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Abstract 

 

Elastic scattering and inelastic excitation of the second, unbound, state 
9
Be (5/2ˉ, 

2.43 MeV) for the identical-particle fermionic system 
9
Be + 

9
Be have been 

measured at the highest incident beam energy presently available ELab(
9
Be) = 25 

MeV. A 
9
Be beam, produced by the General Ionex Corporation model 860C 

sputter ion-source, was accelerated by the EN Tandem Van de Graaff accelerator 

of the iThemba LABS (Gauteng) and was used to bombard a thin 
9
Be target. The 

experimental equipment associated with the C-line includes a high resolution ∆E-

E gas-ionisation detector coupled to a small scattering chamber. Energy loss and 

residual energy signals were processed using a CAMAC-based plus OS/2 

WIMPS2 data acquisition system running on an online computer. The ∆E-E plots 

were used to identify the reaction products and their kinematic energies, thereby 

determining the elastic and inelastic scattering cross-sections. The elastic and 

inelastic scattering data were analysed in terms of the optical model and Distorted 

Wave Born Approximation, respectively. Angular distribution data for the elastic 

scattering for 
9
Be + 

9
Be conformed well to the optical model predictions using an 

energy-independent optical model potential. Inelastic scattering cross-sections 

were determined up to θc.m.  135° and symmetry effects were investigated. As 

such, excitation of the second, unbound, state 
9
Be (5/2ˉ, 2.43 MeV) via a strong 

E2 one-step two-body interaction from the 
9
Be (3/2ˉ, g.s.) did not show effects 

due to symmetry in the entrance channel. These results were consistent with a 

previous study at ELab(
9
Be) = 16 MeV. 
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CHAPTER 1 

Introduction 

The study of nuclear reactions provides an insight into the nuclear structure and 

the mechanisms of nuclear processes. Nearly everything known about nuclei has 

been discovered in scattering experiments. The comparison of scattering 

experimental data with nuclear model calculations yields details of the structure of 

individual nuclei. 

 

The nucleus
 9

Be is known to be a loosely-bound neutron and alpha-particle system 

[LA88] which breaks up easily into n + 2. The low lying 2.43 MeV 5/2ˉ unbound 

state of 
9
Be is strongly excited via a ΔL = 2 ħ (E2) inelastic scattering process 

from the 3/2ˉ ground state, unlike other excited states which are only weakly 

excited. The aim of the present study is to further investigate the interaction of the 

fermionic 
9
Be + 

9
Be system, to extend the already existing 

9
Be + 

9
Be scattering 

data, and to determine the structure and effects due to symmetry of the inelastic 

excitation of the 5/2ˉ unbound state of 
9
Be. This work follows on from previously 

measured 
9
Be + 

9
Be scattering data [MA11] taken at the EN Tandem accelerator 

of iThemba LABS (Gauteng). For identical particle scattering symmetry exists 

about c.m. = 90°, which is dependent on the nature of the system i.e. bosonic 

(integer spin) or fermionic (half-integer spin). 

 

In the present study, angular distribution for the elastic scattering and inelastic 

excitation to the second, unbound, state in 
9
Be (5/2ˉ, 2.43 MeV) in the fermionic 

system 
9
Be + 

9
Be were measured at ELab(

9
Be) = 25 MeV. As a starting point, in 

the recent previous investigation of Mayida [MA11] similar measurements were 

obtained at ELab(
9
Be) = 16 MeV in order to extend the limited existing data of 

York and Carpenter [YO77]. In addition, the elastic-scattering excitation function 

data allowed an energy-independent optical model potential to be determined in 
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the range 3 MeV ≤ ELab(
9
Be) ≤ 25 MeV spanning the region from the Coulomb 

barrier ( CB

LabE (
9
Be + 

9
Be) = 8 MeV) to well above. The measured elastic-scattering 

angular distributions displayed the expected symmetry about c.m. = 90° for an 

identical-particle scattering system. However, angular distribution inelastic-

scattering data for 
9
Be excitation to its second, unbound, state (via a relatively 

strong two-body E2 excitation process) was limited to a scattering angle just 

beyond c.m. = 90°. This was due to the relatively low incident beam energy of 

ELab(
9
Be) = 16 MeV, resulting in the inelastically scattered 

9
Be being below the 

cut-off energy of the ΔE-E gas-ionisation detector system. As such, it is necessary 

to increase the beam energy in order to investigate possible symmetry effects in 

the inelastic scattering channel. The maximum beam energy available at the EN 

Tandem accelerator (highest terminal voltage of 6 MV) using the 
9
Be

4+
 charge 

state is ELab(
9
Be) = 29 MeV. The full energy of 30 MeV is not possible from a 6 

MV terminal voltage since the negative ion 
9
BeHˉ is injected into the accelerator 

from the ion source (electron attachment to produce 
9
Beˉ is very weak [MI90]). 

However, for the present measurements 
9
Be beams could only be produced up to 

ELab(
9
Be) = 25 MeV. As such, kinematic and energy loss calculations indicated 

that the inelastic scattering angular distribution could be extended well beyond 

c.m. = 90° up to close to c.m.  130° in order to investigate possible symmetry 

effects. This would be made possible by careful optimization of the high 

resolution ΔE-E gas-ionisation detector system and the associated electronics. 

 

Measurements of the inelastic scattering cross-section is made possible by 

detecting the inelastically scattered 
9
Be' after exciting 

9
Be in a two-body process 

following which it decays into a neutron and two alpha-particles. Symmetry 

effects may need to be taken into account because of the identical particle 

entrance channel. 

 

This Research Report is arranged as follows: 

 The theoretical description and the models used to analyse the data are 

outlined in Chapter 2. 
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 The experimental details of the present study, together with the data 

collection and extraction procedures are detailed in Chapter 3. 

 The analysis and discussion of the present elastic and inelastic scattering 

data, including a review of the previously measured data are presented in 

Chapter 4. 

 Conclusions and suggestions are given in Chapter 5. 

 The tabulated measured elastic and inelastic scattering results can be found 

in the Appendix at the back of the Research Report. 
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CHAPTER 2 

Theoretical description 

Important information on the structure of nuclei and their interactions can be 

determined through the study of nuclear reactions [JE90]. Nuclear reactions which 

occur when two nuclear particles collide are described by the projectile, the 

reaction products, the scattering angle, the amount of energy Q  required or 

released in the reaction, the excitation energy and the spins involved. To study 

typical nuclear reactions we require a beam, a target and a system for detection 

[KR88]. Scattering theories are used for the study and analysis of nuclear 

scattering and reactions [JA70]. In this chapter, theoretical considerations 

concerning elastic and inelastic-scattering angular distribution analysis using the 

Optical Model and the Distorted Wave Born Approximation (DWBA), 

respectively, are presented. 

 

2.1 Coulomb scattering 

Coulomb scattering is the scattering of two charged particles, in this case nuclei, 

off one another as a result of the electrostatic force between them. It can be elastic 

scattering where the reaction products remain in their ground states without loss 

of energy to other processes or alternatively inelastic scattering resulting from the 

exchange of a virtual photon leaving one or both of the reaction products in an 

excited state [KR88]. Rutherford scattering describes the Coulomb interaction for 

non-identical particles while for identical particles the more complicated Mott 

scattering formula which includes effects due to nuclear spin is used. 

 

2.1.1 Rutherford scattering 

Elastic Coulomb scattering is also known as Rutherford scattering [KR88]. This 

occurs for non-identical nuclear particles [BE64]. Figure 2.1 shows the Rutherford  
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Figure 2.1: Particle trajectory in Rutherford scattering [JI10]. 

 

 

scattering geometry of a particle being scattered by an infinitely-heavy target 

nucleus. 

 

Because a nucleus contains positively charged protons, the force between two 

interacting nuclei is repulsive. The long-ranged repulsive Coulomb force is given 

by 

2

1 2

2

o4πε

Z Z e
F

r
  ,                                                                                       (2.1) 

where   is the distance between the projectile and the target nucleus, 1Z e  is the 

projectile charge and 2Z e  is the target charge. Since the force is repulsive, the 

trajectory of the scattered particle is hyperbolic. Initially, the projectile approaches 

the target nucleus with speed v along a line which passes a distance b (impact 

parameter) between the incident line and the target. The projectile will be 
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deflected and, therefore, passes the scattering centre through an angle θLab 

(scattering angle). 

 

If b is large, the projectile passes along a path far from the nucleus and the 

repulsive Coulomb force exerted by the nucleus is weak. The projectile, therefore, 

has a negligible Coulomb potential energy and its total energy will be the incident 

kinetic energy. On the other hand, if b is small the projectile passes along a path 

closer to the target nucleus and experiences a stronger Coulomb force. The 

Coulomb potential energy of the projectile, therefore, increases to a maximum 

when reaching a minimum separation distance rmin. At rmin the projectile moves 

away from the nucleus and the Coulomb potential energy begins to reduce. If b = 

0, this results in a head-on collision, where the projectile would recoil in the 

direction of 180°. At this distance of closest approach, d, the initial kinetic energy 

is equal to the Coulomb potential energy. 

 

The differential cross-section for Rutherford scattering of non-identical particles is 

given by [KR88]: 

2 2
2

1 2

4 c.m.c.m. 0 c.m.

1 1

4π 4
sin

2

d Z Z e

d E





 
    

      
      

 

 ,                                                (2.2) 

where  

1Z e  = charge of the projectile, 

2Z e  = charge of the target, 

c.m.E = centre-of-mass energy of the projectile and 

c.m.  = centre-of-mass scattering angle. 

This is known as the Rutherford’s formula for Coulomb scattering. We see from 

the formula that the magnitude of the Rutherford cross-section depends on 2Z , 

2

c.m.E  and  4

c.m.sin 2
. 
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2.1.2 Mott scattering of two identical particles 

Mott scattering results when two identical particles are involved [BE64]. Quantum 

mechanically, two identical particles are indistinguishable. In a system of identical 

bosons (particles with integer spin, including zero) or fermions (particles with 

half-integer spin), the wave function under the exchange of any two particles must 

be symmetric or anti-symmetric [SA80], respectively. When a scattering process 

involves two identical particles, it cannot be distinguished which of the particles 

emerges from the scattering. As in Fig. 2.2(i), two identical particles A1 and A2 

undergo scattering, particle A1 scatters along the direction 1 and A2 along the 

direction 2. If the scattering amplitude in the centre-of-mass frame is  c.m.f  , the 

probability c.m.d d  to observe this process is directly proportional to  
2

c.m.f  . 

In Fig. 2.2(ii), particle A1 scatters along the direction 2 and A2 along the direction 

1. The probability c.m.d d  to observe this second process is directly 

proportional to  
2

c.m.f   , since direction 1 is shifted at an angle  c.m.  . 

Hence, because A1 and A2 are identical, it is impossible to distinguish the two 

different processes.  

 

The scattering amplitude will then be the sum of the interfering amplitudes for 

both processes [SA80]:  

2 2

c.m. c.m. c.m.

c.m.

( ) ( ) ( )
d

f f f
d


      


.

                        
(2.3) 

The Rutherford scattering formula of Eq. (2.2) then becomes modified for 

Coulomb scattering of identical point charges and is given by [HO78]: 

2
4 4c.m. c.m.

2

c.m

csc sec
4 2 2. I

d

d k

    
 

   

                                        

 
2

2 2 2c.m. c.m. c.m.2cos lntan csc sec
2 1 2 2 2

I

I

  


  
  

   

,

        

(2.4) 
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Figure 2.2: Indistinguishable processes in the scattering of two identical particles. 

 

 

where, 

 I  =  total spin of projectile or target,

 2

1 2

2

Z Z e

k


    the dimensionless Sommerfeld parameter and

 
1

2
c.m.

2

2 E
k

 
  
 

the wave number. 

This is known as the Mott Scattering formula for identical particles.

 

The third 

term (interference term) in Eq. (2.4) is responsible for the cross-section’s 

oscillatory structure. 
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2.2 Optical model of elastic scattering 

The optical model of elastic scattering describes the interaction of two nuclei by a 

complex scattering potential [SA80]. A potential enhances the description of the 

interaction, by not only describing the strong absorption but also the weak 

absorption. This model description of nuclei is similar to the scattering and 

absorption of light by a cloudy crystal ball, hence the name optical model [HO71].  

 

For nuclei of spin zero, the two-body optical-model interaction potential  U r  

between the incident and the target nuclei is given by [HO78]: 

     C NU r U r U r  , 
                                                                            

(2.5)                                                                           

where  CU r  is the Coulomb interaction potential due to a uniform charged 

distribution of radius
1

3
C 0C 2R R A , with 0CR  the Coulomb radius parameter and

2A  the mass of the target. Here,  NU r  is the nuclear interaction potential and is 

taken to be complex in order to describe the scattering process which includes 

absorption of the incident particle flux into non-elastic scattering channels. The 

nuclear interaction potential is given by 

N( ) ( ) ( )U r V r iW r  ,                                                                                        (2.6) 

where ( )V r  and ( )iW r are the real and imaginary parts of the scattering potential, 

respectively. The real part can be energy dependent and takes account of elastic 

scattering whereas the imaginary part takes account of the loss of incident particle 

flux from the elastic scattering channel. 

 

A commonly used parametrisation for the scattering potential is the Woods-Saxon 

form [KR88]. Here, the nuclear interaction potential is written as 

N 0 R 0 I( ) ( ) ( )U r V f r iW f r  ,                                                                                (2.7)                                                                     
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where 
0V  is the depth of the real potential and 

0W
 
is the depth of the imaginary 

potential with the volume form representing the geometry of the real and 

imaginary parts of the potential given by  

1

R,I

R,I

R,I

( ) 1 exp
r R

f r
a



  
    
   

,                                                                            (2.8)                                                                                      

where  1 3 1 3

R,I 0R,I 1 2R R A A 
 

are the nuclear potential radii and 
R,Ia are the 

surface diffusenesses. 

 

A derivative of the Wood-Saxon form gives the frequently used surface-

absorption imaginary part of the potential [AU78] 

1

I
1

I

d
( ) 1 exp

dr

r R
W r W

a



  
    

  
,                                                                  (2.9a) 

 

I

I

1 2

I

I

4exp

1 exp

r R

a
W r W

r R

a

 
 
  

  
  

  

.                                                                      (2.9b) 

At low incident energies, according to the Pauli Exclusion Principle, only the 

valence nucleons near the surface can participate in the nuclear reactions, the 

tightly bound nucleons in the interior cannot. Therefore, Eq. (2.9b) gives an 

imaginary potential with surface absorption [KR88]. Varying one or more of the 

six optical model parameters, namely, 0V ,
 0RR , Ra , 0W

 
or 1W , 0IR  and

 Ia  

provides fit to the elastic scattering data.  

 

Considering charged incident particles, the Coulomb potential  CU r when r  is 

small  Cr R
 

depends on the assumed uniformly charged sphere of radius 

1/3

C 0C 2R R A , where 0CR  is the Coulomb radius constant which is obtained from a 

fit to elastic electron scattering data for the target nucleus. This is given by 

[BA80]: 
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 
2 2

1 2
C C2

C C

3 .
2

Z Z e r
U r r R

R R

  
    

  
,                                                               (2.10a) 

When r is large ( r  CR ), the Coulomb potential  CU r  is given by [BA80]: 

 
2

1 2
C C.

Z Z e
U r r R

r
               ,                                                               (2.10b) 

The collision between two charged particles can be described using partial wave 

theory [JE90]. The partial wave expansion of the wave function when substituted 

in the Schrӧdinger equation for a projectile of reduced mass  and energy E yields 

the radial wave equation [JA70]: 

  
 

 
2

2 2 2

12
0

d
E U r f r

dr r

  
    

 
,                                                  (2.11) 

where  f r  are the radial wave-functions and  the orbital angular momenta. At 

large values of the separation coordinate r (distance between the centre-of-mass of 

the projectile to the centre-of-mass of the target), the nuclear field U (r) falls off to 

zero more rapidly than 1/r, and so may be neglected. Hence, the radial part of the 

scattering wave-function can be compared with the Coulomb wave-functions. 

This comparison gives the phase shifts  .  

 

The scattering amplitude  c.m.f   is related to the differential cross-section for 

elastic scattering by [BA80]: 

 
2

c.m.

. .c m

d
f

d





.                                                                                           (2.12) 

Here,  c.m.f   can be expressed in terms of phase shifts    as [HO71]: 

      c.m. c.m.

0

1
2 1 1 cos

2
f S P

ik
 





    ,                                                 (2.13) 

with 
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 exp 2S i  .                                                                                               (2.14) 

The complex elastic scattering matrix-elements S  provide all the information on 

the interaction [BA80]. 

 

The long-range Coulomb interaction affects all partial waves unlike the nuclear 

interaction which, being short ranged, affects those close to ℓ = 0. It is, therefore,  

necessary to split the two effects. Hence, S  can be defined as 

 exp 2S i        ,                                                                                   (2.15) 

where   and   represent the Coulomb and the nuclear scattering phase shifts, 

respectively. 

 

The scattering amplitude can then take on the form [JA70]: 

     c.m. C c.m. N c.m.f f f     ,                                                                        (2.16) 

with the Coulomb scattering amplitude given by 

      2

C c.m. c.m.

0

1
2 1 1 cos

2

i
f e P

ik

 




    

                

2

c.m. c.m.
0csc exp 2 ln sin 2

2 2 2
i

k

  
 

    
       

    
,                            (2.17) 

where,   is defined in terms of the gamma function   by 

 arg 1 .i                                                                                          
(2.18) 

Together with nuclear scattering amplitude which is given by 

       2

N c.m. c.m.

0

1
2 1 1 cos

2

i
f e S P

ik

 




   ,                                          (2.19) 

a final form is obtained 
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         2

c.m. C c.m. c.m.

0

1
2 1 1 cos

2

i
f f e S P

ik

  




    .

                          

(2.20) 

As mentioned previously, all of the information for the scattering process is 

carried in S . 

 

2.3 Identical-particle symmetric and antisymmetric states 

The total wave-function for all systems of identical particles must be symmetric or 

antisymmetric under particle exchange: symmetric for bosonic systems and 

antisymmetric for fermionic systems. In the centre-of-mass system, two identical 

particles involved in a scattering process cannot be distinguished after elastic 

scattering has taken place [HO78]. Hence, two states of a system, in which any 

two identical particles are exchanged, must exchange symmetry. This two particle 

exchange corresponds to the transformation c.m. c.m.    . Hence, we can 

express the scattering amplitude which describes the scattering of the two 

indistinguishable particles as [BA80]: 

       c.m. c.m. c.m.1
S

Sf f f       ,                                                           (2.21) 

where S is the total spin (even for bosons, odd for fermions). The factor  1
S

  

gives the scattering amplitude the proper symmetry. 

 

The differential cross-section is always symmetric with respect to c.m. 90   . For 

a spin-dependent interaction, the differential cross-section becomes [BA80]: 

 
 

2
2

c.m.2
=0

2 1

2 1

I

S

S

d S
f

d I







 
 ,                                                                           (2.22) 

          
2 2

c.m. c.m.f f      

                        
 

       
2

c.m. c.m. c.m. c.m.

1
* *

2 1

I

f f f f
I

     


     
,          (2.23) 

where I is the spin quantum number. When the spin I is large, the interference 

term (third term) becomes very small. 
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2.4 Distorted Wave Born Approximation (DWBA) for 

inelastic scattering 

The Distorted Wave Born Approximation (DWBA) gives a good description of 

inelastic scattering to low-lying collective states [TS75]. There is a possibility that 

kinetic energy will be transferred from the projectile to the target when nuclei 

collide which can result in inelastic scattering [JE90]. In the first-order DWBA, 

inelastic scattering is taken to be a one-step transition process. The differential 

cross-section for inelastic scattering is given by [BA80]: 

2

DWBA

fi

d
T

d

 


 
∝    .                                                                                         (2.24)                                              

In DWBA, the transition amplitude, 
fiT , describing the inelastic scattering from 

an initial channel i to a final channel f  is given by [JA70]: 

       
*

( ) ( ), , , ,fi f i f f f i i iT k k dr k r U r k r      ,                              (2.25)                                     

where ik   and 
fk  are the  initial and final channel wave-numbers, and  ( ) ,i ik r 

 

and  ( ) ,f fk r


 are the distorted waves that account for the relative motion 

before  and after the inelastic scattering collision. Here,  ,U r  is the inelastic 

scattering interaction potential. This is a function of the internal coordinates   of 

f (final internal state) and i  (initial internal state). 

 

The interaction potential U (r, ξ) consists of two parts, the Coulomb and the 

nuclear part, and is given by [JA70]: 

     C N, , ,U r U r U r     .                                                                        (2.26)                                                               

It should be noted that the Coulomb and the nuclear fields tend to add 

destructively because of their opposite signs. This gives rise to Coulomb-nuclear 

interference. The type of collective nuclear model (vibrational or rotational) 
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determines the form of the interaction potential. In the rotational model, the 

nucleus is assumed permanently deformed, with deformation parameter  , hence 

its description as rotations of a non-spherical equilibrium shape. In the vibrational 

model, the nucleus is treated as vibrations about a spherical equilibrium shape. 

The nuclear interaction potential  N ,U r   assumes the spherical shape of the 

nucleus; hence, the optical potential is deformed by either vibrations about a 

spherical shape of radius 
R,IR  or by rotations of a deformed nucleus of radius 

R,IR . 

 

 A Taylor series expansion of  N ,U r   about 
R,IR R , neglecting the higher-

order terms, gives [JA70]: 

     N N R,I N R,I,
d

U r U r R R U r R
dr

      .                                                (2.27) 

The first term of the expansion is the spherically symmetric optical potential that 

describes the elastic scattering, and the second is responsible for the inelastic 

excitation. A multipole expansion of the nuclear interaction potential gives 

   N

N , , L

LM LM

LM

U r U r i Y r 
  

   
  

  .                                                              (2.28) 

Using the Wigner-Eckart theorem, the nuclear interaction for a transition between 

nuclear states iJ  and 
fJ  for a 2L -pole excitation gives the reduced matrix 

element 

   
 N N N N, 0f L i L L

dU r
J L U r J U r

dr
      ,                                         (2.29) 

for both rotational or vibrational models where  NdU r dr  is the nuclear form 

factor and 0i fJ J L   . The nuclear deformation length N

L  is defined as  

N N

R,I R,IL L R   ,                                                                                                  (2.30) 
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where N

RL  and N

IL  are the real and imaginary nuclear deformation parameters, 

respectively. In the collective model DWBA, the Coulomb form factor  C

LU r  is 

expressed as: 

 

1 1

CC

2

C C

C 2 C

1 2

3
.

2 1

L L

L LL L

r RR r
U r Z Z e

L r R r R



 



 
 

  

           

              

, 

,

  

  
                                             (2.31) 

This expression is similar to the nuclear form factor defined by Eq. (2.29). In 

model analyses it is customary to set the deformation lengths equal i.e.   

C N N

R IL L L    .      

 

2.4.1 Symmetry effects in inelastic excitation cross-sections      

Identical particles are indistinguishable after scattering. This is a consequence of 

the basic inability of an observer to know which one emerges from the scattering.  

Symmetrisation occurs for identical particle scattering because the scattering 

cross-section  is always symmetric with respect to c.m. = 90°. In the simplest case, 

the observed inelastic scattering cross-section is the incoherent addition of the 

cross-sections for the two possibilities, i.e. 

   c.m. c.m.

inel, incoh inel inel

,
d d d

d d d

  
  

  
   

     

 =                                             (2.32) 

However, following the prescription of Bass [BA80], the inelastic scattering 

amplitudes could be added coherently, i.e. 

     
2

inel c.m. inel c.m.

inel, coh

1 ,
Sd

f f
d


  


  

   

∝                                              (2.33)  

as in Eq. (2.21).         
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CHAPTER 3 

Experimental details 

Elastic and inelastic scattering of 
9
Be + 

9
Be has been investigated using the 

tandem accelerator and other experimental equipment associated with the C-line 

of the 6 MV EN Tandem accelerator at iThemba LABS (Gauteng). This chapter 

presents a detailed description of the experimental techniques, the equipment and 

the data extraction procedures. 

 

3.1 Experimental procedures 

3.1.1 
9
Be beams 

The 
9
Be beam was extracted from a model 860C sputter ion source from General 

Ionex Corporation. The beam was extracted in the form of 9BeH  
by bombarding 

caesium positive-ions onto a cylindrical target cathode made of a compressed 

mixture of high purity 
9
Be and titanium hydride 2(TiH )  powder. This led to the 

formation of BeH  
with BeO decreasing after a few hours of use, thus leaving a 

preponderance of BeH . A current of about 700 nA of BeH  
could typically be 

obtained from the sputter ion source. Through the inflection magnet, the 9BeH  

ion produced undergoes energy and mass analysis in order to separate the various 

negative ions produced from the 860C sputter ion source, full details concerning 

the development of 
9
Be beams can be obtained from [MA11]. After the inflection 

magnet, the beam was injected into the accelerator. On passing through the gas 

stripper channel at the centre terminal of the Tandem accelerator, the beam was 

stripped to predominantly  
9
Be

4+
. 

 

3.1.2 
9
Be target 

The 
9
Be target used in the experiment was self-supporting with an areal density of 
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 50 g/cm
2
. The 

9
Be target foil was prepared by an electron-gun evaporation of 

9
Be metal. During the evaporation, the 

9
Be vapour condensed onto a glass 

microscope slide covered with a thin layer of BaCl2  (release agent). Therefore, 

137
Ba constitutes the main impurity in the 

9
Be target. The contaminant of 

137
Ba in 

the 
9
Be target produced a prominent peak in the measured energy spectra. Owing 

to Rutherford scattering, the prominent peak of 
137

Ba was used for the energy 

calibration and normalization for integrated beam current. A current of about 5 - 

20 nA electrical of 
9
Be

4+ 
was delivered on to the target at ELab(

9
Be) = 25 MeV 

from the accelerator. Due to the toxicity of beryllium, the 
9
Be target was handled 

with great care. 

 

3.2 Experimental set-up 

3.2.1 Scattering chamber 

The small scattering chamber (20 cm diameter) located at the end of the C-line 

was used for the experimental work and is shown in the schematic drawing of the 

beam line (C-line) in Fig 3.1. It has a rotating top part which is attached to the 

base carrying the target holder. The target holder which accommodates up to six 

targets was aligned to the vertical axis of the chamber. The rotating top part of the 

chamber tilts out of the horizontal plane, making it possible for measurements to 

be taken on either side of the 0° scattering angle from Lab = 20° to +135°.  

 

The 
9
Be

4+ 
beam from the accelerator can be viewed on the quartz Faraday Cup 1, 

for alignment prior to transmission into the C-line. The quadrupole magnet 

focuses the beam down the C-line into the small scattering chamber through a 1 

mm diameter tantalum collimator and an anti-scatter collimator to bombard the 

beryllium target foil. 

 

To determine the accuracy of the absolute Lab scattering angle, a Rutherford 

scattering left-right asymmetry angle check was carried out at Lab = +20° and ‒

20°, respectively. Both results were found to be within the error bars of the 

measurements and thus confirm the reliability of the absolute Lab scattering   
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Figure 3.1: Experimental equipment associated with the C-line of the 6 MV EN 

Tandem accelerator at iThemba LABS (Gauteng) [JI10]. 
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angle to 0.1°. 

3.2.2 ∆E-E gas-ionisation detector 

A high resolution ∆E-E gas-ionisation detector is coupled to the small scattering 

chamber through a port carrying the detector collimator. Figure 3.2 shows a 

schematic layout of the ∆E-E gas-ionisation detector. The ∆E-E gas-ionisation 

detector was used in the experiment to identify the scattered reaction products and 

determine their kinetic energies. The scattered reaction products pass through a 

mylar window (thickness 1 m) and some energy (∆Emylar) is lost. Entering an iso-

butane gas-filled space, it loses more energy (∆Eiso-butane) as a result of ionisation. 

The reaction products are finally brought to rest by a solid-state silicon surface 

barrier detector and their energy (Estop) measured.  

The average energy loss (stopping power) by ionisation of charged particles can 

be calculated using the Bethe-Bloch formula [LE92]: 

2 2 2
2 2 2e max

A e e 2 2

2
2 c ln 2 2 ,

dE Zq m v W C
N r m

dx A I Z


   



   
      

   
                     (3.1) 

where 

2 2

A e e2 N r m c  = 0.5135 MeVcm
2
/g, 

dE  = energy lost in a distance dx , 

AN
 

= Avogadro’s constant (6.022 x 10
23

 mol
-1

), 

er  
= the classical electron radius (2.817 x 10

-13
 cm), 

em
 

= the rest mass of the electron, 

c  = the speed of light, 

  = the density of the absorbing material, 

Z  = the atomic number of the absorbing material, 

A  = the atomic mass of the absorbing material, 

q  = the charge of the incident particle in units of e 
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Figure 3.2: Schematic drawing of the ∆E-E gas-ionisation detector (taken from 

[MA11]). 

 

  = v c   , 

  = 21 1  , 

v  = velocity of the incident particle, 

maxW
 

= the maximum energy transfer in a single collision, 

I  = the mean excitation potential of the target, 

  = the density correction and 

C  = shell correction. 

 

It should be noted that dE dx  is velocity dependent and decreases rapidly with 

increase in velocity because of the 21  factor in Eq. (3.1). As kinetic energy 

increases, the factor  21   in the logarithmic term gives dE dx  a logarithmic 

increase [YA61]. When the velocity of the incident particle is much less than the 

speed of light, Eq. (3.1) becomes 
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2dE mZ
K

dx E
 ,                                                                                                     (3.2) 

where K is a constant and m is the mass of the incident particle. Equation (3.2) 

implies 

2dE
E KmZ

dx

 
 

 
,                                                                                                (3.3) 

which provides the basis for particle identification through the use of a gas-

ionisation detector. The gas-ionisation chamber consists of an anode, a Frisch grid 

and a cathode. The signals are acquired from the anode while the Frisch grid 

controls the charge collection. Iso-butane gas with a regulated differential pressure 

of 1 kPa was used as a working gas in the ionisation chamber. The other operating 

conditions of the ∆E-E gas-ionisation detector were established from an 

experiment carried out to determine a stable plateau region for the detector’s 

operation [JI10]. These conditions are listed in Table 3.1. 

 

Table 3.1 Bias voltages used for the ∆E-E gas-ionisation detector [JI10]. 

 

Iso-butane Pressure 

(kPa) 

VC 

(V) 

VG 

(V) 

VA 

(V) 

1  0.05   30 +30 +230 

 

3.2.3 Gas delivery system 

The ∆E-E gas-ionisation detector gas-delivery system was mounted on a movable 

platform as shown in Fig. 3.3. This system was used to control and transport the 

iso-butane gas to the ∆E part of the ∆E-E gas-ionisation detector. The gas delivery 

system is made up of valves which includes; the green knob valve (isolating the 

active volume from the high vacuum of the scattering chamber), the floating-ball 

flow meter valve, the black gas valve and the backing pump valve. A high- 
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Figure 3.3: Photograph of the gas delivery system and beam line components. 

 

precision mechanical pressure gauge was used to determine the differential 

pressure. The image of this from the CCD camera was viewed in the accelerator 

control room and was used to monitor the differential pressure, which was 

maintained at 1  0.05 kPa by the Brooks electronic pressure regulator.  

 

3.2.4 Electronics 

Standard NIM electronic modules were used to process the signals from the 

detector prior to online data acquisition using a CAMAC system. The block 

diagram for the electronics is shown in Fig. 3.4. Signals from the detectors in the 

target room were boosted by the preamplifiers and then transmitted through long 

coaxial cables to the Data Room. The unipolar outputs after amplification were 

fed into the Analogue-to-Digital Converters (ADCs) via suitable delay amplifiers. 

The bipolar outputs were fed into the Timing Single Channel Analysers (TSCA’s) 
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Figure 3.4: Block diagram of the electronics data acquisition system used in the 

9
Be + 

9
Be measurements [KU10]. 
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and provided inputs into the logic OR gate to determine the type of event. The 

Monitor, ∆E and Estop signals after being brought into time coincidence were 

processed by the ADC’s of the CAMAC data acquisition. The digital signal from 

the ADC’s went into an online computer, which was operated with the data 

acquisition system WIMPS OS/2 [FE92]. 

 

3.3 Data collection and extraction 

The digitized information from the ADC’s of the CAMAC data acquisition 

system were stored in the computer buffers in the form of singles spectra ∆E, Estop 

and Emonitor together with a two dimensional ∆E-Estop spectrum. For each scattering 

angle, a ∆E-Etotal spectrum was obtained. The total kinetic energy Etotal is given as 

Etotal = Estop + n∆E , where n is a factor which normalised the ∆E signal to the Estop 

signal. The value for the normalisation factor was determined to be n = 0.261, by 

relating the corresponding Estop signals at Lab = 25° for the ∆E gas-ionisation 

chamber GAS ON and GAS OFF settings. A typical measured two-dimensional 

∆E-Etotal spectrum obtained during the experiment is shown in Fig. 3.5, with the 

9
Be events clearly separated from carbon and helium products.  

 

From the measured two dimensional ∆E-Etotal spectrum the part corresponding to 

9
Be in Fig. 3.5 was projected onto the x-axis and transformed into the one-

dimensional Etotal spectrum shown in Fig. 3.6. Several peaks can be seen in the 

energy spectrum of Fig. 3.6. Peaks denoted by 
9
Be and 

9
Be correspond to the 

ground state and 2.43 MeV excited state of 
9
Be, respectively. Below channel 140 

lies a continuum of smoothly varying background. Other peaks denoted by 
12

C, 

16
O, 

35
Cl and 

137
Ba indicate scattering from the target contaminants. 

 

 The 
9
Be elastic and inelastic scattering peaks identified for each scattering angle 

were fitted using a Gaussian function with a linear background. The formula used 

is given by 

  0exp 0.5
x x

y x b h


   
    

  
,                                                                      (3.4) 
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Figure 3.5: Two dimensional ∆E-Etotal spectrum for 
9
Be + 

9
Be at ELab(

9
Be) = 25 

MeV and Lab = 30°. 
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Figure 3.6: Transformed and projected one dimensional ∆E-Etotal spectrum of 
9
Be 

+ 
9
Be at ELab(

9
Be) = 25 MeV and Lab = 30°. 
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where b is the linear background defined as 
0 1b a a x  , h is the peak height, x is 

the channel number, 0x  is the peak centroid and   is the standard deviation. The 

same value of standard deviation determined for the elastic scattering peak was 

used for the inelastic scattering peak at the same scattering angle, it was sufficient 

to employ a linear background. 

 

The area A under the Gaussian peak fit was determined using the expression 

2A h  ,                                                                                                       (3.5) 

with the total area TA  under the peak being expressed as 

TA A B  ,                                                                                                         (3.6) 

where B is the background under the peak 

The error ∆A on the extracted peak area is given by 

 2A A B B    .                                                                                        (3.7) 

Here, the minimum reduced - 2  is defined as 

 
2

2 1 i i

i i

y y x

N




 
  

 
 ,                                                                                   (3.8) 

where  
1

2
i iy   are the uncertainties on the data points iy  and  N is the number 

of degrees-of-freedom, that is the number of variable parameters subtracted from 

the number of data points [CA78]. Generally, it was found that 2 1   resulted 

from the fitting procedure.  

It should be noted that when the background B is small, Eq. (3.7) reduces to 

A A  ,                                                                                                           (3.9) 

as expected. 
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3.4 Evaluation of scattering cross-sections 

To determine the elastic and inelastic scattering cross-sections, the following steps 

were taken: 

1. The elastic and inelastic scattering yields were obtained using the 

fitting procedure outlined in Section 3.3. 

 

2. For each scattering angle measured, the monitor detector yield was 

obtained from the monitor detector energy spectrum (by way of 

example see Fig. 3.7). 

 

3. The monitor detector yields were normalised at Lab = 25°. 

 

4. The Lab yield and the normalised monitor detector yield were 

multiplied together to give normalised Lab yield. 

 

5. The respective Lab to c.m. kinematic factors were multiplied into the 

normalised Lab yield to give the normalised yield in the centre-of-

mass reference frame using [MA68]: 

     
2

Lab
c.m. Lab c.m. Lab2

c.m.

sin
cos

sin
I I


   



 
  

 
,                                (3.10) 

where  c.m.I   is the intensity at each scattering angle c.m.  in the 

centre-of-mass reference frame and  LabI   is the intensity at each 

scattering angle Lab  in the laboratory frame. 

 

6. In the first instance, absolute scattering cross-sections were obtained 

for each scattering angle by referencing to the optical model prediction 

at the most forward scattering angle Lab = 12.5° (c.m. = 25°). 
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Figure 3.7: One dimensional monitor detector spectrum for 
9
Be + 

9
Be at 

ELab(
9
Be) = 25 MeV and Lab = 45°. 
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7. The ratio to Mott scattering cross-sections for each scattering angle 

were obtained. The numerical values obtained are shown in Table A1 

in the Appendix section. 

 

8. The counting statistics error, the error in summing the peaks and the 

percentage errors in the Gaussian peak fitting constitutes the major 

error in these measurements (see Eqs. (3.7) and (3.9)). 
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CHAPTER 4 

Analysis and discussion 

Angular distributions at ELab(
9
Be) = 25 MeV have been measured for the elastic 

scattering and inelastic excitation to an unbound state in the fermionic system 
9
Be 

+ 
9
Be. In this chapter, previous data on 

9
Be + 

9
Be scattering [MA11] are reviewed 

and the effect of intrinsic spin on the interference term of Mott scattering is 

illustrated. The present data for the elastic and inelastic scattering are analysed in 

terms of the Optical Model (OM) and the Distorted Wave Born approximation 

(DWBA), respectively.   

 

4.1 Review of 
9
Be + 

9
Be scattering and rationale for data 

collection 

Elastic scattering and inelastic excitation of the second, unbound, state 
9
Be (5/2

-
, 

2.430 MeV) has been studied recently [MA11] for the fermionic 
9
Be + 

9
Be system 

at energies close to and well above the Coulomb barrier. By way of example, Fig. 

4.1 shows excitation function measurements and Fig. 4.2 angular distributions 

taken from Ref. [MA11]. An energy-independent optical model potential was 

obtained from fits to the measured elastic scattering data in this work. The 

corresponding optical model predictions are shown in Figs. 4.1 and 4.2 (denoted 

as “W-4 Pot. OM” in the figures). As can be seen, excellent fits to the elastic 

scattering data were obtained over an energy range 3 MeV  ELab(
9
Be)  25 MeV. 

These data extend the limited existing data of York and Carpenter [YO77] and 

demonstrate that an energy-dependent optical potential is not required. In 

addition, a DWBA analysis was performed using the W-4 potential for the 

inelastic excitation of the second, unbound, state 
9
Be (5/2

-
, 2.43MeV) at ELab(

9
Be) 

= 16 MeV [MA11], which was treated as a ΔL = 2 ħ transition from the ground  
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Figure 4.1: Upper part: Excitation function for the elastic scattering of 
9
Be + 

9
Be 

at θc.m. = 90° for ELab(
9
Be) = 3 to 24 MeV.  Lower part: Excitation function for the 

elastic scattering of 
9
Be + 

9
Be at θc.m. = 50° for ELab(

9
Be) = 6 to 25 MeV. Note that 

kinematically measurements can be made at an angle θLab. = 25° only down to 

ELab(
9
Be) = 6.0 MeV (taken from [MA11]). 
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Figure 4.2: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at 

ELab(
9
Be) = 5 MeV, 9 MeV, 12 MeV and 16 MeV (taken from [MA11]). 
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state 
9
Be (3/2ˉ, g.s.), the results of which are also shown in Fig 4.3. As can be  

seen in Fig. 4.3, the elastic scattering data are symmetric around θc.m. = 90°, as 

expected for identical particle scattering. However, due to the limited nature of the 

inelastic scattering data at backward scattering angles, symmetry effects cannot be 

distinguished. Here, measurement was limited by the low energy cut-off imposed 

by the ∆E-E gas-ionisation detector system. We, therefore, used in this study the 

highest incident beam-energy presently available ELab(
9
Be) = 25 MeV in order to 

extend the backward scattering angle measurements. The rated maximum beam 

energy for the EN Tandem of ELab(
9
Be) = 29 MeV unfortunately was not 

achievable. Corresponding DWBA predictions are shown in Fig. 4.4 where the 

vertical arrows indicate the expected instrumental cut-offs (discussed below). 

Because of the low energy of the inelastically scattered 
9
Be detected at ELab(

9
Be)  

= 16 MeV, the inelastic excitation of the second, unbound, state in 
9
Be (5/2

-
, 2.43 

MeV) could not be measured beyond c.m. = 102° (shown by the thick arrow in 

Fig. 4.4).  

 

In order to access more backward scattering angles for the inelastic state of 

interest, energy loss calculations [JI84] were made to determine the cut-off angles 

for a scattered 
9
Be particle which for the measurements in Ref. [MA11] was 

ELab(
9
Be') = 5.2 MeV. With the existing configuration for the gas-ionisation 

detector of a 1 m thick mylar entrance window and 1 kPa iso-butane differential 

gas pressure (see Section 3.2.2), the kinetic energy cut-off angle resulting from the 

scattered 
9
Be is shown in Table 4.1. However, using a configuration of 0.5 m 

mylar and 1 kPa iso-butane differential gas pressure, the kinematic cut-off angle 

as a result of the scattered 
9
Be is also shown in Table 4.1. Thus, it can be seen that 

the change in scattering angle between going from 1 m to 0.5 m thick mylar is 

very small (approximately 3° in the centre-of-mass). As such, it was decided not 

to reduce the thickness of the mylar entrance window to the gas-ionisation 

detector which would also reduce the strength and safety of the window. 
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Figure 4.3:  Upper part: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at ELab = 16 MeV. Lower part: Inelastic excitation of the second, unbound, 

state in 
9
Be (5/2ˉ, 2.43 MeV) at ELab = 16 MeV (taken from [MA11]). 
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Figure 4.4: Inelastic excitation of the second, unbound, state 
9
Be (5/2ˉ, 2.43 

MeV) at ELab(
9
Be) = 16 MeV, 25 MeV and 29 MeV. Thick vertical arrows show 

the cut-off angle with a 1 m thick mylar entrance window. Thin vertical arrows 

show the cut-off angle with a 0.5 m thick mylar entrance window. 
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Table 4.1 Inelastic scattering cut-off angle with an entrance window for the ∆E-E 

gas-ionisation detector system of 1 m and 0.5 m thick mylar and 1 kPa iso-

butane differential pressure for various incident 
9
Be beam energies. 

 

ELab (
9
Be) 

(MeV) 

1 m mylar 

      Lab                         c.m. 

      (deg.)                (deg.) 

0.5 m mylar 

       Lab                             c.m. 

(deg.)                  (deg.) 

16 

25 

29 

45 

55 

58 

102.9 

120.9 

126.4 

46.2 

56.3 

59.0 

106.0 

124.4 

129.1 

 

Figure 4.5 shows the energy levels of 
9
Be, with most low-lying levels belonging 

to either a 3 2I


  or a 1 2I


 rotational states [KU60]. The inelastic 

excitation proceeds strongly from 
9
Be (3/2ˉ, g.s.) to the second, unbound, state 

9
Be (5/2ˉ, 2.43 MeV) involving an angular momentum ΔL = 2 ħ (E2). The 

9
Be 

breaks up with ease into n + 2 at excitation energy 
X

1.5735 MeV.E    Therefore, 

inelastic excitation to the 
9
Be (5/2ˉ, 2.43 MeV) state proceeding as a two-body 

interaction allows the inelastically scattered 
9
Be' to be detected with the excited 

state breaking up sometime later after the interaction. 

 

4.2 Identical particle scattering and intrinsic spin 

Identical particle scattering is described by the Mott scattering (see Section 2.1.2). 

The nature of the third term (interference term) of the Mott scattering formula Eq. 

(2.4) is dependent on the intrinsic spin I of the ground state. The value of spin 

determines the statistics of many identical particle systems. The sensitivity of the  
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Figure 4.5: Energy levels of 
9
Be [AJ88]. 
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interference term to the intrinsic spin value is demonstrated in Fig. 4.6. Here, it 

can be clearly seen that the Mott scattering cross-section is symmetric with 

respect to c.m. = 90°, as it must be for identical particles. As seen from Eq. (2.4), 

the interference term becomes smaller for large values of intrinsic spin I, hence, 

for fermionic systems (half-integer spin) as spin I increases the Mott cross-section 

tends towards a maximum at around c.m. = 90°. 

 

 

 

Figure 4.6: Angular distributions for 
9
Be + 

9
Be Coulomb scattering at ELab(

9
Be) = 

25 MeV, assuming different intrinsic spin values I. 
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4.3 Elastic and inelastic scattering of 
9
Be + 

9
Be at 

ELab(
9
Be) = 25 MeV 

Elastic and inelastic-scattering angular distributions for 
9
Be + 

9
Be were measured 

at ELab(
9
Be) = 25 MeV. The elastic scattering data were measured for     

c.m.25.0 125.0        while the inelastic scattering cross-sections were in the 

range c.m.26.5 134.8        (see Table 4.2). These measurements were made in 

angular steps of Lab 2.5 .    

 

4.3.1 Review of the measured data 

In this study, we present new measurements of the elastic and inelastic scattering 

of the 
9
Be + 

9
Be system. An overview of the measured data is given in Table 4.2.  

An Optical Model (OM) analysis was performed for the elastic-scattering angular 

distribution and the ratio to Mott determined. Absolute cross-sections were 

obtained by normalizing the elastic scattering data to the calculated optical model 

prediction at the most forward scattering angle c.m. = 25°. The measured absolute 

cross-sections divided by the Mott cross-section were calculated with 

corresponding errors, and are shown in the top part of Fig. 4.7 (for the sake of 

intercomparison, all of the figures for this section are placed together at the end of 

the section). Here, the measured cross-sections are shown by open and filled 

circles. The open circles for c.m. ˃ 90° are the mirror reflections of the c.m. ˂ 90° 

data plotted as a function of  c.m.  . It can be seen that the independently-

measured elastic scattering cross-sections for c.m. ˃ 90° (c.m. = 2Lab (˃ 45°) 

shown by the filled circles) correspond very well with the mirrored data points. 

Also, the data show strong oscillatory structure. It should be noted that there is no 

clear minimum at c.m. = 90° because of significant compound nucleus formation 

and decay back to the elastic scattering channel. This has also been seen in the 

corresponding data of Ungricht et al. [UN79]. However, since such compound 

nucleus decay cross-sections are isotropic about c.m. = 90° they become rapidly 

insignificant for the elastic scattering channel at scattering angles away from c.m. 
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Table 4.2 Summary of the measured data for 
9
Be + 

9
Be scattering at ELab(

9
Be) = 

25 MeV taken in steps of ΔLab = 2.5°. 

 

Outgoing channel for 

ELab (9Be) = 25 MeV 

Detected 

nucleus 

Lab 

(deg.) 

c.m 

(deg.) 

9 9Be(3 2 ,g.s) Be(3 2 , . )g s
 

  
9
Be 12.5 – 62.5 25.0 – 125.0 

 

9 9Be (3 2 ,g.s) Be (5 2 ,2.43 MeV)
 ′  

 

9
Be′ 12.5 – 60.0 26.5 – 134.8 

 

 

= 90° for identical-particle scattering system. The calculation of compound 

nucleus decay cross-section is, unfortunately, beyond the scope of the present 

analysis. Turning now to the inelastic scattering data, this was limited to a 

maximum scattering angle of c.m. = 134.8°, because of the low energy cut-off of 

the detected scattered 
9
Be'. Indeed, by careful adjustment of the lower-level 

discriminator for the ΔE-E gas-ionisation detector it turned out that measurements 

could be extended by almost another fourteen degrees from the expected c.m. = 

120.9° (see Table 4.1). The inelastic scattering data are shown in the lower part of 

Fig. 4.7, again with open circles (c.m.  90°) and filled circles (c.m. ˃ 90°). 

 

4.3.2 Optical model analysis of elastic scattering 

The 
9
Be + 

9
Be elastic scattering data were analysed in terms of the optical model 

by using a modified version of the code A-THREE [AU78]. The parameters of the 

optical model used are given in Table 4.3. The energy-independent optical model 

potential W-4 used was obtained from a previous fit analysis which minimized 

simultaneously the value of the mean square deviation, 2 , for all the angular 

distributions, see Fig. 4.2 [MA11]. The same geometry of 0R 0IR R = 1 fm and 

R Ia a = 0.632 fm used by York and Carpenter [YO77] was used. The Coulomb 

radius CR  = 3.23 fm used was determined from electron scattering [SA80]. As can 
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Table 4.3 The optical model parameters for 
9
Be + 

9
Be [MA11]. 

 

System Set 
0V  

(MeV) 

0RR
 

(fm) 

Ra  

(fm) 

0W  

(MeV) 

0IR  

(fm) 

Ia  

(fm) 

CR  

(fm) 

9
Be + 

9
Be W-4 155.09 1.0 0.632 34.12 1.0 0.632 3.23 

 

 

be seen in Fig. 4.7, the calculation of the elastic-scattering angular distribution 

with the optical model using the energy-independent potential gave a very 

satisfactory fit to the measured elastic scattering data . The symmetry around c.m. 

= 90° which is expected of identical particle scattering is clearly present both in 

the measured data and the model predictions. It should be noted that the W-4 

optical potential also gave excellent fits to the data of ref. [UN79]. 

 

4.3.3 Distorted Wave Born Approximation (DWBA) analysis of 

inelastic scattering 

Inelastic scattering to the second, unbound, state in 
9
Be (5/2ˉ, 2.43 MeV) was 

calculated with the distorted wave code DWIS [VI74], a modified version of the 

DWUCK by P. D. Kunz. In these calculations, 400 partial waves are allowed with 

the radial wave-functions integrated out to 75 fm. This allows an approximation to 

be used for the contribution from high partial-waves where Coulomb excitation 

dominates. The same optical potential parameters used in the elastic scattering 

were used for the inelastic scattering calculations.  

 

In Fig. 4.7, a fit to the inelastic scattering data was obtained by varying the 

Coulomb and the nuclear deformation parameters C

2 and N

2  while holding the 

Coulomb and the nuclear deformation length equal i.e C N

2 2  . For the 3/2ˉ → 

5/2ˉ transition of 
9
Be, the results of DWIS calculation require multiplying C

2 and

N

2  by the corresponding Clebsch-Gordon coefficient (value of 0.717). The 
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Coulomb deformation parameter C

2  
was determined from the relation 

N C

2 R 2 CR R  . This corresponds to C

2 0.1037   and N

2 0.0805  . Here, as can 

be seen, the DWBA calculations yielded a reasonable description of the inelastic-

scattering angular distribution. However, in order to fit the 
9
Be (5/2ˉ, 2.43 MeV) 

data, a value of deformation parameter less than that used in previous analysis at 

ELab(
9
Be) = 16 MeV [MA11] was required. The values for the deformation 

parameters used in these calculations are shown in Table 4.4. 

 

Table 4.4 Deformation parameters for inelastic scattering from 
9
Be (3/2ˉ, g.s) to 

the second, unbound, state 
9
Be (5/2ˉ, 2.43 MeV). 

 

System 
9

Lab( Be)E  

(MeV) 

C
2  N

2  
C N

2 2 
 

(fm) 

9
Be + 

9
Be 

a16 )  0.2013 0.1562 0.65 

9
Be + 

9
Be b25 )  0.1037 0.0805 0.33 

a ) Values from Ref. [MA11].   
b) Present work.  

 

The lower part of Fig. 4.8, like that of Fig. 4.7, shows additionally the inelastic 

scattering cross-sections calculated assuming inelastic excitation by the Coulomb 

interaction only and also by the nuclear interaction only.  

 

In order to investigate symmetry effects, the lower part of Fig. 4.9 shows the 

inelastic scattering cross-section calculated by adding incoherently the cross-

sections for the two possibilities that result during the scattering of two identical 

particles (see Section 2.4.1). The measured data were also reflected around c.m. = 

90°. A fit to the inelastic scattering data was obtained by again requiring 

N C

2 R 2 CR R   while varying both N

2 and C

2 .  
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The lower part of Fig. 4.10 shows the inelastic scattering cross-section calculated 

by adding coherently the two corresponding scattering amplitudes that result from 

the scattering of two identical particles (also see Section 2.4.1). The measured 

cross-sections were also reflected around c.m. = 90°. A fit to the inelastic 

scattering data was obtained by again requiring N C

2 R 2 CR R   while varying both 

N

2 and C

2 .  

 

4.4 Discussion 

It has been shown that the measured elastic scattering data for 
9
Be + 

9
Be at 

ELab(
9
Be) = 25 MeV can be fitted with the energy-independent optical model 

potential W-4 (see Fig. 4.7). The required angular symmetry around c.m. = 90° is 

fulfilled within the limits of error. As noted previously, the data points close to 

c.m. = 90° show a maximum rather than the minimum predicted by the optical 

model. This indicates a contribution from the compound nucleus formation and 

decay back to the entrance channel. Because of the isotropic nature of the 

compound nucleus contribution, data on either side away from the minimum at 

c.m. = 90° are not affected and hence are described well by the optical model. 

 

The optical model parameters (see Table 4.3) used for elastic scattering were 

employed in fitting the inelastic scattering data using a one-step DWBA 

calculation. The results are shown in Fig. 4.7. This was found to give a good fit to 

the inelastic excitation to the second, unbound, state 
9
Be (5/2

-
, 2.430 MeV). In this 

regard, the nuclear inelastic excitation (shown by long dashed line) in Fig. 4.8 

predicts well the gross structure of the data for the reaction leading to the excited 

state 
9
Be (5/2ˉ, 2.43 MeV). However, the Coulomb inelastic excitation (shown by 

dash-dot-dot line) also in Fig. 4.8 is remarkably weak and does not contribute 

significantly to the measured cross-sections. In the case of 
9
Be (5/2

-
, 2.430 MeV) 

excitation, a deformation length of value 2 0.33 fm    was extracted., being very 

close to 2 0.36 fm   obtained from a coupled-channels analysis of 
9
Be + 

9
Be at 

much higher beam energies [OM84]. However, a higher value of 2 0.65 fm   
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was obtained at ELab(
9
Be) = 16 MeV [MA11], and such discrepancies may be 

attributed to the limitation of the present one-step DWBA calculations. 

 

The calculation of the inelastic-scattering angular distributions with the incoherent 

and coherent additions of inelastic scattering cross-sections and amplitudes, 

respectively, (see Section 2.4.1 for details) are shown in Figs. 4.9 and 4.10. In 

both cases, the fit to the data underestimates the cross-section at small and large 

scattering angles. The coherent addition (see Fig 4.10) in particular introduces 

relatively more and stronger structures which are not seen in the measured cross-

section. In addition, the mirrored data points about c.m. = 90° (open circles) are 

not entirely consistent with the independent measurements (closed circles) 

indicating the absence of symmetry. From these observations we, therefore, 

conclude that symmetry effects are not present in the inelastic scattering channel 

and that a one-step DWBA calculation sufficiently well describes the data. 
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Figure 4.7:  Upper part: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at ELab(

9
Be) = 25 MeV. Lower part: Inelastic excitation of the second, 

unbound, state in 
9
Be (5/2ˉ, 2.43 MeV) at ELab(

9
Be) = 25 MeV 
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Figure 4.8: Upper part: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at ELab(

9
Be) = 25 MeV. Lower part: Inelastic excitation of the second, 

unbound, state in 
9
Be (5/2ˉ, 2.43 MeV) at ELab(

9
Be) = 25 MeV, showing Coulomb 

and nuclear excitations. 
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Figure 4.9:  Upper part: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at ELab(

9
Be) = 25 MeV. Lower part: Inelastic excitation of the second, 

unbound, state in 
9
Be (5/2ˉ, 2.43 MeV) at ELab(

9
Be) = 25 MeV using incoherent 

addition. 
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Figure 4.10:  Upper part: Angular distributions for the elastic scattering of 
9
Be + 

9
Be at ELab(

9
Be) = 25 MeV. Lower part: Inelastic excitation of the second, 

unbound, state in 
9
Be (5/2ˉ, 2.43 MeV) at ELab(

9
Be) = 25 MeV, using coherent 

addition. 
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CHAPTER 5 

Conclusions 

In this work, elastic and inelastic-scattering angular distributions were measured 

for the 
9
Be + 

9
Be system at ELab(

9
Be)= 25 MeV. The elastic scattering angular-

distribution was compared with the optical model calculations which provided a 

good overall fit to the angular distribution. The optical model analysis has shown 

that at ELab(
9
Be) = 25 MeV, the energy-independent optical potential parameters 

determined by Mayida [MA11] in the energy range 3 MeV ≤ ELab(
9
Be) ≤ 25 MeV 

described the elastic scattering angular distribution very well at ELab(
9
Be) = 25 

MeV. This indicates that these same optical model parameters might also give 

good fit at other higher beam energies. This can be determined by further 

measurements.  

 

The one-step DWBA calculation using the optical model parameters leads 

generally to a better description of the inelastic data. By taking into account only 

the nuclear excitation in the DWBA, an equally good description of the inelastic 

angular distribution was obtained. The Coulomb excitation which appears very 

weak in the DWBA calculation was dominated by the nuclear excitation; this 

could be attributed to the low proton number of 
9
Be. The incoherent and coherent 

additions calculated in the DWBA for the inelastic angular distribution were not 

satisfactory in the angular range 60° ≥ c.m. ≥130°. Both were unable to reproduce 

the experimental cross-sections. The effects of symmetry on the inelastic 

scattering were investigated by reflecting the measured inelastic scattering data 

for c.m. ˂ 90° about  c.m. = 90° and showed that independently measured inelastic 

scattering cross-sections were not consistent. From these observations it is 

concluded that symmetry effects in the inelastic scattering channel are not 

important. 
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A further study of the inelastic scattering at the highest beam energy for the EN 

Tandem, i.e. ELab(
9
Be) = 29 MeV would be desirable or at a higher beam energy. 

Measurements could be taken at more backward scattering angles to also 

investigate further the possible structure of the inelastic scattering cross-sections.  
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Tabulated values of the measured Quantities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

56 

 

 

Table A1: Elastic scattering measured data of 
9
Be + 

9
Be at ELab(

9
Be) = 25 MeV. 

 

Lab 

(deg.) 

c.m. 

(deg.) 
Md d   Error () 

12.5 

15.0 

17.5 

20.0 

22.5 

25.0 

27.5 

30.0 

32.5 

35.0 

37.5 

40.0 

42.5 

45.0 

47.5 

50.0 

52.5 

55.0 

57.5 

60.0 

62.5 

25.0 

30.0 

35.0 

40.0 

45.0 

50.0 

55.0 

60.0 

65.0 

70.0 

75.0 

80.0 

85.0 

90.0 

95.0 

100.0 

105.0 

110.0 

115.0 

120.0 

125.0 

0.3816 

0.2616 

0.1114 

0.1277 

0.2474 

0.2021 

0.0683 

0.1145 

0.1599 

0.1283 

0.0653 

0.0757 

0.0970 

0.0986 

0.1003 

0.0926 

0.0836 

0.1252 

0.1583 

0.1219 

0.0617 

0.0054 

0.0043 

0.0059 

0.0061 

0.0068 

0.0184 

0.0053 

0.0057 

0.0108 

0.0087 

0.0087 

0.0099 

0.0162 

0.0119 

0.0110 

0.0119 

0.0080 

0.0105 

0.0082 

0.0135 

0.0081 
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Table A2: Inelastic scattering measured data of 
9
Be + 

9
Be at ELab(

9
Be) = 25 MeV 

for the second, unbound, state 
9
Be (5/2ˉ, 2.43 MeV). 

 

Lab 

(deg) 

c.m. 

(deg) 

dσ dΩ
 

(mb/sr) 

Error () 

(mb/sr) 

12.5 

15.0 

17.5 

20.0 

22.5 

25.0 

27.5 

30.0 

32.5 

35.0 

37.5 

40.0 

42.5 

45.0 

47.5 

50.0 

52.5 

55.0 

57.5 

60.0 

26.5 

31.8 

37.1 

42.4 

47.7 

53.1 

58.5 

63.9 

69.3 

74.7 

80.2 

85.7 

91.3 

97.0 

102.7 

108.6 

114.6 

120.9 

127.5 

134.8 

4.9570 

3.5439 

2.2515 

2.3494 

1.7528 

2.2157 

1.5803 

1.1438 

1.3978 

1.3452 

1.0830 

1.0305 

0.9220 

1.0707 

1.0708 

1.0467 

1.3205 

1.1370 

1.2278 

0.9950 

1.6177 

0.9036 

0.7982 

0.4835 

0.2361 

0.5776 

0.2556 

0.1680 

0.1895 

0.1889 

0.1492 

0.1546 

0.2170 

0.2019 

0.1995 

0.1739 

0.1416 

0.1688 

0.2081 

0.2400 

 

 

  

 


