UTILISING LOCAL MODEL NEURAL NETWORK JACOBIAN INFORMATION
IN NEUROCONTROL

Author:

David John Carrelli

A dissertation submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in

fulfilment of the requirement for the degree of Master of Science in Engineering.

Johannesburg, March 2005

DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted for the Degree of Master of
Science in Engineering at the University of the Witwatersrand, Johannesburg. It has not been submitted before

for any degree or examination in any other University.

(Signature of candidate.)

On this the day of in the year

To Bertha and June

il

ACKNOWLEDGEMENTS

I am indebted to those people who have provided inspiration, support and the many comments and suggestions
that have made this dissertation possible. My supervisor, Professor Brian Wigdorowitz, deserves special mention
for his continual interest, unfailing patience, and belief in my abilities during those times when progress was
lacking or hindered. I would also like to express my appreciation for the financial assistance provided to me by
the Foundation for Research and Development (FRD), and the University of the Witwatersrand Senior Bursary

schemes, during a portion of the time in which this research was conducted.

il

ABSTRACT

In this dissertation an efficient algorithm to calculate the differential of the network output with respect to its
inputs is derived for axis orthogonal Local Model (LMN) and Radial Basis Function (RBF) Networks. A new
recursive Singular Value Decomposition (SVD) adaptation algorithm, which attempts to circumvent many of the
problems found in existing recursive adaptation algorithms, is also derived. Code listings and simulations are
presented to demonstrate how the algorithms may be used in on-line adaptive neurocontrol systems. Specifically,
the control techniques known as series inverse neural control and instantaneous linearization are highlighted.
The presented material illustrates how the approach enhances the flexibility of LMN networks making them
suitable for use in both direct and indirect adaptive control methods. By incorporating this ability into LMN
networks an important characteristic of Multi Layer Perceptron (MLP) networks is obtained whilst retaining the

desirable properties of the RBF and LMN approach.

iv

TABLE OF CONTENTS

INTRODUGCTION ...ttt bbbt b ekt b e ek e b £ eh b e e e b ek s b e eb £ e bt e b e e he e b e n ke ebe et e e st ase e e e benbeane s 1
1.1 BACKGROUNDutiitiutieutieiteettenteenteesteesteearesieesueesueesseesseessesusestsensees st esseemsesaeesueesaeenseemttensesanesunenseenseenneensesnnes 1
L.2 OBIECTIVE ...ettuteittettete ettt ettt et e e et et st eeat e s et e et e a et em e e es e e es e e st enseemseemseemeeeaeeesea st enteenteenseeneeaseenseenseensesneas 2
L3 SCOPE ...ttt ettt b e e a e a et besh e bt sae et nae e b 3
1.4 RESULTS AND CONCLUSIONS.......cutetteteeteritesitesttenteenteesteettestsesteesseeseesseessesseesueesseenseenteensesssessaesseenseenseessesnees 3

INTRODUCTION TO NEURAL NETWORKS ...ttt et sne s 5
2.1 INTRODUCTIONc.ceiriteiieitenteete et st ente et et eetestsesuse bt e bt esseessesasesaeesaee bt emttemseeasesasesbeenbeenseenseemnesanesaeesueenseenne 5
2.2 ARTIFICIAL NEURAL NETWORK SYSTEM COMPONENTS........ceertteutteuierueenteeneeeteeneeeseesseesseeseesesseseesneesseesseenes 5
2.3 THE BIOLOGICAL CONNECTIONeouteuieuiiuteientinieeiteuteteteste st etesuteusessensessesaeesesueessessensensesaeeseeseensensensensensenes 8
2.4 THE FEED FORWARD NEURAL NETWORK APPROXIMATION PROBLEMccc.cocuiriiniiniiiniieieeieeieeee e 9

B B B o () o) [10 W 13 1118 o) PSS 9
2.4.2 Existence of a uniform approXimationcceeeuerierierieieieieeteest et eeeeee e seeeseeesee e eneesseeseeeneeeneeas 10
2.4.3 Approximation CONSIIUCTIONeeieuieririeiiteeeteeeteeeteesteesteessseesseesseessseessseessseessseessseesseessessnsasessessns 11
2.4.4 Interpolation of the apPPIOXIMALION.........ccvervieriiiieiiereeste et et e eteesteeteeseebesaeseeesseesseesseessesseeseensenssens 12
2.4.5 Contending with the curse of dimensionality and using a-priori information.............ccecceevervenuennen. 17
2.5 DISCUSSION AND CONCLUSIONSoetitirterueeuteutentetententesteeteemeensensensensessessesueessensensensensessesuesseeneensensensensensens 23

NEURAL NETWORKS - STRUCTURE AND IMPLEMENTATIONoooiiiiiiireceeeeee e 26
3.1 INTRODUCTION ...cceiutiitiiieiteuteteteste sttt ettt ettt sttt s ae et et a et e b sae e bt eatesae s et e be st e e bt sueeusesnenaensesaensesueeunenn 26
3.2 NETWORK STRUCTURE - THE ACTIVATION RULEccttrttiriteniienieeienitenitenieenteenteeetesinesteenseenseensesmeesmeesueenseenne 26

3.2.1 Multi-Layer Perceptron NetWork StrUCTUIE.cccuviierieriieie ettt 26
3.2.2 Radial Basis Function NetWork StrUCEUIEcccueeeuieiiieeiieiiieeieecteeereesreeeteesveeeeveeseveesaveeseneesenaens 29
3.2.3 Local Model NetWork StIUCKUIEccvevviiiieieciecieeie ettt ettt ettt steebeesseessesaaesasesaeesseesneennenns 35
3.3 TRAINING THE NETWORK PARAMETERS — THE LEARNING RULEeccviiiiiitieiieieenteeeesieesieesseessesnsessnesseesseenns 40
3.3.1 The Optimisation ProbIEMc.eiiirieiieiieiecesee ettt ettt e e st et ese e s e enseennesnnenns 41
3.3.2 On-line vs Batch Mode PIOCESSINGceoueeiiieiieiieriieiiete ettt st ee et eee e e 42
3.3.3 Network Parameterisation as a Linear Optimisation Problem..............c..cceevviiieiieniiccieiieceeeeee e 43
3.3.4 The Steepest or Gradient Descent Methodcccuevieriiiiiiieiieniccee et 44
3.3.5 The Recursive Least Squares (RLS) Methodccocieviieiiioieiienieieee e 45
3.3.6 The Exponential Forgetting Factor with Conditional Updating Method..........c.ccccovieiiiiiiiininies 47
3.3.7 Regularization - The Constant Trace and Kalman Filter Methods.cccceoeiiiiininiiniciinceeeee, 53
3.3.8 The Recursive Singular Value Decomposition (SVD) Algorithm............cccceevverieniiciiieiienieeeee 54
3.3.9 Implementation of the Learning RULE............cccoeoiiiiiiienieiieie et 61
3.3.10 Structure OPtIMISATION. ... eeoueeeeruiertierte et eteetie et et eteetesteesteeteeteeaeesseesseenseenseeseasseenseeaseeseenseeneeeneenns 66
3.4 DETERMINING THE NETWORK JACOBIAN........coctiriiiiniintinitniteitetetetestesie st eseeseensesaessesnesaeeseeaeesnesennenneseennenae 67
3.4.1 Determining MLP Network Jacobian Information............c.cccevverieriieiinieniesieeieeee e 67
3.4.2 Determining RBF Jacobian Informationcccccevierieniieiii et 67
3.4.3 Determining LMN Jacobian INformation............ccceerieriiiienieniere et 72
3.5 CONCLUSION ...cititiitiett ettt ettt sttt ettt et et ae st b e s bt et e st et e e e st e b s bt eb e eatess et emtebesaeebeeueeunesnenaensestenbesueennenn 74

CONTROL USING NEURAL NETWORKS - NEUROCONTROL......cccctiiiiiiiierienie st 77
4.1 INTRODUCTIONc..tiittiiieteeite ettt este et et ettt et e sbte bt e bt et saeesatesbeesbeesteeateeeteebaesb e e beenbeemtesatesbeesbeebeenteenneeanens 77
4.2 HISTORICAL BACKGROUNDcovtiiieiieitinitenieenieeteeteeatesieesueesteesteesseeasesusesteesseenseennesasesaeesseenseemseesnenanennnens 78
4.3 PLANT DESCRIPTIONcutiutiuteutentetententtetesieeutenteten e sttetesueesteseensensestesbesueeueeseensensensenbesaeeseemeensensensensesaeesesnees 79
4.4 CONTROL LAW FORMULATION......cctiitimtiitintieiteitetetentestesteeteeneeneetestesaesteebesueesnessessenaesaesbesueenseneensensensensensens 81

4.4.1 Series INVEISE CONIIOL......c.occviiiieieciieieeie ettt ettt ettt et e et e et e esbeeteestaesseessesssesseesseesseesseensenssens 81
4.4.2 Minimum Degree Pole Placement DeSign...........ceccieriieiieiieiirieieieeie et 83
4.5 ADAPTATION MECHANISMSoeutiutintintinterteeutetentententestesteeteemtensensesensestesbesueeseentensensensenbesueeueeneensensensensensens 88
4.5.1 The adjusted PATAIMELETSeiuieuiieieeieiieieie ettt et ettt e et e st e ettt ebe e st ease s e beabesbeebeeaeeseeneenseaseseeeseeneens 88
4.5.2 Incorporating the design SPECIfICAtIONccveeeviiiiiieriieiiieie ettt steebe e e seeesreesseeseenseessens 90

4.5.3 Changing the PATAMELETScccueeiietieiieteeie et ee st ettt e ea e ste e et e e eseeeseesseesseeseeneesneesneesseenseenseeneeas 91

4.5.4 Using the Neural Network Jacobian INfOrmation.............cooceeerieiriienieninieeseeee e 93

4.0 CONCLUSIONSooutteitenieeteeite ettt st e st ett et ettt ettestee bt e bt eaaeeaeesbeesbeesbeemteeateebteeaaesbe e bt enbeemteemtesbeesbeenaeenteenneeanens 94
SEMULATIONS ..ttt bbbttt b e b b ke h e bt e e e R b e e e e eh e bt e b e e b £ e he e s b e bt eb e ebeebe e b e et enbeneeebe b e 97
5.1 INTRODUCTIONcecutetiiutenitenitenttettetteeetesttenteenseesseensesasesaeesteemseeaneeasesusesbeesseenseeasesasesaeenaeemseemseeanessnensaenseennes 97
5.2 INVERSE NEURAL CONTROLcetietteuteeiteeitesttestteteenteeseesseesseeseasesmsesmeesseanseanseanseensesseenseenseenseensesneesneenseanes 98
5.2.1 SYStEIM DESCIIPIION. c..ceuttentieieiie ittt ettt sttt e bt ettt st e bt e bt eateestesbee bt enbeemtesneesaeenae 98
5.2.2 Linear State Feedback CONTIOL........c.occiiciiiiiiieiieiieic ettt et sae e sseenaesnaeeane e 99
5.2.3 Series inverse control using direct adaptation...........cecveeuierieeiesiesiee e 100
5.2.4 Series inverse control using indirect sensitivity adaptation............ccocereerieiierenieneeeee e 102

5.3 CONTROL USING INSTANTANEOUS LINEARIZATIONceutteutieuieniienttenteenteenteenteetesaeesseesseenseenseensesnsessnesmeenees 103
5.3.1 Controlling a non-linear Mass-Spring-Damper SYSteMcc.ecvvereereerieriieriereesieeieeeeeeesseesseesnens 103
5.3.2 Stabilising an inverted PENAUITMcooiiiiiiiiiei ettt enaesnaens 111

5.4 DISCUSSION AND CONCLUSIONSeettetteutteuteettesteenteeneeenseaseasseesseanseanseansesneesseesseenseanseensesseesseensesnseensesnees 115
5.4.1 A Priori Plant infOrMatiONccuiiviiiieiiiiiieiieeeeieeie ettt et ste e e sreesteebeesaeessesssessesseesseesseennas 115
5.4.2 Identification in the presence of diStUrbanCesccocvvieviirieiieiieieiiecee et 116
5.4.3 The network VErifiCation SEPecercierierieriieieeieeteste et et et e st et e etesaeseeesseesseeneesseesseesseensesnsenseens 117
RO -1 071 1 TSRS 117
5.4.5 MISCEIIANEOUS ISSUESveevvieeriirreiiiesieeteesteerteeseeeseeseesseessesssesssesseeseessesssesseesseenseesseessesssesssesseesseesesses 117
CONCLUSIONS AND RECOMMENDATIONSottt et sbe st e 119
6.1 SYNOPSIS. ...cutiiiieitenieettet ettt ettt ettt ettt s be e st e e bt e st ee bt et b e bt e s bt et e et e e ot e sae e sbe e bt et e enteeabesbnenbeebeebeentesnees 119
6.2 OBSERVATIONS AND CONCLUSIONSeeutiiuiiiiteieenteettenteetenerenteesieeseesesssesanesueenseesseenseensessnesseenseenseensesnnes 121
6.3 RECOMMENDATIONS FOR FUTURE WORKc.uciitiitietieiieiieeieeeteesttesteete s e setesaeesaee et enteeneeeseesseenseenseenseenees 122
REFERENGCESottt ettt ettt st sttt et e s e s e sa e st e s beebe et e e Rt e s e et e s beneeabenbeeneenee e enteneeseenee e 125

vi

Figure 2.2.1.
Figure 2.3.2.
Figure 3.2.1.
Figure 3.2.2.
Figure 3.2.3.
Figure 3.2.4.
Figure 3.5.1.
Figure 4.5.1.
Figure 4.5.2.
Figure 5.2.1.
Figure 5.2.2.
Figure 5.2.3.
Figure 5.2.4.
Figure 5.2.5.
Figure 5.3.1.
Figure 5.3.2.
Figure 5.3.3.
Figure 5.3.4.
Figure 5.3.5.
Figure 5.3.6.
Figure 5.3.7.
Figure 5.3.8.
Figure 5.3.9.

TABLE OF FIGURES

Neural Network COMPONENLS.cccveeierierieriieteeteetesiteste et etesaestaesseesseesessaesseesseeseenseensesssessaens 6
A Generalised NEeUIOn SIUCTUIE.eiuieiuieiiieie it ettt ettt ettt et et entesseesseeseeesseeaesneesneesseeneeenes 8
Multi-Layer Perceptron Network StruCtUre.ccoeeiiiriiiiiiiiinieiet et 27
General RBF NetWOrk StIUCHUTE.cc.eiuiitiiiiiieieietestcerc sttt 29
Axis Orthogonal RBF Network EXample.cccovieiiiiiiiiiieiieieeese e 31
General LMN NetWork StIUCLUIE.c.oeiiiiiiieiiieie ettt ettt 36
Neural Network Function Identification Computation Flow Chart.ccccoveeviiiviiiienienicieene 76
Block diagram of a Model Reference Adaptive SYStemL.cccvvverieriieriieiieieseenieeie e 89
Block diagram of an indirect Self Tuning Regulator.ccoooevierieiieiieieeieee e 90
Non-Linear First Order Plant - Open Loop System Model and its Response.cccccocevverrenennne 98
State Feedback System Model and its Closed Loop ReSpOnSes.cceeeeeeeienienienienesieneeeeeeenes 99
Inverse Neural Controller System Model and its Closed Loop Responses...........ccceeveverienniennnns 100
Comparison of Inverse and Linear State Feedback Controller Mappings.cceecververvenerennnne 102
Indirect MLP Inverse Controller and its Closed Loop Responses.cccceveeriereeienienienieene 103
Open Loop Response of a Non-Linear Mass-Spring-Damper.cccceveeriinieniincnnenceneenenn 106
Identification System Model for Non-Linear Mass-Spring-Damper.cccceveeverveereereenreenenne 107
Polynomial Coefficients of the Non-Linear Mass-Spring-Damper............cccccevvvreerveervenvenienenne 108
Pole Zero Plot for Mass-Spring-Damper SYSTeIM........c.ceouiiiirierieieeieeiiesieeie et 109
Instantaneous Linearization Control of Mass-Spring-Damper.cccceeeieierenieneneneneeceeenes 109
Mass-Spring-Damper System -Closed Loop ReSPONSES........ccccvvervieciirienieriieieeie e 110
The Inverted Pendulum Problem.ccooiiiiiiiiiiiiniicceecteeee et 111
System Models used for Instantaneous Linerization Control of an Inverted Pendulum................ 113
Instantaneous Linearization Control of an Inverted Pendulum - Closed Loop Responses. 115

vii

NOMENCLUTURE

Variable Description
u Plant inputs.
y Plant outputs and / or network outputs.
€, Standardized basis vector along the /™ dimension of an n-dimensional hyper surface.
N, N, Scalar variable representing number of network hidden units.
For MLP networks: An integer layer index. For RBF and LMN networks: The integer number
! of activated basis function units. Also equal to the number of elements contained in &, .
m; The number of units contained in the i layer of an MLP network.
n Number of elements in the network information vector. (n = pn;, +gn,)
0 omon Maximum number of unit delays for the plant output elements, plant input elements, and plant
@b Tk transport respectively, contained in the network information vector.
p.q Number of plant inputs and plant outputs represented in the information vector respectively.
x Network information vector or plant state vector.
0,0 Network weight or vector / matrix of weights.
& Elliptical integration function centres. Each centre may be regarded as an element of the set of
AR lattice points &; .
o,2 Elliptical integration function variance as a scalar variables and matrix respectively.
A, Lattice sample spacing along the i dimension.
Functions Description
g() Activation function or model validity function.
1(.) Integration function or net function.
o(.) Dirac impulse function.
001(.) Function that sequentially stacks all the columns of the matrix argument.
dia g() Functi(?n that constructs a null matrix of appropriate size and places its vector argument along
the main diagonal.
Set Description
g The set of Real numbers. Superscript designated number of dimensions that member variables
may take on.
@b The set of Natural numbers. Superscript designated number of dimensions that member

variables may take on.

viii

Set Description

Closed and bounded subset representing the domain of the information vector having

K) .
n dimensions.
I L= {il yeeesly }is an n-tuple of integers representing the locations of the lattice points contained
in &, .
93 Set representing the spatial lattice point vertices on an n-dimensional hyper surface.
; Set representing the spatial lattice point vertices on an n-dimensional hyper surface that
fo contributes to a network output. In general§; €&, <& .
Symbology Description
Italics Designates a variable when used in an equation.

Bold Italics | Generally designates a vector variable.

UPPERCASE

ITALICS Generally designates a matrix variable.

UPPERCASE | Generally designates a matrix function.

Courier Designates computer code.
[] Indicates discrete time indexes or matrix elements.
[.]T Matrix or vector transpose.

Kronecker tensor product. If 4 and B are matrices having dimension m xn and
pxq respectively then A® B is the mp x ng matrix formed by taking all possible products
between the elements of 4 and B . That is:

® ayB apB - a,B
Iy az.lB az.zB a,,B
a,B a,,B - a,,B

X

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Over the last decade or more, there has been substantial interest in the use of both supervised and unsupervised
neural networks to solve non-linear control problems. This has led to a new class of techniques collectively
referred to as neurocontrol. Many different methods have been proposed (Psaltis et a/, 1988; Hunt and Sbarbaro,
1991; Hunt et al, 1992; Sorensen, 1994; Suyken et al, 1996; van Breeman and Veelenturf, 1996; Soloway and
Haley 1997; Motter, 1998) however, all systematic engineering approaches have considered three crucial and

interrelated steps.

First, a fundamental strategy or control paradigm must be selected. This can be broadly subdivided into model
based or model free approaches, both of which may or may not be adaptive, deterministic or optimal. This
decision is influenced by factors such as the control objective, the amount of information available about the
process being controlled and the environmental constraints (noise, computing resources, cost, etc.) in which the

system is to operate.

Second, the type of neural network(s) to be used in implementing the control paradigm must be selected. To do
this, a thorough understanding of the different network types and their fundamental characteristics is essential.
These characteristics may include (in no particular order) but are not necessarily limited to:

1. Approximation abilities:

e Can the network approximate the necessary functions?

e Generalisation - How well does the network approximate data not in the training set?

e Over fitting - Does the network tend to over fit the training set?

e Does the network provide the information required by the selected control paradigm?
2. Identification issues:

e Number, rate and stability of parameter convergence.

. Suitability for on-line adaptation. (If required)

. Discrete time vs. continuous time systems.
3. Physical correlation and suitability to theoretical analysis:

. Can the network parameters be related to the physical systems involved?

. Is it possible to include a priori information in the network?

. Can the trained network be "reverse engineered" and analysed with current mathematical tools?
4. Computational requirements:

. Calculation complexity.

. Scalability and memory requirements.

As is typical of most engineering problems, no single network paradigm has favourable characteristics in all the

above categories, and any network design is thus the result of a trade off between these characteristics.

Third, the conditions under which the closed loop system is stable must be determined. This step is obviously
highly dependent on the preceding two points and is a fundamental challenge in the application of neural
networks to control. Obviously, successful implementation of this step is closely related to the mathematical
foundations of the networks involved. It is therefore most desirable to implement designs that use networks with
sound theoretical underpinnings and strong correlations to the physical attributes of the system dynamics. This

observation was an important motivating factor behind the work presented in this dissertation.

There are essentially two basic classes of neural networks commonly used in supervised neurocontrol, the Multi-
Layer Perceptron (MLP) and Radial Basis Function (RBF) networks. The former typically scores well in
approximation abilities, identification issues, and computational requirements. In particular, the differential of
the network output with respect to its inputs (termed system gradient or network Jacobian in this dissertation), is
readily obtained in an on-line fashion, with little computational overhead. This last feature is most desirable in
all forms of model based control. However, the MLP is poorly suited to theoretical analysis using current
mathematical tools and there is no easily recognisable correlation between its parameters and the physical
system it models. Basic RBF networks are more theoretically tractable but have been criticised for inferior
memory use, bad generalisation, a tendency to over fit training data, and their inefficiency in calculating system

gradient information on-line.

Local Model Networks (LMN) (Johansen and Foss, 1992, 1993; Bosman, 1996; Zbikowski et al, 1994; Murray-
Smith and Johansen, 1997) are closely related to basic RBF networks but provide a good compromise between
the two extremes mentioned above. Structurally, they attempt to address the problems of inferior memory use,
bad generalisation and over fitting while still maintaining the tractability of basic RBF networks. However, since
they are based on RBF network principles, they do not appear to be widely used in control methods where on-

line system gradient information is required.

1.2 OBJECTIVE

The properties of LMN networks make them most amenable in the analysis of neurocontrol systems. If the
system gradient of such networks could be efficiently computed then, from a systems point of view, they could
be used as "black-box" replacements for MLP networks. Perhaps the most important attribute though, is that the
LMN networks remain transparent to the designer when performing closed loop system analysis or when

attempting to include a priori plant information. Therefore, the main objectives of this work are:
1) To derive an algorithm to efficiently calculate the system gradient of a LMN.
2) Implement this algorithm in an on-line manner that can be used in non-linear adaptive neurocontrol.

3) Show how this algorithm enhances the flexibility of the LMN permitting its use in both model free and

model based neurocontrol applications.

1.3 SCOPE

To achieve the stated objectives the subject matter of this dissertation has been arranged into three main areas,
namely, the relevant neural network theory and implementation, the basic approaches to neurocontrol and finally

simulation results.

We begin in chapter two by defining what a neural network is (in the context of this work) and presenting
selected results from approximation theory with explanations of how these results are relevant to the neural

network problem.

In chapter three the specific structural and algorithmic details of the MLP, RBF and LMN networks are
presented. This chapter constitutes the main body of the work and discusses in detail the calculation of the
network output, the adaptation or training of the network parameters and evaluation of the network Jacobian or
system gradient for each the three network types. It is here that the proposed system gradient algorithm is
developed, first for RBF networks, and then by extending this result to LMN networks. Although not formally
part of the objectives, a new on-line adaptation algorithm utilising a new and interesting objective function

formulation and Singular Value Decomposition (SVD) approach is also developed and presented.

Following this, in chapter four, the reader is introduced to the topic of neurocontrol. This is a large topic, in
which the majority of the details are beyond the scope of this dissertation. The focus has thus been placed on
defining a systematic approach to the topic by covering selected areas of system description and identification,
adaptation, and controller structure. Two methods in particular have been highlighted: inverse neural adaptive
control and instantaneous linearization. The penultimate section of this chapter highlights the connection
between the network Jacobian algorithm of chapter three and the neurocontrol approaches described in chapter

four.

In chapter five attention is turned to demonstrating the use of the described theory by presenting a number of
simulations. These simulations show the LMN networks used in an on-line environment performing both inverse
neural adaptive control and instantaneous linearization control. The chapter concludes with a discussion on the

selected control techniques, highlighting possible difficulties and pitfalls.

1.4 RESULTS AND CONCLUSIONS

In the sixth and final chapter discussion, conclusions and recommendations for future research are presented,

however, for completeness a very brief summary of the results and conclusions are presented here.

All the research objectives were successfully met and demonstrated for LMN networks. Additionally, algorithms
for extracting Jacobian information were derived for MLP and RBF networks and contrasted with the algorithm
obtained for LMN networks. Furthermore, a new adaptation algorithm, which attempts to circumvent some of

the problems with existing online adaptation schemes, was proposed.

Unfortunately a number of complications were encountered when using network Jacobian information in a
neurocontrol setting. These include the following basic problems. The network identification must be highly

accurate to achieve good control as the system root locations are highly sensitive to the network parameters.

Additionally, knowledge of the plant delays and number of zeroes is highly desirable to obtain good plant
descriptions. These characteristics are embedded in the polynomial description used for the plant, suggesting
that other approaches, such as sub-space methods, for the plant description may be better. Finally, the online
adaptation algorithms used to perform network training are prone to numerical difficulties and their setup can, in

practice, be problematic.

While successful results can be achieved, these characteristics mean that users must be cognizant of the potential
pitfalls, requiring that they have a thorough understanding of the underlying algorithms. This is particularly true

of the online adaptation computations.

CHAPTER 2

INTRODUCTION TO NEURAL NETWORKS

2.1 INTRODUCTION

Artificial Neural Networks'(ANN) systems may be viewed as general information processing systems. As such,
their analysis may be broken down into three distinct levels of description. The first, computational ability,
defines the goal that the system is required to achieve. The second level, the algorithmic level, specifies the
mathematical equations or formulas that can be instantiated in some physical way to achieve the computational
goals. Finally, there is the level concerned with the physical implementation of the algorithms themselves. This
chapter is concerned mainly with the computational abilities of neural networks and pays little attention to

algorithmic or implementation issues.

Before the computational abilities of a system can be clarified, the basic components of the system under
consideration must be defined. Therefore, in the next section, a very broad description of an artificial neural
network and its role in an ANN system will be given. This is followed by a rudimentary description of the
biological elements that inspired the development of such networks providing the reader a context in which to
place the terminology frequently used in connection with artificial neural networks. Next, the feed forward
neural modelling problem is formulated and a number of relevant results from mathematical approximation
theory are presented. This supports the validity of the selected approaches by demonstrating that the
computational abilities of the networks under consideration are sufficient to achieve a valid solution. Finally,

surrounding issues and chapter conclusions are presented.

2.2 ARTIFICIAL NEURAL NETWORK SYSTEM COMPONENTS

ANN systems are comprised of five basic elements. The first element is the components of the network itself

(Figure 2.2.1), which may be an abstraction (such as in a computer program) or physical hardware. This consists

! The term "Artificial" is used to differentiate the networks described in this work from their true biological counterparts. All the
networks studied here are approached from a signal processing and approximation theory point of view. As will be seen in
later sections, their structure bears a striking resemblance to their biological cousins. This is undoubtedly due to the original
computation goal of attempting to devise networks which mimic certain brain behaviour. As biological networks are not the
topic of concern, the term "neural networks" is synonymous with "artificial neural networks" in this work.

of a collection of units or neurons, each of which, at any instant in time, has a state or activation level
represented by a real valued scalar. All the unit activations in a network are collectively referred to as the
activation state of the network. The units are interconnected by a number of connections, which essentially
define the structure of a network. In the ANN such structure is commonly in the form of unit layers. The
connection "strengths" define the degree to which the activation of any particular unit influences another. This

"connection strength" is determined by the network parameters or weights.

Connections

Integration Function Activation Function

4,(x(2) &((x())

Processing Unit
or “Neuron”

Figure 2.2.1. Neural Network Components.

The second major element is the environment in which the ANN operates. It specifies what type of inputs and
outputs are observed by the network during its operation. In this work, these observations are the on-line

sampled data obtained from the process we wish to control and / or the signal to be tracked.

The third element is an activation-updating rule that describes how the network activation state is updated at
each moment in time. It is usually described by a large system of non-linear differential or, as in this work,
difference equations. This rule not only constrains the structure of the connections between the units, it also is
clearly related to the process performed by the units themselves. Mathematically, the unit activations are related
to the unit input connections in many varying ways. Generally, it may be divided into a two-stage process

described by g(z(x(¢))) where the result is a unit's output to the environment or its activation level, and x is the
unit inputs from the environment, and / or the activation level from other connected units. The function g(.) is
referred to as the activation function, and ¢(.) is called the integration or net function. Some examples of

commonly used integration functions include linear:

l(x):ZHixi —b=0"x-b, 2.2.1)
i=1

quadratic:

6, 0
N 2 T 92
(x)=Y 0,x7 ~b=x"0 x-b, ©= . , 2.2.2)
i=l1 '
0 9,
and elliptical (or spherical):
()= Y Y 0y —E)x, —£)—b=(x=&) Z(x-&)~b. (2.23)

i=1 j=1
The purpose of the integration function, which is typically fixed for an entire network, is to combine the unit
inputs with the network parameters in some meaningful way. In the above equations @, X, & and b all represent

the network parameters. The parameter b plays a particular role referred to as the bias value. This value basically

defines the "baseline" activation for the unit.

As with the integration function, many types of activation functions are also used, including signum and its

variations such as the threshold functions:

1 «(x)>0
g(x)=10 u«x)=0, (2.2.4)
-1 «(x)<0
piecewise linear or entirely linear:
I «x)>1
x)=<1x) 0=<iux)=<1
g(x) =qu(x) (x) , (2.2.5)
0 ux)<0
g(x) = ai(x)
sigmoid, both unipolar and bipolar (equivalent to the hyperbolic tangent function):
1
g(x) Za(W_O.Sj‘FC , (226)
and exponential which is used with the elliptical integration function to give a Gaussian function:
glx)=e™¥. (2.2.7)

The activation function's purpose is to generate the activation level of the unit given the integration function
value. It may differ from unit to unit, within the same network, to provide the desired behaviour for any
particular region of the network. A common combination is for a network's input and output units; those units
whose activation is directly obtained from and sent to the environment respectively, to be linear, while all other

so called hidden units are non-linear. These structures will be discussed in detail in the next chapter.

The fourth major element is the interpretation and objective functions. The interpretation function translates a
given networks activation state (distributed representation) or particular unit activation levels (local
representation) to some semantic interpretation. (i.e. It maps system states to physical interpretations.) The type
of function used varies, dependent on the ANN system's intended purpose. In this work, the interpretation

function is a scale factor (usually unity), which maps the network output unit activations to values which

represent some physical signal within the process we are attempting to control. Coupled with the interpretation
function is the objective function. This function maps system variables or states into a real number, whose

magnitude reflects how well the system is achieving its computation goal.

The fifth and final element is the learning or adaptation rule. This rule derives from a non-linear optimisation
problem, and forms a system of differential or difference equations that define a dynamic process that
determines how the network parameters are updated as a function of the system's current and past experiences.
The optimisation problem is defined by the objective function together with the network constraints and
environment. Essentially all ANNs attempt to combine these five elements in such a way as to solve some

meaningful problem.

2.3 THE BIOLOGICAL CONNECTION

There are numerous types of neural cells and structures found in the central nervous system. Cells found in the
sensory organs, and various parts of the brain, are frequently specialised. However, some neural cells exhibit
regular physical characteristics. These anatomical regularities were, on occasion, the inspiration for some of the
fundamental units found in artificial neural network models (Albus, 1971, 1981; Stevens, 1985). Clearly, the
neuron shown in Figure 2.3.2 is not anatomically correct, but, hypothetically it is sufficiently accurate to
describe the principal features of most neural cells. The reader is referred to Rumelhart and McClelland (1986),
Eberhart and Dobins (1990), Anderson and Rosenfeld (1988), and Anderson et al (1990) for more detailed

information.

The neuron can be broken down into three main sections; the cell body or soma, the dendritic tree, and the axon.
The soma contains those constituents common to most cells such as the nucleus, and substances necessary for
metabolism and protein synthesis. The intracellular liquid, cytoplasm and various other particles fill the entire
cell. The exact nature of the functions taking place in this area of the cell is unclear. Conceptually it will be

assumed that any information processing the neuron performs takes place here.

In order for the neuron to make contact with many other neurons, (as many as 10° in certain cells) the outer cell

membrane is shaped into many branches called dendrites, making up what is termed the dendritic tree. The

Figure 2.3.2. A Generalised Neuron Structure.

shape size and structure of the dendritic tree varies dramatically depending on the cell type and presumed

function.

The neuron sends its output signal to other neurons via the axon. These output signals take the form of a series
of electrical impulses. A resting potential of about 70 mV is present across the cellular membrane. By a process
of selective ion diffusion impulses of about 100 mV in amplitude and approximately 0.5 ms to 2 ms in duration
can be generated. The output information of the neuron is usually encoded in the frequency of these pulses,

which can travel at speeds of up to 100 m/s down the axon depending on the diameter and tissue covering it.

The connection between the output axons and dendrites of neural cells occurs in special formations called
synapses. The mechanisms involved in these synapses are complicated biophysical electrochemical processes.
Although there are still many questions surrounding these processes, a few basic facts can be stated. There are
two fundamental types of synapses, namely, excitatory and inhibitory, and to a reasonable first approximation, it

can be stated that the effects of the synapses on the membrane potential can be summed up linearly.

Unfortunately, the elementary structural features of a neuron give very little indication as to the workings of the
neuron itself. Functionally the neuron can best be described as a dynamic multi-input, single output device with
memory nonlinearities. This description encompasses a variety of extremely complex behaviour. As emphasised
by Lewis (1983), the neuron is an exceptionally complex machine, and warrants extensive study in its own right.

(Deutsch, 1983 and Niznik, 1983.)

From a systems viewpoint the human brain is estimated to contain more than 10'> neurons each having as many
as 10° synaptic junctions. This suggests there are approximately 10'° potentially modifiable connections; a

formidable system to analyse.

2.4 THE FEED FORWARD NEURAL NETWORK APPROXIMATION PROBLEM

Numerous authors have studied the problem discussed in the next four sections over a considerable length of
time. The details presented here are a small sampling showing only the most important results. The explanations
and theorems presented here closely follow the work in Zbikowski et al. (1994), (Sanner and Slotine, 1992), and
(Johansen and Foss, 1993). The interested reader is referred to these references for a more substantial list of

citations and in depth discussion.
2.4.1 PROBLEM DEFINITION

Before we can confidently use a neural network in control system design, it is necessary to establish their
approximation abilities given a particular control or modelling environment. We therefore begin by defining the

environment in which we expect the ANN to perform.

The use of feed forward neural networks (FNNs) in control is primarily based on the fact that many non-linear

systems can be described by the discrete time I/O representation shown in equation (2.4.1) below.

ylkl= f(lk=1],....ylk—n,ulk —n;], ... ,.ulk —n, —n,])+elk] 2.4.1)

Here, y[k]is the system output, u[k]is the system input, and e[k] is a zero mean disturbance term. The system
inputs and outputs are sampled with unit sample time and each sample is identified by the time index k. The
values n,, 1, and n, represent a fixed number of unit delays. The function f{.) is minimally assumed to be
continuous. This type of system model is called a NARX (Non-linear Auto-regressive model with eXogenous
inputs) model and has been widely studied in non-linear systems identification. For notational convenience the
information vector x is defined as:

x[k]=[k=11,....y[k—n, L ulk—n,],....ulk—n, —n, 11" xeR", n=(pn, +qn,) . (2.4.2)
This permits the system to be written as:

VIk]= f(x[k]) +e[k]. (2.4.3)

The problem addressed by the FNN is therefore to find a parameterised structure which emulates the non-linear

function f{.) given a finite number of I/O samples. The input to the network would thus be the information vector

while the output is an estimation of the plant output. We represent this by:

SIK1= F (x[kD) . (24.4)
Mathematically we may define the FNN problem more concisely as follows; given a continuous mapping”
f: K —> N7, find a representation of /by means of known functions, and a finite number of real parameters,
such that the representation yields a uniform approximation of f over K. The set K is an uncountable compact
(closed and bounded) subset of R¥" 9" where p is the number of inputs, g the number of outputs, and 7, and 7,
are, respectively, the number of input and output samples, for each input and output in x . The mapping f'is
given by a finite number of sample pairs (U,,Y,) € K xR,k =1,...,s where s is the number of observed input

output pairs. This problem definition consists of two major elements. Firstly, the network must perform a
uniform approximation of f'on K, and secondly, this approximation must be obtained by an interpolation of f{K)

from the samples (U}, Y}). To solve these problems we refer to a number of results from approximation theory.
2.4.2 EXISTENCE OF A UNIFORM APPROXIMATION

The first result is the Stone - Weierstrass theorem. This theorem provides a relatively simple set of criteria which
given functions must satisfy in order to uniformly approximate an arbitrary set of continuous functions on a

compact set K. Before stating the theorem the following definitions are presented:

Definition 1 - A set A of functions from K < R”"" "« to R is called an algebra of functions iff Vf,g € A and

YaeR:
(i) f+ge4;

(ii) fge 4

% For simplicity, only the single output case (i.e. g=1) for the function f'shall be considered, however, all the results presented also
hold for g>1.

10

(iii) of €A ¢

Definition 2 - A set A of functions from K < RP™ " to R is said to separate points on K iff’

Vx,x, €K x#x, =3 €4, f(x) %= f(x,). ©

Definition 3 - Let A be a set of functions from K < R”"*4" to K. We say that A vanishes at no point on K iff

Vxe K 3f € A, such that f(x)#0. ¢

Definition 4 - Let B be the set of all functions which are limits of uniformly convergent sequences with terms in

A, a set of functions from K < R to R . Then B is called the uniform closure of 4. ¢

Theorem 1 (Stone - Weierstrass) - Let A be an algebra of some continuous functions from a compact set

K c R to R, such that A separates points on K and vanishes at no point of K. Then the uniform closure

B of A consists of all continuous functions from K to R. O (See Zbikowski et al. (1994) for proof citations.)

Thus the uniform approximation of an arbitrary continuous mapping f : K — R, may be constructed from some
other function, if the set of all finite linear combinations of that function, is a non-vanishing algebra, separating

all points on the compact set K < R 4" as specified in definitions 1,2 and 3. Although this result is useful in
determining whether a particular function can be used to approximate a mapping, it provides no indication of

what forms such a function may take.
2.4.3 APPROXIMATION CONSTRUCTION

A result which provides an indication of how an approximation may be constructed is Kolmogorov's well known

representation theorem:

Theorem 2 (Kolmogorov) - Any function continuous on the n-dimensional cube k can be represented in the
form

2n+l1 n
S =D 2] D8 (x)) 2.4.5)
i=1 j=1
where x =[x,--+, X, 1", and X and @ are real continuous functions of one variable. ¢ (See Zbikowski et al.

(1994) for proof citations)

Notice that the representation is exact and is constructed of a finite number of continuous functions. A number
of authors have reformulated the main representation theorem in ways that make its direct application to neural

networks more plausible, however, the approach suffers from practical limitations. The functions ¢; may be

independent of f(x) but may be highly non-smooth. Furthermore the functions y; are specific to the given

function f'and may not be representable in a parameterised form.

11

In neural networks however, an approximation of the function f'is sufficient. Kurkova has shown that when
staircase-like sigmoidal functions are used, Kolomogorov's theorem may be reformulated to show that any
continuous function on any closed interval can be approximated to within an arbitrary accuracy. Thus given:

Definition 5 - A C* sigmoid function g:R — R is a non-constant, bounded and monotone increasing function

of class C* (continuously differentiable up to order k). ¢

The following theorem may be stated:

Theorem 3 (Kurkovd) - Let ne N with n>2, g:R — E, E =[0,1] be a sigmoidal function, f € CO(E”), and

¢ be a positive real number. Then there exists k € N and staircase-like functions y;,4; € S(g) such that for

every xe E"
k n
FE)=Y x| D b | < (2.4.6)
i=1 j=1

where S(g) is the set of all staircase-like functions of the form zlf_l a,g(b;x+c;). O (See Zbikowski et al.
(1994) for proof citations.)

This result implies that a four-layered sigmoidal network may be used to approximate, with arbitrary error, any
continuous function. Others have established, not necessarily by Kolmorgorov's argument, that only three layers
are sufficient for approximation of general continuous functions. Although three layers are sufficient, from a
practical perspective this construction may not be optimal due to the potentially large number of units required
by the hidden layer. In the next chapter it is shown how this result serves as the theoretical foundation for the
construction of the Multi Layer Perceptron (MLP) network, a sigmoidal feedforward network with an arbitrary

number of hidden layers.

2.4.4 INTERPOLATION OF THE APPROXIMATION

In the previous section the question of uniform approximation was addressed. However, the second question of
how to interpolate the approximation given a finite set of samples has not been considered. As stated in section
2.4.1, for practical purposes, the mapping from the compact set K < R”"*""« by f: K — R’ is given by a
finite number of samples (U,,Y;) € K xR,k =1,...,s where s is the number of observed input output pairs,
even though the domain K and the corresponding hyper surface f{K) are, in general, a continuum. We therefore
wish to interpolate the approximation in order to reconstruct f from the given number of samples. Neural
network terminology refers to this as a networks ability to generalise.

It is important to note that in the single dimension case f :R — R that this is the same problem faced by the

signal processing community in trying to reconstruct a signal from its samples. Shannon's well known Sampling

Theorem states:

12

Theorem 4 (Shannon Sampling Theorem) - Let f : R — R be such that both its direct (F) and inverse Fourier
transforms are well defined. If the spectrum F(@) vanishes for |a)| > 273, then fcan be exactly reconstructed

from its samples {f(tk)}kez , e =k/28. ©(See Zbikowski et al. (1994) for proof citations.)

Although the above theorem deals explicitly with one-dimensional functions of time, it may be applied with
equal effectiveness to multidimensional functions of space. The question of existence of an exact solution to the
interpolation problem, for functions that are both band limited and whose direct and inverse Fourier transform
are well defined, is thus positively answered. To gain insight into how one might use this result to construct a

network that satisfies our goal we examine the reconstruction process in more detail.

Consider a function f'(x), x € R" that is absolutely integrable (i.e. J-| f (x)|dx <) and whose spatial Fourier

transform has compact support. The sampling of f on an n-dimensional uniformly spaced square lattice can be

interpreted as the modulation of the hypersurface f with a field of Dirac distributions, thus:

[0 =1(x) D 5(x=¢&p) 2.4.7)

LeZ"
where the lattice £; = {A(ile1 +iye, +---+ie,)} has sample spacing’ A along each of the standard basis
vectors e for R",and L= {il,...,in} is an n-tuple of integers. Fourier transforming (2.4.7) and performing the

resulting convolution gives:

FS(V)=iZF(v—§L)- (2.4.8)

1ez"

Thus, the spectrum of the sampled function consists of copies of the original spectrum centred at the frequency

lattice points §; = {Aﬁl(ile1 +iye, +-+ inen)}. Now let x() be the smallest n-cube [-5, 51", 5 >0, centred

at the origin, which completely encloses the support for F(v) . Let G,(v) be the spectrum of the canonical

reconstructor function that is equal to A on x(f) and zero elsewhere. If A <1/(2£) then the copies of F(v)

in the sampled spectrum F(v) will be non-overlapping and G,(v) can be used to extract the original spectrum:
Fv)=F,(v)G.(v). (24.9)

The structure of equation (2.4.9) suggests that other interpolating functions can be used in the reconstruction

process. To see this let g;(x) be an interpolating function whose spectrum is bounded, real valued and strictly
positive on x(f) . Additionally its spectrum G, (v), vanishes outside of some n-cube «, , which completely
contains x () where the size of x, is determined by setting A <1/(2£) . (This is the same as oversampling

the hypersurface.) Now define a new function c(x) , whose spectrum obeys the relationship:

Cv)=AFW)G;'W). (2.4.10)

3 The sample spacing may be different for each input dimension. To reduce complexity the sample spacing is assumed constant in
all dimensions. This does not reduce the generality of the analysis as each input may be scaled to achieve the same effect as
varying the sample spacing. This phenomenon will be exploited later in this work.

13

Under these conditions it is easy to verify that:
F(v)=C,(v)G,(v) (2.4.11)
where C,(v) is the sampled spectrum of the bounded continuous function c¢(x) . Inverse transforming this

equation results in an exact expansion of f(x):

S(x) = ¢, () * 2,(%)
= D cEg(x—&). (24.12)
LeZ"

Forfeiting the exactness of equation (2.4.12) for an approximation of f(x) over some chosen compact set K,
designated by J} (x), it is possible to apply this technique to a much larger class of functions while using a wider
range of interpolating functions. The accuracy of such an approximation may be represented by an equation

summing five contributing error terms:

=a+€/.

(2.4.13)

The first term ¢, , represents the error introduced by forcing (if necessary) the condition that f(x) is globally
absolutely integrable. This is achieved by multiplying f(x) by an infinitely smooth function m,(x) which is

unity on K and decays to zero more rapidly than | f | outside of K. Therefore:

0, xek
al(x):{lf(x)—ml(x)f(x)l, xeK® @414

where K° is the complement of the set K in R” . The second term &, , is the error resulting from the truncation of
the spectrum of m, (x) f(x) at the value determined by the bounds of x(£) in the frequency domain. Provided
the aforementioned spectrum is absolutely integrable on R” (a requirement satisfied by the fact that the

approximated function is continuous over the set K) the value of ¢; may be made arbitrarily small by choosing a

sufficiently large spectral truncation radius £ .

The term ¢, is the error attributed to reconstruction using an interpolating function that is not an ideal low-pass

filter. As the degree of overlap experienced by repeating spectra may be controlled by the chosen sample spacing

of the mesh, the value of &, may be made arbitrarily small by judicious selection of A <1/(2/). The

relationship:

1

Yy

(2.4.15)

may be conveniently used to represent the degree to which the surface is oversampled.

The final two terms ¢; and ¢, arise from the need to truncate the reconstruction series using a finite number of

terms. By construction, let the term «, =0,Vx € K and, whenx € K¢, let a, equal the upper bound of the

approximation error resulting from the truncated terms. Then, the error when x € K, &5, may be controlled, at

14

each x, by omitting the terms corresponding to samples &£; which lie outside an n-ball of radius p surrounding

x. For convenience p may be expressed as a multiple of the mesh size:

p=IA. (2.4.16)

Clearly this truncation radius will be highly sensitive to the specific interpolating function used.

If we combine all the contributing factors mentioned above, and let @ = + @, and &, =&, + &, +&; we see

that for x € K the entire error associated with the approximation:

f(x)= Zc(fl)gl(x_égl) I, = {1 [Jx—&|< p.xeK.& efL} (2.4.17)

Iel,
is contained in the term &, . Clearly, as x moves outside the set K, the error, represented by « , may increase
rapidly. This rapid degradation of the approximation must be considered when the approximation is to be used in
the implementation of a control law that must exhibit global stability.

Although the above discussion has not solved the problem of which function g,(x —¢;) would be the best, it
has shown that the function must satisfy the conditions of Stone - Weierstrass theorem (section 2.4.2), be

bounded, strictly positive and absolutely integrable on R” . A class of functions that meets these requirements is

the Radial Basis Functions (RBF):
Definition 6 - A C* radial basis function 8em ' R >R, withE eR” and meNR,,isa C* function constant on

spheres {x eR” ||x -& ||2/m = r} , centre &, radius mr € R, , where ||||2 is the Euclidean norm on R". ¢

Research using regularisation theory (Poggio and Girosi, 1990) has demonstrated that, under certain constraints

a linear superposition of Gaussian radial basis functions is the optimal solution to a class of function

approximation problems, given a finite set of data points in R” .

Radial Gaussian functions may be expressed as:

gx-g=e' 7 (2.4.18)
7[n<x—&)r(x—&>]

2

G,\’

=e

This function posses a number of desirable properties that make them particularly amenable to network

construction:
@) The functional form does not change when undergoing a forward or inverse Fourier transform. Thus, as
A 2T F _ 2T _ i
shown by the transform pair, e(o)<—>ax”e(7o) where o, = o', variance* parameters

in the spatial domain have a direct counterpart in the frequency domain. The low-pass spectral

characteristics can thus be easily controlled by the variance in the spatial domain.

* The variance subscript has been used to emphasis in which domain the variance, as it is typically defined, applies.

15

(i1) They may be easily stretched or shrunk along any particular direction in R” permitting an adjustment
of the spectral support along a chosen direction. Such adjustments may also rotate the spectral support

—(av Tsv)

by the use of cross coupling terms, resulting in the more general representation G(v) =e where

¥ is a positive definite matrix.
(iii) The structure is uniform and independent of the number of dimensions .
(iv) It is a separable nonlinearity, i.e. g(x—-&)=g(x; —=&,)g(x, =&,)---g(x, =¢,,) , permitting individual

subspaces of R” to be transformed separately, then multiplied together to form the final approximation.

If g,(x—=¢&;)=g(x—¢&,;) and the required spectral support S is large then, as alluded to in (ii) above, 03
must also be large so that the profile of G(v) is broad enough to cover all the frequencies contained in k() .
Conversely, if f is small the variance may also be reduced. Noting the reciprocal nature of the variances

between the spatial and frequency domains results in the following intuitively pleasing observation.
Approximations of highly smooth functions (limited high frequency content) may be achieved using a sparse
array of Gaussians with wide profiles. Conversely, less smooth functions require more densely packed

Gaussians with narrower profiles.

To formalise the relationship between £ and 0'5 consider the effect of choosing a small variance when £ is
large. Under these conditions G(v) approaches zero as v increases towards S . Using equation (2.4.10) it

becomes clear that this results in large magnitude and substantial high frequency components in the weighting

function ¢(x) in equation (2.4.12). By replacing £ for v in the expression for G(v) we observe that the order
of G7'(v) may be maintained close to unity by setting 05 =nnf % The dependence on the dimension # can be
removed if we assume that max|C(v)| is inside the ball of radius £ in R” resulting in:

ol =0 = np? (2.4.19)
Sanner and Slotine (1992) have shown, in the case of a square sampling lattice &; , with parameters chosen

according to the conditions specified in equations (2.4.15), (2.4.16), (2.4.18) and (2.4.19), that the terms

contributing to ¢, Vx € K in equation (2.4.13) may be expressed as:

& =< ﬂF(ml(x)f(x)]dv
vex(p)

g, < |:eFmax Wrs) }[1 —ert" (2p-1)) (2.4.20)

£y < [eFmax (Vzp) } uY 2 Gj i i e(mz

jeJ m=[+1
where J = {0 <j<n-1 | n— jisodd }, erf(u) is the error function and Fi,,, is the upper bound of

|F(m,(x) /(). VxeK.

16

From the arguments presented in this section we have seen that, given a finite (undetermined) number of
samples the function J} (x), constructed according to equation (2.4.17), results in an approximation that is both

uniform and interpolated. Furthermore, the approach provides us with a method that uses minimal information
about the approximated function, to construct a square lattice of gaussian radial basis functions such that the

resulting approximation is accurate within some target tolerance &, . Such a design procedure may be

summarised by the following steps:
1. Determine the function's input dimension » and lattice extremities from K.

2. Estimate or determine the functions smoothness information Fy,,x and £ from given data.
3. Ensure or assume that the spectral support # is sufficiently large such that ¢ <&, / 3.

4. Select the lattice spacing A, then calculate x# and &, using equations (2.4.15) and (2.4.20)

respectively, ensuring that ¢, is sufficiently small.

5. Select a truncation radius p and use equation (2.4.16) to obtain /, thus permitting the calculation &;.

Ensure that &, + &, + &3 <&, adjusting B,A or p insteps 3, 4 or 5 as necessary.

6. Finally calculate the gaussian radial basis function variances using equation (2.4.19) and the centres

using the lattice spacing A.

This approximation method leads to a class of neural networks generally referred to as radial basis function

(RBF) networks and their algorithmic instantiation is discussed further in the next chapter.
2.4.5 CONTENDING WITH THE CURSE OF DIMENSIONALITY AND USING 4-PRIORI INFORMATION

The discussion in the previous section outlines a powerful and usable solution to the feed forward neural

network approximation problem however it suffers from two practical drawbacks.

The first problem, revealed by careful examination of equation (2.4.17), is that the number of coefficients and
basis functions increases exponentially as the system dimension # is increased. This is the well-known Curse of
Dimensionality problem evident in many approximation schemes. As each element of the vector x in equation
(2.4.2) increases the dimension of the domain of the approximating function by one, this problem may rapidly
become a severe limitation, particularly in MIMO systems. The problem can be reduced if the approximated
function can be separated into lower dimension component functions, each of which is then approximated
individually and then summed to form the final result. Similarly, if the radial basis function used (such as the
Gaussian) is separable, then the number of RBF computations can be made to scale linearly with the number of
dimensions however, there is still a multiplication term which scales exponentially. This problem is further
exacerbated by the fact that, in order to guarantee the approximation accuracy over the entire domain, the
spectral support must be sufficiently wide to account for the most rapidly changing regions of the function. This

results in a small spatial mesh size and thus many more node terms to the summation in equation (2.4.17).

17

Sanner and Slotine (1992) address this problem by a variety of techniques and extensions which attempt to
contract the domain on which the approximation is required and reduce the required node density. Such
techniques include dynamic network construction and dynamic modification of the basis function parameters
such as the Gaussian centres and variances. The extensions discussed introduce the Gabor and Wavelet models,
which make use of the simultaneous spatial and frequency properties of the Gaussian function to automatically

tune the local bandwidth requirements thus circumventing the need to globally contract the node mesh.

An important feature to any model developer is the ability to include a-priori information into the modelling
technique. This information frequently takes the form of a set of simplified state equations based on physical
principles or a number of transfer functions representing a linear approximation of the systems behaviour around
selected nominal operating points. Clearly another problem with both approximation techniques described thus
far is the inability to gracefully 'build in' or absorb such information into the approximation construction. This
results in an approximation mechanism that must undergo extensive 'training' before providing accurate model
information. Conversely the ability to examine the internals of the final approximation and relate its parameters
to the physical system under consideration is also highly desirable. This problem is frequently resolved by
allowing the approximation to compute a residual in parallel with a more conventional (linear) model and
summing the results. However, the disadvantage to this technique is the added complexity, and thus

computational overhead, of running two models in parallel to each other.

Both the Gabor and Wavelet approaches mentioned earlier result in an approximation that may be interpreted as
a summation of basis functions where each basis function is modulated in a manner that is dependent on the
local properties of the function being approximated. Interestingly, another approximation approach analysed and
developed by Johansen and Foss (1993) called Local Model Networks (LMN), may be interpreted in the same
manner, however, unlike the more theoretical Gabor and Wavelet approaches, its design is highly amenable to
physical interpretation and the inclusion of a-priori system information. The remainder of this section thus
examines the approximation capabilities of this approach. A broad background discussion and analysis to the

LMN approach can be found in Murray-Smith and Johansen (1997).

Let us choose a set of localised functions {g(x &) K—>[01],Vé €€ L} that are significantly larger than
zero for x € K;,K; < K and close to zero otherwise. As before the lattice &; = {A(ile1 +iye, +---+ie,)} has
sample spacing A along each of the standard basis vectors e ; for R",and L= {il,...,in} is an n-tuple of

integers’. If not all g(x—&;) vanish for x € K and there exists a good local model f (x=¢;) for x e K, then

the following approximation may be written:

D flx=&ngx=¢p)

j(x) — f[efL
D g(x-¢)
&g

(2.4.21)

> The analysis does not constrain the points & ; to exist on a uniformly sampled lattice, however this definition is sufficient to
describe the cases of interest while simultaneously permitting the use of a consistent notation throughout.

18

The interpolation functions are defined as the normalisation of the localised functions g(x—¢&;) giving:

ne _ g(x=¢))
S yprearRs (2.422)
S8

Substituting (2.4.21) into (2.4.22) results in the following LMN approximation:

J) =D f(x=&Dgx=&)). (2.4.23)
ET

If feC”? ! the set {/} (x-¢ ,)} are local models equal to the first p terms of the Taylor series expansion of f
about &; and we assume HV Pl g (x)” <M,Vx e K where || . || denotes the induced operator norm, then

appropriate substitution into the Lagrange form of the Taylor theorem remainder provides the following

expression:

lreo-fee-ep| <e< Y

— pHl o —
= (p + 1)' ”x 51 "2 g(x 51) : (2424)

Here ” . ” 5 denotes the Euclidean norm that we require being less than some arbitrary ¢ > 0. If we define the set

of functions:

{z(x—f,):K—)iR

te-g =gl - L v e | @429

then simple rearrangement of equation (2.4.24) gives the following two equivalent conditions that must hold for

this to be true:

D z(x—&)glx-&)<0 (2.4.26)
sieéy
D Ax-ENgx—¢,) <0. (2.427)
1=

Careful observation of (2.4.25) reveals that the functions z(x —&;) are dependent only on the accuracy of the
local model. Furthermore, their shape is not influenced by the value of x, the extent or density of the lattice &, ,
or the form of the interpolation functions; however, the value of z(x —&;) approaches a minimum that is less
than zero®, as x approaches & ;. The problem thus reduces to choosing &; and g(x—¢&,;) such that equation

(2.4.26) or (2.4.27) be satisfied for some arbitrary ¢ > 0.

Equation (2.4.26) can be satisfied if any negative z(x —¢&;)g(x—¢&;) term dominates the summation. We can
guarantee that at least one z(x —¢&;) is negative at any x if the set &; is sufficiently large and dense in K. Since

K is bounded a finite number of points in &; is sufficient to achieve this. To state the condition that must hold

% The exception to this is when the local model is a perfect representation of the function being approximated. Under these
circumstances the entire function z(x —¢&;) is zero.

19

for &; to be "sufficiently dense" the following definition, similar to the Haussdorf metric, of the distance

between sets is introduced:

Definition 7 - Assume A and B are two non-empty subsets of a vector space. Then the distance between the sets

is defined as:

D(4,B)= inf supla 2], 0

Using this definition and rearranging the z(x—¢;) function in equation (2.4.25) results in the condition:

1
D@Q,K)S(gigiijpﬂ (2.4.28)

which must hold if at least one z(x—¢;) function is to be negative at any x € K for some chosen £ > 0.

We must now choose the functions g(x—¢;) such that one of the terms, ensured by the argument in the
previous paragraph to be negative, is guaranteed to dominate the summation in equation (2.4.26) or (2.4.27).
One necessary, but not sufficient, condition is that z(x —&;)g(x—&;) - O as ||x||2 — . Choosing g(x—¢;)
to be Gaussian easily satisfies this condition but to ensure sufficiency the variances must be carefully selected.

Consider the limit as the variance goes to zero. The interpolation functions of equation (2.4.22), will approach

step functions where there exists a J such that:

H(x—&)) 1 iflI=J

x-¢&)= .

XTI ifrea

It was previously shown that choosing &; such that (2.4.28) is satisfied will result in some z(x—¢;) <0, but
since g(x—¢&,;)=0 for [=J , we know that, in the limit, equation (2.4.27) will hold. However, since the

number of points in &; is finite we only need to be sufficiently close to the limit for this to be true.

The arguments presented above have been used by Johannsen and Foss (1993) to prove that the approximation

accuracy defined by the infinity norm “ f - j} H = sup|
® xeK

f(x)— f (x)”2 may be described by the following

theorem:

Theorem 5 - Suppose we are given any integer p > 0. If K is bounded and f(.) has bounded (p +1) th derivative,

ie. “V”“f(x)H<M, Vx e K, then forany felf:K—RI|f(x)= Z,f(x—/;,)g(x—g,) with finite
s,

countable &; , and sufficiently narrow functions {g(x -&1):K—[01],Vé; €&, } an upper bound on the

approximation error is given by:

M
(p+D!
¢ (See Johannsen and Foss (1993) for proof.)

lr-7], =< (D, K. (2.4.29)

20

By using the triangle inequality in conjunction with the Weierstrass approximation theorem, they also show, as a

corollary to theorem 5, that the smoothness assumption on f{.) may be relaxed to assuming only continuity.

Notice that when order p of the local models are set to zero the resulting approximation is a normalised form of
the approximation stated in equation (2.4.17) of the previous section. We can thus argue that although the effects
of the curse of dimensionality may be reduced when using higher order local models, there has been no change
to the structure that caused the problem. To do this it becomes necessary to define the interpolation functions on

a space of smaller dimension than that of the original information space.

Let this smaller dimension space be represented by the bounded set @ . Let any @, < @ represent an operating
regime within this space. Furthermore, let us assume that there exists a mapping H : K — @ . If we choose a set
of model validity functions {g(¢ -1n;):®—>[01,Vn, en,,n, =H()} which are approximately equal to
one for ¢ €®, and tend toward zero outside @, then, if not all g(¢—7,) vanish for ¢ €D, the interpolation

functions may be defined as the normalisation of the model validity functions:

N (¢_’71)
gp-n)=—L10
T > g0
nyenL

This results in the following LMN approximation:

J()=2 fx=ENa@—n) 1o =1l1n, = HE NS €&,). (2.430)

Iel,

Furthermore let us assume that, for local model expansions of (polynomial) order p, we can split x into two parts

x" =[x}, x5, x, eK,,x; €K, ,K,;,K,; < K such that the approximated function may, as is frequently

possible, be expressed as:

Sx)=f(xp.xy) = fy, (Xp)+ [, (x5) f1(x1) (2.4.31)
where f; : K; — R’ is a polynomial order less than or equal to p, Sfu, Ky > R" and f 1Ky —> R
may be of higher order. Given these conditions the following theorem (Johansen and Foss, 1993) may be stated:

Theorem 6 - Suppose f(.) given in equation (2.4.31) is continuous and @ is a bounded set. Then for any & >0

there is an J} € f K —> R f(x) = Zf(x—§1)§(¢—771) with ¢ = Xy, and countable and finite 1, such

Iel,

that “f - f””w <& O (See Johannsen and Foss (1993) for proof.)

Additionally, for the special case were p=1 (i.e. local linear models), the approximation error is bounded by:

M
7= 7], <5 (0, @) + MK, | (Dl @)= ¢ (2432)
where:

[Kul= sup s,
x; ek,

21

On a more intuitive level we may state the presented results as follows: Components of the information space
which contribute to approximation terms of higher order than the order of the local models used should be

included in the reduced order space.

Thus the conditions and assumptions of the previous arguments have established a set of (non-unique)
requirements, which allow us to construct a mapping H : K — @ that reduces the dimensions of the information
space, but still permit the construction of an arbitrarily accurate approximation. For example, consider a discrete

time system that is affine in its control inputs:

k] = f(lk =1],ulk —1])
= HOTk=1D + £, (k= 1ulk —1]
= fu, (X)) + fu, (xg) fr(x)

then we may construct an approximation using interpolated first order models (p=1) as follows:

= f(xTk=1D) = D" f(xlk = 11= €)@k~ =) o= [, =HE)& €&,
Iel,
where:
xlk =11 = [y[k —1],ulk —1]]
Pl —1]=ylk -1]

and the local models take the form:

Sk =11-¢)) = (x[k ~11-§)O, .
Notice that the use of the reduced dimension space also simplifies the task of partitioning the set into various

operating regimes.

As in section 2.4.4 we would like to devise a mechanism whereby a large domain may be covered by N local
models but only #<N models need be evaluated at once. Intuitively we recognize that we may discount local
models whose validity functions are below a certain threshold, as they would not contribute significantly to the
overall approximation. However, from a computational aspect, it is more efficient to not have to compute what
would ultimately be unused model validity functions. Furthermore, it is difficult to determine what effects
discounting individual local models have on the approximation error bound. The truncation radius mechanism
presented earlier would appear to be a logical and viable approach to solving this problem while still permitting
us to explicitly quantify the effects of discounting minimally contributing models on the overall approximation

error bound.

Consider the following approximation construction:

)= Fx=&Ng@—n;)
Ielo (2.4.33)
Iy :{I|"¢_771"2 <p,np=H(E)n €np.é; €§L}

where the truncation radius p is the radius of an s-ball around ¢, and 1< s < n . Furthermore we shall define the
sets 77;, = {77, |1 e 10} and @, = {¢ | ||¢—771 ||2 <p.np €y, } noting that /, and thus both 7, and @, are

functions of x . If the truncation radius p is chosen sufficiently large such that the density of 7, in @, is the

22

same as 77; in @ then the approximation error bound provided by equation (2.4.32) still holds. As the

truncation radius is reduced the density of 7; in @, will diminish causing the distance D(I] 1P,)to
increase. This results in D(?]LO NOg)> D(77L, CD) . Thus the approximation error bound, for the case of local linear

models, at any point x, may be obtained by substituting D(?] 1P,) into (2.4.32) resulting in:

<M (ol 2, Ml 0, 0,) a0

lr-7

where:
|1l = sup [x.],-
x; ek,
Equation (2.4.34) is a function of x because both 7, and ®, are functions of x . However, if the lattice & is

evenly spaced over the entire domain K, and the mapping H : K — @ is constructed by using the projection

@ = xy; , then the distance D(n 1, P,) will remain constant for all x € K . The approximation error bound

would thus also remain constant and could be calculated at any point x € K .

In conclusion then, we have seen that the LMN approach, from an approximation point of view, thus
incorporates many of the capabilities of the MLP and RBF approaches but gives us two additional advantages.
Firstly, in contrast to Gabor and Wavelet approaches, it provides us with the ability to easily incorporate a-priori
or extract a-posteriori knowledge about a system. Secondly it accommodates a mechanism whereby the effects
of the curse of dimensionality may be potentially reduced by trading off the local model complexity against the

number of dimensions used in constructing the approximation sampling lattice.

2.5 DISCUSSION AND CONCLUSIONS

In this chapter we began by considering neural networks as information processing systems and breaking their
analysis into computational, algorithmic and implementation levels. The basic components of an ANN system
were described and, at a superficial level, the relationship between them and their biological counterparts were
discussed. Although it is not the intent of this work to model biological neural networks one should not dismiss
the biological connection (Arbib, 1995). The study of neurobiology can be fertile ground for the development of
ideas and concepts that are then transplanted into an engineering framework. This approach may become ever
more important as the emphasis in ANN research shifts from network architecture definition to dynamic

construction, optimisation and modification of such architecture (Quinlan, 1998.)

Next, emphasis is turned to the feed forward neural network problem, and how such feed forward networks are
used to describe non-linear systems in the context of this work. It is important to note that the method described
is but one approach to the problem at hand and that many other architectures are used to model non-linear

dynamic systems. Typically neural network approaches to control can be divided into two main categories. The

first, as used in this work, is the use of a feed forward network coupled to some time history model of the

7 This assumes that there are no ill effects on the distance metric as one approaches the edges of the domain K.

23

system. Here an ARX model is the method used to capture the system dynamics. Another method, which is
structurally similar but uses multiple local Laguerre models instead, is described in Sbarbaro and Johansen
(1997). The second major category uses recurrent neural networks, which build on feed forward network theory
by attempting to model system dynamics by feeding back network states within or around a feed forward
network. Although it can be proven that such network structures can solve the differential approximation
problem (Zibikowski, 1994) such results are purely existence results and are fraught with difficulties when
attempting practical implementations. However, a number of researchers (Pearlmutter, 1989, Pineda, 1987,
Williams and Zisper, 1988, Bailer-Jones et al, 1998) have successfully developed recurrent architectures for

modelling of dynamic systems.

The remainder of the chapter presented and discussed various approximation theory results and how they relate
to different kinds of network architectures. First the Stone - Weierstrass theorem provided us with a set of
criterion that given functions must satisfy in order to guarantee the existence of a uniform approximation
constructed from these given functions. Kolomogorov's representational theorem was used as the basis for an
argument permitting approximation construction using MLP networks. Unfortunately these results provide little
information as to precisely how the MLP network in question should be constructed or even how any particular
construction will behave with regards to issues such as approximation interpolation (generalisation) and overall
approximation error. Although significant advances have been made in this area (Barron 1994, Suzuki, 1998) it

is still unclear exactly how best to construct a general MLP network.

These shortcomings are addressed by the multi-dimensional sampling approach used in RBF networks. It is
shown that this approach will provide a network that will interpolate an approximation constructed from a finite
number of samples and, provided certain assumptions and conditions are met, guarantee that the approximation
error remains within certain calculable bounds. The analysis provides us with sufficient insight into the
approximation mechanism that a limited but useful design procedure can be stated. This procedure requires only
limited smoothness information about the function to be approximated. Clearly this approach has a number of
advantages, but it suffers from two main disadvantages; the difficulty associated with including a-priori

information and its susceptibility to the curse of dimensionality.

LMN networks address both these problems and the final section of the chapter thus concentrated on the
approximation capabilities of these networks. Interestingly, an RBF network, with normalisation, may be viewed
as a LMN where the local models are constants. The approach therefore retains many of the advantages of RBF

networks. However, local models may be of any order or construction.

The arguments presented have centred on the use of Gaussian functions for both RBF and LMN network
construction. Although these functions have a number of appealing properties other functions, such as inverse
polynomials or splines may be used instead, however, this would require the revaluation of some of the results
presented thus far. The primary motivation behind doing this would be the reduction of computational overhead
or to minimise the probability of reactivation - a side effect introduced by the normalisation of the basis
functions (Murray-Smith and Johansen, 1997.) The remainder of this work will assume that Gaussian basis

functions are used in RBF and LMN network construction.

24

Another potential advantage of the LMN approach is its behaviour at the edges of the approximation domain K.
An LMN approximation will extrapolate outside this region using the closest local model to the current point in
the information space. This extrapolation is of the same order as the closest local model. When used as plant
models in control systems such behaviour may be more favourable when compared to RBF networks whose
output will tend to zero as the information vector moves outside the domain K. Normalised RBF networks will,
under such conditions, tend to a constant value. The implicit assumption behind this observation is that the
extrapolated model’s sensitivity maintains some degree of accuracy whereas an RBF based model’s sensitivity
would be driven to zero. This characteristic becomes important when considering the stability of a closed loop

control system incorporating such networks to estimate plant sensitivity.

Although the LMN approach provides a number of advantages over the MLP and RBF methods there are also
disadvantages. To construct an RBF network using the design procedure in section 2.4.4, the designer need only
know the extent of the domain K, the value of F,,,, and the required spectral support B. The latter two values
provide sufficient information about the smoothness of the approximated function that the approximation error
on the domain K may be determined from equation (2.4.20). This smoothness information may be determined
relatively easily from system data. Conversely, the equivalent smoothness information used in calculating the
LMN approximation error (equation (2.4.32)), is contained in the maximum induced operator norm M.
Unfortunately this value can not be directly determined without significant knowledge of the function being

approximated. Therefore, the required density of the set 77; , and thus the number of models cannot be directly

determined from the approximation error equation.

It is interesting to note that there is a strong relationship, even equivalency under certain conditions, between
fuzzy systems and the RBF and LMN architectures. This has practical relevance in that the techniques
developed in one paradigm may be used to manipulate models developed in a different paradigm. Furthermore a
particular paradigm may be more adept at dealing with one particular aspect of the modelling problem, for
example the use of fuzzy a-priori knowledge may be beneficial in pre-structuring a network. The reader is

referred to Hunt et al (1996) and (Foss and Johansen, 1993) for precise details.

This chapter has presented numerous mathematical results and facts about various approximation techniques, all
of which fall under the broad subject of artificial neural networks. This semi- rigorous mathematical presentation
has been provided to help gain insight and understanding into the mechanisms underlying the methods used in
the remainder of this work, and to support the conclusion that ANN provide a viable and practical solution to the
non-linear function approximation problem. Thus continued effort into the application of these techniques to

non-linear dynamic systems modelling is warranted.

25

CHAPTER 3

NEURAL NETWORKS - STRUCTURE AND IMPLEMENTATION

3.1 INTRODUCTION

In the previous chapter, three basic mathematical formulations for ANN structures were shown to satisfy the
FNN approximation problem. We concluded the chapter by recognising that the computation ability of these
approaches provided a satisfactory solution to the problem at hand. In this chapter, we will concentrate on the
more pragmatic aspects of general information processing systems; the algorithmic formulation and

implementation.

We have chosen to implement the presented algorithms as a set of methods contained in a simple neural network
class library coded in the Matlab language. Network objects created using this class library can be manipulated
from the Matlab command line. To facilitate the simulation of dynamic systems a Simulink block set was also
created which uses a number of m-file S-functions to create and process network objects by calling the
aforementioned class library methods. All the implementation material presented has thus been optimised for
this environment, specifically, because of Matlab’s emphasis on using vectorized code, the algorithms have been

vectorized whenever possible.

We shall begin by looking at, for each network type, the third element of an ANN system (section 2.2.), namely,
the structure or activation rule used to implement the approximation. Next, the fourth and fifth elements are
covered by looking at how the network parameters are adapted using various learning rules. Included in this
section is a discussion about experimental conditions and structure optimisation. Finally, the process of

extracting the network Jacobian information will be presented followed by conclusions.
3.2 NETWORK STRUCTURE - THE ACTIVATION RULE

3.2.1 MULTI-LAYER PERCEPTRON NETWORK STRUCTURE

The MLP network is based on the approximation construction discussed in section 2.4.3. It has a multi-layer
structure (Figure 3.2.1) consisting of one input layer, any number of hidden layers and one output layer. The
input layer or first layer would contain as many units as there are inputs, while the output layer sizes according

to the number of network outputs. The hidden layers may contain any number of units. Generally the number of

26

Input
Layer

Output

2" Layer 3 Layer (L-1)" Layer Layer

X1

X2

X3

Xn

Figure 3.2.1. Multi-Layer Perceptron Network Structure.

10 net.activation{1}=[x;1]; % 1st layer is input

20 for i=2:net.numlayers; % i+1 layer

30 net._activation{i}=[activation_function(net.weights{i}*net._activation{i-1});1];
40 end

50 yhat=net.activation{net.numlayers}(l:end-1); % Remove bias term in Output

Listing 3.2.1 MLP Activation Rule Implementation.

hidden layers is limited to one or two as this number is sufficient to construct the function approximation. A
layer may receive excitation from any preceding layer but, as in this work, each layer is typically excited only by
the layer directly preceding it. The sole purpose of the input layer is to distribute the input signals to the first
hidden layer and performs no mathematical manipulations on the incoming signals. Hidden layers use a linear
integration function coupled with a sigmoid or sigmoid like function. The output layer may frequently use linear
integration and activation functions, resulting in an output that is a weighted sum of the last hidden layer unit

activations. Combining all these elements allows us to construct an expression for the activation rule. Let the
column vectors x, y and a'”) represent the input, output and activation state of the /”* layer of the network
respectively. Note that x=a" and y= a'P for a network containing L+1 layers. Further let 0;1) denote the
weight vector of the j unit in the /" layer where:

051) —lp g0

T
@, J,z,.-.,ej’}n[q,ej” 1<I<L (3.2.1)

and 0511) is the scalar weight connecting the j unit of the /”* layer to the i unit of the (/-1)" layer which contains
m units, and ‘91(]) is the bias associated with the j unit. Using equation (3.2.1) we may define a weight matrix for
each layer:

o =lo".00.00 00| 1<i<L. (3.2.2)

Lastly, we create a vector of activation functions as follows:

27

M T T]
g0 [1"
0T -l 71 T
g0, [a A1) O, @D 47
G0 ()= : R e IR PIEY S (3.2.3)
T T 1
g, [« 11"
1

T
Note that at any point in time G\¥ (-) will take on the value [a(l) 117 and that the total number of units

evaluated during each forward pass may be expressed as:
N=>"m,. (3.2.4)

Combining equations (3.2.2) and (3.2.3) permits us to write a single expression for the MLP activation rule:

5= Flx) =BGt (@)(L—l)G@—z) (®<L—2) . G? (®(2> [ngl]T), .))

OO ¢ grmxma+) (1) o gm+xd (3.2.5)

Implementation of equation (3.2.5) is straight forward and is shown in Listing 3.2.1

To relate the theoretical foundations presented in section 2.4.3 to the MLP structure presented above, consider a
network containing an input layer with » inputs, 2 hidden layers with m, and m; units respectively and an
output layer with g outputs. Equation (3.2.5) thus becomes:

F=0WG® (®(3>G<2> (@<2>[<y))
xe iRnXI , @(4) e qux(m3+l)’ ®(3) c mm3x(mz+1)’ ®(2) c mmzx(nﬂ).

Expanding the matrix operations as follows:
113 P!
. (4) 3 olo@ “1n® —1((4))
y=20{,.8 > 0 (®j,[1-~n]x+ g (®j,m2+l))* g Ongume)]s
i=1 j=1

and simplifying the notation by making the following substitutions:

_a® _a®
a; =0Op 0 a; =0;;
_ _a®
b =1, by =05
_ A a® _ 1 a®
¢ =8 (®[l~~q],m3+l ¢; =8 ®j,m2+l)

results in:

m,

V= 2 a;8 b{

i=1 j=1
Z 11{2 ¢,»,»(xj)].
i=1

Jj=1

ajg(bjx+ cj)]+ ¢;
(3.2.6)

Clearly (3.2.6) matches the functional form required in equation (2.4.6) of Theorem 3 in section 2.4.3, implying
that this four-layered MLP network may approximate, with arbitrary error, any continuous function. It is worth

while noting however, that there is no indication of how to choose values for m, and m; in order to remain

within some arbitrary error bound.

28

3.2.2 RADIAL BASIS FUNCTION NETWORK STRUCTURE

The Gaussian Radial Basis Function Network implements the approximation described by equation (2.4.17) and

(2.4.18), restated here in a multi output form as:

5= f@=Y0,8x-&) 1,=V|[x-&],<pxekcn’ g et
Iel, (3.2.7)
0 =), glx—gp) = e (0]

where &; is a vertex in the lattice &; = {Alile1 +Ayihe, +-+AiLe, } which has sample spacing A ; along

each of the basis vectors e j for R", L= {il yeens in} is an n-tuple of integers, and p is a n-ball around x . The

approximation properties and design procedure are described in section 2.4.4. The general network construction,
shown in Figure 3.2.2, consists of three layers. As in the MLP the input and output layer size according to the
number of inputs and outputs respectively. The number of hidden units corresponds to the number of elements in

the set L and may be expressed as:
N=]]maxi; vi eL. (3.2.8)

Clearly N will depend on the selected lattice spacing or sampling mesh size and the dimensions of the set K. In
this configuration the vertices of the sampling mesh and the variances may be interpreted as the weight matrices
associated with an elliptical integration function. These weights define the input to hidden layer connectivity,
while the /™ row of the column vector @, is the weight associated with the connection between the hidden unit
centred at &; and the ™ output. The activation rule is thus a direct implementation of equation (3.2.7). Note
however, only the units that are influenced by the elements of the set /, need actually be computed at any point
in time.

In the special case where the basis vectors e are orthogonal, we refer to the network as an axis orthogonal

network. Although this type of network may not always provide the most efficient structure, in terms of the

Hidden
Layer

Input
Layer

Output
Layer

Xp

Figure 3.2.2. General RBF Network Structure.

29

number of units required to achieve a particular approximation, it allows us to exploit the linearly separable
nature of the Gaussian basis functions. This has the potential to greatly reduce the number of calculations that
must be performed when implementing the network in a serial processing environment. When each dimension of
the input space is orthogonal, the matrix 2 in equation (3.2.7) is diagonal, permitting each of the N hidden unit
activations to be expressed as a tensor product:
G ‘./251)2
gx-&n=[Je 7 v&eg
= (3.2.9)

n
o § ECINTTRED)
A

where ;& is the ™ element of the vector &, . Careful consideration of equation (3.2.9) reveals that when
calculating all N activations, the term a(x;, ; &;,0;) will be equal N/ maxi; times for each / and

combination. By collecting these common terms and performing a single exponential evaluation, we may reduce

the number of exponentials calculated to:

N, =) maxi; Vi eL. (3.2.10)

o
J=1

This may be easily visualised by studying a simple example. Consider a network with two inputs and a single
output. Let the sampling lattice be divided into three regions along input one and two regions along input two.
This lattice representation is pictured in Figure 3.2.3(a) with its equivalent layered representation in Figure

3.2.3(b). It is clear that, for this example, a(x,,, 51’] ,01) =a(xy, 51,290'1) is common to both the calculations of
g(x—=¢&,) and g(x— 51,2) , similarly a(x,,, 51,2,0'2) =a(x;,785,,0,) = a(x;,, 53,2’0'2) is common to
g(x—=&,), g(x—&,,) and g(x—&5,) . The common a(x;,; &;,0;) terms are equal because all elements,
except the /", of &, are ignored when the calculation is performed. Therefore, by replacing ;& with the Vi
element of / multiplied by A ;, where A ; is the spacing of the lattice &; along the dimension j, we may

evaluate a single exponential which will equal all the common terms generated by appropriate combinations of /
and j. Thus, in the presented example:

a(x,1A,00) = a(x1a1§1,1a01) = a(x1a1§1,2a01)

a(x,241,07) = a(x, 52,1:0'1) =a(x;, fz,zagl)

a(x,34,,07) = a(xy,, &31,01) = a(x,,1 §35,07)

a(xy,1A,,0,) = a(xy,, 51,1’0'2) =a(xy,, 52,1»0"2) =a(x,,,831,0,)
a(xy,20,,0,) = a(xy,, 51,2:02) =a(xy,, 52,2,02) =a(x;y,7837,07).

30

Also, notice that, as predicted by equation (3.2.10), there need be only five exponentials evaluated, but
consistent with equation (3.2.8), there are six activation values, each of which is calculated by the product
described in equation (3.2.9). Although in this example the number of exponentials is only reduced by one, the
reduction becomes far more dramatic as the number of regions in the lattice is increased. For example, a two
dimensional system with twenty regions associated with each input would require forty exponentials but would

contain four hundred activations - an order of magnitude reduction.

Evaluating only those activations influenced by the set 7, can still further reduce the number of calculations. In

Figure 3.2.3(a) the grey region® represents the p-ball (a circle in the 2 dimensional case) of radius p
surrounding an input vector ending at the point {)c1 , X, } . By projecting this region back onto the axes it is clear
that only the functions a(x,,2A,,0,) and a(x;,2A,,0,) provide any significant contribution to the output. The

total number of calculations required to generate the activations contributing to the summation in equation

A
x Input Exponential Product Output
Layer Layer Layer Layer
a(x:,20,, 0> / g(x-&1.1)
a(x2,2812, 03
a(x2,28,07) \292 /g(x.évz) gl x-fé) e
a(x2,283.2,07) / \
A,
a(x2, 1A, 07) j—/\
a(x2,2&,1,00)
a(x2,28,1,09) | @ g(x_ é‘ l) @
a(x2,:83,1,0) h_/
A 2p
e S
e " a(xl,]Alho-,): a(x;,2A, 01)= H(X1v3AI|,0'1): X "
alx, & o) alxyi&no) alxg, &, 01)
a(xlylstl,,’,o'l) H(lelélvo-l) ll(X/,/fJ,z.O'l)
LA
(a) Lattice Representation (b) Layered Representation

Figure 3.2.3. Axis Orthogonal RBF Network Example.

(3.2.7) is thus two exponentials and one product.

From the above discussion, we may easily develop an algorithm to efficiently calculate all unit activations that
may significantly contribute to the output given a particular input. However, in order to calculate the network
output, we must also perform the summation shown in equation (3.2.7). This equation may be similarly

expressed using matrix operations. Let us assume that for some particular input the set /, contains / vector

elements. We may then construct ©,; and G(x,&;) by joining the / output weight vectors 8, , and the /

calculated activations as follows:

¥ In practice a significantly larger region would be used so that more than one vertex is encompassed. However, for the purposes of
illustrating the concept, while maintaining a simple diagram, the region has been made fictitiously small.

31

0, =10, [0, | |0,F, Vel 0, cR™

g(x=¢;)
Gt)= g(xT.f[z) (3.2.11)
g(x—¢&;)
resulting in:
y=05G(x.&,). (3.2.12)

To obtain the construction in (3.2.11) an efficient mechanism for simultaneously calculating a weight index

number for each corresponding unit activation must be devised.

An implementation that performs the calculations above while simultaneously attempting to minimise memory
and computational resources, is shown in Listing 3.2.2. The code begins by initialising two variables in line’ ten.
The first variable is a vector that will combine the exponential function results, eventually becoming the final
activation vector actv. The second, idxw, will become a vector containing the weight indexes that correspond

to the activations contained in actv. The code then loops (line 20 through 180) through each input to the

network

10 actv=1l; idxw=0; % Initialize variables

20 for j=l:net.ninp % Loop through each network input
30 expn=(u(@)-net.center{j})-*net.invsigmaf{j}; % Find exponents for jth input

40 idxe=find(abs(expn)<net.nthldl); % Determine exponentials activated
50 expn=expn(idxe); actv=actv(:)*exp(-expn.”~2); % Multiply with active units

60 vetl=((idxe-(j>1)).*net.vcprd(j)); % Calculate new indexes

70 vctl=vctl(ones(size(idxw,1),1),:); % Copy vctl to rows(idxw) rows

80 matx=idxw(:,ones(1,size(idxe,2))); % Copy idxw to cols(idxe) columns
130 idxw=vctl(:)+matx(:); % Update weight index vector

140 idxa=find(actv>net._.nthld2); % Make truncation region a ball
150 actv=actv(idxa); % Remove inactivated units

160 idxw=idxw(idxa); % Remove inactivated weight indexes
180 end % End for loop

200 yhat=net.weights(:, idxw)*actv(:); % Output result

Listing 3.2.2. Axis Orthogonal RBF Activation Rule Implementation.

The loop begins in line 30 by calculating a vector that contains the square root of the negative exponent for each
exponential function of the j” input. That is:

expn=(u(j)-net.center{j}).*net.invsigma{j}= (xj —Aj[l,---,maxij])(l/aj) .
The absolute of the j” value of expn will be less than a certain threshold if the /* component of the input vector
is close enough to the centre of the /” exponential function. It is easy to show that this threshold (net.thld1) is

related to the truncation radius p;, and the spatial variance o ;, by net.thldl=(p; /o). Thus, if the

components of expn are less than this threshold, then the corresponding exponential functions fall inside the

® Line numbers increment in steps of ten except where code still to be presented is to be inserted.

32

truncation radius and must be evaluated. Line 40 extracts the indexes of the values in expn that meet this

condition and stores the results back in expn.

Line 50 calculates the exponentials for the expn values and performs an outer vector product with the current
vector of activations. On the first iteration the product is simply the exponential results times unity. If the system
has a single input (i.e. one-dimensional) then the result is a vector of the desired activations. If the system has
two inputs then the result, after the second iteration, is a matrix where each entry represents an activation value
at the lattice vertices. Note that the region of excited units would be square. For systems with three or more
inputs, the matrix resulting from second and/or subsequent iteration is first converted to a vector by stacking the
matrix columns on top of one another. This is has the effect of converting the first two or more dimensions of
information to an equivalent single dimension system. The outer product then augments the system with the next
dimension's contribution to the final activation. Lines 150 and 160 are used to ensure that, as each dimension is
processed, only activated units inside a p-ball (ellipsoid) are processed on the next iteration. The mechanism is
easily seen in the two-dimensional case where, as noted previously, the region of excited units represented by
the activation matrix is square (rectangular). The smallest values of activation will be found toward the corners
of this region, where the result is the product of two small numbers. By defining another post product threshold
below which the activation is ignored, causes the corners of the region to be ignored. The resulting region is thus
circular (elliptical). The threshold value, net.th1d2, is related to the truncation radius and variance by:
2
(%)
net.thld2=e¢ ’ .
Lines 60 to 80, together with lines 130 and 160, are used to construct a vector of indexes that identify all the
activated units. Once this index vector is constructed the weights corresponding to all active units may be
extracted in a single statement. The final network output can then calculated, as in line 200, by performing the
matrix operations of equation (3.2.12).
Simply put, the index vector code calculates a scalar index into an n-dimensional array. The index represents the
ordinal number for any particular element of an n-dimensional array if the array were stored in linear memory by
sequentially concatenating each dimension. For example, appending the columns for the first layer in an end-to-
end fashion, and then appending the second layer columns in the same manner, would store a three-dimensional
array. The index value for any entry may be calculated directly from the element's subscript values. Note that the
activation vector created in line 50 is a linear representation of selected entries of the n-dimensional array of
activation values.
The code works by creating a new column vector whose first element is a one, followed by the cumulative
product of the vector defining the number of regions in the first n-1 dimensions. Next, the element's subscripts
are placed in a row vector and each element, except the first, is decremented by one. The index value is the inner
product of the two vectors. For example, using the three dimensional array (system) previously introduced, let

us suppose that each of the dimensions (inputs) has been divided into seven regions, then the entry in location

[2,4,6] would have an index value of [2,(4-1),(6-D][1,(1x7),(1x7x7)]" = 268.

33

Continuing this example, let us assume an input vector such that the 1%, 2™, and 3™ exponentials are excited by
input component one, the 3" and 4™ exponentials are excited along dimension two, and the 6™ and 7"
exponentials are excited by component three. From the information given, and assuming a square truncation
region, we know that the indexes may range from 1 to 343 and that for the particular input vector under
consideration there will be 3x2x2=12 units activated. Table 3.2.1 shows how the code goes about generating the
index vector for this example. The initialised variables are shown in the first row. The second row shows the
variables on the first iteration of the loop. We see that idxe is assigned the vector of subscripts for the excited
exponentials. In line 60 each element is multiplied (because this is the first iteration they are not decremented)
by the first element of net.vcprod and the result is stored in vetl. Line 70 then copies this row vector as many
times as there are elements in idxw and stores the resulting matrix back in vetl. This prepares vctl to be
summed with the previous terms of the inner product created for lower ordinal subscripts. Naturally during the
first iteration there are no previous terms and the vector is simply copied back onto itself. Next, matx is prepared
by line 80, which copies the current idxw column vector as many times as there are elements in idxe. This
prepares the earlier terms of the inner product to be added with vcti. Clearly, during the first iteration, zeroing
each element will compensate for the lack of any previous terms. This is achieved by simply initialising idxw to
the scalar value of zero. Note that vctl and matx will always have the same dimensions. In line 130 the final
step converts both matrices to column vectors by concatenating columns, and then performs the sum of the inner
product. The result is stored in idxw for use during the next iteration. The second iteration values, in row three of
the table, show how vctl and matx grow as higher dimensions are processed. Note also that idxe is
decremented on second and subsequent iterations before being multiplied with net.vecprd. The final weight

index vector is shown at the bottom right corner of the table.

1 [1 2 3] [1 2 3] [1] [1 2 3] [o 0 o] 1
2

3

2 [3 4] [2 3] [7] 14 21 11 15
14 21 22 16

14 21 33 17

2

23

2

3 [6 7] [5 6] [49] 245 294 15 15 260
245 294 16 16 261

245 294 17 17 262

245 294 2 » 267

245 294 23 23 268

245 294 24 24 269

309

310

311

316

317

318

Table 3.2.1. Example of Variable Evolution During Weight Index Calculation.

34

There are a number of approaches that may be utilised in implementing the axis orthogonal RBF activation rule.
However, the presented method of calculating unit activation and indexes permits rapid construction of the
activation and index vector, uses minimal memory, makes efficient use of computational resources, and is
scalable to any number of dimensions. Furthermore, as we shall see later, the technique may be directly carried

over to LMN networks and also facilitates the rapid computation of the network's Jacobian matrix.
3.2.3 LOCAL MODEL NETWORK STRUCTURE

Section 2.4.5 discusses the approximation ability of the Local Model Network where the approximation
construction is described by equation (2.4.30). In this work we will confine our investigation to networks that
use linear local models and Gaussian interpolation functions. Under these constraints we may restate the

approximation construction as:

F=F0=) fx=&Dgd-np) (3.2.13)

Iel,

where:
Foe-gnelf ik > fe-£) =07 (x-gpxeK WO, e W Il (3214
Iy :{]|||¢_771"2 <p.n=H().n €n.,é; efL} (3.2.15)

together with the model validity functions:

~ gg—n;)
gP-n)=-<———
DY) (32.16)
Jel,
where the interpolation function is expressed as:
glg—n,)= o @-n"s-n) (3.2.17)

and &; = {Alilel +Ayihe, +-+AiLe, }has spacing A; along each of the basis vectors e; for R", and
L= {i1 N }is an n-tuple of integers. Furthermore it is assumed that the function being approximated may be
expressed as:

S = f(xp,xy) = fou, (xp)+ [, (xg) /1 (xL) (3.2.18)
where x” =[x} ,x};;1,x, €K, cR" ,x, €K, cR*,K,,K,; c KcR", and the mapping H : K — @ is
constructed as the projection ¢ = x; . The lattice 77; is constructed according to 77; = H(£;) implying
thatrn, = {An,min,ﬁlen,ﬁl +A i2lysi2€ iy T AT e, } where 1< s < n. Lastly the resulting

truncation radius p will form an s-ball around ¢ .

By substituting equation (3.2.16) into (3.2. 13) and rearranging the result we may express the approximation as:

Zg - UJ)Zf(~ENg@—n). 52.19)

Iel,
Jel,

35

Comparing this to equation (3.2.7) in section 3.2.2 we see, if we replace the coefficients 8, by the local models

f" (x —¢;) and the basis functions g(x —¢&;) by the model validity functions g(¢—7;), that the approximation

construction is equivalent to a Gaussian RBF approximation except the output is normalised by the sum of the

contributing model validity functions.
Input Hidden Output
Layer Layer Layer
N Local Model Units
«
/
/
/
’
/
I/
/
X1 ,//
/
//
€
\ . . .
\\ N Basis Function Units 2161 0)
Xp \\ gi1(&1,01.%)
\\
\
\ e ———————— e |
\ Y
\ N
N S~ X
vl Sso
AN
A
\
4 HK —>®

gMNN;ON, §)
gM(En,ONX)

Figure 3.2.4. General LMN Network Structure.

The LMN can thus be viewed as a modified RBF network, however the sampling lattice density and dimension
are now determined by the characteristics of @ . Such an approach leads to the network structure depicted in
Figure 3.2.4. Consistent with the general RBF network construction we see that such an LMN structure has an
input, hidden and output layer, with input and output layers sizing according to number of inputs and outputs

respectively. However the hidden layer, input to hidden layer connectivity, and output unit calculations are

significantly different to an equivalent RBF network.

36

The hidden layer now consists of two different types of units; namely the local model units and the
corresponding basis function units. There is an equal number N of each unit type'® where N may be expressed

as:
N= [[maxi, vijeL. (3.2.20)

Equation (3.2.20) clearly shows that dramatic reductions in N may result from decreasing s. As with RBF
networks, in the special case where the basis vectors ¢; are orthogonal, the resulting network is referred to as an
axis orthogonal LMN network. For this type of network we may show, using the same approach as before, that

although there are N basis function units it is possible to reduce the number of exponentials evaluated to:
N,= Y maxi; Vi eL. (32.21)

The computational efficiencies resulting from the reduction in N and N, are partially offset by the added burden
of computing the local models and obviously this trade off is a key factor in choosing between RBF and LMN

approximations.

The basis function units must be connected to the input units associated with x; to construct the mapping H.
There are two basic approaches to achieving this. The first approach divides the input to the basis function unit
connections into two groups, each associated with x; and x; respectively. Only the first of these groups, which

represents the lattice 77, , is connected to the basis function units. The second approach, the one utilized in this

work, streamlines the code implementation but has a small computationally penalty associated with it. The
approach works by specifying, during initial network definition, very large variances and sample spacing, in
comparison to the extents of K, along each of the dimensions associated with x;. This causes a single
exponential evaluation for each of these dimensions, the outcome of which is always unity. Because these
outcomes are multiplied together with results from other dimensions, they play no role in the final model
validity function values. However, if the mapping H were constructed in some manner other than the one
described above this approach would be invalidated. In both methods, and identically to RBF networks, the
weight matrices associated with the elliptic integration function are the lattice vertices and the Gaussian

variances. The key difference is that in the first method the lattice points are defined by 77, whereas in the latter

method lattice points are defined by &, , where the components associated with x; may be expressed by a single
vector &, = [EIEZE,H], Ej =(maxx; +minx;)/2, Vx € K, 1< j <n—s and variances {01,02,~~-0n_s}

are chosen such that g(x; —Ej,aj)zl, VxeK,1<j<n-s.

For strict conformance to neural network architecture there should be N X ¢ local model units where each unit would have a single
output. However, for both computational and diagrammatic purposes, it is much more convenient to consider each local model unit as
having ¢ outputs distributed to each of the output units.

37

In general, all inputs are connected to all local model units. However, if a-priori information indicates that any
particular local model or group of local models does not make use of any particular input(s), then the unused

connections may be omitted. Notice that the local models described by equation (3.2.14) may be written as:
f(x=&)=0](x=¢))

X 3.2.22

where the constant vector formed by the product — é),T &; has been absorbed into the n"™+1 column of © ;- The
weights associated with the input to local model connections are thus the elements of ®;, the last column of

which represents a bias, and each local model unit performs a linear integration function computation.

The activation function computation for each local model unit simply copies the integration function result to the
output; functionally a multiplication by unity. Notice that if the mapping H is evaluated according to the second

method described above, then ¢ = x and 7, =&, .

The output units combine the two elements of the hidden layer, using the computations shown in equation
(3.2.19), to produce the final output. Each unit has two vector inputs containing N elements each. For the ;™
output unit, the elements of the first input vector are the /™ output from each of the N hidden local model units.
The second input vector's elements, which are the same in all the output units, are the N outputs from the basis
function units. For both vector inputs the connection weights are unity. To generate the output the unit first
performs the inner vector product (the integration function) between the two input vectors. Next, this scalar
result is divided by the sum of the elements of the second input, the normalisation term, to produce the /™ output.
This final step thus constitutes the output unit’s activation function. Notice that the normalisation term is
identical for each output unit, and thus need only be computed once in a typical serial programmatic
implementation. The preceding discussion permits the overall mapping, after substitution of equation (3.2.22)
into (3.2.13), to be expressed as:

y= z@?{ﬂé(x—fz)- (3.2.23)

lel,

38

By judicious construction of matrices, it is possible to express equation (3.2.23) as a matrix equation. Assume

that for some particular input the set /, contains / vector elements, then let:

. r r I(n+1)x
0, =[®1, |®12 | @,[]T, Vi €1y, 9y, e R/ Dxg

§x-&,)
Glx.&,) = g(x — &) (3.2.24)
§x-&,)
then:
3=0] (6.8 @ 11"). (3.2.25)

As was pointed out earlier the hidden layer element comprised of the basis function units is identical to a RBF
network. This means that the discussion presented in section 3.2.2 is directly applicable to this element of
LMN's and we may develop an almost identical activation rule implementation. Such an implementation is
shown in Listing 3.2.3. Notice that lines 10 through 180 are identical to those used in Listing 3.2.2, however
there are two implicit differences. Firstly, for comparable approximations, the vectors net.center{j},
net.invsigma{j} and consequently expn would generally be significantly reduced in length due to lower lattice
density requirements. A shorter expn results in far fewer exponential calculations in the remainder of the loop.
Secondly, the index vector, which previously identified the weights used in calculating the output, now identify

local model units used in the output calculation.

Thus, once execution has proceeded to line 180 the actv vector will contain the basis unit interpolation

10 actv=1l;idxm=0; % Initialize variables

X

20 for j=l:net.ninp % Loop through each network input

30 expn=(u(@)-net.center{j})-*net.invsigma{j}; % Find exponents for jth input

40 idxe=Find(abs(expn)<net._.nthldl); % Determine exponentials activated

50 expn=expn(idxe); actv=actv(:)*exp(-expn.~2); % Multiply with active units

60 vetl=((idxe-((J>1)).*net.vcprd(j3)); % Calculate new indexes

70 vctl=vctl(ones(size(idxm,1),1),:); % Copy vctl to length(tmp2) rows

80 matx=idxm(:,ones(1,size(idxe,2))); % Copy idxm to length(tmpl) cols

130 idxm=vctl(:)+matx(:); % Update model index vector

140 idxa=find(actv>net.nthld2); % Make truncation region a ball

150 actv=actv(idxa); % Remove inactive units

160 idxm=idxm(idxa); % Remove inactive model indexes

180 end % End for loop

190 actv=permute(actv(:)./sum(actv(:)),[3,2,1]); % Reshape actv and normalise

200 arryl=actv(ones(l,net.nout), ... % Each model validity fcn times mdl wts
[1, ones(l,net.ninp)],:)-*net.weights(:,:,idxm);

210 arry2=[u’,1]; % Append bias term to input

220 arry3=permute(sum(arryl.*... % Calc weighted output of each active mdl
arry2(ones(1,net.nout), : ,ones(1, length(idxm))),2),[1,3,2]);

250 yhat=sum(arry3,2); % Sum model outputs for network output

Listing 3.2.3. Axis Orthogonal LMN Activation Rule Implementation.

39

function results, and idxm contains the index vector identifying each local model contributing to the final result.
From this point on (lines 190 to 250) the code becomes unique to the LMN activation rule implementation. In
line 190 the activ vector is normalized to form a vector of model validity functions. It also undergoes a
permutation operation to form a three dimensional array containing one row, one column, and / ‘layers’ where /
is the number of contributing local models. Next in lines 200 to 220 three temporary three dimensional array

variables are calculated. The first, arry1, represents:
arryl =@ g(x-&,) VIel,. (3.2.26)

It is calculated by repeating the single row and column entry of actv, for each of the / layers, by the number of
outputs and inputs+1 respectively, and then performing an element by element multiplication with the weight
matrix for each of the contributing local models. The next temporary variable, arry2, augments a one onto the

transpose of the input column as shown in equation (3.2.22). Lastly arry3 represents:

arry3 = f(x—&)g(x—&,) Viel,. (3.2.27)
It is obtained by repeating arry2 [times along dimension three and the number of output times along dimension
one and then performing an element by element multiplication between arry1 and arry2. This result is summed
along dimension two and then permuted to form a matrix with the same number of rows and columns as network
outputs and inputs respectively. The last step in obtaining the output, performed in line 250, is the final
summation shown in equation (3.2.23). Summing arry3 along the dimension representing the individual

weighted local models, namely the second dimension, does precisely this.

The reader may be puzzled as to why, what appears to be a rather convoluted method has been used to obtain the
final network outputs. The reasons are twofold. Firstly one may be tempted to use the matrix multiplication
operators when calculating the local model results. This leads to using a ‘for’ loop which, when using the Matlab
interpreter, can add significant computational overhead. The second reason, as we shall see later, is that by using
the temporary variables defined we can avoid redundant calculations when computing the network Jacobian.
These factors combined lead to an implementation with speed improvements in excess of 30% when compared

to a direct matrix multiplication implementation.

3.3 TRAINING THE NETWORK PARAMETERS - THE LEARNING RULE

In a broad context the neural network system is used in this work to perform system identification. System
identification is the process of experimentally determining a system model and consists of the following key
steps: experiment planning, selection of model structure, criteria postulation, parameter estimation and model
validation. The network environment influences the experiment planning stage and the plan must ensure that the
network inputs meet certain criteria in order for the identification to be successful. The model structure is
defined by the network structure or activation rule. The postulated criterion is constructed from the objective
function while the parameter estimation task is defined by the method used to generate the learning rule. Finally
the model validation step is required to ensure that the model predicts the identified system with sufficient
fidelity and robustness in regions of the operating space that are not necessarily explicitly included during the

parameter estimation process. There is a large body of work dealing with system identification and most of the

40

work presented in this section is drawn from these works. In particular, the reader is referred to Astrém and

Wittenmark (1995) and Ljung (1999) and the many references cited therein for a more detailed discussion.
3.3.1 THE OPTIMISATION PROBLEM

The process of training or adapting the network parameters combines the postulated criteria with the learning
rule to update the systems parameters based on the systems current and past experiences. These two elements are
inextricably linked by the fact that the learning rule results from the method selected to solve the non-linear

optimisation problem defined by the objective function.

We therefore begin by defining a cost function or criterion that should be optimised. In discrete time systems

this is often expressed as:
J(t.0)="> t(e(k,0)) (3.3.1)
=1
where, for now we shall consider @ to be either a matrix or vector of parameters, g(k,é?) is a generalised error

measurement, ¢ is the total number of discrete unit time steps processed where each step is represented by the

integer value k. The function e(k,é’) is commonly chosen, as in this work, to be the prediction error:

e(k,0) = ylk] - 5{k] (33.2)
where y[k] is the observed system output and y[k]is the network predicted system output parameterised by 6.
We choose the objective function (() to be consistent with Gauss’s principle of least squares which states that

the unknown parameters of a model should be chosen such that ‘the sum of the squares of the differences
between the actually observed and the computed values, multiplied by numbers that measure the degree of

precision, is a minimum.’

Thus let A™' bea ¢xg¢ diagonal matrix of weights describing the precision associated with each output.
Furthermore, as the system being identified may be time varying let £(7,k) be a factor that discounts the degree

of precision as a function of time, then we may use the following quadratic function to map network outputs into

a real number reflecting how well the network output is tracking its computation goal:
0(k,0) = % Bt k)ek,0)" N e(k,0) . (3.3.3)

Finally, substituting equation (2.4.4) results in the following weighted least squares criteria or cost function:
J(2,0)= %Zt: B(t,k)ek,0)" A e(k,0)
k=1
= %kz;:ﬂ(t,k)(y[k] — LK1 A7 (pk] - 1K) (3.3.4)
- %kz;:ﬂ(t,k)(y[k] - Ftio)f Ak - Fuik1.0).

Clearly, the better the network performs the smaller the value of the criteria. Combining the above, the

optimisation problem to be solved in this work may be stated as:

41

0" =argmin| 33 p(e.k)otk) - 7). 0)) A7 otk f“(x[k]ﬁ))} (33.5)
k=1

Equation (3.3.5) is an unconstrained minimization problem. If other limitations are placed on any of the
variables, for example the parameters are limited in their range, then these limitations should be stated as part of

equation (3.3.5), which would clearly then become a constrained minimization problem.
3.3.2 ON-LINE VS BATCH MODE PROCESSING

Before presenting the methods used to solve equation (3.3.5) it is necessary to make a fundamental decision
about whether the training should be performed after all the system data has been obtained or whether the
algorithm should attempt to incrementally include new information as time progresses. The former approach is
generally referred to as off-line or batch mode processing while the latter is called on-line or recursive

identification.

Given the data Z(¢) = [x[l], V11, x[2], y[21,- -, x[t], y[t]]T we can define the identification problem as:

0(t) = (¢, Z(1)) (3.3.6)
where the function F() is implicitly defined by equation (3.3.5). In batch mode all the data is collected before
attempting to solve for & . The evaluation of F() thus involves an unforeseen amount of calculation. In an

adaptive control application this is problematic as memory is limited and only a finite amount of computation
time is available between system samples. To overcome this problem in recursive or on-line algorithms a fixed

dimension variable representing the accumulated information state, P(¢) , is defined. Thus:

() = h(P())
P(t) = H(z, P(1 — 1), p(£), x(2)).

The functions h(.)and H(.)are explicit expressions evaluated using a fixed number of calculations.

Furthermore, as the amount of information added with each new sample is, in general, small compared to the
information already accumulated, the number reflecting the new information content is typically weighted by a

factor y(¢) reflecting the value of the new information and summed linearly to the existing parameters and

information state:

0(t) = 0(t - 1) + Y(1)Qy (P(t),y(t),x(t))) (3.3.7)

P(t) = Pt =1)+ Qp (P(t = 1), y(0), (1)
The weighting factor y(¢) is called the update step size or adaption gain and provides a mechanism whereby the
trade off between tracking ability and noise sensitivity can be controlled. The function Qg (.) provides the

direction that the update step should take. Equation (3.3.6) may be considered a general statement of the
learning rule for off-line or batch processing while equation (3.3.7) is the analogous general statement of the

recursive or on-line adaption learning rule.

A stated objective of this work is to use the algorithms developed in non-linear adaptive neurocontrol. Use of the

term ‘adaptive’ implies then that training of the system should be performed on-line. One may question why it is

42

necessary to have adaptive capabilities. It could be argued that the varying nature of the plant may be included in
the non-linearity of the controller design by adding another degree of freedom. Implicit in this idea is that the
plant is well understood over its entire domain of operation. Furthermore, as we have seen in the previous
chapter, the problem with this approach is that all the network architectures considered have aspects of their
calculation that scale exponentially with the number of degrees of freedom suggesting that it is advantageous to

keep the degrees of freedom to a minimum.

The argument above taken to the opposite extreme, that is to use an adaptive approach to continually update a
linear model of the plant, also has its drawbacks. Consider a plant that has piecewise or rapidly varying
parameters. In order for equation (3.3.7) to track these rapidly varying parameters the adaption gain must be
increased in value thus making the algorithm sensitive to noise contained within the observed values. With large
adaption gains previously identified regions of operation are rapidly overwritten with new information. The
identification scheme has only a short memory of previously learnt information. Although the adaptive control
community has developed methods to alleviate this problem, recursive identification of a non-linear plant having
parameters that vary over vastly different time scales is difficult. By using non-linear neural networks in
conjunction with on-line adaptive techniques one can memorize short time scale non-linear variations in the
network models while the adaptive scheme can be used to adjust to long time scale parameter variation. This
permits one to trade off algorithm memory requirements with tracking response while maintaining good noise
sensitivity characteristics. This idea is closely related to the idea of parallel estimators suggested in Astrom and

Wittenmark (1995).
3.3.3 NETWORK PARAMETERISATION AS A LINEAR OPTIMISATION PROBLEM

It is well known that an analytical solution exists for the optimisation problem described in (3.3.5) provided the
function f (x[k],0) is linear in the parameters & and the output is written in the following form:

Ik = F(x[k1,0) = 9 1K16. (3.3.8)
This problem is typically referred to as a linear regression problem and the term ¢[k]is referred to as the

regression vector or regressor. Note that the output vector for the RBF network expressed in equations (3.2.12)

may be expressed in the form of equation (3.3.8) provided the following substitutions are made:

0=coll®,) 0enR"

oylk . (3.3.9)
0" [k]= % [l ®G(kLE D], o7 RO
where /., is a g x g identity matrix. Similarly for the LMN network equation (3.2.25) may also be transformed
where:

0=coll®,) 0ene

o=l elGamg o mar |, of emrione,

(3.3.10)

43

If, as in the case of MLP networks represented by equation (3.2.5), the function f (x[k],80) , is non-linear in &

but continuously differentiable of order one, then it may be transformed into a linear problem at any instant in

time by observing that:
o0
0=0[k-1]
=" (k,0)0[k —1].

(3.3.11)

Note that the regressor remains a function of the parameters. To highlight this fact equation (3.3.11) is referred
to as a pseudo-linear regression problem. To relate this to the parameters of the MLP network a more convenient

weight vector is first defined for each layer:
T
g0 = [0{’”,0§’>T,0§”T,---,05n’” = [COI(G)(”TH L g0 e gOnim (3.3.12)

where all variables have the same meaning as those in equation (3.2.2). The MLP mapping can now be stated in

the form of (3.3.11) given the following substitutions:

g’ .
g’ > (myy+ym,
0=) R O cR=

o (3.3.13)
] L
_6A k1 oylk ovlk ‘P{Z(Wl/,ﬁl)mlj

o (k0)=| DK DKL o]} o et \F

2 1) AN(2)° S >(L N .

_60() 60() 60(: 0=0[k-1]

Summarising equations (3.3.9), (3.3.10) and (3.3.13), we see that the learning rule for the RBF, LMN and MLP
networks can be stated as linear regression or pseudo-linear regression problems respectively. The next three

sections are therefore devoted to describing the techniques used in this work to solve the general recursive

regression problem. To simplify the notation these discussions will not differentiate between ¢’ (k,0) and
(oT[k] , both of which will simply be referred to as (oT (k) or (oT (¢) when k =¢. Furthermore, the dimensions

of@ and @ (k) will be generalized to » and g x r respectively, where r is considered to take on the appropriate

value depending on the network being considered. Note that the general literature contains many varied methods
to solve this problem. Those discussed here are used to illustrate the core ideas found in these methods and will
culminate in a newly developed algorithm found in section 3.3.8. Algorithms actually implemented are

designated by a superscript hash (#) character after the equation number.
3.3.4 THE STEEPEST OR GRADIENT DESCENT METHOD

We begin with the simplest approach, namely the steepest or gradient descent method. Here the parameter
estimate is updated at each point in time, by moving in the negative direction of the gradient of the objective

function. Therefore, applying the chain rule to equation (3.3.3) gives:

44

~L0 e L panls=50) A0~ y(t))j
~ T A
-2 O} Ay - 5 eV A PO (3.3.14)
=5 ﬂ(t,t)([300 - I)J Ay - 30))+ (@) - po)) A (600 L 1))]

= BN ()~ (00 - D).
Assuming f(t,t) remains constant, i.e. ¥ = f(¢,t) , and that the accumulated information state, P(?),
represents the negative direction of the gradient of the objective function, the gradient descent learning rule may
be stated as:

0(t) = 0(t - 1) + 7 P(1)
P(t) = o)A () - 07 (00 - 1)).

This method is very inefficient when the hyper surface representing the objective function has long narrow

(3.3.15)"

valleys or large flat plateaus as the gradient term approaches zero in these regions. In an attempt to alleviate this
problem another term, called momentum is frequently added:
00)=0(t-1)+yP(t)
P = 0N y(0) - o7 (00 D)+ 1P 1)

The momentum term attempts to keep the updates ‘moving’ by summing a weighted factor of the previous

(3.3.16)"

direction with the current direction. The idea is that components of the update that have changed from the
previous iteration will tend to cancel but components in the same direction will sum together to ‘push’ the
update further along the desired path. Although this approach can sometimes improve the convergence rate the
method still remains inefficient. Furthermore, the ‘best’ values for y and g are problem dependent and must be
selected empirically. The advantage of the algorithm is that, in spite of its lack of mathematical rigor, it is
intuitively simple; note that at each time step the only complex calculation required is determining the matrix

(1)
3.3.5 THE RECURSIVE LEAST SQUARES (RLS) METHOD

In section 3.3.1 the selected criterion was called the weighted least squares criterion. It is well known that a
mathematically sound analytical solution exists to this type of problem. Introducing the following matrix

notations:

Y(0)= _yT(l),yT(z),---,y%)F
Y@ =" 0,57 @), 3" @)
E0)=YO-T(0). 2,0)=y0-50

w?D
0" (2)
o(n)=| (3.3.17)
o' ()
[B
W, ()= - . A eR™

B, HA!

45

the cost function (3.3.4) then becomes:

J(0,0) = %Eyf OW,(DE, (1)
B %Zﬂ ek)((y (k1-¢" (k1o) A7 (k- f/)T[k]ﬁ)) (33.18)
k=1
= %Zﬂ(t,k)(yr[k]/*‘y[k] — 207 p[kA y[K] + 0T¢[k]A*1¢T[k]a),
k=1

Equation (3.3.18) may be differentiated directly with respect to @ :

oJ(0,t)

02 pebletkan o116 - ol k)
k=1

: ; (3.3.19)
= BLIPKIN 9T (K10 - At k)plkIA yik].

k=1 k=1

To find the minimum we set equation (3.3.19) equal to zero:

IO, poi gt e
" PN(t)H -Y()=0 (3.3.20)
ZPT 00 =Y (), 0 eR

where:

PO =D B R)plkIA o' k] = @ ()W, ()D(0)
= (3.3.21)
Y(0) =) Bt I)plkIA yik] = T ()W, ()Y (2).

k=1
Therefore the minimum of (3.3.18) occurs at:

NOE ((I)T(t)Wy (z)cb(r))’chT(t)Wy (Y ()

IR (3.3.22)

This is called the normal equation and is the basis for many off-line algorithms. To derive a recursive algorithm

we begin by defining the variable A(¢) as follows:

Btk O<k<t
=1 | /i P (3.3.23)
Af(x—l,k) =t

Substituting (3.3.23) into (3.3.21) gives:
t
P 0 = A0 Bt~ 10p()A 9" (k)
k=1

t—1

= A0 Bt =10)p(R)A 9" (k) + A0 Bt - LA 9" (1)
k=1
t—1

=20 Bt =1LE)p()A 9" (k) + o)A 9" (2)
k=1
= APt =1+ p(OA " (1)

(3.3.24)

46

Similarly:

t—1
()= 20 f(t~1LE)lKIA k] + A0 At~ LglIA™ y1]

— (3.3.25)
=AY (t =1) + ()N p(2)) .
From equation (3.3.24) we note that:
) :ft)(l’_] - 0O p" () (3.3.26)
and from equation (3.3.22):
Y-1)=P'(t-1)0"(t-1). (3.3.27)

Then substituting (3.3.24) through (3.3.27) back into (3.3.22) gives:

0" (1) = PO\ AOY (t—1) + <o(r)A*1y(z>)
= POROP (-0 (-1 + o)A y(0)
= PP () -)N " 0" (=) + (A (1) (33.28)
= 0" (-1 + POpOA (1) - T (007t 1))
=0"(t ~ 1)+ P(0)p()N" (p(2) - 3(2)).

In conventional RLS algorithms the matrix inversion required to calculate P(¢) in equation (3.3.28) is avoided by

applying the matrix inversion lemma:
(4+BCD)' =47 - A‘IB(DA‘lB +C!)_IDA‘I . (3.3.29)

Thus, taking 4 = A(t)P~' (1 —1), B=D" = p(t), C = A" equation (3.3.24) gives:
P(1)= %(m ~1)- Pt~ D20 A + 9")P~ D)) 0 (1)P(e - 1)) | (3.3.30)

Moreover, if we let K(¢) = P(t)w(t)A_1 then substituting (3.3.30) and simplifying gives:

K(t) = P4~ D@ A0A + 0" ()P~ Do)

Summarizing equations (3.3.28), (3.3.30) and (3.3.31) gives the final recursive least squares algorithm:

0" (t)=0"(t)+ K)(p(1) - 5())

(3.3.31)

K =P~ DO + 97 OPE -1 5332)
P(t) = %(P(t -)-K@)p" ()Pt - 1)).

Notice that to compute K(¢) in (3.3.32) it is still necessary to obtain the inverse of a ¢ x ¢ matrix. This is
considerably less computational effort than would be required to compute the inverse'' of P(¢) if the matrix
inversion lemma had not been applied to equation (3.3.24).

3.3.6 THE EXPONENTIAL FORGETTING FACTOR WITH CONDITIONAL UPDATING METHOD

In a time varying system it is desirable to assign less weight to older measurements that are no longer

representative of the system. This is done by selecting the values of S(¢, k) along the diagonal of the weight

" dim(P(¢)) = (dim(@) x dim(@))

47

matrix W, in (3.3.17). In particular if we choose (7, k) = A7 were 4 <1 then we see that the current sample

has unity weighting while older measurements are exponentially discounted. Furthermore, equation (3.3.23)

reduces to A(t) = A for all k£ <t permitting A to be substituted for A(¢) in equation (3.3.32). The constant A is

often called the forgetting factor and the resulting RLS algorithm is called the exponential forgetting algorithm:

0°(1)=0"(t =)+ K©)(y(6) - §(0)) 1
K(t)=P(t - 1)(p(t)(/1A +o (Pt —Do(?) (3.3.33)"
P(t) = %(P(z - -K@®)p" (t)P(t - 1)).

3.3.6.1 RELATIONSHIP BETWEEN ADAPTION GAIN AND THE FORGETTING FACTOR

It is informative to compare the forgetting factor to the adaption gain in equation (3.3.7). By normalizing
P(t) such that P(t)=y(t)13(t), and noting that K(t)= y(t)f’(1)o(t)N", we see that the update part of

equation (3.3.32) takes the same form as equation (3.3.7). Furthermore:

, D Bkt o" (k)
P =D N " (k) = 41— =Py ()
= D Bk
k=1
1 t
Soo—= k).
e ;ﬂ(z)
But from equation (3.3.23) we get:
t t—1 11
B _ Bk _
; Blt.k) = ; Aty + B =— ; Blt—1k)+1
= - - (3.3.34)
1 A1)
—= +1.
y(@ y@-1)

When using the exponential forgetting algorithm the forgetting factor becomes a constant allowing (3.3.34) to be

reduced to:
y=1-4 (3.3.35)

providing a simple relationship between the adaption gain and forgetting factor.

3.3.6.2 PERSISTENT EXCITATION AND THE ESTIMATOR WIND-UP PHENOMENON
It is important to note that equation (3.3.22) must have a unique minimum, that is, the term (<DT ow, (t)CD(t)) or

P! (¢) must be invertible or have full rank. This condition is called an excitation condition and implies that
certain experimental conditions must exist for the method to be successful. In particular, the inputs to an n"

order regression system are said to be persistently exciting of order » if the matrix:

C, = lim L @7 ®

t—o f

1< (3.3.36)
= lim—> p(k)p" (k)
k=1

48

is bounded positive definite. As the regression vector associated with dynamic systems typically contains
elements of both past inputs and outputs, problems can arise if the system inputs are poorly excited, if the model
is over parameterized, or when performing system identification under closed loop low order linear feedback

conditions. Periods of input inactivity can lead to duplicated inputs and outputs and feedback may result in
certain inputs being directly proportional to certain outputs. This causes columns of the matrix p! (#) to

approach or become linearly dependent resulting in poor conditioning or reduced rank respectively. A system

exhibiting this problem is said to suffer from collinearity.

The absence of persistent excitation coupled with exponential forgetting can be particularly problematic causing

a phenomenon called estimator windup. Consider the case where the regressor is constant, that is, ¢(7) = ¢, with

some initial matrix PO_1 = goOA_lgooT . Then, if we let k begin at zero, equation (3.3.24) gives:

t
PO =AF"+ Y A pyN g

pan (3.3.37)
= AR +a (OpA g
where:
1-2
a(t) = . 3.3.38
T (3:338)

Setting 4 = /’L’Pofl, B=D" = ¥y, C = a’! (t)Afl and applying the matrix inversion lemma (3.3.29) to (3.3.37)
gives:
P()y=—{ By~ Bypy (K ety A + 0l Bypy) o P
= oo a(O)A+oy Foy) o0 B |- (3.3.39)
Also from (3.3.37) we get:

Py =W +a)R
"By =P+ (t)o). (3.3.40)

Substituting (3.3.40) into (3.3.39) gives:
1
P =a Rl an+ 0] By) o0 By (3.3.41)
Matrix P(¢) may be expressed as two terms:

P(t) = P(t) + B(OpoA "o (33.42)

where:
~ 1 _ _
() = 7(130 — Py (XA + 9T Py 0L By)- B(O)po AT (33.43)

The value f£(¢) is chosen such that matrix ﬁ(t) has rank n—1 with f’(t)(oo =0. This implies that the parameter

information components represented by IB(t) are orthogonal to ¢, . The second term therefore represents the

update to the components of the parameter information which are not orthogonal to the regressor. Combining

equations (3.3.41), (3.3.42) and (3.3.43) and post multiplying by ¢, gives:

49

1 B
a(t) Py, (l’a(t)/\ + o PO%) 20 Powo = BN 04 9, - (3.3.44)

Noting that |/1| <1, and examining equations (3.3.43), (3.3.38) and (3.3.44) respectively we see that:

lim(P(f)) - was A
lim(e(£)) = (1-)

t—0o0

lim(B(1)) > (1— ﬂ)({ﬁo/\’lf/’g)72

t—0

(3.3.45)

Therefore, the ‘orthogonal’ part of P(#) goes to infinity or ‘winds up’ while the ‘non-orthogonal’ part converges
to a constant matrix. That is, when the regressor @(¢) is constant, new information is obtained only for the

parameter components that are not orthogonal to the regressor. The wind up phenomenon associated with the

orthogonal parameter components causes P(¢) to become excessively large resulting in radical and / or

oscillatory changes in parameter updates.
3.3.6.3 CONDITIONAL UPDATING

To avoid the windup phenomenon, the use of conditional updating attempts to measure when there is sufficient

excitation and permits updating of P(¢) and the parameters only when the excitation exceeds some chosen

threshold. A convenient dimensionless measure of the excitation is desired. Consider the following pre and post

multiplied version of equation (3.3.42):

o (OPO)() = 9" (OPO)p1)+ 9" (1) BOPOA 0" (1)p(0). (3.3.46)
If the regressor is constant then as ¢ — oo it is evident from the previous discussion, and substitution from

(3.3.45), that equation (3.3.46) becomes:
lim (9" (VP(OP(1) =0+ " () BO)PNA™ 9 (D) (1)

=o" ()1~ A)(w(z)AﬂoT@)‘z PN 9" (D)p(t)
=(1-A)A.

Clearly, the following limit will be approached from above if there is insufficient excitation:
A" (P +D(t) > 14, (1= 1) (3.3.47)

Therefore, given some positive quantity v , updating should only use those elements of the matrix equations

which correspond to the i™ diagonal element on the left hand side of (3.3.47) which satisfy:

diag(A”' 0" () P(D)p(0)), > (0 +1)1—2). (3.3.48)"

3.3.6.4 DIRECTIONAL FORGETTING

Another approach to avoiding the windup phenomenon is to ‘forget’ only in the direction of the regressor, i.e.

not to apply the forgetting factor to those elements of P! (t) which are orthogonal to the regressor. Recalling
(3.3.24), but temporarily setting A(f) =1, A" =1 gives:

Plo)=P ' ¢t-D+o0)e" (). (3.3.49)

50

Let:

Pl t-1) =P =)+ o()I(0)e" (¢) (3.3.50)
where P! (t—De(?) = 0 then by pre and post multiplying Pl(t-1) by ¢’ (t)and ¢(¢) respectively it is easy to
show that:

(1) = (¢" Op) " 9" (HP™ (¢ =Den)(e" (Op() . (3.3.51)

Substituting (3.3.50) into (3.3.49) and applying a forgetting factor to only the non-orthogonal part of (3.3.50)
yields:

P71 =P7 (1= + 20T (09" () + (0" (0).
Simplifying by substituting I'1(¢) from (3.3.51) and p! (t—1) from a rearranged (3.3.50) gives the new update
equation:

P @) =P =)+ (A-Dp) e Op@) " 9" OP™ 1 ~De@)p" O)p@) ™ o' (1) + 90" (2).

3.3.6.5 THE SQUARE ROOT ALGORITHM

The required inversion of ((DT ow, (z)d)(t)), whether done using the matrix inversion lemma or solving the

normal equations directly, is the basic source of collinearity related problems. One can try to enhance the
numerical properties of this process so that poor conditioning is minimized. This is the key idea behind the

orthogonalization or the square root algorithm approach. In this approach it is assumed that P(¢) can be

represented as the product of matrices that are updated in an iterative manner.

Let P(¢) be represented by the Cholesky factorization, i.e. P(¢) = P()P” (¢) . Construct a matrix:

() { VAOA 0 } (3.3.52)

Pl(t=Dp(t) PT(t-1)

which is factored into the product of an orthogonal and upper triangular matrix by QR factorization to give:

R (1) Ry,(0)
l—‘ —] >
(0) Q(t){ 0 Ry 1)} (3.3.53)
where R, (¢) and R, ,(¢) are both upper triangular.
Multiplying (3.3.53) by its transpose and noting that o' o) =1 gives:
= T (0r () < | R ® , Ry(0) Rip(0)
L@ =1"Or@) = { R0 R (I)}Q (l)Q(t){ 0 Ry t)}
T T = = (3.3.54)
_| RLOR, @ R (OR 2 (0) _ { Lo 5,2@)} |
R{z (DR, (?) R{z OR () + R2T,2 (DR, (?) 00 10

Similarly multiplying (3.3.52) by its transpose gives:

51

f(z)=rf(z)r(z)=[(«/10>A)T coT(t)I_’(z—l)}[JADA 0 }
0

Pi-1) | PT-De@) PT(t-1)

| AOA+ 9" (OPE-Dp(t) ¢" (OPE-1)| GRG0
P(t=De(1) Pe-1) | |[Ty® T

(3.3.55)

Notice that due to symmetry Fl,l = flTl and Fz,z = szj , . Examination of (3.3.55) together with (3.3.32) and
equating with (3.3.54) reveals:
-1
K0 = P=Dp0li0A + ¢ 0P~ Dp(0)
=00 () =T (O ()
= R (DR (DR (DR, (1)
- Rf 2O (1)

P(r) = a0)(P(t 1= Pa-Dp@AOA + 0" OPC Do) o (P —1)) 56
M (Lo -T0h 0 0= o)(Fz O -y, OF T (OT20))
(R 2(OR (1) + Rz 2 (DR (D) — Ry 2(f)R1 1(ORy (f)R (t)R{I (DR, (t))

(Ry, (DR, 2(1))

*\ *\
—_~

Given that P(¢) = P(t)P" (t) we deduce that P(f)= R£ N0 / JA(?) . The iterative update process may thus be

stated as:

|:R1,1(t) R, (t)} ® { JAOA 0

0 Ryy(» PT@t-Do@) PT(-1)

K(t) = Rip(ORy (0) (3357

0 (1)=6" =D+ K@)y - 50)
ﬁ(t) _ Ry, @)

Jao

The most computationally expensive step used in this algorithm is the QR factorization. If the Housholder

orthogonalization method (Golub and Van Loan, 1989) is used then a solution is found with

O(4(dim(@) + dim(y))3 /3) effort. There is still a matrix inversion to be performed in the calculation of K(¢), but
the matrix to be inverted, RlTl , is lower triangular. This permits a simple solution using backward substitution in

O(dim(y)z) effort. Numerical difficulties can be expected when the condition number of the matrix

R(t) approaches the inverse of the computational tolerance (usually very small.) In contrast, numerical problems

are encountered when calculating P(¢) directly, if its condition number approaches the inverse of the square root

of the computational tolerance.

52

If the system is not persistently excited the diagonal of P(¢) will take on values approaching zero. This can be
avoided by using conditional updating or by regularization which is discussed in the next section. Since P(¢) is

triangular its eigenvalues appear along its diagonal. A small positive valued diagonal matrix added to P(¢) at

each step thus forces the matrix to have positive eigenvalues preventing I'(#) from becoming rank deficient.
3.3.7 REGULARIZATION - THE CONSTANT TRACE AND KALMAN FILTER METHODS.

Another method of avoiding collinearity problems is to prevent (<DT ow, (t)CD(t)) from becoming rank

deficient. A term added to the cost function (3.3.18) that penalizes large movements in &, thus stabilizing the

parameter estimates, achieves this. Therefore let:

0=l .67 2),-+-,07 (0]

0()=16" 0,57 @,-,8" 0]
Ey(t)=0(t)-0(1), £5()=0(1)-0())
BtHA,
W, (1) = , Ay eR™
B(t.HA,

(3.3.58)

then:

J(0,0) = %Ef OW,(DE, (1) +%E€T (OW,(D)E, (1) (3.3.59)

where A_gl () is a matrix used to weight the relative importance of each parameter as well as the importance of

parameter updates in relation to step length. Differentiating (3.3.59) directly with respect to @ gives:

aJéZ,t) = (@), DT (1) + W, (0)p(@) - (W, ()Y (0) + W, (08 0)). (3.3.60)

Setting (3.3.60) to zero to determine the minimum and rearranging gives:

0" (1) = (<D(t)Wy O (1) +W, (t))_1 (db(t)Wy OY@+w, (t)g(t)). (3.3.61)
Comparing this to equation (3.3.22) it is clear that W, (¢) can now be used to control the conditioning for the
required inversion of P7(t), however, regularization has also introduced errors in the parameter estimate in the
form of the term W, (¢), 0 (1), generally referred to as the bias error. The regularized constant trace algorithm
heuristically makes use of these ideas. In this algorithm, during each iteration, the trace of P(f) is kept constant

by scaling and adding a small identity matrix. This causes the eigenvalues of P(¢) to remain artificially

bounded. The algorithm takes the form:

0'(0=0"-D+ KOO -50)
K(t) = Pt~ Dp(0)2A + o7 (1) P2 - Dop(0))

P()=A" (P(t -1)-P(t - l)qo(t)(A +ol (O)P(t - 1)¢)(z))‘1 ol (t)P(t - 1)) (3.3.62)"
P(t) = (“I?I;(gmm Jﬁ)+ oy

53

where o, and o, are the desired bounds for the maximum and minimum eigenvalues respectively.

max

Typically these values are selected such that a,,, /oty = 104 and (pTgo(a - amm) >> 1.

max max

Unfortunately the optimal choice of W, (¢) and 0 (?) is unclear. There exists a large class of regularization
algorithms, most of which differ primarily by the settings associated with these variables. One selection that is
particularly revealing is to let 0 (t) =6(t —1) . Then, from (3.3.58), it is clear that 5, (¢) = 6(¢) — 6(t — 1)) , and the
parameter update problem may be stated in the form of a state space system:

0()=0(t—1)+ &, (¢)

() =" (H0() +&,(1). (3.3.63)

If it is assumed that £, (¢) and ¢ ,(7) are uncorrelated white Gaussian process and measurement noise

respectively, then applying the stochastic Kalman filter formulation to (3.3.63) gives:

0(t)=0(t - 1)+ K(0)(y(t) - (1))

K(6)= Pt~)p)Ry (1) + 0" ()Pt~ V)p(0))
P(t) = P(t 1)~ K(t)g ()P(t 1)+ R, (1)
R(t) =E{gy (1)) (1)}, Ry (1) =Efe, (D] ()}

(3.3.64)

where E{.} denotes the mathematical expectation. Comparing (3.3.64) to (3.3.62) we see that R,(¢) plays a role

similar to «,,;,/ while R, (¢) = A(¢#)A . From this we may deduce that, if A(#) =1 and the output is weighted by
the inverse of its variance, then #(¢) is Gaussian with a mean 0" (¢) and P(¢) is the covariance matrix of the

parameter estimation error. Thus we should set 0" (0) to be our best estimate of the parameter vector and
P(0) should reflect the confidence associated with this estimate. Kalman Filter theory also tells us that this

algorithm, for a linear regression model, gives the optimal trade off between tracking ability and noise

sensitivity in terms of a minimal a-posteriori parameter covariance matrix.

Although (3.3.64) provides insight into the choice of A™' the selection of A_el , and hence W, , is unclear. This is a
non-trivial problem which is dependent on the relationships between the parameters. These relationships are
difficult to quantify in the case of ANN’s and depend on the network structure as well as the underlying function
generating the data mapping. In practice W, is typically ‘tuned’ by selecting a scaled version of the identity
matrix. However, Hydtyniemi (1994, 1996) has provided some note-worthy results on how to define the

organization of W, for dynamic systems having a specific regression structure using the theory of congruent

systems.
3.3.8 THE RECURSIVE SINGULAR VALUE DECOMPOSITION (SVD) ALGORITHM

As pointed out in previous sections, if the system input is not persistently exciting, RLS algorithms may perform
poorly resulting in estimator windup. Furthermore RLS algorithms tend to be complex, prone to numerical ill
conditioning and algorithm parameters may be difficult to select. In this section a new algorithm is developed. In

it, an attempt is made to circumvent many of the problems already discussed.

54

We begin by reconsidering equation (3.3.59). In this equation there is a cost associated with the distance

between some nominal () and the final solution #(¢) weighted by the matrix W, (¢) . The conundrum that exists
is that we cannot confidently specify 0 (t) and W, (t) without knowing the ideal solution 0 (¢) . This may also

be recognized in equation (3.3.61) by noting that, in essence, the choice of 0 (t) and W,(t) a-priori is
tantamount to determining a final bias error without knowing any information about the data being mapped. A
different approach is clearly needed.

Rather than requiring a distance metric to be minimized let us assume that there exists some final, but initially
unknown, error d, () between the attainable solution #(¢) and the ideal solution 0" (?) . Here the attainable

solution is defined as that solution which can be achieved given the constructs of the underlying mapping and

the quality of the excitation and measurements collected up to the current point in time. That is:
5,()=0"(t)-0(t).

The optimization should still however result in the ideal solution, therefore cost function (3.3.4) becomes:

50.0= 13 .| b1 =g k1081 5,0 o
25 WK1~ TRIOTRT + 5, k)

1< w1 A Tk (3.3.65)
=2 D Pk) = 200K+ 5,[k]) plKIA yiK] :
k=1 +(O1k]+ S,k k1A @ [K1(O1k] + 5,[k1)

As before, equation (3.3.65) may be differentiated directly with respect to 8 :

ar(0.1) _

o = 2 PRI O] + 54kD) = > A k)glkIA™ y1kD). (3.3.66)
k=1 k=1

Setting (3.3.66) equal to zero now gives:

oJ0.1) Lo
T_P (t)(0(1)+5e(t))~ Y()=0 (33.67)
S 0" ()= (0(1)+S,()=P(OY(t), (0+35,)eR’

where, as before:

Py =) Bt k)plkIA 9" [K]
k=l (3.3.68)
Y(0) =D Bt l)plkIA™ ylk]

k=1
Assume (all assumptions shall be addressed in more detail later) that P! (¢) can be factored into two
components, one of which is approximately orthogonal to the regressor:
Plo=P')+ P'(t), P (H)p(t)~0. (3.3.69)
Further assume that the inverse can be expressed as the sum of the inverses of the previous factors:
P(t)=P(1)+ P(t). (3.3.70)
Combining equations (3.3.67) and (3.3.70) results in:

55

0(t) +5,(t) = P(O)Y (1) + P()Y (1) . (3.3.71)

By definition IN’(t) is orthogonal to the regressor, but the regressor is not orthogonal to the parameter vector
because p(¢) = (DT (1)8(t —1) . Therefore this variable cannot be correlated with the parameter vector and we may
conclude that:

5,(t) = P()Y (2). (3.3.72)
and:

0(t)=P)Y (7). (3.3.73)
Proceeding as before we now define the matrix variable A(¢) as follows:

) = {,B(t,k)ﬂ(t —1,_{«)*1 0<k<t
Pt —-1,k) k=t

Manipulation directly analogous to (3.3.24) therefore results in:

P (6)= AP (e =) + ()N p" (¢)

F(0) = AT (¢~ 1)+ 9N p(0) G379
If for any chosen constant scalar (0 <A< 1), there exist a £(¢, k) such that:
AOP Nt -D)=P ¢ -1+ APt -1) (3.3.75)
then substituting (3.3.75) into (3.3.74) gives:
Ploy=P ' t-D)+ P 't =-D)+ o)A 9" (). (3.3.76)

Substituting (3.3.74) into (3.3.73) gives:
00) = POROT 1) + o)A y(0)).

Shifting the time variable in (3.3.73) by one sample and rearranging gives Y (t-)=P -l (t —1)8(¢t —1). This can
be substituted into the equation above to yield:

0t) = }_’(t)(/"t(t)}_’ e =D0@ -1) + o)A y(t)). (3.3.77)
Consider now the factoring of P(¢) in assumptions (3.3.69) and (3.3.70). The matrix P! (t) may be expanded
using the Singular Value Decomposition (SVD) (Golub and Van Loan, 1989) to give:

Pl @)y =U@OZeWV T (1) (3.3.78)

where 2() is the diagonal matrix of singular values o;(¢) , and both U(¥) and V' (¢) are orthonormal matrices.

This decomposition exists even for non-square or singular systems. The orthonormal matrices have an

additional, but very desirable, property. The columns of U (#) which correspond to the larger singular value
elements in 2(¢) , which we shall define as U (¢) and Z(¢) respectively, form an orthonormal set of basis vectors
for the range of p! () . Those columns of V' (¢) whose corresponding elements in X(¢) are approximately zero,

defined as I7(t) and i(t) respectively, form an orthonormal set of basis vectors for the null space of P! @®).

56

Furthermore, the smallest singular value is the 2-norm distance from the expanded matrix to the set of all rank
deficient matrices. Thus, given some small tolerance 6 > 0, the numerical rank of P! (¢) is estimated to be 7 if:

0,220;2020;,220,20. (3.3.79)

Additionally if U =[u;, --,u,,] andV =[v,,---,v,] are column partitionings then the least squares solution to

(3.3.73) is given by:
o0 - Z” ()Y(t) o
i=l1

and the 2-norm of the residual is given by:

pis@ =[P wow -Tof. = Yl o7 0f (3:3.80)

l?"+

If o;,, ~0, i.e. P~ () is poorly conditioned (or singular in the idealised theoretical case when o;,; =0), then
any solution to a non-homogenous vector equation involving P! (¢) consists of that solution which exists in the
range space of P plus any linear combination of a solution in the null space of P! (¢) . Given the prequel let

us factor P! (¢) as follows:

o i i
! 0
SN0 L S— A0
: Oy
o
I ! o,
[0____] o ;
: Oy T O, 7
=U@) | Vi +U@) el 2N () (3.3.81)
| T
L o, | 0 ho
=UW0OZ, (V7 (1) +U<r>zo<r>VT<r)
O 0____ oy |
: Ory |~ - :
vy, pbivw] +ow o A0
l o B

—v0S,0b | 7ol +Fo 0o,
Now, because 17(1) is the orthonormal basis of the null space of p! (1), the first expanded term in the right hand
side of the above equation, when multiplied by ¢(¢) , corresponds to the homogenous equation P! () =0.
Defining U (¢) and ¥ (¢) as those sub-matrices of U(¢) and ¥ (¢) , which have the same columns as 17(1) and

U (¢) respectively, equation (3.3.81) may be simplified still further:

57

Ot 0 01 0
Pl =U() V' +U @) 404
0 o

r

(3.3.82)
=UOSV T +TUOTEV T @)

=P) +P).
Clearly then, p! (H)p(t) = 0, and the requirements of assumption (3.3.69) have been satisfied. Note there is a

subtle but important difference between the implicit definitions of io ’Eo and 3,% in equations (3.3.81) and

(3.3.82) respectively.

As the matrices U(¢) and V' (¢) are orthogonal i.e. U T=U -l o), V@)= y! (¢) we may write P(¢) as:

]
P(t) =V ()| --------- -/-U--J --------------- HG)

Now, to verify assumption (3.3.70), a trivial analysis identical to (3.3.81) and (3.3.82) can be performed:

%iH 0 ~ _ %1 0 _
U'(0)+V () Ut

0 % 0 1

P()=V ()

; (3.3.83)
VO OUTO+V O OUT (1)

=P(t)+P(t).

Revisiting equations (3.3.69) and (3.3.75) we see that:
At) = (P”(t ~D+AP 't -)-P 't - 1))P(z -1

_ _ 3.84
1y +(F -1)P -DPE-1). (3389
This may be substituted back into equation (3.3.74) to give:
P'O)=P'¢t-D)+(A -DP 't =D+ o)A o (1). (3.3.85)

Using the decomposition (3.3.78), recalling that U Th=U -l ORAOE y! (?) , and therefore

thatU(t — 1)U Te-1=1 o » €quation (3.3.84) may be restated as:

58

A =U-DU" -1+ (A -1 U@ -DZ =W @ -1We-Dz ' ¢ -)U' (-1

FXr

=U(t- 1)(1 +(A-DZy(t -zt - 1))UT(t -1

— [Z¢-1 0
=U(t-1) I+(/1—I)[(0) O}Zl(t—l)JUT(t—l)
(3.3.86)
ey If‘xf‘ 0 T
=U@-D) 1+ -1 U™ (t-1)
0 0
ﬂ’]f'xf 0 T
=U(-1) U™ (t-1).
L 0 I(r—f‘)x(r—f‘)
Now substituting (3.3.86) into (3.3.77), and using the SVD expansion for P ' (¢ — 1) yields:
— Ju@-p " UT (e -D)UE - DZ (e 1)W1 -o(-1
o) -F) VN o POV =006 -
+ (O y (1)
(3.3.87)

= F(t)(U(t —DAZ (=Wt =10 =1) + p(t) A y(t))

=P (t)(ﬁ T =10 —1) + p()A™ y(t)).

Rearranging (3.3.76) yields P (1= 1) = 17 (P (1) = P~ (t 1) - p(t)A"' 7 (¢)), which substituted into the
previous equation gives:
00 = P[P0~ P -1 - g0 0" 0 - 1)+ (0N y(0)).
Finally, noting that p(¢) = (pT (1)8(t 1), this equation can be combined with equation (3.3.85) to give the
recursive update algorithm:
Ploy=P'¢t-1)+(A -DP 't -+ o)A o (1)

00 = PP 0 Pt =D~ 1) + POpOA ™ (y(0) - 5(0)) R

where P! @), p! (¢) and P(¢) are calculated using the SVD expansions in equations (3.3.82) and (3.3.83)

respectively.

Algorithm (3.3.88) has some interesting properties. Note that if & = 0 in (3.3.79) then P! (t) would be an empty
matrix and P ")= p! (¢) . This causes (3.3.88) to reduce to:
P 0 =aP (1 =D+ oA 9" (1)
0(1)=0(t = 1)+ POOA™ (y(0) = §(1))
which is the RLS algorithm in (3.3.24) and (3.3.28) before the application of the matrix inversion lemma. All the
previous algorithms may thus be viewed as special cases of (3.3.88). The key difference is that now the selection

of a single algorithm parameter, & , allows us to exclude irrelevant information in the construction of the model

parameters. Ever increasing values of § will result in ever increasing amounts of potential information being

59

excluded from the model. This stems from the requirement that the orthogonality condition in (3.3.69) is only

approximate, as opposed to absolute. The orthogonality condition formalises the fact that information
represented by elements of P~ (¢) which do not correlate with any model parameters can play no role in the

final model. But the SVD decomposition has allowed us to separate the measured input information into

mutually uncorrelated components through the orthonormal matrices U(¢) and V' (¢) . The singular values thus
represent the amount of information along each direction of the subspaces spanned by U(¢) and V' (¢) .
Interestingly, this is exactly what unsupervised neural networks using a method called principle component
analysis (PCA) achieve, and this approach may provide an elegant mechanism to unify the analysis of
unsupervised and feed forward neural networks.

By increasing the value of ¢ one successively increases the amount of information that is considered part of the
null space of P7'(¢) . Therefore, by neglecting small or approximately orthogonal terms, those parameters which

play little to no role in the underlying mapping will be ignored and the tendency for a model with excess
parameters to over fit the data will be regulated. Furthermore, numerical inaccuracies and rounding errors which
would generate small non-zero quantities, even if the two spaces are theoretically orthogonal, are automatically

excluded. This results in an algorithm which requires no inversion of poorly conditioned matrices as the
information (or lack thereof) leading to this condition is removed before the inversion resulting in p! @) .

Regularization is therefore not required and the parameter estimate is bias free. The selection of § is clearly

chosen based on the permissible size of the residual as evidenced by equation (3.3.80).
Let us now consider the stability of the algorithm. The eigenvalues of the matrix term A(¢) in equation (3.3.74)

determines the stability of the equation for P7'(¢). However, because U’ (t —1)=U "' (¢ —1), the result

expressed in (3.3.86) is indeed an eigenvalue decomposition of A(¢) with the eigenvectors being contained in
U(¢ —1) and all the eigenvalues being either A for elements used in the model parameter updates, or 1 for

elements associated with the residual. As 0< A <1 we may conclude that equation (3.3.74) is bounded stable

but contains elements which will not decay.

The stability of the parameter update equation is a little more complex. Considering equation (3.3.87) it is clear
that the stability of the parameter update is determined by the eigenvalues of the term P (¢)AP “(t-1).If one
assumes that the data samples contain no new information then P =P (¢ —1) and the eigenvalues are just

A meaning that the parameter vector will decay toward zero under these conditions. For this reason updating
should only occur if the prediction does not sufficiently closely represent the actual system output or if it is

determined, using a technique such as conditional updating, that the input data is sufficiently rich in information.

Unfortunately the algorithm is very expensive to compute and requires more storage than the other methods

mentioned. The computation of the SVD using the Golub-Reinsch SVD algorithm (Golub and Van Loan, 1989)

requires O(2 1dim(0)3) effort for the form shown in (3.3.88), however, this may be reduced to a limited extent.

60

Because P~ () is a symmetric positive definite matrix the orthonormal matrices U(¢) and V' (¢) , also called the

left and right SVD factors respectively, are equal. This means, for each iteration, that only one SVD factor needs

to be determined. This reduces the computational effort, if a new SVD is calculated during each iteration using
the Golub-Reinsch SVD algorithm, to O(lZdim(0)3) . Therefore setting U(¢) =V (¢) and substituting the
resulting decomposition into (3.3.88) results in the following algorithm:
AZ(t-1) 0

0 2(t-1)

0(t)=U (t)(U "O-T U’ OU@-DZ(-nU" (¢ - 1))9@ -1
+UO 0T 00N (y(0) - 5(0)

SVD
U(t),2(r) « U(t - 1){ }UT(t “D+o(OA " (1)

(3.3.89)"

the algorithm it is not necessary to explicitly form p! (t) , only U(¢) and the diagonal of X(¢) need be calculated

and stored from iteration to iteration. This results in significant memory savings over the form shown in

(3.3.88).

Another advantage of using only one SVD factor is that the symmetric nature of the matrices is guaranteed and
numerical rounding errors cannot result in a non-symmetric P, Unfortunately the product (p(t)A_lgoT(t) is

still calculated which, as was evidenced in the square root algorithm, is undesirable from a numerical standpoint.

Future work might investigate how SVD rank-1 iterative updates and / or ‘square root’ type algorithms, such as
the one described by Zhang (Zhang et al., 1994) could be applied to (3.3.89). The application of other closely
related and highly efficient algorithms such as Biermans U-D factorization method (Bierman, 1977), (Ljung,
1983), (Zhang and Li, 1999) to algorithm (3.3.89) should also be investigated. Also, the SVD approach should
facilitate the use of a robust subset selection algorithm to reduce the required model order, which may be seen as

a form of network structure optimisation.
3.3.9 IMPLEMENTATION OF THE LEARNING RULE

Implementation of the learning rule in this work is, for the most part, the straight forward application of the
‘hash’ equations in the preceding sections. However, there are a few customised details such as the use of dead
zones to turn adaption on or off, network specific formulation of the problem for reduced computational effort,

and the calculation of ¢(¢) in equations (3.3.9), (3.3.10) and (3.3.13).

3.3.9.1 ADAPTION WITH A DEAD ZONE

All the learning algorithms discussed have, to greater or lesser extents, detrimental characteristics associated
with continual updating when the incoming data contains little or no useful information. In section 3.3.6.3 the
use of conditional updating attempted to detect when this was the case and turn off adaption if there was

insufficient excitation. This problem may also be addressed by a more heuristic, but simpler and globally

applicable, approach by simply turning off the adaption if the prediction error | () - j)(t)| is sufficiently small.

61

This technique is generally referred to as the dead zone technique. In this work a dead zone is applied to three

different types of errors, requiring four different parameters to be set by the user:
1. Relative error — Error expressed as a percentage of the absolute value of the current target output. That
is e, = | y(t)|£, / 100 where ¢, is a value supplied by the user in percentage units.
2. Absolute error — A threshold value, which if the prediction error is below, is considered acceptable.
That is e, = &,/100 where ¢, is a value supplied by the user. This is the allowable error value

when | y(t)| ~0 and the relative error tends to zero.

e (06 =yt - 1)* gf(“)ﬁt) where the user

3. Differential error — This error is defined as: e, = min(

supplied ¢, and &, are the percentage relative differential error and absolute differential error values
respectively, and Az is the sampling interval. By using a first order approximation of the differential it
is easily seen that the first value contained in the minimum function of e, represents the absolute error
that results in the predicted output at the next time step if the relative slope of the predicted output is in
error by &,, percentage points of the actual slope. This first term thus gives an indication of the
relative differential of the prediction error. Contrary to the absolute error above, we see that the
absolute differential error term only plays a role as | y(@)—y(t— 1)| becomes larger, i.e. the differential
of the output with respect to time is large. As this differential increases, a very small percentage error
in the slope can generate very large output errors. The absolute differential error term thus places what

is essentially an upper bound on the output error due to small differential errors at high rates of change

in the output signal.

The three terms above can be combined into a single condition which, if true, permits the updating at any
specific time to be avoided. Using the least stringent indicator of the three to indicate the cessation of adaption

yields the following dead zone criteria:

[y - 3)| < max(| ¥, /100, ¢, /100,min(%(y(t) —y(t- 1))1, ‘?gﬁtjj. (3.3.90)

A limited amount of hysteresis can also be applied to (3.3.90) to prevent rapid activation and deactivation of the
adaption algorithm. If we express the hysteresis &, as a percentage about the nominal equation above, then the
‘turn off” condition becomes:

[y - 3()| < (1 —m) maXU y(e, /100, ¢, /IOO,min(%(y(t) —y(t— 1))1T§’D (3.3.91)

and the ‘turn on’ condition is:

[y - 3(0)| > (1 +15Wj max(| y(De, /100, ¢, /IOO,min(o (p(t) - p(t - 1))1, *’;33’)). (3.3.92)

62

3.3.9.2 NETWORK SPECIFIC FORMULATIONS

Observation of (3.3.9) and (3.3.10) reveals that the regressor ¢(¢) is constructed using the Kronecker tensor
product, from g (the number of outputs) copies of the term G(x[k],&;) and (G(x[k],.f,o Y [x[k1,1]") for

RBF and LMN networks respectively. This yields a sparse matrix construction which, if computed by direct
application of the presented equations, is extremely inefficient. It turns out, for these network types, that by
transposing the expression for the regression equation the calculations are greatly simplified. That is, for RBF’s
we should use the original equations (3.2.11) and (3.2.12), and for LMN’s we use (3.2.24) and (3.2.25).
Effectively this makes the computation of K (¢) and P(¢) dependent on the model structure only and multiple
output systems have identical regression structures associated with each output. If the outputs of the
corresponding identified system are scaled such that their variances are normalized then the inverse weighting

matrix, A, is simply the identity matrix. The regressor ¢(t), and hence K(¢) and P(¢), are now dependent on

the model structure only and the matrix term (/1(t)A+ (pT (t)P(t—1)p(t)), in all but the SVD algorithm,

reduces to a diagonal matrix of identical terms. Under these conditions the system is equivalent to a single
output system where only the prediction error calculation in the parameter update portion of the equation need
be modified to reflect the multiple output nature of the network. The inversion in the calculation of K () may

also be reduced to division by a scalar value. Therefore, for RBF and LMN networks, equations (3.3.15)#,
(3.3.16)#, (3.3.33)# (3.3.57)# and (3.3.62)# are respectively implemented as shown below:

Gadient descent algorithm:

00 =0~ +7(yO - 30O’ (), (33.93)"
gradient descent with momentum algorithm:

0(t) =0t - 1)+ y P(t)

4
P(0) = (y() - 5O)" () + uP(t-1), (3.354)
exponential forgetting factor algorithm:
0() = 0 =)+ (y() - JO)K (1)
K(t) — P(t B 1)(P(t)
fl + 0T (1) P(t - Dp(?) (3.3.95)"
Py = (Pe-1-K@p" OPE-1).
square root algorithm (note that R (¢) is now a scalar variable):
R (1) Ri»() (Q_R JAOA 0
0 Ry,(®) PTt-Do@t) PT(t-1)
K(6)= Ry (0)/ Ry, (0) (33.96)

0(t) = 0(t — 1)+ (y(1) - pO)K" (1)
P(f) = RzT,z (0
) =

Jao

63

constant trace algorithm:

0(t)=0(t — 1)+ (y(1) - YK (1)

K (1) = — Do)
A+ (P =De(0)

Py =L[p -1y~ P=De00" OPG- I)J (3.3.97)
7 1+ 0" (PG~ 1)p(1)

P(t) = (%‘—“miﬁjﬁ(r) +tinl -

tr(P(7)

The parameter update equation for the SVD algorithm (3.3.89)# is also changed giving:
AT(-1) 0

0 @t -1)

0(t) = 0~ DT (1) - T~ D -0 -HT O O (0)
+(yO -y " DT OT (1)

U(t),Z(t)S<V—D U(t— 1){ }UT (-1 +oO)A 9" (1)

(3.3.98)"

3.3.9.3 CALCULATION OF THE REGRESSOR

Clearly, from equations (3.2.12) and (3.2.25) the regressor variables for RBF and LMN networks are simply
G(x[k],flo) and (G(x[k],(fl0 YO[xT k11") respectively. These variables are readily available during the
activation rule computation and shall not be addressed further.

For MLP networks the regressor must be calculated by application of the famous back-propagation algorithm
(Rumelhart and McClelland, 1986). The algorithm is essentially the repeated application of the chain rule to

(3.2.5). Noting that 0" in (3.3.13) is just the column form of 0" in (3.2.5), further assuming that the output
activation function is not necessarily linear and finally explicitly showing the matrix form of the integration

function, we can rewrite (3.2.5) in the following general functional form:

=G (I(L) (§<L> .G (I(L—l) (§<L—1> G (I(L—2> (g(H) GO (1(2) (5(2) [T 7))) '))))) (3.3.99)
Using matrix differentiation and repeated application of the chain rule to differentiate p with respect to 6"
gives:

o a® oGV o g g1t pgUED 1D G H oy

0" 00 a® a¢? a’d e A et a® o™ (33100

This represents precisely the sub matrix elements that make goT (k,0) in equation (3.3.13). Careful examination
of this equation reveals the following recursive relationship:

657 aI(1+1) aG(1+1) aj‘}
06D~ oG ™) oG

(3.3.101)

Therefore, if we solve (3.3.101) for the output layer, we can recursively solve it for any hidden layer.

Setting/ +1= L then, by inspection, the last term reduces to /. . The middle term is the differential of the
activation function with respect to the integration function. As there are no connections between units within the

same layer this matrix must also be diagonal in form. Furthermore an expression, which we call G'” | can be

64

00 dYdG=eye(numoutputs);
10 for i= net.numlayers:-1:2

20
30
40
50
60 end

dGdNet=diff_activ_fcn(net.activation{i}(1l:end-1));
dYdNet=dYdG.*dGdNet(: ,ones(1,size(dYdG,?2));
dYdG=net.weights{i}(1l:end-1, :)*dYdNet; % Recursion
phi(indx(i,1):indx(i,2),:)=kron(dYdNet,net.activation{i-1});

Listing 3.3.1. Back Propagation Implementation.

obtained for each of the diagonal terms by analytically differentiating the activation function and then, as all the

required information is available, evaluating it at each time point. The first term is the differential of the output

layer’s integration functions with respect to the last hidden layer’s activation functions. Again, an analytic

expression can be determined beforehand and evaluated during each iteration. The MLP networks in this work

all use linear integration functions, the matrix form being 1D =00G"™ where @ and G are defined in

(3.2.2) and (3.2.3). Clearly the differential of this function is simply the weight matrix O, The last step to
y ply g Y

solving (3.3.100) is to recognize that the very first term in this equation is simply a reshaped form of G,

Combining these facts and performing some mechanical algebraic manipulation results in the following final

expressions:

y _ @+ oy y _7

oG®" - aG(m)’ o™ T Taxq I<i<L

(3.3.102)

6;{1) =G'<’>%®GU‘”, GO =[x, 1<i<L.

Listing 3.3.1 shows the implementation of (3.3.102). A few points to note are:

The variable dGdNet (line 20) is equivalent to G’V except that differential with respect to the bias

term is ignored by removing the last row of the activation function vector. The variable is also

stored as a vector.

- The variable dydNet is equivalent to 6" aﬁ/ dG""™) and is reused in the recursion relationship
(line 40) and the calculation of ¢(¢) in line 50. This variable is also more efficiently calculated by

performing an element wise multiplication (line 30) instead of a diagonal matrix multiplication.

— The variable dvdG is equivalent to 6)3/ oG and is preset to the appropriately sized identity matrix

before the loop begins. As for dGdNet the differential with respect to the bias term is ignored by

removing the last row of weight matrix.

- The starting and ending row indexes of phi= ¢(¢) for each layer are precalculated and stored in

indx to be reused during each iteration calculation in line 50.

65

3.3.9.4 GLOBAL VS. LOCAL LEARNING

In MLP networks the application of the learning rule is global in nature. That is, all adjustable parameters (the
vector @) in the network are updated simultaneously. This leads to large values of » implying significant
computational effort, which scales according to the third power of 7, at each iteration. In LMN networks, the
implementation presented here updates only those local models that significantly contribute to the output. This
can drastically reduce the computational effort associated with the update computation due to much smaller
values of r associated with each local model and where now, increasing the number of contributing local models
causes the computational effort to scale up linearly. Obviously, it is possible to globally train the LMN network
as well, but local training of only subsections of the MLP does not appear to be possible. The global vs. local

training trade off in LMN’s has been addressed by Murray-Smith and Johansen (1997).

The RBF network implementation fits in between the MLP and LMN approach. Here the matrices used in the
update equations are defined in a global sense but sub matrices are extracted and used based on the basis
functions that remain activated once the truncation region is applied. This may be viewed as multiple
overlapping local models, where the size of the local model and the degree of overlap is determined by the
radius of the truncation region. This overlapping nature has implications for the update equations as sub
elements of the matrices involved are updated at different times. The effects of this are unclear and may be
particularly problematic to SVD based approaches. To this author’s knowledge these effects have not been
quantified.

3.3.10 STRUCTURE OPTIMISATION

The problem of structural optimisation is a complex one and a detailed exposition will not be attempted in this
work. This section serves only as an introduction to the problem, recognizing that the problem is an important
and significant issue, and to provide the reader with some reference and pointers of other work that has

addressed this issue in more detail.

The goal of structure optimisation is to define a mechanism whereby the density of units and/or complexity of
local models is minimized in a problem adaptive way. In section 3.3.1 a cost function was defined (Eq. (3.3.1))
which was minimized when the optimal set of parameters was obtained. Implicit in this cost function was a fixed

model structure. The optimisation problem could be more generally stated as:

J (6,M)=min(J(1,0,M))
o.M

where M represents the network parameters that determine its structure. The optimisation of the network
structure M is unfortunately a difficult non-convex problem and typically involves constructive (increasing the
number of units as the systems trains) and/or destructive (removal of units) evolution of network components.
This must be accomplished while maintaining network robustness and generalisation while using only the
currently available training data. To guarantee a general solution is, in general, not possible and typically the

devised methods implicitly include some form of knowledge about the problem under consideration.

66

The difficulty associated with this problem has lead to a wide variety of approaches which have also been
tailored for the network type under consideration. Quinlan (1998) provides a review of many of the methods
attempted, primarily for MLP networks, and places them in the biological context of the development of real
brains. An example of a more quantitative engineering approach that makes use of the SVD to prune MLP
networks is presented in Stepniewski and Jorgensen (1998). An example of structural optimisation for RBF
networks includes the work on minimal resource-allocating networks (M-RAN) by Yingwei et al (1997, 1998)
and (Sundararajan and Saratchandran, 2000), which was based on the work by Platt (1991), while the work of
Schwenler et al (2001) also provides an overview of training all the parameters of an RBF network. As LMN’s
can be seen as an extension of RBF’s many of the techniques suggested for RBF networks could potentially be
extended to LMN’s. The reader is referred to Zbikowski et al (1994) or (Murray-Smith and Johansen, 1997) for
a review of techniques applied to LMN’s.

3.4 DETERMINING THE NETWORK JACOBIAN

In this section we concentrate on determining the network Jacobian defined by:

LR/
@ _ a)fl - a)f" (3.4.1)
PR) h
Ox, ox,,

This quantity can be very useful in adaptive control and dynamic system identification as it directly relates the
systems output sensitivity to input variations. This is commonly related to plant sensitivity or system parameters
which are used for control law synthesis. When a neural network is used to model a non-linear system this

quantity in effect provides an instantaneous linearization of the identified non-linear system.
3.4.1 DETERMINING MLP NETWORK JACOBIAN INFORMATION

Determining the network Jacobian information in an MLP network is simple when one recognizes that the input
layer can be treated as any other hidden layer and the recursion relationship (3.3.102) can be applied one more
time to get:

65’ _ 55’ —0®g® 65’ .
oxt 1t aGW oG

(3.4.2)

The last row associated with the bias term can be ignored, as is done in the normal back propagation algorithm.
The implementation is thus built into the back propagation algorithm in Listing 3.3.1, and shows up in line 40,
or variable dYydG, which contains the required Jacobian information when execution of the loop (10-60) is

complete.
3.4.2 DETERMINING RBF JACOBIAN INFORMATION

Consider the network approximation described by equation (3.2.7). To determine the Jacobian of such a network

we may directly differentiate with respect to the input vector:

67

| O
dx 8} ' 8)3
Za ... 24 (3.4.3)
ox, ox,,
dg(x—
= ZOIM I,= {1 |||x—§1||2 <p,xeKcR", & e §L}.
dx
Iel,
Expanding the differential gives:
dg(x—&) _ d (e*(("*é')rz("f"))
dx dx . (3.4.4)
=-2(x-&;) Zg(x-¢;).
Substituting (3.4.4) into (3.4.3) results in an expression for the RBF network Jacobian:
&
Ey=—2201(x—§1)T2g(x—§1)- (3.4.5)

Iel,
We note that all the terms in equation (3.4.5) are calculated or are available while computing the activation rule.
The only additional computational costs are those associated with the explicit product terms contained in
equation (3.4.5). Furthermore, as a significant proportion of computation is performed during the activation rule
computation, the overhead associated with the Jacobian calculation is minimal whether the network is being
trained or not. This observation is in stark contrast to the MLP where a significant proportion of the Jacobian
calculation is performed while fraining the network. This means that once an RBF network has been trained and
the training algorithms have been switched off, a// the processing resources associated with the training are
made available for other tasks. For the MLP, only /imited processing power can be relinquished as it is still being

used in evaluating the Jacobian.

We may also express equation (3.4.5) using only matrix operations. Let us assume that the set /, contains /

vector elements and that I I, signifies the / element of the vector which describes the £ lattice vertex where
I1<k<l,lyely,cL and &, €¢; . Wemay now construct matrices X, by stacking / instances of x', ¢ Io

by stacking each & IT forall 7 €/, and for notational convenience D :

x’ &
T T
x 3
X, ==""| ¢, = =
B ; (3.4.6)
x! fg

D, =(X, —&)%.
Using the constructions in equation (3.2.11), (3.4.6) and defining the function diag(.), which constructs a null
matrix of appropriate size and places the vector argument along the main diagonal, we may rewrite equation

(3.4.5) entirely as a matrix equation:

& .
Ey - 207 diagG(x,&,))D;, - (3.4.7)

68

Let us now consider how we might implement equation (3.4.7) in an axis orthogonal network arrangement so

that we maximise the benefits produced by the activation rule implementation of section 3.2.2. Clearly ®; and
G(x,& I) are constructed when calculating the activation rule and will not be further addressed. The unresolved
part of the problem is the construction of D, in an incremental manner while stepping through each input

dimension. For an axis orthogonal structure, we may expand this term into its individual components as follows:

i (x1 = 511) (o = 512) (%1 = f[,) T
of of of
(x5 = 511) (x5 = 512) (X3 =2 &1,)
D, = o3 o3 o3 (3.4.8)
(xn “n 511) (xn “n 512) (xn “n 511)
| 0',% G,% Gi J

Clearly, the above matrix will be constructed row by row but it is still unclear how the ;&; terms are obtained.
We recall from section 3.2.2 that, for the j” input of an axis orthogonal network, the term ;& is repeated a

number of times because all the elements except the j” are ignored. This implies that the matrix in (3.4.8) may
contain a number of equal terms. Unfortunately, looking at equation (3.4.8), it is not immediately apparent as to
how this may be achieved. This is best demonstrated by studying the three input example presented earlier;
Assume an input vector such that the 1%, 2™, and 3" exponentials are excited by input component one, the 3"

and 4™ exponentials are excited along dimension two, and the 6" and 7" exponentials are excited by component

three. This results in a set [, as follows:

o [T BT T T 6T 6T 67 67 6T 67

Ignoring the x and o terms in (3.4.8) we may, for the current example, substitute the / subscripts from (3.4.9)

(3.4.9)

to generate the following matrix:

1036] 1902361 19336] 197146] 19246] 15346] 1137 19237 19337 1901471 19247 15347]

29013.6] 29236 29033.6) 290146 29246

293460 290137 25237 290337 290147 29247 29347 | (3.4.10)

3136] 392360 39336] 2901460 3%246] 35346 3137 39237 393371 30147 39247 390347]

As in section 3.2.2 we may replace ;&; with the ;™ element of 7 multiplied by A ;> Where A is the spacing of
the lattice £; along the dimension j, resulting in (3.4.8), for the current example, taking the form:

G -14) (=24) (q-38) -1A) (5=24) (5-3A) (q-1A) (q-24) (-3A) (g-1A) (-24) (q-34) i
o o o o o o o o o o o o
D, = 5B=38) =34 (=34 -4y -4y (p-4) K-34) K-34) KB-34) -4 B-4) -4
a3 3 3 3 % %3 %3 3 3 3 3 3
(5—6A) (5—6A) (5—6) (5—6A) (B—64) (B—64) (B-74) (B=74) (B-74) (5=78) (5=T74y) (5—T7A)
%3 %3 %3 %3 % % % % %3 %3 %3 %3

(3.4.11)

69

The common terms and pattern of construction now become apparent facilitating the development of an

algorithm to construct D, ~independent of the number of inputs or active units. A Matlab realisation of such an

algorithm that is succinct, efficient, and optimally compatible with the activation rule implementation discussed

in section 3.2.2, is shown in Listing 3.4.1. For convenience, the activation rule calculations have been included

in italicised grey type.

10 actv=1; idxw=0; difs=0; % Initialize variables

20 for j=l:net.ninp % Loop through each network input

30 expn=(u(@)-net.center{j})-*net.invsigmaf{j}; % Find exponents for jth input

40 idxe=Find(abs(expn)<net.nthldl); % Determine exponentials activated

50 expn=expn(idxe); actv=actv(:)*exp(-expn.~2); % Multiply with active units

60 vetl=((idxe-(j>1)).*net.vcprd(j)); % Calculate new indexes

70 vctl=vctl(ones(size(idxw,1),1),:); % Copy vctl to rows(idxw) rows

80 matx=idxw(:,ones(1,size(idxe,2))); % Copy idxw to cols(idxe) columns

90 vct2=expn.*net.isigma{j}(idxe); % Calculate new jacobian info

100 arry=difs(:,:,ones(1,size(idxe,2))); % Copy difs matrix cols(idxe) times

110 arry(J,:,:)=vct2(ones(size(idxw,1),1),:); % Copy vct2 to rows(idxw) rows

120 difs=arry(:,:); % Update Jacaobian info matrix

130 idxw=vctl(:)+matx(:); % Update weight index vector

140 idxa=find(actv>net.nthld2); % Make truncation region a ball

150 actv=actv(idxa); % Remove inactivated units

160 idxw=idxw(idxa); % Remove inactivated weight indexes

170 difs=difs(:,idxa); % Remove unactivated jacobian info

180 end % End for loop

190 dydu=-2_.*net.weights(:, idxw)*. .. % Calculate Jacobian
(actv(:,ones(l,net.ninp)).* difs");

200 yhat=net.weights(:, idxw)*actv(:); % Output result

Listing 3.4.1. Axis Orthogonal RBF Jacobian Calculation Implementation.

The code augmentation begins in line 10 where difs, the variable for storing the transpose of the D; matrix,

is set to zero. Next, in line 90, the variable vct2, is, for each of the j” input contributing exponentials, set equal
to the exponent value used in the activation rule calculation, divided by its corresponding variance. This
calculation is the only additional mathematical operation required within the loop and actually determines all the

terms that the j” input contributes to D I

Lines 100, 110 and 120 manipulate difs from the previous iteration, together with vct2 from the current

iteration, to ensure the correct structure for the final D, . Line 100 repeats the previous iteration difs matrix,

storing each copy along the third dimension of the variable arry. The number of entries, and hence copies of
difs, in this third dimension is equal to the number of exponentials along the j input that fall inside the
truncation radius. (i.e. The number of elements in idxe) Next, line 110 appends a new j row onto each matrix
entry in arry and copies vct2 into each of these rows. Line 120 appends, row wise, each matrix entry along the
third dimension of arry, to form the new difs matrix. The last step within the loop, line 170, is to remove any

rows in difs that may be associated with units whose activations fall below the activation threshold when the

70

truncation region is changed from a cube to a ball. To clarify the above-mentioned process Table 3.4.1'2 has
been included, demonstrating, for the previously discussed example, how the variables evolve during loop

iteration.

idxe 1dxw

(100) (110)

0] b [] [’

a2 3
ol ol o

2B (1A 24 3 28 3A 1A 24 34
2 o} of of _0'12 o} o} o} o} o}
; 3, 3, 34, 3,038, 38, 44, 4, 4,
e @ ;@ o o @
(14, 24 3]
ol o ol
ad, 48, da,
i @ o
3 r -
) T O L Y O N S LN)
16 op O] o o] o] oy
" EA i e S | R A B A B B B A i
» ol o3 of o o3 o BH K KB BN N)R N N N B
2 4y 6A; 643 64y 64 6A; A T B A S R A B R A B
2 2 2 2 2 2
w| [l B e e e ey ey ey A A TN TN T T

1B
B
|
|5
|3
|2
S|
S|
S|
Sl
Sl
S
S
S|
Sl
Sl
Sl
Sl

Table 3.4.1. Example of Variable Evolution During Jacobian Calculation. (x = [0,0,0]).

Once the loop iteration is complete, the resulting difs matrix is the transpose of the desired D; matrix. The

final step in the calculation is to perform the products shown in equation (3.4.7). This step, accomplished in line

190, makes use of the activations contained in actv, calculated during the activation rule computation, the final

difs matrix and the current weight matrix ®£) contained in net.weights(:, idxw) . Note that the matrix

diag(G(x, S,)) is not specifically constructed, but the product diag(G(x, i,))D 1, may be more efficiently and

directly implemented by the code (actv(:,ones(1,net.ninp)).* difs").

"2 The table assumes firstly that the input vector is [0,0,0] and secondly that no units are discarded when converting from a cubic to a
spherical truncation region.

71

3.4.3 DETERMINING LMN JACOBIAN INFORMATION

As in section 3.4.2 we may determine the LMN Jacobian by direct differentiation of equation (3.2.13) with

respect to the input vector. Thus, by applying the product rule we may state the following:

LTI
d_"z axl . a)f‘-n
&\, o,
a a (3.4.12)
d d
Z(f(»;xél) s fﬂ}Z(ﬂx o) et mj
Iel, lel,

where all variables are the same as those defined in section 3.2.3. Notice that the second method of

implementing the mapping H : K — @ discussed in section 3.2.3 allows us to ignore the effects of H because

¢=x and 77, =¢&,; . This simplifies the equations as we are not required to specifically consider @, or the

lattice 77; in the construction of equation (3.4.12).

For the specific case of local linear models, we can expand the first term under the summation to get:

Z(df();;é) j D O1a(x-¢). (3.4.13)

Iel, Iel,

Simplifying the notation by replacing f (x=¢&;), 8(x=¢&;)and g(x—¢;) with f 1,8, and g, respectively,
then applying the quotient rule and performing the required differentiations, the second term under the

summation simplifies as follows:

ag; _

@) Jezlog 81~ [sz:gJ]
Zfl Zf[= Zf[2

Iel, Iel, Zgl Iel,

Jel, {zg‘]}

Jel,

Se, (3.4.14)
=Y A -0 2 - B Y 2, -) 3,

Jel,
= _2Zj‘lél((x_§[)T2_ Z(X_GZJ)TZ«QJ}

Iel, Jel,
Substituting equations (3.4.13) and (3.4.14) back into equation (3.4.12) results in:

dy

i Z®1g(x S— 2Zf(x &Ng(x—=¢; [(x &)'s- Z(x ENIZe(x-¢)) (3.4.15)

Iel, Iel, Jel,

As in previous sections we can rewrite this equation as a set of matrix operations. Defining the following

matrices:

72

Ed A
Di, = (X’ o) (3.4.16)

g(x-¢;)

Gty)<)
e(x-&,)

Flxé) =fx-) | Fae-g, | Fee-2,)

then:
% =367 6(x &) -2F(x.&, dinglG(x.&,) Dy, ~1,G(x,2,)" D) (3.4.17)

Iel,

where I, is a column vector containing / rows of one.

By expressing the result as shown above we observe a number of similarities with expressions developed in
previous sections permitting much of the earlier implementation to be transferred directly to Listing 3.4.2.

Observe that D, ~defined in (3.4.16) is precisely the same as that defined in equation (3.4.6). The method of

evaluation is thus exactly the same as in section 3.4.2 and the implementation on lines 10, 90-120 and 170 is

identical to that shown in Listing 3.4.1.

The first term in (3.4.15) is almost identical to the term arryl first described in equation (3.2.26), the only
difference being that the weight matrix used does not include the column of bias values. Ignoring the last
column of arry1 and summing it along the third dimension gives the desired result. Next we see that the

expression F(x, 5,0)diag(G(x, & I)) results in term arry3 described in equation (3.2.27) and can be reused

without any further modification. The calculation of the vector G(x,& Io)TD 1, 1s directly calculated and stored

in a temporary variable called arry4 from the previously obtained difs and actv variables. Rather than perform

the vector multiplication of I, with arry4 to obtain (D 1, —1G(x,&), yY'D I) it is more efficient to repeatedly

stack the row vector arry4 on its self and perform the subtraction directly. All the operations described in this
paragraph are combined in lines 230 and 240 of Listing 3.4.2 to get the Jacobian matrix result shown in equation

(3.4.17).

73

10 difs=0; % Initialize variables

90 vct2=expn.*net{n}.isigma{j}(idxe); % Calculate new jacobian info

100 arry=difs(:,:,ones(l,size(idxe,2))); % Copy difs matrix cols(idxe) times

110 arry(J,:,:)=vct2(ones(size(idxm,1),1),:); % Copy vct2 to rows(idxm) rows

120 difs=arry(:,:); % Update Jacaobian info matrix

170 difs=difs(:,idxa); % Remove inactive jacobian info

230 arry4=(difs*actv(:))"; % Inner most summation in Jacobian calc
240 dydu= sum(arryl(:,1l:end-1,:),3)-... % Calculate final Jacobian Matrix

2*arry3*(difs®-arry4(ones(1, length(idxm)),:));

Listing 3.4.2. Axis Orthogonal LMN Jacobian Calculation Implementation.

3.5 CONCLUSION

The focus of this chapter has been on the specific structural and algorithmic details of the MLP, RBF and LMN
networks. Initially the network structures or activation rules were considered and it was shown how, for each
network type, simple Matlab code could be used to implement these rules. These implementations were
optimised, where possible, for extraction of the network Jacobian information and it was revealed how the
efficiencies of an axis orthogonal implementation could be exploited for RBF and LMN networks. Furthermore,
it was demonstrated how LMN’s could be constructed or expressed in a general neural network framework and

their commonalty with RBF networks was highlighted.

In section 3.3 the training of the various network parameters, or the learning rule, was discussed. The learning

rule was couched in the form of a non-linear optimisation problem and the commonality with the field of system
identification was highlighted. The differing formulations of the problem for batch mode, or off-line, versus on-
line, or recursive, approaches was discussed and a rationale for using on-line training was provided. Next it was

shown how, by judicious choices of variable construction, the parameter update of all three network types could

74

be expressed as a linear or pseudo-linear regression problem. This important step provided the foundation for
treating the training of all three network types as common, allowing various learning rules to be explored
without detailed consideration for the particular network application. The training methods considered included
the steepest or gradient descent method and a number of variations and extensions of the recursive least squares
approach. The variations discussed, such as the exponential forgetting factor method, attempted to highlight
short comings, specifically numerical conditioning issues, and demonstrated how they may be solved. These
problems lead to the inevitable discussion of the use of regularization. The important relationship to the Kalman

Filter was also included in this sub section.

The final training algorithm presented was a new approach based on the singular value decomposition (SVD.)
This method was developed in an attempt to address some of the issues involved with the RLS based algorithms.
Although the algorithm has shortcomings in terms of computational effort and the fact that a ‘square root’
formulation is not used, a number of potential advantages were described, in particular the stability of the
information matrix and parameter update equations. Other possible advantages could include natural extensions
to perform robust parameter subset selection. The author believes that potential solutions to the mentioned
problems exist, although they were not explored in this work. These include the use of rank one SVD update

algorithms and square root formulations.

The penultimate section involved with training algorithms dealt with implementation specific issues. These
included a description of using dead zones during training and network specific formulations of the algorithm to
reduce computational effort. Another important topic of this section described how the regressor variable was
constructed for each of the network types. In particular, for MLP’s, the famous back propagation algorithm was
concisely described, using a matrix formulation, and a Matlab code implementation was presented. This
subsection concluded with a short discussion of the trade-off associated with global versus local learning. The
final section associated with training algorithms introduced the idea of structural optimisation and a number of

references were provided for more detailed reading regarding this topic.

The third and final major section of the chapter described the extraction of the network Jacobian information for
each of the network types under consideration. Of particular interest here is the derivation of the expressions for
the LMN Jacobian. The implementation details for the Jacobian calculation associated with both the RBF and

LMN network are shown to be very similar and can be obtained with minimal computational effort.

To aid in the understanding of how the major equations described in this chapter are exercised we close this
chapter with a flow chart, shown in Figure 3.5.1, describing the computational sequence used in this work when

identifying a function mapping.

75

START
Initialize network weights

(parameters) and information matrix Make network Jacobian

Y

and output available

y

Measure or calculate input to identified

A

system

Update identified system’s state

equations.
T Yes Identified
system is
simulated?
Adapti No
- ption turned
> on? A
Yes
\ 4
Calculate activation rule, network Calculate activation rule: - .
o Calculate activation rule:
Jacobian, and regression vector: Eq. 3.2.5 See Llstlng.3.2.1 Eq. 325 See Listing 3.2.1

RBF -Eq. 3.2.12&34.7 Calculate ne:wn.Jrk Jacobian and Calculate network Jacobian:

See Listing 3.4.1 regression vector: £q. 3.3.102 and 3.4.2
LMN - Eq. 3.2.25 &3.4.17 Eq. 3.3.102 and 3.4.2 See Listing 3.3.1 - no line 50

See Listing 3.4.2 See Listing 3.3.1

y
Adaption turned Measure or calculate output from identified
on? system
A

Calculate Dead Zone Criteria
Eq. 3.3.90t0 3.3.92

Error > Dead
Zone?

Calculate information, covariance or SVD matrix update
depending on selected training method and network type.

MLP Eq. RBF/LMN Eq.
Gradient Descent: 3.3.15 3.3.93
Gradient Descent w/ Mom: 3.3.16 3.3.94
Exponential Forgetting: 3.3.33 3.3.95
Square Root: 3.3.57 3.3.96
Constant Trace: 3.3.62 3.3.97
Recursive SVD: 3.3.89 3.3.98

Calculate conditional update criteria Exponential

Eq.3.3.48 Forgetting?
\ 4
Store calculated information, covariance or SVD matrix for
use during next iteration. Calculate and store network
weight (parameter) update depending on selected training
method and network type.
o Yes MLP Eq. RBF/LMN Eq.
Cm?,”f;? p| Gradient Descent: 3.3.15 3.3.93
satisfied? Gradient Descent w/ Mom: 3.3.16 3.3.94
Exponential Forgetting: 3.3.33 3.3.95
Square Root: 3.3.57 3.3.96
Constant Trace: 3.3.62 3.3.97
No Recursive SVD: 3.3.89 3.3.98

Figure 3.5.1. Neural Network Function Identification Computation Flow Chart.

76

CHAPTER 4

CONTROL USING NEURAL NETWORKS - NEUROCONTROL

4.1 INTRODUCTION

Until this point the work in this dissertation has focused purely on neural network issues. Attention now turns to

the application of these networks in a feedback control environment.

Neurocontrol can be broadly classified (Suykens and Bersini, 1996) into five main areas, namely; Neural
adaptive control, Neural optimal control, Reinforcement learning, Internal model control and predictive control
and finally NLq stability theory. In this work, our objective is not to design neuro-controllers but only to
demonstrate the techniques described in previous chapters. For this reason we focus exclusively on the first

classification, i.e. neural adaptive control. The design methodology can be broken down into five main steps:
- The mathematical description or model of the plant that is to be controlled.
- The choice of a controller structure or control law formulation.

— The formulation of an adaptation mechanism to update the controller parameters so that the control

objective can be attained.
- A stability analysis of the closed loop system.

- Determination of conditions required for the convergence of the parameters to an acceptable

solution.

To begin the chapter however, we first attempt to place this work in context by providing a brief history of
feedback control culminating in the advent of neurocontrol. Next the discussion moves to the first three of the
design steps given above in the sections entitled, Plant Description, Control Law Formulation and Adaptation
Mechanisms. The last of these three sections also shows how the network Jacobian information is used,
explaining the motivation behind the development of the Jacobian algorithms in chapter three. The final two
design steps above are theoretical and complex in nature and are considered beyond the scope of this work. This
does not mean that these steps should be ignored, indeed they are vital to the successful, practical and safe
implementation of a real-world controller, even though they are purely theoretical in nature. Finally, the chapter

closes with conclusions.

71

4.2 HISTORICAL BACKGROUND

The use of feedback control can be traced back more than 2000 years to Greece, where mechanisms for
regulating water level were devised. Probably the most recognized early control system was the fly ball
governor for steam engine speed control devised by James Watt in 1769. In 1868 James Clark Maxwell analysed
a differential equation model of a governor by linearizing about an equilibrium point and showed that stability
depended upon the state of a characteristic equation having negative real parts. E.J. Routh improved on this
work in 1877 and is credited with devising the first mathematically based stability criteria for higher order
systems. Prior to World War II Bode and Nyquist developed methods for analysing more complex feedback

amplifiers and the PID controller was developed.

During World War II the demand for control of more sophisticated systems led to an explosion in what was now
recognized as the independent discipline of control engineering. Notably during this period Evans developed the
root locus method of stability analysis, work which may be considered an extension of Maxwell and Routh’s
earlier work. The use of the Laplace transform and the s-domain continued to flourish after the war. Russian
mathematicians meanwhile, particularly Lyapunov, independently produced significant work utilizing time-

domain formulations.

With the advent of the space age in the 1950’s, western theorists began to explore the more sophisticated
approaches made possible by the digital computer from which arose the important work of Kalman and Bellman
in utilizing ordinary differential equation (ODE) models. Optimal control, first introduced by Weiner and
Phillips during World War 11, was now extended using the calculus of variations, to non-linear systems and the

Z-transform and difference equations gave birth to modern digital control.

Non-linear and / or time varying systems were, and to this day, remain challenging to analyse in a general
framework. Adaptive control was one of the techniques developed, beginning in the 1950’s, in an attempt to
answer this challenge, primarily in connection with the design of autopilots for high-performance aircraft.
Initially adaptive control was based mainly on heuristic ideas and early dramatic failures resulted in the
approach falling out of favour. As state space, stability theory and stochastic approaches evolved in the 1960’s
renewed interest in adaptive methods appeared. Dynamic programming (introduced by Bellman) enhanced the
understanding of adaptive techniques and the fundamental contributions of Tsypkin showed that many schemes
for learning and adaptive control could be expressed in a common framework. Increased understanding of
system identification and robustness coupled with proofs for stability of adaptive systems sparked a renaissance

in the field and commercially available adaptive controllers began to appear in the 1980’s.

Meanwhile, in computer science and other related fields researchers were intrigued by, and studying systems
that could emulate the behaviour of biological systems. The field of Artificial Intelligence (AI) was being shaped
by contributions such as Zadeh’s seminal paper on fuzzy logic in 1965. Others, beginning with Hebb,
Rosenblatt, McCulloch and Pitts, and later Hopfield, Carpenter and Gossberg, Werbos, Albus, Kohonen, Hinton,
and, Rumelhart and McClelland, were laying the foundation for what would become the field of neural

networks. Concurrently, methods such as Genetic Algorithms and Expert Systems were also being developed.

78

Slowly the fields encompassed by feedback control, adaptive control and stochastic control became grouped
under the general heading of conventional control. In the 1970’s the fields of Al, neural networks, genetic
algorithms and conventional control began to merge resulting in what is today regarded as intelligent control.
More specifically, the amalgamation of control theory with neural network paradigms is referred to as

neurocontrol.

4.3 PLANT DESCRIPTION

A general mathematical form for multi-input multi-output (MIMO) discrete'? time plant description is the state
space representation:

x[k +1]= h(x[k],u[k])
Yk = g(x[k], ulk])

where x[k]e R", u[k]e R? and y[k]e RY are vectors describing the plant state, inputs and outputs respectively

at the ¥ sample in time, and the functions /&:R""? —R" and g:R""? — R are vector valued functions. To
simplify what follows we shall restrict this description to a single-input single-output (SISO) plant where the
function g(.) is assumed to be a function of x[k] only. Furthermore, these functions are minimally assumed to be

continuous. This gives:

x[k +1] = h(x[k],ulk])
k] = g(x[k]). 4.3.1)

We now need to determine under what conditions this description can be made equivalent to the problem
definition described in section 2.4.1, which formed the archetype I/O representation environment for the neural

network approximation problem. The derivation below closely follows that presented in van Breemen (1997).

Input and output sequences obtained over the next n samples of future time may be denoted at the " sample

time by:
Palk1= OURL Tk + 10, ptk +n 1) 432)
w, [k = (k) ulk +11,...,ulk +n—1])" . "
Recursively iterating the state update equation gives:
xlk +1] = h(x{k],ulk]) = Iy (x[k],m,[k])
x[k + 2] = h(x[k +1],ulk +17) = h(h(x{k],ulk])ulk +1]) = hy (x[k],u,[k]) 433
x{k + n] = h(x[k +n —1],ulk +n—1]) = h,,(x[k],u,[k]).
Similarly, the sequence y,[k] can be expressed by:
k] = g(x[k]) = go(x1k1)
Ak +11= g(xlk +10,ulk +11) = gl (x[k1,,[k1) = g (x[¥], 4 [k]) 434

Tk +n—11= g(h,_ (x[k],u,,[k1)) = g,y (x[k],u,,[K))

13 Equivalent continuous time expressions can be obtained for all the work described in this chapter, however, only discrete time
implementations will be discussed.

79

or:
yu[K1= g, (xlk,u,,[k]) (4.3.5)

where g, = (go(.), 210, 8 (.)) . Introducing an extended function we see that (4.3.5) can be expressed as:

ylk17 [g, (xlklu, \[K])]
{ }—{ v [}—dﬂﬂmHMD (4.3.6)

u,, [k]
where G : R>"™ - R As the input and output dimensions of G(.) are the same then the function expressed

in (4.3.6) might be inverted to get:

x[k] L G, (v, [k, m,[K])
=G (p,[kLu, [k])=| x o 3.
[wJH} @A]"I[D{GKMMLde) (@37

implying:
x[k1= G, (v,[k1,u, ,[k]). (4.3.8)

The function G;l (.) is called the observer of the system expressed in (4.3.1).

Consider now the Inverse Function Theorem, which states (Parker 1997): “If f(x) is a continuously

differentiable function of the Euclidian n-space to itself and at a point x,the matrix with the entry of; / Ox; in the

i" row and j" column is non-singular, then there is a continuously differentiable function f ' defined in the

neighbourhood of f(x,) which is an inverse function for f(x) at all points near x;.”

That is, if the determinant of the Jacobian of G(.), evaluated at the point (X, u,_;), is not equal to zero then the

inverse G'(.) exists in the region around (X, u,_;). The Jacobian matrix can be obtained by simple matrix

differentiation of (4.3.6) which, together with the fact that the future input variable sequence to the plant at the

K" sample u, [k]is independent'* of the state vector at the £ sample, gives:

ay,lk] ay,lk]

0G(x[k],u, ,[K]) | oxlkl ow, (k]

olx[k],u,[k]] | Ou, K] Ou, (k]

| odk] - Ou, k]] oo (4.3.9)
[kl y,lk]

=| ox[k] Ou,_[k]
0 1

- [x.u,.1]

[Eﬂunfl]

For this matrix to be non-singular the following condition must be satisfied:

ay, k]
det| ——] #0. 4.3.10
{ o] [x,u,,l]} (:

' This is strictly true for the open loop plant but, under closed loop conditions, this assumption may be violated and a more
complex condition will result. This fact is not addressed in the source reference, but has implications for the identification and
stability of the closed loop system.

80

If condition (4.3.10) is satisfied, then using equations (4.3.7), (4.3.8) and (4.3.3) we see that the state vector at

sample (k +n) can be expressed for some local region around (x,u,_;) by:

xtho+ nl= h, (G (0,061, 1 (K1), 61).
Substituting this expression into the output equation of (4.3.1) gives the following locally equivalent I/O system
description:

y[k +n]=g(x[k +n])
- gfhn G (3, [ty 1 [K]) 5]
= O [R1utn, 5)

Shifting the time indexes and substituting the original sequences in (4.3.2) yields:
y[k] = f(J’[k_l],ay[k_”]:”[k_l]aa”[k _n]) .
This is the same form as equation (2.4.1) withn, =n, ,n, =0, and e[k]=0. Mechanical algebraic extensions of

the above derivation can be made to include all these variables but are not illustrative and are omitted. The

condition (4.3.10) can also be readily extended for p input, g output MIMO systems which we present here
without derivation:

W ulk]
ox[k] [

det

£0, 1<j<gq 4.3.11)

X,y g5l gyl]
where y; ,[k]is the future output time sequence defined in (4.3.2) for the /™ output and u;, is the selected

operating region for the i future input time sequence.

4.4 CONTROL LAW FORMULATION

As stated earlier, the objective for the control law formulation in this work is only to demonstrate the techniques
described in previous chapters. Consequently only two control law formulations are presented here, namely;
Series Inverse control and the Minimum Degree Pole Placement (MDPP) design. These approaches were chosen
for their simplicity and ability to elucidate the key points of earlier chapters. Again, in the interests of simplicity,
mainly SISO systems will be considered although many of the techniques presented can be extended to MIMO

cases.

4.4.1 SERIES INVERSE CONTROL

Assume a plant can be described by a mapping H :U — Y, where U < R” is the input signal space and
Y < RY, y Y is the output signal space. Further assume there exists an inverse mapping of H given by
G:Y, »>U ,whereY, < R?is called the reference signal space. The plant described by H can then be made to
track a reference signal y,, €7, by setting u = G(y,,), u € U and noting that:
y=H@u)=H(G(Yy))=Vm - (4.4.1)

Key to this approach is determining when the inverse exists and whether it can be formed in such a way that it

can be represented by a neural network.

81

The condition for existence can be determined for square i.e. p = ¢ , MIMO systems. Let the plant be

represented by the following 1/O description:

nlk+1] = Wi, ko yp, KL, (g, (K =A@ [K]....u, [£])
: : (4.4.2)
yplk+1 = by, [KLooyy, (g, [KLoowy, (KD = by (OkL[k].....u, [k])
where:
Vi, K= (lkL Tk =1k = my 411
T = (o, KT, = Vet k= m, + 11
’ T (4.4.3)
(I (5 O 5 N 1 B 1)
0, TR = (o, =11, [=, + 11
Following the archetype (4.4.1) the inverse control problem is now, for 1<i < p , to determine:
yilk+1]=h td)[k],ul([k],...,up[k])
= 1 {OULG{Ok).p,, [K1.....3,])
=V, [£]
where the desired control law is:
(1 [KT,....o 1, [K1) = GI@LEL, y,, [KD,-., 3, []). (4.4.4)

Using an extended function gives:

D[k] [D[k]
nlk+1] (@K],uy[k],...,u ,[k])

oLk 11| | By (@KL K],...u, [K])

[Ho (@Kt [k ..o [K])
| H @K [K].....u, [K])

= H(®[k]),u[k],...,u [k])

Clearly, if the inverse of H (.) exists then the function G(.) can be realised. Therefore, obtaining the Jacobian of

H(.) about some operating point[®,i;,.. .»u,], and using the Inverse Function Theorem we can test for the

local existence of G(.) . Thus:

82

o0D[k] 0D[k]
OH (O[k],uy[k],.. .,up[k])| _ 0D[k] olulk],...,u,[k]]
O[Ok, uy[K].....u ,[k]] |[6 - OH , (D[k],uy[k],....u [k]) OH (P[k],u\[k],...,u,[k])
Y OD[k] u[k],...,u,[k]] .
[® ...,]
_ J 0 -
= aHy(cD[k])ul[k]::up[k]) 6Hy(q)[k]7ul[k]:’up[k])
OD[k] Ou[k],...,u,[k]] o
[LETRET|
resulting in the following condition:
s OH UL K., [KD)| L0,
Akl w1 g
or expanding to show the individual terms gives:
Oh, ohy iy
Ou[k] Ou,lk] Ou ,[k]
Oh, oh, oh
Ou (k] Quy[k] Ou k] #0. (4.4.5)
6}.zp 8}‘11, oh,
Ou (k] Ou,[k] ou ,[k]]

Summarising, the series inverse control law shown in (4.4.4) may be used to control the system in equation
(4.4.2), given the definitions in (4.4.3), provided the condition shown in (4.4.5) is satisfied. We note that the

form of the system in (4.4.2) and the control law in (4.4.4) can be solved using a neural network approximation.

The approach can be enhanced by observing that the existence condition is dependent only on the plant

dynamics being invertible. If the reference signal is derived from a dynamic reference model described by

S: R — Y, mapping some demand signal r € R < R then (4.4.1) may be modified as follows:

y=Hu)=H(G(y,)) = HGSE) = HG(r) = y,, = S(r) . (4.4.6)

That is, the reference dynamics can be absorbed into G(.) , without violating the analysis above, to yield the

following control law (henceforth referred to as the SIC law):
(3t [6) = G @TL 1, K1, 1)

(4.4.7)
K= (LKL Lk 1ok =y <11

r

The inverse controller essentially “sees” the forward dynamics of the reference system in series with the inverse

dynamics of the plant. The reference signal does not appear in (4.4.7) because ideally y[k] tracks y,, [k] making

it unnecessary to use both variables.
4.4.2 MINIMUM DEGREE POLE PLACEMENT DESIGN

The pole placement design procedure has been covered extensively in Astrom and Wittenmark (1995, 1997) and

the minimum degree pole placement approach covered here closely follows their exposition. Only the basic

83

technique is shown, however, it may be considered the basis for many other linear methods such as LQG,
moving average and minimum variance controllers. The method presented is simple, illustrative and if properly

applied, can be practically useful.

Assume that a SISO plant can be described by the I/O representation (see section 4.3 for conditions) of equation

(2.4.1). Additionally, assume that at any instant in time the function f(.) of equation (2.4.1) can be represented

15 16

by two polynomials in the forward shift operator ” *° ¢ . That is:

Wk +n,]1+aylk+n, —1]+---+a, ylk]=boulk +n,]+ bulk +n, —1]+---+ b, ulk]
A(q)ylk]= B(q)ulk]
A =\g" +aig" " + ..+ a) (4.4.8)
B(q) =bog™ +byg™ " +... + b,,)

In a time invariant linear system the coefficients of A4(g) and B(q) are constant but in this work they are

permitted to change with time. However, for the purposes of the discussion in this section, we shall assume that

they are constant and available. Furthermore, it is assumed that 4(q) and B(q) do not have any common factors
(i.e. they are relatively prime) and that the coefficient of the highest power term in A(g) is always one, that is,
A(g) is monic. Finally, we require that the degree of A(q) (designated deg A4) is greater than the degree

of B(q) ,1.e.n, > n;, . The difference in degree, n;, =deg 4 —deg B, is called the pole excess and represents the

integer part of the ratio of plant time delay to sampling period.

Given the plant description of the previous paragraph it is hypothesized that such a plant may be controlled by
the general two degree of freedom linear control law described by:

R(qulk]=T(q)rTk]-S(q)ylk] (4.4.9)
where R, S and T are all forward shift operator polynomials. This control law will be referred to as the RST law

in the sequel. Rearranging (4.4.9) and removing the explicit notation for the g operator the two degrees of

freedom, —S/ R and 7'/ R representing negative feedback and positive feedforward transfer operators
respectively, are easily seen:

ulk] =%r[k]—%y[k]. 4.4.10)

Combining equations (4.4.8) and (4.4.9) results in the following closed loop expressions:

15 The forward shift operator ¢ has the property ¢" f[k]= f[k + n] and should not be confused with the output signal dimension
of a MIMO plant. The letter ¢ is reused here to conform to the commonly used notation in the literature. As this section deals
only with SISO plants the definition of ¢ is clear from the context.

16 Although ¢ is an operator and the variable z used in the z-Transform is a complex variable, they may be interchanged if care is
taken to consider the effects of initial conditions on the equations involved. This fact may be used sporadically in the
remainder of this dissertation.

84

BT

kl=————rlk
YIA] AR + BS L£]
(4.4.11)
AT
ulk]l=————rlk].
L1 AR+ BS L£]
The closed loop characteristic polynomial is thus represented by the Diophantine equation:
AR+BS=4,. (4.4.12)

Given 4, as a design variable, and 4 and B as system data satisfying the plant description above, then equation
(4.4.12) will always provide multiple solutions for polynomials R and S. The existence of multiple solutions (as
opposed to a single solution) can be seen by inspection if one notes that given an arbitrary polynomial O and a

solution R” and $° then a new solution to (4.4.12) may be constructed as follows:

R=R’+0B

S-s"_ o4, (4.4.13)

Selecting the solution that results in the lowest degree for polynomials R and S is called the minimum degree
solution. Such a solution can be obtained using Euclid’s algorithm or by forming the Sylvester matrix and
solving the resulting set of linear equations. (See §11.3 of Astrom and Wittenmark (1995) or §5.3 of Astrom and
Wittenmark (1997).)
To solve for the polynomial T’ we introduce a reference signal y,,[k] which is related to the demand signal
r[k] by the following dynamic reference model:

4,/ (@) y,lk]= B, (q)rlk]. (4.4.14)
If y[k]tracks y,[k], then substituting (4.4.14) into (4.4.11) gives the following condition:

BT BT B,

AR+ BS A A4, (4.4.15)
which may be re-arranged to give:
A.B
T =2c2m
B (4.4.16)

m
The condition (4.4.16) implies a number of factor cancellations involving BT and A4, . The polynomial B may be
factored into two components:

B-B'B . (4.4.17)
The first of these components, B*, is chosen to be monic with well damped stable zeros which are cancelled by
the controller. The second, B~ , represents the lightly damped and / or unstable zeros which cannot be cancelled

by the controller and must therefore be a factor of B,, , yielding:

B, =BB,. (4.4.18)

Condition (4.4.15) implies that A4,, must be a factor of 4, and as B is cancelled it also must be a factor.

Therefore A, may be broken down as follows:

85

A.=A,A4,B". (4.4.19)
Substituting (4.4.17) through (4.4.19) into (4.4.16) gives
T=A4,B,,. (4.4.20)

Finally, factoring R = R'B" and substituting (4.4.17) and (4.4.19) into (4.4.12) reduces the Diophantine equation

to:
AR'+B S =4,4,,. (4.4.21)
It is instructive to combine (4.4.17) and (4.4.18) to form a partially factored expression for (4.4.19):
_ 4,4,B,B"B”

A4

c

B, B~
A solution is thus obtained if the design variable 4, is provided in the form of a factoring of B and three

polynomials A4,,4,, and B,, . Furthermore, substituting (4.4.21) into (4.4.20) reveals:

4,B,, (AR'+B S)B, AB, SB

m m
+

R A, R BA, RA

m m

r
R
which may be substituted into (4.4.10) and combined with (4.4.14) to give:

u[k] = [AB m &}m —%y[k]

BA, RA,
4B, SBy i1 S oo _ 4B, s s

= Er[k] + RA. k] R VIk] B4 k] + 2 [k] 2 y[k] (4.4.22)
AB,, N ~

=T 11+ R a1 1)),

The first term of this equation can be interpreted as a feedforward controller which attempts to cancel the plant
dynamics and replace it with the reference model dynamics. The second term acts as a negative feedback
controller which endeavours to make the plant output follow the reference model output. Equation (4.4.22) may

not be realised as shown due to the inverse plant dynamics 4/ B . However, it highlights the partial cancellation

through the appropriate choice of 4,, and B,, .

Given plant data 4 and B together with design specification data A4,,4,, and B, , the design algorithm may be

0% m

summarized as follows:
1. Factor B using equation (4.4.17) such that B=B* B~ where B"is monic.

2. Solve equation (4.4.21) for the minimum degree solution, determining R’ and S using the factor B~ and

the supplied specification for 4, and 4,, .
3. Determine B;, from (4.4.18) using the supplied specification for B,, .
4. Obtain R =R'B", and from (4.4.20),T = A4,B,, using the previously determined data.

5. Finally, calculate the control signal u[k] using equation (4.4.10).

86

The design algorithm above provides no indication, other than equation (4.4.18), of how to choose the design

polynomials. Let us therefore consider how the choices of A4,,4,, and B,, may be constrained.

4.4.2.1 CONSTRAINTS ON THE DESIGN SPECIFICATION POLYNOMIALS
In order for the controller (4.4.9) to be causal we see that:

degS < degR
degT <degR. (4.4.23)

Inspection of (4.4.9) reveals that, if the controller is not to introduce any delay, the equality condition in (4.4.23)
must be satisfied. That is:
degR=degS =degT . (4.4.24)
Furthermore, dividing both sides of (4.4.12) by 4 and noting that deg 4 > deg B yields:
degR=degA.—deg4. (4.4.25)
Combining the conditions in (4.4.24) together with equation (4.4.13) implies that, for the minimum degree
solution, degS =degR <deg B <deg A4 . That is, there is always a solution where:
degS <degAd-1. (4.4.26)
Substituting (4.4.26) and (4.4.25) into (4.4.24) givesdeg A, > 2deg A —1. Therefore, choosing the controller with
the lowest possible order yields:
degd, =2deg4-1. (4.4.27)
Taking the polynomial degrees on both sides of equation (4.4.16) yields:
degT =deg A, +degB,, —degB—deg4,,. (4.4.28)
Now substituting (4.4.28) and (4.4.25) into the second condition in (4.4.23) and rearranging gives:
deg 4, —degB,, 2deg A —degB=n, . (4.4.29)
This logically implies that the time delay associated with the reference model must be greater than or equal to
the time delay of the process being controlled. Furthermore, a controller which has minimum degree requires
that the equality condition in (4.4.29) must be satisfied. That is:
deg 4, —degB,, =degA—degB=n, .
This may be combined with the knowledge of the attempted cancellation shown in equation (4.4.22) to conclude

that 4,, and B,, should have the same degree as 4 and B respectively giving the following conditions:

deg A4, =deg4d

degB,, =deghB. (4.4.30)

Now taking the degree of the factors in equation (4.4.19) gives:
deg 4, =deg A, —deg 4, —degB".

Substituting (4.4.27) and into the equation above, and using the first condition in (4.4.30), yields the following

condition for 4, :

deg 4, =degA—degB* —1. (4.431)

87

Equations (4.4.30) and (4.4.31) together with (4.4.18) summarize the constraints that must be satisfied by the

design specification polynomials to produces a minimum degree controller.
4.4.2.2 FACTORIZATION OF THE PROCESS ZERO POLYNOMIAL

We now turn our attention to the factorization of B in equations (4.4.17) and (4.4.18). There are two special
cases associated with this factorization:
1. All process zeros are cancelled - 1f all the plant zeros are well damped and inside the unit circle (i.e.
stable) it is possible to cancel them by the choosing B* = B/b, and B~ = b in step one of the design

algorithm. Condition (4.4.30) requires that the pole excess of the reference model and the process are

the same. Furthermore, it is generally required that the static gain is unity. This implies that

B, =4, (g™ and (4.4.18) gives B,, = A,,()g" /b, and from (4.4.20) T = A4,4,,()g"™ /b, . The
Diophantine equation (4.4.21) now becomes AR'+b,S = 4, A,, which is easily solved by
determining A, 4,, / A and observing that R’ is the quotient and b,S is the remainder of the solution.

Finally, condition (4.4.31) implies 4, should be chosen such thatdeg 4, =deg 4 —degB —-1=n; —1.

2. No process zeros are cancelled — Following the same sequence of steps presented in case one above we
see that if none of the plant zeros are cancelled then B =1, B~ = B and a static gain requirement with
condition (4.4.30) implies B,, = 4,,(1)B/B(1), giving T = 4,4,,(1)/ B(1) . Lastly the Diophantine
equation (4.4.21) is simply AR+ BS = 4, = A, A,, where now deg 4, = deg A—1 . By solving the pole
placement problem using state feedback it can be shown (§4.5, Astrom and Wittenmark, 1997) that, if
no process zeros are cancelled, the closed loop characteristic polynomial 4. may be factored into two

polynomials corresponding to the state feedback controller and the state observer. These polynomials

correspond to 4,, and 4, above and are called the controller and observer polynomials respectively.
Arbitrary roots may be assigned to 4,, if the system is reachable and to 4, if the system is observable.
This implies that one should select the roots (eigenvalues) of A, with the same considerations in mind

as when selecting observer poles.

4.5 ADAPTATION MECHANISMS

An adaptive controller may (amongst many alternatives) be defined as (Astrém and Wittenmark, 1995) “...a
controller with adjustable parameters and a mechanism for adjusting the parameters.” This section deals with the

latter part of this definition i.e. the mechanism for adjusting the parameters.
4.5.1 THE ADJUSTED PARAMETERS

The first question to be answered is: “Given the presented control law formulations, what are the parameters to

be adjusted?”” To answer this consider the previous section where two basic control law formulations were given

88

— the series inverse controller, or SIC law, expressed by equation (4.4.4) or (4.4.7) and the RST law shown in

equation (4.4.10).

In the SIC law the parameters are implicit in the definition of the 6() function. This function is non-linear and

therefore, in this work, assumed to be represented by some form of neural network. The adjusted parameters are
thus the network weights defining the network mapping. The activation rule evaluation of the inverse controller
network is therefore equivalent to evaluating the control law. We note that if the process dynamics are time
invariant then the inverse mapping that the control law is required to represent will, given the correct conditions,
also converge to a time invariant solution. That is, if the plant dynamics are time invariant, the SIC law
controller parameters will be constant even though the plant may be non-linear because the functional mapping

of the control law is itself non-linear.

For the RST law the controller parameters that define the law’s functional mapping are the coefficients of the R,
S and T polynomials. The MDPP design algorithm showed how these values could be calculated given the 4 and
B process polynomials and a design specification. The coefficients of the process polynomials may therefore be
considered the adapted parameters and the algebraic calculation of the MDPP algorithm is analogous to the
inverse controller network activation rule calculation in the SIC approach. A key difference is that the functional
mapping of the RST law is linear and, for a non-linear plant, the process polynomials are valid only in a local
region about the current operating condition. This implies that the MDPP algorithm must be continually
evaluated as the estimated process polynomials change. This change corresponds to the plants state trajectory

moving through the state space, resulting in new operating conditions.

We see that in the SIC approach the control law parameters are directly manipulated by the adaptation
mechanism, whereas in the RST law the control law parameters are indirectly adjusted by first evaluating the
MDPP algorithm. However, the MDPP algorithm uses the adaptation mechanism’s estimation of process
parameters. The former approach is typically referred to as direct adaptation or implicit self tuning, while the

latter is called indirect adaptation or explicit self tuning. Alternatively, one may view indirect adaptation

Reference Vom
> Model
(Specification)

A

--------------------------------- > Adaption
Mechanism

Control law ~~ p==-=-=-- »|
Parameters
0

Control law u Plant y
(SIC NN) >

v

Figure 4.5.1. Block diagram of a Model Reference Adaptive System.

89

mechanisms as making explicit use of the estimated process parameters whereas the direct adaptation method

does not.
4.5.2 INCORPORATING THE DESIGN SPECIFICATION

Implicit in the use of adaptive control is the desire to achieve some controller objective or performance. This is
stated in the form of a control design specification. Therefore, the second key question to be asked is: “How is

the design specification incorporated into the adaptation mechanism?”

In the SIC law an independent dynamic reference model was used to generate a reference signal which the plant
must track. This reference model therefore represents the desired performance and provides a convenient means
by which a specification may be injected into the adaptation mechanism. The approach results in what is called a
Model Reference Adaptive System (MRAS). A block diagram depicting this approach is shown in Figure 4.5.1.
Note, as the name implies, the SIC law is represented by a neural network placed in series with the plant under
control. The dotted line associated with the control and demand signal paths into the adaptation mechanism

imply that the method used to actually change the parameters may or may not use these signals.

During the design of the RST law, using the MDPP algorithm, the design specification was included in the

algorithm by the selection of 4,, 4,,, B,, and the factoring of B , the polynomial representing the process zeros.

The adaptation mechanism’s function is to provide the 4 and B polynomials. Generally this approach is called an
indirect Self Tuning Regulator (STR). Another key configuration of the STR method is obtained if the control
law design equations are incorporated into the adaptation mechanism, which now provides the R, Sand T
control law polynomials directly. The resulting system is referred to as a direct Self Tuning Regulator, but we do
not address this further. When using neural networks to estimate non-linear plant parameters, this approach

represents a specific non-linear adaptive control implementation, known as instantaneous linearization

Self Tuning Regulator

Process Parameters A4, B or &

!

1 '
]]
]]
‘ '
E Specification i
''4.,4 B Controller Adaption i
: PN Design > Mechanism — E
! (MDPP) (Estimation) '
]]
i Control law E
! Parameters . T
: R ST '
;| ‘ =
— > Control law u E Plant y
! (RST Law) ' v
‘ | i
1]
]]
' '

Figure 4.5.2. Block diagram of an indirect Self Tuning Regulator.

90

(Serensen, 1994).

A block diagram of the indirect STR approach appears in Figure 4.5.2. An important observation is that the
controller design treats the process parameters as if they are true, an assumption which is referred to as the
certainty equivalence principle. Unfortunately this assumption only holds if the estimation process is persistently

excited — a requirement that may be difficult to meet in a practical implementation.

Another shortcoming of the method is that if the linearized process parameters change rapidly, i.e. within the
same time scale as the feedback signals, the resulting controller will not provide “optimal” control action. This
occurs because the controller parameters are evaluated using a linearized plant model which, at the next sample
update, is no longer a good approximation of the underlying process. This limits the applicability of the
instantaneous linearization approach. The problem may be addressed by using generalised model predictive
control where optimal future control actions are calculated at each sample time by minimising a cost function

which weights the control actions and the predicted future outputs over some known time horizon.
4.5.3 CHANGING THE PARAMETERS

The final question to be resolved is: “How does the adaptation mechanism adjust the parameters?”” Answering
this question is really the essence of adaptive control systems design and analysis. Clearly, the overall system
structure plays a key role in the mechanisation of the adaptation law. It is interesting to note however, that the
MRAS approach described above is equivalent to a direct STR based on a MDPP design where all process zeros
are cancelled. The reader is referred to §5.9 of Astrém and Wittenmark (1995) for more details. Due to the

adaptation mechanisms structural reliance, only the approaches used in this work will be discussed.

Mathematically the adaptation mechanism must evolve the adapted parameters € in time, that is:
0=0Q(r). (4.5.1)
The structure of Q thus defines the adaptation law. If we define a quadratic loss function that provides a cost

associated with the error e between the desired output trajectory and the actual output trajectory, then driving the

parameter vector in such a way as to minimize this cost would provide the required result. Therefore let:

J(0)=%(y—ym)2 =%ez (4.5.2)

then using a gradient descent approach to minimize (4.5.2) results in:

aJ(0)

0=0Q(t)=-y ”

Oe
=—pe— 453
%239 (4.5.3)
o)
ou 00

or equivalently for a discrete time system:

oylk] Oulk,@]

O[k] = 0[k —1] - yelk] TR

. (4.5.4)
0=0k-1]

91

Equation (4.5.3) is known as the MIT rule. The variable y is called the adaptation gain, while the derivative

Oe/ 00 is known as the sensitivity derivative which, if the parameter changes are slow, may be evaluated
assuming @ is constant. Clearly, if the loss function (4.5.2) is changed, different adaptation laws will result.
There are also enhancements to the basic law such as normalization, which removes the dependency of the
gradient step size on the command signal. A slightly modified form of the law may also be derived using a
Lyapunov function thus providing conditions under which the adaptation law is guaranteed to be stable. Astrom
and Wittenmark (1995) address all these details. However, in this work, only the basic idea behind the

formulation above is followed.

When using a discrete time MRAS approach, the design specification is provided in the form of a reference
model which generates a reference signal y,, [k] . The objective is for the difference between y,, [k] and the
closed loop plant output signal y(k,), a function of the controller parameters, to be minimized. Therefore,
letting &(k,0) = y,,[k]— y(k,0) , the adapted parameters should be adjusted in such a way that some loss
(objective) function:

J(1,0)= i U(s(k,0)) (4.5.5)

k=1

is minimized. This is identical to the problem addressed in section 3.3.1 and following the same logic presented
there results in an equivalent optimisation problem formulation. The key difference is that the signal associated
with the observed (reference) system output is now y,, [k] . Also the network predicted system output,
previously denoted by p[k], is now the control signal u[k,0] , and is replaced by y(k,8), the series combination

of the SIC law implementation and the plant under control. The adaptation mechanism problem may therefore be

stated as:
* 1 . T
0" () =argmin > B(t. 1)y, K= y(k,0)) A7 (v, [K] - y(k.0)) | (4.5.6)
0 k=1
Having established this result the more sophisticated methods (as opposed to the simple gradient descent
approach used in the MIT rule shown above) derived to solve the network learning rule may be brought to bear.

There is however one caveat. All the algorithms discussed in section 3.3 go about solving equation (3.3.5) or

equivalently (4.5.6) by differentiating the loss function (4.5.5) with respect to the parameter vector @ . This

implies that in the derivation of the methods in section 3.3, what was previously the differentiation dp[k]/ 00 is
now replaced by dy(k,8)/ 00 . We saw in section 3.3.3 that for all the network types &p[k]/ 06 is simply the

regressor variable ¢’ [k]. Therefore, using the chain rule, the differentiation of dy(k, @)/ 80 gives:

oy(k,0) _ dy(k,0) Oulk,0]
00 oulk,0] 00

E

but

oulk,0] _ op(k]
00 o0

92

Summarising, if we replace:

j)[k]old <« y(k» 0)new
y[k]old <« ym[k]new

! 4.5.7)
Plkl g < PLk]= plk] 1, [M]

oulk,0],,,
then'” the previously developed algorithms can be used. Unfortunately the final substitution in (4.5.7) is
problematic for multi-output systems where an RBF or LMN network is used to form the SIC law. The new

@[k]becomes a matrix as opposed to a vector meaning that the efficiencies described in section 3.3.9.2 cannot

be fully exploited. If A" is an identity matrix, a more efficient implementation can be achieved by directly
differentiating (3.3.4) with respect to @ and expressing the result as:

aJ(t,0) _

o= AR (VK = TR)-
k=1

Now performing the substitutions in (4.5.7) gives:

t T
oJ(1,0) oy(k,0),.,)
0 _;ﬂ(t,k)(p[k]old[—au[k’ 0] J (Wl — ¥,0)).

new

Therefore, substituting:

T
oulk.0]] (PlKL ey = 95,0),101,) (4.5.8)

(K Lig = 3K 11) < [
will result in the same update as performing the substitutions in (4.5.7). Now only the parameter update
equations need be modified in the previously developed algorithms. The form of these equations is then the

same as the discrete time version of the MIT rule shown in (4.5.4).
4.5.4 UsSING THE NEURAL NETWORK JACOBIAN INFORMATION

Until now, the reason for using neural network Jacobian information in neurocontrol has not been clearly
evident. The focus has been mainly on where networks should be placed in the control system and how the

training algorithms are affected. So why do we need to calculate the network Jacobian information?
Examination of equation (4.5.8) reveals that, for SIC law implementations some estimate of the plant input
sensitivity, y(k,@)/ou[k,0], is required. This can be approached in two ways. The first is to assume that the
plant input sensitivity is estimated by some predefined known function, for example dy(k,8)/oulk,0]=1

resulting in what is called direct sensitivity adaptation. The second approach is to model the plant behaviour
using an ANN. If this is done online, the method will be referred to in the sequel as series inverse control using

indirect sensitivity adaptation.

Recovering the plant input sensitivity information from a neural network model of a plant and constructing a

neural network adaptation mechanism for a self tuning regulator system may be accomplished in precisely the

7 The “old” subscript implies the symbols used in the algorithms of section 3.3 while the “new” subscript implies the symbols
used in this section.

93

same way. Recall now the plant description expressed in equation (4.4.8). Shifting the time origin in this

equation allows us to write:
k] =—aplk —1]-aylk =2]=---—a, ylk—n,]+boulk —n;]+ +b, ulk —n; —n,] (4.5.9)

where the coefficients a, ---a, andb, ---b, are the time varying coefficients of the forward shift operator

n n

polynomials A4 and B . Stating (4.5.9) in matrix notation gives:

YIk]=y(k,0) =0 u[k,0] (4.5.10)
where ulk,0]=[ulk —n,] ulk—n, =11 - ulk—n, —n,]] and@ =[-ay.-a,,"~a, ,by,by, b,]. Clearly,
oy(k,0)/ouk,0] is equivalent to differentiating (4.5.10) at any point in time and results in the vector

0 containing the (sign corrected) polynomial coefficients.

But, (4.5.10) is identically the FNN problem described in equation (2.4.4) with network output y[k] = y(k,0)
and input x[k] = u[k,0], where plant and identification network inputs are now the same variable. Accordingly,

an ANN which correctly describes the plant represents equation (4.5.9) and calculating the Jacobian of said

network at any point in time is equivalent to differentiating (4.5.9). That is op[k]/ Ox[k] = oy(k,0)/ ouk,0] .

Therefore, using the network Jacobian algorithms described in section 3.4, the required parameters for the STR
control law synthesis algorithm (in this case MDPP) or the plant input sensitivity information for indirect
sensitivity adaptation using the SIC law, can be calculated. Without the network Jacobian algorithms these
control techniques could not be used. In the sequel, to avoid confusion with the actual plant input or state

variables, the vector designated by symbols x[k] and u[k, 8] will be referred to as the information vector,

designated by the symbol y[k].

4.6 CONCLUSIONS

This chapter introduced the field of neurocontrol. A five step design methodology was presented and the first
three steps, namely plant description, control law formulation and adaptation mechanisms where elaborated
upon. The omitted steps, stability and parameter convergence, were considered beyond the scope of this work,

however, we reiterate that these steps are crucial to the successful implementation of real-word controllers.

The section on plant description derived the conditions necessary to express a continuously differentiable
discrete time non-linear state space plant description in an I/O form. This is essentially the inverse of the
observer problem discussed in many control texts. (See for example §4.4 of Astrém and Wittenmark, 1997.)
The derivation used the inverse function theorem to show that an I/O description amenable to mapping by a
general neural network formulation was possible for some local region about a chosen operating point. The
required condition was that the determinant of the matrix formed by the differential of the output with respect to

the plant states, evaluated at the selected operating point, was non zero.

Having established the conditions for I/O plant description the next section addressed the two different control
law formulations used in the simulations presented in the next chapter; Series Inverse Control (SIC) and

Minimum Degree Pole Placement Design (MDPP).

94

The first main result indicated that, for a MIMO system with the same number of outputs as inputs, the SIC
paradigm could be used for some local region about an operating point if the determinant of the Jacobian plant
mapping evaluated at the operating point was non zero. It was also shown how reference model dynamics could
be included in this control law formulation. It is important to recognize however, that the existence of these
results makes no statement about the suitability of the law for practical implementation. In particular, control of
non-minimum phase plants would require potentially unstable cancellation of the plant zeros by the series
inverse control law dynamics. Furthermore, system disturbances of the actual plant output are only indirectly
accounted for through the dynamic relationship between the demand and desired plant output, potentially
making disturbance rejection problematic. These and other problems are not directly addressed in this

dissertation.

Next the MDPP design algorithm was derived using shift operator polynomial techniques. It was shown that this
approach is well suited to the I/O representation used in the neural network formulation. The algorithm is purely
algebraic and can be implemented with minimal computational effort by solving the Diophantine equation. The
resulting controller is a two degree of freedom controller which may, or may not, be configured to cancel the
process zeros depending on the stability implications resulting from such a cancellation. Although not explicitly
discussed, the issue of disturbances can also be addressed by using stochastic methods to derive the RST
polynomials. One such method which was implemented in the software blockset was the minimum variance
algorithm discussed in §4.2 of Astrom and Wittenmark (1995). Regrettably, the polynomial formulations shown
are valid only for SISO plants. Extension to MIMO systems is possible by treating the time delayed inputs and
outputs as a state vector. State space system matrices can then be formed in an observer canonical form and
MIMO design techniques can be brought to bear in the formulation of a control law. Unfortunately, this
formulation of the system state can be inefficient leading to growing matrix dimensions, online matrix

inversions, and potential numerical problems or poorly conditioned systems.

In the lastly major section the adaptation mechanisms used for dynamically updating the control laws were
described. This section answered three key questions. Firstly, the parameters to be adjusted were defined for
each of the control law formulations. The differing control laws and their associated parameters lead to the

important concepts of direct and indirect adaptation, also known as implicit and explicit self tuning respectively.

Secondly it was shown how the related, but conceptually distinct, classes of MRAS and STR systems resulted
when using differing methods to incorporate the design specification into the adaptation mechanism. The
certainty equivalence principle was highlighted and the idea of instantaneous linearization of nonlinear plants

using neural networks was introduced.

Finally a mathematical formulation of the adaptation mechanism problem was given. It was shown that, with the
appropriate substitutions, the algorithms of section 3.3 could be used to solve the adaptation mechanism problem
for all of the control law formulations presented. A key observation of this section was that the Jacobian of a
FNN which had correctly identified the plant described by (4.5.9) could be used to acquire the parameters
required by both SIC indirect sensitivity adaptation and instantaneous linearization using a STR approach. The

correct convergence to the plant parameters of equation (4.5.9) is of paramount importance. If this is not

95

achieved the resulting control law is invalid, or at best suboptimal. Therefore, ensuring that the correct
parameters are identified is imperative for the successful application of the technique. Another drawback to the
approach is that knowledge about the order and time delay associated with the plant is assumed when
formulating an STR design specification. A similar problem exists when trying to identify the plant input

sensitivity for use in an MRAS system.

96

CHAPTER S

SIMULATIONS

5.1 INTRODUCTION

In this chapter, we will present a number of simulations of various systems to illustrate the concepts and issues
described in previous chapters. All of the simulations were generated in Matlab/Simulink using a class library

and block set that was specially created for this purpose.

The use of such 'high level' simulation programs is sometimes criticised as being slow and sub-optimal when
compared to customised programs written using compiler based languages such as C or C++. This is frequently
a valid criticism, however, custom programs of the complexity required to simulate neurocontrol systems are
extremely time consuming to create. Even with a carefully executed systems software design approach the
resulting programs are often not transportable or reusable in other continuing research efforts. For Matlab m-

code files and Simulink S-function, experience has shown that provided:
e the code is highly vectorized,
e all function calls made within m-code or S-function files are to low level internal Matlab functions;
e careful attention is paid to pre-allocating memory for all frequently used variables;

then the speed of the resulting program is comparable to compiled code. Memory requirements are usually larger
for 'high level' programs. This, however, is generally not a problem, or one that is easily overcome, except when
the code is to be used in an embedded system where cost and/or space constraints are large factors in the
engineering design. The cost/space constraint may also be considerably reduced by the implementation of the

networks in an "on-line" fashion as opposed to the batch mode processing most frequently used.

In spite of these observations, it is important to note that implementing neural networks on a serial processing
system is computationally intense due to the parallel nature of the networks. For this reason, considerable

computing power is required no matter what type of programming language is used.

97

Due to the nature of the algorithms developed in the previous chapter it is possible to satisfy all of the
requirements listed above, thus allowing the development of highly efficient m-code S-function files. The result

is a set of tools that are easy to use, highly flexible, and transportable between different computing systems.

5.2 INVERSE NEURAL CONTROL
5.2.1 SYSTEM DESCRIPTION

Experiment 1 is an exact recreation of a controller presented in Van Breeman (1997) with one major difference;
the neural network controller is a local model network as opposed to a RBF network. The experiment explores
the control of a first order non-linear continuous time SISO system using various inverse neural network
controller configurations. The system under consideration is given by:

% =—04sin(x) + u +u’

x (5.2.1)

The desired response of the closed loop system is described by the linear first order reference model equation:

X, =—-2x, +0.6r

yo=x, . (5.2.2)

— ym(Y)
y(t)
2 — () H

0.6
»
L
s+2

Reference Model

Output

»
. Ll
oooo » x'=-0.4sin(x)+u+u”3 Yyt | A
oo o) | y=x 0 : ux
Input gl ym,y,r
Signal Plant .
-3
-4
0 5 10 15 20 25 30 35 40 45 50
Time (Sec)
(a) Simulink Model (b) Open Loop Response

Figure 5.2.1. Non-Linear First Order Plant - Open Loop System Model and its Response.

Depicted in Figure 5.2.1 is the Simulink model (ctlexpla) corresponding to equations (5.2.1) and (5.2.2)
together with the open loop response curves to a square wave input. Clearly, a controller is required to achieve

model following. Let us assume that we would like to achieve the following tracking requirements:

e Absolute differential error of less than 5%.
e Relative error tolerance of less than 1%.

e Absolute error tolerance of less than 1%.

98

5.2.2 LINEAR STATE FEEDBACK CONTROL

In order to establish a baseline for controller results we begin by applying a linear state feedback controller to
the problem. If the plant were unknown, it would obviously not be possible to perform this step. However, when
plant equations are known an attempt should always be made at meeting the requirements with simpler and well

understood linear control design methods.
The design is performed about the operating point (x,%) = (0,0) using a pole placement feedback law:

& = —0.4c08(¥)x + (1 +3u2)ou = —0.45x + Su
U =—1.65x +0.60r .

The resulting model (ctlexp1b) and the closed loop system response are shown in Figure 5.2.2 below.

0.6
—> _
Ss+2
Reference Model
ym(t) >
|:|0|:|0|:||:| —p |+ x'=-0.4sin(x)+u+u’3 v
) ———PpMUX =
Input — y=X rt)/3
. ym,y,r
Signal i Plant
(a) State Feedback Controller System Model
0.2 T T T I
Error Statistics (%FS): Error Statistics (%FS):
ean: 0. 1 {Mean: 10.9275
0.15 ’\\/Aarian:e?z?zozoﬁ _ Variance: 214.482
Maximum: 4.7755 / 08 46.5741 /
i | N
— | J all — T |
0.05 I | \‘ | T ‘ [
: i ‘ 0z | | ‘
\ ‘ ‘ \ \ ‘
. \ [- | ‘
o, \ | | ‘ £ | \ | |
3 ‘ \ \ 3 \ \
| | | on | | ‘ |
-0.05 | i ‘ ‘ L | ‘ |
| ‘ ‘\ ‘\ 0.4 “ ‘ \‘ \‘
‘ \ \ \ \ \ \ \
-0.1 “‘ I I -0.6 “‘ “‘ \
0.15 = \ “\\— °* N ‘\—
-0'20 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time (Sec) Time (Sec)
(b) Response at r=0.5 (c) Response at r=3.0
Figure 5.2.2. State Feedback System Model and its Closed Loop Responses.

In plot (b) we see that, for small perturbations from the operating point, the linear controller performs the task
well but, as expected, plot (c) shows the tracking error increases substantially when the system is perturbed by

larger amounts.

99

= [
- s+2
Reference Model ITE

(-

r@ ym.y

Yy
<
c
X

Signal — | dEc/dU 0 U [x'=-0.4sin(x)+u+un3
Generator PR w y=x (1)
P Ym
S e —=
Random Adapt

Inverse Controller (LMN)

Sequence
(a) Inverse Neural Controller System Model
0.2 I T
Error Statistics (%FS): Error Statistics (%FS):
{HMean: 1.7928 1} Mean: 0.35792
0.15 | Variance: 1.1448 Variance: 0.32578
Maximum: 5.9706 / / 0.8 || Maximum: 4.1141 Va Va
i | ’ / /
ol —— ym | I U —— ym@
g v ; / .l v “ ;
E— r | — r
‘w) ‘\ | i (t) J ‘
0.05 T ‘ I | | |
\ J ‘ 02 i i i C
F | \ t \ 3 w ‘ | |
s T 2 0
3 | ‘ ‘ ‘ o ‘ | | |
| | | | | | | |
0.05 i i T i | |
| | 0.4 ‘ ‘ ‘ ‘
| | |
-0.1 “ 1 0.6 1
\\ “\ ‘ 0.8 \\ A\
0.15 N N
-1
-0.2
] 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time (Sec) Time (Sec)
(b) Response at r=0.5 (c) Response at r=3.0

Figure 5.2.3. Inverse Neural Controller System Model and its Closed Loop Responses.

5.2.3 SERIES INVERSE CONTROL USING DIRECT ADAPTATION

An attempt is made to rectify the tracking error displayed in section 5.2.2 by implementing a series inverse local
model neural network controller using direct adaptation. First, it must be verified that the inverse function exists
about the operating point. Under closed loop control, the plant output must equal the reference model output,

that is, using the notation of section 4.4.1, H(x,u) = S(x,,,r) , therefore:
é(x,r) —u=H" (x,S(x,,,r)).

The existence of the inverse of the plant mapping H (x,u) can be verified using condition (4.3.10):

de{ OH (x, u)}

ou

=1+3u’ £0.
(F.0)

As the reference model mapping S(x,,,7) is smooth and the inverse of H(x,u) exists, and is smooth, for all

values of u over the region of interest, we know that an inverse controller solution exists and that such solution

may be approximated by a LMN.
To train a controller the Simulink model (ctlexp1ld) shown in Figure 5.2.3 was run for a 2000-second period.

The input was a uniformly distributed random input sequence between +3.5 and -3.5, which had a 3%

100

probability of a value change at each sample. The inverse controller used to perform the task was setup in the

manner shown in Table 5.2.1 below:

Inverse Controller Setup Parameters

General Network Parameters
Network Type: Local Model Network
Initial Weight Range (Min/ Max): 0/0
Validity Activation Threshold (%0): 2

Sample Time (Sec): 0.1

Network Inputs (In information vector order)

Name Range (Min/Max) Number of regions Overlap (%)
rk] 4/4 8 30
y[k] -1.5/1.5 2 60

ufk-1]" -1/1 1 100

Error Tolerances (%)
Relative Differential Absolute Differential Relative Value Absolute Value

1 0.5 0.1 0.1

Adaptation Method Parameters

Adaptation Algorithm: Exponential Forgetting Factor

Initial Covariance Diagonal: 0.1

Forgetting Factor: 0.998

Table 5.2.1. Inverse Controller Setup Parameters.
The specified input signal was used so that the controller could be exposed to all operating regions of the plant
in question. Once the training process was complete the final weights were saved, the input was switched to a
square wave and the adaptation mechanism was switched off. The resulting closed loop response of the system
is shown in Figure 5.2.3.
The results for both input signals now meet the required specification'’. It is important to note that there was no
adaptation of the controller network between different input signal amplitudes. This would indicate that the
controller has learnt a true non-linear mapping to perform the control actions. In this simple example, it is
possible to compare this mapping to that used by the linear state feedback controller. The comparison is shown
in Figure 5.2.4. In the figure, the red mesh indicates the linear mapping while the solid coloured surface is the

inverse controller mapping. The black points are data values used to generate the inverse controller surface.

'8 The past control value is included in the information vector purely because of a software limitation stemming from the desire
to deal with the more general case where it is required. As it is assigned only one region, which is 100% activated at all times,
it plays no meaningful role in the non-linear calculations of the validity functions. It does however add a redundant weight to
the interpolated local models, which has to be trained to a minimal value.

' The reader may be curious as to why the error statistics shown in the plot indicate larger values than those called out by the
specification. This can be explained by the earlier discussion on differential error. The error statistics shown are calculated by
subtracting the actual value of the plant output from the desired value generated by the reference model and then scaling the
results to represent a percentage of the output signal's range (full scale). The large errors generated when the signal is
experiencing rapid changes in value are included in these calculations; however, the error due to the differential of the signal
being different is within the required tolerance. This can be verified by running the simulation with the adaptation error
tolerances set to the values in the specification and observing that the adaptation mechanism is not triggered.

101

i o

e b
P e ol
e e
o
- L
B il)
SRR

" xIK]

Figure 5.2.4. Comparison of Inverse and Linear State Feedback Controller Mappings.

This plot illustrates two salient features. Firstly, it clearly shows how the two controllers closely approximate
one another at the linear controller's designed operating point. Secondly, and more importantly, it demonstrates
the need for persistently exciting signals when trying to identify a non-linear system. (In this case, the inverse of
the system.) We notice that in those areas where there are many data points the mapping surface is reasonably
smooth. However, where fewer data points exist, the surface becomes more irregular and does not always seem
to follow the general curve trend. This is unfortunately a problem associated with all parametric techniques

attempting to identify non-linear systems.
5.2.4 SERIES INVERSE CONTROL USING INDIRECT SENSITIVITY ADAPTATION

The last simulation (ctlexp2a) conducted with the system described in equation (5.2.1) demonstrates the use of
indirect sensitivity adaptation to train an MLP inverse controller. Although MLP networks are not the main topic
of this dissertation, the experiment indicates how, with the algorithms previously described, different types of
networks may be substituted for one another while maintaining the same controller structure. This allows the
system designer to use the network with the optimum characteristics for the problem at hand without concern for
overall structural issues. The Simulink block set developed allows this substitution to occur with minimal effort.
The model shown in Figure 5.2.5 could have used LMN networks, permitting a linear analysis of the final

trained system. (The next section will demonstrate the use of LMN networks for Jacobian identification.)

102

T T T T
Error Statistics (% FS r=0.5/r=3.0):
1 |-{Mean: 3.4439 /0.49434

Variance: 1.5954 /1.9303

| [Maximum: 10.3622 / 12.5428

06
= =E7 06 _ yarx(t)(r=0.5 /
> i —— ym(t)(r=0.5)
o > well —— y(r=0.5)
— e — yanoe=n] ’
deciay Adapt on 4@ 02 ym(t)(r=3)
e e | Ly s [o= s
\—FH» E E)
g
s | s N I
— -0.2
4’ dEc/dU " N X'=-0.4sin(x)+u+u"3 ' yit) \
Lyl > y=x 0.4
i
S — \ \
—
Inverse Controller (MLP) \ \
-0.8
-1

0 5 10 15 20 25 30 35 40 45 50
Time (Sec)

(a) Indirect Sensitivity Adaptation System Model (b) Response at r=0.5 and r=3.0

Figure 5.2.5. Indirect MLP Inverse Controller and its Closed Loop Responses.

The complete system takes the form shown in Figure 5.2.5. Using the indirect sensitivity adaptation method the
plant is identified by a non-linear ARX model constructed using a MLP network model. This model is used to

provide an estimate of the plant input sensitivity. That is:

dE, _dE. dy
du dy du
d
= -1Z (5.2.3)
" g
(e D dw
=) dy du

where dy/du is the plant input sensitivity, and dy/dy is the network Jacobian of the underlying MLP used in the
non-linear ARX model. The known term dy/du is used to extract the current input from the information vector
and, for this example, is simply unity. The product of dy/dy and dw/du is therefore the estimate of the plant

sensitivity using the MLP Jacobian information. Again, the network Jacobian algorithm described in section
3.4.1 is required to determine this value. Clearly, if we wished to use a LMN network instead of a MLP network
to perform this function the algorithm derived in section 3.4.3 would have to be used. The reader is referred to

sections 4.4.1 and 4.5 for detailed discussions of the control technique.

The training and simulation were performed in exactly the same manner as the previous section®’, providing the
results presented in plot (b) of the figure. Although the identification step is not necessary with this particular
plant, the plot clearly illustrates that the technique provides satisfactory results.

5.3 CONTROL USING INSTANTANEOUS LINEARIZATION

5.3.1 CONTROLLING A NON-LINEAR MASS-SPRING-DAMPER SYSTEM

In this section, we demonstrate how the ability to efficiently calculate the LMN Jacobian allows us to directly

substitute for MLP networks in a non-linear control technique known as instantaneous linearization.

20 Exact setup details for each of the networks can be viewed in the file ctlexp2a.mdl.

103

The plant under consideration may be described by the following general differential equation:
ay+by+cy+dy’ =u (5.3.1)
where a,b,c,d and y are constants that define the behaviour. Physically this corresponds to a mass-spring-
damper system where the spring stiffness is related to its extension by the term (¢ + dy’ ™) . The input to the
system u(t) is a compression or extension force and the output y(z) is the degree of spring extension measured

from an initial operating point. To illustrate various points made in previous chapters, we transform equation

(5.3.1) into a discrete time state space and discrete time I/O model respectively.

Let:
xi (1) = y(1)
X (1) = ¥(1)
then:
Xl Xy
% | | —b/a)x, —a (c+dx] x, +u (5.3.2)

y = xl .
Equation (5.3.2) represents the continuous time state space model of the system. To convert it to a discrete time

system we recall that:
t+At
x(t+Af) = x(1)+ jx(t)dr .
t

Approximating with a Taylor series expansion:

x(t + Ar) = x(t) + x(1)At + x(z)%z o x(”l)(t)% Hoee
If At, the sampling interval, is chosen small enough we can truncate the series after the second term.
Substituting the time value by a time index & and assuming a unit sample time”', equation (5.3.2) may be
approximated by the following discrete time non-linear state space model:

{xl [k + 1]} _{ x,[k]+ x, [k]At

Xk +11| | (1= Ath/ a)xy[k] - a™ At(c + dx] " [k)x, [k] + Atulk] (53.3)

k] = x[k].
Now we test for I/O model existence by ensuring that:
Oy[k] oy[k]
o [k] Ox,[k]

ok +11 ok +1]
ox[k] ox,[k]

det

(x.u)

I As the model is also dependent on the sample interval the A# notation will be retained in the terms having a direct
dependence on this value.

104

Performing the required differentiation gives:

1 0
det
L

The I/0 model therefore exists for all positive real values of At and is independent of the operating point.

=At#0.

(x.)

Therefore, none of the assumptions made above are violated. We obtain the actual I/O model by a combination
of time index shifts and repeated substitutions from equation (5.3.3) thus:
ylk +2]=x[k + 1]+ x, [k +1]At
where:
X[k +1]Ar = At|(1 = Ath/ a)x, [k]— a ' At(c + dx{_l[k])xl[k] + Atu[k]] .
Substituting for x, gives:
ylk +2]1= y[k + 11+ (1= Ath/ a)x, [k1At — a” ' At* (¢ + dy” " [k y[k] + Ar* u[k]
but:
xy[k]At = y[k+1]- y[k].

Therefore:
Y[k +2]= y[k + 11+ (1= Atb/ a)(y[k + 11— y[k]) — a ' A (¢ + dy” "' [k y[k]+ Af* u[k] .

After some basic algebraic manipulation and a time index shift, we get the final /O model:

Vkl=Q2—-Ath/a)ylk —1]
+a \(Ath—a— AtPe— APdy” [k — 2])yk - 2] (5.3.4)
+ AP ulk-2].

It is also convenient for us to obtain the derivatives of the system output with respect to the information vector,

that is dy[k]/ dy[k]:

"MK _ - apra

ok —1]
_OtK _ (Ath—a — At*c — At* (y = Ddy” [k - 2])
ovlk -2] 535
1K) (3.5
oulk —1]
Mo
oulk —2]
The following parameters were selected for the model in equation (5.3.4):
e Sample time At=0.2 seconds (i.e. Five samples per second.)
e Mass constant a=1.0 kg.
e Friction Constant b=1.0 kg/s.
e Spring constants ¢, d and ¥ equal to 1, 20 and 3 respectively.
Equations (5.3.4) and (5.3.5) may therefore be reduced to:
Y[k]=1.8y[k —1]—(0.84 + 0.8y [k —2]) y[k — 2]+ 0.04 u[k — 2] (5.3.6)

105

and:

MK _ ¢
L
Y 2
ST 0.84-1.6y*[k —2]
k] _
oulk —1]
_k 04,
oulk 2]

(5.3.7)

Figure 5.3.1 shows the open loop response of the system to zero mean square wave with a 20 second period and
an amplitude of 0.6N. Clearly, the system is lightly damped, apparently stable for the given input signal, and

with non-linearity that is evidenced by the signal having different responses for positive and negative inputs.

Displacement (N)

0 5 10 15 20 25 30 35 40 45 50
Time (Sec)

Figure 5.3.1. Open Loop Response of a Non-Linear Mass-Spring-
Damper.

The first step in applying instantaneous linearization control is to obtain an identification model of the plant. To
do this we set up an experiment that simulates the plant in an open loop manner, connect a non-linear ARX
model in parallel with it, and train the LMN network in the ARX model. The Simulink model (ctrlexp3a) and
parameters used are shown in Figure 5.3.2 and Table 5.3.1 respectively. The network structure chosen is a result
of the information contained in equation (5.3.4). From this equation we know the number of time lags necessary
for each information vector element and that the plant non-linearity is dependent on y[£-2] only. It is therefore
not necessary to have multiple regions for any of the other inputs to the information vector. The random signal

input is used in an attempt to persistently excite the plant.

106

Y#

U

v

dv#/dPhi » |1

>
Signal gl declau] » = dY#/dPhi
Generator — [_?,’ dEc/dY Adapt On ;{E
Nonlinear ARX (LMN) adapt
Random

4: O
Sequence
» Mass Spring

v ry#y

Damper System

Plant

Figure 5.3.2. Identification System Model for Non-Linear Mass-
Spring-Damper.

System ldentification Setup Parameters

General Network Parameters
Network Type: Local Model Network
Initial Weight Range (Min/Max): 0/0
Validity Activation Threshold (%0): 2
Sample Time (Sec): 0.2

Network Inputs (In information vector order)

Name Range (Min/Max) Number of regions Overlap (%)
ylk-1] -1/1 1 100
y[k-2] -1/1 5 40
ulk-1] 5/5 1 100
ulk-2] 5/5 1 100

Error Tolerances (%)
Relative Differential Absolute Differential Relative Value Absolute Value

10 0.05 0.01 0.01

Adaptation Method Parameters
Adaptation Algorithm: Exponential Forgetting Factor
Initial Covariance Diagonal: 10

Forgetting Factor: 0.995

Random Signal Parameters
Minimum / Maximum -0.45/0.45
Probability of value change (%) 15

Distribution Uniform

Sample Period 0.2

Table 5.3.1. Non-Linear Mass-Spring-Damper Identification Setup Parameters.

The simulation length was set for a period of 2000 seconds, the adaptation was enabled, and the model allowed
to process. Upon completion the weights were saved, the adaptation was disabled, and the simulation was run

with the new weights and a different input to verify the accuracy of the identified model. Generally, this would

107

be done by comparing the outputs of the network model to the plant output. However, in this case we know,

from equation (5.3.7), the analytic expressions for the coefficients that we wish to identify.

The identified coefficients, namely the differentials of the output with respect to the information vector, can be
extracted from the identified network model (see section 4.5.4) by determining the network Jacobian using the
algorithm derived in section 3.4.3. This was done with the system shown in Figure 5.3.2, using the same input

square wave as in the open loop response test shown in Figure 5.3.1. The results are plotted in Figure 5.3.3.

2
I A e L A e e |
15
1 —
——— dylk)/dylk-1]
dy[k)/dy[k-2]
T —— dylk]/dulk-1]
% ——— dylkl/dulk-2]
£ 05
S
E
-0.5
-1
1.5
0 5 10 15 20 25 30 35 40 45 50
Time (Sec)
Figure 5.3.3. Polynomial Coefficients of the Non-Linear Mass-Spring-Damper.

If we compare the values in the plot to those resulting from the analytic solution of equation (5.3.7), we see that
the identification model has performed an excellent job of estimating the correct values. Recall that these values
are none other than the coefficients of the polynomials describing the discrete time transfer function of the plant

at each instant in time:

MkT= Sk = M(plk) = %

A(z)=1+az++a, z"
B(z) =b, +blz+w+bnhz"”

kD)
Oulk —n;, —1i]

ulk —ny]

ok

a. = — ———— ; b:

1 . 1
ay[k - l] k,Viell--n,] k,Vie[0--ny]

By determining the roots of these polynomials for each instant of time it is possible, for a given input signal, to
plot the pole zero migration resulting from the system non-linearity. If the input signal excites all the regions of
interest then an understanding of the plant stability characteristics is possible. Such a plot was generated for the
system under investigation using the previously trained identification model and square wave input. The results
are shown in Figure 5.3.4. It now becomes evident that although the plant remained stable during the open loop

simulations, there are certain regions in which instability may occur.

108

Figure 5.3.4. Pole Zero Plot for Mass-Spring-Damper System.

The final step is to use these polynomials in the design of a linear controller, which is executed at each sample.
This was done by creating a Simulink block that implements the controller (sometimes referred to as an RST
controller) shown in equation (5.3.8):

ulk]= ﬁZ)(T(Z)F[k] —S(2)ylk]) (5.3.8)
The coefficients to the controller polynomials are obtained by solving for the Minimum Degree Pole Placement
(MDPP) design discussed in section 4.4.2 at each sample. The resulting Simulink model (ctlexp3b) is shown in

Figure 5.3.5.

Y#
>t
S| dy #/dPhi >
0.1
g dY#/dPhi
22.0.92 dEc/dU =
4 = asamon K=
Nonlinear ARX (LMN) adapt
E GV #/aphi Ly
A R - Mass Spring —> (]
Generator e Y P DamperSystem 4_:
\ ym.y#.y.r
Random RST Controller (SISO) =@
Sequence
u

Figure 5.3.5. Instantaneous Linearization Control of Mass-Spring-
Damper.

The MDPP design parameters were setup so that the controller solution would cause the closed loop system to
behave as a first order system having the following transfer function:

0.1
z—09

G(z) =

109

Note that in this controller system the required behaviour is obtained as a direct result of the controller design
algorithm and is not supplied as a reference model. The inclusion of the transfer function block in the Simulink
model is purely to provide data for graphical comparison of the results. The additional delay included in this

block is to account for the unit delay in the plant / controller system.

The weights obtained during the identification phase of the experiment were loaded into the identification model
and, with the adaptation switched off, the simulation was allowed to execute. The results for various input

signals are shown in Figure 5.3.6 below:

05 05
Error Statistics (%FS): | | \ Error Statistics (%FS): ‘\
Mean: 1.4355) / Mean: 1.4644]—‘ [|
0.4 [Variance: 1.9818 - 0.4 [Variance: 2.9196 i “
Maximum: 5.3473 \ Maximum: 8.5427 ‘]_‘ ‘ | r ‘
\ u
L \ 5 |
03 T 0.3
— ymlK] —— ymlk] | | ‘ ‘ ‘
y#lk] | / vt | | | ‘ |
= y[[:]] “‘ ‘ /\ ‘ ‘ / /
—
:) } i

Output
°

Output
°

oz —— Yl — T
— 1K /\
0.1 ‘ / ‘
|
C

B/ Y
0.3 03 T ‘ \‘ i ‘
}] N
[5 10 15 20 Timf(ss!c' 30 35 40 45 50 o 5 10 15 20 Tlmj(ﬁsgc) 30 35 40 45 50
(a) Sine Wave A=0.5, f=1/20 Hz (b) Uniform Random Signal, A=0.5, p=15%

) 3
Error Statistics (%FS). 72 2
Mean: 5.2223

0.4 Variance: 52.4877

7
Maximum: 30.148 (\//) (\//'
2
0.3 /

T
= B I/ ! /

Output
°
o
S—
=

o 5 10 15 20 25 30 35 40 5 50 “o 5 10 15 20 25 30 35 40 s 50
Time (Sec) Time (Sec)

(c) Square Wave A=0.5, f=1/20 Hz (d) Input for the Square Wave Signal

Figure 5.3.6. Mass-Spring-Damper System -Closed Loop Responses.

The plots show that, for the sine wave input (a), the system has achieved a response very close to the desired
results. For the random input signal (b), tracking error was acceptable, except for short periods of large and
rapidly input changes. The cause of these errors becomes more evident when we examine the response to a
square wave input (c), together with the control signal generated by such input (d), and highlights the Achilles

Heel of the instantaneous linearization technique.

110

When rapid changes are demanded of the plant the system moves, within one or two samples, from one
operating region to another. The control action generated at the original operating point, based on the linear
model at that point, is no longer valid at the next operating point. That is, the bias term in the local linearization
has become excessive. The plant therefore under or overshoots the desired point because the control gains are

sub optimal for the new region of operation.

This problem has been, in part, the motivation behind researchers pursuing model predictive control, which
attempts to optimise the future control action at each sample. Interestingly, this approach still requires an
estimate of the plant Jacobian at each sample, and thus, the techniques developed in this dissertation have

application to these methods as well.
5.3.2 STABILISING AN INVERTED PENDULUM

In the previous section, we saw how instantaneous linearization could be applied to control a BIBO stable plant.
We now show how the technique may be applied to an initially unstable system. The system under consideration
is commonly used in the control literature to compare different control techniques, namely the inverted

pendulum problem. (IPP)

Ev m, J
[
[[
[
I T Fh
| ' "
| Fh
|
| d
[
| R
|
| Yy M —- F
|
[
=0
Figure 5.3.7. The Inverted Pendulum Problem.

Shown in Figure 5.3.7 is a diagrammatic representation of the inverted pendulum problem. The system consists
of a rigid cart of mass M that moves on a flat frictionless surface in the lateral direction only. The location of the
cart's centre of mass, measured from some initial point, is represented by the variables x,, and y,, in the
horizontal and vertical planes respectively. Suspended d units above the cart's centre of mass is a pivot, on which
arigid pendulum arm rotates. Attached to the arm is a mass. The arm-mass combination has a total mass m,
whose centre of mass is located at the co-ordinates x,, and y,, which, when measured along the pendulum arm, is
[units from the pivot. The input to the system is a force F acting horizontally on the cart while the controlled
value is the angle 6, measured between the vertical and the pendulum arm. The objective is to control the
pendulum mass, assuming no input constraints, such that the angle 0 will track an arbitrary reference signal in

the range +/2 radians.

111

The pendulum and cart co-ordinates are related to each other by:

X,, =X +1sin(8)

Y =Yy Tlcos(0)+d . (5.3.9)

By differentiating equation (5.3.9) twice and substituting, we may express the horizontal and vertical forces

acting on the pendulum as:

Fj, = m¥,, = mi,, +ml cos(0)8 —mlsin(0)6*
. . 5.3.10
F, =m§,, + F, =—ml cos(9)0° + mlsin(0)6 + mg ()

where F, is the force due to gravity. Resolving the rotational dynamics of the arm-mass combination results in:
T =J0 = ml*0 = -1 cos(0)F, +Isin(O)F, (5.3.11)
where 7 is the torque at the pivot and J is the moment of inertia of the arm-mass combination. Resolving the
horizontal forces acting on the cart gives:
F—F,=Mxi,. (5.3.12)
Substituting (5.3.10) into (5.3.11) and (5.3.12) and rearranging terms results in the following pair of coupled

differential equations:

1
M+m
6 = 2%[— cos(0)%), + gsin(8)].

[F — mlcos(0)0 + mlsin(@)é’z]

jéM:

These equations are decoupled by substituting the equation for 6 into the equation for X,,, rearranging, and

substituting the result back into the equation for 0. Defining the state vector, x =[x;, x;,, 6 9]T the final

result may be written in state space form as:

Xy Xy
i ! (E—lgsin6’0056+ Zsin(é?)ézj
M %+l—%c0526 m 2
0 o
j . (5.3.13)
0 S— : (—Ecosﬁ + (M * mjgsin@ - lsin(&)cos(&)ﬁzj
(7+21—lcos 6) m m

Xm
X
6=[0 o 1 o] ™.
2
6
In order for the instantaneous linearization technique to be applied, one must first identify the plant. This
appears to be a dilemma, as we need to collect information from an initially unstable plant to design the

controller. The solution is to first design a linear controller that stabilises the plant in some predetermined

(possibly narrow) operating region. The identification network is placed in parallel with the stabilised closed

112

loop plant-controller system, which is then subjected to disturbance. Once the identification network has
successfully identified this initial operating region, it can be used in a feedback control loop. In the feedback
mode, the identification model is permitted to continue adapting as the operating region is gradually extended.

In this way, the identification network slowly extends its "knowledge" of the plant behaviour while maintaining

a controlled stable closed loop system.

To demonstrate this, a discrete time linear state feedback LQR controller was designed to stabilise equation
(5.3.13). This was done by linearizing the state space model about an equilibrium point, and solving the Ricatti
equation (using the "lqrd" command in the Matlab Control System Toolbox) to arrive at a set of regulator gains.
The design may be summarised by the following set of values and matrices:

M=05 m=02, [=03, g=98

x=[0 0 0 0", w=[0]

0 1 0 0 0
(|00 -16333 0f | 16667
00 0 1 0

0 0 19.0556 0 -2.7778
(20 0 0 0
0 20 0 0
=10 0 2 o =l
0 0 0 20

K =[-3.6350 —-6.1624 —40.2405 -10.3404].

The final Simulink models used to perform the simulation for both the initial identification (ctlexp5a) and the

"extension" step (ctlexpSb) are shown in Figure 5.3.8.

SN I -

B ! o o T B
decidul p = dY#/apni A > seeiao | »r= dY#/aPhi

oEcray Adogt O >E [@R ;{ﬁ

Nonlinear ARX (LMN) adapt Nonlinear ARX (LMN) P

E Ly, [Gv7amh =

":sr Controller (SISO) ;{5

(a) Initial Indentification System Model (b) "Extended" Identification and Control System Model

Figure 5.3.8. System Models used for Instantaneous Linerization Control of an Inverted Pendulum.

It is important to note the zero order hold block placed in front of the plant in Figure 5.3.8 (a). This block is
necessary to prevent the identification network from identifying the closed loop system dynamics, and must
have the same sampling period as the identification network. It is also the reason why the discrete time version

of the LQR design algorithm was used in the regulator design.

113

To perform the initial identification step the network was setup as described in the table below:

System ldentification Setup Parameters

General Network Parameters
Network Type: Local Model Network
Initial Weight Range (Min/ Max): 0/0
Validity Activation Threshold (%): 2
Sample Time (Sec): 0.02

Network Inputs (In information vector order)

Name Range (Min/Max) Number of regions Overlap (%)
ylk-1] -1/1 5 40
y[k-2] -1/1 1 100
ufk-1] -50/50 1 100
ulk-2] -50/50 1 100

Error Tolerances (%)
Relative Differential Absolute Differential Relative Value Absolute Value

10 0.0005 0.01 0.01

Adaptation Method Parameters
Adaptation Algorithm: Exponential Forgetting Factor
Initial Covariance Diagonal: 10

Forgetting Factor: 0.995

Random Signal Parameters
Minimum / Maximum -13/13
Probability of value change (%) 15
Distribution Uniform

Sample Period 0.02

Table 5.3.2. Inverted Pendulum Identification Setup Parameters

The simulation was run for 500 seconds using a random disturbance input signal (see table), with the final
weights being saved. These weights were then transferred to the "extension" part of the experiment where the
simulation was run for 700 seconds using a 0.5Hz square wave demand signal. The demand input, initially at 0.4
radians in amplitude, was gradually increased to its maximum amplitude of 1.4 radians over a 500 seconds
period. For the final 200 seconds the demand amplitude remained constant at 1.4 radians. The network was
allowed to adapt during this entire period. Once 700 seconds had elapsed the weights were saved and the
process repeated using the weights obtained so far, but with the square wave being replaced by a uniformly
distributed random demand signal. The maximum amplitude of the signal was permitted to follow the same
amplitude schedule used for the square wave. The probability of value change at each sample was set to 15%.
The final weights were saved and the adaptation was turned off. Finally, the system was presented with various
demand signals without any adaptation taking place. The closed loop response of the final system to these

signals is shown in Figure 5.3.9.

114

Error Stalistios (%FS):
Mean: 2.1039
Variance: 17.832
Maximum: 25.3756

i
VRN

h - - - = T] 0.5
\ i i . J \ J
10 N | | I
— ym[k] i N N 11/ 11 — ym[k] | I |
M y#[K] il M M il il M y#[k] \ | \
— y[[:]] A1/ | A Y — ‘ \
— T | | | |y |y — \
. il L i i | i T ‘ \

(a) Sine Wave, f=1Hz (b) Square Wave, f=0.667Hz

—
—

Theta (Radians)
Theta (Radians

T T T -
Error Statistics (%FS): \ \ Error Statistics (%FS): I
an: 0.54797 \ \ Mean: 1.6559

Variance: 1.4447 \ Variance: 4.6425 ’—‘
Maximum: 14.8339 TN . | |Maximum: 16.7748 H |

1H \\ ! Il “
o.s‘\ -) 05 {‘ |

. ‘ O AN A

| \ ! \

S —— ymk] \ 4 ‘ ‘ !

= = & T

— 1] \ \ — 1k

45 T T 45 L
0 1 2 3 4 5 6 7 8 ° 10 0 1 2 3 4 5 6 7 8 9 10
Time (Sec) Time (Sec)

N

E—

i

Theta (Radians)
s
@
/

Y

Theta (Radi:)
& °
=

—

(c) Sawtooth Wave, f=0.4Hz (d) Uniform Random Signal, Max A=1.5 Rad, p=15%

Figure 5.3.9. Instantaneous Linearization Control of an Inverted Pendulum - Closed Loop Responses.

Clearly, the final controller performs exceptionally well demonstrating tracking to pendulum angles in excess of
85 degrees. Tracking is remarkably accurate in all but the most difficult of circumstances. Note that the control
signal input must approach infinity as the pendulum approaches 90 degrees. Thus, as these large angle values are

approached, numerical stability problems of the controller design algorithm result.

5.4 DISCUSSION AND CONCLUSIONS

We conclude this chapter by discussing some of the general issues that have not been directly addressed in the
previous examples but are pertinent to the approach used. Most of the issues have a direct parallel in linear
system identification and adaptive control. The reader can thus obtain a wealth of pertinent knowledge from

more general texts (Astrom and Wittenmark, 1995, Ljung, 1991, 1999) in these areas.
5.4.1 APRIORI PLANT INFORMATION

As with any system that requires system identification, the most challenging part of the problem is usually

identifying the system involved. The problem is further exacerbated when one adds the additional burden of

115

identifying non-linearities in the system. Unfortunately, this step, in one form or another, is impossible to avoid.
It simply is not feasible to control a system about which the controller has no knowledge. This knowledge may
be implicit in the control design procedure or is attained on-line, as in an adaptive system. Usually, the most
desirable form of this knowledge is a mathematical model based on the physics of the problem. This form
generally permits a critical analysis of the plant's characteristics, leading to information about its stability and
operating conditions and, ultimately, a controller design. However, in many practical systems, an accurate
mathematical model cannot be derived because one's knowledge of the system is incomplete, or it becomes
impractical to model all the processes taking place in the system. Fortunately, the information describing a
system usually resides somewhere in the continuum between the extremes just mentioned. It is desirable to
exploit this information to its maximum extent. This point is demonstrated by the use of equations (5.3.6) and
(5.3.7), obtained because we had a through understanding of the plant physics, to determine the lag space and
operating regions of the identification network used in section 5.3.1. The information was not, however, a

prerequisite for the application of the technique.

The more analytically derived information we have the better. For example, we may typically know the general
structure of the plant, represented by equation (5.3.4), but not know the constants for the particular system under
consideration. This greatly eases the system design burden, because the lag space that must be represented by
the information vector and the variables on which the non-linearities are dependent are immediately known. This
information becomes crucial in determining the optimal identification model. Methods exist for estimating the
required lag space (He and Asada, 1993) however, if the natures of the non-linearities are unknown, it is difficult

to even estimate the optimum number and location of operating regions to be used.

Clearly, LMN networks enjoy a substantial advantage over MLP networks in this area. Because LMN networks
are essentially interpolated linear models, the relationship between the network weights and the physical system
is reasonably transparent. This permits the use of linear control techniques in analysing the network results. It
also allows a designer to insert a priori knowledge about the plant in the network weights before training is

started. In this way, an identification model may be very close to the overall solution at the outset.

Although not shown in this dissertation, this same technique could be used to provide the initial stabilising
control for a system such as the IPP. In section 5.3.2 a LQR regulator was designed to provide initial
stabilisation. An alternative approach may have been to obtain a linear I/O model of the system at the
equilibrium point and insert this model into the identification network, thus dispensing with the initial LQR

design altogether.
5.4.2 IDENTIFICATION IN THE PRESENCE OF DISTURBANCES

An important issue, beyond the scope of this dissertation, is the effect of disturbance noise on the identification
process and network adaptation. The techniques shown here use only NARX models of the process. To account
for disturbances it may be necessary to use models with more complexity, such as NARMAX models, in the
identification step. These models, and their application to non-linear system identification, have been well

studied in the literature and the reader is referred to references such as (Leontaritis and Billings, 1985) and

116

Sjoberg et al, (1994) for further information. Unfortunately, these more complicated forms all use feedback in

the network structure, which may lead to stability problems of the network model.
5.4.3 THE NETWORK VERIFICATION STEP

In contrast to batch mode techniques, when the implemented adaptation activation method is used, the
verification step used to test the identification model is not strictly necessary. This is because the adaptation is
automatically switched off when the network meets the required specification and all subsequent input samples
may be viewed as test vectors for the network. If the network attains a state where the adaptation method
effectively remains deactivated then the required mapping has been learnt. When the network cannot attain the
required accuracy or is over fitting the solution, the adaptation mechanism will be activated whenever an input
sample falls within a region of the mapping where the network is providing an inaccurate estimate. Naturally,
this behaviour is a trade-off because adapting the mapping in one area can lead to deterioration of network
performance in another. If the network is incapable of providing the required mapping, instability of the

adaptation process may result.
5.4.4 STABILITY

The stability of the system during adaptation is a function not only of the controller / model combination but
also, as implied in the previous section, of the adaptation process itself. This problem, generally referred to as
robust adaptive control, has been tackled, in the linear case, by a number of researchers with a substantial degree
of success. Typically, a Lyapunov stability approach is used to derive the laws and conditions under which
parameter adaptation will remain stable. The non-linear counterpart is a complex problem which, to the author’s
knowledge, is still an open issue. This observation obviously raises questions about the practicality of the
approach used in section 5.3.2. Clearly, the approach can work, but the exact conditions under which stability

can be maintained must be resolved before being used on a "real" plant were instability poses any serious risk.

The use of Local Model Networks makes the stability analysis of the non-adapting closed loop stem far more
tractable, because the system may now be viewed as a number of interpolated linear systems. As demonstrated in
section 5.3.1, the pole zero plot of the system can be generated as a by-product of the identification model.
However, this plot must be used with caution, as its accuracy is entirely dependent on the accuracy of underlying
identification model. System poles and zeros can exhibit extreme sensitivity to small variations in the
polynomial coefficients resulting in an inaccurate pole zero plots. Furthermore, the plot cannot be obtained until
the plant is identified, which, for an unstable system requires the controller. The only solution to this dilemma

triggers the problem described in the previous paragraph.

Note that these issues are not a result of using neural networks per se, but are general problems associated with

any non-linear control technique that is adapting because of incomplete plant information.
5.4.5 MISCELLANEOUS ISSUES

The examples shown in this chapter have used both discrete and continuous time models of the plant. The

identification models and controllers are, because of their structure, all discrete time systems. This means care

117

must be taken to ensure that the sample rates are high enough to capture all appropriate plant dynamics. If the
plant under consideration is not band limited, or the measurements contain unwanted high frequency

components then anti-aliasing filters must be used.

Although only SISO plants have been shown in the control examples, the extension of the technique to MIMO
systems is straightforward. Naturally MIMO identification is considerably more complex and, if possible, it is
usually beneficial, from an identification viewpoint, to break the MIMO system down into a number of separate

MISO systems. From a controller perspective this may be counter productive and a trade-off may be necessary.

The bulk of this work demonstrates the calculation of differentials using LMN networks. The computing
technique is also applicable, in a simpler form, to RBF networks. The approach in MLP networks has already
been well established. In the interests of brevity, the experiments for each network type have not been presented,
but simulations using all the networks were performed. These simulations demonstrate, from a systems

viewpoint, the ability to interchange various networks.

118

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 SYNOPSIS

This work has covered a range of topics all aimed at demonstrating the online computation and use of
feedforward artificial neural networks (ANN) Jacobian or system gradient information in neurocontrol
applications. More specifically, the networks under consideration were the multi-layer perceptron (MLP), the
radial basis function (RBF) network and local model network (LMN) with particular emphasis being placed on

the latter.

Beginning in chapter two, an attempt was made to treat these networks as information processing systems whose
analysis could be subdivided into three broad levels of consideration; computation abilities, algorithmic
structure, and implementation details. Furthermore, all the networks were described under a general unifying
neural network framework consisting of five major elements, namely; the operating environment, the network

components, an activation update rule, the objective function and lastly the learning or adaptation rule.

The adaptive control operating environment of interest dictated that the key computational ability required was
for the networks to describe a non-linear dynamic system using a time history NARX model. It was shown in
chapter two, using various results from approximation theory, such as the Stone-Weierstrass theorem,
Kolomogorov’s representational theorem and Shannon’s sampling theorem, that ANN’s do indeed provide a
viable solution to the non-linear function approximation problem, the basis required for the formation of an
NARX model. Unfortunately, these results provided no insight into the actual design procedure required for an
MLP network to perform an approximation within a given error tolerance. More insight could indeed be
obtained for LMN and particularly for RBF networks, if some knowledge about the extent of the domain and
smoothness of the approximated function was known. The main criticism of RBF networks was their inefficient
use of memory and susceptibility to the curse of dimensionality. The LMN provided a reasonable compromise
between the disadvantages of RBF and MLP networks. LMN’s also provided an intuitively appealing and

familiar approach to “pre-program” the network with a-priori information.

In chapter three, the core of this dissertation, the algorithmic and implementation levels of analysis were

addressed. The chapter began by concentrating on the activation update rule element for each of the network

119

types. Simple Matlab code listings were provided that showed how efficient activation rule implementations
could be accomplished. In particular, for RBF and LMN networks, it was shown how an axis orthogonal
implementation could be used to dramatically reduce the computational expense for high dimension systems.
Also demonstrated was how a LMN network could be constructed within the general neural network framework

described in chapter two.

Next, significant space was dedicated to describing the objective function and adaptation or learning rule
elements. These two elements are inextricably linked as the adaptation rule follows from the objective function
that is optimised when learning is performed. It was shown, by judicious choice of variable construction, that the
learning rule for each of the three network types could be described as a linear or pseudo-linear regression
problem. This allows the adaptation of all three network types to be approached as an optimisation problem and
to develop solutions using a common systems identification framework without regard to the intricacies
associated with specific network formulations. With this ground work in place a number of adaptation rules or
training algorithms were presented based primarily on recursive least squares (RLS) principles. Each of these
algorithms attempted to address potential difficulties and problems encountered when performing online system
identification. The final method presented, namely the recursive SVD algorithm, was developed by the author to
circumvent many of the problems associated with other RLS methods. The section on the learning rule closed
by discussing implementation specific issues such as network specific regressor calculation and the back

propagation algorithm, the use of dead zones, global vs. local learning and structure optimisation.

The penultimate section of chapter three derived an expression for the network Jacobian for each network type.
The expression for the LMN network forms the basis for satisfying the first research objective. That is, to derive
an algorithm to efficiently calculate the system gradient of an LMN network. The second objective, to
implement this algorithm in an online manner that can be used in non-linear adaptive neurocontrol, is also
discussed in detail. This includes the presentation of Matlab code which makes maximum use of the efficiencies
of the previously presented axis orthogonal implementation of the activation rule for both RBF and LMN

networks.

In the fourth chapter, focus shifted to the control aspects of the neurocontrol problem. A five step design
methodology, of which three were discussed in detail, was presented. The two omitted steps, stability and
parameter convergence analysis were considered beyond the scope of the research topic. Important results from
the remaining three steps, namely, plant description, control law formulation and adaptation mechanisms were
derived. The conditions for which a valid I/O plant description of a continuously differentiable discrete time
non-linear state space plant could be attained were derived. Two different control law formulations, series
inverse control (SIC) and the RST controller using minimum degree pole placement design (MDPP), were
discussed. The latter control law formulation was coupled with system identification using neural network to
form a control system based on instantaneous linearization. Adaptation mechanisms for various combinations of

indirect and direct adaptation in both model reference and self tuning regulator systems were also investigated.

Finally, in chapter five, the information and analyses of the preceding chapters was combined to perform a

number of simulations based on a Simulink block library which was specifically created for this purpose. In this

120

chapter it was shown how the online LMN Jacobian extraction algorithm enhances the flexibility of the LMN
permitting its use in both model free and model based neurocontrol applications, thus satisfying the third
research objective. This was done using both SIC and instantaneous linearization paradigms controlling a

number of different plants.

6.2 OBSERVATIONS AND CONCLUSIONS

During the course of this work there have been many insights and new problem perceptions that have come to
light. The set of conclusions presented in this section only highlights what the author believes to be the most

important. We begin with the research objectives:

- All three research objectives were met. Algorithms to efficiently calculate system gradient or network
Jacobian matrices were devised not only for the LMN network, but also for the RBF and MLP networks as

well.

— These algorithms were successfully implemented in an online fashion for all three network types. It was
shown, for axis orthogonal RBF and LMN networks, that this could be achieved with minimal

computational expense during the activation rule evaluation.

- The algorithms were demonstrated in a non-linear adaptive neurocontrol setting using both model free and
model based control paradigms. The LMN network was successfully substituted for an MLP network with
no changes to the system structure thus demonstrating the enhanced flexibility of the LMN network and
how it could be used as a “black box” replacement for an MLP network. Obviously this was subject to the

capability of each of the chosen network structures to perform the required mapping.

Although the research objectives were successfully met there are a number of difficulties associated with the
general approach. In particular, the proposed time shift operator polynomial representation of the plant for non-

linear adaptive control applications is problematic for all but the simplest systems:

- Knowledge about the plant delays and order must be implicitly included in the control system structure.
This knowledge is typically not available. Furthermore, for MIMO systems, the delay and number of zeros
associated with each output may differ complicating the plant description still further. The resulting system
is inefficient and difficult to successfully identify. More compact and succinct plant descriptions, such as
those obtained when using subspace identification methods, may provide a better framework for

neurocontrol systems.

- The system root locations may be highly sensitive to operator polynomial coefficient values. This means
that the parameter identification must be highly accurate in order for good control to be achieved. If this
cannot be guaranteed then the controller design must be made robust to these uncertainties, potentially
negating the performance improvement gained by using non-linear or adaptive techniques. This renders the

entire approach moot.

121

Another area that is difficult to successfully implement is the online adaptation of the system:

- The recursive algorithms used to train the networks in an online environment can be difficult to setup and
are prone to numerical problems. In this work significant effort has been spent to address this issue by

investigating and developing algorithms that are stable and robust to numerical errors.

- A thorough understanding is necessary to recognise when adaptation problems may arise. An unwary user
may easily be lulled into a sense of false security as the adaptation process may appear to work well under
test or simulated conditions but real-world controllers must be robust to many environmental uncertainties.
This obviously requires rigorous proofs to ensure convergence to the correct system parameters. Although
the requirement for persistent excitation and the conditions under which this can be achieved are well

known, it may be difficult to achieve in practice.

- Proofs to ensure stability of the system are also crucial. Although some stability results do exist they are
applicable only to specific conditions and system constructs. To the author’s knowledge all the current

proofs involving neural networks in a control context are only applicable to direct adaptation schemes.

In spite of these difficulties, with care, successful implementations can be created. The use of network Jacobian
information can be useful not only in control applications but also for applications such as virtual
instrumentation, system monitoring and signal selection and fault detection to name but a few. However, the
difficulties pointed out in many of the conclusions above highlight the fact that ANN’s should be viewed as only
another tool at a designer’s disposal and not, as is sometimes done, a “silver bullet” to avoid tackling the real

issues underlying a problem.

6.3 RECOMMENDATIONS FOR FUTURE WORK

As with most research, the evolution of this work has raised more questions than were answered. There were
many topics discussed for which substantial bodies of work exist but were only superficially considered. In
particular, the topics of approximation theory and neurocontrol come to mind. Neural networks have been
applied and studied in many different fields resulting in a wide range of nomenclatures, perspectives and
customised algorithms. This multi-disciplinary nature has resulted in a large volume and scope of research
material. Varying degrees of mathematical sophistication and diversity are required to fully understand the
potential pitfalls associated with various methods, making it difficult for new researchers or developers to
effectively apply the techniques in a reasonable time frame. With these comments in mind, the following

therefore represents a partial list of potential future work:

- In this work an attempt has been made to provide a common framework in which to discuss the various
network structures. However, the majority of the literature tends to consider the various network paradigms
as distinct. The author believes that this approach is causing potential synergies to be overlooked. For
example it could be highly advantageous if a method could be devised to map RBF or LMN structures into
an MLP network, much like the LMN may be considered an extension of the RBF network. This may, at

first, seem absurd, but it is intriguing to note that the Gaussian activation functions used in RBF’s can be

122

constructed from “back to back” sigmoid activation functions frequently used in MLP’s. The payoff is that

such a mapping would potentially allow the RBF network construction results to be used for MLP networks.

- Another area of unification where potential synergies exist is in a more holistic approach to supervised and
unsupervised networks. Although not explicitly discussed in this work, unsupervised networks have also
been successfully used in neurocontrol work. They exhibit interesting properties particularly in terms of
expressing a plant’s salient features in a compact form using techniques such as Principle Component
Analysis (PCA) or Independent Component Analysis (ICA). These approaches enhance the ability to reject
statistically irrelevant information such as system noise. This is precisely one of the shortcomings of the
techniques used in this work. Interestingly, the recursive SVD algorithm developed in section 3.3.8
performs essentially the same function, albeit in a different context, as principle component analysis and

provides a promising starting point for this research.

- The SVD algorithm mentioned above also tackles the problem of algorithmic stability associated with the
recursive identification procedure. Although there have been other attempts at using the SVD in recursive
neural network system identification, all these approaches tend to focus on either improving the covariance
update equation or the parameter update equation separately. The distinctive formulation of the objective
function in section 3.3.8 allows one to address both of these equations simultaneously and to the authors
knowledge the resulting method is unique. The algorithm has some interesting properties, but more
refinements are needed to reduce the computational expense and to obtain more rigorous results regarding

its stability and convergence properties.

- Another important and ongoing research area in neural networks is the structure optimisation problem.
Clearly this is closely related to defining the initial construction of a network in a logical and methodical
manner. We have seen in chapter two that, given limited information about the desired mapping, RBF
networks can be constructed, using spectral analyses, which are guaranteed to approximate the mapping
within some given error bound. Such results are very limited for MLP’s and LMN design techniques might
also be enhanced by using a spectral approach. If no knowledge about the desired mapping is known then
the problem reverts to one of online structure optimisation. This is an extremely challenging area of

research in which completely generalized results are perhaps not even possible.

- Most directly related to extensions of the work presented here would be the enhancement of the Jacobian
calculations for non-axis orthogonal networks, which may not always provide the best structure for a
particular problem. Also desirable would be a method for determining error bounds associated with the
Jacobian information. More in-depth applications in neurocontrol could also be useful; particularly the use
of Jacobian information in reducing the computation expense incurred in the optimisation search phase of
model predictive control applications. Finally, in the control arena, stability results and parameter

convergence of the neural network approach continues to be a challenging research problem.

The list of suggested further work presented above is by no means exhaustive. With the exception of the last two

bullets, the common theme that the author feels is important going forward is that primary research efforts be

123

focused on a holistic view of neural network processing and the enabling mathematics. While niche algorithms
and applications are important for solving engineering problems and may provide insights not previously
recognised, research should primarily be aimed at enhancing the essential body of knowledge necessary for the

advancement of the field.

124

REFERENCES

Albus, J.S. (1971), A Theory of Cerebellar Function, Mathematical Biosciences, Vol. 10, pp 25-61
Albus, J.S. (1981), Brains Behaviour and Robotics, Peterborough, NH: BYTE Books

Anderson, J. Pellionisz, A. Rosenfeld, E. [Editors], (1990), Neuro-computing 2. Foundations of Research,
MIT press, Cambridge, Mass.

Anderson, J. and Rosenfeld, E. [Editors], (1988), Neuro-computing Foundations of Research, MIT press,
Cambridge, Mass.

Arbib, M. A. (Editor), (1995), The Handbook of Brain Theory and Neural Networks, Bradford Books, MIT
Press, Cambridge MA

Astrom, K.J. Wittenmark, B. (1995), Adaptive Control, 2" Edition, Addison —~Wesley

Astrom, K.J. Wittenmark, B. (1997), Computer-Controlled Systems: Theory and Design, 3" Edition,

Prentice-Hall

Bailer-Jones, C.A.L. MacKay, D.J.C. Withers, P.J. (1998), A recurrent neural network for modelling
dynamical systems, Computational Neural Systems, Vol 9, pp 531-547

Barron, Andrew R. (1994), Approximation and Estimation Bounds for Artificial Neural Networks, Machine
Learning, Vol 14, pp 115-133

Bierman, G.J. (1977), Factorization Methods for Discrete Sequential Estimations, Academic Press, New

York NY

Bosman, S. (1996), Locally weighted approximation - Yet another type of neural network, MSc Thesis,

Department of Computer Science, University of Amsterdam, The Netherlands, July 1996

van Breeman, A.J.N. (1997), Neural Adaptive Control, Master's Thesis - Report # BSCO03N97, University
of Twente, The Netherlands, January 28 1997

van Breeman, A.J.N. Veelenturf, L.P.J. (1996), Neural Adaptive Feedback Linearization Control, Journal A,
Vol. 37, No. 3, pp 65-71, October 1996

Deutsch, S. (1983), RCG Cable Analysis of a Dendritic Tree Based on Rall's Idealised Model, IEEE Trans.
on Systems, Man, and Cybernetics, Vol. SMC-13, No. 5, pp 1007-1010, September / October

Eberhart, R.C. Dobbins, R.-W. (1990), Early Neural Network Development History: The Age of Camelot,
IEEE Engineering in Medicine and Biology Magazine, Vol. 9, No. 3, pp 15 - 18

125

Foss, B.A. Johansen, T.A. (1993), On local and fuzzy modelling, Proceedings of the Third International
Conference on Industrial Fuzzy Control and Intelligent Systems, IFIS '93, pp 80 - 87, Houston, TX,

December

Golub, GH., Van Loan, C.F. (1989), Matrix Computations, The Johns Hopkins University Press, Baltimore
MD

He, X. and Asada. H. (1993), 4 New Method for Identifying Orders of Input-Output Models for Nonlinear

Dynamic Systems, Proceedings of the American Control Conference, San Francisco California

Hunt, K.J. Sbarbaro, D. (1991), Neural Networks for Nonlinear Internal Model Control, IEE Proceedings
Part D, Vol. 138, No. 5 pg 431-438, September 1991

Hunt, K.J. Haas, R. Murray-Smith, R. (1996), Extending the functional equivalence of radial basis function
networks and fuzzy inference systems, IEEE Transaction on Neural Networks, Vol 7, No. 3 pp 776 - 781,
May

Hunt, K.J. [Editor], (1993), Polynomial Methods in Optimal Control and Filtering, Volume 49 of IEE

Control Engineering Series, Peter Peregrinus

Hunt, K.J. Sbarbaro, D. Zbikowski, R. Gawthrop, P.J. (1992), Neural Networks for Control Systems - A
Survey, Automatica, Vol 28, No. 6 pp 1083-1112

Hyotyniemi, H. (1994), Self-Organizing Artificial Neural Networks in Dynamic Systems Modeling and
Control, Helsinki University of Technology, Control Engineering Laboratory, Report 97, November

Hyd&tyniemi, H. (1996), Regularization of Parameter Estimation, The 13™ IFAC World Congress, July 1-5,

San Francisco, California.

Johansen, T.A. Foss, B.A. (1992), 4 NARMAX model representation for adaptive control based on Local
Models, Modeling Identification and Control, Vol. 13, No. 1, pp25-39

Johansen, T.A. Foss, B.A. (1993), Constructing NARMAX models using ARMAX models, International
Journal of Control, Vol. 58, pp1125-1153

Leontaritis, 1.J. Billings, S.A. (1985), Input-Output parametric model for non-linear systems. Part I:

Deterministic Non-linear Systems, International Journal of Control, Vol 41, pp303-328

Lewis, E.R. (1983), The Elements of Single Neurons: A Review, IEEE Trans. on Systems, Man, and
Cybernetics, Vol. SMC-13, No. 5, September / October

Ljung, L. and Sonderstrom, T. (1983), Theory and Practice of Recursive Identification, MIT Press,
Cambridge MA

Ljung, L. (1991), System Identification Toolbox User's Guide, The Mathworks Inc

126

Ljung, L. (1999), System Identification - Theory for the User, Prentice Hall

Motter, M.A. (1998), Control of the NASA Langley 16 Foot Transonic Tunnel with the Self Organising
Feature Map, Ph.D Thesis, University of Florida.

Murray-Smith, R. and Johansen T.A.[Edited], (1997), Multiple Model Approaches to Modelling and

Control, Taylor and Francis, London

Niznik, C.A. (1983), The Neural Path Probabilistic Delay Model, IEEE Trans. on Systems, Man, and
Cybernetics, Vol. SMC-13, No. 5, pp 1014-1018, September / October

Parker, S.P. (Editor in Chief), (1997), Dictionary of Mathematics, McGraw-Hill, New York NY

Pearlmutter, B.A. (1989), Learning State Space Trajectories in Recurrent Neural Networks, Proceedings of

International Joint Conference on Neural Networks, Washington DC Vol. 2, pp 365-372

Pineda, F. (1987), Generalization of Back Propagation to Recurrent Neural Networks. Physical Review
Letters, Vol. 19, pp 2229-2232

Platt, J. (1991), A resource allocating network for function interpolation, Neural Computation, Vol 3, pp
213-225

Poggio, T. and Girosi, F. (1990), Gaussian Networks for Approximation and learning, Proceedings of the
IEEE, Vol. 8, No. 9, pp 1481 - 1497, September

Psaltis, D. Sideris, A. Yamamure, A.A. (1988), 4 Multilayered Neural Network Controller, Control
Systems Magazine, Vol. 8, No. 2, pp 17-21

Quinlan, P.T. (1998), Structural change and development in real and artificial neural networks, Neural

Networks, Vol: 11, Issue: 4, pp. 577-784, June

Rumelhart, D.E. McClelland, J.L. and the PDP Research Group. (1986), Parallel Distributed Processing,
Vols. I and II, MIT Press, Cambridge Mass.

Sanner, R.M. and Slotine, J.J.E. (1992), Gaussian Networks for Direct Adaptive Control, IEEE Trans. on
Neural Networks, Vol. 3, No. 6, pp 837-863, November

Sbarbaro, D. and Johansen, T.A. (1997), Multiple local Laguerre models for modelling nonlinear dynamic
systems of the Wiener class, IEE Proceedings- Control Theory and Applications, Vol. 144, No. 5, pp 375-380

Schwenker, F. Kestler, H.A. Palm, G. (2001), Three learning phases for radial-basis-function networks,
Neural Networks, Vol 14, pp 439-458

Sjoberg, J. Hjalmlmerson, H. Ljung, L, (1994), Neural Networks in System Identification, Pre-prints of the
10" IFAC symposium on SYSID, Copenhagen, Denmark. Vol 2, 49-71

127

Soloway, D. Haley, P.J. (1997), Neural Generalized Predictive Control: A Newton-Raphson Implementation,
NASA TM 110244, NASA Langley Research Center, February 1997.

Serensen, O. (1994), Neural Networks in Control Applications, Ph.D Thesis, Aalborg University,

Department of Control Engineering
Stevens, J.K. (1985), Reverse Engineering the Brain, Byte, pp 287-299, April 1985

Stepniewski, S.W. Jorgensen, C.C. (1998), Toward a More Robust Pruning Procedure for MLP Networks,
NASA TM 1998-112225, Ames Research Center, Moffet Field, CA, April 1998

Sundararajan, N. Saratchandran, P. (2000), Analysis of Minimal Radial Basis Function (RBF) Neural
Network Algorithm for Real-Time Identification of Nonlinear Dynamic Systems, 1EE Proceedings — Control
Theory Applications, Vol 147, No. 4 pp 476-484

Suykens, J.A.K. Bersini, H. (1996), Neural Control Theory: an Overview, Journal A, Vol. 37, No. 3, pp 4-10,
October 1996

Suykens, J.A.K. Vandewalle, J.P.L. De Moor, B.L.R. (1996), Artificial Neural Networks for Modelling and

Control of Non-Linear Systems, Kluwer Academic Publishers

Suzuki, S. (1998), Constructive function approximation by three-layer artificial neural networks, Neural

Networks, Vol 11 pp1049-1058

Williams, R.J. and Zisper, D. (1988), A Learning Algorithm for Continually Fully Recurrent Neural
Networks, Technical Report ICS Report 8805, UCSD, La Jolla, CA 920923, November

Yingwei, L. Sundararajan, N. Saratchandran, P. (1997), A4 Sequential Learning Scheme for Functional
Approximation Using Minimal Radial Basis Function Neural Networks, Neural Computation, Vol 9, pp 461-
478

Yingwei, L. Sundararajan, N. Saratchandran, P. (1998), Performance Evaluation of a Sequential Minimal
Radial Basis Function (RBF) Neural Network Learning Algorithm, 1EEE Transaction on Neural Networks,
Vol 9, No. 2 pp 308-318

Zbikowski, R. Hunt, K.J. Dzielinski, A. Murray-Smith, R. Gawthrop, P.J. (1994), 4 Review of Advances in
Neural Adaptive Control Systems, ESPRIT I1I Project 8039, Daimler Benz AG, University of Glasgow,
Scotland, June 1994

Zbikowski, R.W. (1994), Recurrent Neural Networks: Some Control Aspects, Ph.D. Thesis, Department of
Mechanical Engineering, Glasgow University, Glasgow Scotland, May

128

Zhang, Y. Dai, G. Zhang, H. and Li, Q. (1994), A SVD-Based Extended Kalman Filter and Applications to
Aircraft Flight State and Parameter Estimation, IEEE Proceedings of the American Control Conference,

June 1994, Baltimore, Maryland.

Zhang, Y. and Li, Q. (1999), 4 Fast U-D Factorization-Based Learning Algorithm with Applications to
Nonlinear System Modelling and Identification, IEEE Transaction on Neural Networks, Vol 10, No. 4 pp 930
-936

129

	TITLE PAGE
	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	TABLE OF FIGURES
	NOMENCLUTURE
	INTRODUCTION
	BACKGROUND
	OBJECTIVE
	SCOPE
	RESULTS AND CONCLUSIONS

	INTRODUCTION TO NEURAL NETWORKS
	INTRODUCTION
	ARTIFICIAL NEURAL NETWORK SYSTEM COMPONENTS
	THE BIOLOGICAL CONNECTION
	THE FEED FORWARD NEURAL NETWORK APPROXIMATION PROBLEM
	Problem definition
	Existence of a uniform approximation
	Approximation Construction
	Interpolation of the approximation
	Contending with the curse of dimensionality and using a-prio

	DISCUSSION AND CONCLUSIONS

	NEURAL NETWORKS - STRUCTURE AND IMPLEMENTATION
	INTRODUCTION
	NETWORK STRUCTURE - THE ACTIVATION RULE
	Multi-Layer Perceptron Network Structure
	Radial Basis Function Network Structure
	Local Model Network Structure

	TRAINING THE NETWORK PARAMETERS – THE LEARNING RULE
	The Optimisation Problem
	On-line vs Batch Mode Processing
	Network Parameterisation as a Linear Optimisation Problem
	The Steepest or Gradient Descent Method
	The Recursive Least Squares (RLS) Method
	The Exponential Forgetting Factor with Conditional Updating
	Relationship between Adaption Gain and the forgetting Factor
	Persistent Excitation and The Estimator Wind-up Phenomenon
	Conditional Updating
	Directional forgetting
	The Square Root Algorithm

	Regularization - The Constant Trace and Kalman Filter Method
	The Recursive Singular Value Decomposition (SVD) Algorithm
	Implementation of the Learning Rule
	Adaption with a Dead Zone
	Network Specific Formulations
	Calculation of the Regressor
	Global vs. Local Learning

	Structure Optimisation

	DETERMINING THE NETWORK JACOBIAN
	Determining MLP Network Jacobian Information
	Determining RBF Jacobian Information
	Determining LMN Jacobian Information

	CONCLUSION

	CONTROL USING NEURAL NETWORKS - NEUROCONTROL
	INTRODUCTION
	HISTORICAL BACKGROUND
	PLANT DESCRIPTION
	CONTROL LAW FORMULATION
	Series Inverse Control
	Minimum Degree Pole Placement Design
	Constraints on the design specification polynomials
	Factorization of the process zero polynomial

	ADAPTATION MECHANISMS
	The adjusted parameters
	Incorporating the design specification
	Changing the parameters
	Using the Neural Network Jacobian Information

	CONCLUSIONS

	SIMULATIONS
	INTRODUCTION
	INVERSE NEURAL CONTROL
	System Description
	Linear State Feedback control
	Series inverse control using direct adaptation
	Series inverse control using indirect sensitivity adaptation

	CONTROL USING INSTANTANEOUS LINEARIZATION
	Controlling a non-linear Mass-Spring-Damper System
	Stabilising an inverted pendulum

	DISCUSSION AND CONCLUSIONS
	A Priori Plant information
	Identification in the presence of disturbances
	The network verification step
	Stability
	Miscellaneous issues

	CONCLUSIONS AND RECOMMENDATIONS
	SYNOPSIS
	OBSERVATIONS AND CONCLUSIONS
	RECOMMENDATIONS FOR FUTURE WORK

	REFERENCES
	Albus, J.S. (1971), A Theory of Cerebellar Function, Mathem
	Albus, J.S. (1981), Brains Behaviour and Robotics, Peterbor
	Anderson, J. Pellionisz, A. Rosenfeld, E. [Editors], (1990),
	Anderson, J. and Rosenfeld, E. [Editors], (1988), Neuro-com
	Arbib, M. A. (Editor), (1995), The Handbook of Brain Theory
	Åström, K.J. Wittenmark, B. (1995), Adaptive Control, 2nd E
	Åström, K.J. Wittenmark, B. (1997), Computer-Controlled Sys
	Bailer-Jones, C.A.L. MacKay, D.J.C. Withers, P.J. (1998),
	Barron, Andrew R. (1994), Approximation and Estimation Bound
	Bierman, G.J. (1977), Factorization Methods for Discrete Seq
	Bosman, S. (1996), Locally weighted approximation - Yet ano
	van Breeman, A.J.N. (1997), Neural Adaptive Control, Master'
	van Breeman, A.J.N. Veelenturf, L.P.J. (1996), Neural Adapt
	Deutsch, S. (1983), RCG Cable Analysis of a Dendritic Tree
	Eberhart, R.C. Dobbins, R.W. (1990), Early Neural Network D
	Foss, B.A. Johansen, T.A. (1993), On local and fuzzy modell
	Golub, G.H., Van Loan, C.F. (1989), Matrix Computations, The
	He, X. and Asada. H. (1993), A New Method for Identifying O
	Hunt, K.J. Sbarbaro, D. (1991), Neural Networks for Nonline
	Hunt, K.J. Haas, R. Murray-Smith, R. (1996), Extending the
	Hunt, K.J. [Editor], (1993), Polynomial Methods in Optimal C
	Hunt, K.J. Sbarbaro, D. Zbikowski, R. Gawthrop, P.J. (1992),
	Hyötyniemi, H. (1994), Self-Organizing Artificial Neural Ne
	Hyötyniemi, H. (1996), Regularization of Parameter Estimati
	Johansen, T.A. Foss, B.A. (1992), A NARMAX model represen
	Johansen, T.A. Foss, B.A. (1993), Constructing NARMAX model
	Leontaritis, I.J. Billings, S.A. (1985), Input-Output param
	Lewis, E.R. (1983), The Elements of Single Neurons: A Revie
	Ljung, L. and Sonderstrom, T. (1983), Theory and Practice of
	Ljung, L. (1991), System Identification Toolbox User's Guid
	Ljung, L. (1999), System Identification - Theory for the Us
	Motter, M.A. (1998), Control of the NASA Langley 16 Foot Tr
	Murray-Smith, R. and Johansen T.A.[Edited], (1997), Multipl
	Niznik, C.A. (1983), The Neural Path Probabilistic Delay Mo
	Parker, S.P. (Editor in Chief), (1997), Dictionary of Mathem
	Pearlmutter, B.A. (1989), Learning State Space Trajectories
	Pineda, F. (1987), Generalization of Back Propagation to Re
	Platt, J. (1991), A resource allocating network for functio
	Poggio, T. and Girosi, F. (1990), Gaussian Networks for App
	Psaltis, D. Sideris, A. Yamamure, A.A. (1988), A Multila
	Quinlan, P.T. (1998), Structural change and development in
	Rumelhart, D.E. McClelland, J.L. and the PDP Research Group.
	Sanner, R.M. and Slotine, J.J.E. (1992), Gaussian Networks
	Sbarbaro, D. and Johansen, T.A. (1997), Multiple local Lagu
	Schwenker, F. Kestler, H.A. Palm, G. (2001), Three learni
	Sjöberg, J. Hjalmlmerson, H. Ljung, L, (1994), Neural Networ
	Soloway, D. Haley, P.J. (1997), Neural Generalized Predicti
	Sørensen, O. (1994), Neural Networks in Control Application
	Stevens, J.K. (1985), Reverse Engineering the Brain, Byte,
	Stepniewski, S.W. Jorgensen, C.C. (1998), Toward a More Ro
	Sundararajan, N. Saratchandran, P. (2000), Analysis of Min
	Suykens, J.A.K. Bersini, H. (1996), Neural Control Theory: a
	Suykens, J.A.K. Vandewalle, J.P.L. De Moor, B.L.R. (1996),
	Suzuki, S. (1998), Constructive function approximation by t
	Williams, R.J. and Zisper, D. (1988), A Learning Algorithm
	Yingwei, L. Sundararajan, N. Saratchandran, P. (1997), A
	Yingwei, L. Sundararajan, N. Saratchandran, P. (1998), Pe
	Zbikowski, R. Hunt, K.J. Dzielinski, A. Murray-Smith, R. Gaw
	Zbikowski, R.W. (1994), Recurrent Neural Networks: Some Con
	Zhang, Y. Dai, G. Zhang, H. and Li, Q. (1994), A SVD-Based E
	Zhang, Y. and Li, Q. (1999), A Fast U-D Factorization-Based

