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Abstract 

The angular distributions for elastic and, at the highest incident energy, inelastic 

scattering to the particle-unbound excited state 
9
Be

*
(5/2

-
, 2.430 MeV) in 

9
Be have 

been measured in the scattering system 
9
Be + 

9
Be at ELab = 9, 12 and 16 MeV. In 

addition, elastic and inelastic scattering excitation-functions for the 
9
Be + 

9
Be 

system were measured at two different scattering angles (θc.m. = 90° and 50°), over 

an incident energy range 6 ≤ ELab ≤ 25 MeV. The inelastic scattering cross-sections 

can be measured by detecting the corresponding recoil nucleus in the scattering 

process. The experimental work was performed using the 6 MV EN tandem Van 

de Graaff accelerator at iThemba LABS (Gauteng). The scattered elastic and 

inelastic 
9
Be were detected by the ∆E-E gas-ionisation detector and the CAMAC + 

WIMPS2 data acquisition was used to identify the scattered particles online. 

Optical model calculations were carried out in order to fit the elastic scattering 

data and determine an energy-independent optical model potential. Distorted Wave 

Born Approximation (DWBA) was used to analyse the inelastic scattering with the 

extracted deformation length, δ2, being in agreement with previous measurements. 
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Chapter 1 

Introduction 

The main part of this research report is concerned with an experimental 

investigation of elastic and inelastic scattering to the particle-unbound state (5/2
-
, 

2.430 MeV) of 
9
Be at energies near the Coulomb barrier. In a scattering 

experiment of a light heavy-ion reaction, vital information i.e. the size of the 

nucleus and the characteristics of the nuclear force can be obtained [SA80].The 

9
Be + 

9
Be scattering, as a light heavy-ion reaction, has previously been studied  

experimentally [YO77], [UN79]. The
 9

Be + 
9
Be system is fermionic (half integer 

spin, 3/2
-
 ground state). Scattering systems which involve the 

9
Be nucleus display 

a strong presence of coupling effects [MU94]. The elastic and inelastic scattering 

cross-sections are strongly influenced by the ease with which 
9
Be breaks into 2α + 

n at Ex = 1.57 MeV. The 
9
Be nucleus has a low-lying state that can be excited 

easily by inelastic scattering. The immediate break-up on excitation of the 
9
Be 

nucleus prevents direct detection, and only the corresponding recoil nucleus can be 

used for determining the inelastic-scattering cross-sections. The present study was 

carried out in order to further investigate the interaction of loosely bound nuclei, 

and inelastic excitation of an unbound state of 
9
Be.  

The Coulomb scattering is developed as the Mott cross-section being an extension 

of the more familiar Rutherford cross-section for identical particle scattering. In 

heavy-ion scattering systems in which the projectile and the target are identical, 

they are indistinguishable after the elastic scattering has taken place, and so the 

differential cross-section is symmetric about θc.m. = 90°. The role of the spin, I, was 

investigated in the entrance channel of elastic scattering, for the Mott cross-section 

of the 
9
Be + 

9
Be system. The inelastic scattering to the second, unbound, state 

excited in a 2-body interaction which breaks up later (Ex = 2.430 MeV, J
π
 = 5/2

-
) 

has received very little attention and mostly at incident energies far above the 

Coulomb barrier [MU94], [MU95] and [OM84]. The present study concentrates on 

measurements and interpretations of the inelastic scattering cross-sections for 
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unbound 
9
Be at θc.m. ≈ 90° and 50° near the Coulomb barrier. The inelastic 

excitation proceeds from a J
π
 = 0

+
 ground state to a J

π
 = 2

+ 
excited state involving 

an angular momentum ∆L= 2 ħ. Therefore, the excitation from 
9
Be (3/2

-
, g.s.) to 

the rotational second, unbound, state 
9
Be

*
(5/2

-
, 2.430 MeV) can be replaced by the 

excitation of the core from ground state 
9
Be (0

+
, g.s.) to the excited state 

9
Be 

*
(2

+
, 

2.430 MeV). 

The optical model [FE54] has been used successfully in the description of elastic 

scattering data. The optical model was used for all the elastic scattering data 

analysis. Inelastic scattering analysis was carried using the Distorted-Wave Born 

Approximation (DWBA), using an elastic scattering optical potential to generate 

the distorted waves of relative motion. Previously, an energy-dependent optical 

potential was obtained from very limited elastic scattering data measured by York 

et al. [YO77]. The aim of this present investigation is to significantly extend the 

9
Be + 

9
Be scattering data at and just above the Coulomb barrier 

( CB

Lab 8.0 MeVE  ). As such, it is expected that an energy-independent optical 

potential can be extracted which is valid over the relatively small incident energy 

region of 5 ≤  Elab  ≤  25 MeV. 

Experimentally the 
9
Be ion beams produced by the sputter source were accelerated 

to the desired energies with a 6 MV EN tandem Van de Graaff at iThemba LABS 

(Gauteng). The elastically and inelastically scattered 
9
Be were detected by a high 

resolution ∆E-E gas-ionisation detector and the CAMAC + WIMPS2 data 

acquisition was used to identify the particles online. 

The layout of this research report is as follows: 

 Chapter 2 describes the theoretical considerations and the models used for 

data analysis. 

 Chapter 3 presents the experimental details of the study and data 

extraction. An outline on how the experimental apparatus was used is 
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detailed here and a review of the elastic and inelastic scattering data 

(present and previous). 

 Chapter 4 presents the analysis of the results of elastic and inelastic 

scattering of 
9
Be + 

9
Be. The Mott and Rutherford scattering formulae in 

relation to the Optical Model and DWBA are also detailed in this chapter. 

 Chapter 5 presents the summary and conclusion. 

 Appendices, with tabulated measured results are found at the back of the 

research report. 
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Chapter 2 

Theoretical considerations 

The nucleus–nucleus interaction remains a complex scenario in nuclear structure 

studies and this can be solved by a systematic analysis of experimental data using 

different theoretical methods. The Optical Model (OM) provides a lot of 

information on nucleus–nucleus interactions and is based on the structure of the 

nuclei and the Coulomb interaction energy. Coulomb scattering is as a result of the 

electric field between charged particles. For non-identical particles Rutherford 

scattering occurs and for the identical particles Mott scattering results [BE64]. 

2.1 Coulomb scattering  

Scattering experiments are used as a basic tool for understanding the nucleus in its 

ground state and excited states. Considering two-body reactions, many different 

processes may take place when two particles collide [SA80]. Reactions between an 

incident nucleus, a, and target nucleus, A, produces a target-related recoil nucleus, 

B, and a projected nucleus, b and may be described as follows: 

a A b B       or     ,A a b B .                  (2.1)  

In addition, an amount of energy, Q, may be released during the reaction or may 

be required by the reaction. This is referred to as the Q-value and for elastic 

scattering Q = 0, the projectile and target nuclei retain their identity and Eq. (2.1) 

becomes  ,A a a A .   

2.1.1   Rutherford scattering 

When a charged particle collides with a nucleus the scattered particles follows a 

hyperbolic path and in this case for the unbound orbit is constrained by a 1/r
2
 

forces [KR88] as shown in Fig. 2.1. Charged particle scattering is referred to as 

elastic Coulomb scattering (Rutherford scattering) [JE90]. Asymptotically, the 
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projectile approaches a target nucleus along a straight line at a distance b from a 

line to the scattering centre (see Fig. 2.1). Classically, the projectile is scattered by 

the Coulomb field of the target by an angle θLab. The Coulomb force is long ranged 

and hence it cannot be neglected, even at large separations. As it approaches the 

target, it reaches a separation distance rmin which depends on the impact parameter 

b. When b = 0 a head-on collision occurs and the projectile reverses its motion and 

at the distance of closest approach, d, the initial projectile kinetic energy is 

converted to Coulomb potential energy. 

 

Figure 2.1:  Coulomb trajectory for Rutherford scattering. 

Non-identical particle scattering yields the Rutherford scattering formula for 

Coulomb scattering [KR88]. 

2 2
2

1 2

4

c.m. 0 c.m. c.m

1 1

4 4 sin 2.

Z Z ed

d E /



 

     
      

      
,                                                                           (2.2) 

where 1Z e  is the projectile charge, 2Z e  is the target charge, c.m.E is the projectile 

centre-of-mass energy and c.m. is the centre-of-mass scattering angle. 
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2.1.2   Mott scattering  

Considering scattering of identical particles, the wave function describing the 

relative motion must be symmetric for even-A (bosonic systems) and asymmetric 

for odd-A (fermionic systems) under the interchange of any two indistinguishable 

particles contained in it [SA80]. When the intrinsic spin I of the particle is greater 

than zero, the exchange symmetry of the spin part of the wave function must be 

considered. If the interacting ions are identical, they are indistinguishable after the 

elastic scattering has taken place, and so the differential cross-section is symmetric 

about θc.m. = 90° [HO78]. Quantum theory introduces interference and the 

interaction is as illustrated in Fig.  2.2. Classically, the observed cross-section 

would be the sum of the cross-section of the two possibilities [HO78]: 

c.m. c.m.

c.m. c.m. c.m.

d dd

d d d

      
 

  
.                                   (2.3)  

 However, it becomes necessary to add the amplitudes, and the symetrised elastic 

scattering cross-section is given by [AU78]: 

2

c.m. c.m.

.c.m

( ) ( )
d

f f
d

  


  
                    (2.4a) 

 

           

. . *c.m c.m
c.m. c.m.

c.m c.m.

( )
2 ( ( ) ( ) )

d d
Real f f

d d

   
  

  
   

 
.               (2.4b)  

The symmetrised cross-section has a highly oscillatory structure due to the 

interference of the two scattering amplitudes and is again symmetric at θc.m.= 90° 

[SA80]. The interference term introduces the oscillations giving an analytical 

expression called Mott scattering results [MO30]. Using the Coulomb scattering of 

point charges, the Rutherford scattering formula may be extended to yield the Mott 

scattering formula for identical particles [HO78]: 

2
4 4c.m. c.m.

2

c.m.

csc sec
4 2 2

I

d

d k

   
 

   
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 
2

2 2 2c.m. c.m. c.m.2cos lntan csc sec
2 1 2 2 2

I

,
I

  


  
  

   

                                  (2.5) 

 

where 2

1 2Z Z / k    is the Sommerfield parameter (dimensionless), k is the 

wave number and   is the reduced mass. The third part of Eq. (2.5) is the 

interference term and depends on the spin I of the target and projectile. 

 

 

Figure 2.2: Indistinguishable events which may occur when two identical particles 

collide.   

2.2    Optical Model of elastic scattering 

The Optical Model (OM) of elastic scattering predicts elastic scattering in the 

presence of absorption effects, which may be of volume or surface nature. This 

model is analogous to the scattering of light by an absorbing sphere and is also 

called the “cloudy crystal ball model” [SA80]. The model incorporates an 

assumption that an imaginary part of the scattering potential accounts for the 

presence of inelastic scattering and reaction channels thus absorbing incident flux. 
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The Schrödinger equation for the scattering of charged nuclear particles 

incorporates a two-body interaction potential, U(r), to represent the many-body 

interaction between the colliding nuclei [HO78]: 

C N( ) ( ) ( )U r U r U r  ,                       (2.6)        

where C ( )U r  is the repulsive Coulomb interaction (long range) and N ( )U r  is the 

attractive nuclear interaction (short range). The scattering potential N ( )U r  is 

complex, with the general form: 

N ( ) [ ( ) ( )]U r V r iW r  ,                                           (2.7) 

where V(r) is the real part responsible for elastic scattering and iW(r) is the 

imaginary part responsible for absorption of flux from the elastic scattering 

channel.  

A Woods-Saxon form [FE54] is generally chosen for the scattering potential of the 

heavy-ion scattering: 

0 R 0 IN ( ) [ ( ) ( )]U r V f r iW f r  ,                              (2.8a)

  
1

R,I

R,I

R,I

( ) 1 exp
r R

f r
a



  
    
   

,        (2.8b)

                   

where V0 and W0 represent the depths of the real and imaginary potentials, 

respectively. Here, R,Ia  and R,IR are the surface diffuseness and nuclear potential 

radii for the real and imaginary parts, respectively. The nuclear radii R,IR  are 

expressed in the following form for heavy ions: 

1/3 1/3

R,I 0R,I 1 2( )R r A A  ,                                                                            (2.9) 

whereas 

1/3

R,I 0R,IR r A             (2.10) 
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for the light-ion convention with A1 the mass of the projectile and A2 being that of 

the target. The imaginary part of the nuclear potential described by Eq. (2.8a) and 

(2.8b) represents volume absorption and taking the first derivative,

 

 

  I
I

I

1

1 exp
r Rd

W r W
dr a


  

    
  

,                          (2.11a)                      

   I I
1

I I

2

4exp 1 exp
r R r R

W
a a

     
      

    
.                       (2.11b)

 

 

When considering lower incident energies the Pauli Principle restricts the 

excitation of interior nucleons, resulting in an imaginary potential that is surface 

peaked [AU78]. The nuclear part of the optical potential can be obtained from 

measured elastic data [HA89]. 

The Coulomb potential, UC(r), between the two interacting nuclei can be 

approximated for charged particle scattering as follows: 

2

1 2
C ( )

Z Z e
U r

r
    , r > RC                                                                       (2.12) 

       

2 2

1 2

2

C C

3
2

Z Z e r

R R

  
   

  
  , r ≤ RC                                                                            (2.13) 

     

1

2
2

C

5

3
R r

 
  
 

,                                                       (2.14) 

where <r
2
> is the mean-square charge radius determined from electron scattering. 

The charge radius RC is parametrised as: 

1/3

C 0C 2( )R r A ,                                                       (2.15) 

where r0C is the corresponding Coulomb-radius parameter.  
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By applying a partial wave expansion, in angular momentum to the solution of the 

Schrödinger equation, the radial wave-equation becomes [JA70]: 

   
 

2
2

2 2

1
1 0

U rd
k f kr

dr E r

   
     

   


 
,                  (2.16)

  

where k is the wave number, given by 
22k E /  ,  is the relative angular 

momentum and ( )f kr are radial-wave functions. The radial wave equations can be 

solved numerically. At large separation distance r between the projectile and target 

the nuclear field is negligible and the numerical solutions of ( )f kr  are matched to 

known Coulomb wave functions in order to determine the nuclear phase shifts,   . 

The scattering amplitude can be regarded as a summation of Coulomb and nuclear 

amplitudes [AU78], giving the following: 

c.m. C c.m. N c.m.( ) ( ) ( )f f f    .          (2.17)
  

It then follows that the elastic scattering cross-section is given by: 

.

2

c.m.
c.m

( )
d

f
d





.                        (2.18)

 

 

A partial wave expansion yields the scattering amplitude f (θ) in terms of   : 

      c.m. c.m.

0

1
2 1 1 cos

2
f S P

ik
 





    


 ,         (2.19)                          

  

 

  2S exp i      ,                      (2.20) 

where S  is the elastic scattering S-matrix and    are the Coulomb phase shifts. 

Further simplification gives the scattering cross-section in terms of the reflection 

coefficients   [JA70]: 

     2 2 2 21 1 1
i i i ie e e e
    

          ,     (2.21a)
 
 

2i
e

  

    ,
                    (2.21b)  
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     
2

c.m2
0c.m.

1
2 1 1 cos

4

d
i P

d k


 





  


  


 .                                        (2.22)  

By varying one or more of the six optical potential parameters ( 0V , Ra , 0Rr , 0W , 

Ia  and 0Ir ) a fit to the elastic-scattering  data can be obtained. It should be noted 

that some ambiguities (the best known is the Igo ambiguity) are associated with 

such fits [HO78]. 

2.2.1 Extension of the Optical Model for identical particles 

When two identical nuclei collide, the two particles are indistinguishable and the 

wave function describing the quantum system has to be symmetric or anti-

symmetric whether the particles are bosons or fermions, respectively. Exchange of 

two nuclei in orbital space is equivalent to a transformation θc.m.→π- θc.m..Thus, 

the scattering amplitude becomes: 

s

s c.m. c.m. c.m.( ) ( ) ( 1) ( )f f f       ,              (2.23)   

where c.m.( )f   is the amplitude that describes the scattering of distinguishable 

nuclei. The resulting differential cross-section becomes: 

2I
2

s c.m.2
s=0c.m.

2 1
( ( )

(2 1)

d S
f

d I







 
 ,             (2.24) 

2I
2 2 *

c.m. c.m. c.m. c.m.

( )
( ) ( ) (( ) ( )

2 1
f f f f

I
     


    


 

*

c.m. c.m.( ) ( ))f f    .          (2.25) 

The third part of Eq. (2.25) is the interference term that depends on spin I as 

discussed previously in Section 2.1.2 for Mott scattering.   
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2.3 Distorted Wave Born Approximation (DWBA) 

for inelastic scattering 

When two nuclei collide close to the Coulomb barrier it is possible for one or both 

of them to be raised to an excited state without loss or gain of nucleons [HO78]. 

Also, the ions can interact through their Coulomb fields, and this can raise them to 

excited states. The scattering matrix, proportional to the residual interaction, is 

sandwiched between the elastic and inelastic channel. In first-order DWBA 

inelastic scattering is treated as a one-step transition process. 

The transitional amplitude [SA80] that describes inelastic scattering from an initial 

channel (i) to a final channel (f) is given below: 

           
*

, , , ,fi f i f f f i i iT k k dr k r U r k r  
 

   ,       (2.26)
 

where ik  and fk  are wave numbers of entrance and exit channels, respectively. 

The distorted waves  
( , )i ik r


 and 

 *( , )f fk r


 describes the relative motion 

between the colliding nuclei before and after a collision, respectively. The 

interaction potential,  ,U r  , depends on the internal coordinates,  , of the 

excited state. Here, fiT  represents the first term in a series expansion involving all 

possible inelastic channels and thus it is the limit of weak coupling. The 

interaction may be split into the following component parts: 

     C N, , ,U r U r U r    ,                   (2.27) 

where  C ,U r  is the Coulomb interaction responsible for the Coulomb excitation 

and  N ,U r    is the nuclear interaction responsible for excitation via the nuclear 

field. The Coulomb field is repulsive and the nuclear field attractive, therefore, 

 C ,U r  and  N ,U r  have opposite signs and tend to add destructively resulting 

in Coulomb-nuclear interference. Finally the inelastic scattering cross-section can 

be obtained from: 
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2

DWBA

fi

d
T

d

 
 

 
 .                     (2.28)

   

 

Considering a collective model, the nuclear force follows the shape of the nuclear 

surface. Due to vibrations about a spherical mean of radius R0, or by rotations of a 

permanently deformed sphere of radius R0, the spherically-optical potential is 

deformed. In DWBA we then expand U(r) as a Taylor series, and neglecting 

higher-order terms, since only first order DWBA theory is considered. 

N N 0 N 0( ,ξ) ( ) ( )
d

U r U r R R U r R
dr

    ,         (2.29)
  

A multipole expansion of the nuclear interaction potential is performed in Eq. 

(2.29), 

*

N

N ( , ) ( , ) L

LM LM

LM

U r U r i Y 
  

   
  

 r ,          (2.30)

                                                                            

 

where the coefficients,  N ,LMU r  , are obtained by comparison with the Taylor 

expansion (Eq. (2.30 ) ). For a 2
L
-pole excitation, and applying the Wigner-Eckart 

theorem and using vibrational or rotational wave-functions, 0i fJ J L   . The 

reduced matrix element for the nuclear interaction is given by: 

   N N N N ( )
, 0f L i L L

dU r
J L U r J U r

dr
     ,                    (2.31)

    

where the nuclear form factor,  N

LU r  is evaluated in a similar manner for both 

vibrational and rotational excitations. The nuclear deformation length is given by: 

N N

R,I R,IL L R   ,            (2.32) 

where the corresponding deformation parameters N

RL  and N

IL of the optical 

potential may have different values depending on the geometry of real and 

imaginary potentials, respectively. The Coulomb form factor C ( )LU r  is evaluated 

as follows: 
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-1 +12
C CC C1 2

+2

C C

/ , >3
( ) .

2 1 / ,

L L

L L L L

R r r RZ Z e
U r

L r R r R



 

 

                                            (2.33)  

The above expression resembles closely that of the nuclear form factor, and the 

transition amplitude is then obtained in terms of radial wave-functions. 
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Chapter 3 

Experimental details and data extraction 

Elastic and inelastic scattering of 
9
Be + 

9
Be has been studied using the iThemba 

LABS (Gauteng) EN tandem Van de Graaff accelerator and associated equipment. 

This chapter presents a description of the characteristics of the gas-ionisation ∆E-E 

detector and the heavy-ion scattering measurement. Angular distributions for 

elastic scattering were measured at ELab = 9, 12 and 16 MeV. Also, the excitation 

functions at θc.m. = 90° and 50° were measured from close to the Coulomb barrier 

in the incident energy range 6 ≤ ELab ≤ 25 MeV. The present work includes the 

inelastic scattering cross-sections for 
9
Be (5/2

-
, 2.430 MeV) at θc.m. ≈ 90° and 50° 

in the same incident energy range of ELab= 6 - 25 MeV. The second unbound state 

in 
9
Be is observed by detecting the recoil 

9
Be in its ground state. In some 

instances, a kinematics programme was used in order to determine the position of 

elastic and inelastic peaks. The experimental technique is outlined briefly below 

and specific details are given in the following sections. In addition, reviews of 

inelastic and elastic scattering data (previous and present) are detailed here.  

3.1 Beam production and targets 

A model 860C sputter ion source from General Ionex Corporation was used to 

produce negative 
9
Be ion beams. These were produced by bombarding a positive 

Caesium-ion onto a cylindrical target cathode. The cathode material consisted of a 

mixture of high purity 
9
Be and titanium hydride powder in the ratio 7:3, 

respectively, which leads to the formation of negative beryllium hydride ion 

(
9
BeH)

-
. The mixture was compressed into the oxygen-free copper holder. The 

momentum of the beam was analysed before being injected into the accelerator. In 

the gas stripper canal (
9
BeH)

-
 is stripped to predominantly 

9
Be

3+
. Typically, a 

current of 700 nA of (BeH)
-
 could be obtained from the ion source with  10 - 20 

nA electrical of 
9
Be

3+
 delivered to the 

9
Be target. After acceleration by the tandem 

accelerator, the beam was focused into the small scattering chamber, at the end of 
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the C-line where it was scattered by a thin beryllium foil of areal density 

approximately 50 g/cm
2
. 

3.1.1 Inflection magnet scan 

The inflection magnet was used in to separate the negative ions extracted from the 

sputter ion source. An extraction voltage of 24.5 keV was used and a series of 

negative ions were identified as shown in Fig. 3.1. Although relatively weakly 

produced, the (BeH)
- 
component was sufficient to yield a beam current at the target 

of typically 10 to 20 nA electrical of 
9
Be

3+
. 

3.1.2 Targets 

The beryllium target (
9
Be) was self supporting with an areal density of ~50 

µg/cm
2
. A thin layer of BaCl acting as the release agent covered the glass 

microscope slide on which the 
9
Be vapour was deposited during an E-gun 

evaporation of 
9
Be metal. This leads to contamination of the targets with 

138
Ba. 

However, a prominent peak in the measured energy spectra due to the Rutherford 

scattering formula was observed and was used for energy calibration and beam 

current normalization. 

3.2 Experimental set up  

The lay-out of the scattering chamber and the nuclear physics C-line is shown in 

Fig. 3.2. A positive beam (
9
Be

3+
 or 

9
Be

4+
) from the accelerator is guided by the 

cross-wire on the quartz Faraday cup 1, which allows for the accurate injection 

into the C-line. The beam is focused down the C-line by the quadrupole magnet 

into the small scattering chamber. The small scattering chamber has a diameter of 

20 cm with a movable top, which can be rotated around the target holder. The 

movable part is connected to the gas-ionisation via a port carrying the detector 

collimator. The top part of the small scattering chamber tilts out of the horizontal 

plane on its  
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Figure 3.1: Upper: Inflection magnet scan on a log plot of low energy Faraday cup 

current against mass of a negative ion with source extraction voltage 

 (Vext = 24.5 keV). Lower: inflection magnet scan on a  linear plot of low energy 

Faraday cup current against mass of a negative ion with source extraction voltage 

 (Vext = 24.5 ke
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Figure 3.2: The schematic diagram of the C-line and associated equipment at the 

EN Tandem accelerator of iThemba LABS (Gauteng). 
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base, allowing measurements to be made on either side of the 0° scattering angle 

from -20° to 135°. 

The horizontal and vertical line slits were adjusted manually defining a rectangular 

aperture which determined the beam angular divergence at the target (≈ 0.2°). 

From the beam optics geometry the horizontal acceptance of the detector was 0.6° 

determined by the 1mm diameter tantalum detector collimator. The target ladder 

(accommodating up to six targets) was aligned optically to the vertical axis of the 

chamber. A left-right Rutherford scattering experiment allowed the scattering 

angle to be determined to ≤ 0.5°. 

3.3 ∆E-E detector 

A high resolution gas-ionisation ∆E-E detector was used to identify the scattered 

reaction products and determine the corresponding kinetic energies. A diagram of 

the ∆E-E gas-ionisation detector is shown in Fig. 3.3. The scattered beryllium ion 

passes through the gas filled space and comes to rest in the silicon solid-state 

surface-barrier detector having lost some energy (∆E) due to ionisation in the 

isobutene gas [WI50]. 

Using the quantum-mechanical calculation as proposed by Bethe and Bloch, the 

energy transfer is classified as a measurable quantity (momentum transfer). The 

Bethe and Bloch equation may be used to describe the energy loss of an ion 

passing through a medium [LE92]: 

2 22
2 2 2e max

A e e 2 2

2
2 ln 2 2

m r v WdE Zq C
N r m c

dx A I Z
   



   
     

   
,                        (3.1)

   

 

where  
2 2 2

A e e2 N r m c 0.1535 MeVcm / g  , 

AN
 
=  Avogadro’s constant = 6.022 x 10 

23
 mol

-1
,  
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Figure 3.3:  ΔE-E gas-ionisation detector. 

     er    
=  the classical radius of the electron,   

em
  
=  the mass of the electron, 

  =   the density of the absorbing material, 

Z  = the atomic number of the absorbing material,     

q   =  the charge of the incident particle (electron units),  

A  =  the atomic mass of the absorbing material,   

   = the ratio of the velocity of incident particle to that of light ( v / c ),  

maxW
 
= the maximum energy transfer in a single collision, 

I      =  mean excitation potential,      

     =  the density correction ,  

C     =  the shell conversion, 

 γ      =  (1- β
2
)
-1/2

 and 

 c   =  the speed of light. 

Considering the energy dependence, at non-relativistic energies, dE/dx is 

dominated by the overall 1 - β
2
 factor and decreases with increasing velocity. For 

Cathode 
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non relativistic particles (v
2
 = 2E/m) with the logarithmic term varying slowly with 

energy, and neglecting the shell conversion (C) and density correction (δ), Eq. 

(3.1) reduces to: 

2dE mz

dx E
        ,                                                 (3.2)     

where m is mass of incident particle (in au). 

A particle loses energy ∆E as it travels through the gas and deposits energy E as it 

is stopped by the Si surface-barrier detector. The product  E dE / dx  gives a 

measure of mz
2
 which is unique for light isotopes. 

The gas–ionisation chamber is not subject to radiation damage, which is quite 

important in this experiment work since the excited 
9
Be recoil particles from the 

target can release neutrons which would destroy a thin ∆E silicon surface barrier-

detector [HA89]. The ∆E volume contains iso-butane gas which was set at a steady 

differential pressure of 1 kPa with respect to the high vacuum scattering chamber. 

The operating conditions were determined in previous experiments [JI10] and are 

given in Table 3.1. 

Table 3.1 Operating conditions for the ∆E-E gas ionisation detector [JI10]. 

Iso-butane 

Differential 

pressure 

(kPa) 

 

VA 

(V) 

 

VG 

(V) 

 

VC 

(V) 

 

1 

 

230 30 -30 

 

3.4  Data acquisition system and data extraction 

The electronics system connected to the gas-ionisation chamber used in this 

experiment is shown in Fig. 3.4. The various electronics components were 

configured and set up as follows. The two signals, ∆E and Estop, from the gas-

ionisation chamber and the  
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Figure 3.4: Block diagram of the data acquisition system. 
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monitor detector signal, Emon, were amplified and fed into the ADC unit. The logic 

part of the circuit distinguished between ∆E-E and monitor detector events. 

Signals from the CAMAC system were processed by using the WIMPS/2 

programme for online data extraction and analysis [FE92]. Scattering data were 

processed online and pulse height spectra obtained. The signals, ∆E and Estop were 

plotted against one another. However, the total energy (ET = Estop + n∆E) is 

required and is obtained by normalising at θLab = 25°, with and without gas in the 

ionisation chamber, where n is the normalising factor. The value determined in this 

experiment was n = 0.562. 

A typical two dimensional ∆E-ET spectrum is shown in Fig. 3.5. Here, it can be 

clearly seen that there is a good separation between low-Z elements.  A portion of 

the ∆E-ET spectrum corresponding to 
9
Be maybe projected onto the ET-axis and 

the resulting 1-dimensional spectrum is shown in Fig. 3.6. Figure 3.6 (lower) 

shows an enlarged version, in order to bring out the inelastic scattering 
9
Be´ peak 

at θ Lab = 25°. From the 1-dimensional spectra peaks for both elastic and inelastic 

scattering were identified and fitted using a Gaussian shape fitting procedure with 

a quadratic background. Given that the quadratic background is defined as follows: 

2

0 1 2 ,B b b x b x                                 (3.3) 

thus the following formula was used to fit peaks in the measured spectra: 

 
2

01
exp

2 σ

x x
y x h B

   
    

   

 ,                                                                     (3.4)                  

where h is the height of the peak, σ is the standard deviation, x0 is the peak 

centroid and x is the channel number.  

The area under the Gaussian curve can be obtained from  

σ 2A h    ,                   (3.5) 
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WIMPS\ 
9
Be + 

9
Be at θLab = 25°. 2D 

 

 

Figure 3.5: Two dimensional ∆E-ET spectrum for 
9
Be + 

9
Be at ELab = 16 MeV and 

θLab = 25°. 

 

 

 

 



25 

 

 

 

Figure 3.6: One-dimensional spectrum from the ∆E-ET for 
9
Be from Fig. 3.5.  

Upper part: Projected 
9
Be showing elastic scattering from 

9
Be and 

138
Ba. 

Lower part: Projected 
9
Be showing more clearly inelastic scattering to the second, 

unbound excited state
 9

Be
*
(5/2

-
, 2.43 MeV). 
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with the total area under the peak being given by  

P A b   ,                         (3.6) 

where b is the background under the peak. 

The uncertainty ∆A of the extracted peak area was obtained from:  

 
1

2 2χA P b      ,             (3.7)
  

where 2χ  is the reduced chi-squared and is given by the following: 

 

 

2

2

1

2

1
χ

i i

i

y y x

N


 
 

 
  

 ,             (3.8)

 

 

where N is the number of data points minus the number of variable parameters 

(degrees of freedom) and  are the uncertainties on the data points y [HA89]. The 

uncertainties in the extracted peak areas were included as individual errors and 

were generally in the range 0.5 – 10%. 

3.5 Energy resolution of the detector system 

The resolution of the gas-ionisation chamber is given in terms of the full width at 

half maximum of the peak (FWHM) [LE92]. Considering two peaks from the 

experimental data, they can be resolved if they are separated by a distance greater 

than their full widths at half maximum width (FWHM). 

The total energy resolution of the ∆E-ET gas-ionisation detector can be determined 

by several factors that maybe be attributed to: 

 Kinematic broadening, ∆Ekin  is related to the beam divergence at the target 

and finite angular acceptance of the detector ≈ (200 keV), 

 Electronic noise; ∆Edet is the contribution from the resolution of the solid 

state surface-barrier detector and the electronics of the system ≈ 24 keV, 

 Energy spread of the incident beam; ∆Ebeam ≈ 10 keV and 
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 The energy spread of the energy loss, ∆Eloss; is the energy lost by incident 

particles when interacting with the 
9
Be target and when passing through the 

thin window in the gas-ionisation chamber ≈ 110 keV. 

The total resolution energy E is given by: 

       
1

2 2 2 2 2

total kin det beam lossE E E E E         
 

,                                      (3.9) 

resulting in a typical value of ∆Etotal  ≈ 230 keV. 

3.6 Determination of scattering cross-sections 

Experimentally measured elastic and inelastic cross-sections were obtained as 

follows: 

 The elastic and inelastic scattering yields for angular distributions were 

obtained from the Gaussian fitting procedure  as described in Section 3.4 

for each scattering angle and  were normalised using the elastic scattering 

yields from the 
138

Ba contamination peak in the monitor detector. 

 Normalisation for the excitation functions required the Rutherford 

scattering formula to be applied to the elastic scattering yield from the 

138
Ba contamination peak seen in the 

9
Be projected spectrum at each 

incident beam. 

  The normalised centre-of-mass (c.m.) yield was obtained by multiplying 

the normalised Lab yield by the respective Lab c.m. factors. 

     
2

2

.

Lab
c.m. Lab Lab

c.m

c.m.

sin
cos

sin
I I


   



 
  

 
,        (3.10) 

where c.m.( )I   is the intensity (yield) at each scattering angle θc.m. in the 

centre-of-mass reference frame and Lab( )I   is the intensity (yield) at each 

scattering angle in the laboratory frame [ MA68]. 



28 

 

 Absolute scattering cross-sections were obtained by normalising to the 

optical model prediction at the most forward scattering angles. Numerical 

values for the measured cross-sections are given in Tables A1 to A13. 

 Finally, the errors quoted in these measurements are calculated from 

counting statistics of the corresponding peak yields and the error in the 
9
Be 

+ 
138

Ba elastic-scattering peak yield. 

3.7 Review of elastic and inelastic scattering data 

Table 3.2 provides an overview of the data measured. Angular distributions were 

measured at energies near the Coulomb barrier for elastic scattering of 
9
Be + 

9
Be 

system. The experimental cross-sections divided by the Mott cross-section are 

shown with errors in Fig. 3.7. Also, measurements of York et al. [YO77] were 

included and are shown together with those of the present work. The dashed line is 

the result of an optical model calculation and is to guide the eye only. Thus, the 

data are limited to the angular region 25 ° ≤ θc.m.  ≤ 155°. The data were normalised 

to the optical model prediction for 
9
Be + 

9
Be system at θc.m. = 25°  (discussed later 

in Chapter 4). This procedure was followed for all the cross-section measurements 

at the different incident energies. As shown in Fig. 3.7, the ELab =  16 MeV cross-

sections display a strong oscillatory structure that agrees with the previous very 

limited data measurement done by York et al. [YO77]. As the incident energy 

decrease to ELab = 12, 9 and 5 MeV the oscillatory structure becomes less 

pronounced. The 5 MeV data from [YO77] were also included since in the present 

experimental work scattered 
9
Be at ELab = 5 MeV were too low in energy to be 

measured. The inelastic scattering cross-sections for the particle-unbound state 

(5/2
-
, 2.430 MeV) of 

9
Be at Elab = 16 MeV were measured as shown in Fig. 3.8 and 

were limited to maximum scattering angle θc.m.  ≈  102° due to the low energy of 

the scattered 
9
Be detected. Two elastic-scattering excitation functions were also 

measured, namely at θc.m. = 90° and 50°.  Here, at θc.m. = 90°, the few data points at 

low incident energies from York et al. [YO77] were also included in order to 

supplement the present work as shown in Fig. 3.9. 
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Table 3.2 Measured data for 
9
Be + 

9
Be scattering at incident energies just above 

the Coulomb barrier CB 9 9

Lab ( Be Be) 8.0 MeVE   . 

 

ELab 

(MeV) 

 

Reaction Products 

 

θLab 

 

θc.m 

 

9 
 

 

9
Be ( 3

2

−
, g.s.) + 

9
Be ( 3

2

−
, g.s.) 

 

15°- 45° 

 

30°- 90° 

 

12 

 

 

 

9
Be ( 3

2

−
, g.s.) + 

9
Be ( 3

2

−
, g.s.) 

 

15°- 45° 

 

30°- 90° 

 

16 

 

 

 

9
Be ( 3

2

−
, g.s.) + 

9
Be ( 3

2

−
, g.s.) 

9
Be´ ( 3

2

−
, g.s.) + 

9
Be* ( 5

2

−
, 2.430MeV) 

 
 

 

12.5°- 45° 

 

12.5°- 45° 

 

25°- 90° 

 

33°- 116° 

 

6 - 25 
 

 

 

9
Be ( 3

2

−
, g.s.) + 

9
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Figure 3.7: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at ELab = 5, 

9, 12 and 16 MeV including data from York [YO77]. Note that the above dashed 

line is  to guide the eye and represents an Optical Model (OM) calculation. 
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Figure 3.8:  Upper part: Angular distribution for the elastic scattering of 
9
Be + 

9
Be 

at ELab = 16 MeV. 

Lower part: Inelastic excitation of the second, unbound, state in 
9
Be

*
(5/2

-
, 2.430 

MeV) . 
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Figure 3.9: Upper part: Excitation function for the elastic scattering of 
9
Be + 

9
Be 

at θc.m. = 90° expressed as the ratio of the measured cross-section to Mott cross-

section for ELab = 7 to 24 MeV including data from York et al. [YO77]. 

Lower part: Excitation function for the elastic scattering of 
9
Be + 

9
Be at θc.m. = 50° 

expressed as the ratio of the measured cross-section to the Mott cross-section for 

ELab = 7 to 25 MeV.  
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Figure 3.10: Upper part: Excitation function for the elastic scattering of 
9
Be + 

9
Be 

at θc.m. = 90° at ELab = 7 to 24 MeV including data from York et al. [YO77]. 

 Lower part:  Inelastic-scattering excitation function of 
9
Be + 

9
Be at θc.m. ≈ 90°. 
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Figure 3.11: Upper part: Excitation function for the elastic scattering of 
9
Be + 

9
Be 

at θc.m. = 50° at ELab = 7 to 24 MeV. 

 Lower part:  Inelastic-scattering excitation function of 
9
Be + 

9
Be at θc.m. ≈ 50°. 
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 As can be seen, the 
9
Be + 

9
Be excitation function data exhibit a smooth behaviour 

with small oscillations which become more pronounced as the incident energy 

increases. Inelastic scattering data for the excited state 
9
Be

*
(5/2

-
, 2.43 MeV) were 

obtained for the excitation functions at θc.m. ≈ 90°and 50° are shown in Figs. 3.10 

and 3.11. The inelastic scattering cross-sections rise sharply at the Coulomb barrier 

( CB

Lab 8.0 MeVE  ) and reach a plateau at about ELab = 16 MeV.  
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Chapter 4 

Analysis and discussion 

4.1 Introduction 

 The present elastic scattering results are analysed together with data found in the 

literature [YO77] and the effect of intrinsic spin on the interference term of Mott 

scattering is investigated. Subsequently, inelastic scattering data are analysed 

within the DWBA using the optical potential determined previously from fits to 

the elastic-scattering data. 

4.2 Effect on intrinsic spin on identical particle 

systems 

The Mott scattering formula given by Eq. (2.5) is used for the description of the 

Coulomb scattering. The third part of Eq. (2.5) is the interference term which 

depends on the intrinsic spin or angular momentum of the ground spin state, I. As 

illustrated in Fig. 4.1, the Mott scattering cross-sections for the 
9
Be + 

9
Be system 

get shallower as spin I increases and the relative change in cross-section becomes 

less marked as expected from the denominator of the interference term of Eq. ( 

2.5). It should be noted that elastic scattering of identical particles yields angular 

distributions that exhibit symmetry around θc.m. = 90° [SA80] and, as such, is also 

a consequence of the quantum statistics of identical particles. 
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Figure 4.1: Angular distributions for elastic scattering of 
9
Be + 

9
Be at ELab = 16 

MeV showing the influence of different intrinsic spin values, I, on the Mott 

scattering cross-section, where I = 1/2, 3/2 and 5/2, noting that 
9
Be has a ground 

state intrinsic spin value of I = 3/2. 

4.3 Optical model analysis of elastic scattering 

The experimentally measured elastic scattering angular-distributions and excitation 

functions for 
9
Be + 

9
Be were analysed in terms of the Optical Model (OM) for the 

elastic scattering. This was performed using a modified version of the computer 

code A-THREE [AU78].  Extensive use was made of the search routine of A-

THREE in order to determine the optical potentials for the best fits to the angular 

distribution data. When searching using the A-THREE search routine the aim was 

to minimise the mean square deviation, 2
, between the experimental and 

theoretical results and is defined as [PO76]: 

2

2 i i

L=1,N i

1 D F

N




 
  

 
  ,                                 (4.1) 
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where Di are the data points, Fi are the corresponding calculated fits, εi are the 

errors in the data points and N is the total number of data points. For consistency, 

the results found by York et al. [YO77] for their C-1 optical potential were 

checked using the published data at ELab = 5, 9, 12 and 16 MeV and were 

reproduced. Here, a value for the Coulomb radius was taken from the electron 

scattering, RC = 3.23 fm [SA80]. 

In the present analysis only the data of York et al. [YO77] at ELab = 5 MeV were 

used (not measurable using the present experimental set-up) together with the 

newly measured, more extensive, angular distributions at ELab = 9, 12 and 16 MeV. 

Values for the optical model parameters determined during various fits are given 

in Table 4.1. So that valid comparisons can be made, the geometry used by York et 

al. [YO77] was not varied (ROR = ROI  = 1 fm and aR = a I = 0.632 fm). This meant 

that the real and imaginary potential well depths were varied (V0 and W1, 

respectively), The imaginary part of the nuclear potential, which was given by the 

derivative of the real potential form factor,  was described by a well depth W1 and 

for more final fits the absolute normalisation of the measured data was varied 

using a scaling parameter (see Table 4.1). The various optical potential parameter 

sets used or determined are referred to as C-1, W-1, W-2, W-3, and W-4 and are 

detailed below. For the sake of intercomparison, Figs 4.2, 4.3, 4.4, and 4.5 follow 

directly after Table 4.1. 

4.3.1 Parameter set C-1 and W-1 

The optical potential parameter set C-1 obtained by York et al. [YO77] was used 

as a starting point for the present analysis, the results of which are given by the 

dashed lines in Fig. 4.2. However, it should be noted that the value obtained for W1 

at ELab = 16 MeV was an extrapolation from the corresponding values ELab = 9 and 

12 MeV due to the poor quality of data as measured by York et al. [YO77]. 

Bearing this in mind, a search was done on W1 using the present superior data at 

ELab = 16 MeV which resulted in a much lower value of 2
 (see set W-1 of Table 

4.1) while reducing somewhat, the value of W1. The results of W-1 are shown as a 

solid line in Fig. 4.2. 
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4.3.2 Parameter set W-2 

The next step in the analysis was to determine if better fits to the data could be 

made by varying both V0 and W1. This resulted in parameter set W-2 where it can 

be seen in Table 4.1 that significantly smaller values of 2
 were obtained. The 

corresponding fits are shown as the solid lines in Fig. 4.3. 

4.3.3 Parameter set W-3 

Measured absolute elastic scattering cross-sections when normalised to Coulomb 

scattering at small scattering angles generally have an accuracy of  15%. 

Therefore, using parameter set W-2 as the starting point, V0 and W1 were again 

allowed to vary together with an overall scaling factor for each set of data at ELab = 

5, 9, 12 and 16 MeV. This resulted in lower values for 2
 and normalisation of the 

data between 3% and 12% while not affecting significantly the values V0 and W1 

(see parameter set W-3 of Table 4.1). The results of the fit using set W-3 are 

shown as the solid lines in Fig. 4.4. 

4.3.4 Parameter set W-4 and elastic scattering excitation functions 

It can be expected that over the relatively small incident energy range of ELab = 5 

to 16 MeV, an energy–dependent potential is not required. Therefore, as a starting 

point for determining an energy-independent optical potential, the average of the 

values for V0 and W1 found in W-3 were used and were allowed to vary while 

simultaneously fitting for the data at ELab = 5, 9, 12 and 16 MeV. This resulted in 

only slightly higher values of 2
 producing parameter set W-4 of Table 4.1 the 

results for which are shown as the solid lines in Fig. 4.5. It now becomes a straight 

forward matter to apply the resulting energy-independent optical potential set W-4 

to the measured 
9
Be + 

9
Be excitation functions. The data and the corresponding 

optical model fits (solid lines) are displayed in Fig. 4.6 for θc.m. = 50° and 90°. 
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Table 4.1: Optical Model parameter searching 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C-1- York potential [YO77] 

W-1 - searching on W1 keeping V0 constant 

W-2 - searching on varying both V0  and W1 

W-3 - searching varying both V0 and W1 scaling 

W-4 - searching V0, W1 and on 3 energies fixed scaling 

 

Set 

 

ELab 

(MeV) 

Vo 

(MeV) 

W1 

(MeV) 

2
 normalis

ation 

C-1 

 

5 

9 

12 

16 

189.30 6.6 

22.2 

33.9 

49.60 

7.65 

21.61 

10.03 

17.98 

 

W-1 16 189.3 45.57 3.30  

W-2 

 

5 

9 

12 

16 

204.9 

157.08 

113.97 

175.06 

7.8 

24.08 

28.91 

43.72 

2.55 

13.11 

1.01 

2.43 

 

W-3 

 

5 

9 

12 

16 

 

211.52 

160.56 

117.41 

178.44 

6.7 

18.71 

26.61 

38.67 

1.47 

10.15 

0.75 

1.41 

0.952 

0.974 

0.969 

0.879 

W-4 5 

9 

12 

16 

155.09 

 

34.12 

 

1.55 

11.96 

1.94 

1.95 

0.952 

0.974 

0.969 

0.879 
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Figure 4.2: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at ELab =5, 

9, 12 and 16 MeV using the C-1 and W-1 potentials. 
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Figure 4.3: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at ELab = 5, 

9, 12 and 16 MeV using the W-2 Potential 
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 Figure 4.4: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at ELab    

=5, 9, 12 and 16 MeV using the W-3 potential. 
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Figure 4.5: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at ELab = 5, 

9, 12 and 16 MeV using the W-4 potential. 
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.  

Figure 4.6:  Upper part: Excitation function for the elastic scattering of 
9
Be + 

9
Be 

at θc.m. = 90° expressed as the ratio of the measured cross-section to Mott cross-

section for ELab = 7 to 24 MeV including data from York et al. [YO77]. 

Lower part: Excitation function for the elastic scattering of 
9
Be + 

9
Be at θc.m. = 50° 

expressed as the ratio of the measured cross-section to Mott cross-section for ELab 

= 7 to 25 MeV.  
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4.4 DWBA analysis for inelastic scattering to 

9
Be

*
(5/2

-
, 2.430 MeV) 

 The Distorted Wave Born Approximation (DWBA) analysis technique has been 

outlined in Section 2.3. Calculations were performed for inelastic scattering to the 

second, unbound, 9
Be

*
(5/2

-
, 2.430 MeV) using the computer code DWIS [VI73], a 

modified version of the DWUCK by P. D. Kunz. Here, long range Coulomb 

excitation is properly taken into account by allowing  for 400 partial waves and 

integration of the radial wave functions to 75 fm. Results for the angular 

distributions measured at ELab = 16 MeV are shown in Fig. 4.7. A fit to the elastic 

scattering data (scales as the deformation parameter squared) was obtained by 

varying the deformation parameters C

2 and N

2  while requiring that the Coulomb 

and nuclear deformation lengths be equal i.e. C N

2 2   with C C

2 2 CR   and 

N N

2 2 RR  . The derivative form factor came from only the real nuclear potential 

since the imaginary part did not make a significant contribution. The same optical 

potential parameters and extracted deformation lengths as found in the fit to 

angular distributions at ELab = 16 MeV were used for calculating the excitation 

functions taken at θc.m. ≈ 50°and 90° where the results are displayed 

correspondingly in Figs. 4.8 and 4.9. 
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Figure 4.7:  Upper part: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at ELab = 16 MeV. Lower part: Inelastic excitation of the second unbound state 

in 
9
Be (5/2

-
, 2.430 MeV at ELab = 16 MeV.  
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Figure 4.8: Upper part: Excitation functions for the elastic scattering of 
9
Be + 

9
Be 

at θc.m. = 90° for ELab = 7 to 24 MeV. Lower part:  Inelastic excitation functions   

of 
9
Be + 

9
Be at θc.m. ≈ 90°. The data are fitted with the DWBA. Note that 

kinematically measurements can be made at an angle θLab. = 45° only down to ELab 

= 9.5 MeV. 
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Figure 4.9: Upper part: Excitation functions for the elastic scattering of 
9
Be + 

9
Be 

at θc.m. = 50° for ELab = 7 to 24 MeV.  Lower part:  Inelastic excitation functions of 

9
Be + 

9
Be at θc.m. ≈ 50°. The data are fitted with the DWBA. Note that 

kinematically measurements can be made at an angle θLab. = 25° only down to ELab 

below  6 MeV. 
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4.5 Discussion 

 The energy-dependent optical model potential found by York et al. [YO77] 

labelled C-1 to reproduces the gross features of the measured elastic scattering 
9
Be 

+ 
9
Be for angular distributions at ELab = 5, 9, 12 and 16 MeV as seen in Fig. 4.2. 

The oscillating structure becomes more pronounced as the incident energy 

increases above the Coulomb barrier. A slightly better fit of the data at ELab = 16 

MeV can be achieved by allowing V0 and W1 to vary (set W-1 of Table 4.1) as a 

consequence of an improved angular distribution measurement in comparison to 

that of York et al. [YO77]. 

Improved fits to the angular distribution data could be obtained by firstly allowing 

V0 and W1 to vary for each angular distribution (see Fig.4.3) and secondly by 

allowing the absolute normalisation of the data to vary (see Fig. 4.4). This resulted 

in a relatively small adjustment to the normalisation of the data by between 3% 

and 12% (set W-3 of Table 4.1). An energy-independent optical potential could 

then be found by averaging the values for V0 and W1 of set W-3 and allowing a 

simultaneous fit to be made for the all four angular distributions. The energy-

independent optical potential is given by the set W-4 of Table 4.1 and the results 

of which are shown in Fig. 4.5 where it can be seen that good fits to the data are 

obtained. 

Using the energy-independent optical potential set W-4, fits to the excitation 

function data at θc.m. = 90° and 50° are shown in Fig. 4.6. Over the entire energy 

range measured from below to well above the Coulomb barrier at ELab = 6 to 25 

MeV, respectively,  the data are fitted very well together with oscillations in the 

data at the higher energy end. 

The analysis is then extended to include a DWBA calculation for inelastic 

excitation to the second, unbound, state 
9
Be

*
(5/2

-
, 2.430 MeV). The results are 
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shown in Fig. 4.7 where it can be seen that the structure in the inelastic scattering 

data is reproduced very well. However, due to the limitations in the experimental 

measuring equipment, data above θc.m. = 102° could not be measured. Further 

measurements are necessary to ascertain if the cross-section would start to rise 

again at the more backwards scattering angles. The value of the deformation length 

extracted, δ2 = 0.60 fm, is somewhat lower than that from in previous experiments 

e.g. proton inelastic scattering where δ2 = 1.1 fm [VO73]. In addition, these values 

are lower than what would be expected when calculated from the B(E2↑) values 

where δ2 = 2.0 fm. However, this is probably due to the limitation of the present 

DWBA analysis and coupled channels calculations [CO85] have produced δ2 

values close to that obtained B(E2↑) values. 

Inelastic scattering data are also reproduced well by the excitation functions as 

seen in Fig. 4.8 and 4.9. Here, the measured cross-section rises steeply at the 

Coulomb barrier and flattens out as the incident energy increases. 
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Chapter 5 

Summary and Conclusions 

Measurements have been made of elastic scattering for the fermionic 
9
Be + 

9
Be 

system close to and above Coulomb barrier ( CB 9 9

Lab ( Be Be) 8.0 MeVE   ). Cross 

sections have also been measured for inelastic scattering to the second unbound, 

state 
9
Be

*
(5/2

-
, 2.430 MeV). The angular distributions taken at ELab = 9, 12 and 16 

MeV have been extended  and superceded the very limited existing data at these 

incident energies for elastic scattering of 
9
Be + 

9
Be [YO77]. In addition, excitation 

functions for elastic scattering measured at θc.m. = 50° and 90° from 6 ≤  ELab ≤ 25 

MeV have again extended the very limited data from York et al. [YO77] taken at 

θc.m. = 90°. 

In the case of inelastic scattering, excitation of the second, unbound, state in 
9
Be  

proceeds via a ∆L = 2 ħ transition from the 
9
Be (3/2

-
, g.s.) to 

9
Be

*
(5/2

-
, 2.430 

MeV) in a two body reaction. After the interaction the excited 
9
Be

*
 breaks up 

(
9
Be

*→ 2α + n) leaving the ground state 
9
Be reaction partner to be detected. An 

angular distribution was measured for inelastic scattering at ELab = 16 MeV and 

two excitation functions at θc.m. ≈ 90° and 50° in the energy range 6 ≤ ELab ≤ 25 

MeV.  Such a complete set of inelastic scattering data at and just above the 

Coulomb barrier is not available in the literature. 

Measurements were taken using a high-resolution gas-ionisation detector. The 

entrance window of 1 μm thick mylar into the isobutene gas of the gas-ionisation 

∆E section limited the measurements to ELab (
9
Be) ≥ 6 MeV. The maximum beam 

energy available at the time from the EN tandem Van de Graaff accelerator of 

iThemba LABS (Gauteng) of ELab (
9
Be) = 25 MeV provided the upper limit. 

Elastic scattering in the symmetric 
9
Be + 

9
Be fermionic system is sensitive to the 

9
Be ground state spin of J

π
 = 3/2

- 
ħ, which is explicitly included in the Coulomb 

scattering formula (Mott scattering). In addition, anti-symetrization is required to 
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be included in the optical model of elastic scattering. In both cases, this leads to 

elastic scattering cross-sections that are symmetric around θc.m. = 90°. 

Starting from the energy-dependent optical potential of York et al. [YO77], an 

energy-independent optical potential was obtained by searching on the strength of 

the real and imaginary components V0 and W1, respectively. This was done by 

simultaneously fitting the angular distributions measured at ELab = 5, 9, 12 and 16 

MeV. Indeed, over the limited incident energy range measured it is expected that 

an energy-independent optical potential is sufficient. Excellent fits were then 

obtained to excitation functions measured at θc.m. = 90° and 50° in the energy 

range 6 ≤ ELab ≤ 25 MeV, using the energy-independent optical potential. 

Turning to the inelastic scattering data, a good fit was achieved within the DWBA 

to the angular distribution measured at ELab = 16 MeV using the energy-

independent optical potential. The extracted deformation parameter 2  or 

deformation length (δ2 = 0.6 fm) being consistent with the previous analyses 

[CO85], [OM84] and [VI93]. The inelastic-scattering excitation functions taken at 

θc.m. ≈ 90° and 50° in the energy range 6 ≤ ELab ≤ 25 MeV were also fitted well 

using the previously extracted deformation length. 

Future work should include an angular distribution at the highest incident energy 

available (ELab (9Be) ≈ 29 MeV) for inelastic scattering to 
9
Be

*
(5/2

-
, 2.430 MeV) 

to access the more backward scattering angles θc.m ≥ 102° not possible in the 

present measurement taken at ELab = 16 MeV due to scattered-particle energy 

limitations. As such, symmetry effects in the DWBA analysis can be investigated.  
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Appendix-A 
Tabulated values of the measured Quantities 
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Table A1: Elastic scattering of 
9
Be +

 9
Be at ELab = 16 MeV 

 

c.m.
 

(deg.)
 

M/d d 
 

 

Error 

 

25.00 0.508 0.038 

30.00 0.389 0.043 

35.00 0.432 0.035 

40.00 0.400 0.040 

45.00 0.282 0.032 

50.00 0.221 0.029 

55.00 0.251 0.017 

60.00 0.283 0.14 

65.00 0.231 0.015 

70.00 0.181 0.013 

75.00 0.190 0.011 

80.00 0.188 0.008 

85.00 0.174 0.007 

90.00 0.144 0.007 

95.00 0.174 0.007 

100.00 0.188 0.008 

105.00 0.190 0.011 

110.00 0.181 0.013 

115.00 0.231 0.015 

120.00 0.283 0.014 

125.00 0.251 0.017 

130.00 0.221 0.029 

135.00 0.282 0.032 

140.00 0.400 0.040 

145.00 

150.00 

155.00 

0.432 

0.389 

0.508 

0.035 

0.043 

0.038 
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Table A2: Elastic scattering of 
9
Be +

 9
Be at ELab = 16 MeV (scaled data points) 

 

c.m.
 

(deg.)
 

M/d d 
 

 

Error 

 

25.00 0.462 0.033 

30.00 0.399 0.037 

35.00 0.428 0.032 

40.00 0.332 0.035 

45.00 0.234 0.027 

50.00 0.184 0.025 

55.00 0.209 0.015 

60.00 0.235 0.012 

65.00 0.192 0.013 

70.00 0.150 0.011 

75.00 0.158 0.009 

80.00 0.156 0.006 

85.00 0.145 0.006 

90.00 0.129 0.006 

95.00 0.145 0.006 

100.00 0.156 0.006 

105.00 0.158 0.009 

110.00 0.150 0.011 

115.00 0.192 0.013 

120.00 0.235 0.012 

125.00 0.209 0.015 

130.00 0.184 0.025 

135.00 0.234 0.027 

140.00 0.332 0.325 

145.00 

150.00 

155.00 

0.428 

0.399 

0.462 

0.032 

0.037 

0.033 
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Table A3: Excitation functions of 
9
Be + 

9
Be at θc.m. = 50°. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Energy 

(MeV) 

M/d d 
 

 

Error 

 

6.0 

7.0 

8.0 

9.0 

10.0 

11.0 

12.0 

13.0 

14.0 

15.0 

16.0 

18.0 

20.0 

22.0 

24.0 

25.0 

0.828 

0.762 

0.606 

0.502 

0.393 

0.409 

0.334 

0.263 

0.253 

0.220 

0.189 

0.188 

0.246 

0.249 

0.198 

0.191 

0.058 

0.064 

0.045 

0.039 

0.051 

0.065 

0.018 

0.028 

0.035 

0.019 

0.024 

0.017 

0.018 

0.021 

0.021 

0.012 
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Table A4: Excitation functions of 
9
Be + 

9
Be at θc.m. = 90°. 

 

Energy 

(MeV) 

M/d d 
 

 

Error 

 

7.0 

8.0 

9.0 

10.0 

11.0 

12.0 

13.0 

14.0 

15.0 

16.0 

18.0 

20.0 

22.0 

24.0 

 

0.585 

0.494 

0.389 

0.333 

0.268 

0.280 

0.211 

0.199 

0.176 

0.135 

0.107 

0.096 

0.088 

0.068 

 

 

0.098 

0.097 

0.060 

0.016 

0.029 

0.013 

0.017 

0.013 

0.012 

0.024 

0.019 

0.013 

0.009 

0.011 
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Table A5: Inelastic scattering of 
9
Be + 

9
Be at ELab = 16 MeV 

 

Energy 

(MeV) 

/d d
 

(mb/sr)
 

Error 

(mb/sr) 

27.53 

33.07 

38.62 

44.20 

49.80 

55.43 

61.10 

66.81 

72.58 

78.42 

84.35 

90.38 

96.56 

102.93 

6.1 

4.94 

4.54 

5.55 

5.67 

5.67 

5.24 

4.77 

3.53 

3.43 

4.42 

4.34 

4.12 

3.29 

0.072 

0.033 

0.054 

0.067 

0.077 

0.066 

0.033 

0.041 

0.060 

0.051 

0.045 

0.060 

0.045 

0.033 
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Table A6: Inelastic scattering of 
9
Be + 

9
Be at ELab = 16 MeV (scaled) 

 

Energy 

(MeV) 

/d d
 

(mb/sr)
 

Error 

(mb/sr) 

27.53 

33.07 

38.62 

44.20 

49.80 

55.43 

61.10 

66.81 

72.58 

78.42 

84.35 

90.38 

96.56 

102.93 

5.3444 

4.34 

3.99 

4.82 

4.93 

4.89 

4.54 

4.21 

3.1 

3.01 

3.88 

3.81 

3.62 

2.89 

0.063 

0.029 

0.54 

0.046 

0.067 

0.057 

0.029 

0.036 

0.052 

0.044 

0.039 

0.052 

0.039 

0.029 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 

 

Table A7: Elastic scattering of 
9
Be +

 9
Be at ELab = 12 MeV 

 

c.m.
 

(deg.)
 

M/d d 
 

 

Error 

 

30 

35 

40 

45 

50 

55 

60 

70 

80 

90 

100 

110 

120 

125 

130 

135 

140 

145 

150 

 

0.671 

0.532 

0.479 

0.421 

0.388 

0.301 

0.228 

0.300 

0.293 

0.199 

0.293 

0.300 

0.228 

0.301 

0.388 

0.421 

0.479 

0.532 

0.671 

 

 

0.059 

0.067 

0.072 

0.071 

0.076 

0.077 

0.066 

0.075 

0.068 

0.044 

0.068 

0.075 

0.066 

0.077 

0.076 

0.071 

0.072 

0.067 

0.059 
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Table A8: Elastic scattering of 
9
Be +

 9
Be at ELab = 12 MeV (scaled data) 

  

c.m.
 

(deg.)
 

M/d d 
 

 

Error 

 

30 

35 

40 

45 

50 

55 

60 

70 

80 

90 

100 

110 

120 

125 

130 

135 

140 

145 

150 

 

0.620 

0.492 

0.437 

0.389 

0.359 

0.278 

0.267 

0.277 

0.271 

0.185 

0.271 

0.277 

0.267 

0.278 

0.359 

0.389 

0.437 

0.492 

0.620 

0.031 

0.021 

0.025 

0.014 

0.008 

0.012 

0.011 

0.016 

0.017 

0.018 

0.017 

0.016 

0.011 

0.012 

0.008 

0.014 

0.025 

0.021 

0.031 
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Table A9: Elastic scattering of 
9
Be +

 9
Be at ELab = 9 MeV  

 

c.m.
 

(deg.)
 

M/d d 
 

 

Error 

 

30 

35 

40 

45 

50 

55 

60 

70 

80 

90 

100 

110 

120 

125 

130 

135 

140 

145 

150 

 

0.929 

0.833 

0.789 

0.600 

0.521 

0.399 

0.466 

0.390 

0.379 

0.310 

0.379 

0.390 

0.466 

0.399 

0.521 

0.600 

0.789 

0.833 

0.929 

0.033 

0.066 

0.061 

0.055 

0.077 

0.080 

0.041 

0.066 

0.056 

0.042 

0.056 

0.066 

0.041 

0.080 

0.077 

0.055 

0.061 

0.066 

0.033 
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Table A10: Elastic scattering of 
9
Be +

 9
Be at ELab = 9 MeV (scaled data) 

 

c.m.
 

(deg.)
 

M/ dd 
 

 

Error 

 

30 

35 

40 

45 

50 

55 

60 

70 

80 

90 

100 

110 

120 

125 

130 

135 

140 

145 

150 

 

0.888 

0.796 

0.688 

0.523 

0.498 

0.381 

0.378 

0.335 

0.355 

0.296 

0.355 

0.335 

0.378 

0.381 

0.498 

0.523 

0.688 

0.796 

0.888 

0.033 

0.066 

0.061 

0.055 

0.077 

0.08 

0.041 

0.066 

0.056 

0.042 

0.056 

0.066 

0.041 

0.08 

0.077 

0.055 

0.061 

0.066 

0.033 
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Table A11: Inelastic scattering of 
9
Be +

 9
Be at ELab = 16 MeV and θc.m. ≈ 50° 

 

Energy 

(MeV) 

/d d
 

(mb/sr) 

Error 

(mb/sr) 

12 

13 

14 

15 

16 

18 

20 

21 

22 

24 

25 

0.321 

0.330 

0.349 

0.423 

0.476 

0.577 

0.667 

0.587 

0.611 

0.559 

0.559 

0.051 

0.061 

0.052 

0.041 

0.036 

0.027 

0.036 

0.025 

0.038 

0.040 

0.043 
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Table A12: Inelastic scattering of 
9
Be +

 9
Be at ELab = 16 MeV and θc.m. ≈ 90 

 

Energy 

(MeV) 

/d d
 

(mb/sr)
 

Error 

(mb/sr) 

14 

15 

16 

17 

18 

20 

22 

24  

 

0.287 

0.387 

0.389 

0.37 

0.32 

0.35 

0.392 

0.421  

 

0.03 

0.05 

0.06 

0.06 

0.07 

0.09 

0.05 

0.07 
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Table A13: Elastic scattering of 
9
Be +

 9
Be at ELab = 5 MeV [YO77] 

 

c.m.
 

(deg.)
 

/d d 
 

 

Absolute Error 

(mb/sr) 

60 

65 

70 

75 

80 

85 

90 

95 

100 

105 

110 

115 

120 

 

 

0.946 

0.944 

0.936 

0.929 

0.929 

0.909 

0.918 

0.909 

0.929 

0.929 

0.936 

0.944 

0.946 

0.038 

0.030 

0.027 

0.022 

0.018 

0.022 

0.034 

0.022 

0.018 

0.022 

0.027 

0.030 

0.038 
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