Structural analysis of impact-related deformation in the collar rocks of the Vredefort Dome, South Africa

Show simple item record

dc.contributor.author Wieland, Frank Wolf
dc.date.accessioned 2008-10-14T08:12:45Z
dc.date.available 2008-10-14T08:12:45Z
dc.date.issued 2008-10-14T08:12:45Z
dc.identifier.uri http://hdl.handle.net/10539/5748
dc.description.abstract The Vredefort Dome is located southwest of Johannesburg, South Africa, and represents the deeply eroded remnant of the central uplift of the world’s largest known impact structure, with an estimated diameter of ~300 km. The Vredefort impact structure is also the oldest known impact structure on Earth (~2.02 Ga). The Vredefort Dome comprises an ~40 km wide core of Archaean basement gneisses and an ~20 km wide collar of subvertical to overturned Late Archaean to Palaeoproterozoic supracrustal strata. This project presents the results of Landsat-TM and aerial photograph analysis, as well as field mapping of Witwatersrand Supergroup metasedimentary strata in the collar of the Vredefort Dome. The aim of this study was to investigate the structures (such as folds, faults, fractures), at all scales, and other deformation features (such as shatter cones and pseudotachylitic breccias) in the field area, and to establish geometric and temporal relationships between these features with regard to the impact cratering process. This study revealed a highly heterogeneous internal structure of the collar involving folds, faults, fractures and melt breccias that are interpreted as the product of shock deformation and central uplift formation during the Vredefort impact event. Broadly radially-oriented symmetric and asymmetric folds, with wavelengths from tens of metres to kilometres, and conjugate radial to oblique faults with strike-slip displacements of, typically, tens to hundreds of metres accommodated tangential shortening of the collar of the dome that decreased from ~17 %, at a radial distance from the dome centre of 21 km, to <5 % at a radial distance of 29 km. Ubiquitous shear fractures containing pseudotachylitic breccia, particularly in the metapelitic units, display variable local slip senses consistent with either tangential shortening or tangential extension; however, it is uncertain whether they formed at the same time as the larger faults during the rise of the central uplift or earlier, during the shock compression phase of cratering. Contrary to the findings about shatter cones of some earlier workers in the Vredefort structure, the Vredefort cone fractures do not show uniform apex orientations at any given outcrop, nor do small cones show a pattern consistent with the previously postulated “master cone” concept. The model of simple back-rotation of the strata to a horizontal pre-impact position also does not lead to a uniform centripetal-upward orientation of the cone apices. Striation patterns on the cone surfaces are variable, ranging from typically diverging, i.e., branching off the cone apex, to subparallel to parallel on almost flat surfaces. Striation angles on shatter cones do not increase with distance from the crater centre, as suggested previously. Instead, individual outcrops present a range of such striation angles, and a more irregular distribution of striation angle values with regard to the distance from the crater centre suggests localised controls involving the nature and shape of various heterogeneities in the target rock on this aspect of cone morphology. On the basis of the observations made during this study on small-scale structures in the collar of the Vredefort Dome, the relationship of shatter cones with curviplanar fractures (multipli-striated joint sets - MSJS) is confirmed. Pervasive, metre-scale tensile fractures crosscut shatter cones and appear to have formed after the closely-spaced MSJ-type fractures. The results of this study indicate that none of the existing models is able to explain all characteristics of shatter cones fully; therefore, a combination of aspects of the different models may currently be the best possible way to explain the formation and origin of shatter cones, and the formation of the related MSJ and their characteristic aspects (e.g., curviplanar shape, melt formation, etc.). The observed variety of shatter cone orientations, surface morphology and striation geometry in the dome concurs broadly with the results of some previous studies. The abundance of striated surfaces along closely-spaced sets of fractures (MSJ) observed in this study can be reconciled with reflection/scattering of a fast propagating wave at heterogeneities in the target rocks, as proposed by recent studies. This would mean that closely-spaced fractures and shatter cones were not formed during shock compression, as widely postulated in the past, but immediately after the passage of the shock wave, by the interference of the scattered elastic wave and the tensional hoop stress that develops behind the shock front. In addition to shatter cones, quartzite units show two other fracture types – a centimetre-spaced rhomboidal to orthogonal type that may be the product of shock-induced deformation and related to the formation of shatter cones, and later joints accomplishing tangential and radial extension. The occurrence of pseudotachylitic breccia within some of these later joints confirms the general impact timing of these features. Pseudotachylitic breccias in the collar rocks occur as up to several centimetre-wide veins with variable orientations to the bedding and as more voluminous pods and networks in zones of structural complexity, such as the hinges of large-scale folds and along large-scale faults, as well as locally, at lithological interfaces. In places, tension gash arrays along thin veins are observed indicating that movement occurred along these planes. Initial cooling calculations for pseudotachylitic breccias of different widths and compositions (metapelite or quartzite) suggest that thick veins (<10 cm) could have stayed molten over the entire duration of crater development (at least 10 minutes), making it possible for shock-induced melts to intrude dilational sites, such as fold hinges and extensional fractures, during the formation and subsequent collapse of the central uplift. Intrusion of such melts may also have lubricated movements along brittle and ductile structures. Thus, the presence of both shock- and friction-generated melts is likely in the collar of the Vredefort Dome. Based on the spatial and geometric relationship between the structures and other deformation features observed in the collar rocks of the Vredefort Dome, it is possible to establish a temporal sequence of deformation events. Shatter cones and related closely-spaced fractures were formed during the contact/compression phase of the cratering process. The formation of at least some shock-induced pseudotachylitic breccia also belongs into this phase. Large-scale folds and faults and friction-generated melts can be related to the initial formation of the central uplift and extensional joints to the subsequent collapse of the central uplift. en
dc.language.iso en en
dc.subject impact structure en
dc.subject Vredefort Dome en
dc.subject structural geology en
dc.subject pseudotachylite en
dc.title Structural analysis of impact-related deformation in the collar rocks of the Vredefort Dome, South Africa en
dc.type Thesis en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search WIReDSpace


Browse

My Account