
UTILISING LOCAL MODEL NEURAL NETWORK JACOBIAN INFORMATION

IN NEUROCONTROL

Author:

David John Carrelli

A dissertation submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in

fulfilment of the requirement for the degree of Master of Science in Engineering.

Johannesburg, March 2005

DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted for the Degree of Master of

Science in Engineering at the University of the Witwatersrand, Johannesburg. It has not been submitted before

for any degree or examination in any other University.

(Signature of candidate.)

On this the _________ day of ________________ in the year _______

i

To Bertha and June

ii

ACKNOWLEDGEMENTS

I am indebted to those people who have provided inspiration, support and the many comments and suggestions

that have made this dissertation possible. My supervisor, Professor Brian Wigdorowitz, deserves special mention

for his continual interest, unfailing patience, and belief in my abilities during those times when progress was

lacking or hindered. I would also like to express my appreciation for the financial assistance provided to me by

the Foundation for Research and Development (FRD), and the University of the Witwatersrand Senior Bursary

schemes, during a portion of the time in which this research was conducted.

iii

ABSTRACT

In this dissertation an efficient algorithm to calculate the differential of the network output with respect to its

inputs is derived for axis orthogonal Local Model (LMN) and Radial Basis Function (RBF) Networks. A new

recursive Singular Value Decomposition (SVD) adaptation algorithm, which attempts to circumvent many of the

problems found in existing recursive adaptation algorithms, is also derived. Code listings and simulations are

presented to demonstrate how the algorithms may be used in on-line adaptive neurocontrol systems. Specifically,

the control techniques known as series inverse neural control and instantaneous linearization are highlighted.

The presented material illustrates how the approach enhances the flexibility of LMN networks making them

suitable for use in both direct and indirect adaptive control methods. By incorporating this ability into LMN

networks an important characteristic of Multi Layer Perceptron (MLP) networks is obtained whilst retaining the

desirable properties of the RBF and LMN approach.

iv

TABLE OF CONTENTS

INTRODUCTION... 1
1.1 BACKGROUND .. 1
1.2 OBJECTIVE ... 2
1.3 SCOPE... 3
1.4 RESULTS AND CONCLUSIONS... 3

INTRODUCTION TO NEURAL NETWORKS ..5
2.1 INTRODUCTION... 5
2.2 ARTIFICIAL NEURAL NETWORK SYSTEM COMPONENTS.. 5
2.3 THE BIOLOGICAL CONNECTION .. 8
2.4 THE FEED FORWARD NEURAL NETWORK APPROXIMATION PROBLEM .. 9

2.4.1 Problem definition.. 9
2.4.2 Existence of a uniform approximation ... 10
2.4.3 Approximation Construction .. 11
2.4.4 Interpolation of the approximation... 12
2.4.5 Contending with the curse of dimensionality and using a-priori information 17

2.5 DISCUSSION AND CONCLUSIONS ... 23

NEURAL NETWORKS - STRUCTURE AND IMPLEMENTATION.. 26
3.1 INTRODUCTION... 26
3.2 NETWORK STRUCTURE - THE ACTIVATION RULE .. 26

3.2.1 Multi-Layer Perceptron Network Structure.. 26
3.2.2 Radial Basis Function Network Structure .. 29
3.2.3 Local Model Network Structure... 35

3.3 TRAINING THE NETWORK PARAMETERS – THE LEARNING RULE ... 40
3.3.1 The Optimisation Problem ... 41
3.3.2 On-line vs Batch Mode Processing .. 42
3.3.3 Network Parameterisation as a Linear Optimisation Problem.. 43
3.3.4 The Steepest or Gradient Descent Method ... 44
3.3.5 The Recursive Least Squares (RLS) Method ... 45
3.3.6 The Exponential Forgetting Factor with Conditional Updating Method.. 47
3.3.7 Regularization - The Constant Trace and Kalman Filter Methods. .. 53
3.3.8 The Recursive Singular Value Decomposition (SVD) Algorithm.. 54
3.3.9 Implementation of the Learning Rule... 61
3.3.10 Structure Optimisation.. 66

3.4 DETERMINING THE NETWORK JACOBIAN.. 67
3.4.1 Determining MLP Network Jacobian Information... 67
3.4.2 Determining RBF Jacobian Information .. 67
3.4.3 Determining LMN Jacobian Information... 72

3.5 CONCLUSION .. 74

CONTROL USING NEURAL NETWORKS - NEUROCONTROL.. 77
4.1 INTRODUCTION... 77
4.2 HISTORICAL BACKGROUND .. 78
4.3 PLANT DESCRIPTION .. 79
4.4 CONTROL LAW FORMULATION.. 81

4.4.1 Series Inverse Control .. 81
4.4.2 Minimum Degree Pole Placement Design.. 83

4.5 ADAPTATION MECHANISMS .. 88
4.5.1 The adjusted parameters ... 88
4.5.2 Incorporating the design specification ... 90

v

4.5.3 Changing the parameters .. 91
4.5.4 Using the Neural Network Jacobian Information... 93

4.6 CONCLUSIONS .. 94

SIMULATIONS... 97
5.1 INTRODUCTION... 97
5.2 INVERSE NEURAL CONTROL ... 98

5.2.1 System Description... 98
5.2.2 Linear State Feedback control .. 99
5.2.3 Series inverse control using direct adaptation .. 100
5.2.4 Series inverse control using indirect sensitivity adaptation.. 102

5.3 CONTROL USING INSTANTANEOUS LINEARIZATION... 103
5.3.1 Controlling a non-linear Mass-Spring-Damper System ... 103
5.3.2 Stabilising an inverted pendulum ... 111

5.4 DISCUSSION AND CONCLUSIONS... 115
5.4.1 A Priori Plant information .. 115
5.4.2 Identification in the presence of disturbances .. 116
5.4.3 The network verification step... 117
5.4.4 Stability .. 117
5.4.5 Miscellaneous issues .. 117

CONCLUSIONS AND RECOMMENDATIONS... 119
6.1 SYNOPSIS.. 119
6.2 OBSERVATIONS AND CONCLUSIONS .. 121
6.3 RECOMMENDATIONS FOR FUTURE WORK... 122

REFERENCES .. 125

vi

TABLE OF FIGURES
Figure 2.2.1. Neural Network Components. ... 6
Figure 2.3.2. A Generalised Neuron Structure. ... 8
Figure 3.2.1. Multi-Layer Perceptron Network Structure. .. 27
Figure 3.2.2. General RBF Network Structure.. 29
Figure 3.2.3. Axis Orthogonal RBF Network Example. ... 31
Figure 3.2.4. General LMN Network Structure. ... 36
Figure 3.5.1. Neural Network Function Identification Computation Flow Chart. .. 76
Figure 4.5.1. Block diagram of a Model Reference Adaptive System. ... 89
Figure 4.5.2. Block diagram of an indirect Self Tuning Regulator. .. 90
Figure 5.2.1. Non-Linear First Order Plant - Open Loop System Model and its Response.................................. 98
Figure 5.2.2. State Feedback System Model and its Closed Loop Responses. ... 99
Figure 5.2.3. Inverse Neural Controller System Model and its Closed Loop Responses.................................... 100
Figure 5.2.4. Comparison of Inverse and Linear State Feedback Controller Mappings. 102
Figure 5.2.5. Indirect MLP Inverse Controller and its Closed Loop Responses. .. 103
Figure 5.3.1. Open Loop Response of a Non-Linear Mass-Spring-Damper. .. 106
Figure 5.3.2. Identification System Model for Non-Linear Mass-Spring-Damper. .. 107
Figure 5.3.3. Polynomial Coefficients of the Non-Linear Mass-Spring-Damper... 108
Figure 5.3.4. Pole Zero Plot for Mass-Spring-Damper System... 109
Figure 5.3.5. Instantaneous Linearization Control of Mass-Spring-Damper. ... 109
Figure 5.3.6. Mass-Spring-Damper System -Closed Loop Responses.. 110
Figure 5.3.7. The Inverted Pendulum Problem. .. 111
Figure 5.3.8. System Models used for Instantaneous Linerization Control of an Inverted Pendulum................ 113
Figure 5.3.9. Instantaneous Linearization Control of an Inverted Pendulum - Closed Loop Responses. 115

vii

NOMENCLUTURE

Variable Description

u Plant inputs.

y Plant outputs and / or network outputs.

je Standardized basis vector along the jth dimension of an n-dimensional hyper surface.

N, No Scalar variable representing number of network hidden units.

l
For MLP networks: An integer layer index. For RBF and LMN networks: The integer number
of activated basis function units. Also equal to the number of elements contained in

0Iξ .

im The number of units contained in the ith layer of an MLP network.

n Number of elements in the network information vector. (ab qnpnn +=)

kba nnn ,, Maximum number of unit delays for the plant output elements, plant input elements, and plant
transport respectively, contained in the network information vector.

qp, Number of plant inputs and plant outputs represented in the information vector respectively.

x Network information vector or plant state vector.

Θ,θ Network weight or vector / matrix of weights.

Iji ξξ ,, Elliptical integration function centres. Each centre may be regarded as an element of the set of
lattice points Lξ .

Σ,σ Elliptical integration function variance as a scalar variables and matrix respectively.

i∆ Lattice sample spacing along the ith dimension.

Functions Description

(.)g Activation function or model validity function.

(.)ι Integration function or net function.

(.)δ Dirac impulse function.

().col Function that sequentially stacks all the columns of the matrix argument.

().diag Function that constructs a null matrix of appropriate size and places its vector argument along
the main diagonal.

Set Description

ba×ℜ
The set of Real numbers. Superscript designated number of dimensions that member variables
may take on.

ba×ℵ
The set of Natural numbers. Superscript designated number of dimensions that member
variables may take on.

viii

Set Description

K Closed and bounded subset representing the domain of the information vector having
dimensions. n

L
{ niiL ,,1 K= }is an n-tuple of integers representing the locations of the lattice points contained

in Lξ .

Lξ Set representing the spatial lattice point vertices on an n-dimensional hyper surface.

0Iξ
Set representing the spatial lattice point vertices on an n-dimensional hyper surface that
contributes to a network output. In general LII ξξξ ⊆∈

0
.

Symbology Description

Italics Designates a variable when used in an equation.

Bold Italics Generally designates a vector variable.

UPPERCASE
ITALICS Generally designates a matrix variable.

UPPERCASE Generally designates a matrix function.

Courier Designates computer code.

[.] Indicates discrete time indexes or matrix elements.

T[.] Matrix or vector transpose.

⊗

Kronecker tensor product. If A and are matrices having dimension and B nm×
qp× respectively then BA⊗ is the nqmp × matrix formed by taking all possible products

between the elements of A and . That is: B

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⊗

BaBaBa

BaBaBa
BaBaBa

BA

mnmm

n

n

L

MMMM

L

L

21

22221

11211

.

ix

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Over the last decade or more, there has been substantial interest in the use of both supervised and unsupervised

neural networks to solve non-linear control problems. This has led to a new class of techniques collectively

referred to as neurocontrol. Many different methods have been proposed (Psaltis et al, 1988; Hunt and Sbarbaro,

1991; Hunt et al, 1992; Sorensen, 1994; Suyken et al, 1996; van Breeman and Veelenturf, 1996; Soloway and

Haley 1997; Motter, 1998) however, all systematic engineering approaches have considered three crucial and

interrelated steps.

First, a fundamental strategy or control paradigm must be selected. This can be broadly subdivided into model

based or model free approaches, both of which may or may not be adaptive, deterministic or optimal. This

decision is influenced by factors such as the control objective, the amount of information available about the

process being controlled and the environmental constraints (noise, computing resources, cost, etc.) in which the

system is to operate.

Second, the type of neural network(s) to be used in implementing the control paradigm must be selected. To do

this, a thorough understanding of the different network types and their fundamental characteristics is essential.

These characteristics may include (in no particular order) but are not necessarily limited to:

1. Approximation abilities:
• Can the network approximate the necessary functions?
• Generalisation - How well does the network approximate data not in the training set?
• Over fitting - Does the network tend to over fit the training set?
• Does the network provide the information required by the selected control paradigm?

2. Identification issues:
• Number, rate and stability of parameter convergence.
• Suitability for on-line adaptation. (If required)
• Discrete time vs. continuous time systems.

3. Physical correlation and suitability to theoretical analysis:
• Can the network parameters be related to the physical systems involved?
• Is it possible to include a priori information in the network?
• Can the trained network be "reverse engineered" and analysed with current mathematical tools?

4. Computational requirements:
• Calculation complexity.
• Scalability and memory requirements.

1

As is typical of most engineering problems, no single network paradigm has favourable characteristics in all the

above categories, and any network design is thus the result of a trade off between these characteristics.

Third, the conditions under which the closed loop system is stable must be determined. This step is obviously

highly dependent on the preceding two points and is a fundamental challenge in the application of neural

networks to control. Obviously, successful implementation of this step is closely related to the mathematical

foundations of the networks involved. It is therefore most desirable to implement designs that use networks with

sound theoretical underpinnings and strong correlations to the physical attributes of the system dynamics. This

observation was an important motivating factor behind the work presented in this dissertation.

There are essentially two basic classes of neural networks commonly used in supervised neurocontrol, the Multi-

Layer Perceptron (MLP) and Radial Basis Function (RBF) networks. The former typically scores well in

approximation abilities, identification issues, and computational requirements. In particular, the differential of

the network output with respect to its inputs (termed system gradient or network Jacobian in this dissertation), is

readily obtained in an on-line fashion, with little computational overhead. This last feature is most desirable in

all forms of model based control. However, the MLP is poorly suited to theoretical analysis using current

mathematical tools and there is no easily recognisable correlation between its parameters and the physical

system it models. Basic RBF networks are more theoretically tractable but have been criticised for inferior

memory use, bad generalisation, a tendency to over fit training data, and their inefficiency in calculating system

gradient information on-line.

Local Model Networks (LMN) (Johansen and Foss, 1992, 1993; Bosman, 1996; Zbikowski et al, 1994; Murray-

Smith and Johansen, 1997) are closely related to basic RBF networks but provide a good compromise between

the two extremes mentioned above. Structurally, they attempt to address the problems of inferior memory use,

bad generalisation and over fitting while still maintaining the tractability of basic RBF networks. However, since

they are based on RBF network principles, they do not appear to be widely used in control methods where on-

line system gradient information is required.

1.2 OBJECTIVE

The properties of LMN networks make them most amenable in the analysis of neurocontrol systems. If the

system gradient of such networks could be efficiently computed then, from a systems point of view, they could

be used as "black-box" replacements for MLP networks. Perhaps the most important attribute though, is that the

LMN networks remain transparent to the designer when performing closed loop system analysis or when

attempting to include a priori plant information. Therefore, the main objectives of this work are:

1) To derive an algorithm to efficiently calculate the system gradient of a LMN.

2) Implement this algorithm in an on-line manner that can be used in non-linear adaptive neurocontrol.

3) Show how this algorithm enhances the flexibility of the LMN permitting its use in both model free and

model based neurocontrol applications.

2

1.3 SCOPE

To achieve the stated objectives the subject matter of this dissertation has been arranged into three main areas,

namely, the relevant neural network theory and implementation, the basic approaches to neurocontrol and finally

simulation results.

We begin in chapter two by defining what a neural network is (in the context of this work) and presenting

selected results from approximation theory with explanations of how these results are relevant to the neural

network problem.

In chapter three the specific structural and algorithmic details of the MLP, RBF and LMN networks are

presented. This chapter constitutes the main body of the work and discusses in detail the calculation of the

network output, the adaptation or training of the network parameters and evaluation of the network Jacobian or

system gradient for each the three network types. It is here that the proposed system gradient algorithm is

developed, first for RBF networks, and then by extending this result to LMN networks. Although not formally

part of the objectives, a new on-line adaptation algorithm utilising a new and interesting objective function

formulation and Singular Value Decomposition (SVD) approach is also developed and presented.

Following this, in chapter four, the reader is introduced to the topic of neurocontrol. This is a large topic, in

which the majority of the details are beyond the scope of this dissertation. The focus has thus been placed on

defining a systematic approach to the topic by covering selected areas of system description and identification,

adaptation, and controller structure. Two methods in particular have been highlighted: inverse neural adaptive

control and instantaneous linearization. The penultimate section of this chapter highlights the connection

between the network Jacobian algorithm of chapter three and the neurocontrol approaches described in chapter

four.

In chapter five attention is turned to demonstrating the use of the described theory by presenting a number of

simulations. These simulations show the LMN networks used in an on-line environment performing both inverse

neural adaptive control and instantaneous linearization control. The chapter concludes with a discussion on the

selected control techniques, highlighting possible difficulties and pitfalls.

1.4 RESULTS AND CONCLUSIONS

In the sixth and final chapter discussion, conclusions and recommendations for future research are presented,

however, for completeness a very brief summary of the results and conclusions are presented here.

All the research objectives were successfully met and demonstrated for LMN networks. Additionally, algorithms

for extracting Jacobian information were derived for MLP and RBF networks and contrasted with the algorithm

obtained for LMN networks. Furthermore, a new adaptation algorithm, which attempts to circumvent some of

the problems with existing online adaptation schemes, was proposed.

Unfortunately a number of complications were encountered when using network Jacobian information in a

neurocontrol setting. These include the following basic problems. The network identification must be highly

accurate to achieve good control as the system root locations are highly sensitive to the network parameters.

3

Additionally, knowledge of the plant delays and number of zeroes is highly desirable to obtain good plant

descriptions. These characteristics are embedded in the polynomial description used for the plant, suggesting

that other approaches, such as sub-space methods, for the plant description may be better. Finally, the online

adaptation algorithms used to perform network training are prone to numerical difficulties and their setup can, in

practice, be problematic.

While successful results can be achieved, these characteristics mean that users must be cognizant of the potential

pitfalls, requiring that they have a thorough understanding of the underlying algorithms. This is particularly true

of the online adaptation computations.

4

CHAPTER 2

INTRODUCTION TO NEURAL NETWORKS

2.1 INTRODUCTION

Artificial Neural Networks1(ANN) systems may be viewed as general information processing systems. As such,

their analysis may be broken down into three distinct levels of description. The first, computational ability,

defines the goal that the system is required to achieve. The second level, the algorithmic level, specifies the

mathematical equations or formulas that can be instantiated in some physical way to achieve the computational

goals. Finally, there is the level concerned with the physical implementation of the algorithms themselves. This

chapter is concerned mainly with the computational abilities of neural networks and pays little attention to

algorithmic or implementation issues.

Before the computational abilities of a system can be clarified, the basic components of the system under

consideration must be defined. Therefore, in the next section, a very broad description of an artificial neural

network and its role in an ANN system will be given. This is followed by a rudimentary description of the

biological elements that inspired the development of such networks providing the reader a context in which to

place the terminology frequently used in connection with artificial neural networks. Next, the feed forward

neural modelling problem is formulated and a number of relevant results from mathematical approximation

theory are presented. This supports the validity of the selected approaches by demonstrating that the

computational abilities of the networks under consideration are sufficient to achieve a valid solution. Finally,

surrounding issues and chapter conclusions are presented.

2.2 ARTIFICIAL NEURAL NETWORK SYSTEM COMPONENTS

ANN systems are comprised of five basic elements. The first element is the components of the network itself

(Figure 2.2.1), which may be an abstraction (such as in a computer program) or physical hardware. This consists

1 The term "Artificial" is used to differentiate the networks described in this work from their true biological counterparts. All the

networks studied here are approached from a signal processing and approximation theory point of view. As will be seen in
later sections, their structure bears a striking resemblance to their biological cousins. This is undoubtedly due to the original
computation goal of attempting to devise networks which mimic certain brain behaviour. As biological networks are not the
topic of concern, the term "neural networks" is synonymous with "artificial neural networks" in this work.

5

of a collection of units or neurons, each of which, at any instant in time, has a state or activation level

represented by a real valued scalar. All the unit activations in a network are collectively referred to as the

activation state of the network. The units are interconnected by a number of connections, which essentially

define the structure of a network. In the ANN such structure is commonly in the form of unit layers. The

connection "strengths" define the degree to which the activation of any particular unit influences another. This

"connection strength" is determined by the network parameters or weights.

Processing Unit
or “Neuron”

Connections Activation Function Integration Function
g k (t)

g l (t)

g m (t)

θim

Parameters or Weights

))((ti xι)))(((tg ii xι

θin

θik

θil

Figure 2.2.1. Neural Network Components.

The second major element is the environment in which the ANN operates. It specifies what type of inputs and

outputs are observed by the network during its operation. In this work, these observations are the on-line

sampled data obtained from the process we wish to control and / or the signal to be tracked.

The third element is an activation-updating rule that describes how the network activation state is updated at

each moment in time. It is usually described by a large system of non-linear differential or, as in this work,

difference equations. This rule not only constrains the structure of the connections between the units, it also is

clearly related to the process performed by the units themselves. Mathematically, the unit activations are related

to the unit input connections in many varying ways. Generally, it may be divided into a two-stage process

described by)))(((tg xι where the result is a unit's output to the environment or its activation level, and x is the

unit inputs from the environment, and / or the activation level from other connected units. The function is

referred to as the activation function, and

(.)g

(.)ι is called the integration or net function. Some examples of

commonly used integration functions include linear:

bbx T
n

i
ii −Θ=−=∑

=

xx
1

)(θι , (2.2.1)

6

quadratic:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Θ−Θ=−=∑
=

n

T
n

i
ii bbx

θ

θ
θ

θι

0

0

,)(2

1

1

2

O
xxx , (2.2.2)

and elliptical (or spherical):

bbxx T
n

i
jjii

n

j
ij −−Σ−=−−−=∑∑

= =

)()())(()(
1 1

ξξξξσι xxx . (2.2.3)

The purpose of the integration function, which is typically fixed for an entire network, is to combine the unit

inputs with the network parameters in some meaningful way. In the above equations ξ,, ΣΘ and b all represent

the network parameters. The parameter b plays a particular role referred to as the bias value. This value basically

defines the "baseline" activation for the unit.

As with the integration function, many types of activation functions are also used, including signum and its

variations such as the threshold functions:

⎪
⎩

⎪
⎨

⎧

<−
=
>

=
0)(1

0)(0
0)(1

)(
x

x
x

x
ι
ι
ι

g , (2.2.4)

piecewise linear or entirely linear:

)()(
0)(0

1)(0)(
1)(1

)(

xx
x

x
x

x

ι

ι
ιι

ι

ag

xg

=

⎪
⎩

⎪
⎨

⎧

<
≤≤

>
=

, (2.2.5)

sigmoid, both unipolar and bipolar (equivalent to the hyperbolic tangent function):

c
e

ag T +⎟
⎠
⎞

⎜
⎝
⎛ −

+
=

−
5.0

1
1)(/)(xx ι , (2.2.6)

and exponential which is used with the elliptical integration function to give a Gaussian function:
)()(xx ι−= eg . (2.2.7)

The activation function's purpose is to generate the activation level of the unit given the integration function

value. It may differ from unit to unit, within the same network, to provide the desired behaviour for any

particular region of the network. A common combination is for a network's input and output units; those units

whose activation is directly obtained from and sent to the environment respectively, to be linear, while all other

so called hidden units are non-linear. These structures will be discussed in detail in the next chapter.

The fourth major element is the interpretation and objective functions. The interpretation function translates a

given networks activation state (distributed representation) or particular unit activation levels (local

representation) to some semantic interpretation. (i.e. It maps system states to physical interpretations.) The type

of function used varies, dependent on the ANN system's intended purpose. In this work, the interpretation

function is a scale factor (usually unity), which maps the network output unit activations to values which

7

represent some physical signal within the process we are attempting to control. Coupled with the interpretation

function is the objective function. This function maps system variables or states into a real number, whose

magnitude reflects how well the system is achieving its computation goal.

The fifth and final element is the learning or adaptation rule. This rule derives from a non-linear optimisation

problem, and forms a system of differential or difference equations that define a dynamic process that

determines how the network parameters are updated as a function of the system's current and past experiences.

The optimisation problem is defined by the objective function together with the network constraints and

environment. Essentially all ANNs attempt to combine these five elements in such a way as to solve some

meaningful problem.

2.3 THE BIOLOGICAL CONNECTION

There are numerous types of neural cells and structures found in the central nervous system. Cells found in the

sensory organs, and various parts of the brain, are frequently specialised. However, some neural cells exhibit

regular physical characteristics. These anatomical regularities were, on occasion, the inspiration for some of the

fundamental units found in artificial neural network models (Albus, 1971, 1981; Stevens, 1985). Clearly, the

neuron shown in Figure 2.3.2 is not anatomically correct, but, hypothetically it is sufficiently accurate to

describe the principal features of most neural cells. The reader is referred to Rumelhart and McClelland (1986),

Eberhart and Dobins (1990), Anderson and Rosenfeld (1988), and Anderson et al (1990) for more detailed

information.

The neuron can be broken down into three main sections; the cell body or soma, the dendritic tree, and the axon.

The soma contains those constituents common to most cells such as the nucleus, and substances necessary for

metabolism and protein synthesis. The intracellular liquid, cytoplasm and various other particles fill the entire

cell. The exact nature of the functions taking place in this area of the cell is unclear. Conceptually it will be

assumed that any information processing the neuron performs takes place here.

In order for the neuron to make contact with many other neurons, (as many as 105 in certain cells) the outer cell

membrane is shaped into many branches called dendrites, making up what is termed the dendritic tree. The

Dendritic Tree

Axon

omaCell Body or S

Figure 2.3.2. A Generalised Neuron Structure.

8

shape size and structure of the dendritic tree varies dramatically depending on the cell type and presumed

function.

The neuron sends its output signal to other neurons via the axon. These output signals take the form of a series

of electrical impulses. A resting potential of about 70 mV is present across the cellular membrane. By a process

of selective ion diffusion impulses of about 100 mV in amplitude and approximately 0.5 ms to 2 ms in duration

can be generated. The output information of the neuron is usually encoded in the frequency of these pulses,

which can travel at speeds of up to 100 m/s down the axon depending on the diameter and tissue covering it.

The connection between the output axons and dendrites of neural cells occurs in special formations called

synapses. The mechanisms involved in these synapses are complicated biophysical electrochemical processes.

Although there are still many questions surrounding these processes, a few basic facts can be stated. There are

two fundamental types of synapses, namely, excitatory and inhibitory, and to a reasonable first approximation, it

can be stated that the effects of the synapses on the membrane potential can be summed up linearly.

Unfortunately, the elementary structural features of a neuron give very little indication as to the workings of the

neuron itself. Functionally the neuron can best be described as a dynamic multi-input, single output device with

memory nonlinearities. This description encompasses a variety of extremely complex behaviour. As emphasised

by Lewis (1983), the neuron is an exceptionally complex machine, and warrants extensive study in its own right.

(Deutsch, 1983 and Niznik, 1983.)

From a systems viewpoint the human brain is estimated to contain more than 1012 neurons each having as many

as 103 synaptic junctions. This suggests there are approximately 1015 potentially modifiable connections; a

formidable system to analyse.

2.4 THE FEED FORWARD NEURAL NETWORK APPROXIMATION PROBLEM

Numerous authors have studied the problem discussed in the next four sections over a considerable length of

time. The details presented here are a small sampling showing only the most important results. The explanations

and theorems presented here closely follow the work in Zbikowski et al. (1994), (Sanner and Slotine, 1992), and

(Johansen and Foss, 1993). The interested reader is referred to these references for a more substantial list of

citations and in depth discussion.

2.4.1 PROBLEM DEFINITION

Before we can confidently use a neural network in control system design, it is necessary to establish their

approximation abilities given a particular control or modelling environment. We therefore begin by defining the

environment in which we expect the ANN to perform.

The use of feed forward neural networks (FNNs) in control is primarily based on the fact that many non-linear

systems can be described by the discrete time I/O representation shown in equation (2.4.1) below.

][])[,],[],[,],1[(][kennkunkunkykyfky bkka +−−−−−= KK (2.4.1)

9

Here, is the system output, is the system input, and is a zero mean disturbance term. The system

inputs and outputs are sampled with unit sample time and each sample is identified by the time index k. The

values n

][ky][ku][ke

a, nk, and nb represent a fixed number of unit delays. The function f(.) is minimally assumed to be

continuous. This type of system model is called a NARX (Non-linear Auto-regressive model with eXogenous

inputs) model and has been widely studied in non-linear systems identification. For notational convenience the

information vector x is defined as:

)(,]][,],[],[,],1[[][ab
nT

bkka qnpnnnnkunkunkykyk +=ℜ∈−−−−−= xx KK . (2.4.2)

This permits the system to be written as:

][])[(][kekfky += x . (2.4.3)

The problem addressed by the FNN is therefore to find a parameterised structure which emulates the non-linear

function f(.) given a finite number of I/O samples. The input to the network would thus be the information vector

while the output is an estimation of the plant output. We represent this by:

])[(ˆ][ˆ kfky x= . (2.4.4)

Mathematically we may define the FNN problem more concisely as follows; given a continuous mapping2

, find a representation of f by means of known functions, and a finite number of real parameters,

such that the representation yields a uniform approximation of f over K. The set K is an uncountable compact

(closed and bounded) subset of where p is the number of inputs, q the number of outputs, and n

qKf ℜ→:

ab qnpn +ℜ b and na

are, respectively, the number of input and output samples, for each input and output in x . The mapping f is

given by a finite number of sample pairs where s is the number of observed input

output pairs. This problem definition consists of two major elements. Firstly, the network must perform a

uniform approximation of f on K, and secondly, this approximation must be obtained by an interpolation of f(K)

from the samples (U

skKYU q
kk ,,1,),(K=ℜ×∈

k,Yk). To solve these problems we refer to a number of results from approximation theory.

2.4.2 EXISTENCE OF A UNIFORM APPROXIMATION

The first result is the Stone - Weierstrass theorem. This theorem provides a relatively simple set of criteria which

given functions must satisfy in order to uniformly approximate an arbitrary set of continuous functions on a

compact set K. Before stating the theorem the following definitions are presented:

Definition 1 - A set A of functions from to ab qnpnK +ℜ⊂ ℜ is called an algebra of functions iff Agf ∈∀ , and

ℜ∈∀α :

(i) ;Agf ∈+

(ii) ;Afg ∈

2 For simplicity, only the single output case (i.e. q=1) for the function f shall be considered, however, all the results presented also

hold for q>1.

10

(iii) ◊∈ .Afα

Definition 2 - A set A of functions from to ab qnpnK +ℜ⊂ ℜ is said to separate points on K iff

◊≠∈∃⇒≠∈∀).()(,, 212121 xfxfAfxxKxx

Definition 3 - Let A be a set of functions from to ab qnpnK +ℜ⊂ ℜ . We say that A vanishes at no point on K iff

, such that AfKx ∈∃∈∀ ◊≠ .0)(xf

Definition 4 - Let B be the set of all functions which are limits of uniformly convergent sequences with terms in

A, a set of functions from to ab qnpnK +ℜ⊂ ℜ . Then B is called the uniform closure of A. ◊

Theorem 1 (Stone - Weierstrass) - Let A be an algebra of some continuous functions from a compact set

 to ℜ , such that A separates points on K and vanishes at no point of K. Then the uniform closure

B of A consists of all continuous functions from K to

ab qnpnK +ℜ⊂

◊ℜ. (See Zbikowski et al. (1994) for proof citations.)

Thus the uniform approximation of an arbitrary continuous mapping ℜ→Kf : , may be constructed from some

other function, if the set of all finite linear combinations of that function, is a non-vanishing algebra, separating

all points on the compact set , as specified in definitions 1,2 and 3. Although this result is useful in

determining whether a particular function can be used to approximate a mapping, it provides no indication of

what forms such a function may take.

ab qnpnK +ℜ⊂

2.4.3 APPROXIMATION CONSTRUCTION

A result which provides an indication of how an approximation may be constructed is Kolmogorov's well known

representation theorem:

Theorem 2 (Kolmogorov) - Any function continuous on the n-dimensional cube κ can be represented in the

form

∑ ∑
+

= =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

12

1 1

)()(
n

i

n

j
jiji xχf φx (2.4.5)

where , and T
nxx],,[1 L=x iχ and ijφ are real continuous functions of one variable. ◊ (See Zbikowski et al.

(1994) for proof citations)

Notice that the representation is exact and is constructed of a finite number of continuous functions. A number

of authors have reformulated the main representation theorem in ways that make its direct application to neural

networks more plausible, however, the approach suffers from practical limitations. The functions ijφ may be

independent of but may be highly non-smooth. Furthermore the functions)(xf iχ are specific to the given

function f and may not be representable in a parameterised form.

11

In neural networks however, an approxi f the function f is sufficient. Kurková has shown that when

staircase-like sigmoidal functions are used, Kolomogorov'

mation o

s theorem may be reformulated to show that any

continuous function on any closed interval can be approximated to within an arbitrary accuracy. Thus given:

Definition 5 - A Ck sigmoid function ℜ→ℜ:g is a non-constant, bounded and monotone increasing function

erentiabl o order k). ◊

The following theorem may be stated:

Theorem 3 (Kurková) - Let with

of class Ck (continuously diff e up t

ℵ∈n]1,0[,:,2 =→ℜ≥ EEgn be a sigmoidal function, , and)(0 nECf ∈

ε be a positive real number. Then there exists ℵ∈k and staircase-like functions)(, gSiji ∈φχ such that for

every nE∈x

εφ <⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−∑ ∑

= =

k

i

n

j
jiji xχf

1 1

)()(x (2.4.6)

rs

onstruction may not be optimal due to the potentially large number of units required

 how this result serves as the theoretical foundation for the

ion of uniform approxi f

 a

 output pairs,

surface f(K

ogy refers to this as a networks ability to generalise.

 case

where)(gS is the set of all staircase-like functions of the form ∑ =
+

k

i iii cxbga
1

)(. ◊ (See Zbikowski et al.

(1994) for proof citations.)

This result implies that a four-layered sigmoidal network may be used to approximate, with arbitrary error, any

continuous function. Others have established, not necessarily by Kolmorgorov's argument, that only three laye

are sufficient for approximation of general continuous functions. Although three layers are sufficient, from a

practical perspective this c

by the hidden layer. In the next chapter it is shown

construction of the Multi Layer Perceptron (MLP) network, a sigmoidal feedforward network with an arbitrary

number of hidden layers.

2.4.4 INTERPOLATION OF THE APPROXIMATION

In the previous section the quest mation was addressed. However, the second question o

how to interpolate the approximation given a finite set of samples has not been considered. As stated in section

2.4.1, for practical purposes, the mapping from the compact set ab qnpnK +ℜ⊂ by qKf ℜ→: is given by

finite number of samples skKYU q
kk ,,1,),(K=ℜ×∈ where s is the number of observed input

even though the domain K and the corresponding hyper) are, in general, a continuum. We therefore

wish to interpolate the approximation in order to reconstruct f from the given number of samples. Neural

network terminol

It is important to note that in the single dimension ℜ→ℜ:f

nstru its sam

 that this is the same problem faced by the

signal processing community in trying to reco ct a signal from ples. Shannon's well known Sampling

Theorem states:

12

Theorem 4 (Shannon Sampling Theorem) - Let ℜ→ℜ:f be such that both its direct (F) and inverse Four

transforms are well defined. If the spectrum)(

ier

ωF vanishes for πβω 2> , then f can be exactly reconstructed

from its samples { } ◊=∈ .2/,)(βkttf kZkk (See Zbikowski et al. (1994) for proof citations.)

Although the above theorem deals explicitly with one-dimensional functions of time, it may be applied with

equal effectiveness to multidimensional functions of space. The question of existence of an exact solution to the

, for functions t rect and i

Consider a function that is absolutely integrable (i.e.

interpolation problem hat are both band limited and whose di nverse Fourier transform

are well defined, is thus positively answered. To gain insight into how one might use this result to construct a

network that satisfies our goal we examine the reconstruction process in more detail.

nxf ℜ∈),(x ∫ ∞<xx df)() and whose sp rier

pact support. The sampling of be

atial Fou

transform has com f on an n-dimensional uniformly spaced square lattice can

interpreted as the modulation of the hypersurface f with a field of Dirac distributions, thus:

∑
∈

−=
nZL

Ls ff)()()(ξδ xxx (2.4.7)

where the lattice { })(2211 nnL iii eee +++∆= Lξ has sample spacing3 ∆ along each of the standa

olution gives:

rd basis

vectors je for nℜ , and { }niiL ,,1 K= is an n-tuple of integers. Fourier transforming (2.4.7) and performing the

resulting conv

∑ −
∆

=
n

s FF (1)(νν . (2.4.8)
∈ZI

L)ζ

Thus, the spectrum of the sampled function consists of copies of the original spectrum centred at the frequency

lattice points { })(2211
1−

nnL iii eee +++∆= Lζ . Now let)(βκ be the smallest n-cube , centred

at the origin, which completely encloses the support for

0,],[>− βββ n

)(νF . Let)(νcG be the spectrum of the canonical

reconstructor function that is equal to on ∆)(βκ and zero elsewhere. If)2/(1 β≤∆ then the copies of)(νF

in the sampled spectrum)(νsF will be non-overlapping and)(νcG can be used to extract the original spectrum

)())(

 :

(ννν cGF sF= . (2.4.9)

The structure of equation (2.4.9) suggests that other interpolating functions can be used in the reconstruction

process. To see this let)(1 xg be an interpolating function whose spectrum is bounded, real valued and strictly

positive on)(βκ . Additionally its spectrum)(1 νG , vanishes outside of some n-cube ∆κ , which completely

contains)(βκ where the size of ∆κ is determined by setting)2/(1 β<∆ . (This is the same as oversampling

, whose spectrum obeys the relationship:

(2.4.10)

the hypersurface.) Now define a new function)(xc

)ν()ν()ν(1
1
−∆= GFC .

3 The sample spacing may be different for each input dimension. To reduce complexity the sample spacing is assumed constant in

all dimensions. This does not reduce the generality of the analysis as each input may be scaled to achieve the same effect as
varying the sample spacing. This phenomenon will be exploited later in this work.

13

Under these conditions it is easy to verify that:

)()()(1 ννν GCF s= (2.4.11)

where)(νsC is the sampled spectrum of the bounded continuous function . Inverse transforming this

equation results in an exact expansion of

1∑

)(xc

)(xf :

.)()(
)(*)()(1

∈

−= LL gc ξξ x (2.4.12)

,

ly this technique to a much lar er class of functions while using a wider

range of interpolating functions. The accuracy of such an approxima on may be represented by an equation

summing five contributing error terms:

=

nZL

s gcf xxx

Forfeiting the exactness of equation (2.4.12) for an approximation of)(xf over some chosen compact set K

designated by)(ˆ xf , it is possible to app g

ti

.
)(ˆ)(23211

f

ff
εα

αεεεα
+=

++++=− xx

The first term 1

 (2.4.13)

α , represents the error introduced by forcing (if necessary) the condition that is globally

absolutely integrable. This is achieved by multiplying by an infinitely smooth function which is

unity on K and decays to zero more rapidly than

)(xf

)(xf)(1 xm

f outside of K. Therefore:

⎩

⎧
∈−

∈
cKfmf

K
xxxx

x
,)()()(

,0

1
1

where K

⎨=x)(α (2.4.14)

c is the complement of the set K in nℜ . The second term 1ε , is the error resulting from the trunc

the spectrum of)()(1 xx fm at the value determined by the bounds of)(

ation of

βκ in the frequency domain. Provided

the aforementioned spectrum is absolutely in grte able on nt satisfied by the fact that the

te

 nℜ (a requireme

approxima d function is continuous over the set K) the value of 1ε may be made arbitrarily small by choosing a

sufficiently large spectral truncation radius β .

The term 2ε is the error attributed to reconstruction using an interpolating function th

filter. As the d

at is not an ideal low-pass

egree of overlap experienced by repeating spectra may be controlled by the chosen sample spacing

of the mesh, the value of 2ε may be made arbitrarily small by judicious selection of)2/(1 β≤∆ . The

relationship:

β∆2 (2.4.15)

may be conveniently used to represe which the s is ov ampled.

The final two terms 3

µ =

nt the degree to urface ers

1

ε and 2α arise from the need to truncate the reconstruction series using a finite number o

terms. By construction, let the term K

f

∈∀= x,02α and, when cK∈x , let 2α equal the upper bound of the

approximation error resulting from the truncated terms. Then, the error when 3, εK∈x , may be controlled, at

14

each x, by omitting the terms corresponding to samp which lie outside an n-ball of radius les Lξ ρ surrounding

x. For convenience ρ may be expressed as a multiple of the mesh size:

∆= lρ . 16)

Clearly this truncation radius will be highly sensitive to the specific

(2.4.

 interpolating function used.

If we comb factors mentioned above, and let ine all the contributing 21 ααα += and we 321 εεεε ++=f see

that for the entire error associated with the approximation: K∈x

{ }LIIo
II

II
o

ξξρξξξ ∈∈≤−=−= KIIgcf ∑
∈

,,)()()(xxxx ˆ
1 (2.4.17)

is contained in the term fε . Clearly, as x moves outside the set K, the error, represented by α , may increase

 the approx in

em

rapidly. This rapid degradation of the approximation must be considered when imation is to be used

the implementation of a control law that must exhibit global stability.

Although the above discussion has not solved the probl of which function)(1 Ig ξ−x would be the best, it

has shown that the function must satisfy the conditions of Stone - We (section 2.4.2), be

ntegrable on ℜ

asis Functions (RBF):

Definition 6 - A Ck radial basis function , with and

ierstrass theorem

bounded, strictly positive and absolutely i n . A class of functions that meets these requirements is

the Radial B

ℜ→ℜn
mg :,ξ

nℜ∈ξ , is a Ck function constant on ℜ∈m +

{ }rmn =−ℜ∈ 2ξxx , centre ξ , radius +ℜ∈mr , where spheres 2. is the Euclidean norm on n

Research using regularisation theory (Poggio and Girosi, 19 ha

ℜ . ◊

90) s demonstrated that, under certain constraints

ctions is the optimal solution to a class of function

approximation problems, given a finite set of data points in .

Radial Gaussian functions may be expressed as:

a linear superposition of Gaussian radial basis fun
nℜ

.

)ξ(
⎞⎛

⎠⎝=−
T

xeg
σ

x (2.4.18
2

2

2

)ξ()ξ(

ξ

⎟
⎟
⎠

⎜
⎜
⎝

−−
−

⎟
⎟
⎞

⎜
⎜
⎛ −

−

= xe σ
π

π

xx

x

)

construc

(i) Thus, as

This function posses a number of desirable properties that make them particularly amenable to network

tion:

The functional form does not change when undergoing a forward or inverse Fourier transform.

shown by the transform pair, () ()xxT
x

T
ee n

x
22 νν −− −−− ⎯→← πσπσ σν F where 1−= xσσν , variance4 parameters

he

in the spatial domain have a direct counterpart in the frequency domain. T low-pass spectral

characteristics can thus be easily controlled by the variance in the spatial domain.

4 The variance subscript has been used to emphasis in which domain the variance, as it is typically defined, applies.

15

(ii) mitting an adjus

of the spectral support along a chosen direction. Such adjustments may also rotate the spectral support

n where

(iii)

(iv) It is a separable nonlinearity, i.e.

They may be easily stretched or shrunk along any particular direction in nℜ per tment

by the use of cross coupling terms, resulting in the more general representatio)Σνν()(
T

eG πν −=

Σ is a positive definite matrix.

The structure is uniform and independent of the number of dimensions n.

)()()()ξ(2211 nn ξxgξxgξxgg −−−=− Lx , permitting individual

ed separately ation. subspaces of to be transform , then multiplied together to form the final approxim

If)()(1 IIg

nℜ

g ξξ −=− xx and the required spectral support β is large then, as alluded to in (ii) above, 2
νσ

must also be large so that the profile of)(

νG is broad enough to cover all the frequencies contained in)(βκ .

Conversely, if β is small the variance may also be reduced. Noting the reciprocal nature of the variances

between the spatial and frequency domains results in the following intuitively pleasing observation.

Approximations of highly smooth functions (limited high frequency content) may be achieved using a sparse

C elarray of Gaussians with wide profiles. onvers y, less smooth functions require more densely packed

Gaussians with narrower profiles.

To formalise the relationship between β and 2
νσ consider the effect of choosing a small variance when β is

large. Under these conditions)(νG approaches zero as ν increases towards β . Using equation (2.4.10) it

bec lear that this results in large magnitude and substantial high frequency components in the weighting

function)(xc in equation (y replacing

omes c

2 B.4.12). β for ν in the expression for)(νG we observe that t rder

of may be ma πβn . ension

he o

)(1 ν−G intained close to unity by setting 22σ = The dependence on the dim n can be ν

removed if we assume that)νC(max is inside the ball of radius β in ℜ resulting in:

222 πβσσν == −
x (2.4.19)

Sanner and Slotine (1992) have shown, in the case of a square samplin

n

g lattice Lξ , with parameters chosen

according to the conditions specified in equations (2.4. s

contributing to

15), (2.4.16), (2.4.18) and (2.4.19), that the term

Kf ∈∀xε in equation (2.4.13) may be expressed as:

()

() ()[]

() ∑
∞ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+ ⎟
⎞

⎜
⎛ 212

m
jjn
emn µ

π

∑

∫

+=∈

−

∉

⎟
⎠

⎜
⎝⎥⎦

⎤
⎢⎣
⎡≤

−−⎥⎦
⎤

⎢⎣
⎡≤

≤

1
max3

max2

)(ν
11

2

12erf1

ν)()(

lmJj

n

nn

j
eF

eF

dfm
βκ

µβπε

µβπε

ε xxF

(2.4.20)

where { }odd is10 jnnjJ −−≤≤= ,)erf(µ is the error function and F is the upper bound of max

() Kfm ∈∀xxx ,)()(1F .

16

From the arguments presented in this section we have seen that, given a finite (undetermined) number of

samples the function)(ˆ xf , constructed according to equation (2.4.17), results in an approximation that is bot

uniform and interpolated. Furthermore, the approach provides us with a method that uses minimal infor

about the approximated function, to c

h

mation

onstruct a square lattice of gaussian radial basis functions such that the

resu gltin approximation is accurate within some target tolerance fε . Such a design procedure may be

sum i

1. Determine the function's input dimension n and lattice extremities from K.

2. Estimate or determine the functions smoothness information Fmax and

mar sed by the following steps:

β from given data.

3. Ensure or assume that the spectral support β is sufficiently large such that 31 fεε ≤ .

4. Select the lattice spacing ∆ then calculate , µ and 2ε using equations (2.4.15) and (2.4.20)

respectively, 2ε is sufficiently sma . ll ensuring that

5. Select a truncation radius ρ and use equation (2.4.16) to obtain l, thus permitting the calculation 3ε .

Ensure that fεεεε ≤++ 321 adjusting ∆,β or ρ in steps 3, 4 or 5 as necessary.

s function

ORMATION

f

6. Finally calculate the gaussian radial basis function variances using equation (2.4.19) and the centres

using the lattice spacing ∆ .

This approximation method leads to a class of neural networks generally referred to as radial basi

(RBF) networks and their algorithmic instantiation is discussed further in the next chapter.

2.4.5 CONTENDING WITH THE CURSE OF DIMENSIONALITY AND USING A-PRIORI INF

The discussion in the previous section outlines a powerful and usable solution to the feed forward neural

network approximation problem however it suffers from two practical drawbacks.

The first problem, revealed by careful examination of equation (2.4.17), is that the number of coe ficients and

basis functions increases exponentially as the system dimension n is increased. This is the well-known Curse of

Dimensionality problem evident in many approximation schemes. As each element of the vector x in equation

(2.4.2) increases the dimension of the domain of the approximating function by one, this problem may rapidly

become a severe limitation, particularly in MIMO systems. The problem can be reduced if the approximated

function can be separated into lower dimension component functions, each of which is then approximated

individually and then summed to form the final result. Similarly, if the radial basis function used (such as the

Gaussian) is separable, then the number of RBF computations can be made to scale linearly with the number of

dimensions however, there is still a multiplication term which scales exponentially. This problem is further

exacerbated by the fact that, in order to guarantee the approximation accuracy over the entire domain, the

).

spectral support must be sufficiently wide to account for the most rapidly changing regions of the function. This

results in a small spatial mesh size and thus many more node terms to the summation in equation (2.4.17

17

Sanner and Slotine (1992) address this problem by a variety of techniques and extensions which attempt to

contract the domain on which the approximation is required and reduce the required node density. Such

techniques include dynamic network construction and dynamic modification of the basis function parameters

s,

d

is

parameters

oblem is frequently resolved by

 and

oaches, its design is highly amenable to

 a-priori system information. Th

examines the approximation capabilities of this approach. A broad background discussion and analysis to the

Let us choose a set of localised functions

such as the Gaussian centres and variances. The extensions discussed introduce the Gabor and Wavelet model

which make use of the simultaneous spatial and frequency properties of the Gaussian function to automatically

tune the local bandwidth requirements thus circumventing the need to globally contract the node mesh.

An important feature to any model developer is the ability to include a-priori information into the modelling

technique. This information frequently takes the form of a set of simplified state equations based on physical

principles or a number of transfer functions representing a linear approximation of the systems behaviour aroun

selected nominal operating points. Clearly another problem with both approximation techniques described thus

far is the inability to gracefully 'build in' or absorb such information into the approximation construction. Th

results in an approximation mechanism that must undergo extensive 'training' before providing accurate model

information. Conversely the ability to examine the internals of the final approximation and relate its

to the physical system under consideration is also highly desirable. This pr

allowing the approximation to compute a residual in parallel with a more conventional (linear) model and

summing the results. However, the disadvantage to this technique is the added complexity, and thus

computational overhead, of running two models in parallel to each other.

Both the Gabor and Wavelet approaches mentioned earlier result in an approximation that may be interpreted as

a summation of basis functions where each basis function is modulated in a manner that is dependent on the

local properties of the function being approximated. Interestingly, another approximation approach analysed

developed by Johansen and Foss (1993) called Local Model Networks (LMN), may be interpreted in the same

manner, however, unlike the more theoretical Gabor and Wavelet appr

physical interpretation and the inclusion of e remainder of this section thus

LMN approach can be found in Murray-Smith and Johansen (1997).

{ }LII Kg ξξξ ∈∀→−],1,0[:)(x that are significantly larger than

⊂ and o othzero for KK II∈ ,x close to zer erwise. As before the lattice K { })(L i ++2211 nnii eee +∆= Lξ has

sample spacing ∆ along each of the standard basis vectors je for , and nℜ { }niiL ,,1 K= is an n-tuple of

integers5. If not all)(Ig ξ−x vanish for K∈x and there exists a good local model f)(ˆ
If ξ−x or IK∈x then

the following approximation may be written:

∑
∑
∈

−− II gf
ξξ

ξξ)()(ˆ xx

∈

−
=

LI

LI

Ig
f

ξξ

ξ)(
)(ˆ

x
x (2.4.21)

.

5 The analysis does not constrain the points Iξ to exist on a uniformly sampled lattice, however this definition is sufficient to

describe the cases of interest while simultaneously permitting the use of a consistent notation throughout.

18

)(Ig ξ−x giving: The interpolation functions are defined as the normalisation of the localised functions

∑ −

−
=−

∈

I
I

g
g

g
ξ

ξ
ξ

)(
)(

)(ˆ
x

x
x .

(2.4.22)

Substituting (2.4.21) into (2.4.22) results in the following LMN approximation:

LJ

J
ξξ

∑ −−=
∈

II gff ξξ)(ˆ)(ˆ)(ˆ xxx
LI ξξ

(2.4.23)

If 1+∈ pf , the set

.

C { })(f̂ −x qual to th first p terms of the Taylor series expansion

about I

Iξ are local models e e of f

ξ and we assume KMfp ∈∀<∇ + xx ,)(1 where ⋅ denotes the induced operator norm, then

appropriate substitution into the Lagrange form of the Taylor theorem remainder provides the following

expression:

∑ + −−
+

<<−−
∈

I
p

II gMff ξξεξ)(ˆ)(ˆ)(1
2 xxxx (2.4.24) .

LI
pξξ)!1(2

Here
2

⋅ denotes the Euclidean norm that we require being less than some arbitrary 0>ε . If we define the set

of functions:

⎭
⎬

⎩
⎨ ∈∀−−=−ℜ→− LIIII M

zKz ξξεξξξ ,)(:)(2xxx (2.4.25)

then simple rear

⎫⎧ ++p p)!1(1

rangement of equation (2.4.24) gives the following two equivalent conditions that must hold for

this to be true:

0)()(<−−∑
∈ LI

II gz
ξξ

ξξ xx (2.4.26)

0)(ˆ)(<−−∑
∈

gz ξξ xx .
LI

II
ξξ

(2.4.27)

Careful observation of (2.4.25) reveals that the functions)(Iz ξ−x are dependent only on the accuracy of th

local model. Furthermore, their shape is not influenced by the va he extent or density of the lattice L

e

of x, tlue ξ ,

or the form of the interpolation functions; however, the value of)(z Iξ−x approaches a minimum that is less

than zero

6, as x approaches Iξ . The problem thus r es teduc o choosing Lξ and)(Ig ξ−x such that equation

.

I

(2.4.26) or (2.4.27) be satisfied for some arbitrary 0>ε

Equation (2.4.26) can be satisfied if any negative ()(I gz)ξξ −− xx term dominates the summation. We can

guarantee that at least one)(Iz ξ−x is negative at any x if the set Lξ is sufficiently large and dense in K. Since

K is bounded a finite number of points in L

ξ is sufficient to achieve this. To state the condition that must hold

6 The exception to this is when the local model is a perfect representation of the function being approximated. Under these

circumstances the entire function)(Iz ξ−x is zero.

19

for Lξ to be "sufficiently dense" the following definition, similar to the Haussdorf metric, of the distance

between sets is introduced:

 - Assume A and B are two non-empty subsets of a vector space. Then the distance between the sets Definition 7

is defined as:

() 2supinf, baBAD
BbAa

−=
∈∈

. ◊

Using this definition and rearranging the)(Iz ξ−x function in equation (2.4.25) results in the condition:

() 1
1

)!1(,
+

⎟
⎞

⎜
⎛ +

≤
p

L
pKD εξ (2.4.28)

⎠⎝ M

which must hold if at least one)(Iz ξ−x function is to be negative at any K∈x for some chosen 0>ε .

We must now choose the functions)(g Iξ−x such argument in

previous paragraph to be negative, is guaranteed to dominate the summation in equation (2.4.26) or (2.4.27).

One necessary, but not sufficient, condition is that 0)()(→

 that one of the terms, ensured by the the

−− II gz ξξ xx as ∞→x . Choosing)(g2 Iξ−x

to be Gaussian easily satisfies this condition but to ensure sufficiency the variances must be carefully selected.

Consider the limit as the variance goes to zero. The interpolation functions of equation (2.4.22), will approach

step functions where there exists a J such that:

⎩
⎨
⎧

≠
=

=−
JI
JI

g I if0
if1

)(ˆ ξx .

It was previously shown that choosing Lξ such that (2.4.28) is satisfied will result in some (0) <− Jz ξx , but

since 0)(ˆ =− Ig ξx for JI ≠ , we know that, in the limit, equation (2.4.27) will hold. However, since the

number of points in Lξ is finite we onl to the limit for this to be true.

The argum

y need to be sufficiently close

ents presented above have been used by Johannsen and Foss (1993) to prove that the approximation

accuracy defined by the infinity norm
2

)(ˆ)(ˆ xx ffff −−
∞

 may be described by the following

i.e.

sup
x K

=
∈

theorem:

Theorem 5 - Suppose we are given any integer . If K is bounded and f(.) has bounded th derivative, 0≥p)1(+p

KMfp ∈∀<∇ + xx ,)(1 , then for any
⎪⎭

⎪⎫⎪⎧
⎬

⎪⎩
⎨ −−=ℜ→∈ ∑

∈ LI

II
q gffKff

ξξ

ξξ)(ˆ)(ˆ)(ˆ:ˆˆ xxx with finite

countable Lξ , and sufficiently narrow functions { }LII Kg ξξξ ∈∀→−],1,0[:)(x , an upper bound on the

approximation error is given by:

()() 1,
)!1(

ˆ +

∞ +
≤− p

L KD
p

ff ξ . (2.4.29)

◊ (See Johannsen and Foss (1993) for proof.)

M

20

By using the triangle inequality in conjunction with the Weierstrass approximation theorem, they also show, as a

corollary to theorem 5, that the smoothness assumption on f(.) may be relaxed to assuming only continuity.

Notice that when order p of the local models are set to zero the resulting approximation is a normalised form of

the approximation stated in equation (2.4.17) of the previous section. We can thus argue that although the effects

of the curse of dimensionality may be reduced when using higher order local models, there has been no change

a the inte

ace be represented by the bounded set

to the structure that caused the problem. To do this it becomes necess ry to define rpolation functions on

a space of smaller dimension than that of the original information space.

Let this smaller dimension sp Φ . Let any Φ⊂Φ I represent an operatin

regime within this space. Furthermore, let us assume that there e apping KH : . If we choose a se

of model validity functions { })(,],1,0[:)(LLLII Hg

g

xists a m t Φ→

ξηηηηφ =∈∀→Φ− which are approximately equal to

one for IΦ∈φ and tend toward zero outside IΦ then, if not al)(Ig ηφ − vanish for Φ∈φl , the interpolation

functions may be defined as the normalisation of the model validity functions:

∑
∈

−

−
=− I

g
g ηφ

(
)(ˆ

LJ

J

I

g
ηη

ηφ
ηφ

)(
)

.

This results in the following LMN approximation:

{ }LIII
II

II HIIgff ξξξηηφξ ∈==−−= ∑
∈

),(|)(ˆ)(ˆ)(ˆ
0 . (2.4.30)

Furthermore let us assume that, for local

0

xx

model expansions of (polynomial) order p, we can split x into two parts

 such that the approxim ay, as is frequently KKKKK HLHHLL
T
H

T
L

T ⊂∈∈= ,,,],,[xxxxx ated function m

possible, be expressed as:

)()()(),()(
21 LLHHHHHL fffff xxxxxx +== (2.4.31)

where l
LL Kf ℜ→: is a polynomial order less than or equal to p, m

HHf ℜ→:
1

 and m
HH Kf ℜ→:

2
K l×

may be of higher order. Given these conditions the following theorem (Johansen and Foss, 1993) may be stated:

Theorem 6 - Suppose f(.) given in equation (2.4.31) is continuous and Φ is a bounded set. Then for any 0>ε

there is an
⎪⎭

⎪
⎬
⎫

−−=ℜ→ ∑)(ˆ)(ˆ)(ˆ:ˆ
II

q gff ηφξxx with
⎪⎩

⎪
⎨
⎧

∈
∈ 0

ˆ
II

Kff Hx=φ , and countable and finite such

that

0I

ε<−
∞

ff ˆ (See Johannsen and Foss (1993) for proof.)

, for the special case were p=1 (i.e. local linear models), the approximation error is bounded by:

◊

Additionally

()() ()(D) εηη =+≤−
∞

Φ,Φ,
2

ˆ 2
LLL KMDMff (2.4.32)

where:

2sup L
K

LK x
x ∈

= .
LL

21

On a more intuitive level we may state the presented results as follows: Components of the information

which contribute to approximation terms of higher order than the order of the local models used should be

included in the reduced order space.

Thus the conditions and assumptions of the pre

 space

vious arguments have established a set of (non-unique)

requirements, which allow us to construct a mapping that reduces the dimensions of the information

space, but still permit the construction of an arbitrarily accurate approximation. For example, consider a discrete

Φ: →KH

time system that is affine in its control inputs:

)()()(
]1[])1[(])1[(

])1[],1[(][

21

21
LLHHHH fff

kukyfkyf
kukyfky

xxx +=
−−+−=

−−=

 may construct an approximation using interpolated first order models (p=1) as follows: then we

{ }LIII
II

II HIIkgkfkfky ξξξηηφξ ∈==−−−−=−= ∑
∈

),(|)]1[(ˆ)]1[(ˆ])1[(][ˆ 0
0

xx

where:

[]
]1[]1[−=− kykφ

and the local models

]1[],1[]1[−−=− kukyk Tx

 take the form:

al

dividual local models have on the approximation error bound. The truncation radius mechanism

ble approach to solving this problem while still permitting

us to explicitly quantify the effects of discounting minimally contributing models on the overall approximation

error bound.

Consider the following approximation construction:

III kkf Θ−−=−− ˆ)]1[()]1[(ˆ ξξ xx .

Notice that the use of the reduced dimension space also simplifies the task of partitioning the set into various

operating regimes.

As in section 2.4.4 we would like to devise a mechanism whereby a large domain may be covered by N local

models but only n<N models need be evaluated at once. Intuitively we recognize that we may discount loc

models whose validity functions are below a certain threshold, as they would not contribute significantly to the

overall approximation. However, from a computational aspect, it is more efficient to not have to compute what

would ultimately be unused model validity functions. Furthermore, it is difficult to determine what effects

discounting in

presented earlier would appear to be a logical and via

{ }LILIIII

II

HII

gff ηφξ −−= ∑ II

ξξηηξηρηφ ∈∈=≤−=

∈ 0 33)

where the truncation radius

,),(,|

)(ˆ)(ˆ)(ˆ

20

xx
 (2.4.

ρ is the radius of an s-ball around φ , and ns ≤≤1 . Furthermore we shall define the

∈=sets 0|
0

IIII { }ηη and { }
00 2 III ηφφ ∈≤−=Φ noting that 0I and thus both ,I ηρη

0Iη and are

functions of

0IΦ

x . If the truncation radius ρ is chosen sufficiently large such that the density of
0Iη in

0IΦ is the

22

same as Lη in Φ then t r bound provided by equation (2.4.32) still holds. As the

truncation radius is reduced the density of
0I

he approximation erro

η in
0IΦ wi causing the distance ll diminish ()

00
,LD IΦη to

increase. This results in () ()Φ>Φ,
00 IL DD ,Lηη . Thus the approximation error bound, for the case of local linear

m point x, may be obtained by substituting odels, at any ()
00

, ILD Φη into (2.4.32) resulting in:

()() (())
0000

,,
2

ˆ 2
LLLLL ΦDMΦDMff ηη +≤−

∞
 (2.4.34) K

where:

2sup L
K

L
LL

K x
x ∈

= .

ause both I

Equation (2.4.34) is a function of x bec
0

η and I0
Φ are functions of x . However, if the lattice Lξ is

evenly spaced over the entire domain K, and the mapping Φ→KH : is constructed by using the projection

Hx=φ , then the distance ()
00

, ILD Φη will remain constant for all K∈x 7. The approximation error

would thus also remain constant and could be calculated at any point K

bound

∈x .

In conclusion then, we have seen that the LMN approach, from an approximation point of view, thus

incorporates many of the capabilities of the MLP and RBF approaches but gives us two additional advantages.

Firstly, in contrast to Gabor and Wavelet approaches, it provides us with the ability to easily incorporate a-priori

or extract a-posteriori knowledge about a system. Secondly it accommodates a mechanism whereby the effects

ially reduced by trading off the local model complexity against the

iss

ent of

ideas and concepts that are then transplanted into an engineering framework. This approach may become ever

first, as used in this work, is the use of a feed forward network coupled to some time history model of the

of the curse of dimensionality may be potent

number of dimensions used in constructing the approximation sampling lattice.

2.5 DISCUSSION AND CONCLUSIONS

In this chapter we began by considering neural networks as information processing systems and breaking their

analysis into computational, algorithmic and implementation levels. The basic components of an ANN system

were described and, at a superficial level, the relationship between them and their biological counterparts were

discussed. Although it is not the intent of this work to model biological neural networks one should not dism

the biological connection (Arbib, 1995). The study of neurobiology can be fertile ground for the developm

more important as the emphasis in ANN research shifts from network architecture definition to dynamic

construction, optimisation and modification of such architecture (Quinlan, 1998.)

Next, emphasis is turned to the feed forward neural network problem, and how such feed forward networks are

used to describe non-linear systems in the context of this work. It is important to note that the method described

is but one approach to the problem at hand and that many other architectures are used to model non-linear

dynamic systems. Typically neural network approaches to control can be divided into two main categories. The

7 This assumes that there are no ill effects on the distance metric as one approaches the edges of the domain K.

23

system. Here an ARX model is the method used to capture the system dynamics. Another method, which is

structurally similar but uses multiple local Laguerre models instead, is described in Sbarbaro and Johansen

(1997). The second major category uses recurrent neural networks, which build on feed forward network t

by attempting to model system dynamics by feeding back network states within or around a feed forward

network. Although it can be proven that such network structures can solve the differential approximation

problem (Zibikowski, 1994) such results are purely existence results and are fraught with difficulties when

attempting practical implementa

heory

tions. However, a number of researchers (Pearlmutter, 1989, Pineda, 1987,

elate

 interpolation (generalisation) and overall

 it

 a finite

es only

ated. Clearly this approach has a number of

ork, with normalisation, may be viewed

 RBF

esults

ead

ntroduced by the normalisation of the basis

functions (Murray-Smith and Johansen, 1997.) The remainder of this work will assume that Gaussian basis

functions are used in RBF and LMN network construction.

Williams and Zisper, 1988, Bailer-Jones et al, 1998) have successfully developed recurrent architectures for

modelling of dynamic systems.

The remainder of the chapter presented and discussed various approximation theory results and how they r

to different kinds of network architectures. First the Stone - Weierstrass theorem provided us with a set of

criterion that given functions must satisfy in order to guarantee the existence of a uniform approximation

constructed from these given functions. Kolomogorov's representational theorem was used as the basis for an

argument permitting approximation construction using MLP networks. Unfortunately these results provide little

information as to precisely how the MLP network in question should be constructed or even how any particular

construction will behave with regards to issues such as approximation

approximation error. Although significant advances have been made in this area (Barron 1994, Suzuki, 1998)

is still unclear exactly how best to construct a general MLP network.

These shortcomings are addressed by the multi-dimensional sampling approach used in RBF networks. It is

shown that this approach will provide a network that will interpolate an approximation constructed from

number of samples and, provided certain assumptions and conditions are met, guarantee that the approximation

error remains within certain calculable bounds. The analysis provides us with sufficient insight into the

approximation mechanism that a limited but useful design procedure can be stated. This procedure requir

limited smoothness information about the function to be approxim

advantages, but it suffers from two main disadvantages; the difficulty associated with including a-priori

information and its susceptibility to the curse of dimensionality.

LMN networks address both these problems and the final section of the chapter thus concentrated on the

approximation capabilities of these networks. Interestingly, an RBF netw

as a LMN where the local models are constants. The approach therefore retains many of the advantages of

networks. However, local models may be of any order or construction.

The arguments presented have centred on the use of Gaussian functions for both RBF and LMN network

construction. Although these functions have a number of appealing properties other functions, such as inverse

polynomials or splines may be used instead, however, this would require the revaluation of some of the r

presented thus far. The primary motivation behind doing this would be the reduction of computational overh

or to minimise the probability of reactivation - a side effect i

24

Another potential advantage of the LMN approach is its behaviour at the edges of the approximation domain K.

An LMN approximation will extrapolate outside this region using the closest local model to the current point in

the information space. This extrapolation is of the same order as the closest local model. When used as plant

models in control systems such behaviour may be more favourable when compared to RBF networks whose

output will tend to zero as the information vector moves outside the domain K. Normalised RBF networks will,

under such conditions, tend to a constant value. The implicit assumption behind this observation is that the

extrapolated model’s sensitivity maintains some degree of accuracy whereas an RBF based model’s sensitivity

would be driven to zero. This characteristic becomes important when considering the stability of a closed loop

control system incorporating such networks to estimate plant sensitivity.

Although the LMN approach provides a number of advantages over the MLP and RBF methods there are also

disadvantages. To construct an RBF network using the design procedure in section 2.4.4, the designer need only

know the extent of the domain K, the value of Fmax and the required spectral support β. The latter two values

provide sufficient information about the smoothness of the approximated function that the approximation error

on the domain K may be determined from equation (2.4.20). This smoothness information may be determined

relatively easily from system data. Conversely, the equivalent smoothness information used in calculating the

LMN approximation error (equation (2.4.32)), is contained in the maximum induced operator norm M.

Unfortunately this value can not be directly determined without significant knowledge of the function being

approximated. Therefore, the required density of the set Lη , and thus the number of models cannot be directly

determined from the approximation error equation.

It is interesting to note that there is a strong relationship, even equivalency under certain conditions, between

fuzzy systems and the RBF and LMN architectures. This has practical relevance in that the techniques

developed in one paradigm may be used to manipulate models developed in a different paradigm. Furthermore a

particular paradigm may be more adept at dealing with one particular aspect of the modelling problem, for

example the use of fuzzy a-priori knowledge may be beneficial in pre-structuring a network. The reader is

referred to Hunt et al (1996) and (Foss and Johansen, 1993) for precise details.

This chapter has presented numerous mathematical results and facts about various approximation techniques, all

of which fall under the broad subject of artificial neural networks. This semi- rigorous mathematical presentation

has been provided to help gain insight and understanding into the mechanisms underlying the methods used in

the remainder of this work, and to support the conclusion that ANN provide a viable and practical solution to the

non-linear function approximation problem. Thus continued effort into the application of these techniques to

non-linear dynamic systems modelling is warranted.

25

CHAPTER 3

NEURAL NETWORKS - STRUCTURE AND IMPLEMENTATION

3.1 INTRODUCTION

In the previous chapter, three basic mathematical formulations for ANN structures were shown to satisfy the

FNN approximation problem. We concluded the chapter by recognising that the computation ability of these

approaches provided a satisfactory solution to the problem at hand. In this chapter, we will concentrate on the

more pragmatic aspects of general information processing systems; the algorithmic formulation and

implementation.

We have chosen to implement the presented algorithms as a set of methods contained in a simple neural network

class library coded in the Matlab language. Network objects created using this class library can be manipulated

from the Matlab command line. To facilitate the simulation of dynamic systems a Simulink block set was also

created which uses a number of m-file S-functions to create and process network objects by calling the

aforementioned class library methods. All the implementation material presented has thus been optimised for

this environment, specifically, because of Matlab’s emphasis on using vectorized code, the algorithms have been

vectorized whenever possible.

We shall begin by looking at, for each network type, the third element of an ANN system (section 2.2.), namely,

the structure or activation rule used to implement the approximation. Next, the fourth and fifth elements are

covered by looking at how the network parameters are adapted using various learning rules. Included in this

section is a discussion about experimental conditions and structure optimisation. Finally, the process of

extracting the network Jacobian information will be presented followed by conclusions.

3.2 NETWORK STRUCTURE - THE ACTIVATION RULE

3.2.1 MULTI-LAYER PERCEPTRON NETWORK STRUCTURE

The MLP network is based on the approximation construction discussed in section 2.4.3. It has a multi-layer

structure (Figure 3.2.1) consisting of one input layer, any number of hidden layers and one output layer. The

input layer or first layer would contain as many units as there are inputs, while the output layer sizes according

to the number of network outputs. The hidden layers may contain any number of units. Generally the number of

26

θ g(.)

θ g(.)

θ g(.)

θ g(.)

θ g(.)

θ g(.)

θ g(.)

θ g(.)

∑ g(.)

∑ g(.)

∑ g(.)

∑ g(.)

θ g(.)

θ g(.)

θ g(.)

θ g(.)

θ

θ

θ

θ

x2

x3

xn

x1

Input
Layer 2nd Layer 3rd Layer (L-1)th Layer

Output
Layer

2ŷ

3ŷ

qŷ

1ŷ

 a(2) a(L) a(L-1)a(1)

Figure 3.2.1. Multi-Layer Perceptron Network Structure.

10 net.activation{1}=[x;1]; % 1st layer is input

20 for i=2:net.numlayers; % i+1 layer

30 net.activation{i}=[activation_function(net.weights{i}*net.activation{i-1});1];

40 end

50 yhat=net.activation{net.numlayers}(1:end-1); % Remove bias term in Output

Listing 3.2.1 MLP Activation Rule Implementation.

hidden layers is limited to one or two as this number is sufficient to construct the function approximation. A

layer may receive excitation from any preceding layer but, as in this work, each layer is typically excited only by

the layer directly preceding it. The sole purpose of the input layer is to distribute the input signals to the first

hidden layer and performs no mathematical manipulations on the incoming signals. Hidden layers use a linear

integration function coupled with a sigmoid or sigmoid like function. The output layer may frequently use linear

integration and activation functions, resulting in an output that is a weighted sum of the last hidden layer unit

activations. Combining all these elements allows us to construct an expression for the activation rule. Let the

column vectors x, and represent the input, output and activation state of the lŷ)(la th layer of the network

respectively. Note that and for a network containing L+1 layers. Further let denote the

weight vector of the j

)1(ax =)(ˆ Lay =)(l
jθ

th unit in the lth layer where:

[] Ll
Tl

j
l
mj

l
j

l
j

l
j l

≤<=
−

1,,,,)()(
,

)(
2,

)(
1,

)(
1
θθθθ Lθ (3.2.1)

and is the scalar weight connecting the j)(
,
l
ijθ th unit of the lth layer to the ith unit of the (l-1)th layer which contains

m units, and is the bias associated with the j)(l
jθ th unit. Using equation (3.2.1) we may define a weight matrix for

each layer:

[] Ll
Tl

m
llll

l
≤<=Θ 1,,,)()(

3
)(

2
)(

1
)(θθθθ L . (3.2.2)

Lastly, we create a vector of activation functions as follows:

27

Llg

g

g

g

G
TTll

TTlTl
m

TTlTl

TTlTl

l

l

≤<
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛Θ=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≡⋅
−

−

−

−

1
1

]1,[

1
)]1,[(

)]1,[(

)]1,[(

)(
)1()(

)1()(

)1()(
2

)1()(
1

)(a

aθ

aθ

aθ

M . (3.2.3)

Note that at any point in time will take on the value and that the total number of units

evaluated during each forward pass may be expressed as:

)()(⋅lG TTl]1,[)(a

∑
=

=
L

l
lmN

2

. (3.2.4)

Combining equations (3.2.2) and (3.2.3) permits us to write a single expression for the MLP activation rule:

()()()
.,

]1,[)(ˆˆ
1)1()()1()(

)2()2()2()2()1()1()(

1 ×++×

−−−−

ℜ∈ℜ∈Θ
ΘΘΘΘ==

− lll mlmml

TTLLLLL

G
GGG LL xxfy (3.2.5)

Implementation of equation (3.2.5) is straight forward and is shown in Listing 3.2.1

To relate the theoretical foundations presented in section 2.4.3 to the MLP structure presented above, consider a

network containing an input layer with n inputs, 2 hidden layers with and units respectively and an

output layer with q outputs. Equation (3.2.5) thus becomes:

2m 3m

()()
.,,,

]1,[ˆ
)1()2()1()3()1()41

)2()2()3()3()4(

2233 +×+×+×(× ℜ∈Θℜ∈Θℜ∈Θℜ∈
ΘΘΘ=

nmmmmqn

TTGG
x

xy

Expanding the matrix operations as follows:

()() ()⎟⎟
⎠

⎞

⎜
⎜

⎝

⎛
Θ+Θ+ΘΘΘ= +

−
+

−

==
∑∑)4(

1],1[
1)3(

1,
1)2(

]1[,
1

)3(
,

1

)4(
],1[32

23

ˆ mqmjnj

m

j
ji

m

i
iq gggg LLL xy ,

and simplifying the notation by making the following substitutions:

() ())3(
1,

1)4(
1],1[

1

)2(
]1[,

)3(
,

)4(
],1[

23
,

,1
,

+
−

+
− Θ=Θ=

Θ==

Θ=Θ=

mjjmqi

njji

jijiqi

gcgc
bb
aa

L

L

L

results in:

()

() .

ˆ

3 2

23

1 1

11

∑ ∑

∑∑

= =

==

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

m

i

m

j
jiji

ijj

m

j
ji

m

i
i

x

ccbgabga

φχ

xy

 (3.2.6)

Clearly (3.2.6) matches the functional form required in equation (2.4.6) of Theorem 3 in section 2.4.3, implying

that this four-layered MLP network may approximate, with arbitrary error, any continuous function. It is worth

while noting however, that there is no indication of how to choose values for and in order to remain

within some arbitrary error bound.

2m 3m

28

3.2.2 RADIAL BASIS FUNCTION NETWORK STRUCTURE

The Gaussian Radial Basis Function Network implements the approximation described by equation (2.4.17) and

(2.4.18), restated here in a multi output form as:

{ }
())(Σ)(

2

)(,)(

,,)()(ˆˆ

I
T

I

o

eg

KIIg

III

LI
n

Io
II

II

ξξξξ

ξξρξξ

−−−

∈

=−=

∈ℜ⊂∈≤−=−== ∑
xxxcθ

xxxθxfy
 (3.2.7)

where Iξ is a vertex in the lattice { })222111 nnnL iii eee ∆++∆+∆= Lξ which has sample spacing along

each of the basis vectors for ,

j∆

je nℜ { }niiL ,,1 K= is an n-tuple of integers, and ρ is a n-ball around x . The

approximation properties and design procedure are described in section 2.4.4. The general network construction,

shown in Figure 3.2.2, consists of three layers. As in the MLP the input and output layer size according to the

number of inputs and outputs respectively. The number of hidden units corresponds to the number of elements in

the set L and may be expressed as:

LiiN j

n

j
j ∈∀=∏

=1

max . (3.2.8)

Clearly N will depend on the selected lattice spacing or sampling mesh size and the dimensions of the set K. In

this configuration the vertices of the sampling mesh and the variances may be interpreted as the weight matrices

associated with an elliptical integration function. These weights define the input to hidden layer connectivity,

while the jth row of the column vector is the weight associated with the connection between the hidden unit

centred at

Iθ

Iξ and the jth output. The activation rule is thus a direct implementation of equation (3.2.7). Note

however, only the units that are influenced by the elements of the set I0 need actually be computed at any point

in time.

In the special case where the basis vectors are orthogonal, we refer to the network as an axis orthogonal

network. Although this type of network may not always provide the most efficient structure, in terms of the

je

 ξ g(σ)

 ξ g(σ)

 ξ g(σ)

 ξ g(σ)

θ ∑

θ ∑

x1

xp

Input
Layer

Hidden
Layer

Output
Layer

qŷ

1ŷ

Figure 3.2.2. General RBF Network Structure.

29

number of units required to achieve a particular approximation, it allows us to exploit the linearly separable

nature of the Gaussian basis functions. This has the potential to greatly reduce the number of calculations that

must be performed when implementing the network in a serial processing environment. When each dimension of

the input space is orthogonal, the matrix Σ in equation (3.2.7) is diagonal, permitting each of the N hidden unit

activations to be expressed as a tensor product:

∏

∏

=

=

n

j

n

j

−
−

=

∈∀=−

jIjj

LI

x

I

xa

eg j

Ijj

1

1

)(

),,(

)(
2

2

σξ

ξξξ σ

ξ

x
 (3.2.9)

where Ijξ is the jth element of the vector Iξ . Careful consideration of equation (3.2.9) reveals that when

calculating all N activations, the term),,(jIjjxa σξ will be equal times for each I and j

combination. By collecting these common terms and performing a single exponential evaluation, we may reduce

the number of exponentials calculated to:

jiN max/

LiiN j

n

j
jo ∈∀=∑

=1

max . (3.2.10)

This may be easily visualised by studying a simple example. Consider a network with two inputs and a single

output. Let the sampling lattice be divided into three regions along input one and two regions along input two.

This lattice representation is pictured in Figure 3.2.3(a) with its equivalent layered representation in Figure

3.2.3(b). It is clear that, for this example,),,(),,(12,11111,111 σξσξ xaxa = is common to both the calculations of

)(1,1ξ−xg and)(2,1ξ−xg , similarly),,(),,(),,(22,32222,22222,122 σξσξσξ xaxaxa == is common to

)(2,1ξ−xg ,)(2,2ξ−xg and)(2,3ξ−xg . The common),,(jIjjxa σξ terms are equal because all elements,

except the j , of th
Iξ are ignored when the calculation is performed. Therefore, by replacing Ijξ with the jth

element of I multiplied by , where j is the spacing of the lattice L

j∆ ∆ ξ along the dimension j, we may

evaluate a single exponential which will equal all the common terms generated by appropriate combinations of

and j. Thus, in the presented exam

 I

ple:

axaxa

===∆
===∆

==∆
==∆
==∆

).,,(),,(),,(),2,(
),,(),,(),,(),1,(

),,(),,(),3,(
),,(),,(),2,(

),,(),,(),1,(

22,32222,22222,122222

21,32221,22221,122222

12,31111,311111

12,21111,211111

12,11111,111111

σξσξσξσ
σξσξσξσ

σξσξσ
σξσξσ
σξσξσ

xaxaxaxa
xaxaxaxa

xaxaxa
xaxaxa
x

30

Also, notice that, as predicted by equation (3.2.10), there need be only five exponentials evaluated, but

consistent with equation (3.2.8), there are six activation values, each of which is calculated by the product

described in equation (3.2.9). Although in this example the number of exponentials is only reduced by one, the

reduction becomes far more dramatic as the number of regions in the lattice is increased. For example, a two

dimensional system with twenty regions associated with each input would require forty exponentials but would

contain four hundred activations - an order of magnitude reduction.

Evaluating only those activations influenced by the set I0 can still further reduce the number of calculations. In

Figure 3.2.3(a) the grey region8 represents the p-ball (a circle in the 2 dimensional case) of radius ρ

surrounding an input vector ending at the point { }21, xx . By projecting this region back onto the axes it is clea

that only the functio), 2

r

ns 2,(22 σ∆xa a nd),2,(111 σ∆xa provide any significant contribution to the output. The

total number of calculations required to generate the activations contributing to the summation in equation

(3.2.7) is thus two exponentials and one product.

d ,(G

g(x-ξ2,2)

x2

x1

g(x-ξ1,2)

a(x2,2∆2,σ2)=
a(x2,2ξ1,2,σ2)
a(x2,2ξ2,2,σ2)
a(x2,2ξ3,2,σ2)

e1

e2

∆1

2ρ1

2ρ2

 x={x1,x2}

a(x2,1∆2,σ2)=
a(x2,2ξ1,1,σ2)
a(x2,2ξ2,1,σ2)
a(x2,2ξ3,1,σ2)

a(x1,1∆1,σ1)=
a(x1,1ξ1,1,σ1)
a(x1,1ξ1,2,σ1)

a(x1,2∆1,σ1)=
a(x1,1ξ2,1,σ1)
a(x1,1ξ2,2,σ1)

a(x1,3∆1,σ1)=
a(x1,1ξ3,1,σ1)
a(x1,1ξ3,2,σ1)

g(x-ξ3,2)

g(x-ξ1,1) g(x-ξ2,1) g(x-ξ3,1)

∆2

a(x1,1∆1 ,σ1)

θ ∑

x2

x1

Input
Layer

Exponential
Layer

Output
Layer

1ŷ

Π

Π

Π

Π

Π

Π

a(x1,2∆1,σ1)

a(x1,3∆1,σ1)

a(x2,1∆2,σ2)

a(x2,2∆2,σ2)

Product
Layer
g(x-ξ1,1)

g(x-ξ2,1)

g(x-ξ3,1)

g(x-ξ1,2)

g(x-ξ2,2)

g(x-ξ3,2)

(a) Lattice Representation (b) Layered Representation

Figure 3.2.3. Axis Orthogonal RBF Network Example.

From the above discussion, we may easily develop an algorithm to efficiently calculate all unit activations that

may significantly contribute to the output given a particular input. However, in order to calculate the network

output, we must also perform the summation shown in equation (3.2.7). This equation may be similarly

expressed using matrix operations. Let us assume that for some particular input the set contains l vector

elements. We may then construct
0I an)

0I

0I

Θ ξx

 follows:

by joining the l output weight vectors Iθ , and the l

calculated activations as

8 In practice a significantly larger region would be used so that more than one vertex is encompassed. However, for the purposes of

illustrating the concept, while maintaining a simple diagram, the region has been made fictitiously small.

31

[]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

ℜ∈Θ∈∀=Θ ×

)(

)(
)(

),(

,,

2

1

0

0210 0]1[

l

l

I

I

I

I

ql
Il

T
IIII

g

g
g

G

II

ξ

ξ
ξ

ξ

x

x
x

x

θθθ

M

L L

 (3.2.11)

resulting in:

),(xˆ I
T
I G ξy Θ= .

00

To obtain the construction in (3.2.11) an efficient mechanism for simultaneously calculating a weight index

number for each corresponding unit activation must be devised.

(3.2.12)

An implementation that performs the calculations above while simultaneously attempting to minimise memory

and computational resources, is shown in Listing 3.2.2. The code begins by initialising two variables in line9 ten.

The first variable is a vector that will combine the exponential function results, eventually becoming the final

activation vector actv. The second, idxw, will become a vector containing the weight indexes that correspond

to the activations contained in actv. The code then loops (line 20 through 180) through each input to the

network.

10 actv=1; idxw=0; % Initialize variables

20 for j=1:net.ninp % Loop through each network input

30 expn=(u(j)-net.center{j}).*net.invsigma{j}; % Find exponents for jth input

40 idxe=find(abs(expn)<net.nthld1); % Determine exponentials activated

50 expn=expn(idxe); actv=actv(:)*exp(-expn.^2); % Multiply with active units

60 vct1=((idxe-(j>1)).*net.vcprd(j)); % Calculate new indexes

70 vct1=vct1(ones(size(idxw,1),1),:); % Copy vct1 to rows(idxw) rows

80 matx=idxw(:,ones(1,size(idxe,2))); % Copy idxw to cols(idxe) columns

130 idxw=vct1(:)+matx(:); % Update weight index vector

140 idxa=find(actv>net.nthld2); % Make truncation region a ball

150 actv=actv(idxa); % Remove inactivated units

160 idxw=idxw(idxa); % Remove inactivated weight indexes

180 end % End for loop

200 yhat=net.weights(:,idxw)*actv(:); % Output result

Listing 3.2.2. Axis Orthogonal RBF Activation Rule Implementation.

The loop begins in line 30 by calculating a vector that contains the square root of the negative exponent for each

exponential function of the jth input. That is:

expn=(u(j)-net.center{j}).*net.invsigma{j})/1])(max,,1[(jjjj ix σL∆−= .

The absolute of the jth value of expn will be less than a certain threshold if the jth component of the input vector

is close enough to the centre of the jth exponential function. It is easy to show that this threshold (net.thld1) is

related to the truncation radius jρ , and the spatial variance jσ , by)/(jj σρ=net.thld1 . Thus, if the

components of expn are less than this threshold, then the corresponding exponential functions fall inside the

9 Line numbers increment in steps of ten except where code still to be presented is to be inserted.

32

truncation radius and must be evaluated. Line 40 extracts the indexes of the values in expn that meet this

condition and stores the results back in expn.

Line 50 calculates the exponentials for the expn values and performs an outer vector product with the current

vector of activations. On the first iteration the product is simply the exponential results times unity. If the system

has a single input (i.e. one-dimensional) then the result is a vector of the desired activations. If the system has

two inputs then the result, after the second iteration, is a matrix where each entry represents an activation value

at the lattice vertices. Note that the region of excited units would be square. For systems with three or more

inputs, the matrix resulting from second and/or subsequent iteration is first converted to a vector by stacking the

matrix columns on top of one another. This is has the effect of converting the first two or more dimensions of

information to an equivalent single dimension system. The outer product then augments the system with the next

dimension's contribution to the final activation. Lines 150 and 160 are used to ensure that, as each dimension is

processed, only activated units inside a p-ball (ellipsoid) are processed on the next iteration. The mechanism is

easily seen in the two-dimensional case where, as noted previously, the region of excited units represented by

the activation matrix is square (rectangular). The smallest values of activation will be found toward the corners

of this region, where the result is the product of two small numbers. By defining another post product threshold

below which the activation is ignored, causes the corners of the region to be ignored. The resulting region is thus

circular (elliptical). The threshold value, net.thld2, is related to the truncation radius and variance by:

∑ ⎟
⎠
⎞

⎜
⎝
⎛−

= j j
j

e

2

σ
ρ

net.thld2 .

Lines 60 to 80, together with lines 130 and 160, are used to construct a vector of indexes that identify all the

activated units. Once this index vector is constructed the weights corresponding to all active units may be

extracted in a single statement. The final network output can then calculated, as in line 200, by performing the

matrix operations of equation (3.2.12).

Simply put, the index vector code calculates a scalar index into an n-dimensional array. The index represents the

ordinal number for any particular element of an n-dimensional array if the array were stored in linear memory by

sequentially concatenating each dimension. For example, appending the columns for the first layer in an end-to-

end fashion, and then appending the second layer columns in the same manner, would store a three-dimensional

array. The index value for any entry may be calculated directly from the element's subscript values. Note that the

activation vector created in line 50 is a linear representation of selected entries of the n-dimensional array of

activation values.

The code works by creating a new column vector whose first element is a one, followed by the cumulative

product of the vector defining the number of regions in the first n-1 dimensions. Next, the element's subscripts

are placed in a row vector and each element, except the first, is decremented by one. The index value is the inner

product of the two vectors. For example, using the three dimensional array (system) previously introduced, let

us suppose that each of the dimensions (inputs) has been divided into seven regions, then the entry in location

[2,4,6] would have an index value of (2, 268(1x7x7)](1x7),1)][1,-(61),-4[T = .

33

Continuing this example, let us assume an input vector such that the 1st, 2nd, and 3rd exponentials are excited b

input component one, the 3

y

e

ted)

the

e of

s are processed. Note also that idxe is

decrem ed on se nd su ion ng mu with net.vcprd. The final weight

index vector is shown at the bottom right corner of the table.

rd and 4th exponentials are excited along dimension two, and the 6th and 7th

exponentials are excited by component three. From the information given, and assuming a square truncation

region, we know that the indexes may range from 1 to 343 and that for the particular input vector under

consideration there will be 3x2x2=12 units activated. Table 3.2.1 shows how the code goes about generating th

index vector for this example. The initialised variables are shown in the first row. The second row shows the

variables on the first iteration of the loop. We see that idxe is assigned the vector of subscripts for the excited

exponentials. In line 60 each element is multiplied (because this is the first iteration they are not decremen

by the first element of net.vcprod and the result is stored in vct1. Line 70 then copies this row vector as many

times as there are elements in idxw and stores the resulting matrix back in vct1. This prepares vct1 to be

summed with the previous terms of the inner product created for lower ordinal subscripts. Naturally during

first iteration there are no previous terms and the vector is simply copied back onto itself. Next, matx is prepared

by line 80, which copies the current idxw column vector as many times as there are elements in idxe. This

prepares the earlier terms of the inner product to be added with vct1. Clearly, during the first iteration, zeroing

each element will compensate for the lack of any previous terms. This is achieved by simply initialising idxw to

the scalar value of zero. Note that vct1 and matx will always have the same dimensions. In line 130 the final

step converts both matrices to column vectors by concatenating columns, and then performs the sum of the inner

product. The result is stored in idxw for use during the next iteration. The second iteration values, in row thre

the table, show how vct1 and matx grow as higher dimension

ent cond a bsequent iterat s before bei ltiplied

j idxe idxe-(j>1) vcprd(j) vct1 matx idxw

[]⋅ []⋅ []⋅ []4971 []⋅ []⋅ []0

1 []321 []321 []1 []321 []000

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

3
2
1

2 []43 []32 []7

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

2114
2114
2114

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

33
22
11

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

24
23
22
17
16
15

3 []76 []65 []49

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

294245
294245
294245
294245
294245
294245

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2424
2323
2222
1717
1616
1515

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

318
317
316
311
310
309
269
268
267
262
261
260

Table 3.2.1. Example of Variable Evolution During Weight Index Calculation.

34

There are a number of approaches that may be utilised in implementing the axis orthogonal RBF activation rule.

However, the presented method of calculating unit activation and indexes permits rapid construction of the

activation and index vector, uses minimal memory, makes efficient use of computational resources, and is

scalable to any number of dimensions. Furthermore, as we shall see later, the technique may be directly carried

over to LMN networks and also facilitates the rapid computation of the network's Jacobian matrix.

3.2.3 LOCAL MODEL NETWORK STRUCTURE

Section 2.4.5 discusses the approximation ability of the Local Model Network where the approximation

construction is described by equation (2.4.30). In this work we will confine our investigation to networks that

use linear local models and Gaussian interpolation functions. Under these constraints we may restate the

approximation construction as:

∑
∈

−−==
0

)(ˆ)(ˆ)(ˆˆ
II

II g ηφξxfxfy

where:

(3.2.13)

{ }0,ˆ,),(ˆ)(ˆ:ˆ)(ˆ IIKK qn
I

n
I

T
II

q
I ∈ℜ∈Θℜ⊂∈−Θ=−ℜ→∈− ×xxxffxf ξξξ (3.2.14)

{ }LILIIII 20 HII ξξηηξηρηφ ∈∈=≤−= ,),(,| (3.2.15)

together with the model validity functions:

∑ −

−
=−

0

)(
)(

)(ˆ

I∈
J

I
I g

g
g

ηφ
ηφ

ηφ
(3.2.16)

where the interpolation function is expressed as:

J

())()() I
T

Ie ηφηφ −−−= (3.2.1

})2221 nnnii eee ∆++∆+ L

Σ(g Iηφ − 7)

and 11L i∆= {ξ has spacing j∆ along each of the basis vectors je for nℜ , and

{ }iiL ,,K= n1 is an n-tuple of integers. Furthermore it is assumed that the function be ted may be

expressed as:

LLHHHHHL fffff xxxxxx

ing approxima

)()()(),()(
21

+== (3.2.18)

apping where n
HL

s
HH

sn
LL

T
H

T
L

T KKKKK ℜ⊂⊂ , and the mℜ⊂∈ℜ⊂∈= − ,,,],,[xxxxx Φ→KH : is

constructed as the projection Hx=φ . The lattice Lη is constructed according to)(LL H ξη = implying

that { }iii eee nnnsnsnsnsnsnsnL ∆++∆+∆= L+−+−+−+−+−+− 22111 2η where ns ≤≤1 . Lastly the resulting

truncation radius ρ will form an s-ball around φ .

y substituting equation (3 o (3.2.13) and rearranging the result we may express the approximation as: B .2.16) int

.)()(ˆ1)(ˆˆ ∑∑
−−

−
== II g

g
ηφξ

ηφ
xfxfy

(3.2.19))(
0

0

∈
∈

II
IJ

J

35

Comparing this to equation (3.2.7) in section 3.2.2 we see, if we replace the coefficients by the local models

 and the basis functions

Iθ

)(ˆ
Iξ−xf)(Ig ξ−x by the model validity functions)(Ig ηφ − , that the approximation

construction is equivalent to a Gaussian RBF approximation except the output is normalised by the sum of the

contributing model validity functions.

ork, however the sampling lattice density and dimension

are now determined by the characteristics of

The LMN can thus be viewed as a modified RBF netw

φ . Such an approach leads to the network structure depicted in

. However the hidden layer, input to hidden layer connectivity, and output unit calculations are

significantly different to an equivalent RBF network.

1ŷ

∑

•

 /

qŷ

∑

•

 /

 f1 (Θ1)

 f2 (Θ2)

 f3 (Θ3)

 fN (ΘN)

Input
Layer

N Local Model Units

Output
Layer

x

H:K → Φ φ

N Basis Function Units

 f1[1]

 f1[q]

 fN[1]

 fN[q]

Hidden
Layer

x

g1(ξ1,σ1,x)
g1(η1,σ1, φ)

g3(ξ3,σ3,x)

g3(η3,σ3, φ)

g2(ξ2,σ2,x)

g2(η2,σ2, φ)

x1

xp

gN(ξN,σN,x)

gN(ηN,σN, φ)

Figure 3.2.4. General LMN Network Structure.

Figure 3.2.4. Consistent with the general RBF network construction we see that such an LMN structure has an

input, hidden and output layer, with input and output layers sizing according to number of inputs and outputs

respectively

36

The hidden layer now consists of two different types of units; namely the local model units and the

corresponding basis function units. There is an equal number N of each unit type10 where N may be expressed

as:
n

Lii jN j
snj

∈∀= ∏
+−= 1

max .

j

N network. For this type of network we may show, using the same approach as before, that

ficiencies o

N

 unit

hich

(3.2.20)

Equation (3.2.20) clearly shows that dramatic reductions in N may result from decreasing s. As with RBF

networks, in the special case where the basis vectors e are orthogonal, the resulting network is referred to as an

axis orthogonal LM

although there are N basis function units it is possible to reduce the number of exponentials evaluated to:

LiiN j

n

snj
jo ∈∀= ∑

+−= 1

max . (3.2.21)

The computational ef resulting from the reduction in N and N are partially offset by the added burden

of computing the local models and obviously this trade off is a key factor in choosing between RBF and LM

approximations.

The basis function units must be connected to the input units associated with xH to construct the mapping H.

There are two basic approaches to achieving this. The first approach divides the input to the basis function

connections into two groups, each associated with xH and xL respectively. Only the first of these groups, w

represents the lattice Lη , is connected to the basis function units. The second approach, the one utilized in th

work, streamlines the code implementation but has a small computationally penalty associated with it. Th

approach works by specifying, during initial network definition, very large variances and sample spacing, in

comparison to the extents of K, along each of the dimensions associated with x

is

e

e outcome of which is always unity

e ultiplied together with results from dimensions, they play no odel

validity , if the mapping H were constructed in some manner other than the one

L. This causes a single

exponential evaluation for each of these dimensions, th . Because these

outcom s are m other role in the final m

 function values. However

described above this approach would be invalidated. In both methods, and identically to RBF networks, the

weight matrices associated with the elliptic integration function are the lattice vertices and the Gaussian

variances. The key difference is that in the first method the lattice points are defined by Lη whereas in the latter

method lattice points are defined by Lξ , where the components associated with xL may xpres ingle be e sed by a s

vector []snL ,,, −= ξξξξ L21 , 2minmax x(jj +=ξ , snjK,)/x j −≤≤∈∀ 1x and variances { sn− }σσσ L, 21

are chosen such that

,

1),(≈−xg σξ , snjKjjj −≤≤∈∀ 1,x .

10For strict conformance to neural network architecture there should be qN × local model units where each unit would have a single

output. However, for both computational and diagrammatic purposes, it is much more convenient to consider each local model unit as
having q outputs distributed to each of the output units.

37

In general, all inputs are connected to all local model units. However, if a-priori information indicates that

particular local model or group of local models does not make use of any particular input(s), then the unused

connections may be omitted. Notice that the local models described by equation (3.2.14) may be written as:

qn
I

T
I

I
T
II

×+ℜ∈Θ⎥
⎦

⎤
⎢
⎣

⎡
Θ=

−Θ=−

)1(,
1

)(ˆ)(ˆ

x
xxf ξξ

 (3.2.22)

where the constant vector formed by the product I
T
I ξΘ− ˆ has been absorbed into the n

any

th+1 column of IΘ . The

weights associated with the input to local model connections are thus the elements of IΘ , the last colum

which represents a bias, and each local model unit performs a linear integration function computation.

The activation function computati

n of

on for each local model unit simply copies the integration function result to the

output; functionally a multiplication by unity. Notice that if the mapping H is evaluated according to the second

method described above, then x=φ and IL ξη = .

The output units combine the two elements of the hidden layer, using the computations shown in equation

(3.2.19), to produce the final output. Each unit has two vector inputs containing N elements each. For the

 unit, the elements of the first input vector are the jth output from each of the N hidden local model units.

The second input vector's elements, which are the same in all the output units, are the N outputs f asis

nction units. For both vector inputs the connection weights are unity. To generate the output the unit first

This final step thus constitutes the output unit’s activation function. Notice that the normalisation term is

matic

2)

jth

output

rom the b

fu

performs the inner vector product (the integration function) between the two input vectors. Next, this scalar

result is divided by the sum of the elements of the second input, the normalisation term, to produce the jth output.

identical for each output unit, and thus need only be computed once in a typical serial program

implementation. The preceding discussion permits the overall mapping, after substitution of equation (3.2.2

into (3.2.13), to be expressed as:

∑ −⎥
⎤

⎢
⎡

Θ=)(ˆˆ I
T
I ξg x

x
y . (3.2.23)

∈ ⎦⎣
0

1II

38

By judicious construction of matrices, it is possible to express equation (3.2.23) as a matrix equation. Assum

that for some particular input the set 0I contains l vector elements, then let:

e

[]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

ℜ∈Θ∈∀ΘΘΘ=Θ ×+

)(ˆ

)(ˆ
)(ˆ

),(

,,

2

0

0210

)1(
0]1[

l

l

I

I

I

I

qnl
Il

TT
I

T
I

T
II

g

g
g

G

II

ξ

ξ
ξ

ξ

x

x
x

x
M

L

 (3.2.24)
1

L

then:

()TT
I

T
I G]1,[),(ˆ

00
xxy ⊗Θ= ξ . (3.2.25)

As was pointed out earlier the hidden layer element comprised of the basis function units is identical to a RBF

network. This means that the discussion presented in section 3.2.2 is directly applicable to this element of

LMN's and we may develop an almost identical activation rule implementation. Such an implementation is

shown in Listing 3.2.3. Notice that lines 10 through 180 are identical to those used in Listing 3.2.2, however

there are two implicit differences. Firstly, for com arable approximations, the vectors

Thus, once execution has proceeded to line 180 the vector will contain the basis unit interpolation

p net.center{j},

net.invsigma{j} and consequently expn would generally be significantly reduced in length due to lower lattice

density requirements. A shorter expn results in far fewer exponential calculations in the remainder of the loop.

Secondly, the index vector, which previously identified the weights used in calculating the output, now identify

local model units used in the output calculation.

actv

10 actv=1;idxm=0; % Initialize variables

20 for j=1:net.ninp % Loop through each network input

30 expn=(u(j)-net.center{j}).*net.invsigma{j}; % Find exponents for jth input

40 idxe=find(abs(expn)<net.nthld1); % Determine exponentials activated

50 expn=expn(idxe); actv=actv(:)*exp(-expn.^2); % Multiply with active units

60 vct1=((idxe-(j>1)).*net.vcprd(j)); % Calculate new indexes

70 vct1=vct1(ones(size(idxm,1),1),:); % Copy vct1 to length(tmp2) rows

80 matx=idxm(:,ones(1,size(idxe,2))); % Copy idxm to length(tmp1) cols

130 idxm=vct1(:)+matx(:); % Update model index vector

140 idxa=find(actv>net.nthld2); % Make truncation region a ball

150 actv=actv(idxa); % Remove inactive units

160 idxm=idxm(idxa); % Remove inactive model indexes

180 end % End for loop

190 actv=permute(actv(:)./sum(actv(:)),[3,2,1]); % Reshape actv and normalise

200 arry1=actv(ones(1,net.nout),... % Each model validity fcn times mdl wts

 [1, ones(1,net.ninp)],:).*net.weights(:,:,idxm);

210 arry2=[u’,1]; % Append bias term to input

220 arry3=permute(sum(arry1.*... % Calc weighted output of each active mdl

 arry2(ones(1,net.nout),:,ones(1,length(idxm))),2),[1,3,2]);

250 yhat=sum(arry3,2); % Sum model outputs for network output

Listing 3.2.3. Axis Orthogonal LMN Activation Rule Implementation.

39

function results, and idxm contains the index vector identifying each local model contributing to the final resul

From this point on (lines 190 to 250) the code becomes unique to the LMN activation rule implementation. In

line 190 the activ vector is normalized to form a vector of model validity functions. It also undergoes a

permutation operation to form a three dimensional array containing one row, one column, and l ‘layers’ where

is the number of contributing local models. Next in lines 200 to 220 three temporary three dimensional array

variables are calculated. The first, arry1, represents:

0)(ˆ IIg I
T
I ∈∀−Θ= ξx arry1 . (3.2.26)

It is calculated by repeating the single row and column entry of actv, for each of the l layers, by the number of

outputs and inputs+1 respectively, and then performing an element by element multiplication with the weigh

matrix for each of the contributing local models. The next temporary variable, arry2, augments a one onto t

t.

 l

t

he

n in equation (3.2.22). Lastly arry3 represents:

ed

with the same number of rows and columns as network

ion (3.2.23). Summing arry3 along the dimension representing the individual

weighted local models, namely the second dimension, does precisely this.

o in the

 the Matlab

interpreter, can add significant computational overhead. The second reason, as we shall see later, using

pora

In a broad context the neural network system is used in this work to perform system identification. System

g key

model structure is

defined by the network structure or activation rule. The postulated criterion is constructed from the objective

lly

the model validation step is required to ensure that the model predicts the identified system with sufficient

fidelity and robustness in regions of the operating space that are not necessarily explicitly included during the

parameter estimation process. There is a large body of work dealing with system identification and most of the

transpose of the input column as show

0)(ˆ)(ˆ IIg II ∈∀−−= ξξ xxf arry3 . (3.2.27)

It is obtained by repeating arry2 l times along dimension three and the number of output times along dimension

one and then performing an element by element multiplication between arry1 and arry2. This result is summ

along dimension two and then permuted to form a matrix

outputs and inputs respectively. The last step in obtaining the output, performed in line 250, is the final

summation shown in equat

The reader may be puzzled as to why, what appears to be a rather convoluted meth d has been used to obta

final network outputs. The reasons are twofold. Firstly one may be tempted to use the matrix multiplication

operators when calculating the local model results. This leads to using a ‘for’ loop which, when using

 is that by

the tem ry variables defined we can avoid redundant calculations when computing the network Jacobian.

These factors combined lead to an implementation with speed improvements in excess of 30% when compared

to a direct matrix multiplication implementation.

3.3 TRAINING THE NETWORK PARAMETERS – THE LEARNING RULE

identification is the process of experimentally determining a system model and consists of the followin

steps: experiment planning, selection of model structure, criteria postulation, parameter estimation and model

validation. The network environment influences the experiment planning stage and the plan must ensure that the

network inputs meet certain criteria in order for the identification to be successful. The

function while the parameter estimation task is defined by the method used to generate the learning rule. Fina

40

work presented in this section is drawn from these works. In particular, the reader is referred to Åström and

Wittenmark (1995) and Ljung (1999) and the many references cited therein for a more detailed discussion.

3.3.1 THE OPTIMISATION PROBLEM

The process of training or adapting the network parameters combines the postulated criteria with the learning

rule to update the systems parameters based on the systems current and past experiences. These two elements are

ear

We therefore begin by defining a cost function or criterion that should be optimised. In discrete t ms

k 1
(3.3.1)

inextricably linked by the fact that the learning rule results from the method selected to solve the non-lin

optimisation problem defined by the objective function.

ime syste

this is often expressed as:

() ()()∑=
t

ktJ ,, θεθ l
=

()θε ,kwhere, for now we shall consider θ to be either a matrix or vector of parameters, is a generalised error

 measurement, t is the total number of discrete unit time steps processed where each step is represented by the

integer value k. The function ()θε ,k is commonly chosen, as in this work, to be the prediction error:

()][ˆ][, kkk yy −=θε (3.3.2)

where][ky is the observed system output and is the network predicted system output parameterised by][ˆ ky θ .

We choose the objective function to be consistent with Gauss’s principle of least squares which states that

rameters of a model should be chosen suc es

between the actually observed and the computed values, multiplied by numbers that measure the degree of

um

 diagonal m

()l

the unknown pa h that ‘the sum of the squares of the differenc

precision, is a minim .’

Thus let 1−Λ be a qq× atrix of weights describing the precision associated with each output.

Furthermore, as the system being identified may be time varying let)k,t(β be a factor that discounts the degree

of precision as a function of time, then we may use the following quadratic function to map network outputs into

a real number reflecting how well the network output is tracking its computation goal:

),(),(),(
2

Finally, substituting equation (2.4.4) results in the following weighted least squares criteria or cost function:

()

1),(1 θεθεβθ kkktk T −Λ=l . (3.3.3)

() ()

() (.)],[()][)],[(ˆ][),(
2
1

][ˆ][][ˆ][),(
2
1

1

1

1

1

∑

∑

=

−

=

−

−Λ−=

−Λ−=

t

k

T
k

T

kkkkkt

kkkkkt

θθβ

β

xyxfy

yyyy (3.3.4)

),(),(),(
2
1,

1

1∑
=

−Λ=

t

t

k

T kkkttJ θεθεβθ

f̂

Clearly, the better the network performs the smaller the value of the criteria. Combining the above, the

optimisation problem to be solved in this work may be stated as:

41

() ()⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
−Λ−= ∑

=

ization problem. If other limitations are placed on any of the

 processing while the latter is called on-line or recursive

−
t

k

T
kkkkktt

1

1*)],[(ˆ][)],[(ˆ][),(
2
1minarg)(θθβθ

θ
xfyxfy . (3.3.5)

Equation (3.3.5) is an unconstrained minim

variables, for example the parameters are limited in their range, then these limitations should be stated as part of

equation (3.3.5), which would clearly then become a constrained minimization problem.

3.3.2 ON-LINE VS BATCH MODE PROCESSING

Before presenting the methods used to solve equation (3.3.5) it is necessary to make a fundamental decision

about whether the training should be performed after all the system data has been obtained or whether the

algorithm should attempt to incrementally include new information as time progresses. The former approach is

generally referred to as off-line or batch mode

identification.

Given the data []Tttt][],[,],2[],2[],1[],1[)(yxyxyxZ L= we can define the identification problem as:

())(,F)(ttt Z=θ (3.3.6)

where the function ().F is implicitly defined by equation (3.3.5). In batch mode all the data is collected before

attempting to solve for θ . The evaluation of ().F thus involves an unforeseen amount of calculation. In an

adaptive control application this is problematic as memory is limited and only a finite amount of computation

time is available between system samples. To overcome this problem in recursive or on-line algorithms a

dimension variable representing the accumulated information state,)(tP , is defined. Thus:

 fixed

()
() .)(),(),1(,H)(

)(h)(
tttPttP

tPt
xy−=

=θ

The functions h(.) and H(.) are explicit expressions evaluated using a fixed number of calculations.

Furthermore, as the amount of information added with each new sample is, in general, small compared to the

lated, the number reflecting the new information content is typically weighted by a

factor reflecting the value of the new information and summed linearly to the existing parameters and

information already accumu

)γ(t

information state:

()
() .)(),(),1(Q)1()(

)(),(),(Q)γ()1()(
P

θ
tttPtPtP
tttPttt

xy
xy

−+−=
+−=θθ (

The weighting factor is called the update step size or adaption gain and provides a mechanism whereby the

direction that the update step should take. Equation (3.3.6) may be considered a general statement

recursive or on-line adaption learning rule.

A stated objective of this work is to use the algorithms developed in non-linear adaptive neurocontrol. Use of the

term ‘adaptive’ implies then that training of the system should be performed on-line. One may question why it is

3.3.7)

)γ(t

trade off between tracking ability and noise sensitivity can be controlled. The function)(.Qθ provides the

 of the

learning rule for off-line or batch processing while equation (3.3.7) is the analogous general statement of the

42

necessary to have adaptive capabilities. It could be argued that the varying nature of the plant may be included in

the non-linearity of the controller design by adding another degree of freedom. Implicit in this idea is that the

plant is well understood over its entire domain of operation. Furthermore, as we have seen in the previous

id ir

 freedom to a minimum.

increased in value thus making the algorithm sensitive to noise contained within the observed values. With large

adaption gains previously identified regions of operation are rapidly overwritten with new inform e

identification scheme has only a short memory of previously learnt information. Although the adaptive control

 difficult. By using non-linear neural networks in

conjunction with on-line adaptive techniques one can memorize short time scale non-linear variations in the

LINEA PTIMISATION

chapter, the problem with this approach is that all the network architectures cons ered have aspects of the

calculation that scale exponentially with the number of degrees of freedom suggesting that it is advantageous to

keep the degrees of

The argument above taken to the opposite extreme, that is to use an adaptive approach to continually update a

linear model of the plant, also has its drawbacks. Consider a plant that has piecewise or rapidly varying

parameters. In order for equation (3.3.7) to track these rapidly varying parameters the adaption gain must be

ation. Th

community has developed methods to alleviate this problem, recursive identification of a non-linear plant having

parameters that vary over vastly different time scales is

network models while the adaptive scheme can be used to adjust to long time scale parameter variation. This

permits one to trade off algorithm memory requirements with tracking response while maintaining good noise

sensitivity characteristics. This idea is closely related to the idea of parallel estimators suggested in Åström and

Wittenmark (1995).

3.3.3 NETWORK PARAMETERISATION AS A R O PROBLEM

It is well known that an analytical solution exists for the optimisation problem described in (3.3.5) provided the

function)],[(ˆ θkxf is linear in the parameters θ and the output is written in the following form:

.][)],[(ˆ][ˆ θxfy kkk Tϕθ == (3.3.8

This problem is typically referred to as a linear regression problem and th

)

e term][kϕ is referred to as the

 for the RBF network expressed in equations (3.2.12)

may be expressed in the form of equation (3.3.8) provided the following substitutions are made:

regression vector or regressor. Note that the output vector

()
[] lqqTT

Iqq
T

lq
I

kGIkk ×
× ℜ∈⊗=

∂
∂

=

ℜ∈Θ=

ϕξϕ ,)],[(][ˆ][

,col

0

0

x
θ

y
θθ

 (3.3.9)

where is a identity matrix. Similarly for the LMN network equation (3.2.25) may also be transformed

where:

qqI × qq ×

()
()[] .,]1],[[)],[(][ˆ][

,col
)1(

)1(

0

0

qnlqTTTT
Iqq

T

qnl
I

kkGIkk +×
×

+

ℜ∈⊗⊗=
∂
∂

=

ℜ∈Θ=

ϕξϕ xx
θ

y
θθ

 (3.3.10)

43

If, as in the case of MLP networks represented by equation (3.2.5), the function , is non-linear in)],[(ˆ θkxf θ

but continuously differentiable of order one, then it may be transformed into a linear problem at any instant in

time by observing that:

.]1[),(

]1[)],[(ˆ
][ˆ −

∂
∂

= kθ
θ

θkk xfy
]1[−=

T
kθθ

red

nient

~
⎥⎢ θ

n

the form of (3.3.11) given the following substitutions:

(3.3.11)
−= kθθkϕ

Note that the regressor remains a function of the parameters. To highlight this fact equation (3.3.11) is refer

to as a pseudo-linear regression problem. To relate this to the parameters of the MLP network a more conve

weight vector is first defined for each layer:

ll

l

mml
TTlTlTlTlTll)1(1)()()()(

3
)(

2
)(

1
)(1,col,,,,~ +× −ℜ∈⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛Θ=

⎦
⎤

⎣
⎡= θθθθθ L (3.3.12)

where all variables have the same meaning as those in equation (3.2.2). The MLP mapping can now be stated i

m

() .,~
][ˆ,,~

][ˆ,~
][ˆ,

,

~)(

⎞⎛

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣
L

TLθ
M

 (3.3.13)

~ 1)1()2(+∑ −⎥
⎥

⎢
⎢ L

ll mmT
θ

~

1
1

1

)1(

]1[
)()2()1(

)1(

⎟
⎟
⎠

⎜
⎜
⎝

+×

−=

∑
=

−

=

ℜ∈⎥
⎤

⎢⎣

⎡
∂
∂

∂
∂

∂
∂

=

ℜ∈

⎤⎡

=

l
ll

l

mmq
T

k
L

T

T

kkkk ϕϕ
θθθ

y
θ
y

θ
yθ

θ

θ

θ

L

 and (3.3.13), we see that the learning rule for the RBF, LMN and MLP

networks can be stated as linear regression or pseudo-linear regression problems respectively. The next three

sections are therefore devoted to describing the techniques used in this work to solve the general recursive

regression problem. To simplify the notation these discussions will not differentiate b een ϕ T d

, both of which will simply be referred to as or when

⎦

Summarising equations (3.3.9), (3.3.10)

),(θk anetw

][kTϕ)(kTϕ)(tTϕ tk = . Furthermore, the dimensions

of θ and)(k will be generalized to Tϕ r and rq× respectively, where r is considered to take on the appropriate

value depending on the network being considered. Note that the general literature contains many varied methods

to solve this problem. Those discussed here are used to illustrate the core ideas found in these methods and will

culminate in a newly developed algorithm found in section 3.3.8. Algorithms actually implemen

designated by a superscript hash (#) character after the equation number.

We begin with the simplest approach, namely th est or gradient descent method. Here the

 is updated at each point in time, by moving in the negative direction of the gradient of the objective

function. Therefore, applying the chain rule to equation (3.3.3) gives:

ted are

3.3.4 THE STEEPEST OR GRADIENT DESCENT METHOD

e steep parameter

estimate

44

() ()

() ()

(

)(ˆ
)(ˆ)()(ˆ)(

(
)(ˆ

),(
2
1

1

11
⎟
⎟
⎞

⎜
⎜

⎝

⎛
⎟⎟
⎞

⎜⎜
⎛ ∂

Λ−+−Λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

−

−− tttttttt

T

T
T

yyyyy
θ

yβ (3.3.14)

).)1()()()(),(

)1()1

)(ˆ)(
2

1

−−Λ=
⎠⎠⎝ −∂−

⎟
⎠
⎞

⎝
−Λ

∂∂
−

tttttt

tt

tt

θy

θ

yy

ϕϕβ

θθ
)(ˆ)(),(1),(

⎜
⎛ −

∂−
=

∂− ttttt Tyyβθl

Assuming),(ttβ remains constant, i.e.),(ttβγ = , and that the accumulated information state,

represents the negative direction of the gradient of the objective function, the gradient descent learning rule may

be stated as:

)t(P ,

().)1()()()()(
)()1()(

1 −−Λ=
+−=

− ttttt
ttt

T θyP
Pθθ

ϕϕ
γ

 (3.3.15)#

This method is very inefficient when the hyper surface representing the objective function has long narrow

valleys or large flat plateaus as the gradient term approaches zero in these regions. In an attempt to alleviate this

her term, called momentum is frequently added:

)()()(
)()1()(

1 −+−−Λ=
+−=

− tPtttt
ttt

T µϕϕ

problem anot

() .)1()1()(t
γ

θyP
Pθθ

 the updates ‘moving’ by summing a weighted factor of the previous

direction with the current direction. The idea is that components of th update that have changed

previous iteration will tend to cancel but components in the same direction will sum together to ‘push’ the

red path. Although this approach can sometimes improve the convergence rate the

method still remains inefficient. Furthermore, the ‘best’ values for

(3.3.16)#

The momentum term attempts to keep

e from the

update further along the desi

γ and µ are problem depen ust be

selected empirically. The advantage of the algorithm is that, in spite of its lack of mathematical rigor, it is

intuitively simple; note that at each time step the only complex calculation required is determining the matrix

dent and m

)(tϕ .

3.3.5 THE RECURSIVE LEAST SQUARES (RLS) METHOD

sts to this type of problem. Introducing the following matrix

notations:

T
yy

TTTT

TT

tt

t
tW

t
t

ttttYtYtE
ttY
t

ℜ∈Λ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Λ

Λ
=

⎥
⎥

⎤

⎢
⎢

⎡

=

−=−=
=

−

−

−

1

1

1

,
),(

)1,(
)(

)(

)1(

)(Φ

)(ˆ)()(),(ˆ)()(
)(ˆ,),2(ˆ),1(ˆ)(ˆ
)(,),2(

β

β

ϕ

ϕ
ε

O

M

L

L

yy
yyy
y

In section 3.3.1 the selected criterion was called the weighted least squares criterion. It is well known that a

mathematically sound analytical solution exi

[TTtY =),1()(yy]
[]

qxq
y

T

T
⎥
⎥

⎢
⎢)2(ϕ

(3.3.17)

⎥
⎦

⎢
⎣

45

the cost function (3.3.4) then becomes:

() ()

()1

][
2

2

111 −−−

⎟
⎠
⎞⎜

⎝

TTTT

T k θϕ (3.3.18)][][][),(1

)()()(1),(

1∑ −⎛ −Λ−=

=

TT
t

yy
T
y

kkkkt

tEtWtEtJ

yθy

θ

ϕβ

.][][][][2][][),(
2 1
∑
=

Λ+Λ−Λ=
k

kkkkkkkt θθyθyy ϕϕϕβ

Equation (3.3.18) may be differentiated directly with respect toθ :

1=
t

k

()

.][][),(][[),(

][][][][),(),(

1

1

1

1

1

∑∑

∑

=

−

=

−

=

Λ−=

Λ−Λ=
∂

∂

t

k

t

k

T

t

k

kkktkkt

kkkkkttJ

yθ

yθ
θ
θ

ϕβϕϕβ

ϕϕϕβ
 (3.3.19)

]

11 −−

Λ

T

k

To find the minimum we set equation (3.3.19) equal to zero:

rtYtP

tYtPtJ

ℜ∈=∴

=−=
∂

∂

−

−

**1

*1
*

*

),(~)(

0)(~)(),(

θθ

θ
θ
θ

 (3.3.20)

where:

k
=

 (3.3.21)

Therefore the minimum of (3.3.18) occurs at:

(3.3.22)

This is called the normal equation and is the basis for many off-line algorithms. To derive a recursive algorithm

we begin by defining the variable

.)()()(][][),()(~

)()()(][][),()(

1

1

11

tYtWtkkttY

ttWtkkkttP

y
T

t

k

y
T

k

T

Φ=Λ=

ΦΦ=Λ=

∑

∑
−

=

−−

yϕβ

ϕϕβ
t

1

()
.)(~)(

)()()()()()()(
1*

tYtP
tYtWtttWtt y

T
y

T

=
ΦΦΦ=

−
θ

)(tλ as follows:

⎪⎩

⎪
⎨
⎧

=
<<

=
−

−

tk
tk

t(λ
k)t

kt
kt

,1(
1

),1(
),(0

)
β

β
β

. (3.3.23)

()(),1()()(
1

11

ttkkktt

t

kkktttP
t

k

T

ϕϕϕϕβλ

ϕϕβλ
=

−−

Λ+Λ−=

Λ−=

∑

∑

 (3.3.24)

Substituting (3.3.23) into (3.3.21) gives:

)

)()()()(),1()(

)()(),1()()()(),1()(1
1

1 ttttkkktt T
t

T ϕϕβλϕϕβλ −
−

− Λ−+Λ−= ∑
1

1
1

1

T
t

T

k

−
−

−

=

.)()()1()(11
1

tttPt T
k

ϕϕλ −−
=

Λ+−=

46

Similarly:

~ 1
1

t−
−][][),1()(][][),1()()(

.))()()1(~)(1 tttYt y−Λ+−= ϕλ

From equation (3.3.24) we note that:

1

1

tttttkkktttY
k

y−

=

Λ−+Λ−= ∑ ϕβλϕβλ

y
(3.3.25)

())()()(
)(

1)1(111 tttP
t

tP Tϕϕ
λ

−−− Λ−=− (3.3.26)

and from equation (3.3.22):

.)1()1()1(~ *1 −−=− − ttPtY θ (3.3.27)

Then substituting (3.3.24) through (3.3.27) back into (3.3.22) gives:

()
()
()

)
()

())1()()(()()1(
)()()1()()()()(

)()()1()1()()(
)()()1(

() .)(ˆ)()()()1(

~)()()(

1*

1

1*11

1*1

1*

tttttPt
ttttttPtP

ttttPttP
tttYttPt

T

T

θy
yθ

yθ
yθ

−−+−
Λ+−Λ−=

Λ+−−=
Λ+−=

−

−

−−−

−−

−

ϕϕ
ϕϕϕ

ϕλ
ϕλ

 (3.3.28)

ttttPt yyθ
θ

−Λ+−=
Λ=

ϕ

In conventional RLS algorithms the matrix inversion required to calculate in equation (3.3.28) is avoided by

applying the matrix inversion lemma:

)(tP

() () .1111111 −−−−−−− +−=+ DACBDABAABCDA (3.3.29)

Thus, taking equation (3.3.24) gives: 11),(),1()(−− Λ===−= CtDBtPtA T ϕλ

() ⎟
⎠
⎞⎜

⎝
⎛ −−+Λ−−−=

−
)1()()()1()()()()1()1(

)(
1)(

1
tPtttPttttPtP

t
tP TT ϕϕϕλϕ

λ
. (3.3.30)

then substituting (3.3.30) and simplifying gives: 1)()()(−Λ= ttPtK ϕMoreover, if we let

() 1
)()1()()()()1()(
−

−+Λ−= ttPttttPtK T ϕϕλϕ . (3.3.31)

Summarizing equations (3.3.28), (3.3.30) and (3.3.31) gives the final recursive least squares algorithm:

()
()

()1(1)(−= tPtP
λ

).)1()()(
)(

)()1()()()()1()(
)(ˆ)()(

1

−−

−Λ−=

−
−

tPttK
t

ttPttttPtK
tttK

T

T

ϕ

ϕϕλϕ
yy

pute in (3.3.32) it is still necessary to obtain the inverse of a matrix. This is

considerably less computational effort than would be required to compute the inverse if the matrix

inversion lemma had not been applied to equation (3.3.24).

 E FACTOR WITH ITIONAL U

 assi o ol

)1()(** +−= tt θθ
+ (3.3.32)

)(tK qq×

11 of)(tP

Notice that to com

3.3.6 THE XPONENTIAL FORGETTING COND PDATING METHOD

In a time varying system it is desirable to gn less weight t der measurements that are no longer

representative of the system. This is done by selecting the values of),(ktβ along the diagonal of the weight

())dim()dim())(dim(θθ ×=tP 11

47

matrix yW i (3.3.17). In particular if we choose ktkt −= λβ),(were 1n <λ then we see that the current sample

has uni ghting while older measurements di ed. Furthermore, equation (3.3.23)

reduces to

ty wei are exponentially scount

λλ =)(t for all ermittingtk < p λ)(tλ ito be substituted for n equation (3.3.32). The constant λ is

often called the forgetting factor and the resulting RLS algorithm is called the exponential forgetting algorithm:

()
()

()1
)()1()()()1()(

)(ˆ)()()1()(
1

*

−−=

−+−=
−

ttPtttPtK
tttKtt

T

T

λ

ϕϕϕ
yyθθ

 (3.3.33)
.)1()()()1()(

*

−−−=

+Λ

tPttKtPtP ϕ

λ

 ADAPTION GAIN AND THE FORGETTING FACTOR

ative to com are the forgetting factor to the adaption gain in equation (3.3.7). By normalizing

such that , and noting that , we see that the update part of

 as equat

#

3.3.6.1 RELATIONSHIP BETWEEN

It is inform p

)(tP)t(P̂)t()t(P γ= 1−Λ=)t()t(P̂)t()t(K ϕγ

equation (3.3.32) takes the same form ion (3.3.7). Furthermore:

.),(
)(

1

1
∑
=

=∴
t

k

kt
t

β
γ

)()(
),(

) 1

1

1

1 ∑
−

=

=

=

== t

k

k

k

ttP
kt

γ
β

But from equation (3.3.23) we get:

)()(),(
()()(ˆ

1

11
∑

∑
−

−−

Λ

Λ=

t
T

t
T

kkkt
kktP

ϕϕβ
ϕϕ

.1
)1()(
+

−
=∴

tt γγ

When using the exponential forgetting algorithm the forgetting factor becomes a constant allo

)(1

1),1(
),1(

),(),(),(
111

+−
−

=+= ∑∑∑
===

t

kt
kt

ttktkt
kkk

λ
β

βββ

wing (3.3.34) to be

reduced to:

),(11 −− kt ttt β β
(3.3.34)

λγ −=1 (3.3.35)

een the adaption gain and forgetting factor. providing a simple relationship betw

3.3.6.2 PERSISTENT EXCITATION AND THE ESTIMATOR WIND-UP PHENOMENON

It is important to note that equation (3.3.22) must have a unique minimum, that is, the term ())()()(ttWt y
T ΦΦ or

)(1 tP− must be invertib Thile or have full rank. s condition is called an excitation condition

certain experimental conditions must exist for the method to be successful. In particular, the inputs to an th

on system are said to be persistently exciting of order n if the matrix:

 and implies that

n

order regressi

∑
=

∞→

∞→

=

ΦΦ=

t

k

T
t

T

tn

(3.3.
kk

t

t
C

1

)()(1lim

1lim

ϕϕ
 36)

48

is bounded positive definite. As the regression vector associated with dynamic systems typically contains

elements of both past inputs and outputs, problems can arise if the system inputs are poorly excited, if the model

is over parameterized, or when performing system identification under cl ed loop low order linear feedback

 i o duplicat

s being directly proportional to certain outputs. This causes columns of the matrix to

approach or become linearly dependent resulting in poor conditioning or reduced rank respectively. A system

xhibiting this problem is said to suffer from collinearity.

getting can be particularly problematic causing

a phenomenon called estimator windup. Consider the case where the regressor is constant, that is

os

conditions. Periods of input nactivity can lead t ed inputs and outputs and feedback may result in

certain input)(1 tP−

e

The absence of persistent excitation coupled with exponential for

, 0)(ϕϕ =t with

some initial matrix 0 ϕϕ −Λ= . Then, if we let begin at zero, equation (3.3.24) gives: TP 0
1

0
1−

Tt

t

k

Tktt

tP

PtP

0
1

0
11

0

1
0

1
0

1
0

1

)(

)(

ϕϕαλ

ϕϕλλ

−−−
=

−−−−

Λ+=

Λ+= ∑ (3.3.37)

where:

k

tt
λ
λα

−
−

=
1)(.
1

(3.3.38)

Setting and applying the matrix inversion lemma (3.3. .37) 11
0

1
0)(,, −−− Λ==== tCDBPA Tt αϕλ 29) to (3.3

gives:

() ⎟
⎠
⎞⎜

⎝tλ
⎛ +Λ−=

−
00

1
000000

1)(PPPPtP TTt ϕϕϕαλϕ .

Also from (3.3.37) we get:

)(t (3.3.39)

()
().)()(

)()(11 tP t −− += αλ
1

0

1
0

ttPP
Pt

−

−

+=∴ α
 (3.3.40) tλ

Substituting (3.3.40) into (3.3.39) gives:

() 00
1

00000)()()(PPtPttP TTt ϕϕϕαλϕα
−

+Λ= . (3.3.41)

Matrix may be expressed as two terms:)(tP

TttPtP 0
1

0)()(~)(ϕϕβ −Λ+= (3.3.42)

where:

() TTT 111~ −−t
t tPPtPPtP 0000000000)())(()(ϕϕβϕϕϕαλϕ
λ

Λ−+Λ−= . (3.3.43)

The value)(tβ is chosen such that matrix)(~ tP has rank 1−n with 0)(~
0 =ϕtP . This implies th meter

 components rep

at the para

information resented by)(~ tP are orthogonal to 0ϕ . The second term therefore repre sents the

update to the components of the parameter information whic orthogonal to the regressor. Combining

equations (3.3.41), (3.3.42) and (3.3.43) and post multiplying b

h are not

y 0ϕ gives:

49

() .)()()(00
1

0000
1

00000 ϕϕϕβϕϕϕϕαλϕα TTTt tPPtPt −−
Λ=+Λ (3.3.44)

Noting that 1<λ , and examining equations (3.3.43), (3.3.38) and (3.3.44) respectively we see that:

(3.3.45)

herefore, the ‘orthogonal’ part of goes to infinity or ‘winds up’ while the ‘non-orthogonal’ part converges

() .)1())(lim(

)1())(lim(

 as))(~lim(

2
0

1
0

−−

∞→

∞→

−

∞→

Λ−→

−→

∞→

T

t

t

t

t

t

t

tP

ϕϕλβ

λα

λ

)(tPT

to a constant matrix. That is, when the regressor)(tϕ is constant, new information is obtained only for the

parameter components that are not orthogonal to the regressor. The wind up phenomenon associated with the

orthogonal parameter components causes)(tP to become excessively large resulting in radical and / or

oscillatory changes in parameter updates.

3.3.6.3 CONDITIONAL UPDATING

To avoid the windup phenomenon, the use of conditional updating attempts to measure when there is sufficient

ation and permits updating of)(tP and the parameters only when the excitation exceeds some chosen excit

x ost threshold. A convenient dimensionless measure of the e citation is desired. Consider the following pre and p

multiplied version of equation (3.3.42):

)()()()()()()(~)()()()(1 tttttttPtttPt TTTT ϕϕϕβϕϕϕϕϕ −Λ

iou m

Λ+= − ϕϕϕβϕϕϕ tttttttPt TTT

approached from above if there is insufficient excitation:

 (3.3.47)

Therefore, given some positive quantity

+= . (3.3.46)

If the regressor is constant then as ∞→t it is evident from the prev s discussion, and substitution fro

(3.3.45), that equation (3.3.46) becomes:

()
.)1(

)()()()()()1)((
Λ−=

ΛΛ−= −−−
∞→

λ
ϕϕϕϕϕλϕ tttttt TTT

t

Clearly, the following limit will be

)()()()()(0))()()((lim
121

1

)1()()1()(1 λϕϕ −→+Λ−
qxq

T IttPt .

υ , updating should only use those elements of the matrix

which correspond to the ith diagonal element on the left hand side of (3.3.47) which satisfy:

 equations

())1)(1()()()(diag 1 λυϕϕ −+>Λ−

Another approach to avoiding the windup phenomenon is to ‘forget’ only in the ion of the i.e.

o

empo

i
T ttPt . (3.3.48)#

3.3.6.4 DIRECTIONAL FORGETTING

direct regressor,

not to apply the forgetting factor to those elements f)(1 tP− which are orthogonal to the regressor. Recalling

(3.3.24), but t rarily setting It =Λ= −1,1)(λ gives:

)()()1()(11 tttPtP Tϕϕ+−= −− . (3.3.49)

50

Let:

)()()()1(~)1(11 ttttPtP Tϕ Π+−=− −− (3.3.50)

where)1(

ϕ

~ 1 −− tP 0)(=tϕ then by pre and post multiplying by and)1(1 −− tP)(tTϕ)(tϕ respectively it is easy to

show that:

Substituting (3.3.50) into (3.3.49) and applying a forgetting factor to only the non-orthogonal part of (3.3.50)

yields:

111))()()(()1()())()(()(−−− −=Π ttttPtttt TTT ϕϕϕϕϕϕ . (3.3.51)

~)()()()()()1()(11 ttttttPtP TT ϕϕϕλϕ +Π+−= −− .

Simplifying by substituting)(tΠ from (3.3.51) and)1(~ 1 −− tP from rearranged (3.3.50) gives the new update

equation:

tϕϕ

The required inversion of

 a

)()()())()()(()1()(11111 tttttttPttttPtP TTTTT ϕϕϕϕϕϕϕϕλ +−−+−= −−−−− .

3.3.6.5 THE SQUARE ROOT ALGORITHM

))()()(()1()1()(

())()()(ttWt y
T ΦΦ , whe ng the matrix inversion lemma or e

ectly, e

d. This is the key idea behind the

orthogonalization or the square root algorithm approach. In this approach it is assumed that can be

represented as the product of matrices that are updated in an iterative m .

Let be represented by the Cholesky factorization, i.e.

ther done usi solving th

normal equations dir is th basic source of collinearity related problems. One can try to enhance the

numerical properties of this process so that poor conditioning is minimize

)(tP

anner

)(tP)()()(tPtPtP T= . Construct a matrix:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
Λ=

)1()()1(
0)()(
tPttP

tt TT ϕ
λ (3.3.52)

which is factored int e product of an orthogona and u r triangular matrix by QR factorization to g

⎦

⎤

⎣

⎡
=Γ

)(0
)()(

)((
2,2

2,11,1

tR
tRtR

tQ

where)(1,1 tR and)(2,2 tR are both upper triangular.

Γ

o th l ppe ive:

⎢)t (3.3.53)

Multiplying (3.3.53) by its transpose and noting that gives:

⎥

ItQtQT =)()(

.
)()(
)()(

)()()()()()(
)()()()(

)(0
)()(

)()(
0)(

)()()(

2,21,2

2,11,1

2,22,22,11,12,1

2,11,11,11,1

2,2

2,11,1

2,22,1

1,1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ΓΓ
ΓΓ

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

⎥
⎦

⎢
⎣⎥

⎥
⎦⎢

⎢
⎣

=ΓΓ=Γ

tt
tt

tRtRtRtRtRtR
tRtRtRtR

tR
tQtQ

tRtR
ttt

TTT

TT

T
TT

T
T

 (3.3.54)

Similarly multiplying (3.3.52) by its transpose gives:

)()(

2,1

⎤⎡⎤⎡ tRtRtR

51

()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ΓΓ
ΓΓ

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−+Λ

=

⎥⎦⎢⎣ −−⎥⎦⎢⎣ −

)()(
)()(

)1()()1(
)1()()()1()()(

)1()()1()1(0

2,21,2

2,11,1

tt
tt

tPttP
tPtttPtt

tPttPtP
TT

TT

ϕ
ϕϕϕλ

ϕ
. (3.3.55)

Notice that due to symmetry

⎥
⎤

⎢⎥⎢=ΓΓ=Γ)()()(ttt
⎡ Λ⎤⎡ −Λ 0)()1()()(ttPtt TT

T λϕλ

TΓ=Γ and TΓ=Γ . Examination of (3.3.55) t2,22,2 ogether with (3.3.32) and 1,11,1

equating with (3.3.54) reveals:

()

()
() ()
()
().)()(

)(
1

)()()()()()()()()(1
)()(

2,22,2

2,11,11,11,1,12,22,22,12,1

2,11,11,22,22,11,11,22,2

tRtR
t

tRRtRtRtRtRtRtRtRt

tt

T

λ

λ

λλ

=

−+=)(
)(

)()()()(1)()()()(

()(

1,1
1

2

1

1,12,1

1

tR
t

tttttttt

tt

TTTTT

T

TT

λ

ΓΓΓ−Γ=ΓΓΓ−Γ=

⎠

=
Γ

−−

−−

−−

 (3.3.56)

Given that

1

)1()()()1()()()()1()1(
)(

1)(

)()(
)()()()(

)()()()(
))1()()()1()(

1

1,11,11,12,1

1,11,2
1
1,11,2

1

tPtttPttttPtP
t

tP

tRtR
tRtRtRtR

tttt
tPtttPtK

TT

TT

T

T

ϕϕϕλϕ
λ

ϕϕϕ

⎟⎞⎜
⎝
⎛ −−+Λ−−−=

=

Γ=ΓΓ=
−+Λ−=

−

−

−−

−

)()()(tPtPtP T= we deduce that)()() =(2,2 ttRtP λ . The iterative update process may hus be T t

stated as:

()
.

)(
)(2,2 tR

tP
T

=
)(

)(ˆ)()()1()(

)()()(

)1()()1(
0)(

)(0
)()(

**

1,12,1

QR

2,2

2,11,1

t

tttKtt

tRtRtK

tPttP
t

tR
tRtR

TT

TT

λ

ϕ
λ

−+−=

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
Λ

←⎥
⎦

⎤
⎢
⎣

⎡

−

yyθθ

 (3.3.57)#

used in this algorithm is the QR factorization. If the Housholder

orthogonalization method (Golub and Van Loan, 1989) is used then a solution is found with

(3y effort. There is still a matrix inversion to be performed in the calculation of , but

the matrix to be inverted, , is lower triangular. This permits a simple solution using backward substitution in

effort. Numerical difficulties can be expected when the condition number of the ma

approaches the inverse of the computational tolerance (usually very small.) In contrast, numerical problems

The most computationally expensive step

dim)(dim(4(θ +O)3/)))(tK

TR11

))(dim(2yO trix

)(tR

are encountered when calculating)(tP directly, if its condition number approaches the inverse of the square root

of the computational tolerance.

52

If the system is not persistently excited the diagonal of)(tP will take on values approaching zero. This can be

avoided by using conditional updating or by regularization which is discussed in the next section)(tP. Since is

triangular its eigenvalues appear along its diagonal. A small positive valued diagonal matrix added to)(tP at

each step thus forces the matrix to have positive eigenvalues preventing)(tΓ from becoming rank deficient.

ATION - T

 of avoiding collinearity problems is to prevent

3.3.7 REGULARIZ HE CONSTANT TRACE AND KALMAN FILTER METHODS.

Another method ())()()(ttWt y
T ΦΦ

ge moveme

 from becoming rank

deficient. A term added to the cost function (3.3.18) that penalizes lar nts in , thus stabilizing the

eter estimates, achieves this. Therefore let:

rxr

TTTT

t
tW

ttttttE

tt

θθ

θ

ℜ∈Λ
⎥

⎦

⎤
⎢

⎣

⎡ Λ
=

−=−=

=

−

−

1

1

,
)1,(

)(

)(~)()(),()()(

)(,),2(),1()(

~

θ

θ

θθ

β
ε

O

L

θθ

θθθ

 (3.3.58)

θ

param

[]
[]TTTT ttθ =)(~,),2(~),1(~)(

~
L θθθ

tt ⎥
⎥

⎢
⎢

Λ−1),(θ

θ

β

then:

)()()(
2
1)()()(

2
1),(tEtWtEtEtWtEtJ T

yy
T
y θθθ+=θ (3.3.59)

where)(1 t−Λθ ative importance of each parameter as well as the importance of

param ter updates in relation to step length. Diff 59) directly with respect to i

is a matrix used to weight the rel

θ g ves: e erentiating (3.3.

() ().)(~)()()()()()()()()(ttWtYtWtttWttWt yy θθ
θ θθ +Φ−+ΦΦ=
∂

 (3.3.60)
),(tJ Tθ∂

Setting (3.3.60) to zero to determine the minimum and rearranging gives:

() ())(~)()()()()()()()()(* tθ Φ=
1

ttWtYtWttWttWt y
T

y θθθ +Φ+Φ
−

. (3.3.61)

Comparing this to equation (3.3.22) it is clear that can now be used to control the conditioning for the)(tWθ

required inversion of)(1 tP− , however, regularization has also introduced errors in the parameter estimate in the

form of the term)(~),(ttW θ , generally referred to as the bias error. The regularized constant trace algorithm θ

heuristically makes use of these ideas. In this algorithm, during each iteration, the trace of)(tP is kept constant

by scaling and adding a small identity matrix. This causes the eigenvalues of)(tP to remain artificially

bounded. The algorithm takes the form:

()
()

()

() ItPtP

tPttPtttPtPtP

tttKtt

TT

T

min
minmax

11

1

)()(

)1()()1()()()1()()(

)(ˆ)()(()(

ααα

ϕϕϕϕλ

+⎟⎟
⎞

⎜⎜
⎛ −

=

⎟⎞⎜⎛ −−+Λ−−−=

−−=

−

−
yyθθ

 (3.3.62)

tP

t

ttPtttPtK

**

)(tr

)(1

)()1()()()1()(
)1

ϕϕλϕ

⎠⎝

⎠⎝

−+Λ−=

+

− #

53

where maxα and minα are the desired bounds for the maximum and minimum eigenvalues respectively.

Typically these values are selected such that 410αα andminmax ≈ () IT −ααϕϕ >>minmax .

e optimal choice of Unfortunately th)(tWθ and)(~ tθ is unclear. There exists a large class of regularization

algorithms, most of which differ prim associated with these variables. One selection that is

particularly revealing is to let

arily by the settings

)1()(~
−= tt θθ . Then, from (3.3.58), it is clear that))1()()(−−= ttt θθθε , and the

parameter update problem may be stated in the form of a state space system:

)()(
)()1(

tttt
tt
y

T εϕ
εθ
+=

+−
θy (3.3.63)

)(t = θθ
(.)()

If it is assumed that)(tθε and)(tyε are uncorrelated white Gaussian process and measure oise

respectively, then applying the stochastic Kalman filter formulation to (3.3.63) gives:

ment n

()
()

)(ˆ)()()1()(
1

tttKtt
T

−+−=
−

yyθθ

)}()({)()},()({)(
)()1()()()1()(

)()1()()()()1()(

21

1

2

tttRtttR
tRtPttKtPtP

ttPttRttPtK

T
yy

T

T

εεεε
ϕ

ϕϕϕ

θθ Ε=Ε=
+−−−=
−+−= (3.3.64)

where denotes the mathematical expectation. Comparing (3.3.64) to (3.3.62) we see that plays a role

similar to

{.}Ε)(1 tR

Iminα while Λ=)()(2 ttR λ 1. From this we may deduce that, if)(=tλ and the output is weighted by

the inverse of its variance, then is Gaussian with a mean and is the covariance matrix of the

atio

ed this

a d

riori parameter covariance matrix.

Although (3.3.64) provides insight into the choice of

)(tθ)(* tθ)(tP

parameter estim n error. Thus we should set)0(*θ to be our best estimate of the parameter vector and

)0(P should reflect the confidence associat ith this estimate. Kalman Filter theory also tells us that

lgorithm, for a linear regression mo el, gives the optimal trade off between tracking ability and noise

sensitivity in terms of a minimal a-poste

w

1−Λ the selection of , and hence , is unclear. This is a

non-trivial problem which is dependent on the relationships between the parameters. These relationships are

difficult to quantify in the case of ANN’s and depend on the network structure as well a und nction

generating the data mapping. In practice is typically ‘tuned’ by selecting a scaled version of the identity

matrix. However, Hyötyniemi d some note-worthy results on how to define the

t

URSIVE SINGULAR VALUE DECOMPOSITION (SVD) ALGORITHM

m input is not persistently excit it may perform

poorly resulting in estimator windup. Furthermore RLS algorithms tend to be complex, prone to numerical ill

conditioning and algorithm parameters may be difficult to select. In this section a new algorithm is developed. In

it, an attempt is made to circumvent many of the problems already discussed.

1−Λθ θW

s the erlying fu

θW

 (1994, 1996) has provide

organization of θW for dynamic systems having a specific regression structure using the theory of congruen

systems.

3.3.8 THE REC

As pointed out in previous sections, if the syste ing, RLS algor hms

54

We begin by reconsidering equation (3.3.59). In this equation there is a cost associated with the distance

between some nominal)(~ tθ and the final solution weighted by the matrix The conundrum that exists

is that we cannot confidently specify

)(tθ)(tWθ .

)(~ tθ and without knowing the ideal solution Thi ay also

be recognized in equation (3.3.61) by noting that, in essence, the choice of

)(tWθ)(* tθ . s m

)(~ tθ and a-priori is

tantamount to determining a final bias error without knowing any information about the data being mapped. A

different approach is clearly needed.

Rather than requiring a distance metric to be minimized let us assume that there exists some final, but initially

nknown, erro

)(tWθ

u r)(tθδ between the attainable solution and the ideal solution . Here the attainable

of the underlying mapping and

the quality of the excitation and measurements collected up to the current point in time. That is:

ion, therefore cost function (3.3.4) becomes:

)(tθ)(* tθ

solution is defined as that solution which can be achieved given the constructs

)()()(* ttt θθ −=θδ .

The optimization should still however result in the ideal solut

()
()

.
])[][]([][])[][(

][][])[][(2
][][

),(
2
1

][2
1

1

∑
−

=

=

⎜
⎝

t
T

k ky])[][]([
])[][[][),(1),(

1 1

1

1

∑

= −

−

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+Λ++
Λ+−

Λ

⎟
⎟
⎠

⎞
⎜
⎛

+−
Λ+−=

k TT

T

T

TTt

kkkkkk
kkkk

kk
kt

kkk
kkkkkttJ

θθ

θ

θ

θ

δϕϕδ
ϕδβ

δϕ
δϕβ

θθ
yθ

yy
θ

yθ

 (3.3.65)

As before, equation (3.3.65) may be differentiated directly with respect to

](θ

θ :

∑∑
=

−

=

− Λ−+Λ=
∂

∂ t

k

t

k

T kkktkkkkkttJ

1

1

1

1])[][),(])[][]([][),(),(yθ
θ
θ

ϕβδϕϕβ θ . (3.3.66)

Setting (3.3.66) equal to zero now gives:

rtYtPttt

tYtttPtJ

ℜ∈+=+=∴

=−+=
∂

∂ −

)(),(~)())()(()(

0)(~))()()((),(

*

1

θθ

θ

δδ

δ

θθθ

θ
θ
θ

 (3.3.67)

where, as before:

11

∑

∑

=

−

−−

Λ=

Λ=

t

k

t
T

kkkttY

kkttP

yϕβ

ϕϕβ
(3.3.68)

Assume (all assumptions shall be addressed in more detail later) that can be factored into two

components, one of which is approximately orthogonal to the regressor:

.][][),()(~

][][),()(

1

1

k
1=k

)(1 tP−

0)()(~),()(~)(1111 ≈+= −−−− ttPtPtPtP ϕ . (3.3.69)

Further assume that the inverse can be expressed as the sum of the inverses of the previous factors:

)()(~)(tPtPtP += . (3.3.70)

Combining equations (3.3.67) and (3.3.70) results in:

55

.)(~)()(~)(~)()(tYtPtYtPtt +=+ θδθ (3.3.71)

By definition)(~ tP is orthogonal to the regressor, but the regressor is not orthogonal to the parameter vector

because Therefore this variable cannot be correlated with the parameter vector and we may)1()()(ˆ −= ttt T θy ϕ .

conclude that:

).(~)(~)(tYtPt =θδ (3.3.72)

and:

.)(~)()(tYtPt =θ (3.3.73)

Proceeding as before we now define the matrix variable)(tλ as follows:

⎪⎩

⎪
⎨
⎧

=−
<<−

= −

−

tkkt
tkktktt 1

1

),1(
0),1(),()(

β
ββλ .

Manipulation directly analogous to (3.3.24) therefore results in:

.)()()1(~)()(~
)()()1()()(

1

111

tttYttY
tttPttP T

y−

−−−

Λ+−=
Λ+−=

ϕλ
ϕϕ (3.3.74)

If for any chosen constant scalar

λ

()10 ≤< λ , there exist a),(ktβ such that:

)1()1(~)1()(111 −+−=− −−− tPtPtPt λλ (3.3.75)

then substituting (3.3.75) into (3.3.74) gives:

)()()1()1(~)(1111 tttPtPtP Tϕϕλ −−− Λ+−+−= (3.3.76)

Substituting (3.3.74) into (3.3.73) gives:

− .

().)()()1(~)()()(1 tttYttPt yθ −Λ

 time variable in (3.3.73) by one sample and rearranging gives

+−= ϕλ

Shifting the)1()1()1(~ 1 −−=− − ttPtY θ . This can

be substituted into the equation above to yield:

().)()()1()1()()()(11 ttttPttPt yθθ −− Λ+−−= ϕλ (3.3.77)

Consider now the factoring of)(tP in assumptions (3.3.69) and (3.3.70). The matrix)(1 tP− may be expanded

using the Singular Value Decomposition (SVD) (Golub and Van Loan, 1989) to give:

)()()()(1 tVttUtP TΣ=− (3.3.78)

where)(tΣ is the diagonal matrix of singular values)(tiσ , and both)(tU and)(tV are orthonormal m

This decomposition exists even for non-square or singular systems. The orthonormal matrices have an

additional, but very desirable, property. The columns of)(tU which correspond to the la

atrices.

rger singular value

)(tU)(tΣelements in)(tΣ , which we shall define as and respectively, form an orthonorm l set of basis vectors

for the range of)(. Those columns of)(t whose corresponding elem

a

−1 tP V ents in)(tΣ are approximately zero,

defined as)(~ tV and)(~ tΣ respectively, form an orthonormal set of basis vectors for the null spa)(1 t . ce o P−f

56

Furthermore, the t singular value is the 2-norm distance from the expanded matrix to the set of all rank

deficient matrice

 smalles

s. Thus, given some small tolerance 0>δ , the numerical rank of is estimated to be)(1 tP− r̂ if:

.01ˆˆ1 ≥≥≥≥≥≥≥ + rrr σσδσσ LL (3.3.79)

Additionally if],,[1 nuuU L= and],,[1 nvvV L= are column partitionings then the least squares solution to

(3.3.73) is given by:

∑=
=

r

i
i

i

T
i tv

t
tYtu

t
ˆ

1

)(
)(

)(~)(
)(

σ
θ

and the 2-norm of the residual is given by:

()∑
+=

− =−=
r

ri

T
iLS tYtutYttPt

1ˆ

22

2
12)(~)()(~)()()(θρ . (3.3.80)

If ˆ ≈+r)(1 tP−01σ , i.e. is poorly conditioned (or singular in the idealised theoretical case when 01ˆ =+rσ), then

any solution to a non-homogenous vector equation involving)(1 tP− consists of that solution which exists in the

range space of)(1 tP− plus any linear combination of a solution in the null space of)(1 tP− . Given the prequel let

us factor)(1 tP− as follows:

)(

0

r ⎥
⎥
⎥

⎦⎢⎣ σ
O

0

)()(
1ˆ

ˆ1 tVtUtP T

r

r

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢
⎢

=
+

−

σ
σ

O
1

⎥
⎤

⎢
⎡σ

)()()()()(~)(

0

00

ˆ

tVttUtVttU TT

r
r

Σ+Σ=

⎥
⎥
⎦⎢

⎢
⎣⎥

⎥
⎦⎢

⎢
⎣

σO)(

00

)()()(tVtUtVtU TT ⎥⎢+⎥⎢=

σ

0
00 1

1r̂ ⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡

+

σ
σ O

[] []

[] [] .)()(0)()(~0)(~)(

)(

00

00)()(~00)(

00

ˆ

1ˆ

tVttUtVttU

tVtUtVtU

TT

T

r

T

r

r

Σ+Σ=

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

+

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
+

σ
σ

O
O

Now, because)(

00 1 ⎤⎡⎤⎡ σ
⎥⎢⎥⎢ σ

(3.3.81)

~ tV is the orthonormal basis of the null space of)(1 tP− , the first expanded term in the right hand

side of the above equation, when multiplie y)(tϕ , corresponds to the homogenous equation 0)()(1 =− ttP ϕ . d b

Defining)(~ tU and)(tV as those sub-matrices of U)(t and , which have the same columns as)(tV)(~ tV and

)(tU respectively, equation (3.3.81) may be simplified still further:

57

.)()(~

)()()()()()(

11 tPtP

tVttUtVttU

−− +=

Σ+Σ=

Clearly then, 0)()(

~~~

00 ˆ

TT

rr ⎥⎦⎢⎣⎥⎦⎢⎣ σσ
(3.3.82) 

)(
0

)()(~
0

)(~)(
11ˆ

1 tVtUtVtUtP TT
r+

−
⎥
⎥
⎤

⎢
⎢
⎡

+⎥
⎥
⎤

⎢
⎢
⎡

=
σσ

OO

~ 1 ≈− ttP ϕ , and the requirements of assumption (3.3.69) have been satisfied. Note there

subtle but important difference between the implicit definitions of 

 is a 

00 ,~
ΣΣ and ΣΣ,~ in equations (3.3.81) and 

(3.3.82) respectively.  

As the matrices )(tU and )(tV are orthogonal i.e. )()(),()( 11 tVtVtUtU TT −− == we may write as: )(tP

)(

1

1)()(
1ˆ

ˆ tUtVtP T

r

r

⎥
⎥
⎥
⎥
⎥
⎥

⎢
⎢

=

+

σ

σ

σ
.  

0

1

1

r

⎥

⎦
⎢
⎢
⎢
⎢

⎢
⎢
⎢

⎣

σ

O

O

Now d 3.8

0

1

⎥
⎥
⎤⎡

, to verify assumption (3.3.70), a trivial analysis i entical to (3.3.81) and (3. 2) can be performed: 

.)()(~

)()()()(~)(~)(~

)(
10

01

)()(~

10

01

)(~)(

ˆ

11ˆ

tPtP

tUttVtUttV

tUtVtUtVtP

TT

T

r

T

r

r

+=

Σ+Σ=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

−−

+

σ

σ

σ

σ
OO

 

and (3.3.75) we see that: 

11

(3.3.83) 

 

Revisiting equations (3.3.69) 

( )
.)1()1()(

)1()1()1()1()(
1

111

−−−+=
−−−−+−=

−

−−−

tPtPII
tPtPtPtPt

λ
λλ  
×× rrrr

(3.3.84) 

This may be substituted back into equation (3.3.74) to give: 

)()()1()()1()( 1111 tttPItPtP Tϕϕλ −−−− Λ+−−+−= . (3.3.85) 

Using the decomposition (3.3.78), recalling that , and therefore 

that , equation (3.3.84) may be restated as: 

)()(),()( 11 tVtVtUtU TT −− ==

rr
T ItUtU ×=−− )1()1(

58 



 

( )

.)1(
0

0
)1(

00

)ˆ()ˆ(

ˆˆ −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎟
⎠

⎜
⎝ ⎦⎣

−×−

× tU
I

I
tU T

rrrr

rrλ

 

Now substituting (3.3.86) into (3.3.77), and using the SVD expansion for

)1()()1(

)1()1(
00
0)1(

)()1(

)1()1()1(

)()1()1()1()1()1()()1()1()(

1

1
0

1
0

−

−⎥⎢−+−=

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Σ⎥
⎦

⎤
⎢
⎣

⎡ −Σ
−+−=

−−Σ−Σ

−−Σ−−−Σ−−+−−=

−

−

−
×

tUIItU

tU
t

IItU

tUtt

tUttVtVttUItUtUt

T

T

TT
rr

T

λ

λ

λλ

(3.3.86) 
0ˆˆ ⎟
⎞

⎜
⎛ ⎤⎡ ×I Trr

1

)()1( −+−= IItU λ

−t

)1(1 −− tP yields: 

( )
( ).)()(1()1()(

)()()1()1()1()1()(

)()(

)1()1()1()1()1(
0

0
)1(

)(

1

1
0

0
)ˆ()ˆ(

ˆˆ

ttttPtP

ttttVttUtP

tt

ttVttUtU
I

I
tU

Pt

T

TT

rrrr

rr

yθ

yθ

y

θ
θ

−

−

−×−

×

Λ−−=

Λ+−−−Σ−=

⎟
⎟
⎟

⎠

⎞
⎜

⎝

⎛

Λ+

−−−Σ−−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

=

λ

ϕλ

ϕ

λ

 

(3.3.87) 

Rearranging (3.3.76) yields

)

)(

1

1

t

−

−

+

⎟⎜⎜
⎜

ϕ

( ))()()1(~)()1( 11111 tttPtPtP Tϕϕλ −−−−− Λ−−−=− , which substituted into th

previous equation gives: 

e 

( )( ).)()()1(()()1( )~)()()( 1111 tttttPtPtPt T yθθ −−−− Λ+−Λ−−−= ϕϕϕ   

nally, noting that )1()()(ˆ −= ttt T θy ϕ , this equation can be combined with equation (3.3.85) to give the 

t

Fi

recursive update algorithm: 

)()()1()()1()( 111 tttPItP Tϕϕλ −−− Λ+−−+−=1 tP−

( ) ( ))(ˆ)()()()1()1(~)()()( 1−11 ttttPttPtPtPt yyθθ −Λ+−−−= −− ϕ  

where 

(3.3.88) 

)(~),( 11 tPtP −−  and )(tP are calculated using the SVD expansions in equations (3.3.82) and (3.3.83) 

Algorithm (3.3.88) has some interesting properties. Note that if

respectively. 

0=δ in (3.3.79) then )(~ 1 tP − would be an empty 

matrix and )()( 11 tPtP −− = . This causes (3.3.88) to reduce to: 

)()()1()( 111 tttPtP Tϕϕλ −−− Λ+−=  

( ))(ˆ)()()()1()( tttPtt yθθ Λ+− ϕ 1 ty−= −  
 

which is the RLS algorithm in (3.3.24) and (3.3.28) before the application of the matrix inversion lemma. All the 

previous algorithms may thus be viewed as special cases of (3.3.88). The key difference is that now the selection 

of a single algorithm parameter,δ , allows us to exclude irrelevant information in the construction of the model 

parameters. Ever increasing values ofδ will result in ever increasing amounts of potential information being 

59 



 

excluded from the model. This stems from the requirement that the orthogonality condition in (3.3.69) is only 

approximate, as opposed to absolute. The orthogonality condition formalises the fact that information 

represented by elements of which do not correlate with any model parameters can play no role in the 

final model. But the SVD decom tion has allowed us to separate the measured input informa

mutually uncorrelated components through the orthonormal matrices and The singular values thus 

represent the amount of information along each direction of the subspaces spanned by and

 what unsupervised neural networks using a method called principle component 

analysis (PCA) achieve, and this approach may provide an elegant mechanism to unify the anal

By increasing the value of 

)(1 tP−

posi tion into 

)(tU )(tV . 

)(tU )(tV . 

Interestingly, this is exactly

ysis of 

unsupervised and feed forward neural networks. 

δ one successively increases the amount of information that is considered part of the 

null space of Therefore, by neglecting small or approximately orthogonal terms, those parameters which 

lay little to no role in the underlying mapping will be ignored and the tendency for a model with excess 

ated. Furthermore, numerical inaccuracies and rounding errors which 

would generate small non-zero quantities, even if the two spaces are theoretically orthogonal, are automatically 

information (or lack thereof) leading to this condition is removed before the inversion resulting in

)(1 tP− . 

p

parameters to over fit the data will be regul

excluded. This results in an algorithm which requires no inversion of poorly conditioned matrices as the 

)(1 tP −

Regularization is therefore not

. 

 required and the parameter estimate is bias free. The selection ofδ is clearly 

Let us now consider the stability of the algorithm. The eigenvalues of the matrix term

chosen based on the permissible size of the residual as evidenced by equation (3.3.80). 

 )(tλ  in equation (3.3.74) 

determines the stability of the equation for )(1 tP− .  However, because )1()1( 1 −=− − tUtU T , the result 

expressed in (3.3.86) is indeed an eigenvalue decomposition of )(tλ with the eigenvectors being contained in 

and all the eigenvalues being eith)1( −tU er λ for elements he model parameter updat s r 1 f used in t e , o or 

10 ≤< λ  we may conclude that equation (3.3.74) is bounded s ble elements associated with the residual. As ta

but contains elements which will not decay.  

The stability of the parameter update equation is a little more complex. Considering equation (3.3.87) it is clear 

)1()( 1 −− tPtP λ . If one that the stability of the parameter update is determined by the eigenvalues of the term

assumes that the data samples contain no new information then )1()( 11 −= −− tPtP  and the eigenvalues are just 

λ  meaning that the parameter vector will decay toward zero under these conditions. For this reason updating 

 it is 

n dati n.   

) 

should only occur if the prediction does not sufficiently closely represent the actual system output or if

determi ed, using a technique such as conditional up ng, that the input data is sufficiently rich in informatio

Unfortunately the algorithm is very expensive to compute and requires more storage than the other methods 

mentioned. The computation of the SVD using the Golub-Reinsch SVD algorithm (Golub and Van Loan, 1989

requires ))dim(21( 3θO effort for the form shown in (3.3.88), however, this may be reduced to a limited extent. 

60 



 

Because )(tP  is a symmetric1−  positive definite matrix the orthonormal matrices and , also called the 

ly, are equal. This means, for each iteration, that only one SVD factor needs 

s calculated during each iteration using 

tV

)(tU )(tV

left and right SVD factors respective

to be determined. This reduces the computational effort, if a new SVD i

the Golub-Reinsch SVD algorithm, to ))dim(12( 3θO . Therefore setting )(tU )(=  and substituting the 

resulting decomposition into (3.3.88) results in the following algorithm: 

)()()1(~
0)1(

)1( 1 tttU
t

t TT ϕϕ
λ −

)1(0
)(),(

SVD

t
UttU Λ

⎦⎣ −Σ
←Σ +−⎥

⎤
⎢
⎡ −Σ

−

( )
( ))(ˆ)()()()()(

)1()1(~)1(~)1(~)()()()()(
11

1

ttttUttU
ttUttUtUttUtUt

T

TTT

yy
θθ

−ΛΣ+
−−−Σ−Σ−=

−−

−

ϕ
 

(3.3.89)

Where 

#

1,~,,~, −ΣΣΣUU are formed as shown i 3.81),(3. .82) an 3.83). Note that in this form

the algorithm it is not necessary to explicitly form )(1 tP− , only )(tU and th  diagonal of )(tΣ need be calculated 

and stored from iteration to iteration. This results in significant memory savings o e form shown in 

(3.3.88). 

n equations (3. 3 d (3.  of 

e

ver th

f the matrices is guaranteed and 

numerical rounding errors cannot result in a non-symmetri . Unfortunately the product is 

still calc te .  

Future work w SVD rank-1 iterative updates and / or ‘square root’ type algorithms, such as 

the one described by Zhang (Zhang et al., 1994) could be applied to (3.3.89). The application of other closely 

related and hi m

1983), (Zhan ) to 

facilitate the  may be seen as 

a form of net

3.3.9 IMPLEM

Implementation of the learning rule in this work is, for the most part, the straight forward application of the 

‘hash’ eq i d 

zones to turn  for reduced computational effort, 

Another advantage of using only one SVD factor is that the symmetric nature o

c )(1 tP− )()( 1 tt Tϕϕ −Λ

ula d which, as was evidenced in the square root algorithm, is undesirable from a numerical standpoint

might investigate ho

ghly efficient algorithms such as Bier ans U-D factorization method (Bierman, 1977), (Ljung, 

g and Li, 1999 algorithm (3.3.89) should also be investigated. Also, the SVD approach should 

use of a robust subset selection algorithm to reduce the required model order, which

work structure optimisation. 

ENTATION OF THE LEARNING RULE 

uat ons in the preceding sections. However, there are a few customised details such as the use of dea

 adaption on or off, network specific formulation of the problem

and the calculation of )(tϕ in equations (3.3.9), (3.3.10) and (3.3.13). 

l c ed 

3.3.9.1 ADAPTION WITH A DEAD ZONE 

All the earning algorithms discussed have, to greater or lesser extents, detrimental haracteristics associat

with continual updating when the incoming data contains little or no useful information. In section 3.3.6.3 the 

use of conditional updating attempted to detect when this was the case and turn off adaption if there was 

insufficient excitation. This problem may also be addressed by a more heuristic, but simpler and globally 

applicable, approach by simply turning off the adaption if the prediction error )(ˆ)( tt yy − is sufficiently small. 

61 



 

This technique is generally referred to as the dead zone technique. In this work a dead zone is applied to three 

different types of errors, requiring four different parameters to be set by the user: 

1. Relative error – Error expressed as a percentage of the absolute value of the current target output. Tha

is 

t 

100)( rr te εy=  where rε is a value supplied by the user in percentage units. 

2. Absolute error – A threshold value, which if the prediction error is below, is considered acceptable

That is 

. 

100aae ε=  where aε is a value supplied by the user. This is the allowable error value 

when 0)( ≈ty  and the relative error tends to zero.  

3. Dif ( ) ⎟
⎠
⎞⎜

⎝
⎛ −−= ∆

100100 ,)1()(min t
d

dadr tte εε yyferential error – This error is defined as:  where the user 

supplied drε and daε are the percentage relative differential error and absolute differential error values 

r 

put is in 

respectively, and t∆ is the sampling interval. By using a first order approximation of the differential it 

is easily seen that the first value contained in the minimum function of de represents the absolute erro

that results in the predicted output at the next time step if the relative slope of the predicted out

error by drε percentage points of the actual slope. This first term thus gives an indication of the 

relative differential of the prediction error. Contrary to the absolute error above, we see that the 

absolute differential error term only plays a role as )1()( −− tt yy becomes larger, i.e. the differential 

of the output with respect to time is large. As this differential increases, a very small percentage error 

in the slope can generate very large output errors. The absolute differential error term thus places what 

is essentially an upper bound on the out  error due to small differential errors at high rat

ion 

put es of change 

in the output signal. 

The three terms above can be combined into a single condition which, if true, permits the updating at any 

specific time to be avoided. Using the least stringent indicator of the three to indicate the cessation of adapt

yields the following dead zone criteria: 

( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−<− ∆

100100 ,)1()(min,100,100)(max)(ˆ)( t
ar

dadr ttttt εεεε yyyyy . (3.3.90) 

of the  A limited amount of hysteresis can also be applied to (3.3.90) to prevent rapid activation and deactivation 

adaption algorithm. If we express the hysteresis hyε as a percentage about the nominal equation above, then th

‘turn off’ condition becomes: 

e 

( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ −<− ∆

100100100 ,)1()(min,100,100)(max1)(ˆ)( t
ar

dadrhy ttttt εεε εε yyyyy  (3.3.91) 

and the ‘turn on’ condition is: 

( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ +>− ∆

100100100 ,)1()(min,100,100)(max1)(ˆ)( t
ar

dadrhy ttttt εεε εε yyyyy . (3.3.92) 

 

62 



 

3.3.9.2 NETWORK SPECIFIC FORMULATIONS 

Observation of (3.3.9) and (3.3.10) reveals t )(tϕ  ihat the regressor s constructed using the Kronecker tensor 

rm )],[(
0IkG ξx and ( )TT

I kkG ]1],[[)],[(
0

xx ⊗ξproduct, from q (the number of outputs) copies of the te  for 

hich, if computed by direct 

application of t e presented equations, is extremely inefficient. It turns out, for these network types, that by 

transposing the expression for the regression equation the calculations are greatly simplified. That is, for RBF’s 

we should use t e original equations (3.2.11) and (3.2.12), and for LMN’s we use (3.2.24) and (3

Effectively this makes the computation o and ependent on the model structure only and multiple 

RBF and LMN networks respectively. This yields a sparse matrix construction w

h

h .2.25). 

f )(tK )(tP d

output systems have identical regression structures associated with each output. If the outputs of the 

corresponding identified system are scaled such that their variances are normalized then the inverse weighting 

matrix, Λ , is simply the identity matrix. The regressor )(tϕ , and hence )(tK and )(tP , are now dependent

the model structure only and the matrix term

 on 

( ))t()t(P)t()t( T ϕϕλ 1−+Λ , in all but the SVD algorithm, 

te is equivalent to a single 

output em where only the prediction error calculat he parameter update portion of the equation need 

ced to division by a scalar value. Therefore, for RBF and LMN networks, equations (3.3.15)#, 

(3.3.16)#, (3.3.33)# (3.3.57)# and (3.3.62)# are respectively implemented as shown below: 

reduces to a diagonal matrix of identical terms. Under these conditions the sys m 

 syst ion in t

be modified to reflect the multiple output nature of the network. The inversion in the calculation of )(tK may 

also be redu

Gadient descent algorithm: 

( ) ,)()(ˆ)()1()( ttttt Tϕγ yyθθ −+−=  (3.3.93)#

gradient descent with momentum algorithm: 

( ) ()(ˆ)()( −= ,)1()
)()1()(

−+
+−=

t
ttt

P
Pθθ

µtttt TyyP ϕ
γ

 (3.3.94)#

exponential forgetting factor algorithm: 

( )

( ) ,)1()()()1(1)(

)()1()(
)()1()(

)()(ˆ)()1()(
−

−+−=
ttP

tKtttt T

ϕ
yyθθ

−−−=

−+
=

tPttKtPtP

ttPt
tK

T

T

ϕ
λ

ϕϕλ
 (3.3.95)#

square root algorithm (note that is now a scalar variable):  )(1,1 tR

( )
,

)(

)(
)(

)(/()(

)1()()1(
0)(

)(0
)()(

2,2

1,12,1

QR

2,2

2,11,1

t

tR
tP

tRtRtK

tPttP
t

tR
tRtR

T

T

TT

λ

ϕ
λ

=

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
Λ←⎥

⎦

⎤
⎢
⎣

⎡

 (3
)

.3.96)#

)()(ˆ)()1()( tKtttt T−+−= yyθθ

63 



 

constant trace algorithm: 

( )

( ) .)(
)(tr

)(

)()1()(1
)1()()()1()1(1)(

)()1()(
)()1()(

)()(ˆ)()1()(

min
minmax ItP

tP
tP

ttPt
tPtttPtPtP

ttPt
ttPtK

tKtttt

T

T

T

T

ααα
ϕϕ

ϕϕ
λ

ϕϕλ
ϕ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+
−−

−−=

−+
−

=

−+−= yyθθ

 (3.3.97)#

The parameter update equation for the SVD algorithm (3.3.89)# is also changed giving: 

)()()1(
)1(0 t ⎦⎣ −Σ

~
0)1(

)1()(),( 1 tttU
t

tUttU TT ϕϕ
λ −Λ+−⎥

⎤
⎢
⎡ −Σ

−←Σ
SVD

( )
( ) .)()()()()(ˆ)(

)()()()1(~)1(~)1(~)()()(
11

1 tUttUtUttUtUtt
TT

TT

−−

−Σ−−Σ−−= θθ  
(3.3.98)

1
tUttUttt ΣΛ−+

−
ϕyy

 

3.3.9.3 ALCULATION OF THE 

Clearly, from equations (3.2.12) and (3.2.25) the regressor variables for RBF and LMN networks are simply 

#

 C REGRESSOR 

)],[(
0IkG ξx and ( )TT

I kkG ]1],[[)],[(
0

xx ⊗ξ  respectively. These variables are readily available du

activation rule computation and shall not be addressed further. 

For MLP networks the regressor must be calculated by application of the famous back-propagation algorithm 

ring the 

(Rumelhart and McClelland, 1986).  The algorithm is essentially the repeated application of the chain rule to 

(3.2.5). Noting that )(~ lθ in (3.3.13) is )(ljust the column form of in (3.2.5), further assuming that the output 

activation function is not necessarily linear and finally explicitly showing the matrix form of the integration 

Θ

function, we can rewrite (3.2.5) in the following general functional form:  

( )( )( )( )( )( )( )( )LL TTLLLLLLLLL GGGG ]1,[,~,~,~,~ˆ )2()2()2()2()2()2()1()1()1()()()( xθθθθy ΙΙΙΙ= −−−−−− .  

sing matrix differentiation and repeated application of the chain rule to differentiate ŷ  with respect to )(

(3.3.99) 

U
~ lθ  

gives: 

)()(

)(

)1(

)(

)1(

)1(

)2

)1(

)1(

)1(

)(

)1(

)(

)(

)(

)(

)(
ˆ

~~
ˆ

LL

L

L

L

L

L

L

L

l

l

l

l

l

l

l

l

l
GGGG ∂∂Ι∂∂Ι∂∂Ι∂∂Ι∂

=
∂

−−

−

−

−

+

++ yy
L . (3.3.10

( GGGG ∂Ι∂∂Ι∂∂Ι∂∂Ι∂∂∂ θθ
0) 

 This represents precisely the sub matrix elements that make ),( θkTϕ  in equation (3.3.13). Careful examination

of this equation reveals the following recursive relationship: 

)1()1(

)1(

)(

)1(

)(
ˆˆ
++

++

∂
∂

Ι∂
∂

∂
Ι∂

=
∂
∂

ll

l

l

l

l G
G

GG
yy . (3.3.101) 

Therefore, if we solve (3.3.101) for the output layer, we can recursively solve it for any hidden layer. 

Setting Ll =+1 then, by inspection, the last term reduces to qqI × . The middle term is the differential of the 

activation function with respect to the integration function. As there are no connections between units within the

same layer this matrix must also be 

 

diagonal in form. Furthermore an expression, which we call , can be )(lG′

64 



 

00  dYdG=eye(numoutputs); 

10  for i= net.numlayers:-1:2 

20      dGdNet=diff_activ_fcn(net.activation{i}(1:end-1)); 

30      dYdNet=dYdG.*dGdNet(:,ones(1,size(dYdG,2)); 

40      dYdG=net.weights{i}(1:end-1,:)*dYdNet;       % Recursion 

50      phi(indx(i,1):indx(i,2),:)=kron(dYdNet,net.activation{i-1}); 

60  end 

Listing 3.3.1.  Back Propagation Implementation. 

obtained for each of the diagonal terms by analytically differentiating the activation function and then, as all the 

required information is available, evaluating it at each time point. The first term is the differential of the output 

 

min

 first term ply  of 

wing final 

layer’s integration functions with respect to the last hidden layer’s activation functions. Again, an analytic

expression can be deter ed beforehand and evaluated during each iteration. The MLP networks in this work 

all use linear integration functions, the matrix form being )1()()( −Θ=Ι lll G , where )(lΘ  and )1( −lG are defined in 

(3.2.2) and (3.2.3). Clearly the differential of this function is simply the weight matrix )(lΘ . The last step to 

solving (3.3.100) is to recognize that the very  in this equation is sim  a reshaped form )1( −lG . 

Combining these facts and performing some mechanical algebraic manipulation results in the follo

expressions: 

.1,],
ˆ

~
ˆ ))1()( LlGGG TTll <<=⊗

∂′=
∂ − xyy 1,[1(

(3.3.102) 

 to the bias 

lso 

1,
ˆ

,
ˆˆ )1()1( LlIG ll <<=

∂∂′Θ=
∂ ++ yyy

)()( G ll ∂∂θ

)()1()( GGG qqLll ∂∂∂
×+

 

Listing 3.3.1 shows the implementation of (3.3.102). A few points to note are: 

- The variable dGdNet (line 20) is equivalent to )(l except that differential with respectG′

term is ignored by removing the last row of the activation function vector. The variable is a

stored as a vector. 

- The variable dYdNet is equivalent to )1()1( ˆ ++ ∂∂′ ll GG y and is reused in the recursion relationship 

(line 40) and the calculation of )(tϕ  in line 50. This variable is also more efficiently calculated by 

ix multiplication.  performing an element wise multiplication (line 30) instead of a diagonal matr

- The variable dYdG is equivalent to )(ˆ lG∂∂y and is preset to the appropriately sized identity matrix 

bef s ignored by ore the loop begins. As for dGdNet the differential with respect to the bias term i

removing the last row of weight matrix. 

- The starting and ending row indexes of phi= )(tϕ for each layer are precalculated and stored in 

indx to be reused during each iteration calculation in line 50. 

65 



 

3.3.9.4 GLOBAL VS. LOCAL LEARNING 

In MLP networks the application of the learning rule is global in nature. That is, all adjustable parameters (the

vector θ ) in the network are updated simultaneously. This leads to large values of 

 

r implying significant 

computational effort, which scales according to the third power of r , at each iteration. In LMN networks,

implementation presented here updates only those local models that significantly contribute to the output. This 

can drastically reduce the computational effort associated with the update computation due to much smaller 

values of 

 the 

r associated with each local model and where now, increasing the number of contributing local model

causes the computational effort to scale up linearly. Obviously, it is possible to globally train the LMN network

as well, but local training of only subsections of the MLP does not appear to be possible. The global vs. local

training trade off in LMN’s has been addressed by Murray-Smith and Johansen (1997).  

s 

 

 

The RBF network implementation fits in between the MLP and LMN approach. Here the matrices used in the 

update equations are defined in a global sense but sub matrices are extracted and used based on the basis 

functions that rem gion is applied. This may be viewed as multiple 

overlapping local models, where the size of the local model and the degree of overlap is determined by the 

radius of the truncation region. This overlapping nature has implications for the update equations as sub 

elem atrices involved are updated at different times. The effects of this are unclear and may be 

particularly problematic to SVD based approaches. To this author’s knowledge these effects have not been 

quantified.  

3.3 STRUCTURE OPTIMISATION 

The problem of structural optimisation is a complex one and a detailed exposition will not be attempted in this 

work. This section serves only as an introduction to the problem, recognizing that the problem is an important 

and significant issue, and to provide the reader with some reference and pointers of other work that has 

addressed this issue in more detail. 

 

re generally stated as: 

ain activated once the truncation re

ents of the m

.10 

The goal of structure optimisation is to define a mechanism whereby the density of units and/or complexity of 

local models is minimized in a problem adaptive way. In section 3.3.1 a cost function was defined (Eq. (3.3.1)) 

which was minimized when the optimal set of parameters was obtained. Implicit in this cost function was a fixed

model structure. The optimisation problem could be mo

( )),,(min),(
,

* MtJMJ
M

θθ
θ

=   

where M represents the network parameters that determine its structure. The optimisation of the network 

structure M is unfortunately a difficult non-convex problem and typically involves constructive (increasing the 

number of units as the systems trains) and/or destructive (removal of units) evolution of network components. 

This must be accomplished while maintaining network robustness and generalisation while using only the 

currently available training data. To guarantee a general solution is, in general, not possible and typically the 

devised methods implicitly include some form of knowledge about the problem under consideration. 

66 



 

The difficulty associated with this problem has lead to a wide variety of approaches which have also been 

 

velopment of real 

brains. An example of a more quantitative engineering approach that makes use of the SVD to pr

r RBF 

on minima

Schwenler et al (2001) also provides an overview of training all the parameters of an RBF network. As LMN’s 

 of the techniques suggested for RBF networks could potentially be 

1997) for 

a review of techniques applied to LMN’s. 

3.4 DETERMINING THE NETWORK JACOBIAN 

entrate on determining the network Jacobian defined by: 

tailored for the network type under consideration. Quinlan (1998) provides a review of many of the methods

attempted, primarily for MLP networks, and places them in the biological context of the de

une MLP 

networks is presented in Stepniewski and Jorgensen (1998). An example of structural optimisation fo

networks includes the work l resource-allocating networks (M-RAN) by Yingwei et al (1997, 1998) 

and (Sundararajan and Saratchandran, 2000), which was based on the work by Platt (1991),  while the work of 

can be seen as an extension of RBF’s many

extended to LMN’s. The reader is referred to Zbikowski et al (1994) or (Murray-Smith and Johansen, 

In this section we conc

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂

∂
∂

∂
∂

≡

n

qq

n

x
y

x
y

x
y

x
y

d
d

ˆˆ

ˆˆ

ˆ

1

1

1

1

L

MOM

L

x
y . (3.4.1) 

This quantity can be very useful in adaptive control and dynamic system identification as it directly relates the 

systems output sensitivity to input variations. This is commonly related to plant sensitivity or syst eters 

which are used for control law synthesis. When a neural network is used to model a non-linear system this 

quantity in effect provides an instantaneous linearization of the identified non-linear system. 

3.4.1 DETERMINING MLP NETWORK JACOBIAN INFORMATION 

Determining the network Jacobian information in an MLP network is simple when one recognizes that the input 

layer can be treated as any other hidden layer and the recursion relationship (3.3.102) can be applied one more 

em param

time to get: 

)2()1(]1,[ G
G

GTT ∂
′Θ=

∂
=

∂ x
. (3.4.2) 

The last ro

)2() ˆˆˆ ∂∂∂ yyy

w associated with the bias term can be ignored, as is done in the normal back propagation algorithm. 

The implementation is thus built into the back propagation algorithm in Listing 3.3.1, and shows up in line 40, 

or variable dYdG, which contains the required Jacobian information when execution of the loop (10-60) is 

complete. 

3.4.2 DETERMINING RBF JACOBIAN INFORMATION 

Consider the network approximation described by equation (3.2.7). To determine the Jacobian of such a network 

we may directly differentiate with respect to the input vector: 

2(

67 



 

{ }.,,)(

ˆˆ

ˆˆ

ˆ

2

1

1

1

1

0

LI
n

Io
II

I
I

n

qq

n

KII
d

dg
x
y

x
y

x
y

x
y

d
d

ξξρξξ
∈ℜ⊂∈≤−=

−
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂

∂
∂

∂
∂

≡

∑
∈

xx
x

xθ

x
y

L

MOM

L

 (3.4.3) 

Expanding the differential gives: 

( )

.)(Σ)(2

)( )(Σ)(

I
T

I

I

g

e
d
d

d
dg

I
T

I

ξξ

ξ ξξ

−−−=

⎟
⎠
⎞⎜

⎝
⎛=

− −−−

xx
xx

x xx
 (3.4.4) 

an expression for the RBF network Jacobian: Substituting (3.4.4) into (3.4.3) results in 

∑ −−−=
∈

)(Σ)(2
ˆ

I
T

I g
d
d ξξ xxθ
x
y . (

We note that all the terms in equation (3.4.5) are calculated or are available while computing the activation rule. 

 rule 

 

e network. This means that once an RBF network has been trained and 

l being 

 express equation (3.4.5

I 3.4.5) 
0II

The only additional computational costs are those associated with the explicit product terms contained in 

equation (3.4.5). Furthermore, as a significant proportion of computation is performed during the activation

computation, the overhead associated with the Jacobian calculation is minimal whether the network is being

trained or not. This observation is in stark contrast to the MLP where a significant proportion of the Jacobian 

calculation is performed while training th

the training algorithms have been switched off, all the processing resources associated with the training are 

made available for other tasks. For the MLP, only limited processing power can be relinquished as it is stil

used in evaluating the Jacobian. 

We may also ) using only matrix operations. Let us assume that the set 0I  contains l 

vector elements and that 
kIjξ  signifies the jth element of the vector which describes the kth lattice vertex where 

LIk ⊂0 LIk
lk ≤≤1  , I ∈  and ξξ ∈ . We may now construct m  by stacking latrices 

0I
T

0IX  instances of x , ξ  

by stacking each Iξ  for all 0II ∈ , and for notational convenience 
0ID : T

.Σ)(
00

2

1

00

III

T
I

T
I

T
I

T ξ ⎤⎡⎤⎡x

I

T

T

I

XD

X

o

l

ξ
ξ

ξ
ξ

−=
⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢

⎣

=

⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢

⎣

=
MM

x

x
 (3.4.6) 

Using the constructions in equation (3.2.11), (3.4.6) and defining the function diag(.), which constructs a null 

matrix of appropriate size and places the vector argument along the main diagonal, we may rewrite equation 

(3.4.5) entirely as a matrix equation: 

( )
000

),(diag2
ˆ

II
T
I DG

d
d ξx
x
y

Θ−= . (3.4.7) 

68 



 

Let us now consider how we might implement equation (3.4.7) in an axis orthogonal network arrangement so 

that we maximise the benefits produced by the activation rule implementation of section 3.2.2. Clearly 
0IΘ and 

),(
0IG ξx are constructed when calculating the activation rule and will not be further addressed. The unresolved 

ch i

y pa  th  follows: 

part of the problem is the construction of D  in an incremental manner while stepping through ea
0I nput 

dimension. For an axis orthogonal structure, we ma ex nd is term into its individual components as
T

nnn ⎥⎦⎢⎣
222 σσσ

InnInnInn l
xxx

⎥⎢
−−− )()()(

21
ξξξ

L

III l
xxx ⎥⎢ −−− 222222 )()()(

21
ξξξ

III l
xxx

⎥
⎤

⎢
⎡ −−− 111111 )()()(

21
ξξξ

ID ⎥⎢= 222
0

. (3

⎥
⎥

⎢
⎢

⎥⎢ MM

⎥
⎥

⎢
⎢ 222 σσσ

L

⎥⎢
2
1

2
1

2
1 σσσ

OM

L

.4.8) 

Clearly, the above matrix will be constructed row by row but it is still unclear how the Ijξ  terms are obtained. 

ut  a xWe recall from section 3.2.2 that, for the jth inp  of n a is orthogonal network, the term Ijξ  is repeated a 

number of times because all the elements except the jth are ignored. This implies that the matrix in (3.4.8) may 

at , l k  a qu

 exponenti e 3

xponentials ted by component 

three. This results in a set  as follows: 

 (3.4.9) 

contain a number of equal terms. Unfortun ely oo ing t e ation (3.4.8), it is not immediately apparent as to 

how this may be achieved. This is best demonstrated by studying the three input example presented earlier; 
rd Assume an input vector such that the 1st, 2nd, and 3rd als are excited by input component one, th

and 4th exponentials are excited along dimension two, and the 6th and 7th e  are exci

I0

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

TTTTTTTTTTTT

I
7
4
3

7
4
2

7
4
1

7
3
3

7
3
2

7
3
1

6
4
3

6
4
2

6
4
1

6
3
3

6
3
2

6
3
1

0 .

 terms in (3.4.8) we may, for the current example, substitute the I subscripts from (3.4.9) 

) 

Ignoring the x  and σ

to generate the following matrix: 

.
]7,4,3[3]7,4,2[3]7,4,1[3]7,3,3[3]7,3,2[3]7,3,1[3]6,4,3[3]6,4,2[3]6,4,1[2]6,3,3[3]6,3,2[3]6,3,1[3

]7,4,3[2]7,4,2[2]7,4,1[2]7,3,3[2]7,3,2[2]7,3,1[2]6,4,3[2]6,4,2[2]6,4,1[2]6,3,3[2]6,3,2[2]6,3,1[2

]7,4,3[1]7,4,2[1]7,4,1[1]7,3,3[1]7,3,2[1]7,3,1[1]6,4,3[1]6,4,2[1]6,4,1[1]6,3,3[1]6,3,2[1]6,3,1[1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ξξξξξξξξξξξξ

ξξξξξξξξξξξξ

ξξξξξξξξξξξξ

 (3.4.10

As in section 3.2.2 we may replace Ijξ  with the jth element of I multiplied by j∆ , where j∆  is the spacing of 

the lattice Lξ  along the dimension j, resulting in (3.4.8), for the current example, taking the form: 

.

)7()7()7()7()7()7()6()6()6()6()6()6(

)4()4()4()3()3()3()4()4()4()3()3()3(

2
3

33
2
3

33
2
3

33
2
3

33
2
3

33
2
3

33
2
3

33
2
3

33
2
3

33
2
3

33
2
3

33
2
3

33

2
2

22
2
2

22
2
2

22
2
2

22
2
2

22
2
2

22
2
2

22
2
2

22
2
2

22
2
2

22
2
2

22
2
2

22

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

0I

xxxxxxxxxxxx

xxxxxxxxxxxxD

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

∆−∆−∆−∆−∆−∆−∆−∆−∆−∆−∆−∆−

∆−∆−∆−∆−∆−∆−∆−∆−∆−∆−∆−∆−
=

σσσσσσσσσσσσ

σσσσσσσσσσσσ

σσσσσσσσσσσσ

 

(3.4.11) 

)3()2()1()3()2()1()3()2()1()3()2()1( 111111111111111111111111 xxxxxxxxxxxx ⎤∆−∆−∆−∆−∆−
T

⎡ ∆−∆−∆−∆−∆−∆−∆−

69 



 

The common terms and pattern of construction now become apparent facilitating the development of an 

algorithm to construct 
0ID  independent of the number of inputs or active units. A Matlab realisation of suc

algorithm that is succinct, efficient, and optimally compatible with the activation rule implementation discussed 

in section 3.2.2, is shown in Listing 3.4.1. For convenience, the activation rule calculations have been included 

in italicised grey type. 

10 actv=1; idxw=0; difs=0;       % Initialize variables 

h an 

vct2,  contributing exponent  equal 

difs vct2

x, 

arry

difs  to the number of exponentials along the jth input that fall inside the 

truncation radius. (i.e. The number of elements in idxe ) Next, line 110 appends a new jth row onto each matrix 

entry in arry and copies vct2 into each of these rows. Line 120 appends, row wise, each matrix entry along the 

third dimension of arry, to form the new difs matrix. The last step within the loop, line 170, is to remove any 

rows in difs that may be associated with units whose activations fall below the activation threshold when the 

20 for j=1:net.ninp         % Loop through each network input 

30  expn=(u(j)-net.center{j}).*net.invsigma{j}; % Find exponents for jth input 

40  idxe=find(abs(expn)<net.nthld1);    % Determine exponentials activated 

50  expn=expn(idxe); actv=actv(:)*exp(-expn.^2); % Multiply with active units 

60  vct1=((idxe-(j>1)).*net.vcprd(j));   % Calculate new indexes 

70  vct1=vct1(ones(size(idxw,1),1),:);   % Copy vct1 to rows(idxw) rows 

80  matx=idxw(:,ones(1,size(idxe,2)));   % Copy idxw to cols(idxe) columns 

90  vct2=expn.*net.isigma{j}(idxe);    % Calculate new jacobian info 

100  arry=difs(:,:,ones(1,size(idxe,2)));   % Copy difs matrix cols(idxe) times 

110  arry(j,:,:)=vct2(ones(size(idxw,1),1),:);  % Copy vct2 to rows(idxw) rows 

120  difs=arry(:,:);        % Update Jacaobian info matrix 

130  idxw=vct1(:)+matx(:);       % Update weight index vector 

140  idxa=find(actv>net.nthld2);     % Make truncation region a ball  

150  actv=actv(idxa);        % Remove inactivated units 

The code augmentation begins in line 10 where difs, the variable for storing the transpose of the 
0ID  matrix, 

is set to zero. Next, in line 90, the variable  is, for each of the jth input

160  idxw=idxw(idxa);        % Remove inactivated weight indexes 

170  difs=difs(:,idxa);        % Remove unactivated jacobian info 

180 end             % End for loop 

190 dydu=-2.*net.weights(:,idxw)*...     % Calculate Jacobian 

    (actv(:,ones(1,net.ninp)).* difs'); 

200 yhat=net.weights(:,idxw)*actv(:);     % Output result 

Listing 3.4.1. Axis Orthogonal RBF Jacobian Calculation Implementation. 

ials, set

to the exponent value used in the activation rule calculation, divided by its corresponding variance. This 

calculation is the only additional mathematical operation required within the loop and actually determines all the 

terms that the jth input contributes to 
0ID . 

Lines 100, 110 and 120 manipulate  from the previous iteration, together with  from the current 

iteration, to ensure the correct structure for the final 
0ID . Line 100 repeats the previous iteration difs matri

storing each copy along the third dimension of the variable . The number of entries, and hence copies of 

, in this third dimension is equal

70 



 

truncation region is changed from a cube to a ball. To clarify the above-mentioned process Table 3.4.112 has 

been included, demonstrating, for the previously discussed example, how the variables evolve during loop 

iteration. 

j idxe 

(100) 

idxw 

(110) 

arry 

(110) 

difs 

(120) 

[]⋅  []⋅  [ ]0  []⋅  [ ]0  

1 

 

[ ]321 [ ]0  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡ ∆

⎥
⎦

⎤
⎢
⎣

⎡ ∆

⎥
⎦

⎤
⎢
⎣

⎡ ∆

−

2
1

1

2
1

1

2
1

1

3

2

1

σ

σ

σ  
⎥
⎦

⎤
⎢
⎣

⎡ ∆∆∆
− 2

1

1
2
1

1
2
1

1 321
σσσ

 

2 ⎡1[ ]43  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆∆∆∆∆∆

∆∆∆∆∆∆

−

2
2

2
2
2

2
2

⎥
⎥
⎦⎢

⎢
⎣3

2  
⎤

⎥
⎥
⎥⎥∆

1σ ⎥
⎥
⎥2

1
⎥
⎥

⎤∆

⎥⎦
2
2

2
2

3
σ

⎥⎥∆22 3  
⎥
⎥
⎥
⎥2

1σ

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦⎢

⎢
⎢
⎢

⎣

⎡

∆∆

∆∆

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆∆

∆∆∆

−

2
2

2
2
2

2
2
2

2

2
1

1
2
1

1

2
2

2

1
2
1

1
2
1

1

444

21

33

321

σσσ

σσ

σσ

σσ

2
2
2

2
2

2
2 σσσσ

2

2
1

1
2
1

1
2
1

111
2
1

1

443

321321

σσ

σσσ  

222 433
2
1

2
1 σσσ

3  

⎦
⎢
⎢
⎢

⎣24
23
22
17  

[ ]76

⎥
⎥
⎥
⎥
⎤

⎢
⎡

16
15

⎥
⎥

⎦
⎥
⎥

⎦

∆∆∆∆
2
3

3
2
3

3
2
3

3
2
3

3
2
3

3 7777
σσσσσ

⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆∆

∆∆∆∆∆∆

∆∆∆

⎥
⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆∆∆∆∆∆

∆∆∆∆∆

∆

−

2
3

3

2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2

11
2
1

1
2
1

1
2
1

1
2
1

1

2
3

2
3

2
3

2
3

3
2
3

3
2
3

3

2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2

111
2
1

1

77

444333

321

666666

44333

1

σ

σσσσσσ

σσσσσσ

σσσ

σσσσσσ

σ
⎥
⎤
⎥
⎤

∆

∆∆∆∆
2
1

1
2
1

1
2
1

2
1

4

3213
σσσσ

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ∆11

⎣

∆∆∆∆∆∆∆∆∆∆

∆∆∆∆∆∆∆∆∆∆∆∆

∆∆∆∆∆∆∆∆∆∆∆

−

2
3

3
2
3

3
2
3

3
2
3

3
2
3

2
3

3

3
2
3

3
2
3

3
2
3

3
2
3

3

2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2

2
1

1
2
1

1
2
1

1
2
1

1
2
1

1
2
1

1
2
1

1
2
1

1
2
1

1
2
1

1
2
1

1
2
1

7777776666

44433)3444333

32)132)132132

σσσσσσσσσσ

σσσσσσσσσσσσ

σσσσσσσσσσσσ

 

∆
2
12

σ

⎥
⎥
⎥
⎤∆∆

2
1

2
1 32

⎥
∆

⎦333

1
σσσ ∆∆

2
3

2
3

3 66
σσ

3

 

Table 3.4.1. Example v n Du Jacobian Calculation. (x = [0,0,0]). 

Once the loop iteration is complete, the resulting difs matrix is the transpose of the desired  matrix. The 

final step in the calculation is to perform the products shown in equation (3.4.7). This step, accomplished in line 

190, makes use of t vations contained in a lculated during the activation rule computation, the final 

difs matrix and the current weight matrix  contained in net.weights(:,idxw). Note that the matrix 

of Varia olutio ring ble E

 
0ID

he acti ctv, ca

 T
I0

Θ

( )),(diag
0IG ξx  is not specifically constructed, but the product ( )

00
),(diag II DG ξx may be more efficiently and 

directly implement he code (actv(:,ones(1,net.ninp)).* difs'). 

                                                        

ed by t

   

 The table assumes firstly that the input vector is [0,0,0] and secondly that no units are discarded when converting from a cubic to a 
spherical truncation region. 

12

71 



 

3.4.3 DETERMINING LMN JACOBIAN INFORMATION 

As in section 3.4.2 we may determine the LMN Jacobian by direct differentiation of equation (3.2.13) with 

respect to the input vector. Thus, by applying the product rule we may state the following: 

∑∑
∈∈ ⎠⎝⎟

⎠
⎜
⎝ 00 II

I
II

I dd xx ⎟⎟
⎞

⎜⎜
⎛ −

−+⎟
⎞

⎜
⎛

−
−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂

∂
∂

∂
∂

≡

)(ˆ
)(ˆ)(ˆ)(ˆ

ˆˆ

ˆˆ

ˆ

1

1

1

1

II

n

qq

n

gd
g

d

x
y

x
y

x
y

x
y

d
d

x
xfx

xf

x
y

ξ
ξξ

ξ

L

MOM

L

 (3.4.12) 

where all variables are the same as those defined in section 3.2.3. Notice that the second method of 

implementing the mapping  discussed in section 3.2.3 allows us to ignore the effects of H because Φ→KH :

x=φ  and φIL ξη = .  This simplifies the equations as we are not required to specifically consider , or the 

lattice Lη  in the construction of equation (3.4.12). 

For the specific case of local linear models, we can expand the first term under the summation to get: 

.)(ˆˆ)(ˆ)(ˆ

00

∑∑
∈∈

−Θ=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

II
I

T
I

II
I

I gg
d

d ξξξ xx
x

xf  (3.4.13) 

Simplifying the notation by replacing )(ˆ),(ˆ
II g ξξ −− xxf and )( Ig ξ−x  with II ĝ,f̂  and Ig  respectively

then applying the quotient rule and performing the required differentiations, the second term under the 

, 

summati sion mplifies as follows: 

.ˆ)()(ˆˆ2
0 0

0 0

00

∑ ∑

∑∑

∈ ∈

∈∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Σ−−Σ−−=

⎟
⎟
⎠

⎜
⎜
⎝

⎟
⎟

⎠
⎜
⎜

⎝
⎟
⎟

⎠
⎜
⎜

⎝

II IJ
J

T
J

T
III

IJ
J

IJ
J

gg

gg

ξξ xxf

Substituting equations (3.4.13) and (3.4.14) back into equation (3.4.12) results in: 

)(2)(2ˆ 0

0

0

0

0

22

∑

∈ ∈

∈

∈

∈

∈

⎟
⎟
⎟

⎞

⎜
⎜
⎜

Σ−
⎞⎛

−Σ−
⎞⎛

⎟
⎟
⎟

⎟
⎟

⎠

⎞

⎜
⎜

⎜

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎞

⎜

⎟
⎟

⎟

⎠

⎜

II IJ
J

T
J

I
I

T
I

IJ
I

II

IJ
J

JIJ

II

ggg

g

ξξ xxf  

ˆˆˆˆ 00

0

2∑∑ ∑∑ ∈∈

∈
∈

⎟
⎟

⎜
⎜ ⎠⎝=⎟

⎜
⎜
⎜

⎝

=
IJIJ

I
II

IJ
J

I
I

I
I

dd

g
g

d
d

d
gd xx

f
x

f
x

f
∑∑⎜

⎛
⎜
⎛

−⎞⎛ I gdgdgg

∑ ∑
∑ ⎟

⎟
⎜
⎜

=
Jg (3.4.14) 

⎛

⎜
⎝

.)(ˆ)()()(ˆ)(ˆ2)(ˆˆˆ

0 00

∑ ∑∑
∈ ∈∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−Σ−−Σ−−−−−Θ=

II IJ
J

T
J

T
III

II
I

T
I ggg

d
d ξξξξξξ xxxxxfx
x
y  (3.4.15) 

As in previous sections we can rewrite this equation as a set of matrix operations. Defining the following 

matrices: 

72 



 

[ (ˆ)(ˆ),(

)(ˆ

)(ˆ
)(ˆ

),(

Σ)(

2

1

0

00

2
00

l

o

l

I

I

I

I

III

T
I

T
I

I

T

T

I

F

g

g
g

G

XD

X

ξξ

ξ

ξ
ξ

ξ

ξ

ξ

ξ
ξ

−−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

−=

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣

=

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣

=

xfxfx

x

x
x

x

x

x

M

MM

 (3.4.16) 

])(ˆ
210

1

lIIII

T
I

ξξ

ξ

−

⎥
⎤

⎢
⎡

⎥⎢

xfL

T ⎤⎡x

then: 

( )( )
00000

0

),(),(diag),(2)(ˆˆˆ
I

T
IlIII

II
I

T
I DGDGFg

d
d ξξξξ xIxxx
x
y

−−−Θ= ∑
∈

t as shown above we observe a number of similarities with expressions developed in 

 

 is 

arry1 tion (3.2.26), the only 

 (3.4.17) 

where lI is a column vector containing l rows of one. 

By expressing the resul

previous sections permitting much of the earlier implementation to be transferred directly to Listing 3.4.2.

Observe that 
0ID  defined in (3.4.16) is precisely the same as that defined in equation (3.4.6). The method of 

evaluation is thus exactly the same as in section 3.4.2 and the implementation on lines 10, 90-120 and 170

identical to that shown in Listing 3.4.1.  

The first term in (3.4.15) is almost identical to the term first described in equa

difference being that the weight matrix used does not include the column of bias values. Ignoring the last 

column of arry1 and summing it along the third dimension gives the desired result. Next we see that the 

expression ( )),(diag),(
00 II GF ξξ xx  results in term arry3 described in equation (3.2.27) and can be reused

without any further modification. The calculation of the vector 
00

),( I
T

I DG ξx is directly calculated and stored 

in a temporary variable called arry4 from the previously obtained difs and actv variables. Rather than perform

the vector multiplication of I

 

 

l with arry4 to obtain ( )
000

),( I
T

IlI DGD ξxI−  it is more efficient to repeatedly 

stack the row vector arry4 on its self and perform the subtraction directly. All the operations described in t

paragraph are combined in lines 230 and 240 of Listing 3.4.2 to get the Jacobian matrix result shown in equation 

(3.4.17). 

his 

73 



 

10 actv=1;idxm=0;difs=0;        % Initialize variables 

20 for j=1:net.ninp         % Loop through each network input 

30  expn=(u(j)-net.center{j}).*net.invsigma{j}; % Find exponents for jth input 

40  idxe=find(abs(expn)<net.nthld1);    % Determine exponentials activated 

50  expn=expn(idxe); actv=actv(:)*exp(-expn.^2); % Multiply with active units 

60  vct1=((idxe-(j>1)).*net.vcprd(j));   % Calculate new indexes 

70  vct1=vct1(ones(size(idxm,1),1),:);   % Copy vct1 to length(tmp2) rows 

80  matx=idxm(:,ones(1,size(idxe,2)));   % Copy idxm to length(tmp1) cols 

90  vct2=expn.*net{n}.isigma{j}(idxe);   % Calculate new jacobian info 

100  arry=difs(:,:,ones(1,size(idxe,2)));   % Copy difs matrix cols(idxe) times 

110  arry(j,:,:)=vct2(ones(size(idxm,1),1),:);  % Copy vct2 to rows(idxm) rows 

120  difs=arry(:,:);        % Update Jacaobian info matrix 

130  idxm=vct1(:)+matx(:);       % Update model index vector 

140  idxa=find(actv>net.nthld2);     % Make truncation region a ball  

150  actv=actv(idxa);        % Remove inactive units 

160  idxm=idxm(idxa);        % Remove inactive model indexes 

170  difs=difs(:,idxa);     % ive jacobian info     Remove inact

180 end             % End for loop 

190 actv=permute(actv(:)./sum(actv(:)),[3,2,1]);  % Reshape actv and normalise 

200 arry1=actv(ones(1,net.nout),...    % Each model validity fcn times mdl wts  

   [1, ones(1,net.ninp)],:).*net.weights(:,:,idxm); 

210 arry2=[u’,1];          % Append bias term to input 

220 arry3=permute(sum(arry1.*...      % Calc weighted output of each active mdl 

           arry2(ones(1,net.nout),:,ones(1,length(idxm))),2),[1,3,2]);  

230 arry4=(difs*actv(:))';        % Inner most summation in Jacobian calc 

240 dydu= sum(arry1(:,1:end-1,:),3)-...    % Calculate final Jacobian Matrix 

   2*arry3*(difs'-arry4(ones(1,length(idxm)),:)); 

250 yhat=sum(arry3,2);         % Sum model outputs for network output 

Listing 3.4.2. Axis Orthogonal LMN Jacobian Calculation Implementation. 

 

3.5 CONCLUSION 

tural and algorithmic details of the MLP, RBF and LMN 

networks. Initially the network structures or activation rules were considered and it was shown how, for each 

network type, simple Matlab code could be used to implement these rules. These implementations

optimised, where possible, for extraction of the network Jacobian information and it was revealed how the 

efficiencies of an axis orthogonal implementation could be exploited for RBF and LMN networks. Furthermore, 

 LM ed or expressed in a general neural network framework and 

their commonalty with RBF networks was highlighted. 

In section 3.3 the training of the various network parameters, or the learning rule, was discussed. The learning 

rule was couched in the form of a non-linear optimisation problem and the commonality with the field of system 

identification was highlighted. The differing formulations of the problem for batch mode, or off-line, versus on-

sh of variable construction, the parameter update of all three network types could 

The focus of this chapter has been on the specific struc

 were 

it was demonstrated how N’s could be construct

line, or recursive, approaches was discussed and a rationale for using on-line training was provided. Next it was 

own how, by judicious choices 

74 



 

be expressed as a linear or pseudo-linear regression problem. This important step provided the foundation for 

treating the training of all three network types as common, allowing various learning rules to be e

 

the steepest or gradient descent method and a number of variations and extensions of the recursive least squares 

approach. The variations discussed, such as the exponential forgetting factor method, attempted to highlight 

short comings, specifically numerical conditioning issues, and demonstrated how they may be solved. These 

s lead to the inev  

section. 

The final training algorithm presented was a new approach based on the singular value decomposition (SVD.) 

This method was developed in an attempt to address some of the issues involved with the RLS based algorithms.  

he algorithm has shortcomings in terms of computational effort and the fact that a ‘square root’ 

formulation is not used, a number of potential advantages were described, in particular the stabilit

atrix s could include natural extensions 

to perform robust parameter subset selection. The author believes that potential solutions to the mentioned 

e us update 

lations of the algorithm to 

reduce computational effort. Another important topic of this section described how the regressor variable was 

mous b  

 desc

ral optimisation and a number of 

references were provided for more detailed reading regarding this topic. 

The third and final major section of the chapter described the extraction of the network Jacobian information for 

each of the network types under consideration. Of particular interest here is the derivation of the expressions for 

the LMN Jacobian. The implementation details for the Jacobian calculation associated with both the RBF and 

LMN network are shown to be very similar and can be obtained with minimal computational effort.  

To aid in the understanding of how the major equations described in this chapter are exercised we close this 

l sequence used in this work when 

identifying a function mapping. 

xplored 

without detailed consideration for the particular network application. The training methods considered included

problem itable discussion of the use of regularization. The important relationship to the Kalman

Filter was also included in this sub 

Although t

y of the 

information m and parameter update equations. Other possible advantage

problems exist, although they were not explored in this work. These include th e of rank one SVD 

algorithms and square root formulations. 

The penultimate section involved with training algorithms dealt with implementation specific issues. These 

included a description of using dead zones during training and network specific formu

constructed for each of the network types. In particular, for MLP’s, the fa ack propagation algorithm was

concisely ribed, using a matrix formulation, and a Matlab code implementation was presented. This 

subsection concluded with a short discussion of the trade-off associated with global versus local learning. The 

final section associated with training algorithms introduced the idea of structu

chapter with a flow chart, shown in Figure 3.5.1, describing the computationa

75 



 

 

Figure 3.5.1. Neural Network Function Identif tion Computation Flow Chart. 

 

 

ica

START 

Initialize network weights 

(parameters) and information matrix 

Measure or calculate input to identified 

system 

Measure or calculate output from identified 

system 
Adaption turned 

on? 
No Yes 

Calculate Dead Zone Criter

Eq. 3.3.90 to 3.3.92 

ia Error > Dead 
Zone? 

Yes 

No 

Calculate activation rule, network 

Jacobian, and regression vector: 

RBF – Eq.  3.2.12 & 3.4.7  

See Listing 3.4.1 

LMN – Eq

See 

.  3.2.25 & 3.4.17 

Listing 3.4.2 

MLP 
Network? 

. Yes 

No 

Adaption turned 
on? 

Yes

No 

Calculate activation rule: 

Eq.  3.2.5  See Listing 3.2.1 

Calculate network Jacobian: 

Eq. 3.3.102 and 3.4.2  

See Listing 3.3.1 – no line 50 

Calculate activation rule: 

Eq.  3.2.5  See Listing 3.2.1 

Calculate networ acobian  and 

regressio vector: 

k J

n 

Eq. 3.3.102 and 3.4.2  

See Listing 3.3.1 

Make network Jacobian 

and output available 

Exponential Yes No
Forgetting? 

Calculate information, covariance or SVD matrix update 
depending on selected training method and network type. 

      MLP Eq. RBF/LMN Eq. 
Gradient Descent:  3.3.15  3.3.93 
Gradient Descent w/ Mom: 3.3.16 3.3.94 
Exponential Forgetting:  3.3.33 3.3.95 
Square Root: 3.3.57 3.3.96 
Constant Trace:  3.3.62 3.3.97 
Recursive SVD:  3.3.89 3.3.98 

Calculate conditional update criteria   

Eq. 3.3.48 

Criteria 
satisfied? 

. Yes 

No

Update identified system’s state 

equations. 

Identified 
system is 

simulated? 

Yes

No 

Store calculated information, covariance or SVD matrix for 
use during next iteration. Calculate and store network 

weight (parameter) update depending on selected training 
d network type. 

 MLP Eq. 
Gradient D 3.3.15  
Gradient Descent w/ Mom: 3.3.16 3.3.94 

Recursive SVD:  3.3.89 3.3.98 

method an
     RBF/LMN Eq. 

escent:  3.3.93 

Exponential Forgetting:  3.3.33 3.3.95 
Square Root:  3.3.57 3.3.96 
Constant Trace:  3.3.62 3.3.97 

76 



 

 

CHAPTER 4 

CONTROL USING NEURAL NETWORKS - NEUROCONTROL 

Until this point the work in this dissertation has focused purely on neural network issues. Attention now turns to 

the application of these networks in a feedback control environment.  

ified (Suykens and Bersini, 1996) into five main areas, namely; Neural 

adaptive control, Neural optimal control, Reinforcement learning, Internal model control and predictive control 

this work, our objective is not to design neuro-controllers but only to 

demonstrate the techniques described in previous chapters. For this reason we focus exclusively on the first 

classification, i.e. neural adaptive control. The design methodology can be broken down into five main steps: 

- The mathematical description or model of the plant that is to be controlled. 

- The choice of a controller structure or control law formulation. 

- The formulation of an adaptation mechanism to update the controller parameters so that the control 

objective can be attained. 

- A stability analysis of the closed loop system. 

- Determination of conditions required for the convergence of the parameters to an acceptable 

solution. 

To begin the chapter however, we first attempt to place this work in context by providing a brief history of 

design steps given above in the sections entitled

last three sections also shows how the network Jacobian information is used, 

explaining the motivation behind the development of the Jacobian algorithms in chapter three. The final two 

design steps above are theoretical and complex in nature and are considered beyond the scope of this work. This 

does not mean that these steps should be ignored, indeed they are vital to the successful, practical and safe 

implementation of a real-world controller, even though they are purely theoretical in nature. Finally, the chapter 

closes with conclusions.  

4.1 INTRODUCTION 

Neurocontrol can be broadly class

and finally NLq stability theory. In 

feedback control culminating in the advent of neurocontrol. Next the discussion moves to the first three of the 

, Plant Description, Control Law Formulation and Adaptation 

Mechanisms. The  of these 

77 



 

4.2 HISTORICAL BACKGROUND 

The use of feedback control can be traced back more than 2000 years to Greece, where mechanisms for 

regulating water level were devised. Probably the most recognized early control system was the fly ball 

governor for steam engine speed control devised by James Watt in 1769. In 1868 James Clark Maxwell analy

a differential equation model of a governor by linearizing about an equilibrium point and showed that stability 

depended upon the state of a characteristic equation having negative real parts. E.J. Routh improved on this 

work in 1877 and is credited with devising the first mathematically based stability criteria for higher order 

nd Nyquist developed methods for analysing more complex feedback 

amplifiers and the PID controller was developed.  

During World War II the demand for control of more sophisticated systems led to an explosion in what was now 

l engineering. Notably during this period Evans developed the 

root locus method of stability analysis, work which may be considered an extension of Maxwell and Routh’s 

earlier work. The use of the Laplace transform and the s-domain continued to flourish after the war. Russian 

mathematicians meanwhile, particularly Lyapunov, independently produced significant work utilizing time-

domain formulations.  

With the advent of the space age in the 1950’s, western theorists began to explore the more sophisticated 

approaches made possible by the digital computer from which arose the important work of Kalman and Bellman 

e 

l 

 

answer this e aircraft. 

Initially adaptive control was based mainly on heuristic ideas and early dramatic failures resulted in the 

approach falling out of favour. As state space, stability theory and stochastic approaches evolved in the 1960’s 

mic e 

tributions of Tsypkin showed that many schemes 

for learning and adaptive control could be expressed in a common framework. Increased understanding of 

system identification and robustness coupled with proofs for stability of ad ptive systems sparked a renaissance 

in the field and commercially available adaptive controllers began to appear in the 1980’s.  

, and ing sy

iological systems. The field of Artificial Intelligence (AI) was being shaped 

by contributions such as Zadeh’s seminal paper on fuzzy logic in 1965. Others, beginning with Hebb, 

rpenter and Gossberg, Werbos, Albus, Kohonen, Hinton, 

.  

sed 

systems. Prior to World War II Bode a

recognized as the independent discipline of contro

in utilizing ordinary differential equation (ODE) models. Optimal control, first introduced by Weiner and 

Phillips during World War II, was now extended using the calculus of variations, to non-linear systems and th

Z-transform and difference equations gave birth to modern digital control. 

Non-linear and / or time varying systems were, and to this day, remain challenging to analyse in a genera

framework. Adaptive control was one of the techniques developed, beginning in the 1950’s, in an attempt to

 challenge, primarily in connection with the design of autopilots for high-performanc

renewed interest in adaptive methods appeared. Dyna  programming (introduced by Bellman) enhanced th

understanding of adaptive techniques and the fundamental con

a

Meanwhile, in computer science and other related fields researchers were intrigued by  study stems 

that could emulate the behaviour of b

Rosenblatt, McCulloch and Pitts, and later Hopfield, Ca

and, Rumelhart and McClelland, were laying the foundation for what would become the field of neural 

networks. Concurrently, methods such as Genetic Algorithms and Expert Systems were also being developed

78 



 

Slowly the fields encompassed by feedback control, adaptive control and stochastic control became groupe

under the general heading of conventional control. In the 1970’s the fields of AI, neural networks, genetic 

algorithms and conventional contro

d 

l began to merge resulting in what is today regarded as intelligent control. 

A general mathematical form for multi-input multi-output (MIMO) discrete13 time plant description is the state 

space representation: 

][
])[],[(]1[

kkk
kkk

uxgy
uxhx

=

More specifically, the amalgamation of control theory with neural network paradigms is referred to as 

neurocontrol.  

4.3 PLANT DESCRIPTION 

( ])[],[
=+   

ctively 

 are m e 

conti

kg
kuk

x
xh

where nk ℜ∈][x , pk ℜ∈][u and qk ℜ∈][y  are vectors describing the plant state, inputs and outputs respe

at the kth sample in time, and the functions npn ℜ→ℜ +:h  and qpn ℜ→ℜ +:g  are vector valued functions. To 

simplify what follows we shall restrict this description to a single-input single-output (SISO) plant where the 

function (.)g is assumed to be a function of ][kx only. Furthermore, these functions inimally assumed to b

nuous. This gives: 

]1[
ky

kx
= .])[(][

])[],[(=+  

ade equivalent to the problem 

ws that presented in van Breemen (1997).   

Input and output sequences obtained over the next n samples of future time may be denoted at the k le 

: 

(4.3.1) 

We now need to determine under what conditions this description can be m

definition described in section 2.4.1, which formed the archetype I/O representation environment for the neural 

network approximation problem. The derivation below closely follo

th samp

time by

( )
( ) .2) 

 update equation gives: 

.]1[,],1[],[][
]1[,],1[],[][

T
n

T
n

nkukukuk
nkykykyk
−++=
−++=

K

K

u
y  (4.3

Recursively iterating the state

( ) ( )
( ) ( )( ) (

( ) ( .][],[]1[],1[][

][],[]1[,][],[]1[],1[]2[
][],[][],[]1[

22

11

kknkunknk

kkkukukkukk
kkkukk

nn uxhxhx

uxhxhhxhx
uxhxhx

=−+−+=+

=+=++=+
==+

)

)

(4.3.3) 

Similarly, the sequenc can be expressed by: 

M
 

e ][kny

( ) ( )
( ) ( )( ) ( )][],[][],[]1[],1[]1[

][][][

1111

0

kkgkkgkukgky
kgkgky

==++=+
==

uxuxhx
xx

M
 (4.3.4) 

( )( ) ( )][],[][],[]1[ 1111 kkgkkgnky nnnn −−−− ==−+ uxuxh

                                                           

 Equivalent continuous time expressions can be obtained for all the work described in this chapter, however, only discre
implementations will be discus

13 te time 
sed. 

79 



 

or: 

( )][],[][ 1 kkk nnn −= uxgy  

where . Introducing an extended function we see that (4.3.5) can be expressed as: 

(4.3.5) 

( )(.),(.),(.), 110 −= nn ggg Lg

( ) ( )
][ 11 kk nn −− ⎦⎣⎦⎣ uu (4.3.6) 

u

][],[
][],[][

1
1 kk

kkk
n

nnn
−

− =⎥
⎤

⎢
⎡

=⎥
⎤

⎢
⎡

uxG
uxgy

 
][

where 1212 ℜ→ℜ nnG . As the inp t and output dimensions of (.)G are the same then the function expressed 

in (4.3.6) might be inverted to get: 

( )

: −−

( )
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡

−

−
−

−
−

− ][],[
][],[][],[

][

1

1
1

1

1 kk
kkkk

k

nn

nn
nn

n

uyGuyG
x

u

x  (4.3.7) ( )⎥−][ 11k uyGu

implying: 

( )][],[][ 1
1 kkk nn −

−= uyGx x . (4.3.8) 

The function (.)1−
xG is called the observer of the system expressed in (4.3.1).  

Consider now the Inverse Function Theorem, which states (Parker 1997): “If )(xf  is a continuously 

differentiable function of the Euclidian n-space to itself and at a point th trix with the entry  0x e ma ji xf ∂∂ in the 

sly di

neig ion fo at all points near .”  

That is, if the determinant of the Jacobian o , evaluated he point

ith row and jth column is non-singular, then there is a continuou fferentiable function 1−f defined in the 

hbourhood of )( 0xf which is an inverse funct r )(xf 0x

f (.)G ),( 1−nuxat t , is not equal to z e 

erse exist

ero then th

inv  (.)1−G s in the region around ),( 1−nux . The Jacobian matrix can be obtained by simple matrix 

different on of (4.3.6) which, together with the fact that t ure input variable sequence to th he 

kth sample s independent14 of the state vector at the kth sample, gives: 

iati he fut e plant at t

][1 kn−u i

( )

.][
][

][
][

][][
,[1

−

⎥⎦⎢⎣ ∂∂ −
n

kk n ux
ux (4.3.9) 

][][
][

][
[

][

]][],[[
][],[

],[

1

]

11

1

],[1

1

1

1

1

−

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
∂
∂

∂
∂

=

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

∂∂
∂
∂

∂
∂

=
∂
∂

−

−−

−

−

−

n

n

k
k

k
k

kk
k

kk

kk
kk

n

nn

nn

n

nn

n

n

ux

ux

I0
u
y

x
y

uu
u
y

x
y

ux
uxG

 

]k

For this matrix to be non-singular the following condition must be satisfied: 

0
][
][det

,[

≠⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

k
kn

xx
y . 

]1−nu
(4.3.10) 

                                                           
14 This is strictly true for the open loop plant but, unde

complex condition will result. This fact is not addre
r closed loop conditions, this assumption may be violated and a more 
ssed in the source reference, but has implications for the identification and 

stability of the closed loop system. 

80 



 

If condition (4.3.10) is satisfied, then using equations (4.3.7), (4.3.8) and (4.3.3) we see that the state vector at 

nd ),( 1−nuxsample )( nk + can be expressed for some local region arou by: 

( )( )][,][],[][ 1
1 kkknk nnnn uuyGhx x −

−=+ . 

pression

ription: 

])[(][
1
nkgnky x

 

Substituting this ex  into the output equation of (4.3.1) gives the following locally equivalent I/O system 

desc

( )
.])[],[(

][,][],[ 1
kkf

kkkg
nn

nnnn
uy

uuyGh x
=
= ( )( )

+=+
−

Shifting the time indexes and substituting the original sequ ces in (4.3.2) yields: 

−   

en

])[,],1[],[,],1[(][ nkukunkykyfky −−−−= KK .  

This is the same form as equation (2.4.1) with n ba n , 0== kn , and 0][ =ke . Mechanical alg raic extens

the above derivation can be made to include all these variables but are not illustrative 

eb ions of 

and are omitted. The 

condition (4.3.10) can also be readily extended for nput out O systems which we present

without derivation: 

p i , q put MIM  here 

qj
k
k

npnn

nj ≤≤≠
⎟⎟
⎟

⎠

⎞⎛

⎜⎜
⎜

⎝
∂

∂

−−−

1,0
][
][

det
],,,,,[

,

1,1,21,1 uuuxx
y

K

 (4.3.11) 

where s the future output time sequence defined in  (4.3.2) for the jth ou  and ][, knjy i 1, −niutput is the selected 

operating region for the ith future input time sequence.   

iques 

ment  

luc  th ey points of earlier chapters. Again, in the interests of simplicity, 

cases. 

4.4.1 SERIES INVERSE CONTROL 

Assume a plant can be described by a mapping , where is the input signal space and 

∈ℜ⊆ y, is the output signal space. Further assume there exists an inverse mapping of 

4.4 CONTROL LAW FORMULATION 

As stated earlier, the objective for the control law formulation in this work is only to demonstrate the techn

described in previous chapters. Consequently only two control law formulations are presented here, namely; 

Series Inverse control and the Minimum Degree Pole Place  (MDPP) design. These approaches were chosen

for their simplicity and ability to e idate e k

mainly SISO systems will be considered although many of the techniques presented can be extended to MIMO 

YUH →: pU ℜ⊆

YY q H  given by 

, where is called the reference signal space. The plant described by UYG m →: q
mY ℜ⊆ H can then be made to 

track a reference signal m mY∈y by setting UG ∈= uyu and noting t  m ),( hat:

y myuy m === )))(H . ((GH (4.4.1) 

Key v can be formed in such a way that it 

can be represented by a neural network. 

 to this approach is determining when the in erse exists and whether it 

81 



 

The condition for existence can be determined for square i.e. qp = , MIMO systems. Let the plant be 

represented by the following I/O description: 

])[,],[],[(])[,],[],[,],[(]1[

])[,],[],[(])[,],[],[,],[(]1[ ,,1,,111 11
kkkkhky T

np
T

n
T

np
T

n puupyy
KK ==+ uuyy

1,,1,,1

11

11
kukukhkkkkhky

kukukh

ppnpnnpnpp

p

puupyy
KKK

M

K

Φ==+

Φ

uuyy
 (4.4.2) 

where: 

][,],],[,],[][

]1[,],1[],[

1,1,1,,1 11

T
T

np
T

n
T

np
T

n

T
uiii

i

puupyy

i

kkkk

nkukuku

⎟
⎠
⎞⎜

⎝
⎛=Φ

+−−=

−− KK

K

uuyy
 

Following the archetype (4.4.1) the inverse control problem  now, for 

TTTT
M

( )
][

]1[,],1[],[][

,

,

ni

T
yiiini

iu

iiy

k

nkykykyk +−−= K

u

y

( )

( ) .]1[,],1[][1,
T

uiini iu
nkukuk +−−=− Ku

[k
(4.4.3) 

pi ≤≤1 is , to determine: 

ky
h

im

i

ii

=
Φ=  ( )][,],[],[],[

])[,],[],[(]1[

1

1
kykykk

kukukhky

pmm

p
Φ

Φ=+
K

K

G  ( )
][

where the desired control law is: 

( ) ( )][,],[],[][,],[1 ku K
1

kykykku
pmmp KΦ=G . (4.4.4) 

Using an extended function gives: 

( )
( )

][

][

])[,],[],[(]1[ 111

⎥⎦

⎤

⎢⎣

Φ

⎥
⎥

⎢
⎢ Φ

=⎥
⎥

⎢
⎢ +

ky

k

kukukhky

pm

m

p

M

K

M

Clearly, if the inverse of exists then the functio can be realised. Therefore, obtaining the Jacobian of 

][][
⎥
⎤

⎢
⎡ Φ

⎥
⎤

⎢
⎡ Φ kk

])[,],[],[(]1[ 1 ⎥
⎥
⎦⎢

⎢
⎣ Φ⎥

⎥
⎦⎢

⎢
⎣ + kukukhky ppp K

])[,],[],[(

][,],[],[
][,],[],[

1

1

1

Φ=

⎥
⎦

⎤
⎢
⎣

⎡
Φ
Φ

= Φ

kukuk

kukuk
kukuk

p

py

p

K

K

K

H

H
H

 
 

( )( ) .
][

][,],[],[],[ 1

1

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

=ΦΦ=
ky

kykykk
p

m
m M

KGH

⎡

 (.)H n (.)G

(.)H  about some operating point ],,,[ 1 puu KΦ , and using the Inverse Function Theorem we can test for the 

local existence of . Thus: (.)G

82 



 

],,,[1
1

]][,],[[][
puup kukuk

K
K

Φ⎥⎦⎢⎣ ∂Φ∂

 in the following condition: 

11

],,,[1

11

1

1

])[,],[],[(])[,],[],[(

]][,],[[
])[,],[],[(])[,],[],[(

]][,],[[
]][,],[],

p

pypy

uup

pypy

p

kukukkukuk

kuku
kukukkukuk

kuku
kukuk

K

KK

K

KK

K

K

Φ

⎥
⎥
⎤

⎢
⎢
⎡

Φ∂Φ∂

⎥
⎥
⎥
⎥

⎦

⎢
∂

Φ∂Φ∂
∂

Φ∂

HH
0I

HH

 

resulting

],,,[1
1 ][

[[
puup

k
KΦ ⎢

⎣ Φ∂

1

][
][
][

])[,],[],[( p

k
k
k

kukuk K

⎤

⎢
⎢
⎡ Φ∂

Φ∂
Φ∂

=
Φ∂H

=

0
]][,],[[

])[,],[],[(
det

],,,[1

1 ≠
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂

Φ∂

Φ uup

py

kuku
kukuk

K
K

KH
, 

e individual terms g

1 p

 

or expanding to show th ives: 

0][][][

][][][
2

2

2

1

2

2

11

≠∂∂∂

∂
∂
∂∂

p

p

kukuku

k
h

ku
h

k
h

L

. 

][][][
,,[21

1
∂

∂

∂

∂

∂

∂

Φ up

ppp

ku
h

ku
h

ku
h

L

MMM

sing, the series inverse con (4.4.4) m rol the system in equation

iven the definitions in (4.4. tion shown ed. We note that the 

he system in (4.4.2) and the control law in (4.4.4) can be solved using a neural network approximation.

oach can be enhanced by observing that the existence condition is dependent only on the plant 

s being invertible. If the reference signal is derived from a dynamic reference model described by 

mY mapping som  dema  signal qR ℜ⊆∈r then (4.4.1) may be modified as follows: 

)())(~()))(())(()( ryrryuy mm SGHSHGHH ====== . (4.4.6) 

he reference dynamics can be absorbed into (.)G , without vio ing the analysis above, to yield the 

g control law (henceforth referred to

],

1

1
∂∂∂

∂∂

pu

hhh
uu

K

L
(4.4.5) 

Summari trol law shown in ay be used to cont  

(4.4.2), g 3), provided the condi in (4.4.5) is satisfi

form of t   

The appr

dynamic

e nd

G

That is, t lat

followin  as the SIC law): 

RS →:

(

( )
( ) .]1[,],1[],[][

][,],[],[~][,],[1 p kuku =K

, riiini iir
nkrkrkrk +−−= Kr

The inverse controller essentially “sees” the forward dynamics of the reference system in series with the inverse 

dynamics of the plant. The reference signal does not appear in (4.4.7) because

,,1 1

T
npn prr

kkk ⎟
⎠
⎞⎜

⎝
⎛Φ K rrG

 (4.4.7) 

 ideall tracks making 

the minimum degree pole placement approach covered here closely follows their exposition. Only the basic 

y ][ky ][kmy

it unnecessary to use both variables. 

4.4.2 MINIMUM DEGREE POLE PLACEMENT DESIGN  

The pole placement design procedure has been covered extensively in Åström and Wittenmark (1995, 1997) and 

83 



 

technique is shown, however, it may be considered the basis for many other linear methods such as LQG, 

moving average and minimum variance controllers. The method presented is simple, illustrative and if properly 

bn

 

, 

applied, can be practically useful. 

Assume that a SISO plant can be described by the I/O representation (see section 4.3 for conditions) of equation 

(2.4.1). Additionally, assume that at any instant in time the function (.)f of equation (2.4.1) can be represented 

by two polynomials in the forward shift operator15 16 q . That is: 

( )
( ).)(

)(
][)(][)(

][]1[][][]1[][

1

1
1

101

bb
a

aa

ba

nn
n

nn

nbbnaa

bqbqbqB
aqaqqA

kuqBkyqA
kubnkubnkubkyankyanky

+++=

+++=
=

++−+++=++−+++

−

−

K

K

LL

(4.4.8) 
10

In a time invariant linear system the coefficients of )(qA and )(qB are constant but in this work they are 

permitted to change with time. However, for the purposes of the discussion in this section, we shall assume that 

they are constant and available. Furthermore, it is assumed that )(qA and )(qB do not have any common factors 

(i.e. they are relatively prime) and that the coefficient of the highest power term in )(qA is always one, that is

)(qA is monic. Finally, we require that the degree of )(qA  (designated Adeg ) is greater than the degree 

of )(qB , i.e. ba nn > . The difference in degree, BAnk degdeg −= , is called the pole excess and represen

integer part of the ratio of plant time delay to sampling period.  

Given the plant description of the previous paragraph it is hypothesized 

ts the 

that such a plant may be controlled by 

the general two degree of freedom linear control law described by: 

][)(][)(][)( kyqSkrqTkuqR −=  (4.4.9) 

where SR, andT are all forward shift operator polynomials. This control law will be referred to as the RST

in the sequel. Rearranging (4.4.9) and removing the explicit notation for the q operator the two degrees of 

freedom, RS /− and RT / representing negative feedback and positive feedforward transfer operators 

 law 

respectively, are easily seen: 

][][][ ky
R
Skr

R
Tku −= . (4.4.10) 

Combining equations (4.4.8) and (4.4.9) results in the following closed loop expressions: 

                                                           
15 The forward shift operator q has the property and should not be confused with the output signal dimension 

of a MIMO plant. The letter q is reused here to conform monly used notation in the literature. As this section deals 
only with SISO plants the definition of q is clear from the context. 

16 Although q is an operator and the variable z used in the z-Transform is a complex variable, they may be interchanged if care is 
taken to consider the effects of initial conditions on the equations involved. This fact may be used sporadically in the 
remainder of this di

 ][][ nkfkfq n +=
 to the com

ssertation. 

84 



 

.][

][][ krBTky =

][
BSAR

ATku
+

= kr

BSAR +
 (4.4.11) 

The closed loop characteristic polynomial is thus represented by the Diophantine equation: 

cABSAR =+ . (4.4.12) 

Given A as a design variable, and A and B as system data satisfying thc e plant description above, then equation 

um degree 

solution. Such a solution can be obtained using Euclid’s algorithm or by forming the Sylvester matrix and 

 and 

(4.4.12) will always provide multiple solutions for polynomials R and S. The existence of multiple solutions (as 

opposed to a single solution) can be seen by inspection if one notes that given an arbitrary polynomial Q  and a 

solution 0R and 0S then a new solution to (4.4.12) may be constructed as follows: 

.0

0

QASS
QBRR

−=
+=  (4.4.13) 

Selecting the solution that results in the lowest degree for polynomials R and S is called the minim

solving the resulting set of linear equations. (See §11.3 of Åström and Wittenmark (1995) or §5.3 of Åström

Wittenmark (1997).) 

To solve for the polynomial T we introduce a reference signal ][kym  which is related to the demand signal 

][kr by the following dynamic reference model: 

][)(][)( krqBkyqA mmm = . (4.4.14) 

If ][ky tracks ][kym , then substituting (4.4.14) into (4.4.11) gives the following condition: 

m

mBBTBT
==

c AABSAR +
 (4.4.15) 

which may be re-arranged to give: 

m

mc

BA
BAT = . (4.4.16) 

The condition (4.4.16) implies a number of factor cancellations involving BT and . The polynomial B may be 

factored into two components: 

cA

−+= BBB . (4.4.17) 

The first of these components, , is chosen to be monic with well damped stable zeros which are cancelled by 

the controller. The second, , represents the lightly damped and / or unstable zeros which cannot be cancelled 

by the controller and must erefore be a factor of , yielding: 

(4.4.18) 

Condition (4.4.15) implies that must be a factor of  and as is cancelled it also must be a factor. 

Therefore may be broken down as follows: 

+B
−B

 th mB

mm BBB ′= − . 

 mA cA +B

cA

85 



 

+= BAAA moc . (4.4.19) 

Substituting (4.4.17) through (4.4.19) into (4.4.16) gives 

moBAT ′= . (4.4.20) 

Finally, factoring +′= BRR and substituting (4.4.17) and (4.4.19) into (4.4.12) reduces the Diophantine equation 

to: 

mo AASBRA =+′ − . (4.4.21) 
It is instructive to combine (4.4.17) and (4.4.18) to form a partially factored expression for (4.4.19): 

−

−+

=
BB

BBBAAA
m

mmo
c .  

A solution is thus obtained if the design variable cA is provided in the form of a factoring of B and three 

polynomials mo AA , and mB . Furthermore, substituting (4.4.21) into (4.4.20) reveals: 

m

m

m

m

m

mmo

RA
SB

BA
AB

RA
BSBRA

RR
=

BAT
+=

′+′
=

′ )(   
−

which may be substituted into (4.4.10) and combined with (4.4.14) to give: 

( ) .][][][

][][][][][][

][][][

kyky
R
Skr

BA
AB

ky
R
Sky

R
Skr

BA
ABky

R
Skr

RA
SBkr

BA
AB

ky
R
Skr

RA
SB

BA
ABku

m
m

m

m
m

m

m

m

m

m

m

m

m

m

−+=

−+=−+=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

 (4.4.22) 

The first term of this equation can be interpreted as a feedforward controller wh ch attempts to cai ncel the plant 

dynamics and replace it with the reference model dynamics. The second term acts as a negative feedback 

controller which endeavours to make the plant output follow the reference model output. Equation (4.4.22) may 

n 

Given plant dat

not be realised as shown due to the inverse plant dynamics BA / . However, it highlights the partial cancellatio

through the appropriate choice of mA and mB . 

a A and ogether with design specification data and , the design algorit  be 

summarized as follows: 

1. Factor using equation (4.4.17) such that

B t  mo AA , mB hm may

B  −+= BBB where s monic. 

2. Solve equation (4.4.21) for the minimum degree solution, determinin

+B i

g R′ and using the factor and 

the supplied specification for and

3. Determine from (4.4.18) using the supplied specification for

)

S −B

oA mA . 

mB′ mB . 

4. Obtain +′= BRR , and from (4.4.20 , moBAT ′=  using the previously determined data. 

5. Finally, calculate the control signa  using equation (4.4.10). l ][ku

86 



 

The design algorithm above provides no indication, othe  than equation (4.4.18), of how to choose the desig

mials. Let us therefore consider how the choices of mo AA , and mB  may be constrained. 

4.4.2.1 CONSTRAINTS ON THE DESIGN SPECIFICATION POLYNOMIALS 

In order for the controller (4.4.9) to be causal we see that: 

.degdeg
degdeg

RT
RS

≤

r n 

polyno

≤  (4.4.23) 

Inspection of (4.4.9) reveals that, if the controller is not to introduce any delay, the equality condition in

must be satisfied. That is: 

 (4.4.23) 

TSR degdegdeg == . (4.4.24) 

Furthermore, dividing both sides of (4.4.1 A and noting that BA degdeg > yields: 

AAR c degdegg

2) by 

de −= . (4.4.25) 

Combi .4.24) together with equation (4.4.13) implies that, for the minimum degree

solution, S degdeg

ning the conditions in (4  

degdeg < ABR . That is, there is always a solution where: = ≤

1degdeg −≤ AS . (4.4.26) 

Substituting (4.4.26) and (4.4.25) into (4.4.24) gives 1deg2deg −≥ AAc . Therefore, choosing the r with controlle

the lowest possible order yields: 

1deg2deg −= AAc . (4.4.27) 

Taking the polynomial degrees on both sides of equ 4.4.16) yields: 

mmc ABAT degdegdegdegdeg

ation (

B −−+= . (4.4.28) 

Now substituting (4.4.28) and (4.4.25) into the second condition in (4.4.23) and rearranging gives: 

kmm nBABA =−≥− degdegdegdeg . (4.4.29) 

This logically implies that the time delay associated with the reference model must be greater than or equal to 

the time delay of the process being controlled. Furthermore, a controller which has minimum degree requires 

that the equality condition in (4.4.29) must be satisfied. That is: 

kmm nBABA =−=− degdegdegdeg .  

This may be combined with the knowledge of the attempted cancellation shown in equation (4.4.22) to conclu

that mA and mB should have the same degree as

de 

A and B respectively giving the following conditions: 

degdeg AA
m
m

.degdeg BB =
=

Now taking the degree of the factors in equation (4.4.19) gives: 

 

Substituting (4.4.27) and into the equation above, and using the first condition in (4.4.30), yields the following 

tion for

(4.4.31) 

 (4.4.30) 

+−−= BAAA mco degdegdegdeg . 

oA : condi

1degdegdeg −−= +BAAo . 

87 



 

Equations (4.4.30) and (4.4.31) together with (4.4.18) summarize the constraints that must be satisfied by the 

design specification polynomials to produces a minimum degree controller. 

4.4.2.2 FACTORIZATION OF THE PROCESS ZERO POLYNOMIAL 

We now turn our attention to the factorization of n equations (4.4.17) and (4.4.18). There are two special 

 

stable) it is possible to cancel them by the choosin and in step one of the design 

re 

e  gain is unity. This implies that 

and (4.4.18) gives and fro qAAT kn
mo= . The 

Diophantine equation (4.4.21) now become

B i

cases associated with this factorization: 

1. All process zeros are cancelled - If all the plant zeros are well damped and inside the unit circle (i.e.
+ −

algorithm. Condition (4.4.30) requires that the pole excess of the reference model and the process a

the same. Furthermore, it is g nerally required that the static

g 0/ bBB = 0bB =

kn
mm qAB )1(= 0/)1( bqAB kn

mm =′  m (4.4.20) 0b/)1(

s mo AASbRA =+′ 0  which is easily solved by 

determinin and observing thatg AAA m /0 R′ is the quotient and  is the remainder of the solution. 

Finally, condition (4.4.31) implie should be chosen such that

Sb0

s oA 11degdegdeg −=−−= ko nBAA . 

s are cancelled – Following the same sequence of steps presented in case one above we 

see that if none of the plant zeros are cancelled then and a static gain requirement with 

condition (4.4.30) implie , giving

2. No process zero

BBB == −+ ,1

s )1(/)1( BBAB mm = )1(/)1(0 BAAT m= . Lastly the Diophantine 

equation (4.4.21) is simply moc AAABSAR ==+ where now 1degdeg −= AAo . By solving the 

placement problem using state feedback it can be shown (§4.5, Åström and Wittenmark, 1997) that,

no process zeros are cancelled, the closed loop characterist

pole 

 if 

i y be factored into two 

er and the stat . These polynomials 

y. 

e. 

s in mind 

4.5 ADAPTATION MECHANISMS 

e mechanism for adjusting the parameters.  

 

be adjusted?” To answer this consider the previous section where two basic control law formulations were given 

c polynomial cA ma

polynomials corresponding to the state feedback controll e observer

correspond to mA and oA above and are called the controller and observer polynomials respectivel

Arbitrary roots may be assigned to mA if the system is reachable and to oA if the system is observabl

This implies that one should select the roots (eigenvalues) of oA with the same consideration

as when selecting observer poles.  

An adaptive controller may (amongst many alternatives) be defined as (Åström and Wittenmark, 1995) “…a 

controller with adjustable parameters and a mechanism for adjusting the parameters.” This section deals with the 

latter part of this definition i.e. th

4.5.1 THE ADJUSTED PARAMETERS 

The first question to be answered is: “Given the presented control law formulations, what are the parameters to

88 



 

– the series inverse controller, or SIC law, expressed by equation (4.4.4) or (4.4.7) and the RST law shown

equation (4.4.10).  

 in 

In the SIC law the parameters are implicit in the definition of the ( ).~G function. This function is non-li  

me e repre

g tivation rule evaluation of the inverse controller 

network is therefore equivalent to evaluating the control law. e note that if the process dynamics ar

nt then the inverse mapping that the control law is required to represent will, given the correct conditions, 

also converge to a time invariant solution. That is, if the plant dynamics are time invariant, the SIC law 

controller parame apping 

of

ficients of the 

lynomials. T  

 be 

PP algorithm is analogous to th

cal 

ory 

the control law parameters are directly manipulated by the adaptation 

mechanism, whereas in the RST law the control law parameters are indirectly adjusted by first evaluating the 

ever, the MDPP algorithm uses the adaptation mechanism’s estimation of process 

near and

therefore, in this work, assu d to b sented by some form of neural network. The adjusted parameters are 

thus the network wei hts defining the network mapping. The ac

 W e time 

invaria

ters will be constant even though the plant may be non-linear because the functional m

 the control law is itself non-linear. 

For the RST law the controller parameters that define the law’s functional mapping are the coef R, 

S and T po he MDPP design algorithm showed how these values could be calculated given the A and

B process polynomials and a design specification. The coefficients of the process polynomials may therefore

considered the adapted parameters and the algebraic calculation of the MD e 

inverse controller network activation rule calculation in the SIC approach. A key difference is that the functional 

mapping of the RST law is linear and, for a non-linear plant, the process polynomials are valid only in a lo

region about the current operating condition. This implies that the MDPP algorithm must be continually 

evaluated as the estimated process polynomials change. This change corresponds to the plants state traject

moving through the state space, resulting in new operating conditions.  

We see that in the SIC approach 

MDPP algorithm. How

parameters. The former approach is typically referred to as direct adaptation or implicit self tuning, while the 

latter is called indirect adaptation or explicit self tuning. Alternatively, one may view indirect adaptation 

 

Plant 

Reference 
Model 

(Specification) 

Adaption 
Mechanism 

Control law 
(SIC NN) 

u y  
r  

Control law
Parameters 
θ  

ym

 

Figure 4.5.1. Block diagram of a Model Reference Adaptive System. 

89 



 

mechanisms as making explicit use of the estimated process parameters whereas the direct adaptation method

does not. 

4.5.2 INCORPORATING THE DESIGN SPECIFICATION 

Implicit in the use of adaptive control is the desire to achieve some controller objective or performance. This is 

stated in the form of a control design specification. Therefore, the second key question to be asked is: “How

the design specification incorporated into the adaptation mechanism?”  

In the SIC law an independent dynamic reference model was used to generate a reference signal which the

must track. This reference model therefore represents the desired performance and provides a convenie

by which a sp

 

 is 

 plant 

nt means 

ecification may be injected into the adaptation mechanism. The approach results in what is called a 

ros.  

 an 

 do 

ch 

Model Reference Adaptive System (MRAS). A block diagram depicting this approach is shown in Figure 4.5.1. 

Note, as the name implies, the SIC law is represented by a neural network placed in series with the plant under 

control. The dotted line associated with the control and demand signal paths into the adaptation mechanism 

imply that the method used to actually change the parameters may or may not use these signals.  

During the design of the RST law, using the MDPP algorithm, the design specification was included in the 

algorithm by the selection of mmo BAA ,, and the factoring of B , the polynomial representing the process ze

The adaptation mechanism’s function is to provide the A and B polynomials. Generally this approach is called

indirect Self Tuning Regulator (STR). Another key configuration of the STR method is obtained if the control 

law design equations are incorporated into the adaptation mechanism, which now provides the R, S and T 

control law polynomials directly. The resulting system is referred to as a direct Self Tuning Regulator, but we

not address this further. When using neural networks to estimate non-linear plant parameters, this approa

represents a specific non-linear adaptive control implementation, known as instantaneous linearization 

Self Tuning Regulator 

Process Parameters BA,  or θ  

 

Plant 

Controller 
Design 

(MDPP) 

Adaption 
Mechanism 
(Estimation) 

u y  
r  

Specification 

Parameters 
R, S, T 

mmo BAA ,,  

Control law 

Control law 
(RST Law) 

 

Figure 4.5.2. Block diagram of an indirect Self Tuning Regulator. 

90 



 

(Sørensen, 1994).  

A block diagram of the indirect STR approach appears in Figure 4.5.2. An important observation is that the 

controller design treats the process parameters as if they are true, an assumption which is referred to as

certainty equivalence principle. Unfortunately this assumption only holds if the estimation process is persi

excited – a requirement that may be diffic

 the 

stently 

ult to meet in a practical implementation. 

nother shortcoming of the method is that if the linearized process parameters change rapidly, i.e. within the 

same time scale as the feedback signals, the resulting controller will not provide “optimal” control action. This 

occurs because the controller parameters are evaluated using a linearized plant model which, at the next sample 

update, is no longer a good approximation of the underlying process. This limits the applicability of the 

instantaneous linearization approach. The problem may be addressed by using generalised model predictive 

control where optimal future control actions are calculated at each sample time by minimising a cost function 

which weights the control actions and the predicted future outputs over some known time horizon. 

4.5.3 CHANGING THE PARAMETERS 

The final question to be resolved is: “How does the adaptation mechanism adjust the parameters?” Answering 

this question is really the essence of adaptive control systems design and analysis. Clearly, the overall system 

structure plays a key role in the mechanisation of the adaptation law. It is interesting to note however, that the 

MRAS approach described above is equivalent to a direct STR based on a MDPP design where all process zeros 

are cancelled. The reader is referred to §5.9 of Åström and Wittenmark (1995) for more details. Due to the 

adaptation mechanisms structural reliance, only the approaches used in this work will be discussed. 

Mathematically the adaptation mechanism must evolve the adapted parameters in time, that is: 

(4.5.1) 

The structure of hus defines the adaptation law. If we define a quadratic loss function that provides a cost 

associated with the error e between the desired output trajectory and the actual output trajectory, then driving the 

parameter vector in such a way as to minimize this cost would provide the required result. Therefore let: 

A

θ

)(tΩ=θ& . 

Ω t

22

2
1)(

2
1)( eyyJ m =−=θ  (4.5.2) 

then using a gradient descent approach to minimize (4.5.2) results in: 

θ
θ

θ

θ
θθ

∂
∂

∂
∂

−=

∂
∂

−=

∂
∂

−=Ω=

)(

)()(

u
u
ye

ee

Jt

γ

γ

γ&

 (4.5.3) 

 or equivalently for a discrete time system: 

]1[

],[
],[

][][]1[][
−=∂

∂
∂
∂′−−=

k

ku
ku
kykekk

θθθ
θ

θ
θθ γ . (4.5.4) 

91 



 

Equation (4.5.3) is known as the MIT rule. The variableγ is called the adaptation gain, while the derivative 

/e is known as the sensitivity derivative which, if the parameter changes are slow, may be evaluated 

assuming is constant. Clearly, if the loss function (4.5.2) is changed, different adaptation laws will result. 

There are also enhancements to the basic law such as normalization, which removes the dependency of the 

gradient step size on the command signal. A slightly modified form of the law may also be derived using a 

Lyapunov function thus providing conditions under which the adaptation law is guaranteed to be stable. Åström 

and Wittenmark (1995) address all these details. However, in this work, only the basic idea behind the 

formulation above is followed. 

When using a discrete time MRAS approach, t s provided in the form of a reference 

model which generates a reference signal ference between and the 

closed loop plant output signal , a function of the controller parameters, to be minimized. Therefore, 

lettin

θ∂∂

θ

he design specification i

] The objective is for the dif[kmy . ][kmy

),( θy k

g ),(][),( θyyθ m kkk −=ε , the adapted parameters should be adjusted in such a way that some loss 

(objective) function: 

( )∑
=

 section 3.3.1 and following the same logic presented 

 

n 

re be 

=
t

k

ktJ
1

),(),( θθ εl  (4.5.5) 

is minimized. This is identical to the problem addressed in

there results in an equivalent optimisation problem formulation. The key difference is that the signal associated

with the observed (reference) system output is now ][kmy . Also the network predicted system output, 

previously denoted by ][ˆ ky , is now the control signal ],[ θu k , and is replaced by ),( θy k , the series combinatio

of the SIC law implementation and the plant under control. The adaptation mechanism problem may therefo

stated as: 

( ) ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

= ∑
⎛

−Λ−
=

−
m

T
m kkkkk 1 ),(][),(][)1 θyyθyy . (4.5.6) 

Hav  e

appr ch . 

There is however one caveat. All the algorithms discussed in section 3.3 go about solving equation (3.3.5) or 

t

k

tt
1

* ,(
2

minarg)( βθ
θ

ing stablished this result the more sophisticated methods (as opposed to the simple gradient descent 

oa  used in the MIT rule shown above) derived to solve the network learning rule may be brought to bear

equivalently (4.5.6) by differentiating the loss function (4.5.5) with respect to the parameter vectorθ . This 

implies that in the derivation of the methods in section 3.3, what was previously the differentiation θy ∂∂ /][ˆ k  is 

now replaced by θθy ∂∂ /),(k .  We saw in section 3.3.3 that for all the network types θy ∂∂ /][ˆ k  is simply the 

regressor variable ][kTϕ . Therefore, using the chain rule, the differentiation of θθy ∂∂ /),(k gives: 

θ
θu

θu
θy

θ
θy

∂
∂

∂
∂

=
∂

∂ ],[
],[
),(),( k

k
kk ,  

but 

][][ˆ],[ kkk Tϕ=
∂
∂

=
∂

∂
θ

y
θ
θu .  

92 



 

 Summarising, if we replace: 

T
newmold

newold
kk

kk
←
←

][][
),(][ˆ

yy
θyy

 
(4.5.7) 

new

new
old k

kkkk ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=←
],[
),(][][~][
θu
θyϕϕϕ

17 d algorithms can be used. Unfortunately the final substitution in (4.5.7) is 

problematic for multi-output systems where an RBF or LMN network is used to form the SIC law. The new 

old

then  the previously develope

][~ kϕ becomes a matrix as opposed to a vector meaning that the efficiencies described in section 3.3.9.2 cannot 

be fully exploited. If 1−Λ y is an identity matrix, a more efficient implementation can be achieved by directl

differentiating (3.3.4) with respect toθ  and expressing the result as: 

( )∑
=

−=
∂

∂ t

k
oldoldold kkkkttJ

1

][ˆ][][),(),( yy
θ
θ ϕβ .  

Now performing the substitutions in (4.5.7) gives: 

( )∑
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂

∂ t

k
newnewm

T

new

new
old kk

k
kkkttJ

1

),(][
],[
),(][),(),( θyy
θu
θy

θ
θ ϕβ .  

Therefore, substituting: 

( ) ( )newnewm

T

new

new
oldold kk

k
kkk ),(][

],[
),(][ˆ][ θyy
θu
θyyy −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

←−  (4.5.8) 

will result in the same update as performing the substitutions in (4.5.7). Now only the parameter update 

equations need be modified in the previously developed algorithms. The form of these equations is then the 

same as the discrete time version of the MIT rule shown in (4.5.4). 

4.5.4 USING THE NEURAL NETWORK JACOBIAN INFORMATION 

Until now, the reason for using neural network Jacobian information in neurocontrol has not been clearly 

evident. The focus has been mainly on where networks should be placed in the control system and how the 

training algorithms are affected. So why do we need to calculate the network Jacobian information? 

Examination of equation (4.5.8) reveals that, for SIC law implementations some estimate of the plant input 

sensitivity , is required. This can be approached in two ways. The first is to assume that the 

me predefined known function, for exam

, ],[/),( θuθy kk ∂∂

plant input sensitivity is estim 1],[/),( =∂∂ θuθy kk  ated by so ple 

resulting our 

using 

ucting a 

neural ne o ulator system may be accomplished in precisely the 

                 

 in what is called direct sensitivity adaptation. The second approach is to model the plant behavi

using an ANN. If this is done online, the method will be referred to in the sequel as series inverse control 

indirect sensitivity adaptation.  

Recovering the plant input sensitivity information from a neural network model of a plant and constr

tw rk adaptation mechanism for a self tuning reg

                                          
17 The “ol s of section 3.3 while the “new” subscript implies the symbols 

used in s 
d” subscript implies the symbols used in the algorithm
 thi section. 

93 



 

same way. Recall now the plant description expressed in equation (4.4.8). Shifting the time origin in this 

equation allows us to write: 

][][][]2[]1[][ 021 bknkan nnkubnkubnkyakyakyaky
ba

−−++−+−−−−−−−= LL  (4.5.9) 

where the coefficients
anaa L1 and

bnbb L0 are the time varying coefficients of the forward shift operator 

polynomials A and B . Stating (4.5.9) in matrix notation gives: 

θuθ k ],[),(][ θy kky ==  5.10) 

where and Clearly, 

containing the (sign corrected) polynomial coefficients.  

But, (4.5.10) is identically the FNN problem described in equation (2.4.4) with network output

and input , where plant and identification network inputs are now the same variable. Accordingly, 

an ANN  describes the plant represents equation (4.5.9) and calculating the Jacobian of said 

network at any e is equivalent to differentiating (4.5.9). That is

(4.

[ ]Tbkkk nnkunkunkuk ][]1[][],[ −−−−−= Lθu ],,,,,,[ 1021 ba nn bbbaaa LL −−−=θ . 

],[/),(  is equivalent to differentiating (4.5.10) at any point in time and results in the vector θuθy kk ∂∂

θ

),(][ˆ θyy kk =  

],[][ θux kk =

which correctly

 point in tim ],[/),(][/][ˆ θuθyxy kkkk ∂∂=∂∂ . 

 the required parameters for the STR

information for indirect 

twork Jacobian algorithms these 

Therefore, using the network Jacobian algorithms described in section 3.4,  

control law synthesis algorithm (in this case MDPP) or the plant input sensitivity 

sensitivity adaptation using the SIC law, can be calculated. Without the ne

control techniques could not be used. the actual plant input or state 

variables, the vector designated by symbols  and will be referred to as the information vector, 

designated by the symbol

4.6 CONCLUSIONS 

This chapter introduced the field of neurocontrol. A five step design methodology was presented and the first 

three steps, namely plant description, control law formulation and adaptation mechanisms where elaborated 

upon. The omitted steps, stability and parameter convergence, were considered beyond the scope of this work, 

however, we reiterate that these steps are crucial to the successful implementation of real-word controllers.  

The section on plant description derived the conditions necessary to express a continuously differentiable 

discrete time non-linear state space plant description in an I/O form. This is essentially the inverse of the 

observer problem d ontrol texts. (See for example §4.4 of mark, 1997.)  

The derivation used the inverse function theorem to show that an I/O description amenable to mapping by a 

general neural network form The 

 

d the conditions for I/O plant description the next section addressed the two different control 

law formulations used in the simulations presented in the next chapter; Series Inverse Control (SIC) and 

Minimum Degree Pole Placement Design (MDPP).   

 In the sequel, to avoid confusion with 

][kx ],[ θu k

][kψ . 

iscussed in many c  Åström and Witten

ulation was possible for some local region about a chosen operating point. 

required condition was that the determinant of the matrix formed by the differential of the output with respect to

the plant states, evaluated at the selected operating point, was non zero. 

Having establishe

94 



 

The first main result indicated that, for a MIMO system with the same number of outputs as inputs, the SIC 

paradigm could be used for some local region about an operating point if the determinant of the Jacobian plant 

mapping evaluated at the operating point was non zero. It was also shown how reference model dynamics could 

be included in this control law formulation. It is important to recognize however, that the existence of these 

results makes no statement about the suitability of the law for practical implementation. In particular, control of 

non-minimum phase plants would require potentially unstable cancellation of the plant zeros by the series 

inverse control law dynamics. Furthermore, system disturbances of the actual plant output are only indirectly 

accounted for through the dynamic relationship between the demand and desired plant output, potentially 

making disturbance rejection problem  directly addressed in this 

dissertation. 

Next the MDPP design algorithm was derived using shift operator polynomial techniques. It was shown that this 

approach is well suited to the I/O representation used in the neural network formulation. The algorithm is purely 

algebraic and can be implemented with minimal computational effort by solving the Diophantine equation. The 

resulting controller is a two degree of freedom controller which may, or may not, be configured to cancel the 

process zeros depending on the stability implications resulting from such a cancellation. Although not explicitly 

discussed, the issue of disturbances can also be addressed by using stochastic methods to derive the RST 

polynomials. One such method which was implemented in the software blockset was the minimum variance 

algorithm discussed in §4.2 of Åström and Wittenmark (1995). Regrettably, the polynomial formulations shown 

are valid only for SISO plants. Extension to MIMO systems is possible by treating the time delayed inputs and 

outputs as a state vector. State space system matrices can then be formed in an observer canonical form and 

MIMO design techniques can be brought to bear in the formulation of a con tely, this 

formulatio

inversions, and potential numerical problems or poorly conditioned systems. 

In the lastly major section the adaptation mechanisms used for dynamically updating the control laws were 

y.  

Secondly it was shown how the related, but conceptually distinct, classes of MRAS and STR systems resulted 

when using differing methods to incorporate the design specification into the adaptation mechanism. he 

d the id ear plants 

using neural networks was introduced.  

Finally a mathematical formulation of the adaptation mechanism problem was given. It was shown that, with the 

rithms lem 

 the plant described by (4.5.9) could be used to acquire the parameters 

e 

t 

atic. These and other problems are not

trol law. Unfortuna

n of the system state can be inefficient leading to growing matrix dimensions, online matrix 

described. This section answered three key questions. Firstly, the parameters to be adjusted were defined for 

each of the control law formulations. The differing control laws and their associated parameters lead to the 

important concepts of direct and indirect adaptation, also known as implicit and explicit self tuning respectivel

T

certainty equivalence principle was highlighted an ea of instantaneous linearization of nonlin

appropriate substitutions, the algo of section 3.3 could be used to solve the adaptation mechanism prob

for all of the control law formulations presented. A key observation of this section was that the Jacobian of a 

FNN which had correctly identified

required by both SIC indirect sensitivity adaptation and instantaneous linearization using a STR approach. Th

correct convergence to the plant parameters of equation (4.5.9) is of paramount importance. If this is no

95 



 

achieved the resulting control law is invalid, or at best suboptimal. Therefore, ensuring that the correct 

parameters are identified is imperative for the successful application of the technique. Another drawback to the 

approach is that knowledge about the order and tim e plant is assumed when 

formulating an STR design specificati ing to identify the plant input 

sensitivity for use in an MRAS system.  

 

e delay associated with th

on. A similar problem exists when try

96 



 

 

 

CHAPTER 5 

SIMULATIONS 

5.1 INTRODUCTION 

In this chapter, we will present a number of simulations of various systems to illustrate the concepts and issues 

described in previous chapters. All of the simulations were generated in Matlab/Simulink using a class library 

and block set that was specially created for this purpose.  

The use of such 'high level' simulation programs is sometimes criticised as being slow and sub-optimal when 

compared to customised programs written using compiler based languages such as C or C++. This is frequently 

a valid cri s are 

cating memory for all frequently used variables; 

ry requirements are usually larger 

for 'high level' programs. This, however, is generally not a problem, or one that is easily overcome, except when 

ticism, however, custom programs of the complexity required to simulate neurocontrol system

extremely time consuming to create. Even with a carefully executed systems software design approach the 

resulting programs are often not transportable or reusable in other continuing research efforts. For Matlab m-

code files and Simulink S-function, experience has shown that provided: 

• the code is highly vectorized; 

• all function calls made within m-code or S-function files are to low level internal Matlab functions; 

• careful attention is paid to pre-allo

then the speed of the resulting program is comparable to compiled code. Memo

the code is to be used in an embedded system where cost and/or space constraints are large factors in the 

engineering design. The cost/space constraint may also be considerably reduced by the implementation of the 

networks in an "on-line" fashion as opposed to the batch mode processing most frequently used. 

 In spite of these observations, it is important to note that implementing neural networks on a serial processing 

system is computationally intense due to the parallel nature of the networks. For this reason, considerable 

computing power is required no matter what type of programming language is used. 

97 



 

Due to the nature of the algorithms developed in the previous chapter it is possible to satisfy all of the 

requirements listed above, thus allowing the development of highly efficient m-code S-function files. The result 

is a set of tools that are easy to use, highly flexible, and transportable between different computing systems. 

5.

5.2.1 SYSTEM  

Experiment 1 is an exact recreation of a controller presented in Van Breeman (1997) with one major difference; 

the neural network controller is a local model network as opposed to a RBF network. The experiment explores 

the control of a first order non-linear continuous time SISO system using various inverse neural network 

control eration is given by: 

(5.2.2) 

 

ding to equations (5.2.1) and (5.2.2) 

arly, a controller is required to achieve 

model following. Let us assume that we would like to achieve the following tracking requirements: 

• Relative error tolerance of less than 1%. 

2 INVERSE NEURAL CONTROL 

DESCRIPTION

ler configurations. The system under consid

.
)sin(4.0 3

xy
uuxx

=
++−=&  (5.2.1) 

The desired response of the closed loop system is described by the linear first order reference model equation: 

.
6.02

mm
mm

xy
rxx

=
+−=&  

Depicted in Figure 5.2.1 is the Simulink model (ctlexp1a) correspon

together with the open loop response curves to a square wave input. Cle

• Absolute differential error of less than 5%. 

• Absolute error tolerance of less than 1%. 

ym ,y,r

0 .6

s+2

Reference M odel

x'=-0.4sin(x)+u+u^3

y=x

Plant

M ux

Input

Signal

0 5 10 15 20 25 30 35 40 45 50

r(t)r(t )

y (t)

y m (t)

-4

-3

-2

-1

0

1

2

3

Time (Sec)

O
u

tp

ym(t)
y(t)
r(t)

u
t

 

(a) Simulink Model (b) Open Loop Response 

Figure 5.2.1. Non-Linear First Order Plant - Open Loop System Model and its Response. 

98 



 

5.2.2 LINEAR STATE FEEDBACK CONTROL 

In order to establish a baseline for controller results we begin by applying a linear state feedback controller to 

lem. If la hen 

uirements ell 

the prob the p nt were unknown, it would obviously not be possible to perform this step. However, w

plant equations are known an attempt should always be made at meeting the req with simpler and w

understood linear control design methods.  

The design is performed about the operating point )0,0(),( =ux  using a pole placement feedback law: 

.6.06.1
4.0)31()cos(4.0 2 uxuuxxx δδδδδ +−=++−=&  

rxu δδδ +−=∴  

The resulting model (ctlexp1b) and the closed loop system response are shown in Figure 5.2.2 below. 

In plot (b) we see that, for small perturbations from the operating point, the linear controller performs the task 

well but, as expected, plot (c) shows the tracking error increases substantially when the system is perturbed by 

larger amounts.  

ym,y,r

0.6

s+2

Reference Model

x'=-0.4sin(x)+u+u^3
y=x

Plant

Mux
Input
Signal

1/3

1.6

0.6
r(t)

ym(t)
y(t)
r(t)/3

 

(a) State Feedback Controller System Model 

0 5 10 15 20 25 30 35 40 45 50
-0.2

-0.15

-0.1

0 5 10 15 20 25 30 35 40 45 50

-1

-0.8

-0.6

-0.4
-0.05

0

0.05

0.1

0.15

0.2

Time (Sec)

O
u

tp
u

t

 Error Statistics (%FS):
 Mean: 0.77772
 Variance: 1.7005
 Maximum: 4.7755

ym(t)
y(t)
r(t)/3

-0.2

0

0.2

0.4

0.6

0.8

1

Time (Sec)

O
u

tp
u

t

 

 Error Statistics (%FS):
 Mean: 10.9275
 Variance: 214.482
 Maximum: 46.5741

ym(t)
y(t)
r(t)/3

 

(b) Response at r=0.5 (c) Response at r=3.0 

Figure 5.2.2. State Feedback System Model and its Closed Loop Responses. 

99 



 

ym,y

5.2.3 SERIES INVERSE CONTROL USING DIRECT ADAPTATION 

An attempt is made to rectify the tracking error displayed in section 5.2.2 by implementing a series inverse local 

model neural network controller using direct adaptation. First, it must be verified that the inverse function exists 

about the operating point. Under closed loop control, the plant output must equal the reference model output, 

that is, using the notation of section 4.4.1, ),(),( rxSuxH m= , therefore: 

 

ing condition (4.3.10): 

)),(,(),(~ 1 rxSxHurxG m
−== . 

The existence of the inverse of the plant mapping ),( uxH can be verified us

031),( 2⎤⎡∂ uxHdet
),(

≠+=⎥⎦⎢⎣ ∂
u

u ux

.  

As t re is smooth and the inverse of  exists, and is smooth, for all 

valu o ler solution exists and that such solution 

To train a controller the Simulink model (ctlexp1d) shown in Figure 5.2.3 was run for a 2000-second period. 

The input was a uniformly distributed random input sequence between +3.5 and -3.5, which had a 3% 

he ference model mapping ,( rxS m ) ),( uxH

es f u over the region of interest, we know that an inverse control

may be approximated by a LMN.  

u

r

0.6

s+2

Reference M lode

Signal
Generator

Out

Random
Sequence

x'=- in(x)+u+u^3
y=x

0.4s

Plant

Mux

dEc/dU
R
Ym
Y

U

Adapt On

Inverse Controller (LMN)
Adapt

y(t)

 

(a) Inverse Neural Controller System Model 

0 5 10 15 20 25 30 35 40 45 50
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (Sec)

p
u

t
O

u
t

 Error Statistics (%FS):
 Mean: 1.7928
 Variance: 1.1448
 Maximum: 5.9706

ym(t)
y(t)
r(t)/3

 

0 5 10 15 20 25 30 35 40 45 50

-0.8

-0.6

-0.4

-0.2

0

0.2

-1

0.4

0.6

0.8

1

Tim e (S ec)

O
u

tp
u

t

 Error Statistics (%FS):
 Mean: 0.35792
 Variance: 0.32578
 Maximum: 4.1141

ym(t)
y(t)
r(t)/3

(b) Response at r=0.5 (c) Response at r=3.0 

Figure 5.2.3. Inverse Neural Controller System Model and its Closed Loop Responses. 

100 



 

probability of a value change at each sample. The inverse controller used to perform the task was setup in the 

manner shown in Table 5.2.1 below: 

Inverse Controller Setup Parameters 

General Network Parameters 

Network Type: Local Model Network 

Initial Weight Range (Min / Max): 0 / 0 

Validity Activation Threshold (%): 2 

Sample Time (Sec): 0.1 

Network Inputs (In information vector order) 

Name Range (Min/Max) Number of regions Overlap (%) 

r[k] -4 / 4 8 30 

y[k] -1.5 / 1.5 2 60 

u[k-1]18 -1 / 1 1 100 

Error Tolerances (%) 

Relative Differential Absolute Differential Relative Value Absolute Value 

1 0.5 0.1 0.1 

Adaptation Method Parameters 

Adaptation Algorithm: Exponential Forgetting Factor 

Initial Covariance Diagonal: 0.1 

Forgetting Factor: 0.998 

Table 5.2.1. Inverse Controller Setup Parameters. 

The specified input signal was used so that the controller could be exposed to all operating regions of the plant 

in question. Once the training process was complete the final weights were saved, the input was switched to a 

square wave and the onse of the system 

is shown in Figure 5.2.3. 

adaptation mechanism was switched off. The resulting closed loop resp

The results for both input signals now meet the required specification19. It is important to note that there was no 

adaptation of the controller network between different input signal amplitudes. This would indicate that the 

controller has learnt a true non-linear mapping to perform the control actions. In this simple example, it is 

possible to compare this mapping to that used by the linear state feedback controller. The comparison is shown 

in Figure 5.2.4. In the figure, the red mesh indicates the linear mapping while the solid coloured surface is the 

inverse controller mapping. The black points are data values used to generate the inverse controller surface.  

                                                           
18 The past control value is included in the information vector purely because of a software limitation stemming from the desire 

to deal with the more general case where it is required. As it is assigned only one region, which is 100% activated at all times, 
it plays no meaningful role in the non-linear calculations of the validity functions. It does however add a redundant weight to 
the interpolated local models, which has to be trained to a minimal value.  

19 The reader may be curious as to why the error statistics shown in the plot indicate larger values than those called out by the 
specification. This can be explained by the earlier discussion on differential error. The error statistics shown are calculated by 
subtracting the actual value of the plant output from the desired value generated by the reference model and then scaling the 
results to represent a percentage of the output signal's range (full scale). The large errors generated when the signal is 
experiencing rapid changes in value are included in these calculations; however, the error due to the differential of the signal 
being different is within the required tolerance. This can be verified by running the simulation with the adaptation error 
tolerances set to the values in the specification and observing that the adaptation mechanism is not triggered. 

101 



 

This plot illustrates tw nt features. Firs clearly shows how the two controllers closely approximate 

one another at the linear controller's designed operating point. Secondly, and more importantly, it demonstrates 

the need for persistently exciting signals when try stem. (In this case, the inverse of 

the system.) We e areas where there are many data apping surface is reasonably 

smooth. However, where fewer data points exist, the su ore irregular and does not always seem 

to follow the general curve u d with all parametric techniques 

attempting to identify

5.2.4 SERIES INVERSE CONTROL USING I  

The last simulation (ctlexp scribed in equation (5.2.1) demonstrates the use of 

indirect sensitivity n e controller. Although MLP networks are not the main topic 

of this dissertation, the experiment e algorithms previously described, different types of 

networks may be substituted for one another while maintaining the same controller structure. This allows the 

system design t concern for 

o salie tly, it 

ing to identify a non-linear sy

 notice that in thos points the m

rface becomes m

 trend. This is unfort nately a problem associate

 non-linear systems. 

NDIRECT SENSITIVITY ADAPTATION

2a) conducted with the system de

 adaptation to train an MLP i vers

indicates how, with th

 

Figure 5.2.4. Comparison of Inverse and Linear State Feedback Controller Mappings. 

er to use the network with the optimum characteristics for the problem at hand withou

overall structural issues. The Simulink block set developed allows this substitution to occur with minimal effort. 

The model shown in Figure 5.2.5 could have used LMN networks, permitting a linear analysis of the final 

trained system. (The next section will demonstrate the use of LMN networks for Jacobian identification.) 

102 



 

The complete system takes the form shown in Figure 5.2.5. Using the indirect sensitivity adaptation method the 

plant is identified by a non-linear ARX model constructed using a MLP network model. This model is used to 

provide an estimate of the plant input sensitivity. That is: 

du
d

d
ydyy

du
dyyy

du
dy

dy
dE

du
dE

m

m

cc

ψ
ψ
ˆ

)(

)(

−≈

−=

=

 (5.2.3) 

where dudy is the plant input sensitivity, and ψdydˆ is the network Jacobian of the underlying MLP used in the 

non-linear ARX model. The known term dudψ is used to extract the current input from the information vector 

and, for this example, is simply unity. The product of ψdydˆ and dudψ is therefore the estimate of the plant 

sensitivity using the MLP Jacobian information. Again, the network Jacobian algorithm described in section 

3.4.1 is required to determine this value. Clearly, if we wished to use a LMN network instead of a MLP network 

to perform this function the algorithm derived in section 3.4.3 would have to be used. The reader is referred to 

sections 4.4.1 and 4.5 for detailed discussions of the control technique. 

The training and simulation were performed in exactly the same manner as the previous section20, providing the 

results presented in plot (b) of the figure. Although the identification step is not necessary with this particular 

plant, the plot clearly illustrates that the technique provides satisfactory results. 

5.3 CONTROL USING INSTANTANEOUS LINEARIZATION 

5.3.1 CONTROLLING A NON-LINEAR MASS-SPRING-DAMPER SYSTEM 

In this section, we demonstrate how the ability to efficiently calculate the LMN Jacobian allows us to directly 

substitute for MLP networks in a non-linear control technique known as instantaneous linearization. 

                                                           
20 Exact setup details for each of the networks can be viewed in the file ctlexp2a.mdl. 

y#,ym,y

u

adapt1

adapt

1/z
Signal

Generator

0.6

s+2

Reference Model

Out

Random

Sequence

x'=-0.4sin(x)+u+u^3

y=x

Plant

U

Y

dEc/dY

Y#

dY#/dPhi

dEc/dU

Adapt On

Nonlinear ARX (MLP)
Mux

dEc/dU

R

Ym

Y

U

Adapt On

Inverse Controller (MLP)

y m(t)

y (t)

y arx(t)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

-1

-0 .8

-0 .6

0 .8

1

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

T im e  (S e c )

 E rro r S ta tis tic s  (% F S  r= 0 .5  / r= 3 .0 ) :
 M e a n : 3 .4 4 3 9  / 0 .4 9 4 3 4
 Va r ia n c e : 1 .5 9 5 4  / 1 .9 3 0 3
 M a xim u m : 1 0 .3 6 2 2  / 1 2 .5 4 2 8

ya rx ( t) ( r= 0 .5 )
ym ( t) ( r= 0 .5 )
y ( t) ( r= 0 .5 )
ya rx ( t) ( r= 3 )
ym ( t) ( r= 3 )
y ( t) ( r= 3 )

O
u

tp
u

t

 

(a) Indirect Sensitivity Adaptation System Model (b) Response at r=0.5 and r=3.0 

Figure 5.2.5. Indirect MLP Inverse Controller and its Closed Loop Responses. 

103 



 

The plant under consideration may be described by the following general differential equation: 

(5.3.1) 

where and 

udycyybya =+++ γ&&&  

dcba ,,, γ  are constants that define the behaviour. Physically this corresponds to a mass-spring-

damper system where the spring stiffness is related to its extension by the term The input to the 

system is a compression or extension force and the output  is the degree of spring extension measured 

from an initial operating point. To illustrate various points made in previous chapters, we transform equation 

(5.3.1) into a discrete time state space and discrete time I/O model respectively. 

Let: 

 

then: 

1 xx
⎥
⎤

⎢
⎡

=⎥
⎤

⎢
⎡ &

(5.3.2) 

e 

)( 1−+ γdyc . 

 )(tu )(ty

)()(
)()(

2

1

tytx
tytx

&=
=

 

.1xy =

Equation (5.3.2) represents the continuous time state space model of the system. To convert it to a discrete tim

system we recall that: 

)()/( 1
1

1
1

22 uxdxcaxabx ⎦⎣ ++−−⎦⎣
−− γ&

 

2

∫
∆+

+=∆+
tt

t
dttttt )()()( xxx .  

Approximating with a Taylor series expansion: 

LL&&& +
∆

++
∆

+∆+=∆+
−

− )()()()()(
)1(

)1(
2 ttttttttt

n
nxxxxx .  

− )!1(!2 n

If , the sampling interval, is chosen small enough we can truncate the series after the second term. 

Substituting the time value by a time index k and assuming a unit sam le time21, equation (5.3.2) may be 

approximated by the following discrete time non-linear state space m

(5.3.3) 

Now we test for I/O m

t∆
p

odel: 

odel existence by ensuring that: 

.][][

][][])[(][)/1(
][][

]1[
]1[

1

1
1

1
1

2

21

2

1

kxky

kutkxkdxctakxatb
tkxkx

kx
kx

=

⎥
⎦

⎤
⎢
⎣

⎡
∆++∆−∆−

∆+
=⎥

⎦

⎤
⎢
⎣

⎡
+
+

−− γ

 

0

][][
),(21 ⎥⎦⎢⎣ ∂∂

u
kxkx

x

]1[]1[
][det 21

⎥⎢
⎢ +∂+∂

∂∂
kyky

xkx .  

                                                          

][
][][

≠⎥
⎥
⎤

⎢
⎡ ∂∂

k
kyky

 
21 As the model is also dependent on the sample interval the t∆  notation will be retained in the terms having a direct 

dependence on this value. 

104 



 

Performing the required differentiation gives: 

0
1

01
det

),(

≠∆=⎥
⎦

⎤
⎢
⎣

⎡
∆

t
t

ux

.  

The I/O model therefore exists for all positive real values of t∆  and is independent of the operating point. 

Therefore, none of the assumptions made above are violated. We obtain the actual I/O model by a combination 

of time index shifts and repeated substitutions from equation (5.3.3) thus: 

ky tkxkx=+ ]2[ ∆+++ ]1[]1[ 21   

where: 

 

Substituting for x1 gives: 

but: 

[ ] .][][])[(][)/1(]1[ 1
1

1
1

22 kutkxkdxctakxatbttkx ∆++∆−∆−∆=∆+ −− γ  

][][])[(][)/1(]1[]2[ 2121
2 kutkykdyctatkxatbkyky ∆++∆−∆∆−++=+ −− γ  

][]1[][2 kykytkx −+=∆ .  

Therefore: 

After some ba d a time index shift, w

][][])[(])[]1[)(/1(]1[]2[ 2121 kutkykdyctakykyatbkyky ∆++∆−−+∆−++=+ −− γ . 

sic algebraic manipulation an e get the final I/O model: 

.]2[
]2[])2[(

]1[)/2(][

2

1221

−∆+
−−∆−∆−−∆+

−∆−=
−−

kut
kykdytctatba

kyatbky
γ  (5.3.4) 

It is also convenient for us to obtain the derivatives of the system output with respect to the information vector, 

that is ][/][ kdkdy ψ : 

.
]2[ku −∂

][

0
]1[

][

])2[)1((
]2[

][

)/2(
]1[

][

2

1221

tky
ku

ky

kdytctatba
ky

ky

atb
ky

ky

∆=
∂

=
−∂

∂

−−∆−∆−−∆=
−∂

∂

∆−=
−∂

∂

−− γγ
 (5.3.5) 

The following parameters were selected for the model in equation (5.3.4): 

• Sample time t∆ = 0.2 seconds (i.e. Five samples per second.) 

• Mass constant a=1.0 kg. 

• Friction Constant b=1.0 kg/s. 

• Spring constants c, d and γ equal to 1, 20 and 3 respectively. 

Equations (5.3.4) and (5.3.5) may therefore be reduced to: 

(5.3.6) ]2[04.0]2[])2[8.084.0(]1[8.1][ 2 −+−−+−−= kukykykyky  

105 



 

and: 

0][

]2[6.184.0
]2[

][

8.1
]1[

][

2

=
∂

−−−=
−∂

∂

=
−∂

∂

ky

ky
ky

ky
ky

ky

.04.0
]2[

][
=

−∂
∂

ku
ky

Figure 5.3.1 shows the open loop response of the system to zero mean square wave with a 20 second perio

an amplitude of 0.6N. Clearly, the syst

]1[ −∂ ku

 (5.3.7) 

d and 

em is lightly damped, apparently stable for the given input signal, and 

idenced by the signal having different responses for positive and negative inputs. 

The first step in applying instantaneous linearization control is to obtain an identification model of the plant. To 

do this we set up an experiment that simulates the plant in an open loop manner, connect a non-linear ARX 

model in parallel with it, and train the LM ulink model (ctrlexp3a) and 

parameters used are shown in Figure 5.3.2 and Table 5.3.1 respectively. The network structure chosen is a result 

to nal 

with non-linearity that is ev

0 5 10 15 20 25 30 35 40 45 50

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

T ime (S ec)

D
is

p
la

c
e

m
e

n
t 

(N
)

u(t)
y(t)

 

Figure 5.3.1. Open Loop Response of a Non-Linear Mass-Spring-
Damper. 

N network in the ARX model. The Sim

of the information contained in equation (5.3.4). From this equation we know the number of time lags necessary 

for each information vector element and that the plant non-linearity is dependent on y[k-2] only. It is therefore 

not necessary to have multiple regions for any of the other inputs to the information vec r. The random sig

input is used in an attempt to persistently excite the plant. 

106 



 

 

System Identification Setup Parameters 

General Network Parameters 

Network Type: Local Model Network 

Initial Weight Range (Min / Max): 0 / 0 

Validity Activation Threshold (%): 2 

Sample Time (Sec): 0.2 

Network Inputs (In information vector order) 

Name Range (Min/Max) Number of regions Overlap (%) 

y[k-1] -1 / 1 1 100 

y[k-2] -1 / 1 5 40 

u[k-1] -5 / 5 1 100 

u[k-2] -5 / 5 1 100 

Error Tolerances (%) 

Relative Differential Absolute Differential Relative Value Absolute Value 

10 0.05 0.01 0.01 

Adaptation Method Parameters 

Adaptation Algorithm: Exponential Forgetting Factor 

Initial Covariance Diagonal: 10 

Forgetting Factor: 0.995 

Random Signal Parameters 

Minimum / Maximum -0.45 / 0.45 

Probability of value change (%) 15 

Distribution Uniform 

Sample Period 0.2 

Table 5.3.1. Non-Linear Mass-Spring-Damper Identification Setup Parameters. 

The simulation length was set for a period of 2000 seconds, the adaptation was enabled, and the model al

to process. Upon completion the weights were saved, the adaptation was disabled, and the simulation was r

with the new weights and a different input to verify the accuracy of the identified model. Generally, this would

lowed 

un 

 

r,y#,y

dY#/dPhi

adapt

Signal

Generator

Out

Random

Sequence
Mass Spring 

 Damper System

Plant

U
Y#

dY#/dPhi

Adapt On

Nonlinear ARX (LMN)

Y

dEc/dY

dEc/dU

Mux

 

Figure 5.3.2. Identification System Model for Non-Linear Mass-
Spring-Damper. 

107 



 

be done by comparing the outputs of the network model to the plant output. However, in this case we know

from equation (5.3.7), the analytic expressions for the coefficients that we wish to identify.  

The identified coefficients, namely the differentials of the output with respect to the information vector, can be 

extracted from the identified network model (see section 4.5.4) by determining the network Jacobian using the 

algorithm derived in section 3.4.3. This w

, 

as done with the system shown in Figure 5.3.2, using the same input 

rom the analytic solution of equation (5.3.7), we see that 

the identification model has performed an excellent job of estimating the correct values. Recall that these values 

are none other than the coefficients of the polynomials describing the discrete time transfer function of the plant 

at each instant in time: 

square wave as in the open loop response test shown in Figure 5.3.1. The results are plotted in Figure 5.3.3. 

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (S ec)

D
if

fe
re

n
ti

a
l 

C
o

e
ff

ic
ie

n
t

dy[k]/dy[k-1]
dy[k]/dy[k-2]
dy[k]/du[k-1]
dy[k]/du[k-2]

 

Figure 5.3.3. Polynomial Coefficients of the  Non-Linear Mass-Spring-Damper. 

If we compare the values in the plot to those resulting f

.
][ k ink −−

])[ˆ;])[ˆ
)(

1)(

[
)(
)(])[(][ˆ][

]0[,]1[,

1

1

ba

b
b

a
a

nik
i

nik

n
n

n
n

u
kybky
zbzbbz
zazaz

nku
z
zkMkyky

LL

L

∈∀∈∀ ∂
∂

=
∂

=

++=

−==≈

B
A

A
Bψ

  

B to 

of 

he 

 the plant remained stable during the open loop 

simulations, there are certain regions in which instability may occur. 

][i iky
a

−∂
−=

]k

L++

+

0 +

y determining the roots of these polynomials for each instant of time it is possible, for a given input signal, 

plot the pole zero migration resulting from the system non-linearity. If the input signal excites all the regions 

interest then an understanding of the plant stability characteristics is possible. Such a plot was generated for t

system under investigation using the previously trained identification model and square wave input. The results 

are shown in Figure 5.3.4. It now becomes evident that although

108 



 

The final step is to use these polynomials in ller, which is executed at each sample. 

This was done by creating t  (sometimes referred to as an RST 

controller) shown in e

 the design of a linear contro

 a Simulink block tha  implements the controller

quation (5.3.8): 

])[)(][)( kyzkrz S− . (
)(

][
z

ku T
R

= (5.3.8) 

The coefficients to the controller polynom um Degree Pole Placement 

(MDPP) design discussed in section The resulting Simulink model (ctlexp3b) is shown in 

Figure 5.3.5. 

1

ials are obtained by solving for the Minim

4.4.2 at each sample. 

The MDPP design parameters were setup so that the controller solution would cause the closed loop system to 

behave as a first order system having the following transfer function: 

9.0
1.0)(

−
=

z
zG   

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0.4

0.6

0.8

1

0

0.2

 

Figure 5.3.4. Pole Zero Plot for Mass-Spring-Damper System. 

ym ,y# ,y,r

u

d Y # /d P h i

a d a p t

S ig n a l

G e n e ra to r

Out

Ra n d o m

S e q u e n ce

dY #/dPhi

R

Y

U

RST  Contro l le r (S ISO )

M a ss S p rin g  

 Da m p e r S yste m

P la n t

U

Y

dEc/dY

Y #

dY #/dPhi

dEc /dU

Adapt On

Non l inear ARX (LM N)

M u x

0 .1

z  -0 .9 z2

 

Figure 5.3.5. Instantaneous Linearization Control of Mass-Spring-
Damper. 

109 



 

Note that in this controller system the required behaviour is obtained as a direct result of the controller design 

algorithm and is not supplied as a reference model. The inclusion of the transfer function block in the Simulink 

model is purely to provide data for graphical comparison of the results. The additional delay included in this 

block is to account for the unit delay in the plant / controller system.  

The weights obtained during the identification phase of the experiment were loaded into the identification model 

and, with the adaptation switched off, the simulation was allowed to execute. The results for various input 

signals are shown in Figure 5.3.6 below: 

 

 control signal generated by such input (d), and highlights the Achilles 

0 5 10 15 20 25 30 35 40 45 50
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (S ec)

O
u

tp
u

t

 Error Statistics (%FS):
 Mean: 1.4355
 Variance: 1.9818
 Maximum: 5.3473

ym[k]
y#[k]
y[k]
r[k]

0 5 10 15 20 25 30 35 40 45 50
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (S ec)

O
u

tp
u

t

 Error Statistics (%FS):
 Mean: 1.4644
 Variance: 2.9196
 Maximum: 8.5427

ym[k]
y#[k]
y[k]
r[k]

 

(a) Sine Wave A=0.5, f=1/20 Hz (b) Uniform Random Signal, A=0.5, p=15% 

The plots show that, for the sine wave input (a), the system has achieved a response very close to the desired

results. For the random input signal (b), tracking error was acceptable, except for short periods of large and 

rapidly input changes. The cause of these errors becomes more evident when we examine the response to a 

square wave input (c), together with the

Heel of the instantaneous linearization technique.  

0 5 10 15 20 25 30 35 40 45 50
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (S ec)

O
u

tp
u

t

 Error Statistics (%FS):
 Mean: 5.2223
 Variance: 52.4877
 Maximum: 30.148

ym[k]
y#[k]
y[k]
r[k]

 

0 5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

Ti

C
o

me  (S ec)

n
t

 

ro
l 

F
o

rc
e

(c) Square Wave A=0.5, f=1/20 Hz (d) Input for the Square Wave Signal 

Figure 5.3.6. Mass-Spring-Damper System -Closed Loop Responses. 

110 



 

When rapid changes are demanded of the plant the system moves, within one or two samples, from one 

operating region to another. The control action generated at the original operating point, based on the linear 

model at that point, is no longer valid at the next operating point. That is, the bias term in the local linearizati

has become excessive. The plant therefore under or overshoots the desired point because the control gains a

sub optimal for the new region of operation.  

This problem has been, in part, the motivation behind researchers pursuing model predictive control, which

attempts to optimise the future control action at each sample. Interestingly, this approach still requires an 

estimate of the plant Jacobian at each sample, and thus, the techniques developed in this dissertation have 

application to these methods as well. 

5.3.2 STABILISING AN INVERTED PENDULUM 

In the previous section, we saw how instantaneous linearization could be applied to control a BIBO stable p

We now show how the technique may be applied t

on 

re 

 

lant. 

o an initially unstable system. The system under consideration 

 consists 

ss, measured from some initial point, is represented by the variables  and  in the 

horizontal and vertical planes respectively. Suspended d units above the cart's centre of mass is a pivot, on which 

he arm-mass combination has a total mass m, 

 

 in 

is commonly used in the control literature to compare different control techniques, namely the inverted 

pendulum problem. (IPP) 

 

Figure 5.3.7. The Inverted Pendulum Problem. 

Shown in Figure 5.3.7 is a diagrammatic representation of the inverted pendulum problem. The system

of a rigid cart of mass M that moves on a flat frictionless surface in the lateral direction only. The location of the 

cart's centre of ma Mx My

a rigid pendulum arm rotates. Attached to the arm is a mass. T

whose centre of mass is located at the co-ordinates xm and ym, which, when measured along the pendulum arm, is

l units from the pivot. The input to the system is a force F acting horizontally on the cart while the controlled 

value is the angle θ, measured between the vertical and the pendulum arm. The objective is to control the 

pendulum mass, assuming no input constraints, such that the angle θ will track an arbitrary reference signal

the range ±π/2 radians. 

111 



 

The pendulum and cart co-ordinates are related to each other by: 

)sin(lxx Mm += θ  .)cos( dlyy Mm ++= θ (5.3.9) 

By differentiating equation (5.3.9) twice and substituting, we may express the horizontal and vertical forces 

acting on the pendulum as: 

mgmlmlFymF

mlmlxmxmF

gmv

Mmh

++−=+=

−+==

θθθθ

θθθθ
&&&&&

&&&&&&&

)sin()cos(

)sin()cos(
2

2

 (5.3.10) 

where Fg is the force due to gravity. Resolving the rotational dynamics of the arm-mass combination results in: 

vh FlFlmlJT )sin()cos(2 θθθθ +−=== &&&&  (5.3.11) 

where T is the torque at the pivot and J is the moment of inertia of the arm-mass combination. Resolving the 

horizontal forces acting on the cart gives: 

Mh xMFF &&=− . (5.3.12)

Substituting (5.3.10) into (5.3.1

 

1) and (5.3.12) and rearranging terms results in the following pair of coupled 

ns: differential equatio

[ ]
[ ] .)sin()cos(

2
1

)sin()cos( 2

θθθ

θθθθ

gx
l

mlmlF
mM

x

M

M

+−=

+−
+

=

&&&&

&&&&&
  

These equations are decoupled by substituting the equation for θ

1

& d &  into the equation for Mx&& , rearranging, an

substituting the result back into the equation for θ&& . Defining the state vector, T
MM xx ][ θθ &&=x the final 

result may be written in state space form as: 

( )

( )

[ ] .0100

)cos()sin(sincos
cos2

1

)sin(cossin
2
1

cos1
1

2
22

2
2

2
1

⎥
⎥
⎤

⎢
⎢
⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ +

+−
−+

⎟
⎠
⎞

⎜
⎝
⎛ +−

−+
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

θ

θθθθθ
θ

θ

θθθθ
θ

θ

θ

&

&

&

&

&&

&

&&

M

M

m
lM

m
MM

x
x

lg
m

mM
m
F

ll

lg
m
F

x

 (5.3.13) 

⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡

&& MM
xx

⎥
⎦

⎢
⎣ θ&

In order for the instantaneous linearization technique to be applied, one must first identify th

⎥⎢ θ

e plant. This 

eed to collect information from an initially unstable plant to design the appears to be a dilemma, as we n

controller. The solution is to first design a linear controller that stabilises the plant in some predetermined 

(possibly narrow) operating region. The identification network is placed in parallel with the stabilised closed 

112 



 

loop plant-controller system, which is then subjected to disturbance. Once the identification network has 

successfully identified this initial operating region, it can be used in a feedback control loop. In the fee

mode, the identification model is permitted to contin

dback 

ue adapting as the operating region is gradually extended. 

gains. 

In this way, the identification network slowly extends its "knowledge" of the plant behaviour while maintaining 

a controlled stable closed loop system.  

To demonstrate this, a discrete time linear state feedback LQR controller was designed to stabilise equation 

(5.3.13). This was done by linearizing the state space model about an equilibrium point, and solving the Ricatti 

equation (using the "lqrd" command in the Matlab Control System Toolbox) to arrive at a set of regulator 

The design may be summarised by the following set of values and matrices: 

.]3404.102405.401624.66350.3[

]1[

20000
02000
00200
00020

7778.2
0

6667.1
0

00556.1900
1000
06333.100
0010

]0[,]0000[

8.9,3.0,2.0,5.0

⎤⎡

==

−−−−=

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣

−
=

====

x u

glmM

T

K

RQ

BA  

 

The final Simulink models used to perform the simulation for both the initial identification (ctlexp5a) and the 

"extension" step (ctlexp5b) are shown in Figure 5.3.8. 

It is important to note the zero order hold block placed in front of the plant in Figure 5.3.8 (a). This block is 

necessary to prevent the identification network from identifying the closed loop system dynamics, and must 

have the same sampling period as the identification network. It is also the reason why the discrete time version 

of the LQR design algorithm was used in the regulator design. 

y#,y

u

dY#/dPhi

adapt

ZOH

Signal

Generator

Out

Random

Sequence

Force
Theta

State

Plant

U

Y

dEc/dY

Y#

dY#/dPhi

dEc/dU

Adapt On

Nonlinear ARX (LMN)

Mux

LQRD

 

ym ,y# ,y,r

u

dY#/dPh i

adapt

Signal

Generato r

Out

Random

Sequence

dY #/dPhi

R

Y

U

RST  Control ler (SISO)

F orce
Theta

State

P lant

U

Y

dEc/dY

Y #

dY #/dPhi

dEc/dU

Adapt On

Nonl inear ARX (LMN)

M ux

Gain

0.15

z-0.85

 

(a) Initial Indentification System Model (b) "Extended" Identification and Control System Model 

Figure 5.3.8. System Models used for Instantaneous Linerization Control of an Inverted Pendulum. 

113 



 

To perform the initial identification step the network was setup as described in the table below: 

System Identification Setup Parameters 

General Network Parameters 

Network Type: Local Model Network 

Initial Weight Range (Min / Max): 0 / 0 

Validity Activation Threshold (%): 2 

Sample Time (Sec): 0.02 

Network tor order) Inputs (In information vec

Name Range (Min/Max) Number of regions Overlap (%) 

y[k 40 -1] -1 / 1 5 

y[k-2] -1 / 1 1 100 

u[k-1] -50 / 50 1 100 

u[k-2] -50 / 50 1 100 

Error Tolerances (%) 

Relative Differential Absolute Differential Relative Value Absolute Value 

10 0.0005 0.01 0.01 

Adaptation Method Parameters 

Adaptation Algorithm: Exponential Forgetting Factor 

Initial Covariance Diagonal: 10 

Forgetting Factor: 0.995 

Random Signal Parameters 

Minimum / Maximum -13 / 13 

Probability of value change (%) 15 

Distribution Uniform 

Sample Period 0.02 

Table 5.3.2. Inverted Pendulum Identification Setup Parameters 

The simulation was run for 500 seconds using a random disturbance input signal (see table), with the final 

weights being saved. These weights were then transferred to the "extension" part of the experiment wh

simulation was run for 700 seconds using a 0.5Hz square wave demand signal. The demand input, initially at 

radians in amplitude, was gradually increased to its maximum amplitude of 1.4 radians over a 500 seconds 

period. For the final 200 seconds the demand amplitude remained constant at 1.4 radians. The network was 

allowed to adapt during this entire period. Once 700 seconds had elapsed the weights were saved and the 

process repeated using the weights obtained so far, but with the square wave being replaced by a uniformly 

distributed random demand signal. The maximum amplitude of the signal was permitted to follow the same 

amplitude schedule used for the square wave. The probability of value change at each sample was set to 15%. 

The final weights were saved and the adaptation was turned off. Finally, the system was presented with var

demand signals without any adaptation taking place. The closed loop respon

ere the 

0.4 

ious 

se of the final system to these 

signals is shown in Figure 5.3.9. 

114 



 

Clearly, the final controller performs exceptionally well demonstrating tracking to pendulum angles in excess of 

85 degrees. Tracking is remarkably accurate in all but the most difficult of circumstances. Note that the control 

lues are 

 

 

signal input must approach infinity as the pendulum approaches 90 degrees. Thus, as these large angle va

approached, numerical stability problems of the controller design algorithm result. 

5.4 DISCUSSION AND CONCLUSIONS 

We conclude this chapter by discussing some of the general issues that have not been directly addressed in the 

previous examples but are pertinent to the approach used. Most of the issues have a direct parallel in linear

system identification and adaptive control. The reader can thus obtain a wealth of pertinent knowledge from

more general texts (Astrom and Wittenmark, 1995, Ljung, 1991, 1999) in these areas. 

5.4.1 A PRIORI PLANT INFORMATION 

As with any system that requires system identification, the most challenging part of the problem is usually 

identifying the system involved. The problem is further exacerbated when one adds the additional burden of 

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

Time (S ec)

T
h

e
ta

 (
R

a
d

ia
n

s
)

 Error Statistics (%FS):
 Mean: 1.2664
 Variance: 1.0643
 Maximum: 3.7196

ym[k]
y#[k]
y[k]
r[k]

 

0

0.5

1

1.5

Tim e (S ec)

T
h

e
ta

 (
R

a
d

ia
n

s
)

 Error Statistics (% FS):
 Mean: 2.1039
 Variance: 17.832
 Maximum: 25.3756

ym[k]
y#[k]
y[k]
r[k]

 

(a) Sine Wave, f=1Hz (b) Square Wave, f=0.667Hz 

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

T ime (S ec)

T
h

e
ta

 (
R

a
d

ia
n

s
)

 Error Statistics (%FS):
 Mean: 0.54797
 Variance: 1.4447
 Maximum: 14.8339

ym[k]
y#[k]
y[k]
r[k]

 

-0.5

0

0.5

1

1.5

T
h

e
ta

 (
R

a
d

ia
n

s
)

 Error Statistics (%FS):
 Mean: 1.6559
 Variance: 4.6425
 Maximum: 16.7748

ym[k]
y#[k]
y[k]
r[k]

Time (Sec)

 

(c) Sawtooth Wave, f=0.4Hz (d) Uniform Random Signal, Max A=1.5 Rad, p=15% 

Figure 5.3.9. Instantaneous Linearization Control of an Inverted Pendulum - Closed Loop Responses. 

115 



 

identifying non-linearities in the system. Unfortunately, this step, in one form or another, is impossible to avoid

It simply is not feasible to control a system about which the controller has no knowledge. This knowledge

be implicit in the control design procedure or is attained on-line, as in an adaptive system. Usually, the most 

desirable form of this knowl

. 

 may 

edge is a mathematical model based on the physics of the problem. This form 

generally permits a critical analysis of the plant's characteristics, leading to information about its stability and 

design. However, in many practical systems, an accurate 

 between the extremes just mentioned. It is desirable to 

l d 

oper gions of the identification network used in section 5.3.1. The information was not, however, a 

prerequisite for the application of the technique.  

he the general 

stru  the constants for the particular system under 

consideration. This greatly eases the system design burden, because the lag space that must be represented by 

s 

info

requ ult 

to ev

Clearly, LMN networks enjoy a substantial advantage over MLP networks in this area. Because LMN networks 

m 

eights before training is 

Alth

cont

stab

equi LQR 

desi

An i ion 

proc

for d ecessary to use models with more complexity, such as NARMAX models, in the 

identification step. These models, and their application to non-linear system identification, have been well 

studied in the literature and the reader is referred to references such as (Leontaritis and Billings, 1985) and 

operating conditions and, ultimately, a controller 

mathematical model cannot be derived because one's knowledge of the system is incomplete, or it becomes 

impractical to model all the processes taking place in the system. Fortunately, the information describing a 

system usually resides somewhere in the continuum

exp oit this information to its maximum extent. This point is demonstrated by the use of equations (5.3.6) an

(5.3.7), obtained because we had a through understanding of the plant physics, to determine the lag space and 

ating re

T  more analytically derived information we have the better. For example, we may typically know 

cture of the plant, represented by equation (5.3.4), but not know

the information vector and the variables on which the non-linearities are dependent are immediately known. Thi

rmation becomes crucial in determining the optimal identification model. Methods exist for estimating the 

ired lag space (He and Asada, 1993) however, if the natures of the non-linearities are unknown, it is diffic

en estimate the optimum number and location of operating regions to be used. 

are essentially interpolated linear models, the relationship between the network weights and the physical syste

is reasonably transparent. This permits the use of linear control techniques in analysing the network results. It 

also allows a designer to insert a priori knowledge about the plant in the network w

started. In this way, an identification model may be very close to the overall solution at the outset.  

ough not shown in this dissertation, this same technique could be used to provide the initial stabilising 

rol for a system such as the IPP. In section 5.3.2 a LQR regulator was designed to provide initial 

ilisation. An alternative approach may have been to obtain a linear I/O model of the system at the 

librium point and insert this model into the identification network, thus dispensing with the initial 

gn altogether. 

5.4.2 IDENTIFICATION IN THE PRESENCE OF DISTURBANCES 

mportant issue, beyond the scope of this dissertation, is the effect of disturbance noise on the identificat

ess and network adaptation. The techniques shown here use only NARX models of the process. To account 

isturbances it may be n

116 



 

Sjoberg et al, (1994) for further information. Unfortunately, these more complicated forms all use feedback in 

5.4.

In c  used, the 

auto

may

effe

requ put 

sam network is providing an inaccurate estimate. Naturally, 

rf

adap

ation but 

 

ain stable. The non-linear counterpart is a complex problem which, to the author’s 

knowledge, is still an open issue. This observation obviously raises questions about the practicality of the 

 work, but the exact conditions under which stability 

 

ted in 

. 

lying 

 until 

ma 

th 

any 

5.4.

The

iden

the network structure, which may lead to stability problems of the network model. 

3  THE NETWORK VERIFICATION STEP 

ontrast to batch mode techniques, when the implemented adaptation activation method is

verification step used to test the identification model is not strictly necessary. This is because the adaptation is 

matically switched off when the network meets the required specification and all subsequent input samples 

 be viewed as test vectors for the network. If the network attains a state where the adaptation method 

ctively remains deactivated then the required mapping has been learnt. When the network cannot attain the 

ired accuracy or is over fitting the solution, the adaptation mechanism will be activated whenever an in

ple falls within a region of the mapping where the 

this behaviour is a trade-off because adapting the mapping in one area can lead to deterioration of network 

pe ormance in another. If the network is incapable of providing the required mapping, instability of the 

tation process may result. 

5.4.4 STABILITY 

The stability of the system during adaptation is a function not only of the controller / model combin

also, as implied in the previous section, of the adaptation process itself. This problem, generally referred to as

robust adaptive control, has been tackled, in the linear case, by a number of researchers with a substantial degree 

of success. Typically, a Lyapunov stability approach is used to derive the laws and conditions under which 

parameter adaptation will rem

approach used in section 5.3.2. Clearly, the approach can

can be maintained must be resolved before being used on a "real" plant were instability poses any serious risk. 

The use of Local Model Networks makes the stability analysis of the non-adapting closed loop stem far more

tractable, because the system may now be viewed as a number of interpolated linear systems. As demonstra

section 5.3.1, the pole zero plot of the system can be generated as a by-product of the identification model

However, this plot must be used with caution, as its accuracy is entirely dependent on the accuracy of under

identification model. System poles and zeros can exhibit extreme sensitivity to small variations in the 

polynomial coefficients resulting in an inaccurate pole zero plots. Furthermore, the plot cannot be obtained

the plant is identified, which, for an unstable system requires the controller. The only solution to this dilem

triggers the problem described in the previous paragraph. 

Note that these issues are not a result of using neural networks per se, but are general problems associated wi

non-linear control technique that is adapting because of incomplete plant information. 

5 MISCELLANEOUS ISSUES 

 examples shown in this chapter have used both discrete and continuous time models of the plant. The 

tification models and controllers are, because of their structure, all discrete time systems. This means care 

117 



 

must

plan

Alth  

syst  

usua arate 

MIS

The

tech ady 

been d, 

but ese simulations demonstrate, from a systems 

w

 

 be taken to ensure that the sample rates are high enough to capture all appropriate plant dynamics. If the 

t under consideration is not band limited, or the measurements contain unwanted high frequency 

components then anti-aliasing filters must be used. 

ough only SISO plants have been shown in the control examples, the extension of the technique to MIMO

ems is straightforward. Naturally MIMO identification is considerably more complex and, if possible, it is

lly beneficial, from an identification viewpoint, to break the MIMO system down into a number of sep

O systems. From a controller perspective this may be counter productive and a trade-off may be necessary. 

 bulk of this work demonstrates the calculation of differentials using LMN networks. The computing 

nique is also applicable, in a simpler form, to RBF networks. The approach in MLP networks has alre

 well established. In the interests of brevity, the experiments for each network type have not been presente

simulations using all the networks were performed. Th

vie point, the ability to interchange various networks. 

118 



 

 

CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 SYNOPSIS 

This work has covered a range of topics all aimed at demonstrating the online computation and use of 

feedforward artificial neural networks (ANN) Jacobian or system gradient information in neurocontrol 

applications. More specifically, the networks under consideration were the multi-layer perceptron (MLP), the 

radial basis function (RBF) network and local model network (LMN) with particular emphasis being placed on 

the latter.  

Beginning in chapter two, an attempt was made to treat these networks as information processing systems whose 

analysis could be subdivided into three broad levels of consideration; computation abilities, algorithmic 

structure, and implementation details. Furthermore, all the networks were described under a general unifying 

neural network framework consisting of five major elements, namely; the operating environment, the network 

components, an activation update rule, the objective function and lastly the learning or adaptation rule.  

The adaptive control operating environment of interest dictated that the key computational ability required was 

for the networks to describe a non-linear dynamic system using a time history NARX model. It was shown in 

chapter two, using various results from approximation theory, such as the Stone-Weierstrass theorem, 

Kolomogorov’s representational theorem and Shannon’s sampling theorem, that ANN’s do indeed provide a 

viable solution to the non-linear function approximation problem, the basis required for the formation of an 

NARX model. Unfortunately, these results provided no insight into the actual design procedure required for an 

MLP network to perform an approximation within a given error tolerance. More insight could indeed be 

obtained for LMN and particularly for RBF networks, if some knowledge about the extent of the domain and 

smoothness of the approximated function was known. The main criticism of RBF networks was their inefficient 

use of memory and susceptibility to the curse of dimensionality. The LMN provided a reasonable compromise 

between the disadvantages of RBF and MLP networks. LMN’s also provided an intuitively appealing and 

familiar approach to “pre-program” the network with a-priori information. 

In chapter three, the core of this dissertation, the algorithmic and implementation levels of analysis were 

addressed. The chapter began by concentrating on the activation update rule element for each of the network 

119 



 

types. Simple Matlab code listings were provided that showed how efficient activation rule implementations 

could be accomplished. In particular, for RBF and LMN networks, it was shown how an axis orthogonal 

implementation could be used to dramatically  expense for high dimension systems. 

Also demonstrated was how a LMN network could be constructed within the general neural network framework 

des

Next, significant space was dedicated and adaptation or learning rule 

elem e objective function 

that e 

learning rule for each of the three network types could be described as a linear or pseudo-linear regression 

pro

to develop solutions using a com

associated with specific network formulations. With this ground work in place a number of adaptation rules or 

trai

alg ress potential difficulties and problems encountered when performing online system 

identification. The final method presented, nam gorithm, was developed by the author to 

circum earning rule closed 

by 

pro thm, the use of dead zones, global vs. local learning and structure optimisation. 

Th type. 

Th  research objective. That is, to derive 

an algorithm to efficiently calculate the system gradient of an LMN network. The second objective, to 

imp

dis he presentation of Matlab code which makes maximum use of the efficiencies 

of t

net

In t

me tability and 

parameter convergence analysis were considered beyond the scope of the research topic. Important results from 

the

deri t description of a continuously differentiable discrete time 

non-linear state space plant could be attained were deri

inverse control (SIC) and the RS inimum degree pole placement design (MDPP), were 

discussed. The latter control law formulation was coupled with system identification using neural network to 

for  

indi investigated. 

Fin

num ted for this purpose. In this 

 reduce the computational

cribed in chapter two. 

to describing the objective function 

ents. These two elements are inextricably linked as the adaptation rule follows from th

 is optimised when learning is performed. It was shown, by judicious choice of variable construction, that th

blem. This allows the adaptation of all three network types to be approached as an optimisation problem and 

mon systems identification framework without regard to the intricacies 

ning algorithms were presented based primarily on recursive least squares (RLS) principles. Each of these 

orithms attempted to add

ely the recursive SVD al

vent many of the problems associated with other RLS methods.  The section on the l

discussing implementation specific issues such as network specific regressor calculation and the back 

pagation algori

e penultimate section of chapter three derived an expression for the network Jacobian for each network 

e expression for the LMN network forms the basis for satisfying the first

lement this algorithm in an online manner that can be used in non-linear adaptive neurocontrol, is also 

cussed in detail. This includes t

he previously presented axis orthogonal implementation of the activation rule for both RBF and LMN 

works. 

he fourth chapter, focus shifted to the control aspects of the neurocontrol problem. A five step design 

thodology, of which three were discussed in detail, was presented. The two omitted steps, s

 remaining three steps, namely, plant description, control law formulation and adaptation mechanisms were 

ved. The conditions for which a valid I/O plan

ved. Two different control law formulations, series 

T controller using m

m a control system based on instantaneous linearization. Adaptation mechanisms for various combinations of

rect and direct adaptation in both model reference and self tuning regulator systems were also 

ally, in chapter five, the information and analyses of the preceding chapters was combined to perform a 

ber of simulations based on a Simulink block library which was specifically crea

120 



 

cha  

per  

research objective. This was done using both SIC and instantaneous linearization paradigms controlling a 

number of different plants. 

6.2 ERVATIONS AND CONCLUSIONS 

Du

ligh  the most 

import

-  efficiently calculate system gradient or network 

Jacobian matrices were devised not only for the LMN network, but also for the RBF and MLP networks as 

- e algorithms were successfully implemented in an online fashion for all three network types. It was 

shown, for axis orthogonal RBF and LMN networks, that this could be achieved with minimal 

- aptive neurocontrol setting using both model free and 

th 

ating the enhanced flexibility of the LMN network and 

how it could be used as a “black box” replacement for an MLP network. Obviously this was subject to the 

Although the research objectives were successfully met there are a number of difficulties associated with the 

gen

line ions is problematic for all but the simplest systems: 

- 

ems, the delay and number of zeros 

 

identify. More compact and succinct plant descriptions, such as 

those obtained when using subspace identification methods, may provide a better framework for 

- alues. This means 

this 

 made robust to these uncertainties, potentially 

negating the performance improvement gained by using non-linear or adaptive techniques. This renders the 

pter it was shown how the online LMN Jacobian extraction algorithm enhances the flexibility of the LMN

mitting its use in both model free and model based neurocontrol applications, thus satisfying the third

 OBS

ring the course of this work there have been many insights and new problem perceptions that have come to 

t. The set of conclusions presented in this section only highlights what the author believes to be

ant. We begin with the research objectives: 

All three research objectives were met. Algorithms to

well.  

Thes

computational expense during the activation rule evaluation. 

The algorithms were demonstrated in a non-linear ad

model based control paradigms. The LMN network was successfully substituted for an MLP network wi

no changes to the system structure thus demonstr

capability of each of the chosen network structures to perform the required mapping. 

eral approach. In particular, the proposed time shift operator polynomial representation of the plant for non-

ar adaptive control applicat

Knowledge about the plant delays and order must be implicitly included in the control system structure. 

This knowledge is typically not available. Furthermore, for MIMO syst

associated with each output may differ complicating the plant description still further. The resulting system

is inefficient and difficult to successfully 

neurocontrol systems. 

The system root locations may be highly sensitive to operator polynomial coefficient v

that the parameter identification must be highly accurate in order for good control to be achieved. If 

cannot be guaranteed then the controller design must be

entire approach moot. 

121 



 

An f the system: 

- d 

ificant effort has been spent to address this issue by 

investigating and developing algorithms that are stable and robust to numerical errors. 

- ry to recognise when adaptation problems may arise. An unwary user 

may easily be lulled into a sense of false security as the adaptation process may appear to work well under 

ties. 

orrect system parameters. Although 

e well 

known, it may be difficult to achieve in practice. 

- 

l the current 

In s re, successful implementations can be created. The use of network Jacobian 

inf

inst on, system monitoring and signal selection and fault detection to name but a few. However, the 

difficulties pointed out in many of the conclusions above highlight the fact that ANN’s should be viewed as only 

ano

issu

6.3 

As with most research, the evolution of this work has raised more questions than were answered.  There were 

ma

part eurocontrol come to mind. Neural networks have been 

app

cus ture has resulted in a large volume and scope of research 

material. Varying degrees of mathematical sophistication and diversity are required to fully understand the 

pot

effe ith these comments in mind, the following 

the

- 

s 

is approach is causing potential synergies to be overlooked. For 

example it could be highly advantageous if a method could be devised to map RBF or LMN structures into 

n functions used in RBF’s can be 

other area that is difficult to successfully implement is the online adaptation o

The recursive algorithms used to train the networks in an online environment can be difficult to setup an

are prone to numerical problems. In this work sign

A thorough understanding is necessa

test or simulated conditions but real-world controllers must be robust to many environmental uncertain

This obviously requires rigorous proofs to ensure convergence to the c

the requirement for persistent excitation and the conditions under which this can be achieved ar

Proofs to ensure stability of the system are also crucial. Although some stability results do exist they are 

applicable only to specific conditions and system constructs. To the author’s knowledge al

proofs involving neural networks in a control context are only applicable to direct adaptation schemes. 

pite of these difficulties, with ca

ormation can be useful not only in control applications but also for applications such as virtual 

rumentati

ther tool at a designer’s disposal and not, as is sometimes done, a “silver bullet” to avoid tackling the real 

es underlying a problem. 

RECOMMENDATIONS FOR FUTURE WORK 

ny topics discussed for which substantial bodies of work exist but were only superficially considered. In 

icular, the topics of approximation theory and n

lied and studied in many different fields resulting in a wide range of nomenclatures, perspectives and 

tomised algorithms. This multi-disciplinary na

ential pitfalls associated with various methods, making it difficult for new researchers or developers to 

ctively apply the techniques in a reasonable time frame. W

refore represents a partial list of potential future work: 

In this work an attempt has been made to provide a common framework in which to discuss the various 

network structures. However, the majority of the literature tends to consider the various network paradigm

as distinct. The author believes that th

an MLP network, much like the LMN may be considered an extension of the RBF network. This may, at 

first, seem absurd, but it is intriguing to note that the Gaussian activatio

122 



 

constructed from “back to back” sigmoid activation functions frequently used in MLP’s. The payoff is that 

such a mapping would potentially allow the RBF network construction results to be used for MLP networks. 

- ised and 

t explicitly discussed in this work, unsupervised networks have also 

been successfully used in neurocontrol work. They exhibit interesting properties particularly in terms of 

ciple Component 

 the shortcomings of the 

techniques used in this work. Interestingly, the recursive SVD algorithm developed in section 3.3.8 

d 

- The SVD algorithm mentioned above also tackles the problem of algorithmic stability associated with the 

k system identification, all these approaches tend to focus on either improving the covariance 

quations simultaneously and to the authors 

knowledge the resulting method is unique. The algorithm has some interesting properties, but more 

 

perties. 

- . 

l and methodical 

manner. We have seen in chapter two that, given limited information about the desired mapping, RBF 

 

 be enhanced by using a spectral approach. If no knowledge about the desired mapping is known then 

- xtensions of the work presented here would be the enhancement of the Jacobian 

 

. More in-depth applications in neurocontrol could also be useful; particularly the use 

of Jacobian information in reducing the computation expense incurred in the optimisation search phase of 

ing research problem. 

The list of suggested further work presented above is by no means exhaustive. With the exception of the last two 

bullets, the common theme that the author feels is important going forward is that primary research efforts be 

Another area of unification where potential synergies exist is in a more holistic approach to superv

unsupervised networks. Although no

expressing a plant’s salient features in a compact form using techniques such as Prin

Analysis (PCA) or Independent Component Analysis (ICA). These approaches enhance the ability to reject 

statistically irrelevant information such as system noise. This is precisely one of

performs essentially the same function, albeit in a different context, as principle component analysis an

provides a promising starting point for this research. 

recursive identification procedure. Although there have been other attempts at using the SVD in recursive 

neural networ

update equation or the parameter update equation separately. The distinctive formulation of the objective 

function in section 3.3.8 allows one to address both of these e

refinements are needed to reduce the computational expense and to obtain more rigorous results regarding

its stability and convergence pro

Another important and ongoing research area in neural networks is the structure optimisation problem

Clearly this is closely related to defining the initial construction of a network in a logica

networks can be constructed, using spectral analyses, which are guaranteed to approximate the mapping

within some given error bound. Such results are very limited for MLP’s and LMN design techniques might 

also

the problem reverts to one of online structure optimisation. This is an extremely challenging area of 

research in which completely generalized results are perhaps not even possible. 

Most directly related to e

calculations for non-axis orthogonal networks, which may not always provide the best structure for a 

particular problem. Also desirable would be a method for determining error bounds associated with the

Jacobian information

model predictive control applications.  Finally, in the control arena, stability results and parameter 

convergence of the neural network approach continues to be a challeng

123 



 

foc  

and

rec  be aimed at enhancing the essential body of knowledge necessary for the 

advancement of the field.  

used on a holistic view of neural network processing and the enabling mathematics. While niche algorithms

 applications are important for solving engineering problems and may provide insights not previously 

ognised, research should primarily

124 



 

125 

 

REFERENCES 

Albus, J.S. (1971),  A Theory of Cerebellar Function, Mathematical Biosciences, Vol. 10, pp 25-61 

Albus, J.S. (1981),  Brains Behaviour and Robotics, Peterborough, NH: BYTE Books 

Anderson, J. Pellionisz, A. Rosenfeld, E. [Editors], (1990),  Neuro-computing 2. Foundations of Research, 

MIT press, Cambridge, Mass. 

Anderson, J. and Rosenfeld, E. [Editors], (1988),  Neuro-computing Foundations of Research, MIT press, 

Cambridge, Mass. 

Arbib, M. A. (Editor), (1995),  The Handbook of Brain Theory and Neural Networks, Bradford Books, MIT 

Press, Cambridge MA 

Åström, K.J. Wittenmark, B. (1995),  Adaptive Control, 2 P

nd
P Edition, Addison –Wesley 

Åström, K.J. Wittenmark, B. (1997),  Computer-Controlled Systems: Theory and Design, 3 P

rd
P Edition, 

Prentice-Hall 

Bailer-Jones, C.A.L.  MacKay, D.J.C. Withers, P.J. (1998),  A recurrent neural network for modelling 

dynamical systems, Computational Neural Systems, Vol 9, pp 531-547 

Barron, Andrew R. (1994), Approximation and Estimation Bounds for Artificial Neural Networks, Machine 

Learning, Vol 14, pp 115-133 

Bierman, G.J. (1977), Factorization Methods for Discrete Sequential Estimations, Academic Press, New 

York NY 

Bosman, S. (1996),  Locally weighted approximation - Yet another type of neural network, MSc Thesis, 

Department of Computer Science, University of Amsterdam, The Netherlands, July 1996 

van Breeman, A.J.N. (1997), Neural Adaptive Control, Master's Thesis - Report # BSC003N97, University 

of Twente, The Netherlands, January 28 1997 

van Breeman, A.J.N. Veelenturf, L.P.J. (1996),  Neural Adaptive Feedback Linearization Control, Journal A, 

Vol. 37, No. 3, pp 65-71, October 1996 

Deutsch, S. (1983),  RCG Cable Analysis of a Dendritic Tree Based on Rall's Idealised Model, IEEE Trans. 

on Systems, Man, and Cybernetics, Vol. SMC-13, No. 5, pp 1007-1010, September / October 

Eberhart, R.C. Dobbins, R.W. (1990),  Early Neural Network Development History: The Age of Camelot, 

IEEE Engineering in Medicine and Biology Magazine, Vol. 9, No. 3, pp 15 - 18 



 

126 

Foss, B.A. Johansen, T.A. (1993),  On local and fuzzy modelling, Proceedings of the Third International 

Conference on Industrial Fuzzy Control and Intelligent Systems, IFIS '93, pp 80 - 87, Houston, TX, 

December 

Golub, G.H., Van Loan, C.F. (1989), Matrix Computations, The Johns Hopkins University Press, Baltimore 

MD 

He, X. and Asada. H. (1993),  A New Method for Identifying Orders of Input-Output Models for Nonlinear 

Dynamic Systems, Proceedings of the American Control Conference, San Francisco California 

Hunt, K.J. Sbarbaro, D. (1991),  Neural Networks for Nonlinear Internal Model Control, IEE Proceedings 

Part D, Vol. 138, No. 5 pg 431-438, September 1991 

Hunt, K.J. Haas, R. Murray-Smith, R. (1996),  Extending the functional equivalence of radial basis function 

networks and fuzzy inference systems, IEEE Transaction on Neural Networks, Vol 7, No. 3 pp 776 - 781, 

May 

Hunt, K.J. [Editor], (1993), Polynomial Methods in Optimal Control and Filtering, Volume 49 of IEE 

Control Engineering Series, Peter Peregrinus 

Hunt, K.J. Sbarbaro, D. Zbikowski, R. Gawthrop, P.J. (1992),  Neural Networks for Control Systems - A 

Survey, Automatica, Vol 28, No. 6 pp 1083-1112 

Hyötyniemi, H. (1994),  Self-Organizing Artificial Neural Networks in Dynamic Systems Modeling and 

Control, Helsinki University of Technology, Control Engineering Laboratory, Report 97, November 

Hyötyniemi, H. (1996),  Regularization of Parameter Estimation, The 13 P

th
P IFAC World Congress, July 1-5, 

San Francisco, California. 

Johansen, T.A. Foss, B.A.  (1992),   A NARMAX model representation for adaptive control based on Local 

Models, Modeling Identification and Control, Vol. 13, No. 1, pp25-39 

Johansen, T.A. Foss, B.A. (1993),  Constructing NARMAX models using ARMAX models, International 

Journal of Control, Vol. 58, pp1125-1153 

Leontaritis, I.J. Billings, S.A. (1985),  Input-Output parametric model for non-linear systems. Part I: 

Deterministic Non-linear Systems, International Journal of Control, Vol 41, pp303-328 

Lewis, E.R. (1983),  The Elements of Single Neurons: A Review, IEEE Trans. on Systems, Man, and 

Cybernetics, Vol. SMC-13, No. 5, September / October 

Ljung, L. and Sonderstrom, T. (1983), Theory and Practice of Recursive Identification, MIT Press, 

Cambridge MA 

Ljung, L. (1991),  System Identification Toolbox User's Guide, The Mathworks Inc 



 

127 

Ljung, L. (1999),  System Identification - Theory for the User, Prentice Hall 

Motter, M.A. (1998),  Control of the NASA Langley 16 Foot Transonic Tunnel with the Self Organising 

Feature Map, Ph.D Thesis, University of Florida. 

Murray-Smith, R. and Johansen T.A.[Edited], (1997),  Multiple Model Approaches to Modelling and 

Control, Taylor and Francis, London 

Niznik, C.A. (1983),  The Neural Path Probabilistic Delay Model, IEEE Trans. on Systems, Man, and 

Cybernetics, Vol. SMC-13, No. 5, pp 1014-1018, September / October 

Parker, S.P. (Editor in Chief), (1997), Dictionary of Mathematics, McGraw-Hill, New York NY 

Pearlmutter, B.A. (1989),  Learning State Space Trajectories in Recurrent Neural Networks, Proceedings of 

International Joint Conference on Neural Networks, Washington DC Vol. 2, pp 365-372 

Pineda, F. (1987),  Generalization of Back Propagation to Recurrent Neural Networks. Physical Review 

Letters, Vol. 19, pp 2229-2232 

Platt, J. (1991),  A resource allocating network for function interpolation, Neural Computation, Vol 3, pp 

213-225 

Poggio, T. and Girosi, F. (1990),  Gaussian Networks for Approximation and learning, Proceedings of the 

IEEE, Vol. 8, No. 9, pp 1481 - 1497, September 

Psaltis, D.  Sideris, A.  Yamamure, A.A.  (1988),  A Multilayered Neural Network Controller, Control 

Systems Magazine, Vol. 8, No. 2, pp 17-21 

Quinlan, P.T. (1998),  Structural change and development in real and artificial neural networks, Neural 

Networks, Vol: 11, Issue: 4, pp. 577-784, June 

Rumelhart, D.E. McClelland, J.L. and the PDP Research Group. (1986),  Parallel Distributed Processing, 

Vols. I and  II, MIT Press, Cambridge Mass. 

Sanner, R.M. and Slotine, J.J.E. (1992),  Gaussian Networks for Direct Adaptive Control, IEEE Trans. on 

Neural Networks, Vol. 3, No. 6, pp 837-863, November 

Sbarbaro, D. and Johansen, T.A. (1997),  Multiple local Laguerre models for modelling nonlinear dynamic 

systems of the Wiener class, IEE Proceedings- Control Theory and Applications, Vol. 144, No. 5, pp 375-380 

Schwenker, F.  Kestler, H.A.  Palm, G. (2001),  Three learning phases for radial-basis-function networks, 

Neural Networks, Vol 14, pp 439-458 

Sjöberg, J. Hjalmlmerson, H. Ljung, L, (1994), Neural Networks in System Identification, Pre-prints of the 

10 P

th
P IFAC symposium on SYSID, Copenhagen, Denmark. Vol 2, 49-71 



 

128 

Soloway, D. Haley, P.J. (1997),  Neural Generalized Predictive Control: A Newton-Raphson Implementation, 

NASA TM 110244, NASA Langley Research Center, February 1997. 

Sørensen, O. (1994),  Neural Networks in Control Applications, Ph.D Thesis, Aalborg University, 

Department of Control Engineering 

Stevens, J.K. (1985),  Reverse Engineering the Brain, Byte, pp 287-299, April 1985 

Stepniewski, S.W.  Jorgensen, C.C. (1998),  Toward a More Robust Pruning Procedure for MLP Networks, 

NASA TM 1998-112225, Ames Research Center, Moffet Field, CA, April 1998 

Sundararajan, N.  Saratchandran, P. (2000),  Analysis of Minimal Radial Basis Function (RBF) Neural 

Network Algorithm for Real-Time Identification of Nonlinear Dynamic Systems,  IEE Proceedings – Control 

Theory Applications, Vol 147, No. 4 pp 476-484  

Suykens, J.A.K. Bersini, H. (1996), Neural Control Theory: an Overview, Journal A, Vol. 37, No. 3, pp 4-10, 

October 1996 

Suykens, J.A.K. Vandewalle, J.P.L. De Moor, B.L.R. (1996),  Artificial Neural Networks for Modelling and 

Control of Non-Linear Systems, Kluwer Academic Publishers 

Suzuki, S. (1998),  Constructive function approximation by three-layer artificial neural networks, Neural 

Networks, Vol 11 pp1049-1058 

Williams, R.J. and Zisper, D. (1988),  A Learning Algorithm for Continually Fully Recurrent Neural 

Networks, Technical Report ICS Report 8805, UCSD, La Jolla, CA 920923, November 

Yingwei, L.  Sundararajan, N.  Saratchandran, P. (1997),  A Sequential Learning Scheme for Functional 

Approximation Using Minimal Radial Basis Function Neural Networks, Neural Computation, Vol 9, pp 461-

478 

Yingwei, L.  Sundararajan, N.  Saratchandran, P. (1998),  Performance Evaluation of a Sequential Minimal 

Radial Basis Function (RBF) Neural Network Learning Algorithm,  IEEE Transaction on Neural Networks, 

Vol 9, No. 2 pp 308-318 

Zbikowski, R. Hunt, K.J. Dzielinski, A. Murray-Smith, R. Gawthrop, P.J. (1994),  A Review of Advances in 

Neural Adaptive Control Systems, ESPRIT III Project 8039, Daimler Benz AG, University of Glasgow, 

Scotland, June 1994 

Zbikowski, R.W. (1994),  Recurrent Neural Networks: Some Control Aspects, Ph.D. Thesis, Department of 

Mechanical Engineering, Glasgow University, Glasgow Scotland, May 



 

129 

Zhang, Y. Dai, G. Zhang, H. and Li, Q. (1994), A SVD-Based Extended Kalman Filter and Applications to 

Aircraft Flight State and Parameter Estimation, IEEE Proceedings of the American Control Conference, 

June 1994, Baltimore, Maryland. 

Zhang, Y. and Li, Q. (1999), A Fast U-D Factorization-Based Learning Algorithm with Applications to 

Nonlinear System Modelling and Identification, IEEE Transaction on Neural Networks, Vol 10, No. 4 pp 930 

– 936 

 

 

 

 

 

 

 


	TITLE PAGE
	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	TABLE OF FIGURES
	NOMENCLUTURE
	INTRODUCTION
	BACKGROUND
	OBJECTIVE
	SCOPE
	RESULTS AND CONCLUSIONS

	INTRODUCTION TO NEURAL NETWORKS
	INTRODUCTION
	ARTIFICIAL NEURAL NETWORK SYSTEM COMPONENTS
	THE BIOLOGICAL CONNECTION
	THE FEED FORWARD NEURAL NETWORK APPROXIMATION PROBLEM
	Problem definition
	Existence of a uniform approximation
	Approximation Construction
	Interpolation of the approximation
	Contending with the curse of dimensionality and using a-prio

	DISCUSSION AND CONCLUSIONS

	NEURAL NETWORKS - STRUCTURE AND IMPLEMENTATION
	INTRODUCTION
	NETWORK STRUCTURE - THE ACTIVATION RULE
	Multi-Layer Perceptron Network Structure
	Radial Basis Function Network Structure
	Local Model Network Structure

	TRAINING THE NETWORK PARAMETERS – THE LEARNING RULE
	The Optimisation Problem
	On-line vs Batch Mode Processing
	Network Parameterisation as a Linear Optimisation Problem
	The Steepest or Gradient Descent Method
	The Recursive Least Squares (RLS) Method
	The Exponential Forgetting Factor with Conditional Updating 
	Relationship between Adaption Gain and the forgetting Factor
	Persistent Excitation and The Estimator Wind-up Phenomenon
	Conditional Updating
	Directional forgetting
	The Square Root Algorithm

	Regularization - The Constant Trace and Kalman Filter Method
	The Recursive Singular Value Decomposition (SVD) Algorithm
	Implementation of the Learning Rule
	Adaption with a Dead Zone
	Network Specific Formulations
	Calculation of the Regressor
	Global vs. Local Learning

	Structure Optimisation

	DETERMINING THE NETWORK JACOBIAN
	Determining MLP Network Jacobian Information
	Determining RBF Jacobian Information
	Determining LMN Jacobian Information

	CONCLUSION

	CONTROL USING NEURAL NETWORKS - NEUROCONTROL
	INTRODUCTION
	HISTORICAL BACKGROUND
	PLANT DESCRIPTION
	CONTROL LAW FORMULATION
	Series Inverse Control
	Minimum Degree Pole Placement Design
	Constraints on the design specification polynomials
	Factorization of the process zero polynomial


	ADAPTATION MECHANISMS
	The adjusted parameters
	Incorporating the design specification
	Changing the parameters
	Using the Neural Network Jacobian Information

	CONCLUSIONS

	SIMULATIONS
	INTRODUCTION
	INVERSE NEURAL CONTROL
	System Description
	Linear State Feedback control
	Series inverse control using direct adaptation
	Series inverse control using indirect sensitivity adaptation

	CONTROL USING INSTANTANEOUS LINEARIZATION
	Controlling a non-linear Mass-Spring-Damper System
	Stabilising an inverted pendulum

	DISCUSSION AND CONCLUSIONS
	A Priori Plant information
	Identification in the presence of disturbances
	The network verification step
	Stability
	Miscellaneous issues


	CONCLUSIONS AND RECOMMENDATIONS
	SYNOPSIS
	OBSERVATIONS AND CONCLUSIONS
	RECOMMENDATIONS FOR FUTURE WORK

	REFERENCES
	Albus, J.S. (1971),  A Theory of Cerebellar Function, Mathem
	Albus, J.S. (1981),  Brains Behaviour and Robotics, Peterbor
	Anderson, J. Pellionisz, A. Rosenfeld, E. [Editors], (1990),
	Anderson, J. and Rosenfeld, E. [Editors], (1988),  Neuro-com
	Arbib, M. A. (Editor), (1995),  The Handbook of Brain Theory
	Åström, K.J. Wittenmark, B. (1995),  Adaptive Control, 2nd E
	Åström, K.J. Wittenmark, B. (1997),  Computer-Controlled Sys
	Bailer-Jones, C.A.L.  MacKay, D.J.C. Withers, P.J. (1998),  
	Barron, Andrew R. (1994), Approximation and Estimation Bound
	Bierman, G.J. (1977), Factorization Methods for Discrete Seq
	Bosman, S. (1996),  Locally weighted approximation - Yet ano
	van Breeman, A.J.N. (1997), Neural Adaptive Control, Master'
	van Breeman, A.J.N. Veelenturf, L.P.J. (1996),  Neural Adapt
	Deutsch, S. (1983),  RCG Cable Analysis of a Dendritic Tree 
	Eberhart, R.C. Dobbins, R.W. (1990),  Early Neural Network D
	Foss, B.A. Johansen, T.A. (1993),  On local and fuzzy modell
	Golub, G.H., Van Loan, C.F. (1989), Matrix Computations, The
	He, X. and Asada. H. (1993),  A New Method for Identifying O
	Hunt, K.J. Sbarbaro, D. (1991),  Neural Networks for Nonline
	Hunt, K.J. Haas, R. Murray-Smith, R. (1996),  Extending the 
	Hunt, K.J. [Editor], (1993), Polynomial Methods in Optimal C
	Hunt, K.J. Sbarbaro, D. Zbikowski, R. Gawthrop, P.J. (1992),
	Hyötyniemi, H. (1994),  Self-Organizing Artificial Neural Ne
	Hyötyniemi, H. (1996),  Regularization of Parameter Estimati
	Johansen, T.A. Foss, B.A.  (1992),   A NARMAX model represen
	Johansen, T.A. Foss, B.A. (1993),  Constructing NARMAX model
	Leontaritis, I.J. Billings, S.A. (1985),  Input-Output param
	Lewis, E.R. (1983),  The Elements of Single Neurons: A Revie
	Ljung, L. and Sonderstrom, T. (1983), Theory and Practice of
	Ljung, L. (1991),  System Identification Toolbox User's Guid
	Ljung, L. (1999),  System Identification - Theory for the Us
	Motter, M.A. (1998),  Control of the NASA Langley 16 Foot Tr
	Murray-Smith, R. and Johansen T.A.[Edited], (1997),  Multipl
	Niznik, C.A. (1983),  The Neural Path Probabilistic Delay Mo
	Parker, S.P. (Editor in Chief), (1997), Dictionary of Mathem
	Pearlmutter, B.A. (1989),  Learning State Space Trajectories
	Pineda, F. (1987),  Generalization of Back Propagation to Re
	Platt, J. (1991),  A resource allocating network for functio
	Poggio, T. and Girosi, F. (1990),  Gaussian Networks for App
	Psaltis, D.  Sideris, A.  Yamamure, A.A.  (1988),  A Multila
	Quinlan, P.T. (1998),  Structural change and development in 
	Rumelhart, D.E. McClelland, J.L. and the PDP Research Group.
	Sanner, R.M. and Slotine, J.J.E. (1992),  Gaussian Networks 
	Sbarbaro, D. and Johansen, T.A. (1997),  Multiple local Lagu
	Schwenker, F.  Kestler, H.A.  Palm, G. (2001),  Three learni
	Sjöberg, J. Hjalmlmerson, H. Ljung, L, (1994), Neural Networ
	Soloway, D. Haley, P.J. (1997),  Neural Generalized Predicti
	Sørensen, O. (1994),  Neural Networks in Control Application
	Stevens, J.K. (1985),  Reverse Engineering the Brain, Byte, 
	Stepniewski, S.W.  Jorgensen, C.C. (1998),  Toward a More Ro
	Sundararajan, N.  Saratchandran, P. (2000),  Analysis of Min
	Suykens, J.A.K. Bersini, H. (1996), Neural Control Theory: a
	Suykens, J.A.K. Vandewalle, J.P.L. De Moor, B.L.R. (1996),  
	Suzuki, S. (1998),  Constructive function approximation by t
	Williams, R.J. and Zisper, D. (1988),  A Learning Algorithm 
	Yingwei, L.  Sundararajan, N.  Saratchandran, P. (1997),  A 
	Yingwei, L.  Sundararajan, N.  Saratchandran, P. (1998),  Pe
	Zbikowski, R. Hunt, K.J. Dzielinski, A. Murray-Smith, R. Gaw
	Zbikowski, R.W. (1994),  Recurrent Neural Networks: Some Con
	Zhang, Y. Dai, G. Zhang, H. and Li, Q. (1994), A SVD-Based E
	Zhang, Y. and Li, Q. (1999), A Fast U-D Factorization-Based 


