campaign, and to investigate potential linkages with plant water stress in the mining areas.

6.2 MATERIALS AND METHODS

A detailed description of the tree species, mining districts and sampling sites selected for this study are discussed in Chapter 2. Sampling sites within the three mining districts, Welkom, Vaal River and West Wits, were used for ground-based measurements of plant water stress and as ground-truthing sites for the remote sensing surveys. Ground-based measurements of plant water stress were undertaken on the three species *E. camaldulensis*, *E. sideroxylon* and *S. lancea* in the Welkom, Vaal River and West Wits mining districts during July 2005 and August 2005 (as presented and discussed in Chapter 5, section 5.3.1, Table 5.2 and Table 5.3) were used for ground-truthing the airborne multispectral and hyperspectral remote sensing images. Measurements of plant water stress were undertaken within 10 days of acquiring the respective airborne remote sensing images. The field sampling procedures of each ground-based plant water stress measurement used, *viz.* predawn leaf water potential, leaf chlorophyll fluorescence, chlorophyll and carotenoid pigment content and relative leaf water content, are described in Chapter 4, whereas the step by step details of the protocols are presented in Appendix 2.

6.2.1 Airborne remote sensing surveys

Two airborne remote sensing surveys took place during July and August 2005. The multispectral campaign was undertaken between 16 and 22 of July, while the hyperspectral campaign was undertaken between 22 and 25 of August 2005. The survey areas of the multispectral and hyperspectral remote sensing campaigns are illustrated in Figure 6.1.
The multispectral survey was undertaken by Land Resource International (PTY) Ltd at a spatial resolution of 0.75 m. Approximately 12 000 ha, 17 200 ha and 5 200 ha were imaged across the Welkom, Vaal River and West Wits mining districts respectively, at an altitude of 1829 m (6000 ft) ASL (Figure 6.1). Four multispectral bands were acquired from the visible and near infrared regions of the electromagnetic spectrum. The centre wavelengths, at which the red, green, blue and near-infrared filters operated, were 664.7 nm, 568.4 nm, 465.9 nm and 870.5 nm respectively. All four multispectral bands were ortho-rectified and geo-registered to WGS84 L027, datum Transverse Mercator.

The hyperspectral survey was undertaken by Bar-Kal Systems Engineering Ltd, from Israel. The survey was conducted with the AISA-ES hyperspectral push broom sensor, which was composed of two cameras covering the visible and near infrared (400 to 963 nm) and
shortwave infrared (968 to 2372 nm) regions of the electromagnetic spectrum. One hundred and eighty narrow spectral bands were acquired at a spatial resolution 3.3 to 3.5 m across the Welkom, Vaal River and West Wits mining districts (Figure 6.1). A total of 52 strips were flown across the three mining districts including one calibration strip at 7620 m (25 000ft) ASL in each mining district. All images acquired from the hyperspectral survey were radiometrically and geometrically corrected and projected to UTM 35 S, datum WGS84 (Bar-Kal Systems Engineering Ltds, 2005). Atmospheric correction was performed using the “empirical line” method in which radiance values coming back from the surface were compared to reflectance values measured on the ground with a calibrated hand-held spectrometer (Bar-Kal Systems Engineering Ltds, 2005).

Spectral signatures of several targets were collected for atmospheric calibration. In order to ensure the quality of the ground-truth data all measurements were done in-situ and in-vivo, and thus removing any time related effects on the targets. The instrument was routinely calibrated in the field every 10 to 20 measurements. In addition, in order to reduce noise, forty measurements were obtained at each spot and the average value was used (Bar-Kal Systems Engineering Ltds, 2005).

Calibration sites used for atmospheric correction in Welkom consisted of a salt pan area characterised by very bright, very dark and gray locations; Vaal River included a tennis court, wet tailing surface, tailing covered with dark soil; West Wits included a tailing storage facility, paved road side, a tilled soil plot and tarred area at a petrol station.

The images were atmospherically corrected using the empirical lines method using four ground targets (namely tennis court, wet tailing surface, tailing covered with dark soil). The atmospheric correction was applied to the calibration strip and generated a gain and offset. The gain and offset that were generated for the calibration strip were then applied to all of the images. Because the calibration strip crosses all of the other images, it was used as the reflectance reference for the other images to improve their reflectance accuracy. This was done by identifying targets in the calibration strip with those in the other strips and correcting their reflectance.
6.2.2 Spectrometer measurements

Spectral reflectance signatures were collected using an ASD hand-held field spectrometer (Analytical Spectral Devices Inc, 5335 Sterling Drive, Suite A, Boulder, Colorado 80301, USA) during late August 2005. Hand-held spectral signatures were recorded for the three tree species investigated and of specific ground targets for the calibration of the airborne hyperspectral remote sensing images using a bare optic fibre with 25° field of view. When atmospheric conditions were not conducive to bare optic fibre measurements, all spectral signatures were acquired with a high intensity contact probe which has an internal calibrated illumination source. A total of 36 calibration sites such as dry grass, parking lots, wet and dry tailing surfaces, soil plots, bright and dark surfaces of stones, tarred roads were recorded across the three mining districts.

6.2.3 Selection and derivation of the vegetation spectral reflectance indices

A total of ten individual spectral bands and vegetation spectral reflectance indices investigated in Chapter 4 were selected and derived from the multispectral and hyperspectral airborne remote sensing data (Table 6.1). Four individual spectral bands and two vegetation spectral reflectance indices, which are sensitive to changes in plant pigment content, were derived from the processed multispectral images viz. red, green, blue and near-infrared spectral bands and the normalised difference vegetation index (NDVI) and greenness normalised difference vegetation index (GNDVI). The two vegetation spectral reflectance indices used in the multispectral analysis, together with four additional vegetation spectral reflectance indices designed to capture changes in plant pigment and plant water status/content, were derived from the processed hyperspectral images.
Table 6.1  Spectral wavelengths and reflectance indices derived from the airborne multispectral and hyperspectral remote sensing data.

<table>
<thead>
<tr>
<th>Multispectral (MS) or Hyperspectral (HS) Airborne Survey</th>
<th>Common name for spectral index or spectral region of the spectrum</th>
<th>Spectral Reflectance Ratio or Index (nm)</th>
<th>Reference</th>
<th>Closest wavelengths used to derive indices from MS imagery</th>
<th>Closest wavelengths used to derive indices from HS imagery</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS survey</td>
<td>Near infrared</td>
<td>870.53</td>
<td>Land Resource International (PTY) Ltd (2005)</td>
<td>870.53</td>
<td>870.53</td>
</tr>
<tr>
<td>MS and HS survey</td>
<td>Green normalised difference vegetation index (GNDVI)</td>
<td>(750-550)/(750+550)</td>
<td>Gitelson et al. (1996)</td>
<td>(870.53 - 568.42)/(870.53 + 568.42)</td>
<td>(750-550)/(750+550)</td>
</tr>
<tr>
<td>MS and HS survey</td>
<td>Normalised difference vegetation index (NDVI)</td>
<td>(750-676)/(750+676)</td>
<td>Tucker (1979)</td>
<td>(870.53 - 664.67)/(870.53 + 664.67)</td>
<td>(750-676)/(750+676)</td>
</tr>
<tr>
<td>HS survey</td>
<td>Plant senescence reflectance index (PSRI)</td>
<td>(680-500)/(750)</td>
<td>Merzlyak et al. (2003a)</td>
<td>(680-500)/(750)</td>
<td>(680-500)/(750)</td>
</tr>
</tbody>
</table>

Indices sensitive to changes in plant pigment content

Indices sensitive to changes in plant water content/plant water status and plant cellular structure
6.2.4 **Analysis of data**

Multiple linear regressions were used to investigate the interactions between the districts and species, and their respective spectral reflectance indices and plant water stress measurements using GenStat (11th edition, 2008). The general maximal multiple linear regression model applied with the interaction factors in Chapter 4 (section 4.2.4) has been used:

\[
Y(i) = b_0 + b_1X(i) + a_1L_1 + a_2L_2 + g_1S_1 + g_2S_2 + d_1L_1X(i) + d_2L_2X(i) + e_1S_1X(i) + e_2S_2X(i) \quad (6.1)
\]

where

- \(Y(i)\) represents the plant water stress measurements;
- \(X(i)\) the spectral indices;
- \(L(i)\) represents the districts;
- \(S(i)\) represents the species;
- \(b_0\) represents the constant or intercept;
- \(b_1\) slope and;
- \(a, g, d, e\) the regression coefficients.

The same statistical approach used in the analysis of the hand-held spectral reflectance data and the multispectral and hyperspectral satellite remote sensing data was applied in this study. Statistical procedures to select the “best” or most appropriate linear regression models and eliminate poor combinations of spectral reflectance indices (X) and plant water stress measurements (Y) are briefly summarised below:

- Maximal models were derived from multispectral and hyperspectral airborne remote sensing images and ground based measurements of plant water stress. Models were ranked, screened, and the three highest adjusted \(R^2\) maximal models which accounted for more than 50% of the variance in the data, were selected.
- Model refinements included the use of stepwise regression. The adjusted \(R^2\) values for the maximal models were compared with their corresponding stepwise regression models to determine any improvement in the models.
- The “best” models i.e. best maximal model for each plant water stress measurement (Y) and the “best” model across all combinations of X and Y resulting from the
stepwise regression, were selected, using highest adjusted $R^2$ value and the significance of the F and t probability values.

- Validation was performed for “best” model with significant differences between predicted and measured Y values determined using a t-test for paired samples.

6.3 RESULTS

Multiple linear regressions between vegetation indices and ground based measurements of plant water stress were evaluated to ascertain which spectral models performed best when applying vegetation indices derived from the airborne multispectral and hyperspectral spectral data. The results are discussed in the subsequent sections.

6.3.1 Relationships identified using airborne multispectral data

6.3.1.1 Maximal models identified using airborne multispectral data

The maximal multiple linear regression models determined between ground based measurements of plant water stress undertaken in July and August 2005, and the six vegetation spectral reflectance indices derived from airborne multispectral data, were ranked to ascertain which were the better performing models (Table 6.2). Six methods of plant water stress were obtained in July 2005, five of which were repeated in August 2005. Adjusted $R^2$ values, which were ranked for each method, ranged from a maximum of 50.1% for the green spectral waveband (568.4 nm) and carotenoid content, to a minimum of 10.1% for NDVI and chlorophyll fluorescence undertaken in July 2005. Similarly, adjusted $R^2$ values ranged from a maximum of 51.1% for blue spectral waveband (465.88 nm) and carotenoid content, to a minimum of 6.0% for NDVI and chlorophyll fluorescence measurements undertaken in August 2005.

Five plant water stress measurements which did not attain adjusted $R^2$ values greater than 50% were excluded from further analyses. These included total chlorophyll (a+b) content, chlorophyll fluorescence, leaf water content and predawn leaf water potential. Potential
relationships between carotenoid content and the green and blue spectral wavebands were investigated further.

Table 6.2/...
Table 6.2  Adjusted $R^2$ values, ranked in descending order, for each maximal model derived between plant water stress measurement (Y) and spectral reflectance indices (X) derived from airborne multispectral data.

<table>
<thead>
<tr>
<th>Chlorophyll (a + b) (Y)</th>
<th>Carotenoid (c+x) (Y)</th>
<th>Chlorophyll fluorescence (Fv/Fm) (Y)</th>
<th>Leaf water content (Y)</th>
<th>Predawn leaf water potential (Y)</th>
<th>Chlorophyll (a + b) (Y)</th>
<th>Carotenoid (c+x) (Y)</th>
<th>Chlorophyll fluorescence (Fv/Fm) (Y)</th>
<th>Leaf water content (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>July 2005</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted $R^2$ for maximal model</td>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted $R^2$ for maximal model</td>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted $R^2$ for maximal model</td>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted $R^2$ for maximal model</td>
<td>Spectral reflectance index (nm) (X)</td>
</tr>
<tr>
<td>BLUE</td>
<td>43.3</td>
<td>GREEN</td>
<td>50.1</td>
<td>GREEN</td>
<td>20.9</td>
<td>GNDVI</td>
<td>43.9</td>
<td>GREEN</td>
</tr>
<tr>
<td>GREEN</td>
<td>42.7</td>
<td>BLUE</td>
<td>47.3</td>
<td>GNDVI</td>
<td>20.7</td>
<td>NDVI</td>
<td>41.5</td>
<td>RED</td>
</tr>
<tr>
<td>RED</td>
<td>40.2</td>
<td>RED</td>
<td>42.8</td>
<td>BLUE</td>
<td>18.6</td>
<td>BLUE</td>
<td>40.5</td>
<td>BLUE</td>
</tr>
<tr>
<td>IR</td>
<td>39.7</td>
<td>IR</td>
<td>41.6</td>
<td>RED</td>
<td>14.4</td>
<td>RED</td>
<td>39.3</td>
<td>NDVI</td>
</tr>
<tr>
<td>NDVI</td>
<td>37.6</td>
<td>NDVI</td>
<td>40.3</td>
<td>IR</td>
<td>13.5</td>
<td>GREEN</td>
<td>38.9</td>
<td>GNDVI</td>
</tr>
<tr>
<td>GNDVI</td>
<td>36.2</td>
<td>GNDVI</td>
<td>39.8</td>
<td>NDVI</td>
<td>10.1</td>
<td>IR</td>
<td>36.1</td>
<td>IR</td>
</tr>
<tr>
<td><strong>August 2005</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 137
6.3.1.2. Model refinements using stepwise regression

Stepwise regression was used to refine two maximal models which were selected based on their adjusted $R^2$ values. These included carotenoid content measured in July and August 2005, and the green and blue spectral wavebands respectively. The stepwise regression modeling did not result in further improvements to the maximal models. Adjusted $R^2$ of 50.1\% obtained between carotenoid content and the green spectral waveband (July 2005) remained the same for the stepwise regression model. However, the adjusted $R^2$ obtained between carotenoid content and the blue spectral waveband (August 2005) decreased by 0.1\% for the stepwise regression model. Based on these results, the maximal model derived between carotenoid content and the green spectral waveband with the highest adjusted $R^2$ of 50.1\% was selected as the “best” model.

6.3.1.3. Selection of the best model derived from airborne multispectral data

Carotenoid content together with the green spectral waveband resulted in the “best” surrogate measure of plant water stress when using broad-band multispectral airborne data. The general statistical model which resulted in six site- and species-specific models are reported below:

\[
\text{Carotenoid content} = 2.262 + (-0.01164)\text{(GREEN)} + (-0.227)\text{(L1)} + (1.699)\text{(L2)} + (-4.70)\text{(S1)} + (0.083)\text{(S2)} + (0.0672)\text{(GREEN)(S1)} + (-0.00315)\text{(GREEN)(S2)} + (0.00792)\text{(GREEN)(L1)} + (-0.0156)\text{(GREEN)(L2)}
\]

\[(F_{9,65} \approx 9.26; F_{\text{prob}} < 0.001; R^2 = 50.1) \quad (6.1)\]

For *E. camaldulensis* in Vaal River where L1=L2=0; S1=S2=0:

\[
\text{Carotenoid content} = 2.262 + (-0.01164)\text{(GREEN)}
\]

\[(6.1.1)\]

For *S. lancea* in Vaal River where L1=L2=0; S1=0; S2=1:

\[
\text{Carotenoid content} = 2.345 + (-0.01479)\text{(GREEN)}
\]

\[(6.1.2)\]
For *E. camaldulensis* in Welkom where \( L_1=1; L_2=0; S_1=S_2=0 \):

\[
\text{Carotenoid content} = 2.035 + (-0.00372)(\text{GREEN})
\]  

(6.1.3)

For *S. lancea* in Welkom where \( L_1=1; L_2=0; S_1=0; S_2=1 \):

\[
\text{Carotenoid content} = 2.118 + (-0.00687)(\text{GREEN})
\]  

(6.1.4)

For *E. camaldulensis* in West Wits where \( L_1=0; L_2=1; S_1=S_2=0 \):

\[
\text{Carotenoid content} = 3.961 + (-0.02724)(\text{GREEN})
\]  

(6.1.5)

For *E. sideroxylon* in West Wits where \( L_1=0, L_2=1; S_1=1; S_2=0 \):

\[
\text{Carotenoid content} = -0.739 + (0.03996)(\text{GREEN})
\]  

(6.1.6)

The full regression analysis, depicted by Equation (6.1) which includes a summary of the ANOVA and estimate of parameters for the multiple linear regression model, is illustrated in Appendix 3. Site- and species-specific models represented by Equations (6.1.1 to 6.1.5) are all characterised by negative slopes, except for the model derived for *E. sideroxylon* in West Wits mining district.

A standardised residual plot of fitted values of carotenoid content was determined to assess differences between measured and predicted values of carotenoid when using the model represented by Equation (6.1). The residual plot indicated that the model adequately represented the data, and there appeared to be no distinct pattern in the data. The residuals appeared to be normally distributed and independent.
6.3.1.4. **Validation of the best airborne multispectral data**

The carotenoid content and green waveband spectral reflectance model was validated using the method of re-fitting the regression model with a subset of the data being excluded for each validation run. The validation process was repeated three times, with 10 random samples excluded for each run. The subsets of measured and predicted datasets for each validation model are shown in Table 6.3.
Table 6.3  Validation models used to predict carotenoid content using airborne multispectral data.

<table>
<thead>
<tr>
<th>Mining District</th>
<th>Species</th>
<th>Fitted Models</th>
<th>Green band (X)</th>
<th>Carotenoid measured (Y)</th>
<th>Carotenoid predicted (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>E. camaldulensis</em></td>
<td>$2.198 + (-0.01017)$(GREEN)</td>
<td>80</td>
<td>0.84257</td>
<td>1.3844</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>S. lancea</em></td>
<td>$2.21 + (-0.01234)$(GREEN)</td>
<td>76</td>
<td>1.00032</td>
<td>1.27216</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>E. camaldulensis</em></td>
<td>$2.196 + (-0.00622)$(GREEN)</td>
<td>54</td>
<td>1.87015</td>
<td>1.86012</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>S. lancea</em></td>
<td>$2.208 + (-0.00839)$(GREEN)</td>
<td>43</td>
<td>1.48322</td>
<td>1.84723</td>
</tr>
<tr>
<td>Run 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>E. camaldulensis</em></td>
<td>$2.8 + (-0.01955)$(GREEN)</td>
<td>93</td>
<td>1.62998</td>
<td>0.98185</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>S. lancea</em></td>
<td>$2.836 + (-0.02196)$(GREEN)</td>
<td>64</td>
<td>1.43171</td>
<td>1.43056</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>E. camaldulensis</em></td>
<td>$2.144 + (-0.00535)$(GREEN)</td>
<td>54</td>
<td>1.87015</td>
<td>1.8551</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>S. lancea</em></td>
<td>$2.18 + (-0.00776)$(GREEN)</td>
<td>42</td>
<td>1.64729</td>
<td>1.85408</td>
</tr>
<tr>
<td>West Wits</td>
<td><em>E. camaldulensis</em></td>
<td>$3.781 + (-0.02495)$(GREEN)</td>
<td>87</td>
<td>1.42534</td>
<td>1.61035</td>
</tr>
<tr>
<td>West Wits</td>
<td><em>E. sideroxylon</em></td>
<td>-0.949 + (0.04315)$(GREEN)</td>
<td>57</td>
<td>1.58582</td>
<td>1.51055</td>
</tr>
<tr>
<td>Run 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>E. camaldulensis</em></td>
<td>$2.139 + (-0.01049)$(GREEN)</td>
<td>83</td>
<td>2.01695</td>
<td>1.26833</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>S. lancea</em></td>
<td>$2.099 + (-0.0114)$(GREEN)</td>
<td>65</td>
<td>1.58658</td>
<td>1.3580</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>S. lancea</em></td>
<td>$2.047 + (-0.00499)$(GREEN)</td>
<td>43</td>
<td>1.82382</td>
<td>1.83243</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>E. camaldulensis</em></td>
<td>$2.087 + (-0.00408)$(GREEN)</td>
<td>49</td>
<td>1.77191</td>
<td>1.88708</td>
</tr>
<tr>
<td>West Wits</td>
<td><em>E. camaldulensis</em></td>
<td>$4.512 + (-0.03499)$(GREEN)</td>
<td>64</td>
<td>2.22451</td>
<td>2.27264</td>
</tr>
</tbody>
</table>

T-tests were used to determine if there were differences between measured and predicted values of carotenoid content. The statistical test for Run 1 was significant at the 5% level (Run1 (t = -2.52, 9df, P = 0.033, r = 0.866)), while the t-test for the second and third validation runs were not significant (Run 2 (t = 0.08, 3df, P = 0.944, r = 0.952) and Run 3 (t = -0.21, 3df, P = 0.847, r = 0.956)).
6.3.2 Relationships identified using airborne hyperspectral data

6.3.2.1. Maximal models identified using airborne hyperspectral data

The maximal multiple linear regression models determined between ground-based measurements of plant water stress undertaken in August 2005, and the six vegetation spectral reflectance indices derived from airborne hyperspectral data, were ranked to ascertain which were the better performing models (Table 6.4). Predawn leaf water potential measurements, which have been identified as an important measurement of plant water stress (Chapter 2), was also included in the airborne hyperspectral analysis. Adjusted $R^2$ values which were ranked for each method, ranged from a maximum of 76.2% for predawn leaf water potential with the normalised difference water index (NDWI) and a minimum of 6.2% for chlorophyll fluorescence with the (695/670) spectral reflectance ratio. Two groups of plant water stress measurements, chlorophyll (a+b) and leaf water content, which did not obtain adjusted $R^2$ values greater than 50%, were excluded from further analyses.

<table>
<thead>
<tr>
<th>Chlorophyll (a + b) (Y)</th>
<th>Carotenoid (c+x) (Y)</th>
<th>Chlorophyll fluorescence (Fv/Fm) (Y)</th>
<th>Leaf water content (Y)</th>
<th>Predawn leaf water potential (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted $R^2$ for maximal model</td>
<td>Spectral reflectance index (nm) (X)</td>
<td>Adjusted $R^2$ for maximal model</td>
<td>Spectral reflectance index (nm) (X)</td>
</tr>
<tr>
<td>PSRI</td>
<td>45.6</td>
<td>PSRI</td>
<td>56.6</td>
<td>DATT</td>
</tr>
<tr>
<td>GNDVI</td>
<td>43.7</td>
<td>GNDVI</td>
<td>49.5</td>
<td>NDVI</td>
</tr>
<tr>
<td>NDWI</td>
<td>39.2</td>
<td>DATT</td>
<td>49.2</td>
<td>GNDVI</td>
</tr>
<tr>
<td>DATT</td>
<td>38.2</td>
<td>NDVI</td>
<td>47.2</td>
<td>NDVI</td>
</tr>
<tr>
<td>NDVI</td>
<td>38.0</td>
<td>NDVI</td>
<td>44.6</td>
<td>PSRI</td>
</tr>
<tr>
<td>R695_670</td>
<td>37.8</td>
<td>R695_670</td>
<td>40.4</td>
<td>R695_670</td>
</tr>
</tbody>
</table>

Six spectral reflectance models, which accounted for more than 50% of the variance in the data, were found for the airborne hyperspectral analysis. These models included the measurements of carotenoid content, chlorophyll fluorescence and predawn leaf water potential, with adjusted $R^2$ values ranging from 56.6 to 76.2%. Potential indices highlighted from this analysis included the PSRI, DATT, NDWI, GNDVI and NDVI.
6.3.2.2. Model refinements using stepwise regression

Stepwise regression models resulted in slight changes to the maximal models which were selected for predawn leaf water potential and the NDWI, DATT and NDVI. The adjusted $R^2$ values for the six maximal and the stepwise regression models compared in Table 6.5, ranged from 76.8 to 56.6%. There were no differences resulting from the stepwise regression modeling for carotenoid content and chlorophyll fluorescence.

Table 6.5 Comparison of the maximal and the stepwise regression models, derived from the airborne hyperspectral data, with the highest adjusted $R^2$ values exceeding 50%.

<table>
<thead>
<tr>
<th>Carotenoid (c+x) (Y)</th>
<th>Chlorophyll fluorescence (Fv/Fm) (Y)</th>
<th>Predawn leaf water potential (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spectral reflectance index (nm) (X)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximal model</td>
<td>Stepwise model</td>
</tr>
<tr>
<td>PSRI</td>
<td>56.6</td>
<td>56.6</td>
</tr>
</tbody>
</table>

The DATT spectral reflectance model performed well when correlated to measurements of both chlorophyll fluorescence and predawn leaf water potential. Similarly, the GNDVI and NDVI index was also well correlated to predawn leaf water potential. The stepwise regression model derived between predawn leaf water potential and the NDWI with the highest adjusted $R^2$ value of 76.8% was selected as the “best” resulting from the airborne hyperspectral analysis.

6.3.2.3. Selection of the best model derived from airborne hyperspectral data

Predawn leaf water potential was selected as the “best” surrogate measure of plant water stress when using the airborne hyperspectral data. The general model, derived between predawn leaf water potential and the normalised difference water index, represented by Equation (6.2) below, included the interactions of different mining sites and species investigated in this study.
Predawn leaf water potential = \(2.43 + (-3.15)(\text{NDWI}) + (4.34)(L1) + (-3.10)(L2) + (-1.882)(S1) + (0.740)(S2) + (27.60)(\text{NDWI})(S1) + (-0.641)(\text{NDWI})(S2)\)  

\[(6.2)\]

\(F_{7,65} = 34.96; F_{\text{prob}} < 0.001; R_a^2 = 76.8\)

For *E. camaldulensis* in Vaal River where \(L1 = L2 = 0\) and \(S1 = S2 = 0\):

Predawn leaf water potential = \(2.43 + (-3.15)(\text{NDWI})\)

\[(6.2.1)\]

For *S. lancea* in Vaal River where \(L1 = L2 = 0\) and \(S1 = 0; S2 = 1\):

Predawn leaf water potential = \(3.17 - (3.791)(\text{NDWI})\)

\[(6.2.2)\]

For *E. camaldulensis* in Welkom where \(L1 = 1; L2 = 0\) and \(S1 = S2 = 0\):

Predawn leaf water potential = \(6.77 + (-3.15)(\text{NDWI})\)

\[(6.2.3)\]

For *S. lancea* in Welkom where \(L1 = 1; L2 = 0; S1 = 0\) and \(S2 = 1\):

Predawn leaf water potential = \(7.51 + (-3.791)(\text{NDWI})\)

\[(6.2.4)\]

For *E. camaldulensis* in West Wits where \(L1 = 0; L2 = 1\) and \(S1 = S2 = 0\):

Predawn leaf water potential = \(-0.67 + (-3.15)(\text{NDWI})\)

\[(6.2.5)\]

For *E. sideroxylon* in West Wits where \(L1 = 0; L2 = 1; S1 = 1\) and \(S2 = 0\):

Predawn leaf water potential = \(-2.552 + (24.45)(\text{NDWI})\)

\[(6.2.6)\]

Six site- and species-specific models, represented by Equations (6.2.1 to 6.2.6), were derived using the airborne hyperspectral data. A residual plot of fitted values of predawn leaf water potential (Figure 6.3) was used to evaluate differences between measured and predicted values of predawn leaf water potential, as determined with the model represented by Equation (6.2).
The standardised residual plot indicated a cluster of points towards less negative predawn leaf water potentials, representing a typical skewed distribution. A detailed regression analysis is illustrated in Appendix 3.

6.3.2.4. **Validation of the best model derived from airborne hyperspectral data**

Validation exercises were undertaken to test robustness of the model derived between predawn leaf water potential and the normalised difference water index. Table 6.6 includes a listing of the three subsets of data used for each validation run, comprising of district and species for which the models were valid with corresponding measurements and predictions of predawn leaf water potential and NDWI values.
Table 6.6 Validation models used to predict predawn leaf water potential, using airborne hyperspectral data.

<table>
<thead>
<tr>
<th>Mining District</th>
<th>Species</th>
<th>Fitted Models</th>
<th>NDWI (X)</th>
<th>Predawn leaf water potential measured (Y)</th>
<th>Predawn leaf water potential predicted (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>E. camaldulensis</em></td>
<td>3.02+(-3.66)(NDWI)</td>
<td>1.111</td>
<td>-1.698</td>
<td>-1.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.083</td>
<td>-0.832</td>
<td>-0.943</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.115</td>
<td>-0.606</td>
<td>-1.059</td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>S. lancea</em></td>
<td>3.81+(-4.339)(NDWI)</td>
<td>1.211</td>
<td>-0.788</td>
<td>-1.444</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.088</td>
<td>-1.184</td>
<td>-0.912</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.106</td>
<td>-1.590</td>
<td>-0.987</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>E. camaldulensis</em></td>
<td>-2.02+(-3.66)(NDWI)</td>
<td>-0.044</td>
<td>-0.818</td>
<td>-1.857</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.037</td>
<td>-2.000</td>
<td>-1.884</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>S. lancea</em></td>
<td>-1.23+(-4.339)(NDWI)</td>
<td>-0.133</td>
<td>-0.488</td>
<td>-0.652</td>
</tr>
<tr>
<td>West Wits</td>
<td><em>E. camaldulensis</em></td>
<td>-0.67+(-3.66)(NDWI)</td>
<td>-0.013</td>
<td>-0.816</td>
<td>-0.624</td>
</tr>
<tr>
<td>Run 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>E. camaldulensis</em></td>
<td>2.55+(-3.31)(NDWI)</td>
<td>1.085</td>
<td>-0.722</td>
<td>-1.040</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.127</td>
<td>-0.632</td>
<td>-1.180</td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>S. lancea</em></td>
<td>3.423+(-3.982)(NDWI)</td>
<td>1.092</td>
<td>-1.020</td>
<td>-0.925</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.106</td>
<td>-1.490</td>
<td>-0.982</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>E. camaldulensis</em></td>
<td>-2.06+(-3.31)(NDWI)</td>
<td>-0.044</td>
<td>-0.818</td>
<td>-1.913</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.083</td>
<td>-1.450</td>
<td>-1.785</td>
</tr>
<tr>
<td>West Wits</td>
<td><em>E. camaldulensis</em></td>
<td>-0.71+(-3.31)(NDWI)</td>
<td>0.058</td>
<td>-0.730</td>
<td>-0.901</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.014</td>
<td>-0.502</td>
<td>-0.755</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.076</td>
<td>-0.460</td>
<td>-0.460</td>
</tr>
<tr>
<td>West Wits</td>
<td><em>E. sideroxylon</em></td>
<td>-2.353+(24.51)(NDWI)</td>
<td>-0.004</td>
<td>-4.514</td>
<td>-2.454</td>
</tr>
<tr>
<td>Run 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>E. camaldulensis</em></td>
<td>2.71+(-3.44)(NDWI)</td>
<td>1.096</td>
<td>-0.424</td>
<td>-1.060</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.082</td>
<td>-0.838</td>
<td>-1.012</td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>S. lancea</em></td>
<td>3.455+(-4.051)(NDWI)</td>
<td>1.225</td>
<td>-0.842</td>
<td>-1.508</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.127</td>
<td>-1.050</td>
<td>-1.110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.106</td>
<td>-1.590</td>
<td>-1.024</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>S. lancea</em></td>
<td>-1.195+(-4.051)(NDWI)</td>
<td>-0.117</td>
<td>-0.512</td>
<td>-0.721</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.111</td>
<td>-0.850</td>
<td>-0.745</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>E. camaldulensis</em></td>
<td>-1.94+(-3.44)(NDWI)</td>
<td>-0.083</td>
<td>-1.450</td>
<td>-1.654</td>
</tr>
<tr>
<td>West Wits</td>
<td><em>E. camaldulensis</em></td>
<td>-0.68+(-3.44)(NDWI)</td>
<td>-0.031</td>
<td>-0.482</td>
<td>-0.572</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.096</td>
<td>-0.438</td>
<td>-0.349</td>
</tr>
</tbody>
</table>

T-tests for paired samples were used to determine if there were differences between measured and predicted values of predawn leaf water potential. The statistical tests for all three validation runs confirmed that there were no significant differences between measured and predicted predawn leaf water potential (Run 1 (t = 0.34, 9df, P = 0.739, r = 0.369); Run 2 (t = 0.02, 9df, P = 0.983, r = 0.763) and Run 3 (t = 1.13, 9df, P = 0.288, r = 0.616)).
Pearson correlation coefficients for Run 2 and Run 3 indicated a reasonably good correlation between measured and predicted values of predawn leaf water potential ($r > 0.6$).

### 6.4 DISCUSSION

Vegetation spectral reflectance indices, which were previously tested using hand-held spectral reflectance measurements (Chapter 4) and satellite medium and high resolution remote sensing data (Chapter 5), were successfully applied to the airborne multispectral and hyperspectral remote sensing data. Several significant spectral relationships ($F_{prob} < 0.001$) were identified between carotenoid content, chlorophyll fluorescence and predawn leaf water potential and various vegetation indices derived from airborne multispectral and hyperspectral remote sensing data. Some common trends identified when using the airborne multispectral and hyperspectral remote sensing data to detect spatial patterns of plant water stress included:

- Vegetation indices designed to capture changes in plant pigment content performed well when applied to both the multispectral and hyperspectral remote sensing data.
- The DATT (1999) spectral reflectance model $(850 – 710)/(850 – 680)$ is considered to be a fairly robust index which was correlated to ground based measurements of chlorophyll fluorescence and predawn leaf water potential.
- Predawn leaf water potential measurements were found to be strongly correlated to spectral indices derived from the visible, near-infrared and short-wave infrared region of the airborne hyperspectral data.

The green and blue individual spectral wavebands extracted from the visible region of the airborne multispectral data, and which are sensitive to changes in plant pigment content were correlated to total carotenoid pigment content. The spectral reflectance model derived between carotenoid content and green spectral waveband resulted in six site- and species-specific spectral models. These relationships were in accordance with several studies reported on the sensitivities of plant pigments within the visible and infrared region of the
spectrum (Gaussman, 1977; Lichtenthaler, 1987; Curran et al., 1995; Gitelson and Merzylak, 1996; Blackburn, 1999; Datt, 1999).

Several more useful relationships were identified between vegetation indices derived from the airborne hyperspectral data and ground measurements of plant water stress, as compared to the multispectral analysis discussed in section 6.3.1.3. Six potential spectral reflectance models were highlighted from the airborne hyperspectral analysis for carotenoid content, chlorophyll fluorescence and predawn leaf water potential. Spectral reflectance indices designed to capture changes in plant pigment content (PSRI, GNDVI, NDVI, DATT) and changes in plant water content (NDWI) were identified as useful spectral indices resulting from the airborne hyperspectral analysis.

It may also be concluded, upon evaluation of the multiple linear regression models, that the airborne hyperspectral data produced several more regression models with a higher adjusted $R^2$ values ($R^2_a$ range 6.2 - 76.2%) when compared to the airborne multispectral data ($R^2_a$ range 6 - 50.1). These differences could be attributed to the hyperspectral sensor acquiring more detailed information on the plant spectral properties at a higher spatial and spectral resolution. Furthermore, it can also be concluded that the four central wavelengths (465.88; 568.42; 664.67 and 870.53 nm) acquired from the visible and near-red region of the spectrum using the multispectral sensor displayed a lower spectral relationship to plant water stress.

6.5 CONCLUSIONS

From this study it can be concluded that airborne multispectral and hyperspectral remote sensing technologies can be used to detect plant water stress for the three species E. camaldulensis, E. sideroxylon and S. lancea, within the Welkom, Vaal River and West Wits mining districts. Preference is given to hyperspectral data sources based on the many stronger multiple linear relationships which were derived in this study, and resulted from the narrow bandwidth characteristics of the hyperspectral imagery. In general, there will always be a trade-off between multispectral and hyperspectral systems between spectral and spatial
resolutions. High spatial and spectral resolution imagery is more expensive to acquire and process than broad-scale low resolution imagery. While it may be easier to map plant water stress more accurately from airborne imagery, certain applications may warrant the use of satellite data due to the higher relative costs associated with airborne systems. Furthermore, technologies must be repeatable and cost effective for operational use.
CHAPTER 7.
CORRELATION OF PLANT STRESS PATTERNS TO SITE CHARACTERISTICS IN THREE GOLD MINING DISTRICTS IN CENTRAL SOUTH AFRICA

ABSTRACT

The objective of this study was to correlate spatial patterns of trees which were not experiencing winter-time water stress (unstressed areas) to site characteristics such as geology, soils, groundwater chloride and sulphate, total dissolved solids, electrical conductivity and groundwater water level within the Welkom, Vaal River and West Wits mining districts.

The spectral reflectance model derived between predawn leaf water potential and the green normalised difference vegetation index using broad-band multispectral Proba Chris satellite data was used to map spatial patterns of unstressed trees across three mining districts. Very high resolution (75 cm) multispectral airborne images acquired by LRI in 2005 were used to demarcate and classify vegetation. Four commonly used statistical classifying techniques were used in the classification process which included maximum likelihood, minimum distance, Mahalanobis distance and parallelepiped. The maximum likelihood supervised classification technique achieved the highest kappa coefficients and overall accuracies, and was therefore selected as the most appropriate method for classifying vegetation and different landcovers.

Spatial maps of average soil depth and average percentage clay in the topsoil and interpolated surfaces of groundwater chloride and sulphate concentrations, total dissolved solids, electrical conductivity, pH and groundwater table levels were created using the kriging geostatistical interpolation technique. Spatial interpolation is widely used for creating continuous data from discrete or point data. Spatial interpolation has also been well
accepted amongst GIS developers and specialists, with the inclusion of interpolation techniques in well renowned GIS software packages such as ESRI Arc Info and ArcGIS packages. In this study ordinary kriging which is commonly used in GIS studies was applied. The default spherical model with a variable radius was selected due to the sparse and irregular location of the observation points. Random sample analyses between stressed and unstressed trees were extracted in order to determine whether site characteristics were significantly different (using t-tests).

The interpolated site characteristic surfaces which were significantly different from stressed areas were spatially linked to trees which were not experiencing winter-time plant water stress, in order to recommend and prioritise sites for the establishment of future block plantings. Groundwater table levels were not significantly different between stressed and unstressed areas at all sites. This implies that unstressed sites which have been identified in each mining district do have access to groundwater during the drier winter season, and other factors could be contributing to plant stress. As has been reported at the beginning of the thesis, this research project was heavily dependent on trees growing singly, in rows or in small groups, which experienced lower levels of competition from neighbouring plants. Therefore, these trees would have had a greater opportunity for extending root systems laterally, and the link between dry season tree water stress and groundwater accessibility could have been influenced.

Earlier studies have reported on the surrounding lands and water systems of the Welkom, Vaal River and West Wits mining district to show increasing salinity levels over the years (Roos and Pieterse, 1995; Viver et al., 2001; Naicker et al., 2003; Winde et al., 2004a,b,c). An evaluation of the site characteristic data indicates that salinity levels possibly do affect whether trees are stressed or unstressed, as these characteristics such as groundwater chloride and sulphate concentrations, total dissolved solids and electrical conductivity displayed significant differences between stressed and unstressed areas in the three mining districts.
Larger areas of unstressed sites were identified and are recommended for future plantings of trees in the West Wits mining region compared to smaller areas recommended in the Welkom and Vaal River districts. The resistivity surveys clearly highlight areas of groundwater saturation, shallow groundwater tables in some areas, and possibly higher salinity levels. In such areas trees could thrive, access contaminated water seeping from TSFs and reduce lateral flows into groundwater river systems. Also, the high salinity values are indicative of the contaminant flows from the TSFs, where again trees could possibly sequester contaminants in the area and reduce lateral pollution into surrounding areas over time.

**Keywords**: geostatistical interpolation, site characteristics, spectral reflectance model, supervised classification, unstressed trees

### 7.1 INTRODUCTION

In previous chapters, spectral plant water stress relationships were investigated using various sources of remote sensing data *viz.* leaf-level spectroscopy (Chapter 4), medium to high resolution satellite earth observation data (Chapter 5), and multispectral and hyperspectral airborne remote sensing imagery (Chapter 6). From these investigations it is now possible to distinguish sites at which trees show winter-time water stress (stressed areas), from those where the trees show no such water stress (unstressed areas) within each mining district. Furthermore, within each mining district, the site characteristics such as geology, soils, salinity (groundwater chloride and sulphate, total dissolved solids, electrical conductivity) and groundwater table level (Weiersbye, 2008), which are important in distinguishing unstressed areas and which are significantly different from stressed areas, were investigated. In this chapter the methodology for **mapping spatial patterns of unstressed areas** and their site characteristics are recommended for future plantings in each mining district, to assist in containing and reducing contaminated seepage water from the TSFs.
7.2 MATERIALS AND METHODS

In this chapter spatial patterns of unstressed areas and their site characteristics which could be recommended for future block plantings were identified. High resolution multispectral remote sensing imagery was used to classify vegetation per tree species investigated in each mining district i.e. Vaal River (*E. camaldulensis*; *S. lancea*), Welkom (*E. camaldulensis*; *S. lancea*) and West Wits (*E. camaldulensis*; *E. sideroxylon*). These high resolution classified vegetation maps were then used to clip unstressed tree species modelled using the spectral model reported on in section 5.3.2.3 i.e. PLWP and the green normalised difference vegetation index (GNDVI). To obtain a spatial distribution of site characteristics within each mining district, a geostatistical interpolation technique was used to create raster layers of groundwater chloride and sulphate concentrations, total dissolved solids, electrical conductivity, pH, groundwater table levels, soils and geology for each sampling area. The spatial distribution of unstressed trees was then correlated to particular site characteristics that may be recognised and used to prioritise sites for the establishment of future block plantings.

7.2.1 Vegetation classification

Very high resolution (75cm) multispectral airborne images acquired by LRI in July 2005 were used to demarcate and classify vegetation across the three mining districts. These multispectral airborne images were selected to classify the vegetation due to their very high spatial resolution, allowing for spatial discrimination between different spectral features and objects on the ground. The near-infrared band was specifically used to highlight trees and other landcover classes in these districts. Regions of interest (ROIs) which were ground-truth in the field, were created for each tree species investigated in this study per mining district i.e. Vaal River (*E. camaldulensis*; *S. lancea*), Welkom (*E. camaldulensis*; *S. lancea*) and West Wits (*E. camaldulensis*; *E. sideroxylon*) and the three common landcover classes characteristic of the mining areas, namely tailing storage facilities, grassland/open woodlands and rivers. These ROIs spatially represented the dominant spectral features of each mining district.
Regions of interest may be defined within the context of remote sensing as areas of an image which contain pixels of the same spectral characteristics which represent the same landcover or vegetation type. Regions of interest were selected using ground control points and high resolution aerial photos, which were verified during field surveys undertaken in 2005. Several studies on vegetation classification using different sources of remote sensing data have shown that the performance of statistical classifiers can vary with vegetation types (Kruce et al., 1993; Lillesand and Kiefer, 1999; Castro-Esau, 2004; Govender et al., 2008). Due to this variability, four commonly used statistical classifying techniques were used in the classification process. These techniques included maximum likelihood, minimum distance, Mahalanobis distance and parallelepiped (Foody, 2004; Foody and Mathur, 2006).

In remote sensing applications the term classification accuracy is used to express the degree to which a classified remote sensing image represents reality (Foody, 2004). Accuracy assessments are important not only for evaluating the suitability of different classification techniques but also for providing an indication of the quality of maps produced (Foody, 2004). Thomlinson et al. (1999) suggested an overall accuracy of greater than 85% as an indicator of superior classification. A confusion or error matrix forms the building blocks of an accuracy assessment (Congalton and Green, 1993; Congalton, 1994; Foody, 2004). The confusion or error matrix can be described as a square array of numbers set out in rows and columns which express the number of sampling units (pixels) assigned to a particular class, relative to the actual class verified on the ground (Congalton and Green, 1993).

Accuracy assessments were used to determine which statistical classifier produced the best classification results. Three measures of a classification accuracy analysis viz. kappa coefficient of agreement, overall accuracy and user accuracy, were used in this study. The kappa coefficient of agreement is a statistical measure used to describe the accuracy of spatial data sets (Foody, 2004; Congalton and Mead, 1983). Landis and Koch (1977) categorised the possible ranges of the kappa coefficient of agreement into three groups, where a value greater than 0.8 represents strong agreement; a value between 0.8 and 0.4 represents moderate agreement and a value below 0.4 represents poor agreement. The overall
accuracy is the number of correctly allocated classes, which is most commonly used in vegetation studies, as a measure of how accurately a remote sensing image has been classified. The kappa coefficient of agreement and the overall accuracy (>85%) reported by Foody and Mathur (2006) which are two commonly used measures of a classification accuracy analysis, were used to select the most suitable statistical classifier for vegetation classification in this study. The user’s accuracy indicates the probability with which a pixel classified on the map represents the same category or class on the ground. Therefore, the user’s accuracy was used to evaluate how well an individual vegetation class was classified for a specific statistical classifier method.

The results of each supervised classification performed for each mining district are shown in Tables 7.1 to 7.3. The maximum likelihood supervised classification technique achieved the highest kappa coefficients and overall accuracies, and was therefore selected as the most appropriate method for classifying vegetation and different landcovers across all three mining districts.

Table 7.1  Accuracy assessments of the supervised classifications for the Vaal River mining district.

<table>
<thead>
<tr>
<th>Supervised classification methods and % Ground truthing pixels</th>
<th>User Accuracy (%)</th>
<th>Kappa coefficient</th>
<th>Overall accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahalanobis distance</td>
<td>0.90</td>
<td>94.02</td>
<td></td>
</tr>
<tr>
<td>Searsia lancea- (1.03 %)</td>
<td>48.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus camaldulensis- (0.69%)</td>
<td>62.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassland/open woodlands- (36.51%)</td>
<td>87.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tailing storage facility- (41.02%)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>River- (20.76)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum likelihood</td>
<td>0.99</td>
<td>99.35</td>
<td></td>
</tr>
<tr>
<td>Searsia lancea</td>
<td>52.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus camaldulensis</td>
<td>81.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassland/open woodlands</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tailing storage facility</td>
<td>99.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>River</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum distance</td>
<td>0.93</td>
<td>95.97</td>
<td></td>
</tr>
<tr>
<td>Searsia lancea</td>
<td>50.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus camaldulensis</td>
<td>67.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassland/open woodlands</td>
<td>91.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tailing storage facility</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>River</td>
<td>99.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallelepiped</td>
<td>0.45</td>
<td>56.84</td>
<td></td>
</tr>
</tbody>
</table>
### Table 7.2 Accuracy assessments of the supervised classifications for the Welkom mining district.

<table>
<thead>
<tr>
<th>Supervised classification methods and % Ground truthing pixels</th>
<th>User Accuracy (%)</th>
<th>Kappa coefficient</th>
<th>Overall accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahalanobis distance</td>
<td>0.91</td>
<td></td>
<td>94.26</td>
</tr>
<tr>
<td>Searsia lancea- (1.05%)</td>
<td>20.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus camaldulensis- (1.3%)</td>
<td>37.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ploughed lands/veld - (30.6%)</td>
<td>99.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tailing storage facility- (45.2%)</td>
<td>99.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan (dry)- (21.85%)</td>
<td>99.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum likelihood</td>
<td>0.96</td>
<td></td>
<td>97.55</td>
</tr>
<tr>
<td>Searsia lancea</td>
<td>24.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus camaldulensis</td>
<td>88.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ploughed lands/veld</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tailing storage facility</td>
<td>99.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan (dry)</td>
<td>99.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum distance</td>
<td>0.90</td>
<td></td>
<td>93.46</td>
</tr>
<tr>
<td>Searsia lancea</td>
<td>22.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus camaldulensis</td>
<td>62.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ploughed lands/veld</td>
<td>91.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tailing storage facility</td>
<td>99.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan (dry)</td>
<td>99.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallelepiped</td>
<td>0.47</td>
<td></td>
<td>55.96</td>
</tr>
<tr>
<td>Searsia lancea</td>
<td>2.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus camaldulensis</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ploughed lands/veld</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tailing storage facility</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan (dry)</td>
<td>95.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table 7.3 Accuracy assessments of the supervised classifications for the West Wits mining district.

<table>
<thead>
<tr>
<th>Supervised classification methods and % Ground truthing pixels</th>
<th>User Accuracy (%)</th>
<th>Kappa coefficient</th>
<th>Overall accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahalanobis distance</td>
<td>0.86</td>
<td></td>
<td>89.97</td>
</tr>
<tr>
<td>Eucalyptus camaldulensis - (4.42%)</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus sideroxylon- (24.47%)</td>
<td>99.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassland/open woodlands- (29.87%)</td>
<td>91.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tailing storage facility- (21.10%)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>River- (20.14)</td>
<td>99.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum likelihood</td>
<td>0.94</td>
<td></td>
<td>95.58</td>
</tr>
<tr>
<td>Eucalyptus camaldulensis</td>
<td>1.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervised classification methods and % Ground truthing pixels</td>
<td>User Accuracy (%)</td>
<td>Kappa coefficient</td>
<td>Overall accuracy (%)</td>
</tr>
<tr>
<td>---------------------------------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td><em>Eucalyptus sideroxylon</em></td>
<td>99.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassland/open woodlands</td>
<td>99.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Tailing storage facility</em></td>
<td>99.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>River</em></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Minimum distance</strong></td>
<td></td>
<td>0.90</td>
<td>93.12</td>
</tr>
<tr>
<td><em>Eucalyptus camaldulensis</em></td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Eucalyptus sideroxylon</em></td>
<td>98.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassland/open woodlands</td>
<td>99.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Tailing storage facility</em></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>River</em></td>
<td>97.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Parallelepiped</strong></td>
<td></td>
<td>0.49</td>
<td>56.35</td>
</tr>
<tr>
<td><em>Eucalyptus camaldulensis</em></td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Eucalyptus sideroxylon</em></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassland/open woodlands</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Tailing storage facility</em></td>
<td>99.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>River</em></td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Table 7.3, extremely low user accuracies were determined for *E. camaldulensis* when using the Mahalanobis distance, maximum likelihood and minimum distance statistical classifiers, while parallelepiped resulted in low user accuracies for both *E. camaldulensis* and *E. sideroxylon*. Only one *Eucalyptus* species could be mapped more accurately than the other as shown with the maximum likelihood and minimum distance methods, while both *Eucalyptus* species were not classified well when applying the parallelepiped method. These results imply that the spectral characteristics of the two *Eucalyptus* species, *E. camaldulensis* and *E. sideroxylon*, were similar in this remote sensing data set and therefore separation during the vegetation classification process was difficult.

The maximum likelihood supervised classification technique was then used to produce high resolution vegetation maps for each tree species investigated in each mining district i.e. Vaal River (*E. camaldulensis*; *S. lancea*), Welkom (*E. camaldulensis*; *S. lancea*) and West Wits (*E. camaldulensis*; *E. sideroxylon*). These high resolution classified vegetation maps were then used to clip unstressed tree species modelled using the spectral model reported on in section 5.3.2.3 i.e. PLWP and the green normalised difference vegetation index (GNDVI).
7.2.2  Mapping spatial patterns of unstressed trees

The principal aim of this study was to correlate the spatial distribution of unstressed trees to particular site characteristics that may be recognised and used to prioritise sites for the establishment of future block plantings. Therefore the geographic information system workflow processing focussed on producing spatial maps of unstressed trees which are illustrated in subsequent maps in this chapter. It is noted that areas not categorised as unstressed are considered stressed by the spectral reflectance model.

Several vegetation spectral reflectance models were investigated using different types of remote sensing data, as shown in Chapters 4, 5 and 6. A summary of the “best” models which were selected from each study is shown in Table 7.4.

<table>
<thead>
<tr>
<th>Type of Remote Sensing Data</th>
<th>Surrogate Measurement of Plant Water Stress</th>
<th>Spectral Reflectance Ratio or Index</th>
<th>Reference to Model(s)</th>
<th>Adjusted $R^2$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD spectrometer: leaf-level spectral reflectance signatures</td>
<td>Chlorophyll b</td>
<td>DATT index</td>
<td>Section 4.3.2.3</td>
<td>69.3</td>
</tr>
<tr>
<td>Satellite: multispectral imagery</td>
<td>Predawn leaf water potential</td>
<td>Green normalised difference vegetation index (GNDVI)</td>
<td>Section 5.3.2.3</td>
<td>84.8</td>
</tr>
<tr>
<td>Satellite: hyperspectral imagery</td>
<td>Predawn leaf water potential</td>
<td>Water band index (WBI)</td>
<td>Section 5.3.3.3</td>
<td>90.5*</td>
</tr>
<tr>
<td>Airborne: multispectral imagery</td>
<td>Carotenoid content</td>
<td>GREEN</td>
<td>Section 6.3.1.3</td>
<td>50.1</td>
</tr>
<tr>
<td>Airborne: hyperspectral imagery</td>
<td>Predawn leaf water potential</td>
<td>Normalised difference vegetation index (NDVI)</td>
<td>Section 6.3.2.3</td>
<td>76.8</td>
</tr>
</tbody>
</table>

*model derived for the West Wits mining district

The adjusted $R^2$ values were used as a criterion for selecting a common model for mapping spatial patterns of plant water stress across all three mining districts. The highest adjusted $R^2$ value (90.5%) was obtained for the model derived between predawn leaf water potential
(PLWP) and the water band index (WBI) when using hyperspectral satellite imagery. However, this model was derived only for the West Wits mining district and, as this study has clearly illustrated, that reflectance models are site- and species-specific, this model should not be applied across the Vaal River and Welkom mining districts.

The model with the next highest adjusted $R^2$ (84.8%) was derived between PLWP and the green normalised difference vegetation index (GNDVI) using broad-band multispectral Proba Chris satellite data. Six site- and species-specific models reported on in section 5.3.2.3 resulted from this study, and were selected to map spatial patterns of unstressed trees. High resolution classified vegetation maps were used to clip unstressed trees per tree species investigated in each mining district during the dry winter season, as shown in Figure 7.1 to 8.6. Tree plantations are rare in these mining districts; hence vegetation in the landscape is very patchy. Sample sites used in the derivation of the site- and species-specific models reported in section 5.3.2.3 were selected from stands, single trees or rows of trees and small-plot species trials growing in each mining district as illustrated by Figure 2.4(Chapter 2). Therefore the spatial patterns of unstressed trees which are illustrated in Figures 7.1 to 7.6 are very patchy. It is noted though that areas not categorised as unstressed are considered stressed by the PLWP GNDVI model.

It is important to remember that even though the PLWP GNDVI was selected as the most appropriate model to identify where trees would most likely not experience stress during the dry season ($R^2$ of 84.8%) the time of year upon which these analysis are based must be considered in the interpretation of the results. Plant water stress measurements undertaken during July 2005 and August 2005 were used for ground-truthing the Proba Chris images. As discussed previously in Chapter 5, although a total of four Proba Chris images were planned for acquisition for the Welkom, Vaal River and West Wits mining districts during July and August 2005, only the Vaal River images were acquired during the dry winter season, due to an increased demand for Proba Chris data from various countries participating in the Tiger initiative. Proba Chris images for Welkom were obtained during early October 2005, and for West Wits during late November 2005. These images were correlated to predawn leaf water potential measurements undertaken during July and August 2005. However, a strong
correlation between remote sensing satellite imagery and the ground truthing measurements were still found ($R^2 \approx 84.8\%$).
Figure 7.2 Spatial patterns of unstressed *Searsia lancea* sites mapped in the Welkom mining district using the Predawn leaf water potential and the Green normalized difference vegetation index derived from Proba Chris satellite imagery.

Figure 7.1 and 7.2 highlight the spatial patterns of unstressed trees mapped in the Welkom mining district using the predawn leaf water potential and the green normalized difference
vegetation index. It is noted that these patterns were determined using Proba Chris images obtained during early October 2005, which could have an effect on the spatial patterns required for the dry winter season when trees may not be accessing groundwater. The area is also fairly flat with altitudinal difference of approximately 2.7%. The river network shown in the map is fairly disconnected, which is common for flat areas, as the digital elevation model which is normally used to derive river networks would have sinks, making it difficult to map river flow paths. Unstressed trees mapped do not follow any specific river network. The *E. camaldulensis* trees are dominant on the Ae40 land type. Areas where irrigation centre pivots exist were mapped, indicating that the spectral model could be sensitive to vegetation and water present in these areas. *S. lancea* sites were mapped predominantly on the Dc9 land type. The *S. lancea* also highlighted areas around the pans, which could once again be an indication of the model being sensitive to higher water content in the soil.

Spatial patterns of unstressed *E. camaldulensis* and *S. lancea* sites were mapped in the Vaal River mining district using the predawn leaf water potential and the green normalized difference vegetation index derived. The spatial patterns of unstressed trees were mapped for Vaal River using Proba Chris satellite imagery which was acquired during the dry winter season. However, as is shown is Figure 7.3 and 7.4 unstressed trees are sparse and are dominant in the north west and south east areas of the map. It is surprising that spatial patterns of unstressed trees were not identified downstream of the TSFs. Unstressed trees mapped in the north west areas of the mining district are located along the river network. However, it is interesting to note that there are not many unstressed trees mapped along the main Vaal River channel, except for a few *S. lancea* sites. Figure 7.3 and 7.4 imply that there are very few sites where trees would access water during the drier winter months. Alternatively these results could be affected by the lack of *E. camaldulensis* and *S. lancea* sites currently growing in the Vaal River mining district. However, if this assumption were accepted then the same would apply to the Welkom and West Wits mining district.
Figure 7.3  Spatial patterns of unstressed *Eucalyptus camaldulensis* sites mapped in the Vaal River mining district using the Predawn leaf water potential and the Green normalized difference vegetation index derived from Proba Chris satellite imagery.
Figure 7.4 Spatial patterns of unstressed Searsia lancea sites mapped in the Vaal River mining district using the Predawn leaf water potential and the Green normalized difference vegetation index derived from Proba Chris satellite imagery.
Figure 7.5  Spatial patterns of unstressed *Eucalyptus camaldulensis* sites mapped in the West Wits mining district using the Predawn leaf water potential and the Green normalized difference vegetation index derived from Proba Chris satellite imagery.
Figure 7.6  Spatial patterns of unstressed Eucalyptus sideroxylon sites mapped in the West Wits mining district using the Predawn leaf water potential and the Green normalized difference vegetation index derived from Proba Chris satellite imagery.

Figure 7.5 and 7.6 display the spatial patterns of E. camaldulensis and E. sideroxylon sites mapped in the West Wits mining district respectively. A high mean annual rainfall is characteristic of the region when compared to the Welkom and Vaal River mining districts.
Furthermore, the area has a denser river network as is clearly shown in Figures 7.5 and 7.6. Unstressed sites are also identified along the riparian zones. Unstressed trees were identified across the West Wits mining district and also around the TSFs. It is also noted a maximum number of unstressed sites was mapped in this district which also coincides with the *Eucalyptus* plantations currently growing in this area.

**7.2.3 Creation of spatial layers of site characteristic data**

Existing site characteristic datasets were obtained for each mining district for periods which overlapped with the remote sensing data analyses, according to the acquisition periods detailed in section 5.2.1. Measurements of groundwater chloride and sulphate concentrations, total dissolved solids, electrical conductivity, pH, groundwater table levels, soils and geology data, which were undertaken by Africa Geo-Environmental Services (AGES), School of Animal Plant and Environmental Sciences (APES) at the University of the Witwatersrand and Anglogold Ashanti, were sourced from Weiersbye (2008). Additional soils data were obtained from an Agricultural Research Council land-type database developed for South Africa (ISCW, 1993). Land-type data for the three mining districts included the average soil depth, depth classes per land-type, average topsoil clay percentage and the clay content class per land-type for the soil profile (ISCW, 1993). According to the ISCW, soil surveys used to produce the land-type database were undertaken during the cooler winter months, using standard soil augers and with samples taken to a maximum depth of 1.2 m (ISCW, 1993).

To obtain a spatial distribution of site characteristics within each mining district, a geostatistical interpolation technique was used to create raster layers for each sampling area for which data were available. Interpolation techniques are useful as they can be used to predict information for any geographical location by making the assumption that spatially distributed objects are spatially correlated and therefore would tend to have similar characteristics (Juang *et al*., 2001).
The kriging method was selected as the most appropriate interpolation technique for this study as it utilises the statistical properties of the measured sample points, thereby incorporating the statistical properties of the measured data in the created interpolated surface or raster layer. Interpolated surfaces of groundwater measurements included groundwater chloride and sulphate concentrations, total dissolved solids, electrical conductivity, pH and groundwater table levels were created within each mining district using the ArcGIS (version 9.3, 2009) software package.

A listing of all observation points which were used to create the interpolated groundwater hydrochemistry and groundwater table level surfaces for each mining district is shown in Appendix 3. In the Welkom mining district, 23 observation sampling points were used to interpolate 83.21 km² to create a spatial representation of groundwater chloride and sulphate concentrations, electrical conductivity, pH and total dissolved solids, while eight observation points were used to interpolate 51.27 km² to create a spatial representation of the groundwater table level. Similarly, in the Vaal River and West Wits mining districts, 19 and 23 observations were used to create 92.42 km² and 64.48 km² interpolated surfaces for groundwater chloride and sulphate concentrations, electrical conductivity, pH and total dissolved solids, while 15 and 9 observation points were used to create 16.94 km² and 24.71 km² groundwater table level surfaces respectively. It must be acknowledged that site characteristic data i.e. sampling point data obtained for these areas, and especially groundwater table level data were minimal. Hence the spatial extent of interpolated surfaces and subsequent analyses were constrained by these datasets.

7.3 RESULTS

7.3.1 Differences between the site characteristic data of stressed and unstressed sites

For each mining district, spatial patterns of stressed and unstressed sites were mapped, using the six site- and species-specific models reported on in section 5.3.2.3, derived between PLWP and GNDVI, using broad-band multispectral Proba Chris satellite data. As a specific aim of this study was to correlate the spatial distribution of unstressed trees to particular
site characteristics that may be recognised and used to prioritise sites for the establishment of future block plantings, spatial patterns of unstressed trees have been illustrated in subsequent maps in this chapter and in Figures 7.1 to 7.6. It is noted though that areas not categorised as unstressed are considered stressed by the PLWP GNDVI model.

In order to test for significant differences between site characteristic data for these stressed and unstressed trees, a random sample of one hundred points was selected per tree species for each mining district for stressed and unstressed areas. Site characteristic information was then extracted for the two hundred sample points (stressed and unstressed points) per mining district. This included information on the average percent clay in the topsoil, average soil depth, groundwater measurements of chloride concentration, electrical conductivity, pH, sulphate concentration, total dissolved solids and the groundwater table level. These variables were considered as important site characteristics for each region and for which data were available (Weiersbye, 2006; 2008). Geographical information system analyses were performed using the ArcGIS (version 9.3, 2009) software package.

A t-test was then used to test for statistically significant differences in the average percent clay in the topsoil, average soil depth, groundwater measurements of chloride concentration, electrical conductivity, pH, sulphate concentration, total dissolved solids and groundwater table level, between stressed and unstressed trees per species for each mining district using the Genstat (11th edition, 2008) statistical software package. Results from the t-tests are shown in Tables 7.5, 7.6 and 7.7 for the Welkom, Vaal River and West Wits mining districts respectively.

<table>
<thead>
<tr>
<th>Mining district</th>
<th>Tree Species</th>
<th>Site Data</th>
<th>Plant water stress</th>
<th>Sample size</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>T test</th>
<th>Degree of freedom (df)</th>
<th>Probability value (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welkom</td>
<td>Eucalyptus camaldulensis</td>
<td>Topsoil clay (%)</td>
<td>Unstressed</td>
<td>100</td>
<td>10.32</td>
<td>2.910</td>
<td>-2.13</td>
<td>187</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>89</td>
<td>11.27</td>
<td>3.258</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil depth (mm)Soil</td>
<td>Unstressed</td>
<td>100</td>
<td>1116</td>
<td>219.1</td>
<td>2.13</td>
<td>187</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>89</td>
<td>1044</td>
<td>245.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An analysis of the means extracted for *E. camaldulensis* in the Welkom mining district indicated that all site variables listed in Table 7.5 were higher in unstressed sites, except for topsoil clay (%) and groundwater table level which showed a higher mean value in the stressed sites. However, site variables which displayed significant differences between stressed and unstressed sites for the Welkom mining district for *E. camaldulensis* included the average percentage clay in the topsoil, average soil depth, groundwater chloride concentration, electrical conductivity, pH, groundwater sulphate concentration and total dissolved solids.
For *S. lancea* sites in the Welkom mining district, the mean values for the average percentage clay in the topsoil, pH, sulphate concentration and water level were higher for the unstressed sites, while the mean values for average soil depth, groundwater chloride concentration, electrical conductivity and total dissolved solids were higher in stressed sites. Furthermore, significant differences were found in the site variables between stressed and unstressed sites for the topsoil clay (%), soil depth, groundwater chloride concentration, electrical conductivity, pH, total dissolved solids and the groundwater table level.

**Table 7.6** Comparisons (mean+standard deviation) of the site characteristics geology, soils, salinity and groundwater table level between stressed and unstressed trees of *Eucalyptus camaldulensis* and *Searsia lancea* in the Vaal River mining district. Differences between stressed and unstressed trees per species were tested using t-tests *(P<0.05)*.

<table>
<thead>
<tr>
<th>Mining district</th>
<th>Tree Species</th>
<th>Site Data</th>
<th>Plant water stress</th>
<th>Sample size</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>T test</th>
<th>Degree of freedom (df)</th>
<th>Probability value (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaal River</td>
<td><em>Eucalyptus camaldulensis</em></td>
<td>Topsoil clay (%)</td>
<td>Unstressed</td>
<td>100</td>
<td>16.42</td>
<td>1.0250</td>
<td>0.70</td>
<td>198</td>
<td>0.484</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>16.32</td>
<td>0.9518</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil depth (mm)</td>
<td>Unstressed</td>
<td>100</td>
<td>423.9</td>
<td>50.81</td>
<td>-0.34</td>
<td>198</td>
<td>0.733</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>426.3</td>
<td>49.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater chloride (mg/l)</td>
<td>Unstressed</td>
<td>99</td>
<td>362.5</td>
<td>34.24</td>
<td>1.09</td>
<td>197</td>
<td>0.276</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>356.7</td>
<td>39.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical conductivity (mS/cm)</td>
<td>Unstressed</td>
<td>99</td>
<td>22912</td>
<td>8167</td>
<td>2.42</td>
<td>197</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>20018</td>
<td>8712</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>Unstressed</td>
<td>99</td>
<td>7.552</td>
<td>0.2909</td>
<td>-3.16</td>
<td>175</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>7.664</td>
<td>0.2030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater sulphate (mg/l)</td>
<td>Unstressed</td>
<td>99</td>
<td>1765</td>
<td>713.9</td>
<td>-0.77</td>
<td>154</td>
<td>0.443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>1829</td>
<td>403.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total dissolved solids (mg/l)</td>
<td>Unstressed</td>
<td>99</td>
<td>3862</td>
<td>771.3</td>
<td>1.44</td>
<td>197</td>
<td>0.151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>3696</td>
<td>860.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water level (mbgl)</td>
<td>Unstressed</td>
<td>3</td>
<td>4.228</td>
<td>0.4203</td>
<td>0.07</td>
<td>18</td>
<td>0.947</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>17</td>
<td>4.208</td>
<td>0.4718</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Searsia lancea</td>
<td>Topsoil clay (%)</td>
<td>Unstressed</td>
<td>100</td>
<td>16.55</td>
<td>0.4403</td>
<td>2.23</td>
<td>139</td>
<td>108</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>16.32</td>
<td>0.9518</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil depth (mm)</td>
<td>Unstressed</td>
<td>100</td>
<td>417.9</td>
<td>10.91</td>
<td>1.87</td>
<td>198</td>
<td>0.063</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>426.3</td>
<td>49.80</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groundwater chloride (mg/l)</td>
<td>Unstressed</td>
<td>100</td>
<td>366.3</td>
<td>32.87</td>
<td>1.87</td>
<td>198</td>
<td>0.063</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>356.7</td>
<td>39.47</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical conductivity (mS/cm)</td>
<td>Unstressed</td>
<td>100</td>
<td>22858</td>
<td>8330</td>
<td>2.36</td>
<td>198</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>20018</td>
<td>8712</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>Unstressed</td>
<td>100</td>
<td>7.576</td>
<td>0.2810</td>
<td>2.55</td>
<td>180</td>
<td>0.012</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of the site variables for *E. camaldulensis* trees in Vaal River indicated higher mean values in the topsoil clay percent, groundwater chloride concentration, electrical conductivity, total dissolved solids and the groundwater table level in unstressed sites; while the average soil depth, pH and groundwater sulphate concentrations were higher in stressed sites. However, significant differences were identified for electrical conductivity and the pH between stressed and unstressed *E. camaldulensis* sites.

For *S. lancea*, mean values of the average percent of clay in topsoil, groundwater chloride concentration, electrical conductivity, total dissolved solids and groundwater table level were higher in unstressed sites; while the mean values in average soil depth, pH, and groundwater sulphate concentration were higher in stressed sites. Statistically significant differences were determined in the average percent of clay in topsoil, electrical conductivity, pH and water level of stressed and unstressed *S. lancea* sites in Vaal River.

**Table 7.7** Comparisons (mean+standard deviation) of the site characteristics such as geology, soils, salinity and groundwater table level between stressed and unstressed trees of *Eucalyptus camaldulensis* and *Eucalyptus sideroxylon* in the West Wits mining district. Differences between stressed and unstressed trees per species were tested using t-tests (*P*<0.05).
## Assessing Groundwater Access by Trees Growing Above Contaminated Groundwater Plumes Originating from Gold Tailings Storage Facilities

<table>
<thead>
<tr>
<th>Mining district</th>
<th>Tree Species</th>
<th>Site Data</th>
<th>Plant water stress</th>
<th>Sample size</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>T test</th>
<th>Degree of freedom (df)</th>
<th>Probability value (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>Unstressed</td>
<td>100</td>
<td>7.315</td>
<td>0.0943</td>
<td>-1.76</td>
<td>136</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>7.355</td>
<td>0.2111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater sulphate (mg/l)</td>
<td>Unstressed</td>
<td>100</td>
<td>498.4</td>
<td>185.5</td>
<td>6.21</td>
<td>190</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>316.3</td>
<td>227.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total dissolved solids (mg/l)</td>
<td>Unstressed</td>
<td>100</td>
<td>954.8</td>
<td>324.3</td>
<td>6.01</td>
<td>198</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stressed</td>
<td>100</td>
<td>662.6</td>
<td>362.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater level (mbgl)</td>
<td>Unstressed</td>
<td>90</td>
<td>11.36</td>
<td>2.411</td>
<td>-2.57</td>
<td>34</td>
<td>0.015</td>
</tr>
<tr>
<td>Eucalyptus sideroxylon</td>
<td></td>
<td></td>
<td>Stressed</td>
<td>27</td>
<td>13.18</td>
<td>3.432</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topsoil clay (%)</td>
<td>Unstressed*</td>
<td>*same value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stressed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil depth (mm)</td>
<td>Unstressed*</td>
<td>*same value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stressed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater chloride (mg/l)</td>
<td>Unstressed</td>
<td>137.6</td>
<td>13.09</td>
<td>10.75</td>
<td>118</td>
<td>&lt; 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stressed</td>
<td>90.9</td>
<td>41.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical conductivity (ms/cm)</td>
<td>Unstressed</td>
<td>19401</td>
<td>5286</td>
<td>6.73</td>
<td>156</td>
<td>&lt; 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stressed</td>
<td>12183</td>
<td>9329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Unstressed</td>
<td>7.259</td>
<td>0.0758</td>
<td>-4.30</td>
<td>124</td>
<td>&lt; 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stressed</td>
<td>7.355</td>
<td>0.2111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater sulphate (mg/l)</td>
<td>Unstressed</td>
<td>558.5</td>
<td>146.6</td>
<td>8.95</td>
<td>169</td>
<td>&lt; 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stressed</td>
<td>316.3</td>
<td>227.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total dissolved solids (mg/l)</td>
<td>Unstressed</td>
<td>1059.4</td>
<td>267.0</td>
<td>8.81</td>
<td>181</td>
<td>&lt; 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stressed</td>
<td>662.6</td>
<td>362.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater level (mbgl)</td>
<td>Unstressed</td>
<td>90.0</td>
<td>11.29</td>
<td>2.623</td>
<td>-3.01</td>
<td>110</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stressed</td>
<td>27</td>
<td>13.18</td>
<td>3.432</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Data obtained for this area were coarse and did not vary between sites.

In the West Wits mining area, higher mean values in the groundwater chloride and sulphate concentrations, electrical conductivity and total dissolved solids were identified at unstressed *E. camaldulensis* sites, while the pH and water level were higher at stressed sites. Significant differences were found in groundwater chloride concentrations, electrical conductivity, groundwater sulphate concentrations, total dissolved solids and the water level between stressed and unstressed *E. camaldulensis* sites.

For *E. sideroxylon* sites in the West Wits mining district, the mean values for groundwater chloride concentration, electrical conductivity, groundwater sulphate concentration and total dissolved solids were higher in unstressed sites, while the pH and water level were higher in stressed sites. The average percent of clay in the topsoil and the average soil depth displayed little or no variation across the stressed and unstressed sites. Furthermore, statistically
significant differences were also identified for groundwater chloride concentration, electrical conductivity, pH, groundwater sulphate concentration, total dissolved solids and the groundwater level between stressed and unstressed *Eucalyptus sideroxylon* sites.

### 7.4 DISCUSSIONS AND RECOMMENDATIONS FOR FUTURE PLANTINGS

A summary of the characteristics of unstressed sites which were identified within each mining district for each tree species is shown below (Table 7.8). Only those site characteristics which displayed significant differences between stressed and unstressed areas were selected, of which their interpolated surfaces are shown in Appendix 5.

**Table 7.8** Descriptive statistics (minimum, maximum, mean, standard deviation) of the site variables geology, soils, salinity and groundwater table level used to characterise unstressed trees per species in each mining district.

<table>
<thead>
<tr>
<th>Mining district</th>
<th>Tree Species</th>
<th>Site Data</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welkom</td>
<td><em>Eucalyptus camaldulensis</em></td>
<td>Topsoil clay (%)</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil depth (mm)</td>
<td>748.29</td>
<td>1245.40</td>
<td>1214.33</td>
<td>120.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater chloride (mg/l)</td>
<td>31.78</td>
<td>1247.88</td>
<td>4064.92</td>
<td>3048.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical conductivity (mS/cm)</td>
<td>78.22</td>
<td>3081.85</td>
<td>1070.93</td>
<td>736.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>7.86</td>
<td>8.61</td>
<td>8.23</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater sulphate (mg/l)</td>
<td>47.03</td>
<td>1056.84</td>
<td>1057.52</td>
<td>753.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total dissolved solids (mg/l)</td>
<td>729.31</td>
<td>27525.7</td>
<td>9286.92</td>
<td>6631.00</td>
</tr>
<tr>
<td>Welkom</td>
<td><em>Searsia lancea</em></td>
<td>Topsoil clay (%)</td>
<td>8.6</td>
<td>15.19</td>
<td>13.90</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil depth (mm)</td>
<td>748.29</td>
<td>1245.40</td>
<td>845.55</td>
<td>197.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater chloride (mg/l)</td>
<td>50.55</td>
<td>14524.92</td>
<td>2137.32</td>
<td>2325.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical conductivity (mS/cm)</td>
<td>82.16</td>
<td>3586.32</td>
<td>616.59</td>
<td>557.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>7.78</td>
<td>8.68</td>
<td>8.33</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total dissolved solids (mg/l)</td>
<td>664.07</td>
<td>31755.84</td>
<td>5116.94</td>
<td>4991.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater level (mbgl)</td>
<td>2.64</td>
<td>13.00</td>
<td>7.98</td>
<td>2.26</td>
</tr>
<tr>
<td>Vaal River</td>
<td><em>Eucalyptus camaldulensis</em></td>
<td>Electrical conductivity (mS/cm)</td>
<td>6185.52</td>
<td>43253.38</td>
<td>21721.77</td>
<td>7056.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>6.75</td>
<td>8.04</td>
<td>7.59</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater level (mbgl)</td>
<td>7.00</td>
<td>17.79</td>
<td>10.36</td>
<td>4.77</td>
</tr>
<tr>
<td></td>
<td><em>Searsia lancea</em></td>
<td>Topsoil clay (%)</td>
<td>7.00</td>
<td>17.79</td>
<td>10.36</td>
<td>4.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical conductivity (mS/cm)</td>
<td>6185.52</td>
<td>43679.29</td>
<td>21753.55</td>
<td>8024.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>6.74</td>
<td>8.04</td>
<td>7.57</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater level (mbgl)</td>
<td>3.98</td>
<td>5.02</td>
<td>4.71</td>
<td>0.43</td>
</tr>
<tr>
<td>West Wits</td>
<td><em>Eucalyptus camaldulensis</em></td>
<td>Groundwater chloride (mg/l)</td>
<td>24.84</td>
<td>214.89</td>
<td>92.47</td>
<td>36.58</td>
</tr>
<tr>
<td></td>
<td><em>Eucalyptus sideroxylon</em></td>
<td>Electrical conductivity (mS/cm)</td>
<td>9972.05</td>
<td>49689.69</td>
<td>11462.43</td>
<td>7027.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>6.75</td>
<td>8.44</td>
<td>7.35</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater sulphate (mg/l)</td>
<td>20.92</td>
<td>1834.96</td>
<td>313.98</td>
<td>180.55</td>
</tr>
</tbody>
</table>
The interpolated site characteristic surfaces shown in Appendix 5, and listed in Table 7.8 above were spatially linked to trees which were not experiencing winter-time plant water stress, mapped using the predawn leaf water potential and the green normalized difference vegetation index derived from Proba Chris imagery shown in Figures 7.1 to 7.6. The spatial distribution of these unstressed areas for which site characteristic data were available, were mapped using ArcGIS (version 9.3, 2009), and illustrated for each mining district in Figures 7.7 to 7.9.

The recommended unstressed areas proposed for planting *Eucalyptus camaldulensis* and *Searsia lancea* in the Welkom mining district are shown in Figure 7.7. Quantitative site characteristics, which were found to be significantly different (p <0.05; Table 7.5) from stressed sites for *E. camaldulensis*, included the average soil depth, groundwater chloride concentration, electrical conductivity, pH, groundwater sulphate concentration and total dissolved solids and, for *S. lancea*, the average % clay in the topsoil, average soil depth, groundwater chloride concentration, electrical conductivity, pH, total dissolved solids and the groundwater table level.

The geological formations characteristic of these unstressed areas mapped within the Welkom mining district are commonly referred to as Ecca Shales (Vegter, 1995). Two dominant soil land-types are found in this area, Ae40 land-type comprised of eutrophic, red massive or weak structured soils with a high base status, and the De9 land-type with non-calcareous soils, high clay accumulation, strongly structured soil of a non-reddish colour and the presence of one or more of the vertic, melanic or plinthic soils (ISCW, 1993). The natural vegetation is categorised primarily as the grassland biome within the Dry Highveld Grassland bioregion, with patches of the Azonal Vegetation biome forming part of the Inland Saline Vegetation bioregion (Mucina and Rutherford, 2006).

Spatial patterns of unstressed *E. camaldulensis* and *Searsia lancea* sites shown in Figure 7.7 extend across a relatively flat area, with an altitude ranging from 1290 to 1300 m and
dominated by Ae40 and De9 landtype respectively. River networks are disconnected, as is common in relatively flat areas, were the digital elevation models used which include sinks in the area. The *S. lancea* sites also highlight the edges of the Pan, indicating that during the dry season trees could access water from the Pan and are therefore categorised as unstressed by the model.

To obtain more detailed subsurface information at selected sampling sites in the three mining districts, resistivity measurements were acquired by geophysical specialists from the CSIR using an ABEM Terrameter SAS1000. Geophysical studies have shown that resistivity measurements have been successfully applied to detect subsurface lithologies, groundwater depths, potential groundwater sources and plume contamination (Okereke *et al.*, 1998; Salem, 2000; Tabbagh *et al.*, 2000). Resistivities measurements undertaken in the Welkom mining district are illustrated in Figures 7.8a and 7.8b.

*Figure 7.7/*...
Figure 7.7 A shaded selection of unstressed areas in the Welkom mining district recommended for planting *Eucalyptus camaldulensis* and *Searsia lancea* tree species. The graded scale represents the maximum (light grey) and minimum (black) values of site characteristic data representative of these unstressed areas.
Figure 7.8a Dankbaar Pan resistivity sampling site in the Welkom mining district, (clockwise) arrows in the picture represent the location of trees at each sampling site; the block demarcated in red represents the resistivity sampling area; unstressed areas mapped in green and the resistivity profile observed at the sampling site.

The Dankbaar Pan is located on farmland within the Welkom mining district. The area is very flat and the groundwater is reported to have very high salinity concentrations, being influenced by drainage pathways from mining activities in the area. An older stand of *E. camalduensis* trees and scattered *S. lancea* trees approximately 100m from the edge were selected for ground-truthing measurements as shown in Figure 7.8a. The soils in the area appear well developed and deep. The resistivity transect extends through most of the length of the stand of *Eucalyptus* trees. The dark blue layers have a very low resistivity and is an indication of groundwater saturation from approximately 4.9 m below the surface, as the lower the resistivity the greater the moisture content or the higher the concentration of salts. With salts from the Pan being visually evident, the very low resistivity indicates the high
salinity of the groundwater. Even the resistivity of the drier topsoil layers are fairly low (30-50 ohms), indicating that the shallower soils are saline as well (Okereke et al., 1998; Salem, 2000; Tabbagh et al., 2000).

![Image of resistivity sampling site](image.png)

Figure 7.8b  Boet Van Der Berg Farm resistivity sampling site in the Welkom mining district, (clockwise) arrows in the picture represent the location of trees at each sampling site; block demarcated in red represents the resistivity sampling area; unstressed areas mapped in green and the resistivity profiles observed on the farm at the S. lancea and E. camaldulensis sampling areas.

Sample sites on Mr. Boet Van Der Berg’s Farm were selected for comparison with the Dankbaar Pan sampling sites. Two locations were surveyed, a site consisting of a row of S. lancea trees and a stand of older E. camaldulensis trees as shown in Figure 7.8b. These sites are characterized by red and yellow apedals, freely drained deep soils with a high base status. The predominant lithology group is Shale. Figure 7.8b illustrates lower resistivity
materials from a depth of 5m, which could be a result of deep drainage, hence saturated conditions of the weathered shale, resulting in a clay horizon and shallow groundwater sources. Topsoil layers (<1m) in both inverted sections are represented by much higher resistivities compared to the deep layers, usually indicating drier soils were electricity is not easily conducted. The intermediate resistivity zones (greens) probably indicate areas of fractured shale rather than fully developed clay zones.

Sampling sites selected on Mr. Boet Van Der Berg’s Farm in comparison to the Dankbaar Pan sites, indicated different subsurface groundwater depths and soil formations according to the resistivity surveys. Soils in the area appear to be drier, being characterised by higher resistivities in the topsoil layers (Figure 7.8b) with Shale being the predominant lithology group. Pockets of darker blue areas could be an indication of subsurface water estimated at an approximate depth of 4.98m at the *E. camaldulensis* site and 7.91m at the *S. lancea* site.

Groundwater saturation in the Dankbaar sampling area in Welkom, indicated in the resistivity profile at an average depth of 7.91 m (Figure 7.8a) and the average groundwater table level reported in Table 7.8, confirms the presence of shallow groundwater sources. This implies that trees roots could access the “relatively” shallow groundwater and assist in containing contaminated groundwater seeping into surrounding lands. However, measurements of predawn leaf water potential undertaken during the drier winter months in 2004 and 2005, indicate an average value of -1.4 to -1.5MPa, therefore characterising these trees as being stressed. Also indicated are the high salinity levels in the area, illustrated by the high total dissolved solids, groundwater chloride and sulphate concentrations reported in Table 7.8 and shown in Figure 7.7 and is characterised by the fairly low resistivity values in Figure 7.8.a, even in the shallower soils. Therefore tree plantings could possibly assist in sequestering some of the contaminants present in the groundwater produced from mining activities and thereby could also reduce the movement of salts or pollutants to neighbouring streams and rivers (Funke, 1990; Hodgson *et al*., 2001; Rosner *et al*., 2001; Naicker *et al*., 2003).

In the Vaal River mining district, trees which are not experiencing winter-time plant water stress, and which are recommended for planting *E. camaldulenis* and *S. lancea*, are
illustrated in Figure 7.9. Site characteristics of unstressed areas which were found to be significantly different from the stressed areas are also shown (p < 0.05, Table 7.6). For the recommended *E. camaldulensis* sites, these include electrical conductivity and pH, and for *S. lancea*, the average % clay in the topsoil, electrical conductivity and pH. Groundwater table levels were not significantly different in this area, indicating that trees during winter would have access to water and would not be the limiting factor in the Vaal River mining district. The results indicate that unstressed trees would be affected by salinity levels reflected by the electrical conductivity of the groundwater and the pH of the groundwater.

The altitudinal gradient characteristic of the area ranges from 1280 to 1380 m. Geological formations stretching across the recommended planting areas are classified as Alluvium, Black Reef, Chert Rich dolomite, Dolomite Sand, Karoo and Ventersdorp (Anglo Ashanti, 2005). The major land-type characteristic in this area include Fa13, described as mesotrophic to eutrophic soils, with minimal development usually shallow on hard or weathering rock with or without intermittent diverse soils (ISCW, 1993).

Smaller areas in the region are represented by Bd13 and Bc23 land-types with red, yellow and greyish soils having a high base status (ISCW, 1993), characterising many of the unstressed sites mapped in Vaal River. The natural vegetation is categorised as the grassland biome within the Dry Highveld Grassland bioregion which generally experiences mean annual rainfall below 600mm (Mucina and Rutherford, 2006). This implies that the natural vegetation would be able to survive and grow under average rainfall conditions with shallower root systems compared to trees and forest plantations.
Figure 7.9 A shaded selection of unstressed areas in the Vaal River mining district recommended for planting *Eucalyptus camaldulensis* and *Searsia lancea* tree species. The graded scale represents the maximum (light grey) and minimum (black) values of site characteristic data representative of these unstressed areas.
The Western Complex site is located approximately 200m from the edge of the Western Complex TSF (Figure 7.10). A dirt road separates the *E. camaldulensis* site from the TSF. This site is characterized by a cluster of young *E. camaldulensis* trees which appear unhealthy with poor growth characteristics. However, moving away from the TSF the trees appear healthier with green foliage and good growth characteristics. Within this site a group of trees were sampled within the apparent healthy vs. unhealthy clusters of trees. The healthy trees can potentially be because of an increase in the porosity of the soils. Higher porosity means it should be easier for the plants to get to subsurface water. The site is underlain by Andesite, which is an igneous rock. Depending on the phase of deposition, the lava can vary in composition and this affects weathering and eventually porosity.
A majority of the unstressed sites mapped for the Vaal River mining district extend across Bd13 and Bc23 land-types with red, yellow and greyish soils having a high base status (ISCW, 1993), low pH (minimum 6.75) and shallow groundwater table levels (an average 5.02 m) as shown in Table 7.8 and illustrated in Figure 7.10, from approximately 2.55m below the surface. Tree plantings in these areas highlighted in Figure 7.9 in the Vaal River mining district, could tap into the seepage water from the surrounding TSFs which are many in the area, and transpire greater quantities of water than the grasslands and wetlands presently in close proximity to the TSFs. Evaporation from groundwater sources, could result in reduced water table depths and slower lateral flows into the neighbouring lands and river systems such as the Vaal River, as it is known that the impact of the mines and the TSFs extends far beyond their localities as a result of dust pollution and the extent of groundwater plumes (Cogho et al., 1990; Vivier et al., 2001).

In the West Wits mining district, the spatial distribution of unstressed areas recommended for planting *E. camaldulensis* and *E. sideroxylon* is shown in Figure 7.11. Quantitative site characteristics for the unstressed areas, which were found to be significantly different (p < 0.05; Table 7.7) from the stressed areas, are also shown. These included groundwater chloride concentration, electrical conductivity, pH, groundwater sulphate concentration, total dissolved solids and the groundwater table level.

The geology in these recommended areas has been classified as Rooihoogte quartzite shale chert breccia, Timeball Hill shale, Diabase intrusive, Timeball Hill ferruginous quartzite and Hekpoort andesite agglomerate (Anglo Ashanti, 2005). Two land-types found in this area are Fb15 and Fb5, described as eutrophic soils with minimal development, usually shallow on hard or weathering rock, with or without intermittent diverse soils with lime generally present in part or most of the landscape (ISCW, 1993).
Figure 7.11 A shaded selection of unstressed areas in the West Wits mining district recommended for planting Eucalyptus camaldulensis and Eucalyptus sideroxylon tree species. The graded scale represents the maximum (light grey) and minimum (black) values of site characteristic data representative of these unstressed areas.

Spatial patterns of unstressed trees mapped in the West Wit mining region extend across a topographical gradient from 1400 to 1740 m. The area exhibits a much denser river network with a higher mean annual rainfall of 651 mm compared to Welkom and Vaal River,
indicating higher water availability during the dry season. Two resistivity surveys undertaken on the Deelkraal farm and on the trial site just downslope from the Elandsridge TSF in the West Wits mining district are illustrated in Figures 7.12a and 7.12b respectively.

Figure 7.12a  Deelkraal farm resistivity sampling site in the West Wits mining district, (clockwise) arrows in the picture represent the location of trees at each sampling site; block demarcated in red represents the resistivity sampling area; unstressed areas mapped in green and the resistivity profile observed at the site.

The Deelkraal Farm Site is a very interesting site, consisting of a stand or block of *E. sideroxylon* trees which extends to within approximately 10m of a little farm dam. The stand of trees is dense, green and visually healthy along the riparian edge and at least 20m moving upslope through the stand. However, very distinctly the trees begin to become less dense, the canopy is open, leaf area, tree height and diameter decreases, leaf colour changes from bright
dark green to yellow pale colour, and the trees are visually more stressed or unhealthy. The resistivity profile was located through the stand of trees shown in Figure 7.12a. Low resistivities from the start of the profile near the farm dam are indicative of wetter conditions shown in blue. Water in the area could also be contaminated by the nearby TSFs, which could result in saline conditions and hence low resistivities. However, as the upslope trees become sparse and visually unhealthy, with drier surface conditions, there is also a very distinct change in the resistivity profile. The drier conditions, possibly as a result of shallow bedrock, are reflected in the high resistivities shown in dark brown to orange on the inverse resistivity section. From the inverse model resistivity section it seems that there is a very significant lateral change in geology, possibly from clayey soils to shallow bedrock overlain by very dry sand. Therefore transformation within the stand from dense healthy trees to sparse unhealthy trees could be a result of a change in geology in this site, deeper weathering and more sediment deposition in the riparian zone, with the unstressed / healthy trees accessing seepage water from the dam and groundwater. Water seepage from the dam can also lower the resistivity significantly, especially if the water is saline. A good comparison between unstressed / visually healthy trees seen out in the field and those predicted using the predawn leaf water potential and GNDVI model for this area is shown in Figure 7.12a.

Figure 7.12b/...
The site consists of rectangular blocks of different tree species. The site has a slight slope from start to end (estimated elevation difference of 1.5 m).

The trial site consists of blocks of exotic and indigenous tree species planted just downslope from the Elandsridge TSF in the West Wits mining district. A tarred road separates the trial from the TSF. At the bottom of the trial approximately 20m from the last block of trees is a wetland area. Sampling sites consisted of two blocks of *E. camaldulensis* trees of the same age, illustrated as the 2nd and 6th stand in Figure 7.12b. The resistivity profile is located within the middle of the blocks and runs from the 2nd to 6th block.
The predominant lithology group is shale. At the top of the slope near the 2\textsuperscript{nd} stand, the medium to high resistivitivities are indicative of dry sand. This is underlain by weathered shale with a low resistivity. The highly weathered shale has a high clay content and this is reflected in the very low resistivity underlying the sand. The clay weathered shale is underlain by fractured shale which will eventually grade into unweathered shale. In the inverted section yellow/brown colours could be an indication of dry sand, blue highly weathered clay-rich shale, and green fractured shale. The influence of contaminants from the TSF at the top slope could affect salinity of the area, resulting in changes in salinity of the soil water at shallow depths. The changes in resistivity of the top sandy layer, from low at the start of the line to very high closer to the centre of the line reflect the influence of this change in salinity.

Salinity is commonly interpreted as the inverse of resistivity. The higher salinity is reflected as a lower resistivity zone at the top. The higher resistivity at depth (green area) along the start of the profile can potentially be an indication of lower water saturation due to the abstraction of water by the trees. The very low resistivity (strong blue band) throughout the profile is an indication of groundwater saturation of the clay. This intensifies at the end of the profile (6\textsuperscript{th} stand) close to the vlei or wetland indicating higher salinity and subsurface saturated conditions. These results are supported by the significant differences in salinity conditions identified for stressed and unstressed sites in the area (Figure 7.11), which included groundwater chloride concentration, electrical conductivity, pH, groundwater sulphate concentration and total dissolved solids.

Larger areas of unstressed sites were identified and are recommended for future plantings of trees in the West Wits mining region (Figure 7.11) compared to smaller areas recommended for Welkom and Vaal River districts. The West Wits area exhibits a much denser river network, for trees to access water during the drier winter season. Furthermore, the changing geological formations and groundwater saturation illustrated in the resistivity surveys (Figure 7.12a and 7.12b) are indicators of areas in the West Wits mining district where trees could thrive, access contaminated water seeping from TSFs and reduce lateral flows into groundwater river systems. Also, the high salinity values are indicative of the contaminant..
flows from the TSFs, where again trees could possibly sequester contaminants in the area and reduce lateral pollution into surrounding areas overtime.

7.5 CONCLUSIONS

In summary the process of identifying recommended sites were trees are not experiencing winter-time plant water stress for each species investigated per mining district was as follows:

- High resolution multispectral airborne images (75 cm) were used in an attempt to accurately classify tree species investigated in this study.
- Spatial patterns of stressed and unstressed areas were mapped using the vegetation spectral reflectance models derived in section 5.3.2.3 using satellite multispectral imagery.
- Classified vegetation maps were used to clip unstressed trees per tree species for each mining district.
- The kriging interpolation technique was used to create interpolated surfaces of site characteristic data obtained from AGES, APES and AGA.
- Random sample analyses between stressed and unstressed trees were extracted in order to determine whether site characteristics were significantly different (using t-tests)
- Interpolated site characteristic layers (Appendix 5) of unstressed areas, which displayed significant differences from stressed areas, were spatially linked to trees which were not experiencing winter-time plant water stress.
- The spatial patterns of unstressed trees have been illustrated in this chapter, as a specific aim of this study was to correlate the spatial distribution of unstressed trees to particular site characteristics that may be recognised and used to prioritise sites for the establishment of future block plantings. It is noted that areas not categorised as unstressed are considered stressed by the predawn leaf water potential and GNDVI model.
In the Welkom mining district, two dominant soil land-types are found in this area, Ae40 and De9 land-type. In the Dankbaar sampling area in Welkom, the very low resistivity is an indication of groundwater saturation from approximately 4.9 m below the surface, confirming the presence of shallow groundwater sources. This implies that trees roots could access the “relatively” shallow groundwater and assist in containing contaminated groundwater seeping into surrounding lands. Therefore tree plantings could possibly assist in sequestering some of the contaminants present in the groundwater produced from mining activities and thereby could also reduce the movement of salts or pollutants to neighbouring streams and rivers (Funke, 1990; Hodgson et al., 2001; Rosner et al., 2001; Naicker et al., 2003).

In the Vaal River mining district, groundwater table levels were not significantly different in this area, indicating that trees during winter would have access to water and would not be the limiting factor in the Vaal River mining district. However, unstressed trees could be affected by salinity levels such as the electrical conductivity of the groundwater and the pH of the groundwater. A majority of the unstressed sites mapped for the Vaal River mining district extend across Bd13 and Bc23 land-types with red, yellow and greyish soils having a high base status (ISCW, 1993), low pH (minimum 6.75) and shallow groundwater table levels (an average 5.02 m).

Larger areas of unstressed sites were identified and are recommended for future plantings of trees in the West Wits mining region compared to smaller areas recommended in the Welkom and Vaal River districts. The West Wits area indicates a much denser river network, with a higher mean annual rainfall of 651 mm compared to Welkom and Vaal River, indicating higher water availability during the drier season. Furthermore, the changing geological formations and groundwater saturation illustrated in the resistivity surveys are indicators of areas in the West Wits mining district where trees could thrive, access contaminated water seeping from TSFs and reduce lateral flows into groundwater river systems. Also, the high salinity values are indicative of the contaminant flows from the TSFs, where again trees could possibly sequester contaminants in the area and reduce lateral pollution into surrounding areas over time.
It is interesting to note that access to groundwater is not the limiting factor determining whether trees are stressed or not during the dry winter season, as this site characteristic was not significantly different between stressed and unstressed areas at all sites. This implies that unstressed sites which have been identified in each mining district do have access to groundwater during the drier winter season. As has been reported at the beginning of the thesis, this research project was heavily dependent on trees growing singly, in rows or in small groups, which experienced lower levels of competition from neighbouring plants. Therefore, these trees would have had a greater opportunity for extending root systems laterally, and the link between dry season tree water stress and groundwater accessibility could be have been influenced.

Earlier studies have reported on the surrounding lands and water systems of the Welkom, Vaal River and West Wits mining district to show increasing salinity levels over the years (Roos and Pieterse, 1995; Viver et al., 2001; Naicker et al., 2003; Winde et al., 2004a,b,c). An evaluation of the site characteristic data indicates that salinity levels possibly do affect whether trees are stressed or unstressed, as these characteristics such as groundwater chloride and sulphate concentrations, total dissolved solids and electrical conductivity displayed significant differences between stressed and unstressed areas in the three mining districts.
CHAPTER 8.
GENERAL SYNTHESIS, CONCLUSIONS AND RECOMMENDATIONS

8.1 LITERATURE REVIEW CONCLUDING STATEMENTS

The review undertaken in this study clearly demonstrates that there has been extensive research on the detection and measurement of plant water stress using ground-based and remote sensing technologies. This review of commonly used ground based measurements of plant water stress and spectral reflectance indices was used as a stepping stone to further develop spectral plant water stress relationships for specific tree species in this research study. The review clearly highlights that ground-based techniques are more suited for localised measurements and for ground-truthing of remotely sensed data. The issue of scale is a major factor affecting the platform of remote sensing data to be used and the appropriate ground based measurements to be employed in the field for verifications studies. From this study, the measurement of predawn leaf water potential has been identified as a key methodology for linking remotely sensed assessments of plant water stress to actual plant water stress in the landscape. However, in large scale remote sensing applications which could stretch across several kilometres, practical approaches for ground truthing remote sensing imagery are advised, such as using predawn leaf water potential measurements to identify the extremes in plant water stress within a region.

Remote sensing research has identified several individual spectral bands and vegetation spectral reflectance indices which have been used to detect plant water stress. The collation of this information (section 3.2, Table 3.1) will be useful to researchers of several disciplines who are actively applying remote sensing technologies to vegetative research. Many of these earlier studies as shown in section 3.2, Table 3.1, have focused on broad spectral bandwidths, and it is recommended that plant stress researchers further investigate the potential of narrow hyperspectral bandwidths to detect and interpret patterns of plant stress. Furthermore, the importance of the red edge, defined as the region between 690 and 740 nm, has gained increasingly more attention over the years, and is seen as one of the most
important regions of the spectrum when investigating plant stress. It is also recommended that the results from hyperspectral studies should be incorporated in multispectral systems and technologies to allow for specialised high spectral resolution investigations to be undertaken with reduced data volumes in a cost-effective manner. Developers of remote sensing technologies should utilise the findings of these types of studies in order to optimise sensor systems. Optimal hyperspectral bands which best characterise different vegetation classes should be incorporated into multispectral systems through sensor modifications or spectral filters. Using this approach, researchers would no longer be restricted to existing specifications, but could tailor remote sensing model inputs to a particular application. The ultimate goal is to move from impractical, large data volumes and expensive sensor development towards practical low data volumes, high temporal resolution and cheaper sensor development. Most spectral indices have been derived for a single species with constant leaf size and shape, leaf surface and internal structure, implying that their usefulness varies with respect to species and site conditions. Therefore, the most commonly used indices reported in the literature must be evaluated against ground-truth data.

8.2 GENERAL SYNTHESIS ON VEGETATION SPECTRAL REFLECTANCE INDICES

Vegetation spectral reflectance indices, which were previously tested using hand-held spectral reflectance measurements (Chapter 4), were successfully applied to satellite medium and high resolution remote sensing data (Chapter 5) and the airborne multispectral and hyperspectral remote sensing data. The general trends identified in the use of vegetation spectral reflectance derived from different sources of remote sensing data to detect plant water stress included:

- Three spectral indices, viz. 695/690 (Carter, 1994), (850-710)/(850-680) (Datt, 1999) and (710/760) (Carter, 1994), derived from the red and near-infrared regions of the electromagnetic spectrum using leaf-level spectral reflectance data (Chapter 4), were identified as useful spectral indicators of plant water stress and could be linked to plant chlorophyll content.
• The popular water band index (900/970) (Penuelas et al., 1997), which was designed to capture changes in plant water content, when derived from leaf-level spectral reflectance data, was correlated to measurements of predawn leaf water potential. Such findings substantiate the importance of hyperspectral remote sensing research and the use of high spectral resolution data to identify subtle relationships between plant water content and narrow-band spectral reflectance data.

• Broadband vegetation indices, which capture changes in the visible region of the electromagnetic spectrum and which are sensitive to changes in plant pigment content, performed well when applied to the medium spectral resolution remote sensing data e.g. Proba Chris satellite data (Chapter 5). These indices included the normalised difference vegetation index (NDVI), the greenness normalised difference vegetation index (GNDVI) and the red edge normalised difference vegetation index (RENDVI).

• Narrow-band vegetation indices which are sensitive to changes in plant water content/plant water status and spectral changes in the red edge region of the spectrum, performed well when applied to high spectral resolution remote sensing data e.g. Hyperion satellite data (Chapter 5). These indices included red edge position (REP) and plant senescence reflectance indices (PSRI).

• The GNDVI, when derived using satellite remote sensing data, was considered to be a fairly robust index and was highly correlated to chlorophyll fluorescence and predawn leaf water potential.

• GNDVI has the potential to be used to map spatial patterns of winter-time plant stress for different genera/species and in different geographical locations when using satellite remote sensing data.

• Predawn leaf water potential measurements were found to be strongly correlated to spectral indices derived from high and medium spectral resolution satellite data.

• Two individual spectral wavebands acquired using airborne multispectral remote sensing data (Chapter 6), the green and blue band, which are sensitive to changes in plant pigment content in the visible region of the spectrum, was related to total carotenoid pigment content.
Five vegetation spectral indices, four of which are sensitive to changes in plant pigment content \( (850 - 710)/(850 - 680) \) (DATT, 1999), PSRI, GNDVI, NDVI), and normalised difference water index (NDWI) which captures changes in plant water content, performed well when applied to airborne hyperspectral remote sensing data (Chapter 6).

The DATT (1999) spectral reflectance model \( (850 - 710)/(850 - 680) \), when derived from airborne remote data, was considered to be a fairly robust index, which was correlated to ground based measurements of chlorophyll fluorescence and predawn leaf water potential.

Predawn leaf water potential measurements were found to be strongly correlated to spectral indices derived from the visible, near-infrared and short-wave infrared region of the airborne hyperspectral data.

The highest adjusted \( R^2 \) value (90.5%) was obtained for the model derived between predawn leaf water potential (PLWP) and the water band index (WBI) when using hyperspectral satellite imagery. However, this model was derived only for the West Wits mining district and, as this study has clearly illustrated, that reflectance models are site- and species-specific, this model should not be applied across the Vaal River and Welkom mining districts. It is recommended future studies test this model on other species at other sites.

8.3 CONCLUDING REMARKS

Spectral reflectance analyses undertaken consistently identified specific spectral wavelengths which are useful as indicators of plant water stress, and could be further linked to other plant physiological conditions. Spectral bands extracted from the visible and near-infrared regions of the spectrum (550, 676, 680, 690, 695, 705, 710, 750, 760, 800, 900, 970 nm), including the red-edge region defined from 690 to 740 nm, used to derive the models for mapping spatial patterns of plant water stress in the Welkom, Vaal River and West Wits mining districts, were found to be important indicators of plant water stress. These results strongly support the research undertaken by several other researchers around the globe (Curran et al., 1990; Carter, 1993; Baret et al., 1994; Filella and Penuelas 1994; Gitelson and Merzlyak,
The preliminary findings that plant stress does influence the wood anatomical characteristics, specifically radial vessel diameter, vessel frequency and wood density in *E. camaldulensis*, *E. sideroxylon* and *S. lancea* were shown for the three mining districts (Appendix 6). In general, trees experiencing higher plant water stress displayed smaller vessel diameters when compared to less stressed or healthy trees. These results are in accordance with studies which indicated that water stress in plants induces a decrease in xylem vessel diameters (Zimmerman and Milburn, 1982; Zhang et al., 1988; February, 1993; February, 1994; February et al., 1995; Lovisolo and Schubert, 1998; Naidoo et al., 2006). However, sites which were influenced by high levels of contaminated water also displayed smaller vessel diameters, indicating that the uptake of contaminants could affect the wood anatomy of plants. Trees considered to be experiencing higher plant water stress displayed higher vessel frequency.

### 8.4 Recommendations

The South African Government has ratified several international and national interventions and frameworks including the Copenhagen Accord (2009) to support sustainable use of our natural resources and protection of our country’s environmental assets, including sustaining and protecting our water resources and biodiversity assets in South Africa. Considering these global and local pressures, efforts to reduce the movement of polluted water from near surface seepage and groundwater shallow aquifers into lands adjacent to the TSFs are paramount. Recommendations to use tree belts to absorb and transpire greater quantities of water than the grasslands and wetlands presently in close proximity to the TSFs could reduce water table depths and slow lateral contaminated flows into the surrounding lands.

The geophysical surveys undertaken in the three mining districts which provided detailed subsurface information on groundwater saturation and an indication of the salinity conditions
confirms the presence of “relatively” shallow and saline groundwater sources. This would imply that trees roots could access the “relatively” shallow groundwater even during the dry winter season and assist in containing contaminated groundwater seeping into surrounding lands.

Exploration of relationships between vegetation indices derived from leaf-level, satellite and airborne spectral reflectance data and ground-based measurements used as “surrogate” measures of plant water stress revealed that several prominent and recurring spectral reflectance indices could be applied to identify plant water stress within the Welkom, Vaal River and West Wits mining districts. The models recommended for mapping and detecting spatial patterns of plant water stress when using different sources of remote sensing data include:

- **Chlorophyll b DATT** spectral reflectance model (section 4.3.2.3) when derived from leaf-level spectral reflectance data, could be applied across all three mining districts.
- **Predawn leaf water potential GNDVI** spectral reflectance model (section 5.3.2.3) and **predawn leaf water potential water band** index spectral reflectance model (section 5.3.3.3) when utilising satellite multispectral and hyperspectral remote sensing data.
- **Carotenoid content green band** spectral reflectance model (section 6.3.1.3) can be used for airborne multispectral resolution data.
- **Predawn leaf water potential NDVI** spectral reflectance model (section 6.3.2.3) is best suited for airborne high spatial and hyperspectral resolution data.

It is evident from the proposed models that chlorophyll content, carotenoid content and predawn leaf water potential are important “surrogate” measures of plant water stress for the three species *E. camaldulensis*, *E. sideroxylon* and *S. lancea* investigated in the Welkom, Vaal River and West Wits mining districts.
It is also recommended that future studies test the model derived between predawn leaf water potential and the water band index, which achieved the highest adjusted R² value (90.5%) when using hyperspectral satellite imagery obtained for the West Wits mining district.

Furthermore, a preliminary study also highlighted that plant stress does influence the wood anatomical characteristics (radial vessel diameter, vessel frequency and wood density) in *E. camaldulensis*, *E. sideroxylon* and *S. lancea* trees in the three mining districts (Appendix 6). Therefore, it is also recommended that a more rigorous approach, using simple wood coring technologies, could be developed to improve our understanding of long-term manifestations of water and contaminant stress on wood anatomy of plants without compromising on biomass production.

This study has clearly demonstrated the potential of using remote sensing technologies together with ground-based measurements to detect winter-time plant stress in *E. camaldulensis*, *E. sideroxylon* and *S. lancea* trees in the Welkom, Vaal River and West Wits mining districts. Such methodologies could be easily transferred to other industries such as agriculture in support of existing practices to spatially map and detect stress patterns in agricultural crops. Furthermore, remote sensing based surface energy balance models which are more readily used nowadays to simulate spatial patterns of evaporation, should be modified to include plant stress reflectance models, to allow users to evaluate the correlation between surface energy fluxes, evaporation and plant stress.

It is also recommended that the mining companies, such as AngloGold Ashanti together with government line departments such as Department of Agriculture, Forestry and Fisheries (DAFF) and Department Water and Environmental Affairs (DWEA), use information generated from such studies to support the development of catchment or site monitoring tools which can be used to assess the water use within a catchment on a regular time-step, and which can assist water and mine managers when making decisions regarding the water resources within catchments. More specifically, such operational tools could then be used to illustrate the “spatial” benefits of programmes such as the Mines Woodlands Project.
REFERENCES


CLEARY, B. and ZAERR, J. 1984, Guidelines for measuring plant moisture stress with a pressure chamber. PMS Instrument Company. Royal Oaks Drive, Corvallis, Oregon, USA.


GENSTAT, 2008, version 11.1, VSN International Ltd.


ASSESSING GROUNDWATER ACCESS BY TREES GROWING ABOVE CONTAMINATED GROUNDWATER PLUMES ORIGINATING FROM GOLD TAILINGS STORAGE FACILITIES


SHEN, Y., ZHENG, R.S. and YAN, C.Y., 2005, Estimation models for vegetation water content at both leaf and canopy levels. *Institute of Electrical and Electronics Engineers*, 2, 1387-1389.


STARK, R., 2001, Remote sensing techniques for monitoring vegetation condition. Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev.


STRASSER, R.J. and TSIMILLI-MICHAEL, M., 2001, Stress in plants, from daily rhythm to global changes detected and quantified by the JIP-Test. *Chimie Nouvelle (SRC)*, 75, 3321-3326.


TYREE, M.T. and DAINTY, J., 1973, The water relations of hemlock (*Tsuga canadiensis*). II. The kinetics of water exchange between symplast and apoplast. *Canadian Journal of Botany*, 51, 1481-


WATMOUGH, S.A. 1999, Monitoring historical changes in soil and atmospheric trace metal levels by dendrochemical analysis. Environmental Pollution, 106, 391-403.


WEIERSBYE, I.M., 2002, The Containment of Pollution from Tailings Dams: The Sustainable Vegetation of Slimes Dam Project and the Mine Woodlands Project. Invited Review and Discussion Document for a nationwide initiative in partnership with Government and Mining. Directorate of Community Forestry, Department of Water Affairs and Forestry,
Pretoria and Directorate of Mine Rehabilitation, Department of Minerals and Energy, Pretoria, WITS_GOVT_20/07/02V2, 71p.


APPENDIX 1: REVIEW PAPER

Review

Review of commonly used remote sensing and ground-based technologies to measure plant water stress

M Govender1,2*, PJ Dyl1, IM Weiersbye1, ETF Wilkowski2 and F Ahmed1

1School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, PO Wits 1036, South Africa
2CSIR National Resources and the Environment, 1, School of Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3840, South Africa

*Remote sensing GIS and satellite modeling, School of Environmental Sciences, University of KwaZulu-Natal, Durban 4041, South Africa

Abstract

This review provides an overview of the use of remote sensing data, the development of spectral reflectance indices for detecting plant water stress, and the usefulness of field measurements for ground truthing purposes. Reliable measurements of plant water stress over large areas are often required for management applications in the fields of agriculture, forestry, conservation and land rehabilitation. The use of remote sensing technologies and spectral reflectance data for determining spatial patterns of plant water stress is widely described in the scientific literature. Airborne, space-borne and land-based remote sensing technologies are commonly used to investigate the spectral response of vegetation to plant stress. Earlier studies utilised multispectral sensors which commonly collect four to seven spectral bands in the visible and near-infrared regions of the electromagnetic spectrum. Advances in sensor and image processor technology over the past 1 decade now allow for the simultaneous collection of several hundred narrow spectral bands resulting in more detailed hyperspectral data. The availability of hyperspectral data has led to the identification of several spectral indices that have been shown to be useful in identifying plant stress. Such studies have revealed strong linear relationships between plant pigment concentration and the visible (VIS) and near-infrared (NIR) reflectance, while plant water content has been linked to specific bands in the short-wave infrared (SWIR) region of the spectrum. Ground-truthing is essential to identifying useful reflectance information for detecting plant water stress, and four commonly used ground-based methods are presented: leaf water potential, leaf chlorophyll fluorescence, leaf pigment concentrations and leaf water content are reviewed for their usefulness and practical application.

Keywords: leaf chlorophyll fluorescence, leaf-water content, plant pigment concentrations, plant water stress, predawn leaf-water potential, remote sensing

Introduction

All living organisms including plants need an adequate supply of water to ensure both their growth and survival. Water is plants is required to permit vital processes such as photosynthesis, respiration and nutrient uptake. Plants absorb water from the soil through their roots, which is then transported to their stems, leaves and flowers for the maintenance of the different vital processes. When water supply is insufficient, plants may suffer water stress which could cause corresponding decreases in growth production, reproduction and survival.

Water stress in plants is a complex physiological response to the limited availability of water in the soil. When plants suffer from water stress, a series of harmful plant-water interactions occur, which may disrupt plant’s physiology. These include a decrease in cell water potential, cell turgor and relative water content (Mino, 1975).

The available water to plants is usually expressed in terms of water potential. Water potential is commonly measured by measuring predawn leaf water potential, a direct measure of plant water stress. Measurements of predawn directly evaluate the water status of the plant, because during night-time hours under zero transpiration, plant water potential equilibrium to the available soil water (Cross, 1992b; Cross and Zerba, 1992). Cross and Zerba (1992b) suggested that a predawn leaf water potential of less than -0.2 MPa is an indicator of stressed vegetation. Indirect measurements may also be used to detect plant water stress. These commonly used techniques include measurements of extract leaf water content, plant chlorophyll pigment content and chlorophyll fluorescence. Other, less frequently applied measurements used in verifying remote sensing studies include variations in traits or stress-related leaf variables characteristic.

Although characterizing variations in whole plants is potentially a useful technique for understanding the response to water stress in a plant, this method is time-consuming, costly and not suitable for use over large spatial scales. It has been shown in many plant species that there are more accessible to measuring than data and trees most correlation is more easily to characterization plant water stress between species (Sperry and Salindra, 1994; Elder et al., 1996; Hicks and Suter, 1996, Lindsey et al., 1996).

Available detection and prediction of plant water stress is desirable for numerous agricultural, forestry, conservation and land rehabilitation applications. Various remote and ground-based technologies are available for the assessment of plant water stress.

* To whom all correspondence should be addressed.

+27 (11) 708 5706; fax +27 (11) 756 5266; e-mail mgłowender@wits.ac.za

Received 1 August 2000; accepted 16 revised form 14 September 2000.

741
Remote sensing technologies which utilise spectral reflectance data have increasingly been used for determining spatial patterns of plant water stress (Yamawaki and Dillenburg, 1999; Caccietto et al., 2000; Satti and Gums, 2002; Put et al., 2003; Jeppesen et al., 2005; Soria et al., 2005; Chin-Shieh et al., 2006; Clay et al., 2006; De Tita et al., 2006; Eisen et al., 2006; Finger et al., 2006; Morisi et al., 2006; Sapienza-Castagneto et al., 2007; Morisa et al., 2008; Campbell et al., 2007; Mooy et al., 2009). Important advances of remote sensing technologies include cost-effectiveness, efficiency in displaying spatial patterns at a variety of scales, and versatility in revealing a variety of structural and physiological characteristics of water-stressed plants. Despite numerous successful case studies, the selection of suitable remote sensing methods and algorithms remains different, due to the influence of vegetation diversity and site conditions on vegetation spectral reflectance.

Fusion sensor studies the detection of plant water stress using remote sensing technologies and ground-based techniques commonly used to identify water stress in plants and which are suitable for ground-truthing remote-sensed imagery. Within the scope of this study, no distinction is made between the technologies used for acquiring the sensor data being used, but rather the focus is on highlighting vegetation spectral characteristics which have been used to detect plant water stress. The ground-based techniques reviewed are based on measurements of leaf reflectance and leaf water potential (Dunse, 1994), leaf chlorophyll fluorescence (de Beer, 1984), leaf water content (Wenhamley, 1990) and leaf pigment concentrations (Lichtenthaler, 1990).

Detection of plant water stress using remote sensing

The application of remote sensing technologies for plant and vegetation monitoring is widespread and has been reported during the 1950s. These studies made use of low spatial and spectral resolution (30 m to 80 m pixel size) multispectral data. Multiplespectral remote sensing data commonly consist of 1 to 7 broad spectral bands in the visible (VIS) and near infrared (NIR) regions of the electromagnetic spectrum. These factors are acquired acquired by airborne and ground-based spectrometers. Early airborne systems consisted of a multispectral camera mounted on board a light aircraft. Spectrometers at the time were bulky, heavy instruments which were not easily transportable in the field; therefore most measurements were taken in laboratories.

Remote sensing technologies have advanced significantly since the past 15 to 20 years. With the development of hyperspectral remote sensing technologies, researchers have benefited from significant improvements in the spatial and spectral properties of the data, allowing for more detailed plant and environmental studies. These technologies acquire high-dimensional spectral data across the spectrum from 400 to 2 500 nm using airborne, airborne, and space-based devices. The use of Hyperspectral data can provide insights into the physiological state of plants and their health status. Hyperspectral data has also been used to identify and classify different plant species, vegetation cover types, and land use/land cover categories. This information can be used to develop land use/land cover maps and assess the condition of ecosystems.

In recent years, there has been an expanding body of literature concerning the relationship between the spectral reflectance properties of vegetation and the structure of vegetation. The reflectance characteristics of vegetation are determined primarily by the characteristics of the leaf and other components of the plant. The reflectance of chlorophyll pigments is an important indicator of plant stress (Carr et al., 1992). On the other hand, canopy structure and water content of leaves affect the reflectance properties of the plant. The reflectance properties of vegetation are determined by the structure of vegetation and the spectral characteristics of vegetation and plant pigments in the leaf. The reflectance properties of vegetation are determined primarily by scattering and absorption characteristics of the leaf and other components of the plant. The reflectance properties of vegetation are determined primarily by the characteristics of the leaf and other components of the plant. The reflectance properties of vegetation are determined primarily by scattering and absorption characteristics of the leaf and other components of the plant.
### Table 1

<table>
<thead>
<tr>
<th>Region of the spectrum</th>
<th>Vegetation spectral reflectance characteristics</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>750 to 1,750 nm</td>
<td>Pigments, cellular structure and water content of leaves</td>
<td>Gausman (1977)</td>
</tr>
<tr>
<td>1,380 to 2,500 nm</td>
<td>Correlation of MIR reflectance to leaf water content</td>
<td>Tucker (1985)</td>
</tr>
<tr>
<td>800 to 2,500 nm</td>
<td>Reflectance is influenced by liquid water in plant tissue</td>
<td>Tucker (1985)</td>
</tr>
<tr>
<td>Red Edge</td>
<td>Changes in ed, green and blue reflectance due to chlorophyll fluorescence</td>
<td>Munsell (1982)</td>
</tr>
<tr>
<td>Red Edge</td>
<td>Movement of red edge towards shorter wavelengths during senescence or stress induced chlorosis</td>
<td>Collins et al. (1983)</td>
</tr>
<tr>
<td></td>
<td>Red edge defined from 695 to 740 nm is also sensitive to chlorophyll content</td>
<td>Hofer et al. (1983)</td>
</tr>
<tr>
<td>Red Wavelengths</td>
<td>Displacement in the step of the red wavelength towards longer wavelengths as chlorophyll content increases</td>
<td>Hofer et al. (1983)</td>
</tr>
<tr>
<td>Thematic Band 5 to 7</td>
<td>Ratio of Band 5 to 7 highly correlated with water content of soil and vegetation</td>
<td>Munsell and Polletier (1986)</td>
</tr>
<tr>
<td>VIS and NIR</td>
<td>Estimated chlorophyll, l and total carotenoid content using equations and specific characteristics coefficients</td>
<td>Lüthi (1978)</td>
</tr>
<tr>
<td>Red Edge</td>
<td>Increase in the effective properties of chlorophyll a will result in movement of red edge towards longer wavelengths, independent of total chlorophyll content and vice versa</td>
<td>Guenther and Hart (1986)</td>
</tr>
<tr>
<td>NIR (700 to 1,300 nm)</td>
<td>Detection of plant water stress in oak, sweetgum and chestnut</td>
<td>Hunt and Rock (1989)</td>
</tr>
<tr>
<td>680 to 1,090 nm</td>
<td>Significant relationship between the equivalent water thickness and a moisture stress index between reflectance values measured at 1,000 nm and reflectance measured at 820 nm</td>
<td>Hunt and Rock (1989)</td>
</tr>
<tr>
<td>Red Edge</td>
<td>Chlorophyll content of branches of aspen (Populus aspen) predicted using red edge</td>
<td>Curran et al. (1996)</td>
</tr>
<tr>
<td>VIS (490 to 750 nm)</td>
<td>Increased reflectance is response to plant stress regardless of the stress agent</td>
<td>Carter (1993)</td>
</tr>
<tr>
<td>850 nm and 1,240 nm</td>
<td>Normalized difference water index as an estimate of vegetation water content</td>
<td>Gao (1995)</td>
</tr>
<tr>
<td>550, 700 and longer than 750 nm</td>
<td>Specific wavelengths sensitive to pigment variations and chlorophyll assessment at leaf level for maple and chestnut leaves</td>
<td>Greenberg and Merydih (1996)</td>
</tr>
<tr>
<td>Reflectance at 550 and 700 nm, and 490 and 670 nm</td>
<td>High correlation in yellow-green to dark green leaves</td>
<td>Greenberg and Merydih (1996)</td>
</tr>
<tr>
<td>Maximum reflectance at 750 nm, lowest reflectance between 490 to 500 nm</td>
<td>Highly correlated</td>
<td>Greenberg and Merydih (1996)</td>
</tr>
<tr>
<td>670 to 690 nm</td>
<td>Reflectance at 670 to 690 nm was insensitive to chlorophyll a above 70% of leaf tissue chlorophyll a content</td>
<td>Lüthi (1978)</td>
</tr>
<tr>
<td>550, 700 and 750 nm</td>
<td>Reflectance increases at high absorption coefficients should be more sensitive to low concentrations of chlorophyll a and specific regions with low absorption should be more sensitive to high chlorophyll a concentrations</td>
<td>Lüthi et al. (1996)</td>
</tr>
<tr>
<td>750, 700 and 550 nm</td>
<td>The reflectance indices (Rw/Rr and Rw/Rs) were identified as having strong linear relationship with total chlorophyll concentration at the leaf scale in horse chestnut (Aesculus hippocastanum), and narrow maple ( Acer platanoides)</td>
<td>Lüthi et al. (1996)</td>
</tr>
<tr>
<td>SWIR (1,500 to 2,500 nm)</td>
<td>Reflectance is influenced by liquid water in plant tissue and can be used as an estimate for vegetation water content</td>
<td>Penney and Haenssli (1997)</td>
</tr>
</tbody>
</table>
detecting changes from the normal (unstressed) spectral reflectance pattern is the key to interpreting plant stress. Specific reflectance wavelengths in the red and near-infrared region of the spectrum, which are sensitive to plant chlorophyll pigment variation, have been identified. Reflectance from 700 nm and 1500 nm show maximum sensitivity to a wide range of chlorophyll concentrations (Curran et al., 1999; Carter, 1999; Uehara and Nakajima, 1996; Linke and Berinde, 1996; Dett, 1999). However, there is little agreement on the optimum wavelength to be used in the remote assessment of plant chlorophyll content.
Assessing groundwater access by trees growing above contaminated groundwater plumes originating from gold tailings storage facilities

Indices have been derived using a combination of specific radiometric signature, and a ratio of chlorophyll content (Curran et al., 1999; Jacquotaud, 1999; Brain and Jaccoutaud, 1994; Barst et al., 1994; Faddis and Parnell, 1994; Tomlinson and Mare, 1993; Brain and Finney, 1994; Blackbum, 1994a; Blackbum, 1994b; Libng et al., 1990; Blackbum, 1994a; Dent, 1990; Eaves et al., 2001; Coops et al., 2001). However, the relationship between chlorophyll content and leaf or canopy reflectance is not necessarily generic and cannot be drawn when applying these indices across different vegetation types or biozones for the prediction of plant water stress (Coops, 2003).

In the remote measurement of plant water stress, total chlorophyll and chlorophyll a content have been identified as key spectral indicators. Chlorophyll a absorbs strongly in the red and near-infrared because of electronic transitions of the chlorophyll molecules. As the chlorophyll concentration increases, there is an apparent displacement in the slope of the spectral curve in the red to near-infrared wavelengths (Taylor et al., 1983). However, in a stressed plant there is a shift towards shorter wavelengths, often reported as the "blue shift" (Curran, 1999).

The interdependence of chlorophyll a and total chlorophyll provide an accurate measure of changes in spectral reflectance due to plant water stress. If the relative proportion of chlorophyll a to increase there would be a movement of the red edge to longer wavelengths due to a decrease in total chlorophyll content. Likewise a decrease in the relative proportion of chlorophyll a would result in a movement of the red edge to shorter wavelengths, also independent of total chlorophyll content. However, the effect of a changing chlorophyll ratio on the red edge is likely to be minor and less proved difficult to observe compared to the effect of the total chlorophyll content (Guyot and Board, 1989). Therefore, red reflectance is considered a reliable metric for total chlorophyll content and changes in leaf pigments (Coops, 2003).

When chlorophyll content is used as a measure of plant water stress, the placement and shape of the spectral red edge are important indicators of plant water stress (Taylor, 1994; Curran, 1999; Blackbum, 1999; Blackbum, 2007). This relationship is used to explain the movement of the red edge to longer wavelengths during different degrees of plant water stress, such as moisture or stress-induced chlorosis (Collins et al., 1985; Rock et al., 1988; Millet and Monet, 1996; Clay et al., 2004; Campbell et al., 2007).

Spectral indicators of plant water content

Plant water content at the leaf and canopy scales is often estimated using specific spectral reflectance bands and spectral reflectance indices from near-infrared, middle-infrared (NIR), and short-wave infrared (SWIR) regions of the electromagnetic spectrum (Tucker, 1983; Hunt and Reynolds, 1989; God, 1995; Zarco-Tejada, 2005; Jackson et al., 2004; Slawe et al., 2005; Chen-Tung et al., 2006).

NIR and MIR spectral bands are highly correlated to water content of vegetation, canopy dry content (Tucker, 1983; Hunt and Reynolds, 1989; Moussier and Pallais, 1994; 1998). Spectral bands from these regions have been used to delineate stressed trees from normal reference trees (Tucker, 1980; Hunt and Rock, 1988). Moussier and Pallais, (1986, 1988). In these regions of the electromagnetic spectrum, leaf water content has been accurately measured using bands 1.55 μm to 2.55 μm (Tucker, 1980), as well as the ratio of spectral bands 1.55 μm to 1.95 μm and 1.95 μm to 2.55 μm (Moussier and Pallais, 1986). However, the relationship between spectral indices and leaf or canopy reflectance is not necessarily generic and cannot be drawn when applying these indices across different vegetation types or biozones for the prediction of plant water stress (Coops, 2003).

In the SWIR region, i.e. 2.40 μm to 2.50 μm, field measurements have shown significant changes to this region of the spectrum consistent with changes in the water content of plants (Tucker, 1980; Curran, 1999). Several relationships have been identified between biochemical spectral bands in the SWIR region and different ground-based measurements of plant water stress such as relative water content, leaf water potential, stomatal conductance, and cell wall elasticity (Finn and Board, 1997; Po et al., 2000). In particular, Finney and Barst (1997) reported that the spectrum wavelengths at 1.500 μm and 1.720 μm are most appropriate for showing plant water content in both woody and herbaceous plant species.

Several spectral indices have been derived to detect changes in plant water content for the remote assessment of plant water stress. The sensitivity of such spectral indices to changes in plant water content is influenced by the internal leaf structure. Therefore, some spectral indices may not be suitable for the detection of low or moderate levels of plant water stress (Zarco-Tejada et al., 2006). Two spectral indices that have been successfully used are the normalised difference index (God, 1995) and water band index (Parnell et al., 1995).

The normalised difference water index (God, 1995) is commonly used and accepted as an accurate estimate of plant water content. This index consists of the ratio of the difference between reflectance measured at 800 nm and 1.240 μm, and the sum of reflectances measured at 800 nm and 1.240 μm respectively (God, 1995). At these wavelengths, reflectance samples have similar water-holding properties, but slightly different liquid water absorption properties. Therefore, this index has been successfully applied to remotely detect plant water content for various tree species (God, 1995; Jackson et al., 2004; Sunman et al., 2005; Elid, 2006).

The water band index is derived from the ratio of reflectance measured at 900 nm and 970 nm (Parnell et al., 1995). This spectral index has been correlated with ground-based measurements of plant water content at both the leaf and canopy scales. It is however more sensitive to leaf water content than the water content of the whole plant. This is categorous in agricultural applications, where leaf water content changes more noticeably in response to drought conditions than the water content of the entire plant foliage (Camargo et al., 2002).

Factors affecting spectral reflectance from leaf to canopy scales

The levels of spectral reflectance from a plant leaf or canopy are determined by a variety of factors. The factors that play a role in the spectral reflectance from a plant leaf or canopy include species, size, age, maturity of plants or foliages, aspect, stress, climatic conditions, a variety of environmental variable, leaf position, and the geometric arrangement of the object, scene, sensor, and surface orientation of the ground.
Assessing groundwater access by trees growing above contaminated groundwater plumes originating from gold tailings storage facilities

Assessment of groundwater access by trees growing above contaminated groundwater plumes originating from gold tailings storage facilities includes:

- Remote sensing
  - Spectral data
    - Field study with tree growth
    - Differences in tree growth patterns
    - Correlation with groundwater contamination

- Spectral data analysis
  - Tree growth patterns
  - Groundwater contamination

- Groundwater access assessment
  - Remote sensing
  - Spectral data analysis
  - Tree growth patterns

- Remote sensing
  - Spectral data analysis
  - Tree growth patterns
  - Groundwater contamination

- Groundwater access assessment
  - Remote sensing
  - Spectral data analysis
  - Tree growth patterns

- Remote sensing
  - Spectral data analysis
  - Tree growth patterns
  - Groundwater contamination

- Groundwater access assessment
  - Remote sensing
  - Spectral data analysis
  - Tree growth patterns

- Remote sensing
  - Spectral data analysis
  - Tree growth patterns
  - Groundwater contamination

- Groundwater access assessment
  - Remote sensing
  - Spectral data analysis
  - Tree growth patterns

- Remote sensing
  - Spectral data analysis
  - Tree growth patterns
  - Groundwater contamination

- Groundwater access assessment
  - Remote sensing
  - Spectral data analysis
  - Tree growth patterns

- Remote sensing
  - Spectral data analysis
  - Tree growth patterns
  - Groundwater contamination

- Groundwater access assessment
  - Remote sensing
  - Spectral data analysis
  - Tree growth patterns
with respect to leaf size and development stage when making a comparison between plant species (Witkovsky et al., 1992). Damaged samples (crushed leaf petioles or torn leaf blades) and re-cutting of sample stems (Chisholm et al., 1993) lead to a break in the reaction of the cyanide, and should thus be avoided (Chen and Zhou, 1994; Turner, 1988). Furthermore, the portion of the leaf or stem artery in the stream is in the presence of cyanide the stem must be cut off as close as possible to the leaf's edge and to prevent leaf damage. To achieve specific conditions, it is best to work with a single, rapidly developing, silicon compound that can be used. However, a slow down the time of leaves that can be measured (Turner, 1988). High-pressure gases or a silicon adhesive compound should be used on the upper or lower or even the leaf's petiole and in addition to prevent leaf damage.Studies on the optimum height of determination of the chamber and the effect of rapid pressure and plant tissues build-up within the chamber are shown that fast rates of evaporation can lead to both underestimated or overestimated rate of water potential due to the gradients of water potentials in the sample (Hunting and Cleary, 1967; Blum et al., 1973; Tyrrell and Dainty, 1987; Turner, 1981). Therefore, Turner (1981) suggested an average pressure range of 0.125-0.25 MPa. Furthermore, duration must be taken to be used in the leaves within the presence of cyanide, will and velocity values protect the leaves from reaction with cyanide during the determination. A microscopic or safety glasses should be used to protect the operator's eyes if any material is removed or cutoff during the determination (Turner, 1981).

Correct determinations of growth, when the leaf sap is transferred to the cut surface of the leaf, are made for an accurate estimation of water potential (Kolthoff and Hinshelwood, 1961; Turner, 1988; Campbell, 1990; Evans, 1990; Smith and Holmberg, 1995). The use of a hygrometer or measuring a hygrometer is necessary to minimize possible percentage variation. Field equipment required for leaf water potential measurements is relatively easy to set up within a specific time, but can be cumbersome when there are many sample sites which are not in close proximity to each other. When accounting for the time required for setting up of the equipment, gathering of samples and the actual measurement at each, only limited number of measurements is possible within the timeframe. Therefore, for practical purposes, the method would be more appropriate for localized measurements, as compared to large-scale measurement.

Leaf chlorophyll fluorescence

Over the past decade, chlorophyll fluorescence kinetics has been used more extensively to provide considerable information on the organization and function of the photosynthetic apparatus (Govindjee et al., 1981). Information is gathered more readily and extensively outside the laboratory using portable optical systems and compact chlorophyll fluorescence meters. The functioning of the photosynthetic apparatus is dependent on the process of photosynthesis, whereby light energy is absorbed and converted into organic compounds. Several environmental factors, including water, light and nutrients, affect this process and may lead to plant stress. Therefore, the photosynthetic apparatus has been observed to be a good indicator of stress and stress adaptation of a plant and is associated with the measurement of chlorophyll fluorescence (Jahne and Richter, 1992; Turner and Trumel-McClellan, 2000; Turner et al., 2001). Also, because changes in chlorophyll fluorescence may occur before any physical sign of stress or chlorophyll degradation are manifested in the plant, chlorophyll fluorescence can be detected before the onset of physical damage (Lühtihalme et al., 2007).

Chlorophyll fluorescence measurement can be described using the typical signals of a temporary fluorescence signal or transients. During a typical fluorescence transient, the fluorescence signal decays rapidly from a ground state to a minimum fluorescence (F₀) when all electron acceptors are fully reduced or excited. Some data are unavailable to accept and transients electrons (Rohde and Little, 2003). Various parameters representing different phases in a typical fluorescence transient can yield information about stress affecting the functioning of the photosynthetic system (Turner et al., 1991; Rohde and Little, 2003). Photochemical efficiency is a common parameter used to assess the effect of environmental stress on the photosynthetic machinery (Turner and Trumel-McClellan, 2001). The photochemical efficiency of Photosystem II (PSII) is estimated by Fv/Fm, which is the ratio of variable fluorescence (Fv) to maximum fluorescence (Fm).

In most studies on the application of chlorophyll fluorescence, the Fv/Fm ratio is used as an indicator of photosynthetic efficiency (Govindjee et al., 1981; Rennen and Limma, 1983; Ogren, 1990; Van Rensburg et al., 1996; Van der Meijden et al., 1997; Liu and Zhang, 1999; Petersen et al., 2001; Rohde and Little, 2003; Cifra et al., 2005). In these studies, it has been well documented that at the chlorophyll level, the content of the non-photochemical quenching is sensitive to environmental stress (Chavez, 1987). Studies which have measured the photochemical response of leaves have suggested that a decrease in Fv/Fm due to drought-stress injury to the photosynthetic structures affecting photosynthetic electron transport (Van Rensburg et al., 1996; Van der Meijden et al., 1997; Liu and Zhang, 1999). These results indicate that Fv/Fm of drought-stressed leaves is lower than the control, especially in the more drought-stressed areas. Van Rensburg et al. (1996) found that the decrease in Fv/Fm was due largely to an increase in F₀, an indication of permanent damage to the PSII. PSII appears to be particularly sensitive to a number of stress factors including frost injury, plants and wind (Cowan and Was, 1990). Rohde and Little (2003) also showed a decrease in Fv/Fm of water-stressed Eucalyptus grandis seedlings, resulting from a loss in PSII and a decrease in Fm. Since this ratio is a reduction of the maximum yield of primary photosynthesis, Fv/Fm is also used as an indicator of tissue swelling and injury.

Water stress leads to several other changes in the photosynthetic apparatus of a plant. Low water potential has been observed to cause a decrease in the quantum yield of CO₂ evolution in chloroplasts and leaves from sunflower plants, a decrease in the ability of the coupling factor isolated from spinach leaves to bind fluorescent nucleotides, and a decrease in the ratio of the maximum fluorescence in the red algae Porphyra umbilicalis (Govindjee et al., 1981).

Data presented on the relationship between maximum fluorescence intensity and the water potential of leaves of...
Assessing Groundwater Access by Trees Growing Above Contaminated Groundwater Plumes Originating from Gold Tailings Storage Facilities

Norman Ender, Andrew Stelzer and Thomas Meentzen, suggest that the use of chemometric analysis of the wavelength-dependent chlorophyll fluorescence of PSI (Gorinstein et al., 1991). It was clear from these results that the rate of maximum peak chlorophyll fluorescence decreased beyond the visible part of the spectrum.

Norman Ender, Kohler (1997) as a low level of 1.1. When measured, the rate decreased to the water potential. Because some of these results, Gorinstein et al. (1991) concluded that water stress inhibited electron flow of PSI in the 3 species examined, and that the rate decreased as the leaf potential decreased.

The use of chlorophyll fluorescence measurements in conjunction with other techniques in a relatively quick initial screening method for assessing plant stress within a localised area. These have also been significant advances in the application of chlorophyll fluorescence at spatial scales over the past decade. This technique has allowed the correlation of chlorophyll fluorescence parameters using laser-induced fluorometers (Quinn et al., 2001). In addition, this approach allows the identification of different processes under different conditions (Ciffari, 2005). There are two main indicators, leaf area index and chlorophyll concentration.

Chlorophyll and carotenoid pigmentation concentration

Plant pigmentation concentration vary with species, ecotypes and physiology, and are also affected by season and various climatic factors (G elder and Marquis, 1997). For instance, the leaves of a plant growing at high light intensity may have higher chlorophyll concentrations than a plant growing at low light intensity. Reduced chlorophyll concentrations are often associated with stressed plants, resulting in lower photosynthetic efficiency and reduced growth.

Conventionally, chlorophyll and carotenoid concentrations in plant extracts are determined with spectrophotometric techniques. However, these methods can be laborious and time-consuming.

A typical water absorption curve for a leaf shows a high initial rate of increase followed by a prolonged period of slow absorption. This absorption is driven by the mass of water absorbed by the leaf to maintain the water deficit of the plant system.
by cell expansion, so that tensile changes occurring during this season are not used in the calculation of the relative water content of the sample. Therefore, an accurate measurement of target weight should be determined at the end of the first winter season (Yamazaki and Dillenburg, 1999).

Water absorption periods usually recommended for conifer range from 2 to 4 hours, which is much longer than the 4 hour period usually required for most broad-leaved plants (Yamazaki and Dillenburg, 1999). To reduce water absorption periods, smaller leaf disks which absorb water more quickly are commonly used instead of larger whole leaves (Berry and Weatherley, 1962). This method may however, also alter more water influx through intercellular spaces, thereby resulting in a greater water absorption per unit of leaf area, when compared to the system in whole leaves (Berry and Weatherley, 1962; Specht, 1981).

Measuring the relative leaf water content of plants is a simple yet time-consuming process. Comparative measurements between stressed and unstressed plants should be undertaken during the morning when differences in water potentials between plants are greatest (Clary and Zentmire, 1984). Due to these time constraints this method is most appropriate for localized groundwater measurements.

Comparison of ground-based measurement techniques for measuring plant water stress

It has been agreed in this review that all ground-based measurements, viz. predawn leaf water potential, chlorophyll fluorescence, chlorophyll and carotenoid pigment concentrations can all be used in the water stress monitoring of plants in response to water stress. However, these 4 methods are not suitable for large spatial scale sampling, and would be most useful for localised studies or for localised ground-truthing of remote sensing applications. Sampling protocols for ground-truthing applications are dependent upon the spatial scales at which the remote sensing study is being undertaken, viz. leaf, canopy, stand or landscape scale and hence sample sizes will differ accordingly. A summary of some of the advantages and disadvantages of each ground-based method is listed in Table 2.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Advantages of a ground-based methods for measuring plant water stress</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ground-based method for measuring plant water stress</strong></td>
<td><strong>Advantages</strong></td>
</tr>
<tr>
<td>Predawn leaf water potential</td>
<td>Simple, reliable, inexpensive: measurement, low capital cost, portable, direct indication of plant water stress. All parts of plant at predawn should be at same water potential.</td>
</tr>
<tr>
<td>Leaf chlorophyll fluorescence</td>
<td>Stand-alone, lightweight, field, simple, rapid non-destructive sampling, relatively low capital cost, internal screening light source present in lower models, measurements can be taken any time of the day; technology advances for remote sensing applications using laser-based fluorometers.</td>
</tr>
<tr>
<td>Chlorophyll and carotenoid pigment concentrations</td>
<td>a) Classical analytical chemistry methods: Foundations in well-researched methodologies of spectrophotometry; b) Chlorophyll content: Simple, portable, non-destructive sampling, allows for repeated measurements on the same sample over time, instantaneous measurement</td>
</tr>
<tr>
<td>Leaf water content</td>
<td>Simple, no capital costs, low precision analytical measurement</td>
</tr>
</tbody>
</table>

ISSN 0387-4788 (Print) = Water SA Vol. 35 No. 5 October 2009
ISSN 1815-7590 (Online) = Water SA Vol. 35 No. 5 October 2009

Page 235
potential measurements would be preferred over laboratory analysis of plant chlorophyll pigments concentration.

In summary, it is recommended that a more complete but practical approach to assessing plant water stress is adopted. At least one ground-based technique such as plant pigment concentrations, chlorophyll fluorescence or relative leaf water content should be used for localised ground-truthing measurements to identify gradients in plant water stress, followed by invasive predawn leaf water potential measurements along these gradients to identify the extremes in plant water stress.

Concluding remarks

This review demonstrates that there has been extensive research on the detection and measurement of plant water stress using ground-based and sensor sensing technologies. Ground-based techniques are more suited for localised measurements and for ground-truthing of remotely sensed data. Remote sensing research has identified several individual spectral bands and vegetation spectral sub-endemic indices which have been used to detect plant water stress. Many of the earlier studies have focused on broad spectral bandwidths and it is recommended that plant stress researchers utilise the spectral bands to further investigate the potential of narrow hyperspectral bandwidths to detect and interpret patterns of plant stress. Furthermore, the importance of the red edge defined in the region between 650-740 nm has gained increasingly more attention over the years, and it is now one of the most important regions of the spectrum when investigating plant stress. It is also recommended that the results from hyperspectral studies should be incorporated in multispectral technologies through modified imaging systems or spectral filters to allow for specialised high spectral resolution investigations to be undertaken with reduced data volumes in a cost-effective manner. Most spectral indices have been derived for a single species with constant leaf size and shape, leaf structure and internal structure, implying that their usefulness varies with respect to species and its conditions. Therefore, the most commonly used indices reported in the literature must be evaluated against ground-truthing data. Ground-truthing of remote sensing data is an easy task especially when characterising different forest types and species. Expanding upon the role of which an investigation is being undertaken, it is recommended that a practical approach to assessing plant water stress is integrated through the use of at least one ground-based measurement, viz. plant pigment concentrations, chlorophyll fluorescence or relative leaf water content to identify gradients in plant stress, and to that undertake predawn leaf water potential measurements along this gradient, specifically to identify the extremes in plant water stress.

Acknowledgements

Acknowledgement for funding for this work is made to the Miss Woodslands Project (School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa), the South African Department of Water and Industry (THORP funding), AngloGold Ashanti Ltd and the CSIR.

References

ALDRED NN, SPERRY JF and FOCKE-WINTER F (1996) Root and stem xylem embolism, stomatal conductance, and leaf turgor in ecow

groundwater abstraction populations along a soil moisture gradient. Oecol. 105:293-301.


CLEARY D and KROEBER H (1984) In situ-measuring Plant Moisture Stress with a Pressure Chamber, P.M.I. Instrument

Available on website: http://www.nscw.org.za

ISSN 0378-4738 (Print) = Water SA Vol. 35 No. 5 October 2009

ISSN 2153-149X (Online) = Water SA Vol. 35 No. 5 October 2009

Page 236
MULLER NIC (1970) Investigation about the diffusion of the atmos-
pheric gases and the gaseous out-put of different lighting tests.
Management: Soil Conservation Society of America, Athens,
USA, p. 109-122.
MURCHIE HE and PELLETIER RE (1966) Response of some Thematic
Mapper bands to variation in soil and water content. Photogramm.
Eng. Remate Spat. 32: 1661-1664.
MURCHIE HE and PELLETIER RE (1968) Response to soil moisture of
special interest from institutional reflectance in thematic
METZ B, CMISOPOULOS E, DULIPER A and REISSAN.
SMITH RE (2000) Phytochemicals, nitrogen, chlorophyll a and
fluorescence of SFAD-562 readings in coffee beans. Int. J.
Hortic. 64: 359-360.
NORDH C, POSTER-M PÉREZ A, AGRA A, CONCEIBO W and
DOMINGO S (2003) Comparison of changes in stem diameter
and water potential values for detecting water stress in young
ORKES S (1990) Evaluation of chlorophyll fluorescence in pomegranate,
date and pear trees in commercial orchards. Acta. Hortic. 280:
239-241.
operated instrument for measuring chlorophyll a Fluorescence
Bagnall (ed.) Progress in Photosynthesis Research. Martinus
Adaptation of a FS-FTS-Remeoscope for remote sensing of
based diagnostic tool to evaluate the water stress experienced
by grapevine in field sites. Rev. J. Agron. 27: 49-55.
The refluence at the 90-790 region as a discriminator of plant
Utility of a portable spectroradiometer for the characteriza-
tion of plant growth in the fruit growing market. Proc. 17th
Symposium on Remote Sensing of Environment, Belgrade, Serbia
and Montenegro, 5-7 June 2002: 51-56.
a fluorescence and predawn water stress in Cucumis sativus
and Eucalyptus globulus using a non-destructive meter. Proc.
features in vegetation as indicators of water status in current
live oak (Quercus virginiana) leaves. Int. J. Remote Sens. 24:
37-93.
EITCHEI GA and HICKLEY TM (1975) The pressure chamber as an
ROCK V, BOSCH, HELLER M and MÜLLER R (1998) Emissivity of
soil and airborne spectrometers of the blue shift associ-
ROLANDO CA and LITTELMAN K (2003) Using chlorophyll fluo-
rescence to measure water stress in Eucalyptus grandis seedlings. O. J.
Plant. Physiol. 5: 167-172.
SALZBERG HB and ROSS (1993) Plant Physiology (5th ed.).
SCHAFER A and CHACON A (1991) Relation between extractable
chlorophyll a and chlorophyll a fluorescence readings in leaves of
eight tropical and subtropical fruit tree species. J. Plant
Physiol. 137: 477-482.
SCHLANGER F, HAMMEL HT, BRADFORD LA and HEUERMOGENA 
(1965) Sap pressure in vascular plants. (Sci. J. 1965:
109-206).
SEPELIC-CANTO G, ZARCO-TEDOA, M. R. JUÁREZ-MUNIZ 
J, SANCINIA IA, DE MIGUEL E and VILLALOBOS EJ (2006)
Detection of water stress in an olive orchard with thermal
remote sensing imagery. Agric. For. Meteorol. 133: 31-44.
SHEN Y, ZHANG BD and YAN CY (2003) Estimation models for
vegetation water content at both leaf and canopy levels. Inst.
content and spectral reflectance across a wide range of species,
leaf structures and development stages. Remote Sens. Environ. 84:
87-94.
SMITH R and MCINTIRE T (2005) Using a pressure chamber in
vineyards. Coop. Extension, University of Idaho, Idaho, USA.
SMITH R and MENSING JR (1994) Inter- and intra-plant
17: 1239-1240.
STEINBRENNER BE, BREDHAESE DD, USTIN SL and KEILUFAECE C (1990)
Spectral sensing of foliar water conditions in two co-occur-
STONE C, WEBB D and COOKS P (2001) Spectral reflectance
characteristics of corky moulds damaged by insects. Aust. J.
Bot. 49: 155-158.
STRASBERG R and TIMMS-LANDLEFLAISE M (2008) Stress in plants,
from daily rhythm to global changes detected and quantified by
the SP-VEGA. J. Chin. 73: 32-32.
STRASBERG R, TIMMS-LANDLEFLAISE M (2008) Analysis of the
fluorescence transient. In: OC PAQUIEUX and YS GOGOLISHIDZE (eds.)
TUCKER CI (1988) Remote sensing of leaf water content in the
TURNER NC (1988) Techniques and experimental approaches for
the measurement of plant water status. Plants 5: 539-566.
TURNER D (2008) Measurement of plant water status by the
pressure chamber technique. Crop Sci. 5: 249-258.
TYREE MT and DANTZI J (1973) The water relations of hemlock
(Tsuga canadensis). J. The kinetics of water exchange between
fluorescence as a measure of drought tolerance in Eucalyptus globulus and Populus trichocarpa. Proc. 15th ISROF Conf. on
WATKINS BH and CLEARY BD (1967) Plant moisture stress: evalua-
WEATHERLEY PR (1968) Studies in the water relations of the cotton
plant. I. The field measurement of water deficits in leaves. New
PhytoL 65: 89-97.
WEISSGROVE KE, LAISENBDH, WALCOTT C and FADDEEJ S (1992)
reflective water content in Agrostis stolonifera. J. Environ. Biol. 11:
99-105.
ZARCO-TEDOA R, MILLER JR, MOHMED OH and VILAND 
(2009) Chlorophyll fluorescence effects on vegetation apparent
reflectance. 1. Leaf-level measurements and model simulation.
Femme Zi, Environ. 74: 562-595.
content estimation in vegetation with MODIS reflectance data and
APPENDIX 2:
PROTOCOLS FOR GROUND-BASED MEASUREMENTS OF PLANT WATER STRESS

A. Predawn leaf water potential measurements

1. Setup up a pressure chamber system with a compressed air cylinder.
2. Ensure enough light is available (torches, lamps, spot lights) for predawn measurements. Have field notes and pen ready to take readings.
3. Use labelled plastic bags to collect leaf samples from individual sample trees. Immediately seal with a loose top knot to prevent moisture loss from leaves.
4. The rate regulator should be set to exhaust during setup. This regulator closes clockwise and opens anti-clockwise.
5. Use a sharp razor blade to cut a leaf with a long stalk. Only cut once, or use another leaf stalk.
6. Take out chamber and secure leaf stalk through rubber bung with prestik. Place in chamber. Replace the chamber and ensure it is properly fastened. During measurement, if a noise is created from air escaping, this indicates that there is a leak in the seal between the leaf stalk and the prestik around the rubber bung. If this is the case, the procedure should be re-started from the beginning and a new sampled must prepared.
7. The first gauge should read approximately 17 MPa from the cylinder.
8. The second gauge should read approximately 2 to 3 MPa, which allows air into the hose and chamber.
9. Use a magnifying glass to carefully watch the tip of the stalk. As soon as the first droplet of water appears at the tip of the stalk, a reading must be taken. Record all readings in a field book or in field notes.
B. Analytical measurement of leaf chlorophyll pigment content

Collection of leaf samples:
1. In preparation for the field sampling, ensure that a cooler box with sufficient ice packs and ice is on-hand to keep leaf samples frozen.
2. Label zip-lock plastic bags using a permanent marker and labels.
3. Collect leaf samples from each sample tree (at least 25 to 30 leaves) to ensure enough leaf material for 5 replicate analyses.
4. Immediately remove air from bag and seal properly.
5. Place labelled sample bag into cooler box to ensure that sample is frozen quickly to prevent chlorophyll degradation.
6. To prevent mixing of sample bags, staple samples bags from the same site and same tree species immediately together.
7. On return to the laboratory ensure that all sample bags are transferred from cooler box into a deep-freezer and are kept frozen until laboratory analysis.

Laboratory analysis:
1. In the laboratory ensure minimal unnatural light and draw blinds if necessary.
2. Using a sharp pair of scissors, cut 2 to 3 leaves into fine pieces.
3. Clean, dry and label 25 centrifuge test tubes representing 5 samples of 5 replications each. Place test tube into a test tube rack.
4. Measure 0.1g of the finely cut leaf sample into labelled test tube using a fine weighing balance.
5. Add 5ml of 100% methanol to each sample using a bottle dispenser.
6. Dissolve leaf sample in methanol using an ultra turax for 1 minute.
7. Add another 5ml of 100% methanol to each sample using a bottle dispenser, increasing the total volume to 10ml.
8. Centrifuge the test tubes at a speed 6 for 8 minute.
9. Using a finette pipette dispense 2ml of supernatant from each centrifuged test tube into cuvette. Dilute with 2ml of methanol.
10. Read the samples through a spectrophotometer calibrated at 665.2 nm, 652.4 nm and 470 nm.
11. Relative pigment contents can be estimated using the equations developed by Lichtenthaler (1987):
**ASSESSING GROUNDWATER ACCESS BY TREES GROWING ABOVE CONTAMINATED GROUNDWATER PLUMES ORIGINATING FROM GOLD TAILINGS STORAGE FACILITIES**

\[ Chlorophyll_a = 16.72 \cdot 665.2 + 9.16 \cdot 652.4 \]
\[ Chlorophyll_b = 34.09 \cdot 652.4 + 15.28 \cdot 665.2 \]
\[ Chlorophyll_a + b = 1.44 \cdot 665.2 + 24.93 \cdot 652.4 \]
\[ Carotenoid \cdot x + c = (0.001 \cdot 470 - 1.63 \cdot \text{Chlorophyll}_a - 104.96 \cdot \text{Chlorophyll}_b \]

C. Leaf chlorophyll fluorescence measurements using fluorescence meter

1. Connect the PAR clip with the external illuminator which has a long silver cable. Ensure that the illuminator is pointing downward, and that the illuminator and PAR clip align in order to tighten the screws. To the PAR clip, connect the lamp jack. Connect the PAR clip cable to the fluorescence meter accessory jack.
2. Connect the long silver cable to the front panel of the fluorescence meter. Line up the plugs so that they do not cross over (2 at the top: left a detector connector, right a actinic connector) and (bottom right saturation connector and left small trigger connector).
3. Power the fluorescence meter on only when all components are connected properly.
4. Use the selection wheel on front panel to navigate between the available measurement options.
5. Set the system test mode to the yield option. Use the test setup key to setup the parameters for measurements and the default yield mode parameter dataset to begin measurements.
6. Set the run data screen model to auto-log and ensure that the number of samples and the file number is 1 when starting measurements.
7. When the connection and setup is complete begin the sample readings. Try to select samples leaves from different areas of the tree, with at least 5 replicates per sample tree.
8. Always press the ‘measure’ tab using the option on the front panel rather than the trigger switch on the PAR clip, as the trigger switch is quite sensitive and sometimes does not work.
9. Only up to 25 readings can be stored on the fluorescence meter before the internal program begins to overwrite readings starting from the beginning (i.e. first reading). Therefore a maximum of 5 trees should be sampled (5 trees at 5 replicates each) before downloading the readings onto a floppy disk and thereafter to a laptop. Do not download trace data.
10. In order to export data to floppy disc all files must be ‘tagged’ using the tag option and then export to floppy disc.
11. To ensure that there is sufficient power for field measurements, the fluorescence meter and laptop batteries must be charged each evening. The fluorescence meter charger plugs into bottom of the meter and should charge all through the night.

**D. Field based measurements of relative leaf water content**

1. Collect leaf samples per sample tree and immediately store in plastic bags tied up lightly to prevent moisture loss.
2. To obtain a representative sample, collect leaves from midway and upper regions of the tree.
3. Set up a field scale and labelled specimen containers.
4. Calibrate the scale using an empty specimen container.
5. Prepare 5 replicates for each sample tree.
6. Gather a stack of leaves from each sample tree. Trim of the tips and stalks using a sharp scissors. Cut through the stack of leaves, approximately 2 equal horizontal halves. Overlay 2 halves and cut approximately 1x1 cm leaf discs into specimen containers.
7. Adjust each filled specimen container to 3g. Therefore the fresh weight (FW) of every sample should be 3g.
8. Top up each specimen container with water and seal tightly.
9. Allow the leaf discs/pieces to be immersed in water overnight.
10. Drain the water from each specimen container carefully to avoid any loss of leaf material.
11. Blot excess water from specimen container by hold a piece of paper towel over the top of the container and shaking a few times. Once again ensure that no leaf material is lost.
12. Setup scale and appropriately labelled small brown paper bags.
13. Calibrate the field scale using an empty small brown paper bag.
14. Empty leaf discs from specimen container into small brown paper bag. Use a tweezer if necessary to remove leaf discs from specimen container and place in brown paper bag. Ensure that no leaf material is lost.
15. Weigh bag with leaf discs to obtain turgid weight (TW). Record results in field notes for each sample site, sample tree and replicate readings.
16. Carefully fold the opening of the bag a few times to ensure that no leaf material can be lost.
17. Peg or clip all replicate bags from the same sample tree together using paper clips.
18. Store in box.
19. On return from field trip, immediately place all sample bags into a dryer/oven at 60 degrees Celsius for 24 hours.
20. Setup field scale.
21. Reweigh each sample bag for the dry weight (DW), and record results in the field notes.
22. Calculate the relative leaf water content of the leaves (RWC) using the formulae: 
   
   \[ \text{RWC} = \frac{\text{FW} - \text{DW}}{\text{TW} - \text{DW}} \]
APPENDIX 3: RESULTS OF THE COMPLETE REGRESSION ANALYSIS

Chapter 4 (Section 4.3.2.3) Selection of the best model

Regression analysis
Response variate: Chlb
Fitted terms: Constant + Datt + Species + Datt.Species

Summary of analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>s.s.</th>
<th>m.s.</th>
<th>v.r.</th>
<th>F pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>5</td>
<td>37.99</td>
<td>7.5985</td>
<td>34.34</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>Residual</td>
<td>69</td>
<td>15.27</td>
<td>0.2213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>53.26</td>
<td>0.7197</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage variance accounted for 69.3
Standard error of observations is estimated to be 0.470.

Estimates of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>estimate</th>
<th>s.e.</th>
<th>t(69)</th>
<th>t pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-1.449</td>
<td>0.461</td>
<td>-3.14</td>
<td>0.002</td>
</tr>
<tr>
<td>Datt</td>
<td>4.600</td>
<td>0.693</td>
<td>6.64</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>Species E_sider</td>
<td>2.82</td>
<td>1.54</td>
<td>1.83</td>
<td>0.071</td>
</tr>
<tr>
<td>Species Searsia lancea</td>
<td>-1.90</td>
<td>1.16</td>
<td>-1.63</td>
<td>0.107</td>
</tr>
<tr>
<td>Datt.Species E_sider</td>
<td>-4.31</td>
<td>2.25</td>
<td>-1.92</td>
<td>0.059</td>
</tr>
<tr>
<td>Datt.Species Searsia lancea</td>
<td>3.80</td>
<td>1.62</td>
<td>2.35</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Parameters for factors are differences compared with the reference level:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Reference level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>E_camal</td>
</tr>
</tbody>
</table>

Chapter 5 (Section 5.3.3.3) Selection of the best model when using the Hyperion data

Regression analysis
Response variate: PLWP_2005
Fitted terms: Constant, WBI

Summary of analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>s.s.</th>
<th>m.s.</th>
<th>v.r.</th>
<th>F pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>57.875</td>
<td>57.875</td>
<td>182.07</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>Residual</td>
<td>18</td>
<td>5.722</td>
<td>0.3179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>63.596</td>
<td>3.3472</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage variance accounted for 90.5
Standard error of observations is estimated to be 0.564.

Estimates of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>estimate</th>
<th>s.e.</th>
<th>t(18)</th>
<th>t pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>20.97</td>
<td>1.68</td>
<td>12.51</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>WBI</td>
<td>-22.77</td>
<td>1.69</td>
<td>-13.49</td>
<td>&lt;.001</td>
</tr>
</tbody>
</table>

Chapter 5 (Section 5.3.3.3) Selection of the best model when using the Proba Chris data
### Regression analysis

**Response variate:** PLWP  
**Fitted terms:** Constant + GNDVI + Species + GNDVI.Species + District + GNDVI.District

#### Summary of analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>s.s.</th>
<th>m.s.</th>
<th>v.r.</th>
<th>F pr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>9</td>
<td>70.74</td>
<td>7.8596</td>
<td>46.73</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>Residual</td>
<td>65</td>
<td>10.93</td>
<td>0.1682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>81.67</td>
<td>1.1036</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage variance accounted for 84.8

Standard error of observations is estimated to be 0.410.

#### Estimates of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>estimate</th>
<th>s.e.</th>
<th>t(65)</th>
<th>t pr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-4.169</td>
<td>0.627</td>
<td>-6.65</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>GNDVI</td>
<td>28.22</td>
<td>5.69</td>
<td>4.96</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>Species E sider</td>
<td>5.025</td>
<td>0.560</td>
<td>8.97</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>Species R lancea</td>
<td>2.798</td>
<td>0.621</td>
<td>4.50</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>GNDVI.Species E sider</td>
<td>-60.29</td>
<td>4.43</td>
<td>-13.60</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>GNDVI.Species R lancea</td>
<td>-23.54</td>
<td>5.34</td>
<td>-4.41</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>District Welkom</td>
<td>0.690</td>
<td>0.384</td>
<td>1.79</td>
<td>0.077</td>
</tr>
<tr>
<td>District West Wits</td>
<td>3.239</td>
<td>0.697</td>
<td>4.65</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>GNDVI.District Welkom</td>
<td>-13.58</td>
<td>3.87</td>
<td>-3.51</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>GNDVI.District West Wits</td>
<td>-25.39</td>
<td>6.11</td>
<td>-4.16</td>
<td>&lt;.001</td>
</tr>
</tbody>
</table>

Parameters for factors are differences compared with the reference level:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Reference level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>E_camal</td>
</tr>
<tr>
<td>District</td>
<td>Vaal River</td>
</tr>
</tbody>
</table>

---

### Chapter 6 (Section 6.3.1.3) Selection of the best model when using the multispectral airborne imagery

#### Regression analysis

**Response variate:** Cxc_J2005  
**Fitted terms:** Constant + GREEN + District + Species + GREEN.Species + GREEN.District

#### Summary of analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>s.s.</th>
<th>m.s.</th>
<th>v.r.</th>
<th>F pr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>9</td>
<td>6.909</td>
<td>0.76763</td>
<td>9.26</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>Residual</td>
<td>65</td>
<td>5.391</td>
<td>0.08294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>12.300</td>
<td>0.16621</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage variance accounted for 50.1

Standard error of observations is estimated to be 0.288.

#### Estimates of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>estimate</th>
<th>s.e.</th>
<th>t(65)</th>
<th>t pr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.262</td>
<td>0.474</td>
<td>4.78</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>GREEN</td>
<td>-0.01164</td>
<td>0.00637</td>
<td>-1.83</td>
<td>0.072</td>
</tr>
<tr>
<td>District Welkom</td>
<td>-0.227</td>
<td>0.557</td>
<td>-0.41</td>
<td>0.684</td>
</tr>
<tr>
<td>District West Wits</td>
<td>1.699</td>
<td>0.747</td>
<td>2.28</td>
<td>0.026</td>
</tr>
<tr>
<td>Species E sider</td>
<td>-4.70</td>
<td>1.60</td>
<td>-2.94</td>
<td>0.005</td>
</tr>
<tr>
<td>Species Searsia lancea</td>
<td>0.083</td>
<td>0.435</td>
<td>0.19</td>
<td>0.850</td>
</tr>
<tr>
<td>GREEN.Species E sider</td>
<td>0.0672</td>
<td>0.0246</td>
<td>2.73</td>
<td>0.008</td>
</tr>
<tr>
<td>GREEN.Species Searsia lancea</td>
<td>-0.00315</td>
<td>0.00648</td>
<td>-0.49</td>
<td>0.628</td>
</tr>
<tr>
<td>GREEN.District Welkom</td>
<td>0.00792</td>
<td>0.00858</td>
<td>0.92</td>
<td>0.359</td>
</tr>
<tr>
<td>GREEN.District West Wits</td>
<td>-0.0156</td>
<td>0.0100</td>
<td>-1.55</td>
<td>0.126</td>
</tr>
</tbody>
</table>

Parameters for factors are differences compared with the reference level:
Chapter 6 (Section 6.3.2.3) Selection of the best model when using the hyperspectral airborne imagery

Regression analysis
Response variate: PLWP
Fitted terms: Constant + NDWI + District + Species + NDWI.Species

Summary of analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>s.s.</th>
<th>m.s.</th>
<th>v.r.</th>
<th>F pr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>7</td>
<td>64.52</td>
<td>9.2177</td>
<td>34.96</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>Residual</td>
<td>65</td>
<td>17.14</td>
<td>0.2637</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>81.66</td>
<td>1.1342</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage variance accounted for 76.8
Standard error of observations is estimated to be 0.513.

Estimates of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>estimate</th>
<th>s.e.</th>
<th>t(65)</th>
<th>t pr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.43</td>
<td>1.60</td>
<td>1.52</td>
<td>0.134</td>
</tr>
<tr>
<td>NDWI</td>
<td>-3.15</td>
<td>1.42</td>
<td>-2.22</td>
<td>0.030</td>
</tr>
<tr>
<td>District Welkom</td>
<td>-4.34</td>
<td>1.67</td>
<td>-2.59</td>
<td>0.012</td>
</tr>
<tr>
<td>District West Wits</td>
<td>-3.10</td>
<td>1.65</td>
<td>-1.88</td>
<td>0.065</td>
</tr>
<tr>
<td>Species E_sider</td>
<td>-1.882</td>
<td>0.215</td>
<td>-8.75</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>Species Searsia lancea</td>
<td>0.740</td>
<td>0.237</td>
<td>3.12</td>
<td>0.003</td>
</tr>
<tr>
<td>NDWI.Species E_sider</td>
<td>27.60</td>
<td>2.68</td>
<td>10.31</td>
<td>&lt;.001</td>
</tr>
<tr>
<td>NDWI.Species Searsia lancea</td>
<td>-0.641</td>
<td>0.261</td>
<td>-2.46</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Parameters for factors are differences compared with the reference level:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Reference level</th>
</tr>
</thead>
<tbody>
<tr>
<td>District</td>
<td>Vaal River</td>
</tr>
<tr>
<td>Species E_camal</td>
<td>Reference level</td>
</tr>
</tbody>
</table>
## APPENDIX 4:
### OBSERVATION POINTS USED TO CREATE INTERPOLATED HYDROCHEMISTRY SURFACES

<table>
<thead>
<tr>
<th>Mining District</th>
<th>Name of observation point</th>
<th>Latitude (dd)</th>
<th>Longitude (dd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welkom</td>
<td>bh73</td>
<td>-27.94712571</td>
<td>26.57987594</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh74</td>
<td>-27.94502646</td>
<td>26.57511145</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh75</td>
<td>-27.94113123</td>
<td>26.57861099</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh78</td>
<td>-27.96454273</td>
<td>26.56343765</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh92</td>
<td>-27.98600952</td>
<td>26.52464388</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh93</td>
<td>-27.98652955</td>
<td>26.52633130</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh94</td>
<td>-27.98327699</td>
<td>26.54610434</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh95</td>
<td>-27.95507676</td>
<td>26.50929215</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh109</td>
<td>-27.97736463</td>
<td>26.54228126</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh110</td>
<td>-27.97254722</td>
<td>26.54587331</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh119</td>
<td>-27.96134985</td>
<td>26.56637073</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh126</td>
<td>-27.95689550</td>
<td>26.52966739</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh127</td>
<td>-27.93926994</td>
<td>26.51326971</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh128</td>
<td>-27.94730044</td>
<td>26.50533190</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh201</td>
<td>-27.98262052</td>
<td>26.53124218</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh56</td>
<td>-28.00774701</td>
<td>26.52368667</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh58</td>
<td>-27.98101911</td>
<td>26.5653719</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh81</td>
<td>-28.00696112</td>
<td>26.52309097</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh82</td>
<td>-28.00697127</td>
<td>26.52243724</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh83</td>
<td>-28.00671447</td>
<td>26.52285968</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh84</td>
<td>-28.00547934</td>
<td>26.52234234</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh204</td>
<td>-27.99014180</td>
<td>26.56116833</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh51</td>
<td>-27.94947389</td>
<td>26.48361745</td>
</tr>
<tr>
<td>Vaal River</td>
<td>Vr37</td>
<td>-26.92287821</td>
<td>26.6782905</td>
</tr>
<tr>
<td>Vaal River</td>
<td>Vr03</td>
<td>-26.92562565</td>
<td>26.68558976</td>
</tr>
<tr>
<td>Vaal River</td>
<td>Vr02</td>
<td>-26.91989294</td>
<td>26.78292698</td>
</tr>
<tr>
<td>Vaal River</td>
<td>Gn01</td>
<td>-26.95059599</td>
<td>26.77488036</td>
</tr>
<tr>
<td>Vaal River</td>
<td>Gn02</td>
<td>-26.95642114</td>
<td>26.77078500</td>
</tr>
<tr>
<td>Vaal River</td>
<td>Gn03</td>
<td>-26.94942064</td>
<td>26.78056866</td>
</tr>
<tr>
<td>Vaal River</td>
<td>K02</td>
<td>-26.98022332</td>
<td>26.73580516</td>
</tr>
<tr>
<td>Vaal River</td>
<td>Vrm06</td>
<td>-26.99057443</td>
<td>26.77224713</td>
</tr>
<tr>
<td>Vaal River</td>
<td>Vrm07</td>
<td>-26.98675748</td>
<td>26.77544161</td>
</tr>
<tr>
<td>Vaal River</td>
<td>Vr27</td>
<td>-26.96361443</td>
<td>26.71177468</td>
</tr>
</tbody>
</table>
### ASSESSING GROUNDWATER ACCESS BY TREES GROWING ABOVE CONTAMINATED GROUNDWATER PLUMES ORIGINATING FROM GOLD TAILINGS STORAGE FACILITIES

<table>
<thead>
<tr>
<th>Mining District</th>
<th>Name of observation point</th>
<th>Latitude (dd)</th>
<th>Longitude (dd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaal River</td>
<td>NT-BH1</td>
<td>-26.93124939</td>
<td>26.69361699</td>
</tr>
<tr>
<td>Vaal River</td>
<td>NT-BH3</td>
<td>-26.93325145</td>
<td>26.70134441</td>
</tr>
<tr>
<td>Vaal River</td>
<td>NT-BH2</td>
<td>-26.93118708</td>
<td>26.69364344</td>
</tr>
<tr>
<td>Vaal River</td>
<td>NT-BH4</td>
<td>-26.93610977</td>
<td>26.69728388</td>
</tr>
<tr>
<td>Vaal River</td>
<td>WP-BH3</td>
<td>-26.95521700</td>
<td>26.68548500</td>
</tr>
<tr>
<td>Vaal River</td>
<td>WP-BH6</td>
<td>-26.96417800</td>
<td>26.70493900</td>
</tr>
<tr>
<td>Vaal River</td>
<td>WP-BH4</td>
<td>-26.94230200</td>
<td>26.70465300</td>
</tr>
<tr>
<td>Vaal River</td>
<td>WP-BH5</td>
<td>-26.95043800</td>
<td>26.69450400</td>
</tr>
<tr>
<td>Vaal River</td>
<td>WP-BH2</td>
<td>-26.95523400</td>
<td>26.68557100</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH2</td>
<td>-26.42609800</td>
<td>27.35851100</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH3</td>
<td>-26.42368000</td>
<td>27.36331000</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH4</td>
<td>-26.42217300</td>
<td>27.37186100</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH5</td>
<td>-26.41581600</td>
<td>27.38312700</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH6</td>
<td>-26.41332100</td>
<td>27.40116000</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH7</td>
<td>-26.41975600</td>
<td>27.40464100</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH8</td>
<td>-26.41108900</td>
<td>27.40535200</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH9</td>
<td>-26.41060400</td>
<td>27.42302100</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH10</td>
<td>-26.43405700</td>
<td>27.43711100</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH11</td>
<td>-26.45659300</td>
<td>27.42258700</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH12</td>
<td>-26.45795800</td>
<td>27.41582400</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH13</td>
<td>-26.44828800</td>
<td>27.40448000</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH14</td>
<td>-26.46574400</td>
<td>27.36629600</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH15</td>
<td>-26.47091000</td>
<td>27.36722000</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH16</td>
<td>-26.47185300</td>
<td>27.36266400</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH17</td>
<td>-26.47029500</td>
<td>27.35321700</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH18</td>
<td>-26.44041500</td>
<td>27.36143300</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH23</td>
<td>-26.44630351</td>
<td>27.40695213</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH24</td>
<td>-26.44826800</td>
<td>27.40819900</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH25</td>
<td>-26.44800200</td>
<td>27.40664400</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH26</td>
<td>-26.44760200</td>
<td>27.40760500</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH27</td>
<td>-26.41624200</td>
<td>27.39261000</td>
</tr>
<tr>
<td>West Wits</td>
<td>MBH28</td>
<td>-26.41992500</td>
<td>27.39560000</td>
</tr>
</tbody>
</table>
Observation points used to create interpolated groundwater table level surfaces

<table>
<thead>
<tr>
<th>Mining District</th>
<th>Name of observation point</th>
<th>Latitude (dd)</th>
<th>Longitude (dd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welkom</td>
<td>bh73</td>
<td>-27.94712571</td>
<td>26.57987594</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh74</td>
<td>-27.94502646</td>
<td>26.57511145</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh75</td>
<td>-27.94113123</td>
<td>26.57861099</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh78</td>
<td>-27.96454273</td>
<td>26.56343765</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh94</td>
<td>-27.98327699</td>
<td>26.54610434</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh119</td>
<td>-27.96134985</td>
<td>26.56637073</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh126</td>
<td>-27.95689550</td>
<td>26.52966739</td>
</tr>
<tr>
<td>Welkom</td>
<td>bh51</td>
<td>-27.94947389</td>
<td>26.48361745</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VR27</td>
<td>-26.96361443</td>
<td>26.7177468</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VR29</td>
<td>-26.95612853</td>
<td>26.71343638</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VR28</td>
<td>-26.95024517</td>
<td>26.71508254</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VR31</td>
<td>-26.92474137</td>
<td>26.70086930</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VR32</td>
<td>-26.92158728</td>
<td>26.70744020</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VRM27</td>
<td>-26.95304423</td>
<td>26.68548188</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VRM26</td>
<td>-26.95306085</td>
<td>26.68556814</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VRM25</td>
<td>-26.94826584</td>
<td>26.69450149</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VRM24</td>
<td>-26.93610977</td>
<td>26.69728388</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VRM23</td>
<td>-26.93124939</td>
<td>26.69361699</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VRM21</td>
<td>-26.93118708</td>
<td>26.69364344</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VRM20</td>
<td>-26.9325145</td>
<td>26.70134441</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VRM19</td>
<td>-26.94013023</td>
<td>26.70465018</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VRM13</td>
<td>-26.96294360</td>
<td>26.7011173</td>
</tr>
<tr>
<td>Vaal River</td>
<td>VRM12</td>
<td>-26.95984606</td>
<td>26.68301626</td>
</tr>
<tr>
<td>West Wits</td>
<td>MB38</td>
<td>-26.43406100</td>
<td>27.34206576</td>
</tr>
<tr>
<td>West Wits</td>
<td>MB36</td>
<td>-26.43990507</td>
<td>27.35589822</td>
</tr>
<tr>
<td>West Wits</td>
<td>MB31</td>
<td>-26.42429357</td>
<td>27.37204080</td>
</tr>
<tr>
<td>West Wits</td>
<td>MB18</td>
<td>-26.43827353</td>
<td>27.36143224</td>
</tr>
<tr>
<td>West Wits</td>
<td>MB08</td>
<td>-26.40894501</td>
<td>27.40535864</td>
</tr>
<tr>
<td>West Wits</td>
<td>MB06</td>
<td>-26.41118354</td>
<td>27.40116140</td>
</tr>
<tr>
<td>West Wits</td>
<td>MB05</td>
<td>-26.41367920</td>
<td>27.38313138</td>
</tr>
<tr>
<td>West Wits</td>
<td>MB04</td>
<td>-26.42003194</td>
<td>27.37186118</td>
</tr>
<tr>
<td>West Wits</td>
<td>MB03</td>
<td>-26.42154029</td>
<td>27.36531547</td>
</tr>
</tbody>
</table>
APPENDIX 5: INTERPOLATED SURFACES USED TO CHARACTERISE UNDSTRESSED SITES IN EACH MINING DISTRICT

Figure A1: Interpolated surfaces of average soil depth and chloride concentrations in the Welkom mining district.
Figure A2 Interpolated surfaces of electrical conductivity and pH in the Welkom mining district.
Figure A3 Interpolated surfaces of sulphate concentrations and total dissolved solids in the Welkom mining district.
Figure A4 Interpolated surfaces of topsoil clay (%) and groundwater table level in the Welkom mining district.
Figure A5 Interpolated surfaces of electrical conductivity and pH in the Vaal River mining district.
Figure A6  Interpolated surfaces of topsoil clay (%) and groundwater table level in the Vaal River mining district.
Figure A7  Interpolated surfaces of chloride concentrations and electrical conductivity in the West Wits mining district.
Figure A8  Interpolated surfaces of pH and sulphate concentrations in the West Wits mining district.
Figure A9  Interpolated surfaces of total dissolved solids and groundwater table level in the West Wits mining district.
ABSTRACT

The aim of this preliminary study was to evaluate whether differences in wood anatomy characteristics, such as xylem vessel diameter, vessel frequency and wood density, could be used as non-destructive measures for identifying trees experiencing plant stress.

Seventy two wood core samples were extracted and analysed from two forestry species, *Eucalyptus camaldulensis* and *E. sideroxylon*, and the indigenous *Searsia lancea* in Welkom, Vaal River and West Wits mining districts. A predawn leaf water potential of -0.8 MPa was used as a benchmark to separate stressed from unstressed trees. Relative differences in radial vessel diameter, vessel frequency and wood density were examined.

Comparisons of the radial vessel diameter and vessel frequency measurements revealed significant differences in three of the five comparative sampling sites (p <0.05). Density analyses were significantly different for all five comparative sampling sites (p <0.01). In general, trees experiencing higher plant water stress displayed smaller vessel diameters, compared to less stressed or healthy trees. Sites which were influenced by high levels of contaminated water also displayed smaller vessel diameters, indicating that uptake of contaminants could affect the wood anatomy of plants. Trees considered to be experiencing higher plant water stress displayed higher vessel frequency.

The primary conclusion was that plant stress does influence the wood anatomical characteristics (radial vessel diameter, vessel frequency and wood density) in *E. camaldulensis*, *E. sideroxylon* and *S. lancea* in the three mining districts.

*Keywords*: plant stress, radial vessel diameter, vessel frequency, wood density
INTRODUCTION

Variations in the wood anatomical characteristics and the structure of trees result from a complex web of plant physiological interactions and environmental forcing functions (Downes et al., 2002). Several studies have revealed relationships between wood anatomical characteristics and environmental forcing factors such as temperature and rainfall (Lovisolo and Schubert, 1998; Zimmermann, 1983; February et al., 1995; Thomas et al., 2004; Naidoo et al., 2006). It is therefore useful to know how trees respond to the various individual contributing factors that result from varying environmental conditions, including water stress and environmental pollution.

Studies have indicated that plant stress resulting from varying levels of environmental contamination and water availability may manifest in plants as differences in xylem vessel size, vessel frequency and wood density characteristics (Lovisolo and Schubert, 1998; Zimmermann, 1983; Zhang et al., 1988; February, 1993; 1994; February et al., 1995; Thomas et al., 2004; Naidoo et al., 2006). In the gold and uranium mining regions of South Africa, environmental hazards resulting from the storage of high pulverised rock waste in tailings storage facilities contribute towards contamination and pollution of the environment (Van As, 1992; Straker et al., 2007).

The degradation of the environment and surrounding lands spreads far beyond these waste deposits and tailing storage facilities, with erosion and acid mine drainage from tailing storage facilities having severe impacts on nutrient cycling in polluted soils (Witkowski and Weiersbye, 1998b; Weiersbye et al., 2006). Research has shown that xylem vessel diameters increase, while vessel frequencies decrease with increases in available water (Zhang et al., 1988, February, 1993; 1994; February et al., 1995; Naidoo et al., 2006). Furthermore, it has also been shown through tree ring analysis that transition metals and metalloids are taken up and manifested in the anatomy of trees (Watmough, 1999; Edmands et al., 2001; Padilla and Anderson, 2002; Yu et al., 2007).
This study presented a unique opportunity to examine the xylem anatomical responses in plants attributed to water or contaminant stress in mining environments. Relative differences in xylem vessel diameter, vessel frequency and wood density attributed to plant stress were identified in wood cores extracted from *Eucalyptus camaldulensis*, *Eucalyptus sideroxylon* and *Searsia lancea* in Welkom, Vaal River and West Wits gold mining districts. This preliminary research study may usefully contribute towards a more rigorous approach to developing quantitative wood anatomy as a non-destructive tool for identifying trees which are experiencing plant stress.

**MATERIALS AND METHODS**

This study was conducted during winter in July 2004. Seventy two wood core samples were extracted from two forestry species, *Eucalyptus camaldulensis* and *Eucalyptus sideroxylon*, and the indigenous *Searsia lancea* in Welkom, Vaal River and West Wits mining districts. Trees sampled were selected from comparative sampling sites reported on in Chapters 4 to 6. Table B.1 provides a descriptive summary of the sampling sites including the mining district and species sampled, their geographical location, local soils and geology and a classification of stressed and unstressed sites.
Table B.1 Description of the comparative wood core sampling sites classified according to predawn leaf water potential.

<table>
<thead>
<tr>
<th>Mining District</th>
<th>Tree Species</th>
<th>Site Code</th>
<th>Geographic Coordinates (dd)</th>
<th>Site Description</th>
<th>Soil Description</th>
<th>Geology</th>
<th>Site classification according to predawn leaf water potential (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR</td>
<td>SL</td>
<td>RLVR1</td>
<td>-26.92301; 26.69820</td>
<td>Sampled on a slightly raised topography near a mine dump; lower contaminant levels and total dissolved solids.</td>
<td>Glenrosa and/or Mispah forms (other soils may occur), mesotrophic, lime rare or absent in the entire landscape, average soil depth 421.7 mm.</td>
<td>Dolomite/Quartzite</td>
<td>-1.07</td>
</tr>
<tr>
<td>VR</td>
<td>SL</td>
<td>RLVR2</td>
<td>-26.93418; 26.69592</td>
<td>Approximately 1 km southwards from RLVR1, between two tailing storage facilities, higher total dissolved solids, higher water availability due to seepage from the two tailing storage facilities</td>
<td>Glenrosa and/or Mispah forms (other soils may occur), mesotrophic, lime rare or absent in the entire landscape, average soil depth 421.7 mm.</td>
<td>Dolomite</td>
<td>-1.18</td>
</tr>
<tr>
<td>VR</td>
<td>EC</td>
<td>ECVR1</td>
<td>-26.99288; 26.78289</td>
<td>Sampled near a tailing storage facility deep groundwater table ~ 20m.</td>
<td>Plinthic catena: dystrophic and/or mesotrophic; red soils not widespread, upland duplex and margalitic soils rare, average soil depth 918.1 mm.</td>
<td>Dolomite</td>
<td>-0.93</td>
</tr>
<tr>
<td>VR</td>
<td>EC</td>
<td>ECVR2</td>
<td>-26.99332; 26.78250</td>
<td>High water availability, located within a water channel which flows parallel to the tailing storage facility.</td>
<td>Glenrosa and/or Mispah forms (other soils may occur), eutrophic, lime rare or absent in the entire landscape, average soil depth 421.7 mm.</td>
<td>Dolomite</td>
<td>-0.57</td>
</tr>
<tr>
<td>VR</td>
<td>EC</td>
<td>ECVR3</td>
<td>-26.92922; 26.68182</td>
<td>Approximately 200 m from the edge of the Western Complex tailing storage facility, a cluster of young <em>E. camaldulensis</em> trees which appeared to be visually unhealthy showing signs of reduced biomass, reduced tree height and yellow to brown leaf colour.</td>
<td>Plinthic catena: eutrophic; red soils not widespread, upland duplex and margalitic soils rare, average soil depth 387 mm.</td>
<td>Andesite</td>
<td>-0.96</td>
</tr>
<tr>
<td>VR</td>
<td>EC</td>
<td>ECVR4</td>
<td>-26.92970; 26.62100</td>
<td>Close to tailing storage facility 20 m northwards from site ECVR3, clump of green healthy trees.</td>
<td>Plinthic catena: eutrophic; red soils not widespread, upland duplex and margalitic soils rare, average soil depth 387 mm.</td>
<td>Andesite</td>
<td>-0.68</td>
</tr>
<tr>
<td>Mining District</td>
<td>Tree Species</td>
<td>Site Code</td>
<td>Geographic Coordinates (dd)</td>
<td>Site Description</td>
<td>Soil Description</td>
<td>Geology</td>
<td>Site classification according to predawn leaf water potential (MPa)</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------</td>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>WW</td>
<td>ES</td>
<td>ESWW1</td>
<td>-26.43899; 27.33024</td>
<td>Extreme opposite direction of ESWW2 within the stand, Thinner trees, less dense and visually unhealthy, lower water availability.</td>
<td>Glenrosa and/or Mispah forms (other soils may occur), non calcareous, lime rare or absent in upland soils but generally present in low-lying soils, average soil depth 503 mm.</td>
<td>Shale</td>
<td>stressed -1.78</td>
</tr>
<tr>
<td>WW</td>
<td>ES</td>
<td>ESWW2</td>
<td>-26.43969; 27.32871</td>
<td>Stand of dense, green and visually healthy trees along the riparian edge, approximately 10m from farm dam, high water availability, shallow groundwater table &lt; ~ 5m.</td>
<td>Glenrosa and/or Mispah forms (other soils may occur), non calcareous, lime rare or absent in upland soils but generally present in low-lying soils, average soil depth 503 mm.</td>
<td>Shale</td>
<td>stressed -0.95</td>
</tr>
<tr>
<td>W</td>
<td>SL</td>
<td>RLW1</td>
<td>-27.96695; 26.55075</td>
<td>Approximately 100 m from the edge of the Dankbaar Pan, located on cattle farmland, trees high water availability, very flat area, groundwater reported to have high electrical conductivity levels influenced by drainage pathways from the pan.</td>
<td>Prismacutanic and/or pedocutanic diagnostic horizons dominant. Non calcareous. In addition, one or more of: vertic, melanic, red structure diagnostic horizon, average soil depth 748.3 mm</td>
<td>Shale</td>
<td>stressed -1.31</td>
</tr>
<tr>
<td>W</td>
<td>SL</td>
<td>RLW2</td>
<td>-28.03361; 26.51199</td>
<td>Approximately 20 km away from the pan on an agricultural farm.</td>
<td>Red-yellow apedal, freely drained soils; red, eutrophic, high base status, &gt;300 mm deep (no dunes), average soil depth 1245.4 mm.</td>
<td>Shale</td>
<td>stressed -1.37</td>
</tr>
</tbody>
</table>

*W = Welkom; VR = Vaal River, WW = West Wits; EC = E. camaldulensis; ES = E. sideroxylon; RL = S. lancea*
In the field, five replicate trees were sampled at breast height on comparative sites in each of the three mining districts. Wood cores were extracted, sealed in plastic zip-lock bags, and then analysed for xylem vessel diameter, vessel frequency and wood density. Some of the very dry cores broke into fragments and were consequently excluded from the analysis. During this survey, predawn leaf water potential measurements were used to classify stressed and unstressed sites, were a value of -0.8 MPa was used as a benchmark to separate stressed from unstressed trees (Cleary and Zaerr, 1984). The comparative sampling sites were also provided with a unique code to facilitate comparative analyses.

At the CSIR Forestry and Forests Products laboratory, radial strips of uniform thickness were cut from the wood cores using a twin-blade saw and stored at a constant temperature of 24°C and 65% relative humidity. Strips were scanned at 0.5 mm intervals in a radial-longitudinal face from pith-to-bark using a gamma-ray densitometer, which was custom made in South Africa (1997), to determine the density profile. Pith-to-bark radial strips used for density measurements were then cut in transverse sections (25 µm) using a Leica base sledge microtome (Germany). Sections were mounted in ethanol on a glass slide and examined using a Leica fluorescent microscope (Germany). Measurements of radial vessel diameter (in mm) and vessel frequency were determined from pith-to-bark under 50x magnification with exposed window of 2 mm in radial direction and 0.5 mm in tangential direction (1 mm square) using image analysis software (Leica Qwin, Germany).

Statistical analyses of the radial vessel diameter, vessel frequency and wood density of the comparative sampling sites were undertaken using STATISTICA version 5.5 (1999). Means and standard deviations of the sites were derived, and significant differences between sites were determined using the t-test.

RESULTS

Comparisons between radial vessel diameter, vessel frequency and density measurements were undertaken to detect any significant differences between the five comparative sampling sites. The means and standard deviations for each sampling site and statistical tests for
significant differences are shown in Table B.2. The mean radial vessel diameter measurements ranged from 49.31 µm for the *E. camaldulensis* site sampled close to the Western Complex TSF in Vaal River (ECVR3) to 88.80 µm for the *E. camaldulensis* site sampled near Mispah TSF in Vaal River (ECVR1). The mean vessel frequency measurements ranged from 10.78 for ECVR1 to 19.51 for *S. lancea* sampled on farmland in Welkom (RLW2). The lowest density measurements were obtained for *E. camaldulensis* trees sampled in a water channel near the Mispah TSF in Vaal River (ECVR2), while the highest density measurements were obtained for *E. sideroxylon* trees sampled in West Wits (ESWW1).

Significant differences between the means of each comparative sampling site were assessed using a t-test (Table B.2). Comparison of the radial vessel diameter measurements revealed significant differences between three of the five comparative sampling sites. The results indicated that there were no significant differences in radial vessel diameter for the sites RLVR1 and RLVR2 (*t* = 0.28, 74df, *P* = 0.777) and ECVR1 and ECVR2 (*t* = -1.47, 63df, *P* = 0.146). Vessel frequency measurements revealed that there were also no significant differences between sites RLVR1 and RLVR2 (*t* = -0.38, 74df, *P* = 0.708) and ECVR3 and ECVR4 (*t* = -1.36, 74df, *P* = 0.178). However, the results of the density analyses were significantly different for all five comparative sampling sites.
## Table B.2  Means and standard deviations of xylem vessel and density characteristics measured from the five comparative sampling sites.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Summary Statistics</th>
<th>Site RLVR1</th>
<th>Site RLVR2</th>
<th>Site ECVR1</th>
<th>Site ECVR2</th>
<th>Site ECVR3</th>
<th>Site ECVR4</th>
<th>Site ESWW1</th>
<th>Site ESWW2</th>
<th>Site RLW1</th>
<th>Site RLW2</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial vessel diameter (µm)</td>
<td>Mean</td>
<td>62.28</td>
<td>62.77</td>
<td>88.80</td>
<td>84.39</td>
<td>49.31</td>
<td>66.24</td>
<td>59.95</td>
<td>66.50</td>
<td>53.53</td>
<td>60.41</td>
<td>t = 3.82</td>
</tr>
<tr>
<td></td>
<td>Standard Deviation</td>
<td>7.76</td>
<td>6.99</td>
<td>15.53</td>
<td>9.99</td>
<td>4.34</td>
<td>9.09</td>
<td>12.31</td>
<td>8.98</td>
<td>10.39</td>
<td>3.92</td>
<td>47df P &lt; 0.001</td>
</tr>
<tr>
<td>Vessel frequency (mm²)</td>
<td>Mean</td>
<td>17.89</td>
<td>17.53</td>
<td>10.78</td>
<td>12.15</td>
<td>13.08</td>
<td>14.32</td>
<td>15.31</td>
<td>13.14</td>
<td>15.53</td>
<td>19.51</td>
<td>t = 2.88</td>
</tr>
<tr>
<td></td>
<td>Standard Deviation</td>
<td>4.24</td>
<td>4.08</td>
<td>3.05</td>
<td>1.77</td>
<td>4.33</td>
<td>3.54</td>
<td>4.98</td>
<td>2.84</td>
<td>8.18</td>
<td>2.45</td>
<td>43df P = 0.006</td>
</tr>
<tr>
<td>Density (g.cm⁻³)</td>
<td>Mean</td>
<td>0.8454</td>
<td>0.8690</td>
<td>0.7233</td>
<td>0.6675</td>
<td>0.7621</td>
<td>0.7803</td>
<td>0.8729</td>
<td>0.8032</td>
<td>0.8342</td>
<td>0.8179</td>
<td>t = -2.91</td>
</tr>
<tr>
<td></td>
<td>Standard Deviation</td>
<td>0.0133</td>
<td>0.0170</td>
<td>0.0311</td>
<td>0.0182</td>
<td>0.0222</td>
<td>0.0330</td>
<td>0.0215</td>
<td>0.0299</td>
<td>0.0329</td>
<td>0.0198</td>
<td>75df P = 0.005</td>
</tr>
</tbody>
</table>

EC = *E. camaldulensis*; ES = *E. sideroxylon*; RL = *S. lancea*; W = Welkom; VR = Vaal River, WW = West Wits
Pith to bark measurements were then compared for each comparative sampling site in order to investigate the trends across the width of the core samples. Figure B.1 illustrates the radial vessel diameter, vessel frequency and wood density measured from pith to bark for selected comparative sampling sites. In general minor differences were visible between samples for the first 7 mm measured from pith to bark, as shown in Figure B.1a, b, d and e. However, consistently larger differences were apparent between *E. camaldulensis* trees (ECVR3 and ECVR4) sampled near the Western Complex tailing storage facility in Vaal River mining district (Figure B.1c). Figure B.1c illustrates larger mean radial vessel diameter measurements from pith to bark at the ECVR4 site compared to ECVR3 site. Differences in radial vessel diameter measurements were also visible between comparative sampling sites ESWW1 and ESWW2 in West Wits, and RLW1 and RLW2 in Welkom. Radial vessel diameters measured between 9 and 38 mm were generally larger at ESWW2 and RLW2 site compared to ESWW1 and RLW1 site respectively.

Figure B.2 illustrates differences in mean vessel frequency measured from pith to bark at the five comparative sampling sites. Differences in mean vessel frequency, measured from pith to bark, were highly variable across the wood core samples (Figure B.2 a to d). Vessel frequencies ranged between 5 and 40 mm$^{-2}$. Mean vessel frequencies were generally higher, between 11 and 38 mm from pith to bark, at the RLW2 site when compared to RLW1 (Figure B.2e).
Figure B.1  Radial vessel diameter measured from pith to bark for a) *S. lancea* at site RLVR1 and RLVR2, b) *E. camaldulensis* at site ECVR1 and ECVR2 and c) site ECVR3 and ECVR4 in Vaal River, d) *E. sideroxylon* at site ESWW1 and ESWW2 sampled in West Wits and, e) *S. lancea* at site RLW1 and RLW2 sampled in Welkom.
Figure B.2  Mean vessel frequency measured from pith to bark for a) *S. lancea* at site RLVR1 and RLVR2, b) *E. camaldulensis* at site ECVR1 and ECVR2 and c) site ECVR3 and ECVR4 in Vaal River, d) *E. sideroxylon* at site ESWW1 and ESWW2 sampled in West Wits and, e) *S. lancea* at site RLW1 and RLW2 sampled in Welkom.

Figure B.3 illustrates differences in density measured from pith to bark at the five comparative sampling sites. Density measurements ranged from 0.6 to 0.95 g cm\(^{-3}\). Incremental measurements were generally higher at the RLVR2 site compared to RLVR1 site (Figure B.3a). Minor differences were apparent at the four remaining comparative sampling sites, as shown in Figure B.3 b to e. In general, density measurements were less variable across the sites when compared to mean radial vessel diameter and vessel frequency measurements.
Figure B.3  Density measured from pith to bark for a) *S. lancea* at site RLVR1 and RLVR2, b) *E. camaldulensis* at site ECVR1 and ECVR2 and c) site ECVR3 and ECVR4 in Vaal River, d) *E. sideroxylon* at site ESWW1 and ESWW2 sampled in West Wits and, e) *S. lancea* at site RLW1 and RLW2 sampled in Welkom.

**DISCUSSION**

Statistical comparative analyses were undertaken for xylem vessel size, frequency and wood density measurements for the five comparative sampling sites. Comparison of the radial vessel diameter and vessel frequency measurements revealed significant differences in three
of the five comparative sampling sites (p <0.05). However, the results of the density analyses were significantly different for all five comparative sampling sites (p < 0.01).

Site RLVR1 is characterised by *S. lancea* trees that were sampled on slightly raised topography near a TSF, an area considered to have lower contaminant levels and total dissolved solids compared to *S. lancea* trees sampled at Site RLVR2, approximately 1 km southwards between two TSFs. Site RLVR2 has higher total dissolved solids and higher water availability due to seepage from the two tailing storage facilities (Weiersbye, 2005). Wood density measurements were found to be statistically different at the two sites (p< 0.001); while radial vessel diameter (p = 0.777) and vessel frequency (p = 0.708) measurements were not significantly different.

At sites ECVR1 and ECVR2, *E. camaldulensis* trees were sampled near a TSF located in the Vaal River mining district. Trees sampled at Site ECVR2 were located within a water channel which flows parallel to the tailing storage facility. Vessel frequency measurements were significantly different (p = 0.020) between the two sites, with lower frequency measurements obtained at ECVR1 compared to ECVR2 site. Wood density measurements were also significantly different (p < 0.001), with lower values obtained at the ECVR2 site, where trees were sampled in a water channel. Radial vessel diameter measurements were not significantly different at the two sites (p = 0.146). Differences in vessel frequency and wood density could imply differences in wood anatomy characteristics resulting from contaminant up-take from the water channel.

At sites ECVR3 and ECVR4, *E. camaldulensis* trees were also sampled approximately 200 m from the edge of the Western Complex TSF located in Vaal River. Site ECVR3 was characterised by a cluster of young *E. camaldulensis* trees which appeared to be visually unhealthy, showing signs of reduced biomass, reduced tree height and yellow to brown leaf colour. Approximately 20 m northwards lay Site ECVR4 consisting of a clump of healthier, young green *E. camaldulensis* trees. In general, the mean radial vessel diameter, vessel frequency and wood density measurements were higher at ECVR4 site compared to ECVR3 site. However, significant differences were determined between radial vessel diameter (p < 0.001) and wood density (p = 0.002) measurements. Differences between vessel frequency
measurements were smaller and were not significant (p = 0.178; mean difference = 1.24 mm$^{-2}$).

Sites ESWW1 and ESWW2 consisted of a stand of *E. sideroxylon* trees, which were situated approximately 10 m from a small dam on the Deelkraal Farm in the West Wits mining district. The stand of trees could be characterised as being dense, green and visually healthy along the riparian edge, but at least 20 m ahead, the trees began to thin, became less dense and were visually more stressed or unhealthy. The ESWW2 site was located along the riparian edge and the ESWW1 site at least 20 m ahead within the stand. Radial vessel diameter measurements were generally larger in trees sampled along the riparian edge (Site ESWW2) compared to trees sampled away from the farm dam (Site ESWW1) (p = 0.010). Vessel frequency (p = 0.024) and wood density (p <0.001) measurements were significantly higher in the more stressed trees sampled within the stand (Site ESWW1) compared to the trees sampled along the riparian edge (Site ESWW2).

Site RLW1 was characterised by *S. lancea* trees located approximately 100 m from the edge of Dankbaar Pan, which is located on cattle and agricultural farmland within the Welkom mining district. This area is very flat and the groundwater is reported to have high electrical conductivity levels influenced by drainage pathways from the pan itself (I. Weiersbye, 2004 pers comm.). The comparative Site RLW2 was selected approximately 20 km away from the pan on an agricultural farm. A trend of large radial vessel diameters and vessel frequencies was observed in trees sampled on the agricultural farmland (Site RLW2) compared to trees sampled near the pan (Site RLW1). In contrast, the mean wood density measured in trees near the pan (Site RLW1) was greater compared to trees sampled on the agricultural farmland (Site RLW2). Radial vessel diameter (p = < 0.001) and vessel frequency (p = 0.006) and wood density (p = 0.005) measurements were significantly different at the two sites.

In general, trees experiencing higher plant water stress displayed smaller vessel diameters (Site ECVR3, Site ESWW1), compared to less stressed or healthy trees (Site ECVR4, Site ESWW2). These results are in accordance with studies which indicated that water stress in plants induces a decrease in xylem vessel diameters (Zimmerman and Milburn, 1982; Zhang
et al., 1988; February, 1993; 1994; February et al., 1995; Lovisolo and Schubert, 1998; Naidoo et al., 2006). However, sites which were influenced by high levels of contaminated water (ECVR2, RLW1) also displayed smaller vessel diameters, indicating that the uptake of contaminants could affect the wood anatomy of plants. Trees considered to be experiencing higher plant water stress displayed higher vessel frequency (Site ESWW1, Site RLW2).

Incremental pith to bark measurements of radial vessel diameter, vessel frequency and wood density for each comparative sampling site clearly illustrated differences in the wood anatomy of each comparative sampling site. Consistently larger radial vessel diameter values were obtained for each segment measured from pith to bark at Site ECVR4 when compared to ECVR3; in contrast to larger wood density values obtained at Site ESWW1 when compared to ESWW2. Greater variability in vessel frequency measurements were observed, while less variability in the wood density measurements from pith to bark between sites were found.

**CONCLUSION**

It can be concluded from this preliminary study that plant stress does influence the wood anatomical characteristics (radial vessel diameter, vessel frequency and wood density) in *E. camaldulensis*, *E. sideroxylon* and *S. lancea* in the three mining districts. However, more detailed plant physiological studies are required to improve our understanding of long-term manifestations of water stress on wood anatomy of plants. This preliminary study highlighted the potential for using simple techniques to obtain wood cores to investigate wood anatomy of trees. A more rigorous approach should be adopted for developing a tool for identifying trees which are experiencing plant stress without compromising on biomass of the trees.