The contribution of F99 to the structure and function of South African HIV-1 subtype C protease

Date
2013-01-29
Authors
Seele, Palesa Pamela
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The HIV/AIDS still remains a global health challenge with 42 million people infected with the virus. An alarming 70% of these people reside in sub-Saharan Africa with HIV-1 subtype C being the most prevalent subtype in this region and globally. HIV-1 protease (PR) is an obligate homodimer which plays a pivotal role in the maturation and hence propagation of the HI virus. Although successful developments on PR active site inhibitors have been achieved, the major limiting factor has been the emergence of HIV drug resistant strains. It has been postulated that disruption/dissociation of the dimer interface may lead to an inactive enzyme. The development of small molecules and peptides has been a major research area with the key target being the N- and C-termini antiparallel β-sheet. This is due to its highly conserved nature and because it consists of a cluster of amino acids that contribute most of the binding energy and stability of the dimer interface. Hence it is referred to as a ‘hot-spot’. Therefore, binding of protease inhibitors at this site could cause destabilisation and/or dissociation of the enzyme. The terminal residue, F99, was mutated to an alanine disrupting the presumed lock-and-key motif it forms and in turn creating a cavity at the N- and C-termini antiparallel β-sheet. A second mutant, W42F/F99A, was created for monitoring tertiary structural changes exclusively at the N- and C-termini antiparallel β-sheet. The F99A and W42F/F99A, compared to the wild-type, showed a higher expression yield and also migrated further when separated using tricine SDS-PAGE. Wild-type protease CD spectra showed a minimum at 214 nm and a local maximum at 230 nm, while the mutants exhibited minima at 203 nm and absence of the local maxima. A 50% higher fluorescence intensity and a 2 nm red-shift for the mutants versus the wild-type was observed. According to SE-HPLC data the relative molecular weight of the wild-type, F99A and W42F/F99A are 16.4 kDa, 20.7 kDa and 18.1 kDa, respectively. Although the thermal unfolding of all three proteases was irreversible, the unfolding transition of the wild-type was clearly defined between 55 °C and 63 °C. The F99A and W42F/F99A unfolding curves were linear without clearly defined transition states. The specific activity of the F99A (0.13 μmol/min/mg) amounted to a ten-fold reduction compared to the wild-type (1.5 μmol/min/mg). The substrate binding affinity (KM) for the F99A was 41% lower than the wild-type when 2 μM of protein was used. The Vmax and kcat values were about 30-fold and two-fold, respectively, higher for the wild-type when compared to the F99A. Therefore, the tricine SDS-PAGE analysis, secondary and tertiary structural characterisation and thermal denaturation curve showed that the F99A mutation has altered the structure causing ‘partial’ unfolding of the protein. But, the protein still maintained minute activity. The overlap between the ANS binding spectra of the wild-type and variants suggests that the dimeric form still exists.
Description
Keywords
Citation
Collections