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ABSTRACT.

We investigate Mean Convergence of Lagrange Interpolation and Rates of Ap-
proximation for Erd5'sWeights on the Real line.

An Erdg's Weight is of the form, W : • expI-Q]' where typically Q is even,
continuous and is of faster than polynomial growth at infinity.

Concerning Lagrange Interpolation, we obtain necessaryand sufficient conditions
for convergence in Lp (1::; p < 00) and in particular, sharp results for p > 4 and
1 <p < 4.

On Rates of Approximation, we first investigate the problem of formulating and
proving the correct Jackson Theorems for Erdifs Weights. This is accomplished in
Lp(O < p < 00) with endpoint effects in [-an, anI, the Mhaskar-Rahmanov-Saff in-
terval.

We next obtain a net ural Realisation Functional for our class of weights and
prove its fundamental equivalence to our.modulus of continuity.

Finally, we prove the correct converse or Bernstein Theorems in Lp (0 < p :5 00)
and deduce a Marchaud Inequality for our modulus.
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Chapter 1

A General Introduction

1.1 Bernstein's Approximation Problem

The subject of weighted polynomial approximation on the real line has its origins in the problem

of the famous mathematician, S.N Bernstein, who in the 1910's made the following important

observation. As polynomials are unbounded on unbounded sets, he realised the need to weight

them. What resulted was the following:

Let W :R -+ (0, 1] be a weight function satisfying

w (x) 2:: 0, Va: E R ,

with

lim xnliV (x) da:= 0, n = 0,1,2 ....
Ixl-+oo

If f :R -+ lR is a given continuous function, is it true that there exist polynomials P making

sup If(a:)-P(x)IW(x)
xE:]R

arbitrary small? Alternatively, under what conditions on W, are the polynomials dense in

the weighted space of continuous functions generated by W (28,29]? Naturally, this question

generalises the well known theorem of Weierstrass, which states that each continuous function
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can be uniformly approximated by polynomials.

Bernstein's problem was solved in the 1950's by Mergelyan, Achieser and Pollard in various

'forms but We choose to state the following version due to Dzrbasjan and Carleson,

r.r'heorem.l.l.1. (Tlte possibility of approximation by weighted polynomials), Let W (x) :;:::=

exp (-Q (x)), Q :R -r R , Q even and Q (eX) connec in (0,00). ThefollowinfJ are equivalent:

(i) V continuous f : JR .----+ R with

lim fW (x) -= 0
Ixl--+oo

and '<IE:> 0,3 a polynomial P such that

(ii)

r Q(:r) dx = 00,
I« 1+x2

(1.1)

We remark that (1.1) although quite simple to absorb, has had far reaching consequences

on weighted approximation up to this day. This is borne out in the following:

Corollary 1.1.2. Let I'> 0 and set

.( Ixl')')W-y (x) := exp -2 . (1.2)

Then the polynomials are dense Jot' Wry iff I' ~ 1.

This corollary essentially tells us that at least for polynomial approximation on R ,our

weight must decay at least as fast as exp (-Ix I)· QUite naturally, we are lead by the reasons

above and others, for example the determancy of the moment problem [28] I to two important

classes of weights on R ,
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1.2 The Freud Class

A weight W (x) ;;:: exp (.....Q (x)) is said to be a Freud weight if Q is of smooth polynomial growth

at infinity. They are named after the Hungarian mathematician, Ceza Freud, who, while work-

ing on problems related to weighted approximation, Orthogonal Fourier Series, and Lagrange

interpolation, discovered that there had been a complete lack of results regarding general or-

thogonal polynomials on infinite intervals[42] . For example, it is well known, that the theory of

rates of approximation on finite intervals depen L heavily on trigonometric approximation. Here,

heavy use is made of the orthogonal trigonometric polynomials,

(cos (nO) , (sin (nB)))~::::o'

Freud realised that for many questions of weighted approximation on the real line, one needed

a proper understanding of the weighted orthonormal polynomials (Pj (:1:))5=0 ' satisfying

A classical example of a Freud Weight is (1.2) of which the Hermite Weight,

W2 (x) := exp ( _;2) (1.3)

is a special example.

1.3 The Erdos Class

A Weight W (x) := exp (-Q (x)) is said to be an Erdet'SWeight if Q is of faster than polynomial

growth at infinity. They were named by D,S Lubinsky, after the Hungari- "f,ifathematician,

Paul Erders, who was the first to consider them, obtaining the contracted zero distribution of

their orthogonal polynomials, as well as investigating the asymptotic behavior of the largest

zeros of their orthogonal polynomials. Some classical examples of Erd8S Weights are

(1.4)
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where expj, (x) == exp (exp (... (exp (x))))denotes the kth iterated exponential,

and

WA,E (x) := exp (- exp (log (A + X2))E) B> 1, A large enough. (1.5)

We see that to some extent, the Freud and Erd8"s classes are analogues to entire functions of

finite and infinite order.

We mention that there is of course, a third naturally occurring class of weights, the class

of Q, where Q is of slower than polynomial growth at infinity. The canonical example is the

Stieltjies-Wlgert weight or log-normal distribution,

w2 (x) :== exp (-k (log z )2) , k > O.

We observe, however, that for most questions of weighted approximation on the real line,

Theorem 1.1.1 forces us to work with the former two classes of weights, although the latter

class has been investigated for other related problems.

It is then not suprising that the theory of orthogonal polynomials for both Freud and

Erdo.s Weights and the theory of weigl. ted approximation on ~ have developed in parallel

over the last twenty years. The idea, of course, is to obtain a complete understanding of tile

orthogonal polynomials generated by these two classes of weights. For example, the asymptotics

of their zeros, th ..ir bounds and so on. Although Freud initiated this study, his results have been

surpassed in. ,,11' u",t every respect in both sharpness and generality by many including Bauldry,

Bonan, Levin, Lubinsky, Magnus, Mate, Mthembu, Mhaskar, Nevai, Rahmanov, Saff, Sheen,

Totik and Ulman. 8ee[13, 24, 26, 28, 29, 42] and later chapters,

1.4 Infinite finite Range Inequalities

When dealing with weights on ~ , one realises immediately that unlike weights on finite intervals,

these weights are of unbounded support. It took a Freud and Nevai inspiration [42J to allow us

effectively to work on finite intervals when dealing with weighted polynomials (PnW) on

IR . They developed the so called Infinite-Finite Range Inequality. The idea was to consider a
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given expression of the form,

9 (x) == :z;71 ex? [-Q (x))

and to determine its maximum at

(1.6)

the socalled Freud Number given by

(1.7)

They effectively showed that most of the time, the quantity (PW) "lives" in an interval

like [-g'l' qn] , so that the interval depends on the degree of the polynomial, ti and not on the

polynomial in question. The sharp form of (1.6) was obtained independently by Rahmanov and

then Mhaskar and Saff[3'7!38]. We have:

Definition 1.4.1 [Mhaekar-Rahmanov-Saff number) . Let W :;:;:exp (-Q) ,

where Q : JR --+ R is even, continuous and xC]' (x) is positive and increasing in (0, (0) with

limits 0 and co at 0 and ,YO:. For 11, > 0, the Mhaskar-Rahmanov-5'aff number au is the positive

root of the equation

(1.8)

Under the conditions on Q above, which guarantee that Q (s) and QI (s) increase strictly in

(0, (0) , au is uniquely defined, increases wit'l u and grows roughly like Q-l (.t) ,where Q-l is

the inverse of Q on (0, (0) .

We remark that it is often possible to use something other than au that would require less

of xQ' (x), namely, that it be quasi-increasing for large x, for example Q-l (11,). However, this

often complicates formulations and so is omitted. Here, a function

f: Ca, b) --+ (0,00)

is quasi-increasing if 3C > 0 such that

a < x < y < b =} t (e) < C] (y) .
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Mhaskar and Saff then used au to prove the infinite-finite inequality [38]

(1.9)

holding for all polynomials Pn of degree::; n, 11, 2:: 1 and where Q is as in Definition 1.1.1, is

convex or is of the form 1m!(.\' , a 2:: 1.
These inequalities have been improved and generalised since then for example to

Lp ( 0 < p '$ 00) . See [24,26, 39J and later chapters.

It is instructive to see some concrete representations of au. For example, for W'j' (it) defined
t I

by (1.2), au '" u=i, whereas, for Wk." (m) defined by (1.4), ae r- (logk u)" where log (log (log .... ()))
1

denotes the kth iterated logarithim, Also, Qk,Q (au) '" u {TIJ:::llogj u} -~ .See [26] and later

chapters.

1.5 Entire Functions

Let W = exp (~Q) be a Freud or Erdos Weight. By Carleman~ Theorem, if Q is continuous,

we know that there exist two entire functions G1 and G2 such that for a given e > 0

1-€ W(x)
< G

1
(a:) < 1+ e , Va:E lR

W-l (x)
G
2

(a;) < 1+ 6" , Va; E R1-€ <

It W8AS D.S Lubinsky, who initiated the study of approximating Freud or Erdos Weight, type

weighted polynomials of the form Prl (a:)V' (ar.:n) by entire functions, whose representation

could be explicitly written down [2~, 42] . For many of our main results, it will be important to

consider theorems on polynomial approximation of W-l. The following theorem of Clunle and

Kovari will be frequently used.

Theorem 1.5.1. (Clunie and Kovari). Let ¢ :~ -----7 R be an inr;reasing junction and
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(1.10)

/01' some positive increasinl1 function '1/' : R --)- R, ASliume further that for' some G > 1 and

etJe1'y r 2: 1,
'1/) (01') - 't/J (1') ~ L (1.11 )

Then there ezist« an cntir'c function (; with positive coeficients

00

G (1') :::;EU2jrj

j=O
(1.12)

such that

(1.13)

where 01 and. 02 depend only on C 'lnd not r,

1.6 Towards Lagrange Interpolation and Rates of Approxima-

tion for Eroers Weights

The primary aim of this thesis concerns the approximation of functions f :R ---+ R by weighted

polynomials of Erd8's type, Several problems were considered.

1.6.1 Lagrange Interpolation for Erdos Weights

Following from earlier work of Nevai, Bonan, Lubinsky, Knopmacher, Mthembu and Matjila,

we investigated mean convergence of Lagrange Interpolation for Erdos Weights. We obtained

Necessary and Sufficient conditions for Lp (1 ~ p < (0) and in particular, sharp results for

p > 4 and 1 :$ p < 4.
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1.6.2 Rates of Approximation for Erdts Weights

Jackson Theorems

Following from from earlier work of Ditzian, Lubinsky and 'Iotik; we investigated the problem

of formulating and proving >,hecorrect Jackson Theorems for Erdt.., Weights. This was accom-

plished in Lp (0 < p ~ (0) .An interesting feature here is that the degree of the approximation

improves towards the endpoints of the Mhaskar-Rahmanov-Saff interval [-an an). This is in

contrast to the Freud case.

K-Functionals

Following from earlier work of Ditzian, Lubinsky and Totik, we investigated the problem of

formulating the correct Realisation Functional for our modulus of continuity and prove its

equivalence. We deduce classical properties of our modulus, including Marchand Inequalities.

Converse 'I'heoren-s

Following from earlier work of Ditzian, Lubinsky and Totik, we investigated the problem of

formulating and proving the correct Converse Bernstein tYI,e Theorems for Erdts Weights. This

was accomplished i" Lp (0 < p ~ (0) with endpoint effects in [-an an].

1.7 General Informacion

This thesis consists of two parts. Part 1 deals with the quantitative theory of Lagrange

Interpolation for Erd8:., Weights, while Part 2 considers the question of rates of approximation

for Erd8:., Weights. Both parts contain in turn, their own chapters, historical background,

definitions and theorems and are thus self contained and can be read independently of each

other. To encourage "reader" friendliness, we have in many places, resorted to stating well

known results with references.

Throughout, 'P7I denotes the class of polynomials of degree ~ n, C, Gl, c:2... denote positive

constants independent of ti, x and Pn E 'Pn. The same symbol does not necessary denote the

same constant in different occurrences. We write C =1= C (L) to indicate that C is independent

of L. Finally we introduce some more notation.
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(1) etL '" dn means that CJ :$ 2! 5 O2 for some OJ > 0 , j = 1,2 and the relevant range of

n.

(2) an:::: 0 (bn) means that an S Osbnfot some Os >- o.
(3) an = 0 (bn) means that limn-toO I~I= O.

Similar notation is used for functions and Sequences of functions.

9



Part ][

Lagrange Interpolation for Erdos

Weights

10



Chapter 2

Introduction and Statement of

Results

One of the most quantitative and explicit methods of approximating a given function f is that

of polynomial interpolation. In this first part! We consider the problem of weighted Lagrange

interpolation for Erd<fs Weights.

2.1 Some Historical Backround

Let us be given a Freud or Erd8's Weight, W : lR ---t R . We can then define, for this weight, a

unique set of orthonormal polynomials

(2.1 )

with lit :::::'Y CW2) > 0

and satisfying

(2.2)

See[13, 42] .

We write VV2 not Was we weight each Pn = Pn (W2, x) by W. It is well known that Pn has

11



n real zeros (Xj,nYj:=l and we order them as follows

(2.a)

Now for each 1S j :::;n, let us define the fundamental polynomials of Lagrange Interpolation

by

(2.4)

satisfying

(2.5)

Then for a given [ : R --~ ]g, we define the Lagrange Interpolation Polynomial of degree

:::;n - 1 to [by
n

L~[[](m) !== E.f(X:i17~) lj,71 (x).
:i=1

For large classes of Freud and ErdCi'sWeights, mean convergence of Lagrange Interpolation

is an extensively researched and widely 'sttldied subject, We survey some of the literature but

(2.6)

refer the reader to [33,35,41,44) fair mare on this subject, and its corresponding analogue on

finite intervals.

We begin with the following form of the Erdos-Turan Theorem as extended by Shohat,

See[13, chapter 2, pg 97] .

Theorem 2.1.1. (Erd8s-Turan) . 11 1; R ---t R is Riemann integrable in each finite

inter'val and there exists an even entire function G wit'h all non-negative Macla:Lwin series

coefficients such that
lim p (x) == 0

l;ul-+oo G (x)

and k G(x)W2 (x)dx < co.

Then

(2.7)

12



Remark

FOT "nice" weights W like Wk,a and WA,p, Theorem 1,5.1 allows us to choose G with

So that we can ensure (2.7) holds if

lim (JW) (x) (1 + 1:z:l)t+} == O.
1:1:1-400

(2.8)

2.2 Mean Convergence for p ¥ 2 for Freud Weights

P. Nevai and his P~..O~.student, SoBonanj essentially completed the study for the Hermite Weight

defined in (1.3). Nevai [45] proved:

Theorem 2.2.1. Let f :~ ---t lR be continuous with

lim f (x) (1 + I·tl) W? (x) = O.lxl-foo

Then J01' every p > 1, if Ln [f] denotes the Lagrange interpolation polynomial of degree 5
n ~ 1 to f at the zeros of Pn = Pn. (W2, x) ,

lim II(J ~ Ln [j)) WilL (IR:). == O.n-4oo p
(2.9)

M07'eo'Uer, if (2.9) holds jO'r some weight Wand for every continuo'us f with compact s'upport,

then W satisfies [~lPi . w2 ($) da: < 00,
Jill: 1+ Ixl

so that W is guite close to W2•

8..Bonan in his Ph.D, thesis, obtained precise necessary and sufficient conditions for the

Hermite weight, as well as obtaining result ...fOT the generalised Hermite weight
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Here is one of his results for 'Y= 0 (1J.

Theorem 2.2.2. Let Wz (x) == exp (~~f).Let f : lR --+ 1R be continuous and let

Ltl. [fJ be the Lagrange Interpolation polynomial of degree :::;.n - 1 at the zeros of Pn =
v« (W~, x) .Then if

we have for 0 < p < 00, and

1~1 O<p<4p

~+3~ p>4

lim 11(1 - t; [f]) W~ (1 + Ixl)°ll = O.
n~oc> Lp(JR:)

A. Knopmacher and D.S Lubinsky) on the other hand, deduced sufficient conditions for mean

convergence for a large cIa.58 of Freud weights including W (x) :== exp (-f') , m = 2,4,6 .. [19] .

2.3 Necessary and Sufficient Conditions for Mean Convergence

of Lagrange Interpolation for Freud Weights.

The possibility of obtaining identical, necessary and sufficient conditions for mean convergence

of Lagrange Interpolation for large classes of Freud and Erd~'3 Weights, arises from the correct

bounds for the orthonormal polynomials, together with the asymptotics and distribution of

their zeros, obtained recently by E.Levin, D.S Lubinsky and T. Mthembu[24, 26]. D.Matjila

and D.S Lubinsky tackled the Freud case[33]. For notational simplicity, we recall their main

result for W,. (x), 'Y> 1 given by (1.2) .

Theorem 2.3.1. Let W (a:) = W1' (a:) = exp (-1;1'1') f 'Y > 1. Given f : lR --+ ~ I

let Ln [f] denote the Lagrange Interpolation polynomial to f at the zeros of Pn (W2, x). Let

14



1 < p < 00, ~ E ~ , Il' > 0 and

r ~=~- min (I,ll') +max (01 ~ (1- ~)) .
Then jl,w

to hold for every continuous f ;~ -7)g soti., ling

lim ([HI) (x) (1 + IxIt = 0,
Ixl~oo

it is necessary and sufficient that

(1) ~ > r if 1 < p :::;4

(2) b.;> r if p > 4 and Il'= ].

(3) Do? r if p > 4 and Il' =1= 1.

2.4 Necessary and Sufficient conditions for Mean Convergence

of Lagrange Interpolation for Errlts Weights

In describing analogous results for Erdet'.!Weights, we need a class of weights W2, for which

suitable bounds are available for P'rL(W2,) • These were found in [26] and Lp analogues in [31].

2.5 Statement of results

For our purposes, the following subclass of weights from [26] is suitable:

Definition 2.5.1. Let W := exp (-Q] , where Q : IR--~ ][( is even, continuous, Q(2) exists

in (0, (0) and the junction,
* xQ(2) (:l:)

T (x):= 1+ Q(1) (x) 12.10)

is increasing in (0,00), with

lim T* (x) = 00, T" (0+);= lim T* (x) > 1.
x--too x--tO+

(2.11)
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c < T* (x) <_c., X >_ ('3
'1 - :cQ{l) (x)

Q(:t)

(2.12)

l'1,ndfor e1Jery e > 0

T* (x) = 0 (Q (xy) , X ---+ 00. (2.13)

Then we write W E Ej.

The new restrictions over those in [26] are (2.13) and Q ~ O.The latter is easily achieved by

:replacing Q by Q+ IQ CO) I . The former is needed in simplifying the formulation of our theorems.

We note that the restriction is a weak one, since one has typically for each. e > 0,

T* (x) = 0 (logQ' (x)) 1+,;; x -+ 00.

In fact, one can show that for any weight W satisfying our conditions except possibly for

(2.13) we have,

satisfies

1 dxO--+
E,. x '

r -+ 00 l32].

Here meas denotes Lebegue measure.

The principal example of W = exp (-Q] E Ei, is Wk,a = exp (-Qk,a) given by (1.4) with

(V > 1. For this W,

[

k /-1 ]
T* (x) = T;;,Ct(e) = a 1+ xa 2: IT eXP.i(xC\') ,x ~ O.

/=1 j=l

(2.14)

Here (2.12) holds in the stronger form:

. T* (x)
lim ~Q(l) =1:t..-.+co x x

Q ::r:)

(2.15)

and (2.13) holds in the stronger form

16



(2.16)

We remark that here,
k

1'* (au) rv IIlog, (u) .
j=1

(2.17)

For (l! S; 1, the second part of (2.11) fails, but this can be circumvented by considering

Wk,y (A + :v2) , with A large enough to guarantee T* (0+) > L

Another more slowly decaying. example of W = exp [~QJ E £i is given by WA,E (x) for

which

T*(x) == ./:~1;2Log~A~:X2)+J3{log(A+x2)t-1J + A:;A:v2'

Again (2.12) holds in the stronger form, (2.15) I while (2.13) holds in the stronger form

(2.18)

11m T* (x) log x == (J.
:>;0...-)-00 log Q (x) (2.19)

We begin with our first result for 1 < p < 00.

Theorem 2.5.2. Let VV :== exp [-Q] E £i. Let Ln [.] denote the Lagrange Inierpolation to

f at the zeros of P« (W2
,.). Let 1 < P < 00, ~ E ~ I K> O. Then for

limllu - i: [/D W (1+Q)~All. ( = 0
11.0...-)-00 Lp ~)

(2.20)

to hold for every continuous junction f : JR:. .__.., R satisfying

(2.21)

it is necessary and ,qujficient that

~ > max {o ~.(.!.- .!.)}'3 4 P • (2.22)

At first, the choice of the extra weighting factor (1+Q) in (2.20) may seem rather se-

vere. After all, Q grows faster than any polynomial. However, even if f vanishes outside a fixed
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finite interval, we need such a factor if »> 4.

Theorem 2.5.3. Let l'V, Ln be as above and p > 4. Suppose that measurable U : lR~ JR:

,~atisfie$

(2.23)

Then there exists continuous J : lR -+ lR vanishing outside [-2,2) such that

(2.24)

So for p > 4, no growth restriction on f, however severe, allows us a weighting factor weaker

than a power of 1+ Q. One can formulate versions of 'I'heorein 2.5.2 for p > 4 that involve

.6. = ~(~- ~),and then one has to introduce extra factors in (2.20), such as negative powers

of 1 + ixl and negative powers of T* or log (2 +Q). Unfortunately, one then needs extra

hypotheses. on T* to avoid very complicated formulations. One of the complicating features

here, is that T* may grow faster than any power of Ixl (as in (2.14) for k :2" 2) .Iike a power of

x (as in (2.14) for k::::: 1), or slower than any power of Ixl (as hi (2.18)). Moreover, one has to

compare T* to log Q . We spare the reader the details.

For p :5 4, the weighting factor 1+Q is unnessesarily strong. Indeed, Theorem 2.5.2 does

not extend the classical Erdt~"-Tur~n theorem, i.e, Theorem 2.1.1 for p - 2. Following is our

extension.

'I'heorern 2 .•5.4. Let W ::::::exp [-QJ E E;. Let 1 < p < 4, and Q E lR . Let L1' [f] denote

the Lagrange. inte1']Jolating polynomial to f at the zeros of Pn (W2, .). Then the following are

equivalent.

(a) For every continuous f ~JR ~ lR with

lim If (:v) IW (x) (1 + 1:z:lt :::::0,
13)1-1-00

(2.25)

we have

lim IIU - L~[f]) WIILp(lR) = O.
11-1-00

(2.26)
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(b)
1

o > +',

p

Thus our result extends Theorem 2.1.1 for a: > ~.

(2.27)

We next show that Theorem 2.5.4 is sharp in the sense, that Wecannot insert any positive

power of 1 + Ixl inside the Lp norm in (2.213), at least when ex> t.
Theorem 2.5.5. Let W ::::::exp [-Q] E £i. Let 1 < p < 4 and 6. E JR.. Then the following

are equivalent:

(a) F07' e'/lery (\!'> i and every cMttinuou,q function f :R ---t R satisfying (2.25) , we have

lim 11(1- t; [1]) (m) W (x) (1 + Ixl)~11 == O.
n-too Lp(lR:)

(2.28)

(b)

(2.29)

What. about a sharp form for p :::::4? The following points the way.

Theorem 2.5.6. Let W :== exp {-Q) E Ei. Suppose that a measurobie function U : lR

---t R ,qatisjies
-3 I

lim U (x) xT (log Q (x))i :::::00,
:c-too

(2.30)

Then there exists a continuous function .f : R -+ ~ vanishing ouWde [-2,2], such that

(2.:n)

If, for example, Q (x) grows faster than exp (x3+~) .some e > 0, then Theorem 2.5.6 shows

that we cannot choose U ;::;1 and hope for convergence. So there is no analogue of Theorem

2.5.4 for p::;:: 4. However, it seems that a negative power of log Q, rather than the 1+Q required

for p > 4, will allow some analogue of Theorem 2.5.2 for p::;:: 4.

We note that with more work, we can replace continuity of f in Theorems 2.5.2, 2.5.4 and

2.5.5 by Riemann integrability and we can replace, in The-vrems 2.5.4 and 2.5.5 (1+ Ixl)Q ,a: >
~, by (1 + IxDt (log (2+ Ixl))~+E , some e > 0, (and so on) .

19



Furthermore, the methods of proof of Theorem 2.5.2 and 2.5.3 1'(~1y' heavily on estimates

and results of [26,31], whereas those of Theorems 2.5.4-2.5.6 rely on [20,21,26,311.

2.6 Some more notarlon

'I'he nth Christoffel function for a weight W21s

(2.32)

The Christof lel or Cotes 'numbers are

The fundamental polynomials tjn of (2.4) admit the representation

1 () 1'1l-1 pn (:1:)
j1l Z = Ajn--Pn-l (:I)j,n) . •

Itl X - a:j,7I
(2.:34)

The reproducing kernel for W2 is

n-l
tc; (~,t) = I(71 (W2, Xlt) == 2:pj(x) Pi (t)

j=O
171-1 Pn (x) P»-1 (t) - P1I (t) Pn-l (x)

- -:y:- (tv - t)

(2.36)

(the Chrlstoffel-Darboux formula).

Given measurable I :R --+ lRwith f (a:) miW2 E L1 (IR) 'l/j 2: 0, the nth partial sum

of its orthonormal expansion with respect to W2, is denoted by 8n [I] (x) I and admits the

representation

s, [1] (:z:) == j~1(11 (e, t) f (t) W2 (t) dt. (2.:36)

20



We introduce. the Hilbert Tra.nsform of!J E L1 (JR) by

(2.37)

which exists a.e. [49] .

We may then use the Christoffel-Darboux formula for 1(n (m,.t) to rewrite (2.36) as

(2.38)

Finally, we define an auxillary quantity

(2.:39)

This quantity is useful in describing the behaviour of Pn (exp [-2Q]) neal' Xl,tl.. For example.

1
Xl,l; - 11 < L6n•

an(Q) - 2 (2.40)

Here L is independent of ti.

We often use the fact that 671 is much smaller than any power of TOlan) (see Chapter 3') .We
also use the function

Ixi r [* ( )1- _. + LUn I T an
an

(2.41 )'If" (xl :=max{

and set

(2.42)

This function is used in describing the spacing of zeros of hIthe behaviour of Christoffel

functions and so on. Finally, we adopt the following conventions: Set

(2.43)
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(2.44)

and

(2.4.5)

Also, in proving our quadrature estimates, We use

{ }

1
. '. 1. Ihnl. I Ixl -4"
!i,n (x) ::::;nun ']'1 '( • , . 2 [.11 - -I+ L8nJ

31n X - xJ,n) a"
(2.46)

and the characteristic function of 1j,1)

X;,rt (.) := X'i,n (,,) :'" { 1,. EI; .,

~ !}, (l) ¢ 1j,'1

(2.47)
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Chapter ;3

Technical estimates, Hilbert

Transforms and Qu.adrature

Throughout this chapte, let W E £;.

3.1 Technical Lemmas

In this section, we gather technical estimates from various Sources. We begin by recalling a

number of estimates from [26j .

Lemma 3.1.1. (a) Uniformly for n?: 1and Iml ;:; an

(3.1)

(3.2)

and uniformly for n ?: 2 and 1;:; j ;:;n - 1

(3.3)

(c) For n?: 1
1

sup IpnWI (x) .ll_1x1Ii tV a;~
xElR an

(3.4)
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and

(d) Let 0 < p S; 00, K > O.There exists C > 0 such that for 11, ~ no and P.,~E P«

Moreover, given t: > 1, there exists 01> 0 such that for 1~~ no and Pn E Pn

(e) For 11, 2: 1
1'n-l-. -- '" an·
1'n

(f) tJ niformly for 11, 2: 2 and 1 $ j $ n ~ 1

and

Here, L is chosen so large enough that (2.40) is true.

(g) Uniformly for 12 ~ 2 and 2 $ j $ n~ 1

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(:3.10)

(3.11)

Proof. (a) This is part of Theorem 1.2 in [26, p 204].

(b) (3.2) is part of Corollary 1.3 in [26,' p.205] . We note however that the proof there actually

establishes
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which is the more difficult part of (3.2) .T'he easier converse inequa ity

is not discussed in [26], but requires only a little extra effort. Next, (3.3) is Corollary 1.3

in [31] (A weaker form of (3.3) appears in Corollary 1.3 in [26]).

(c) This is Corollary 1.4(a) in [26}.

(d) This is Theorem 1.5 in [26, p206]. We note there is a minor oversight in the proof of

Theorem 1.5 in [26], for 0 < p < 00. The proof in [26, pf231- 236] correctly shows that

with C independent of nand P. To estimate IIPWIIR \[-(14n ,a4.~),an appeal is made to Lemma

2.5 in (26, p.215] , and unfortunately that lemma is incorrect. It should actually read as follows:

For r > 0 and s » 1, n .~ 1 and P E P«

The assertion is easily proved using the method of [26, p:'1.231] .The case r ::::0 gives (3.7).

(e) This is (10.33) in (26].

(1) (3.9) is (9.9) in (26] and (3.10) follows immediately from (3.9) .

(g) This is Corollary 1.4(b) in [26].0
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vVeinclude a full proof of (3.2) and (3.6).

The proof of (3.2)

Note that Wealready have

For the converse inequality one needs the following:

If J{ > 0 is large enough, then for n large enough and R E P2n'

J IRIW2(x )dx S; ~ J
Ix I2(/.,,(1+K8 ....) 1:z;I~a,,(1+K8,1)

This follows by using (4.18) of [26]and the method of Theorem 1.5 in [26].

Then,

(
' J (an(1 +. J{0n) -.X)P(X)W2(X)dX)

> 1. • f Ixl~a ....(1+l(c5/l) > 0- ln • .. EJ
- 2 PEP2'1l-2 J P(x)W2(x)dx -

P20 rnt

The proof of (3,,6)

First note that under more general conditions on W (see part II), we have VP E 'Pn
and s > 1,

IIpvV11 Lp(lxI2a s n ) S; e~Cl nIT(a ....)1/21IPWII Ll' (1:z;I::;a,.....)·

Then as in the proof of Lemma 2.5 in [26],we deduce that
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Next, we recall some results from [30,31], involving mostly the fundamental polynomials

of Lagrange Interpolation.

Lemma 3.1.2. (a) Let 0 < p < 00. Then for n ~ 2

(:5.12)

,p<4.
I

(logn)4 IP == 4
2 (I I)(nT* (an))3 :r-p- .v > 4

(b) Uniformly for n ~ 1, 1 $i i ~n, X E lR

(c) Uniformly for n ~ 1, 1 $i j ~n, x E p,.

(3.14)

(d) For ti ?: 2, 1 $i j ::; n - 1, x E [Xj,n Xj+l,,.]

(3.15)

Proof. (a) This is Theorem 1.1 in [31J.

(b) and (c) . These are Theorem 1.2 in [31].

(d) is a special case of the main result in [30}.0

Next, some technical estimates on the growth of uu,Q (au) , T* (au) ect.

Lemma 3.1.3. (a) Given r > 0, there exists Xo such that, for :/; > Xo and j -

O 1 2 Q(i) {x}.. .• ( )
, " x" 15lUcreasmg In Xo,OO •

26



(b) Un! ~)nllJy for u ~ G and j == 0,1,2,

(3.16)

(c) Let 0 < 0: < (3. Then, uniformly for u 2: C, j = 0, 1,2,

(3.17)

(d) Given fixed r > 1
aru log 7' ()
- ..- ~ 1+ T*( ~)I U E 0,00 .au aru

(3.18)

Moreover,

aru rv au u E: (1,00) • (3.19)

(e) UnIformly for t E (C, 00)
a~ 1- ,.....;_-------
at tT" (at)

(1) Uniformly for U E (C, 00), and V E [~, 2u] , we have

(~{'20)

(3.21 J

Proof. (a) This is lemma 2.liii in [26, p207].

(b) - (I) are part of Lemma 2.2 in [26, p208 - 209].0

Our final lemma in this section concerns estimates that specfically follow from (2.13) . Recall

"hat 871 was defined by (2.39).

Lemma 3.1.4. (a) Let e > O.Then

(3.22)

(b) Given A> 0, we have

(3.23)
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(c~Let 0 < 7) < 1. Uniformly for n :2: 1, 0 < Ixl ::;CLt)n) Ixl= a.nwe have

(3.24)

Proof. (a) From (3.16) for j = 0, we have

Since Q grows faster than any power of x (Lemma. 3.1.3 (a)) ,we deduce

a < nl!;n_

for n large enough.

Also (2.13) then shows that

(b) This follows as

that is 81t decays faster than a power of 1t, while T* (an) grows slower than any power of n.

(c) Firstly if ~ ~ ~, then

T* (x) (1 ,- Ixl) ~ T* (0+) l > ~.
an 2 ~

If ¥.;!- 2:: !,write Ixl = as,so that s ~ nn. Then

by Lemma 3.1.3(d) .
So we have the lower bound in (3.24). We proceed to the upper bound. We can assume that

x = as, e :2: 1, and n 2:: no. Then using the inequality

1 - U :$ [logul , u E (0,1),
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we obtain

Ilog asl =In ai dt
an -: s at

in dt 0 nOn
S; G s a- (at) S; T* (as) log:; = T* (x) log ;.0

3.2 The Hilbert Transform

We begin by recalling the definition of the Hilbert transform of agE L1 (~) given by (2.37).

H [gJ (x):= lim 1 9 (t) dt.
f;~O+ Jlx~tl;:::e :z; - t

It is well known that 11 is a bounded operator from Lp (R) -7 Lp (R) ,1 < p < oc [49J.

In the 1970's, B.Muckenhoupt, while investigating mean convergence of orthogonal poly-

nomial expansions for the Hermite Weight given by (1.3), initiated the the study of the

bounded ness of the Hilbert transform between weighted Lp spaces. This lead Ultimately to

his Ap condition which We will state without proof as it will be important in what follows.

Theorem 3.2.1. [Muckenhoupt's Ap co:ndition)Let U : R ----* [0,(0) be measurable, 1 <

P < 00 and g = t!:r. Then

(if :302 such that j01' every interval [a, b],

(3.26)

Here c-, 0;, :/= 01,02 (1) .

We now present two lemmas on bounded operators. The first is adapted from a result in

Konig [21] and the second, essentially appears in 1970 papers of Muckenhoupt [41) p449 - 451) and

later in Konig's paper[21], but is of course implied by results all the weighted L1' boundedness

of Hilbert Transforms such as Theorem 3.2.1.
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Throughout we adopt the notation

. 1

IlgIILp(d/.l) := (In Iyi" dJ-L) P

for J-Lmeasurable functions 9 on a measure space (G1, /1) .

Lemma 3.2.2. Let 1 < p < 00 and q := pfr. Let (0, J-L)bea.measure space, k, r : 02 ~ R

and

Sk[f](U) :=1 k(u,v)f(v)dJ.l(v)n . (3.26)

for fl' measurable f .Q --7 R .

Assume that

sup1lk (u, v)llr· (u, vW dp, (v) :S M.
u n

(3.27)

sup1lk (tt, v)llr (u, v)I-P dp, (u) ~ M.
1) n

(.3.28)

Then /:h is a bounded operator from Lp (dJ-L)to Lp (dp,) .

More precisely,

(3.29)

Proof. We sketch this,' as no proof is given in [21.],though such lemmas are standard. First

use the dual expression for the Lp norm of Tk [f], then Fublni's theorem and finally Haidet's

inequality to show that

where the sup is taken over all 9 with IInIlLq(d/.l) '='': 1.

Let us call the sup J . So we must show that. J is bounded by M. Using Holder's inequality on

the inner integral in J gives

lin k (u, v) 9 (u) dJ-L(U)r

< [In Ik (tt, v)llr (u, v)I-P dJ.l (u)j ~~ I~;(u, v)llr ('u, v)lq Ig (u) Iq dJ-L(u)
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5 M* r Ik {u, v)lIr {u, V)19 Ig (uW df.t(u)in
Substituting this into J and using Fubini's Theorem gives,

I

J 5 M~ sup[llg {uw ilk (u, v)llr (u, 1)W dll (v) df.t (U)] q
9 n fl;

I I
5 MpM'i== M.D

Lemma 3.2.3. Let 1 < p < 4. Then

(3.30)

Here (f is independent of 11, and g E Lp (JR;.) •

Proof, The proof appears with at~== ~+2 in [21) .but we sketch the ideas of the proof

here. Consider the operator Sk given by (3.26) with

[
I )IJLI4 - 1

k (u v) :=. 1£, (u - v)

I

Using r (u, ?" :== I;;.p;~.where q :=p,Lemma 3.2.2 CG~nbe used to show that Sk is bounded

from Lp (JR) to Lp (JR). Comparison of Tk and the bounded operator H show that

is bounded from Lp (JR) t.o Lp (JR) .

Replacing u by an ± u, and v by an ± u, easily gives the result.D

Our final lemma ill this section concerns bounds on the difference between (:r.-;1.
n
) and tho

Hilbert transform of a weighted characteristic function. Recall the notation (2.45 - 2.47) for

Ij,n, fj,lI and 'Xj,n' In particular, recall that

{ }

-1
. . 1 IIj,lll . Ixl T'

/j,1I (x) .== mm -11'1' ( . )2 [1 - -~ + L8n]
.1,i1. :l; -_ Xj,7I an
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Lemma 3.2.4. Uniformly for n ~ 1 and 1 ~ j ~ n and x E [Xn,nl Xl,n)

Tj,tt(x):==alIPn(W2,x)W('V)11 _1. -II~IH[Xj,n](x)I~C!;,n(x). (3.31)
X xJ,n J,n

Proof. The idea already appears in (21]. Note first that

(3.32)

We consider two ranges:

Case 1: Ix - :l:j"d ~ Zllj,nl. Using the inequality [t+log(l-t)1 ~ t2, It I ~~, we see thct

== _1_' Ihnl + log [1_ Jlj,nl] I
IIj,nIIX - Xj,TI x - Xj,1>

~Ij,nl< 2 •(x - Xj,n)

Next, the bounds (3.4) I (3.5) show that. uniformly in n and e ,

1. [I x I ] ~1aK IPnWI (x) ~ C 1- an + LOn (:3.33)

So, We obtain the result for this range of x.

Case 2: Ix - xj,nl ::; 211j,1I1.From the identity

1 1

aK (PnW) (:z:) == (lj,nW) (x) w-1 (Xd,n) (a: - Xd,7t) aK (p~tW) (Xd,n) I

(for both j and j - 1)

and from (3.3), (3.9), (3.11)1(3.14), we obtain for IXd,nl s 2 l/dl71 I ,2 ~ j s n

I

aK IPnWI (x) ::; C\/j,n (x) min {Ix - xd,nl, Ix - Xd-l,nl}. (3.34)

"For j == 1, this holds with the minimum replaced by Ix - x d,711 . Then for 2 ::; j ::;n
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Since l~i,nl2: Csmax{ix .....x.i.nl, Ix - xj-l,nl}, we see that with

I
x - Xj,n Iu·-

.- Xj-l,n .....:z;

we obtain for both signs of the exponent

As either 'IL or u-1 lies in [0,11 and t [log r] is bounded for t E [0,1], we have (3.31). It

remains to handle. the case j == 1. Note that for

(it is only here that we -ieed this restriction] withlx - x1,,.1 ::; 21hnl, we have

(See (3.2) , (3.3), (2.44), (2.45)).

Then instead of (3.35) ,W8 obtain

where a tv 1 independently of x, j and n. As Ix - Xl,,.l :::;C2ct,.o,., the boundedness of u [log 'ul
in any finite interval in (0,00) again gives our result.D

3.3 Some Quadratll.:re Estimates

Estimating certain sums by means of integrals is very crucial in the study of mean convergence

of Lagrange Interpolation. These sums involve the product of the Christoffel functions, pth

powers of polynomials, (1 < p < 00) and certain functions taken at the zeros of the orthonormal

polynomials. The simplest form of a quadrature sum is the well known Gauss-Jacobi quadrature
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formula,

(3.36)

Of course, the measure do: ::::;W2 (t) dt can be replaced by more general measures [13] ,

For applications in the study of mean convergence of Lagrange Interpolation, the most useful

quadrature sum estimates are those of the form

o < p < DO and Pm E 'Pm1where C ::::;C (a,p) often depends on some function of m and n. These

types of inequalities have been investigated by many including: Nevai, Lubinsky, Mate for the

generalised Jacobi weights, Shi, for weights on finite intervals and Lubinsky and Matji1a, for

Freud weights.

We present two quadrature sum estimates, the first of which is 1 sally part of a Lebesgue

function type estimate. 'I'he second involves quadrature S11ms for nn!.rnomials.

En (x) := .L Ilk,lt (x)1 W-1 (aJf~,lt).
1;r:I:,nl~Cl"'n

(:3.:37)

We have for lxl s af}E. and Ix! ~ a2n
2

(3.38)

Moreover, for a!E.l S Ixl S a271
2

(3,39)

Proof. Let E~ (x) denote the sum :Dn (x) omitting those terms xk,n for which 3' E

f:rk+2,lt ,:!lk-2,n], (if there are any such k) . Here and the sequel, we set for 1 ~ 1

(3.40)
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Of course the SU'm En -!;~ consists of at most 4 terms ..Each of these 4 terms admits the bound

in Lemma 3.1.2(c) . So

Next, by (3.3) and (3.13)

(3.41)

I

(E~W) (x) f'<J uk IPnWI (x) L;iXk,nl~afln (Xt~?I-=X~~:,~in)(1 _ Ix:: I + LOn) 4" • (3.42)

Now (cf. (3.9))

Similarly we bound (:Z::~,nl.So

In view of the spacing of the zeros (Lemma 3.1.1(b)),we deduce that

Note that since Oil is much smaller than T.(4n) I

(See Lemma 3: .·Cr)).

J5

(8.44)

(3.45)



Then we obtain the hound

(~~W) (:u) 5. Ca~ IPnWI (a:) T* (a,.rot J l.s ~$ax"I
~$lsI9

111- ~"nI;::G~\lI,,(x)

Now if 05. :u 5. a~ or x 2:: a21l1 then for n 2:: 'fl.O! we can bound the integral by
2

by Lemma 3.1.3(f) . In this case the bound (304) gives

So we have (3.38). Now let us turn to to the more difficult case where an!!. 5. :u 5. a2n' We
2

bound the integral in (3.45) as follows:

Now since *'J1T~(x) is bounded below by a power of 'fl., W~ see that
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If x. ;:::anI we estimate

If x < a7tl we make the substitution 1 - s = (1 - :J V to get

Combining our estimates for h, 12 and using the bound,

which follows from (3.5) I we deduce (3.39) from (3045).0

In our second quadrature sum estimate, we need the kernel function for the Chebyshev

weight

(3.46)

If Pi(v; x) = ATi (x) is the jth orthonormal polynomial for v (at least for j ;:::1) I then

tt-l

I<tt (v, x, t) := :EPi (v, x) Pi (e, t),
j;::o

(3.47)

admits the following estimates([46] ,p.36], [[44] ,p.108].

Kn (e, x, :1:) N 11" Ixl5; 1 (3.48)
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a.nd . . .{. vr:. x2 + VI - t2 }11\.71 (v, x, t)1 :5 C nun n, Ix _ tl .. .' X, t E [-1,1] . (3049)

Lemma 3.3.2. Let 0 < 71 < 1. Let .fjl : 1R ->- (0, (0) be a. continuous function with the

following property: For n ;(.1, there exist polynomials Rn of degree :5 n such that

(3.50)

Then for n ~ no and Pn E 'Pn,

(3.51 )

Proof Essentially the proof is the same as in (35], and the ideas appeared much earlier

[44JI [45] but we include the details.

Step 1~An. L1 Christoffel function type estimate.

We first note that for P4Tt E 'P"" .1

(P4nW)2 (x) < A:1,~ (W2, x) W2 (x) J~(P41lW)2 (t) dt

:5 012:. ('l14n (a:)),",11
a4n

(P4nW)2 (t) dt,
atl -a~...

by Lemma 3.1.1(a) I (d).

We deduce that

and hence that for lxl :5 a4nl
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Now we apply this for fixed Ixl ::; a4n to

where P2n E P2n.
We obtain, using (3.48) that

In particular, applying this to P~n :== Pt,Rnl where Pn E 'Prn and using (3.50), weobtaln

(3.52)

Step 2: The general quadrature sum bounded in terms of a special quadrature

sum.
1

We take (3.52) for z :::;Xj,n! multiply by Aj,n W~2 (Xj,n) \II;J (Xj,n) I and sum over all IXj,n I ::;
ann. Using our estimate for Christoffel function An (W2,.) in Lemma 3.Ll(a) , We obtain

E Aj,7t IPt,W-11 (Xj,n) q, (Xj,n)
Ix),,,I:5a'ln

< 04r: IPnWwl (t) En (t) dt,

(3.53) .

where

(3.54)

Then the result. will follow if we can show

(3.55)

Step 3: Estimation of (3.55).
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First note that for Ixl ~ (l,lIn

This follows easily from the fact that 1 ~ ~ ~ 1 _.k;! ~ CaIT'" ((I,t,) for this range, Moreover,

for It I ~ a4n·

Let us set

Then Wehave, using also (3.49) and the spacing in Lemma 3.1.1(b) , that

11. I { Vl..- ;tP +v'f ~ T2}2::.;Ggn-1 -1 (1 - Iyl)-r min n, ... Iy _ TI l':dy.

In bounding the sum in terms of the integral, we have used (3.9). Let us assume that

(3.56)

1- n-2 ~ T ;:::O.Then we can continue the above as

1
En (t) (1 - T)4 < G\On,-l
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(substitution 1 - V = (1 - T) w)
1

<. eu (l-TF·

Here We have used the fact that

So in this case, Wehave (3.55). In the remaining case where 1 ._ 11,-2 :s; T < 1, we continue

(3.56) as

1

Since 6~ decays scarcely faster than n-i Weagain have (3.55) .0

3.4 A Converse Quadrature Sum Estimate

In this section, we prove a converse Quadrature type estimate that will be needed in proving

Theorems 2.5.4-2.5.6. The proof follows that of a.Konig in (21) . We prove:

Theorem 3.11. Let 1<v < 4. There exists C> 0 such tha.tfor 11, ~ I and r; E Pn'~l

1

II?" WIILp(lR:) 5c{t Aj,.W-' ('j,,,) IP"WI' (Xj,,,)} P
.1=1

(3.57)

Our proof of Theorem 3.4.1 follows that of H.I(onig. "lYe shall divide the proof into several

steps: In the sequel, we shall use the abbreviation

(3.58)

(See (3.1) and (3.3)).

Step 1;Express PnW as a sum of two terms.
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Let P,t E P11-1' We write (recall (2.47))

n
(PnW)(x) :::: (Ln [~l] W)(x) =EP11 (Xj,n) (lj,nW) (x) (3.59)

)=1

1. . n {II')
- al~ (PnW) (x) Ey},?! . _ . - -II' -IH[Xf,n] (x) r

i=1 :r. :Zb,n .1,11 J

+.~(PnW)(,J H [~Y;,n 1;:':1] (i)
= : Jt (x) + J2 ex) .

Here

(3.60)

Note that in view of the behaviour of the smallest and largest zeros (see (3.2)) and in view of

the infinite-finite range inequality (3.6), it suffices to estimate IIPnWIIL [x ~ 1 in terms of
. P . 11,n I "'-'l,n

the right -hand side of (8.57) .

Step 2: Estimate IIhl!
We begin with h as it is easier to handle. Using our bound (304) for Pn) and then the

weighted boundedness of the Hilbert transform in Lemma 3.2.3 gives:

. -1

IIJ II < C ~ YJ'enXj,n (x) .11- IwllT
. 2 L}>[xn,,,, Xl,n) -. L.... II 1

j:::::1 j,n an
Lp(R)

- C1 [t {1.y~,ttl}P f 11 - Ixll={'- d.] ~
5=1 II3,nl hj,n an

Using the spacing (3.3) and also (3.9)) one deduces that

Next, from (3.60) and (3.11) , we see that

(3.61 )
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1

IIJ,IILp("" •<> •• 1 < C, ~ Ifi .•1JP..WIP (Xi,.f
< c", It,Ai,"W-' (Xi.,,) IP.WI' (xi,.) J ~

by (3.58).

Step 3: Estimate J1.

By Lemma 3.2.4,

'I
IJ1 (x)1 ::; C4 L IW,nl fJ.,! (x) , x E [xn,n, Xl,n]'

j~l

Then
r p 1

f)" n] } P
IIJII1Lp[xn,n,xl,n] ::;(l2.~. j ·l;~:.!ll-i,ni h,71. (x) dx

k=.. lk,n .1=1

Now using the spacing (3.3) , (3.9) and the definition (2.46) of li,n, we see that

uniformly in nand j =I- k.
We deduce that

where

and by (2.46)
1

5,:= {t,Iv.,.1' II".IH [I) - Ix:~.11H.t dxr
43 .
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Exactly as in the last part of Step 2, we see that (3.61) gives

To deal with 811 we use Lemma 3.2.2 with a discrete measure space. Using (3.61) and

(:3.58) ,we see that

where

bk,k :== 0 == bI,k Vk and for j i= k

bk,j ,~=ll:j,nI2-~ IIk'1tlt (Xj,n - Xk,n)-2 [11 _ I~::d1+ 6n] t [11 _ IX~1l11+ 8n] ~1

Note the order: bk.:i rather tban bi,k. Defining B := (bk,:i)~,j=l I we see that if l; denotes the

usual (little) lp space on )g 11, then

So the result follows if we can show that independently of n,

(3.64)

Step 4: We prove (3.64) .

This is far more complicated than the analogous proof for the Hermite weight [21J, because of

the more complicated behaviour of the spacing of the )'7,er08of the orthogonal polynomials. We

apply Lemma 3.2.2 with the discrete measure space n := {1,2, ..n} and JL({j}) = I, j ::::

1,2, ..n, Moreover, we set there

I

k (k J') .- l"k ,. rk ' .- (11;,71.1)\ pq
, .-, ',3' ,3'- 1/1>.nl .

Note that because of the way we order the variables (bkli rather than bi,k) ,the variable u in

44



t)

(:3.27) - (3.28) is k and the variable 1..1 in (3.27) - (3.28) is j. So (3.27 ~ ,3.28) become

(3.65)

and

Recall that given fixed f3 E (0,1), we have uniformly in 1 and n

(3.67)

and

(3.68)

(See (3.3) and 2.41).

To take account of this dual behaviour of 11/,'11.1 , we consider three ranges of Xj,nl Xk,n' It is not

difficult to see that w~ may consider only Xj,n, :Uk,11 ~ 0..

Range 1: 0 < XJ'"n Xk n < a2ll, . 4 f

Using (3.67) ,we see that if we restrict summation in the sum in (3.65) to j IXj,lll <
aan., then, the resulting v'm is bounded by a constant times

4

We make the substitution

t (( Xk'7~))1--== 1--- u
all an
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in this integral, and USE' (3.67) again to give

by (3.21) and (3,22).

Next, if we restrict summation in (3.66) to k : l:tk,tll :::;a3n, and we use (3,67), we see that the
4

resulting sum is bounded above by a constant times

The same substitution as before shows' that It.2 has a similar upper bound t, ,hat for ft.1
and hence, is bounded independently of i,n,

Range 2: Xj,70 :tk,n ~ a~.
Using (3.68) .we see that after restricting summation in the sum in (3.65) to j : Ia:j,lll ~

a!!., then the resulting sum is bounded by a constant times,
2

Similarly, after restricting summation in the sum ir: (3.66) to k IXk,nl;::: a~, then the



resulting sum is bounded by a constant times,

After swopping the indices, j and k, we see that this is the same as the sum just estimated.

Range 3: Qlj,H < alf and Xk,'It > aa:; or Xj,7! > a~. and Xk,7! < alf.

Here,

(See (3.21)). Also, given fixed small e > 0, we see that

(See (3.67) I (3.BS) ) (3.22) , (2.39)). Finally,

Then we see after suitably restricting the range of summation in (3.65), we obtain a. sum
bounded by

Similarly the sum arising from (3.66) is 0 (1) . So we have completed the proof of (3.64) ,0
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Chapter 4

Necessary and Sufficient Conditions

for 1< p < 00

4.1 Sufficiency for Theorem 2.5.2

In proving the sufficiency conditions, we split our functions into pieces that vanish inside or

outside [-(tV! a~ J. Throughout, we let xs denote the characteristic function of a set S. Also,

we set for some fixed /{> 0,

Throughout, We assume that W ::::exp [-Q] E E;, that 1 < p < 00 and

(4.2)

Lemma 4.1.1. Let {!T~}~:::lbe a sequence of measurable functions from ~ -+ ~ such

that fo1' n 2:: 1,

in (x) = 0, Ixl < an.;
9

(4.3)

(4.4)
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Then

(4.5)

Proof. Firstly for Ixl S (1,* at Ixl .2: a2711 Lemma, 3.3.1(with f3 = ~)and (4.3) j (4.4) show

that

ILn [fn] WI (x) S </>{a1f) L Ilk,n(x)IW"'l(Xk,n)W(X)
l:Ck,nl~l~f

< Cl</> (afi)·

So

IILn [fn] W (1+ QrAtp ((I~lsait)u(lxl~a2n))

S C1</>(alJ-) 1I(1+Q)-AIIL.p(~) SC2cP(att)

Here we have used the fad that Q grows faster than any power of x (Lemma 3.1.3 (a)) . Next,

for aft S Ixl S azn, Lemma 3.3.1 gives

Also for this range of e,

So

IIL1~Un] W (1+Q)-A IILp h~.Slxlsu2nJ

S G4cP (air) (nT* (an)-~) ~A {log n (a2r. - afs-) ~+ aKT* (an)-t IiPnWIILP(IR)}

S C5<b (a1}) (nT* (an)-t) -A (Jogn) (T*a(~n)) ~
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1
(logn)4

2 ·(1 1)(nT'" (an))3 :r-ji.

1
,p< 4 ~

1

1

,p:.::. 4

,p> 4

by Lemma 3.1.2(a) and Lemma 3.1.3(1) .

Since T* (an) and an grow slower than any por \tJve power of n (Lemma 3.1.4 (a)) , we see that

the right hand side .is 0 (1; (a~)) ::;::o (1) ,.because of (4.2) .0

Next, we deal with functions that v, h outside [-lt~ja~] . We separately estimate the

weighted Lp norms of their Lagrange lnterpolants over [-ai" (l,i'] and lR \ [--a]l-l a]l-J .
Lemma 4.1.2. Let {9n}::1 be a sequence of measurable. functions from lR --+ lR

such that for n ~ 1

gn (x) ::;::0, Ixl ;:::a~; (4.6)

(4.7)

Then

limllLn [gn] W (1 +Q)-AII [ ] ::;::O.n--+oo Lp 1:l:I>an.
- 8

(4.8)

Proof. For x > a.11.,
- 8

ILn [gn] (x)1 $ :L Ilk,n (x)1 W-1 (Xk,n) 1; (Xk,n)
l(1;k, .. l~a1t
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Here we have used the monotonicity of </> and (3.44). Next, for t E [0, a~] and x ~ air

.!!.n... 1a - t !!n. ~ 1 ~n. -Os -n--=l+~$l+ 8 ~ ~C3.x-t 1-- 1-
111 an

8

by Lemma 3.1,3(1) .

Moreover,

So

1

$ Gsa! IPn (x)1 ra~ (an - tF </> (t) dtJo x - t
< GsaK IPn (x)11U,t (x - t)~~ </> (t) dt.

Here if t = as, ~ ~ s ~ 1! we have for x ;:::a!j

So
I raIl 3

ILn [9n] (x)l $ G5a~2 IPn (x)I J
o

9 T* (t)4 </> (t) dt.

Thus

IIt; [9n] W (1 +Qrol11p [lxl2ulj J

s C9a~t [haft T (t) ~ </> (t) dt] Q (U!j) -4 IIPnWIIIJP(R) .

It is easy to see that the integral involving ¢ in the last right hand side grows slower than any

power of ti. Then using (4.2) and the estimate on IIPnWIILp(lll:) provided by Lemma 3.1.2(a) ,we

. obtain ~4.8) ,0

We now turn to the most difficult part of the sufficiency proof, namely the estimation of

IILn [On] W (1 +Qr..A IILP (Ixl$~ir] .
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We present the most technical part of this as a separate lemma. Recall the notation (2.35 ~ 2.38) f

the partial sums Sn [.]of the orthonormal expansions with respect to W2•

Lemma 4.1.3. Let a :R --"--t R be a bounded measurable function. Then, for n ~ 1

(4.9)

Here C is independent of a and n.

Proof. We split this into several steps. Part of the difficulty lies in that we cannot simply

estimate Hilbert Transforms in hwith the weight (1+QrA , as it does not satisfy Mucken-

houpt's Ap condition (see Theorem 3.2.1). We may assume that I[dIlLoo(JPl) = L

Step 1: Split S't [.](x) into sevenal terms depending On the location of x.

First note that by (2.38) and by our estimates for 'Y~;1and Pn (see Lemma 3.1.1 (c), (e)) ,

1

ISn [CT<pW-lll W (x) $Cta! (1- ~I) -4 .t IH[C7<ppiWJI (X). (4,10)
n 3=n-l

Now let us choose 1 := 1 (n) such that

(4.11)

Note that our choise of I = I (n) guarantees that

(4.12)

Define

(4.13)

The reason for this choice of intervals is that

(4.14)
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uniformly in k, For j - n - 1, si and 11; E B'k, Wesplit

H [cr4>PjH'] ,a:) _ [10+t:+p.V.1a~k+2+100
]O'4>PiW (t) dt

-r-oo 0 (1.210-1 . (12,,+2 X - t
- :It(x)+12(x)+13(x)+14(x).

(4.15)

Here P. V stands for principle value.

Step 2: Estimation of 11and 12 for x E £Sk.

We see that (recall x ~ a2)

1ft (x)1

Here we have used the bound (3.4), the bound for IIPItWIIL1(lR) in Lemm~3.1.2(a) and also the

form of ¢ (recall (4.1)), which guarantees that .

rOO ¢ (t) dt < 00.
10 1+t (4.16)

Next the bound (3.4) gives

Now

Thus
t

112 (x)ls Oia~t(l- ~)-4 log (GsT* (x)).
• a,1
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Step 3: Estimation of 14 for :z; E ;Sk.

Now using OUr bound (3.4) again gives

I

< ClOa;;-2" [1 + J] j

where

(We have used (4.16) and the bound on the Ll norm of PnW).

Here if 11- (Ltn I ::; ~ (1 - :J .then

Thus

Step 4: Estimation of' IIBn [.]IILp[$)<kl
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Combining our estimates for Ij j = 1,2,4 gives,

1

111+ Iz + 141 (a:) :5 C14a~t (1- :n)-:;log (C15T* (a:)) .

Together with (4.10), (4.14) and (4.15), this gives

!lSn [0"<PW-1] W (1+ Q)-~tp[£tkl
I

:5 Q (a.2k)-~ (1 __a~~l )-4
{(1- aZ:';l).- t log (CI5T* ((£2k+1 » (a2k+1 - UZk) i

X +at 'C""''I!'_llp.V.la2 ..k+2 (Tq,PiW(t)dtl'.}
n L....i.1-n··t a2/;-1 a:-t . Lp[£tkl

We Use M.Riesz's theorem on the bounded ness of the Hilbert transform from Lp (JR:) to

Lp (~) , (see section 3.2) to deduce that

II
p.v. razk+2 O"<PPiW (t) dtllP

Ja2k-l a: - t Lp[~kl

:5 C171::~:2 la<PPiWIP (t) dt

Next, note that, in view of (4.12), n ~ 2k+3 for k :5 1,so

Moreover,

Hence,

(4.17)
1

< G:wQ (ctzk) -~ T* (U2k) t log (C\5T* (a2"+1» (T*~~2'~»)P .
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Step 5: Completion of the proof

The estimation of Sn [.1 (x) for x E ~tsk = [-a2"+1 - az"] is exactly the same as for x. E

ts,l;. Since we have (4.14), and since a2k, T* (a;lk) grow much slower than Q (a2k) (Lemma

3.1.4 (a)) ,we obtain

IISnLa</>W-1]W (1+Q)-All:p [a2~lxl~at]

I

~ t;·IISn [O-¢W-1] W (1+Q).-A II~p[~l;r
I

""' -k".Do< C21 L...J 2 2 ~ C22.
k=l

The estimation of IISn [a¢W-l] W (l+Q)-A.II., is similar but easier.We splitLpdxl~a2]

1-211212a2hco a¢p.i W (t) .H[a¢pjW] (x) = [ +P.V. + ]-----dt.
-00 -2a2 2a2 a; - t

The first and third integrals ill r be estimated as we did before, and the second is estimated as

we did Js.O

Armed with this lemma, We can complete .he estimation of 171. [gn] OVer [-apn , apn] e.;

Lemma 4.1.4. Let e E (0,1). Let {g~} be as in Lemma 4.1.2, except that rather than

(4.7) ,we assume that

(4.18)

Then,

lin, sup IILn [qn] HI (1 +Qy-A II [ .] ~ CF..
n----l-C>O Lp Ixl~ai"

(4.19)

where C is independent of n, {Un} and c.

Proof. Let
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and

We shall show that

IILn (gn]W (1+Q)-AII [ ] 'f Oel[Sn [cr4>W-1]W (1+Q)-AII [. .] (4.20)
Lp 1a;I~aif· Lp IXI:$utf .

Then Lemma 4.1.3 gives the result.

Now using the orthogonality of t_.Sn [1] to Pn~l' and the Gauss quadrature formula

(3.36), we seetbat '

n
== f L7I [971] s; [hnJ W2 ==L)'j,n9n (Xj,n) 871 [hn] (Zj,n)JR j=l

L )..j,ngT~ (Xj,n) StL (hnJ (x,i,n)

< e I: Aj,ne/> (xi,T<)W··1 (:Vj,n) ISn [11.71] (zj,n)1
!xk.»!<aif

by Lemma 3.3.2.

Note that it is easy to verify the approximation property in Lemma 3.3.2 for 4> (in fact Jackson's

Theorem gives polynomials of degree 0 (n) satkfying (3.50)).

We can continue this as

= Oe k.4>a"W-1W2Sn[hn]

= c,k hnSn [4>anW-1) W2

= ce 1(£'1 hnSn (4)O"nw-1 J W2
-aif

for hn has its support inside l"-an. an.1 .a' a.J
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Using Holder's Inequality with q =A' we continue this as

1 1

< ce (L:: IhnW (1+O)af'r (L:: ISn [<PUnW-1J W (1+ 0)-" ['r
- c€ IlL" [gn] W {1 + Q)~A II;J~l[lxl~aifjIISn [s/>trnW-l] W (1+ Qf-A IILdlxl~a*l

Cancelling the (p - l)th power of !lLn ••.1I gives (4.20).0

We can now tum to:

The Proof of the Sufficiency Part of Theorem .2.5.2. Let I .R-r R be continuous

and satisfy (2.21). Let € > O.By Corollary 1.1.2, We can choose a polynomial P such that,

Ilu~P) W</r111 < E.Lt¢(~) -

Then, for n large enough,

lIu ~ L1~ [f]) W (1+ Q)-AIILP(~) (4.21)

< Ilu - P) W (1+Q)~AIILp(~) + lI(p - L1L [inW (1+Q)-A1ILp(~)

< e 11</1(1+ Q)-A ItL
p
(lR) + II ii; [P - I)) W (1+Q)-A IILp(lR) •

The first norm in (4.21) is finite as 6. > 0 and as Q grows faster than any power of e.

Next, let

Xn :== X [-a1j'l air]
and write

P - f == (P - f) Xn + (P - f) (1- X,,) =: gn +. In.

By Lemma 4.1.1,

lim IILn [fn] W (1 +Q)-AII ) = O.,,-too Lp(R

Also Lemmas 4.1.2 and 4.1.4 together give
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with C independent of c.

Substituting the estimates for Ln [fn], and Ln [g,:] into (4.21) and then letting € ___..-}0, gives

(2.20) .0

4.2 Sufficiency for 'I'heorem 2.5.4

Let f : R -+ R be continuous and satisfy (2.25) with a > t. We must show (2.26). Let

e E (0,1) .We can choose a polynomial P such that

11(1 - P) (:.1) W (x) (1+ Ixl)"IILw(lR) ~ c.

(See Corollary 1.1.2). Then for n large enough

II(l- L71 [I]) WIILp(mi)

< IIU - P) WIILp(lHl)+ IILn [P - f] WIILp(mi)

< r:: II (1+ Ixl)-o:IILp(R) + IILn [P - fJ WIILp(lR;)'

(4.22)

The first norm in the right-hand side of (4.22) is, of course, finite 8.,'5 ov :» 1. Next, Theorem

3.4.1 shows that for large enough n,

1

ilL" [P ~ fJWIILp(.) < C, {t,.\J,nW~2('j,.) I(P - f) WI' ('j,n) } ,

1

S C'2C{t IIj,nl (1+ IXj,n.I)-O:p} p
.1=1

< C'3c 11(1 + 1:rI)-o:IIL)(lR)'

Substituting into (4.22) and noting that the various constants are independent of s, gives the

result.D

4.3 Sufficiency for Theorem 2.5.5

As (1+ Ixi)A S 1 if b. S O,the limit (2.28) follows from (2.26).0
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4.4 Necessity for Theorem 2.5.2

Proof. Fix 1 < p < 00, 6.. ER ) /'-~> 0, 0 > 1+K and assume the conclusion of Theorem 2.5.2

is true; i.e. (2.20) holds for every continuous function satIsfying (2.21) . Let X be the space of

all continuous functions f :J~-+ ~ with

IIfilx := sup IJWI (a:) (log (2 + IxDl < 00.
xr-1R:

Moreover, let Y be the space of an measurable functions t.R -+ R with

Each f E X satisfies (2.20) , so the conclusion of Theorem 2.5.2 ensures that

lim IIf ...Ln [fJII)" = O.
7I->OQ

Since X is a Banach space, the uniform boundedness principle gives

Ilf -- i; (fJlh, :s; C IIfllx (4.23)

with C independent of nand f. In particular as L1 [f] ~ f (0) (recall that Pi (a;) = II (a;))l We

deduce that for f E X with f (0) ~ 0,

!Ifill' 50 IIfllx .

So for such f,
IILn [f)lly s 20 Ilfllx . (4.24)

Choose Un continuous in R I with Un = 0 in [0, (0) U (-00, -;}an], with
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For example, (gnW (~) (log (2 + 1:r.1))8) can be chosen to be piecewise linear. Then for z E

[1, art],

_ IPn (:r.)1 :E I(log (2 + l~j,nl»~O
xJ •.".E(' ~a",O) IPnWI (Xj,») (x + IXj,'li)

1

> Gla~ Ipu (x)1 (logantO a~l L (Xj,n - Xj+1,7L)

(by Lemma 3.1.1 (g) and (b))
1

> C2a~ IPn (:z:) 1 (log.an)-O .

Then by (4.2'4) ,

2C =: 2C IIgnllx ~ IlLn (gnlily

~ C3(/,* (logan)-81Ip11W (1+Q)-AIILP[1,i1
n
J

,p< 4

Here we used the monotonicity of Q, Lemma 3.1.2(a) and Lemma 3.1.1 (d). Note that

[--1, 1J does not give a big contribution to the Lp norm of Pn l-V . We obtain a contradiction if

D. ::; 0 ,for all p, So, D. > O. Also, for P > 4, we obtain from Lemma 3.1.3(b),
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Since the terms invovlng an and T* (an) grow to 00 with n, we see that necessarily

~» ~(~-~).o
3 4 p

4.5 Proof of 'Theorem 2.5.3

This is similar to the previous proof. We let X be the Banach space of continuous functions

f :R ---t R vanishing outside (-2,2], with norm

IIflix := II/lIr-2,2) .

We let Y be the space of all measurabl= .f : R ---t R with,

II/Ib,· := IlfWUflLp < 00.

Assume that we cannot find f aatisfying (2.24). Then the uniform boundedness principle

gives (4.23) for all .f .EX. Agaln, when f (0) = 0, we obtain (4.24) . We now choose 9" EX, with

IIUnllx:::: 1,

(UnW) (Xj,71) sign (P~l'(Xj,n)) :::::1 , Xj,n E [~1 __.1]
, 2 '

Un= 0 in (-00, -2] U (0, (0)

and

gnW (Xj,n) sign (p~t(:tj,n)) ~ 0, Xj,n E [-2,2].

Much as before, we deduce that for :t ~ 1,

Also by hypothesis, there exists C1 and C2 such that,
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Hence by (4.24)

2C - 2CIIgnlix ~ IILn[gn]lIy

> C111£11. [un] (a:) W (a:) x~~~C), (a:)-Ht-*)II
Lp[C2,an]

~ c2a!'~~Q{an)~Ht~*)lIpnVVII[ ]
Lp aq. an

much as before, by Lemma 3.1.2(a) and (3.4). Of course this is impossible for large n and we

have a contradiction.O

4.6 Proof of Necessity of Theorems ~1.5.4and 2.5.5

We begin with,

Lemma 4.6.1. Let 0 < p < 00. Let 0 < A < B < (X) ar-d~ : R --r (0, (0) be a continuous

function such that for 1 .:::;8, t < 00 with ~ ::::;.f :::;2, we have,

A < ~(as) < B.
- ((at) - (4.25)

For n 2': 1, let (511. C [-a7~an] be an interval containing at least two zeros of Pn (W2, .) • Then

for n 2': I,
-1

IIPnW{IILp[~nl ~ Cla;/ {(t) (11 - t~I+On) T
Lp[f.S'l1

(4.26)

Here C1 depends only on A, B (and not on ~ or nor U'n) .

Proof. From (3.15), for x E [a:t+l,Xj,n] I

and hence for such z ,
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by (3.11), (3.10) and (3.9) .

Let

~j,n :;::= [XH1,n + ~ (Xj,n - W.f+l,n) ,W3't + ~ (Xj,n - WHi,'ll)] ,

so that ~j'lI has length !(Xj,n - X;/+l,11) • By (3.3) ,

-1

IPnWI (x) ~ C3ar?! (ll_I~::tl!+ 8n)T, x E ~j'1"

Then using also (3.9) ,

The result follows if we can show that

-1

(The Lp norm of ~ (t) ([1- ¥.!-I + 01t)T over that part of 5;5j,11 nearthe endpoints of this interval,

is easily estimated in terms of the rest).

To do this if suffices to show that

Now in view of (4.25), it suffices to show that if x.f+1.n :::::as and :tj,7t :::: at! where s;::: So >
o (Here we use the continuity of the map u :---+ au) then,

s
1 < - < 2.-t- (4.27)
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But if t 2 2s, then (3.17) and (3.18) give

while our spacing (3.3) gives

OUr hypothesis shows that T* (U1t)-l is much larger than any negative power :-.fn, for

n: large, and we have a contradicton. So (4.27) and the result follow. 0

We can now proceed with:

The Proof of the necessity parts of Theorem 2.5.4 and 2.5.5. Fix Ll', A E Rand] <
p < 4. Assume moreover that we have the convergence (2.28) for every continuous I satisfying

(2.25). Let 71: 1R-4 (0, (0) be a positive even continuous function, decreasing in (0,00), with

limit 0 at 00. We shall assume it decays very slowly later on. Let

X :-{. f : JR -4 R continuous with IIfllx:== sup If WI (x) (1+ Ix I)" 7J (x)-l < 00 } •
XElR

MOreCNE''',let Y be the space of all measurable functions f :R --+ R with

il/lly := II(fW) (x) (1+ IxD.6.!1 < 00.Lp(lR)

Each f E X satisfies (2.25) 1 so the conclusion of Thm 2.5.5 ensures that

lim 11(1- L; (fDily = O.
n---1OO

Since X is a Banach space, the uniform boundedness principle gives

IIU - L1L [f])ily ~ c 1I/IIx (4.28)

with C independent of n and I. In particular as L1 [fJ = f (0) (RecaU that PI (x) = /1 (x) , )
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we deduce that for f E X with f (0) ::::0,

Ililly :s;C 11111)(.

So for such i,

ilL.", [1JIl1' S 2(;' lIJllx . (4.29)

',,:)hooseUn continuous in lR I with Yn = 0 in [0, (0) U (~oo, ~!.a,d, with

IIgnllx = sup 19nWI (x) (1 + Imlt 1} (X)-l ::::I,
xElR

For example, (gnW (x) (1+ Ix!)'" 1] (X)-l) can be chosen to be piecewise linear. Then for x E

[1,T]'

Then by (4.29) ,
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by Lemma 4.6.l.

We may assume that", decays $0 slowly to 0 that,

(Note that we could have imposed this condition on 'rJ at the start but, delayed this for clarity).

Suppose now that 6. - 0: ~ -;,1. Then we obtain,

2C ~ C6 (log log (an))-I logan.

Then for large n, we obtain a contradiction. So we deduce 6.-0: < -;,1 is necessary. Consequently

if for a given A E ~ , we have the convergence (2.28) for every continuous f satisfying (2.25) and

for every 0: > ~ then, we must have 6. ~ O.The necessity part of Theorem 2.5.5 is proved.

Finally, for the necessity part of Theorem 2.5.4, we take A = 0 in the above and deduce

that 0: > t.o

4.7 Proof of Theorem 2.5.6

This is similar to the previous proof. We let X be the Banach space of continuous functions

f : lR ---T ~ vanishing outside [-2,2] ,with norm

IIfllx := lIfIILoo[-2,2) •

We let Y be the space of all measurable f : lR -+ ~ witu

Ilflll' := IIfWUIILp[R] < 00.

Assume that we cannot find f satisfying (2.31). Then the uniform boundedness principle

gives (4.28) for all f E X. Again, when f (0) :::: 0, we obtain (4.29). We now choose gn E
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X, with

IIgnlix ::::1

(gn1.f!) (xi,n) sign (P:L (Xj,n) =1 x E [-1, -~]

gn ::::;0 in (-00, -2] U (0100) and

Much as before, we deduce that for x ;:::1~

Also by hypothesis, given A> 0, there exists C2 such that

Hence by (4.29),

2C - 2C ilg'Lllx ;::: IlLn [gn]lIy

> C1Aa!IIPn (x) W (x) X -:;1 [logQ (x)] -:;111 1
L4 [0;2 , (+n

1 -1

> C3Aa,1 (logn]T IIPnWIl [ ]
L4 (t¥-. an

(4.30)

by(3.16) and (3.22).

Now by Lemma, 4.6.1,

1

_ C4a;=/ [r( <>~) (1+ S)-l dS]'
J05,s(; 1-~ N"

> C5a~1 [log { 1+ Cso;l (T* (an)-l) }] t

6F,



Here we make the substitution 1 - ..J-. = 8'l$) and also used (3.21) and (3.22) .Finally, using
"II

(4.30) ,we obtain

2C~O,A.

It is dear that G71s independent of A. Of course, this is impossible for large A. So there

must exist continuous f vanishing outside [-2,2] satisfying (2.31).0
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Part II

Rates of Approximation for Erdos
Weights
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Chapter 5

Jh(].troduction and Statement of

Result s

In chapter 1, it was pointed out that each continuous function l, could be uniformly approxi-

mated by weighted polynomials of Erd8S type. In this second part, we consider the question of

how fast we can approximate our given f in our weighted sense, i.e, We are interested in the

degree of our approximation, or more precisely, we estimate how fast

En Ulw,p :~~ inf 11(1 - P) WIILp(R) -t 0 as n -t 00 •
PEP"

(5.1)

Here 0 < p :5 00.

Direct and converse results in this field are commonly known as Jackson and Bernstein

Theorems and are closely related to the smoothness properties of the approximated function.

5.1 Moduli of Continuity and Jackson Theorems

One of the classical tools used ill describing the degree of smoothness of a function, is the

modulus of continuity defined by:

(5.2)
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where for an interval J , l' ? 1 and f : lR. ---t R

,:v±'1'EJ
I otherwise

(5.3)

is the nth order symmetric difference of f. If J is not specified, it can be taken as 1ft.

Essentially, w,:,p (f,..) measures how "continuous a function is", For weights on JR., analogues
of Jackson -Bernstein theorems were initiated by Dzrbasjan but, more intensively studied by

Freud in the 1960's - 1970'8 [42J' Freud's principle tools for proving Jackson type theorems

was orthogonal polynomials and de 1a Vallee Poussin sums. Recently, Ditzian and Lubinsky

have formulated and proved Jackson Theorema for Freud weights by a different method. Their

technique does not use orthogonal polynomials but relies on an approach which goes back to

Freud/Brudnyi and more recently, to Devore, Leviatan and Yu [9,23]. The approach involves

approximating f by a spline (or piecewise polynomial), representing the piecewise polynomial

in terms of certain characteristic functions and'then, approximating the characteristic functions

(in a suitable sense) by polynomials. Their increasing modulus is:

W; p (I,W, t):= sup IIW (l\.iJ)!IL (I:cl<u(h)), O<h9 . p -
(5.4)

-I- inf 11(1 - R) WilL (I:c I>O'(t)).R of deg~r-l . p -

Here,

a (t) := inf{au : ~ :S t}, t » O. (5.5)

We remark that their modulus is different, but equivalent to others used in the monograph

of Ditzian and Totik[12]. Ditzian and Lubinsky then proved [l1J :

Theorem 5.1.1. Let 0 < p :S 00, r ~ 1. Let W :== exp (-Q) where Q ; JR. ---t R is

even, Q' exists in (0, (0), :vQ' (x) is positive and increasing there and for some A, B, A> 1,

(5.6)
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TIl en

En [f]w,p ~ C1W;,p (f, W, C2 :n) ..
Note here that (5.6)holds in particular for Wry given by (1.2).

For the corresponding Erdos weight problem, we adopted the method of Ditzian and Lubin-

sky [11,12, 27). This method had the advantage of involving only hypotheses on Q', in contrast

with the more complicated approach via orthogonal polynomials, that typically involved. hy-

potheses on Q" [12, 18,36,42] . In the Erd8'S weight context, s01)1enew features arise: The

degree of approximation improves toward the endpoints of the Mhaskar-Saff interval, and to

reflect this Nlkolski-Timan-Brudnyi effect, we need a more complicated modulus of continuity

and the proofs become more involved.

We need a suitable class of weights.

Definition 5.1.2. Let W := e~QJ uihere

(a) Q : JR -+ ~ is even, continuous, and QI is positive in (0, (0) .

(b) xQ'(a;) is strictly increasinq in (0, (0) with 1'Z'ght limit 0 at O.

(c) The function

1.'( ) ._ xQ'(a:)
x .- Q(x) (5.7)

is qttasi-increasing in (C, (0) for some C > 0, and

lim T(x) ::::00.
x~oo

(5.8)

yQI (y) <. C (Q (y1,O2 C'
xQ'{x) - 1 Q(x)' I Y;:: x 2:: '3, (5.9)

Then we w1'itcW ::::CQ E 81•

Some Remarks

(a) We netic t'- at £1 is amuch larger class of weights than £{ defined in Definition 2.5.1.

The main reason for this, is that here, we are not dependent on the correct bounds of the

orthogonal polynomials, as We were in Part A.
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(b) Much as in Part A, We need (b) to ensure the existence of the Mhaskar-Rahmanov-Saff

number, au, defined by (1.8),

(c) The function T (a:) plays much the same role as T* (a:) in Part A, i.e, it serves as a

measure of the regularity of growth of Q (a:) •For example for "nice" weights like Wk,a given by

(1.4)

so that T (a:) N T'" (a:) in this case,

(d) As in Part A, {5.9) is a weak regularity condition 011 T. See (2.13).

We next proceed to define OUrweighted modulus of continuity/smoothness.

Define for t > 0, CT (t) given by (5.5). Recall that it has the fo1'01

0- (t) ;:: inf{au : ~ ~ t}.

Further, to reflect endpoint effects, we need our our increment, li, in (5.3) to depend on x, in
particular on the function

1

<1>t (a:) :::::;11 ~ J~I}IZ + T (0- (t))-~ I a: E JR. (5.10)

The function <Pt{a:) describes the improvement in the degree of approximation near ±a!!., in
2

much the same way that vr=- x2 does for weights on (~1, 1].

Set, for t > 0, 0 < p ~ 00 and r ;:::1

Wr,p (1,W, t):;:: sup II W (Ah<I>t(x) (I)) IILp(i:cI:S;C1(2t))
o<h9

(5.11(a)

+ inf II(f ~ R) WIILp(lx 1>(T(4t)) .R of .:.cg$r-l -

Further, we define its averaged cousin,

t )1
Wr,p (1,W, t) := (T fa II W (L\j,wt{x) (1)) 11i.,p(lxl$(T(2t)) dh P
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+ R of ~~~~r-l IIU - R) WIILp(lx 1;::,,(4t» •

If p == 00, we set: Wr,p == wr,p' Clearly,

Wr,p (1, WI t) ~ wr,p (i,W, t) •

Our modulus consists of a main part and a tail. The main part involves rth symmetric

differences over a suitable interval whilst the tail involves an error of weighted polynomial

approximation over the remainder of the real line. One can think of the 'main' part of the

modulus being controlled by the decreasing function, a, which is essentially the inverse function

of the function

w.. decays to 0 as u ..--+ 00. A good way to view the function (T(t), is that for purposes of

approximation by polynomials of degree at most n, essentially t == ~, the main part of the

modulus is taken over the range [....a~,a~]and the tail over R\[~a~, a,¥] . The tail is necessary

because of the inability of (PnW), Pn E 'P1l to approximate beyond [-an anI. The lnf is also

taken over polynomials of degree ~ r - 1 to ensure that at least for f E 'Pr-l, wr,'j.o (I, W, t) ==
o [28,29]. It is possible to replace a (2t) by a somewhat larger term (J (t) -~ At and (J (4t) by a

somewhat smaller term (T (t) - Bi; for suitable A, B in our modulus, under additional conditions

on Q'. However, it hardly seems worth the effort, as the resulting modulus is almost certainly

equivalent to the above one. As evidence of this, see Theorem 5.2.1.

We are ready to state our Jackson Theorems.

Theorem 5.1.3. Let W := e-Q Eel' Let 7' ;:: 1 and 0 < p ~ 00. Then for f :~ --t lR

[or which JTV E Lp(l~), (and for' p:::: 00, we require f to be continuous, lind fW to 'Vanish at

±oo), we hatle for n;:: C31

(5.12)

where Gj. j:::: 1,2:3 do not depend on j or n,

Further, we need for later use the following:
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'I'heorem 5.1.4. For' n ~ 1, let). (n) E [~j1]. Then [or n ~ C9

(5.13)

where C1, G2 do not depend on tt 01' lor {>. (n)}.
M07'eovet',

(5.14)

As our moduli are not monotone increasing in t, we also present a result involving the

increasing modulus;

+ Inf I) (f - P)W IILp(lxl?cr(4t)) •
PE'Pr_1

(5.15)

Here L is a fixed (large enough) number independent of I, t.

Theorem 5.1.5. Under' the hypothese8 of Theorett; /).1.3,

(5.16)

whe1'e Gj, j = 3,4 do not dept tul on f 01' n.

It seems likely that one should only really need r ::= L in the definition of w~,pbut, We havf>

only been able to prove this under additional conditions.

Set:

wt,p (/, W, t) ;= O~~L~t IIW6.Lh.p,,(a:) (I, x, ~)IILp(lxl~cr{2h))
+ inf II(f - P) WIILp(lxl~Q"{4t)) •

PE'Pr-l
(5.17)

Then we have:

Theorem 5.1.6. Assume the hypotheses of Theorem 5.1.3 and further assume that QII
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exists and is non-negative in (0, (0) .,and

QI' (x) QI (x)
QI (x) rv Q (a:) , x E (0, (0). (5.18)

Moreover, we assume that

(5.19)

Then

(5.20)

where Cj, j ;:::::5,6 do not depend on f or n.

We note that the additional conditions (5.18) and (5.19) are certainly satisfied for Wk,Q: and

WA.,e·

5.2 K..Functionals and Converse Theorems

While K-functionals were introduced in the context of interpolation of spaces, one of their

most important applications has been in the analysis of moduli of continuity, and in converse

theorems in approximation theory. J.Peetre first made the connection between his Kfuncticnal

and the modulus of continuity ill 1968.

The Ditzian-Totik rth order K-functional has the form

I<;'p (1,W, tr) := i~f {IIU -- g) WIILp(nt) + tr IIg{r) WIILp(ntJ .
g(r-1) locally absolutely

continuous

(5.21)

Here, t > 0, r 2:: 1 and p ~ 1.

We may think of the second term measuring the smooth part of f and the first part

measuring tile distance of f to that smooth part[12]. The idee is to prove inequalities of the

form,

(5.22)

for (I. suitable modulus, wr,p' Here, a> 0 is fixed in advance, Gl, 02, > 0, and t is small enough.

77 .



Under mild conditions on W, Ditzian and Totik established the fundamental equivalence of

their modulus of continuity and the K-functional[I2]. All they assumed Was that Q is even,

continuous, Q' iscontinuous and increasing in (0, (0) and

1.0 particular,. this holds for.W'¥ (a;) , "( > .1 and WI,a (x) •
,

Unfortunately, J(' == 0 in Lp (0 < p < 1) [IO}.somany others have introduced the concept

ofrealisation for 0 < p < 1 [17] . Set:

1(r,7J (I,W, tr);= iI?f{lI(1 - P) WIILp(lR) + t" .llp(r)wll.} (5.23)
pe~ .. . ~~.

where the degree n is determined in terms of t by

n := inf{k: ak < z},
k -

Note that here, (compare [5.22]) I the inf is taken over polynomials of suitable degree. Z.Ditzian

and D.S Lubinsky then proved [11] that if W satisfies the hypotheses of Theorem 5J.l(which

are of course weaker than those of Ditzian/Totik) and omits a Markov-Bernstein Inequality,

then (5.22) holds for p ~ 1 with w replaced by w- and further for 0 < p < 1, (5.23) holds with

If' replaced by K and with w replaced by w -. This yielded converse theorems.

For OUi' purposes, the formulations become more complicated.

We define a suitably modified realisation functional by

1(1' P (I,W,tr):= inf{lI(1 - P) WIILp(lR) + trllp(r)~tWII } ,
, PEP" . Lp(lR)

(5.24)

where t > 0, 0 < p S 00, and r ~ 1 are chosen in advance and

n = n (t) := inf { k : a; ~ t} . (5.25)

78



Further we define the ordinary Kfunctional by

K:,p (f, w, t") :== i~f {11(f ~ g) WIILp(R) +e Ilg(r)<I>~wIILP(lR:)}. (5.26)
g(r-l) locally absolutely

continuous

We begin with Our equivalence result:

Theorem 5.2.1. Let W E :- 1 L, a > 0, r ~ 1 and ° <, IJ ~ 00. k'18Ume that there is a

Markotl-Bernstein £nequality of the I01'1n

IIR~~<I>~WlfLp(R) ~ G,rtIIlR7IWIILp(R} 0 < p ~ 00, n; E Pn1 (5.27)

where C =/: C (Tt, Rn). Then :3 Gl, C2, C~ > 0 £ndependertt of f and t such that for t E

(0, t~) ,

(5.28)

(b) 'Wr,p (f, W, t) !'oJ 'Wr,p (/, W; t) rv ](r,p (/, w,n (5.29)

uniformly in t and f.
(c) wr,p (/, W, O't) ~ C4wr,p (/, W, t) • (5.30)

Here) C4 depends on 0' but not on f and .'I.

Remark.

The Markov inequality (5.27) was proved for p == 00 in [32] I and for 0 < p < 00 in (17) for

WE f.; (see Definition 2.5.1).

Theorem 5.2.1 allows us to deduce a simpler Jackson theorem to Theorem 5.1.3:

Corollary 5.2.2. Assume the hypotheses of Theorem. 5.2.1. Then we have f01' n ~ GI,

(5.31)

Here, C2 is independent of f and n.
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D

We note that the point of this Coronary ;,5 that we have removed the constant from inside

the moduli in (5.12) .

We h1,ve the following converse theorems:

Theorem 5.2.3. Assume the hypotheses of Theorem 5.2.1. Let q = min{l,p}. For 0 <
t < C, determine n = n (t) by (5.25) and let I ;::::[logz n] =the largest int:;ge1' :::;10g2 n: Then

we have,

Wt,p (I,w, t)

(5.32)

We deduce

Coronary 5.2.4. Assume the hypotheses of Theorem 5.2.1. Then for e'very 0 < a < r the

following are equivalent:

(a)
'Wt,p (I,w, t) ;::::O{tol.), t -4 O. (5.33)

(b)

(a ')CXEn [f]w,p = 0 ~i ,n -4 00. (5.34)

Finally, we obtain estimates of our modulus in terms of fer) and deduce the equivalence of

the Kfunctional with the realisation functional for p ~ 1.

We need first:

Corollary 5.2.5. Let W E tIl r ~ 1/ 0 < p :::;00 and assum.e (5.27). Then V nlarge
enough and VPn E P« satisfying

(5.35)

for some L ;::::1, we have
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Here, the constants in the !"V relation depend on L but, are independent of n: and f.
We remark that. in particular (5.36) holds for P,~ the best approximation to f.

We deduce:

Corollary 5.2.6. Let 1 < p S CO ana assume the hypotheseB of Theorem 5.2.1.

Co;) 1/ j(r)w E Lp (~), we have fo1' t F.. (0,Gz) ,

(5.37)

Here G.i =J:. Gj (1, t) I j = 1,2.

(6) We have for t IS (0, C3) I

(5.38)

Here Cj =1= Cj (1, t) 1 j = 3,4.

5.3 A Marchand Inequality

Finally, we present a classical property of our modulus, namely a Marchand Inequality,

Theorem 5.2.7 (Marchand Inequality).

Let W E £11 q = min {1, p} j 0 < p ::; 00, t· ~ 1 and assume (5.27). Then Vt > 0 small

enough

Here the Cj,j = 1,2 are independent of f and t .
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Chapter 6

Technical Estimates and some

Inequalities

6.1 TechnicalEstimates

We present a series of technical estimates which we will need for later chapters.

Lemma 6.1.1. Let IV E £1' (a) For some c; J' = 1,2,3, and 8? t: ?: Cs

(6.1)

Moreover,

(6.2)

(b) Give', 5> 0, there exists C such that

(6.3)

(c) Given A> 0, the functions QI(U)U.-A and Q(u)u~A are quasi- increasing and increasing

respectively for large enough u.
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Proof. (a) Firstly, (6.1) follows from the iderltity

and the fad that T is quasl-increasing, Then, the definition (5.7) of T gives (6.2).

(b) We can reformulate (5.9) as

Hence, for x ::;:.y(l .~ Tty)), the quasi-increasing nature of T gives

Recall here that T(y) is large for large y.

(c) From (6.2) if s ~ r ~ C\

Here we have used the quasi-rnonotonicity of T, and also that if C is large enough, then

C2T(1') -- 1 -- A ~ O. Similarly for Q(s)s-A.D

Next some properties of au!

Lemmr , 6.1.2. Let W E £:1. (a) Q.uis uniquely defined and continuous fOI: U E (0, (0).

and is a, strictly increasing function of u.
(b) For u ? c,

(6.5)

83



(c) Given fixed f3 > 0, we have for large u,

(i) T(aj3u) '" T(au)

(ii) Q (a!1u) N Q (au)

(iii) QI (af3u) N QI (att)

(6.6)

(d) Given fixed n > 1,

Ial)U 11 . 1
au - '" T(au) (6.7)

from which it follows that
af3u-- --+ 1, 1l --+ 00 Vf3 > O.
au

(6.8)

(e) If C2 is as in (5.9), then for some 8> 0,

(6.9)

Moreover, ve.» 0

(6.10)

(f) If a > 1, then for large enough u,

(6.11)

(6.12)

(h) 3 Cj, j:::; 6, 7,8such that for v ~ u ~ Co

(6.1:3)

and
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(6.14)

In particular, given e > 0, we hav€lfor 'V? u ? 06

(6.15)

(6.16)

Proof. (a) ThlGfunction 7}, -r au is the inverse of the stl'lctly increasing continuous function

2101 . dta -; -:- atQ'(at) V ., a E (0,00),
11 0 1- t2

which has right limit 0 at, 0 and limit, 00 at 00. (Note that this function is continuous even if

Qf is not). So the assertion follows.

(b) For u $0 large that T(au) > 2, we have

< ~T'a 1/2 r1-1li(au) auQ'(aut) dt +~ (1 ~~
- 7r ~ u) Jo auQi(a.u) 7r Jl-1/T(a«) .vr=-i~

< ~J'{o,u)1/2Q(alL) - Q(O) + ±T(au)-1/2
- 7r auQ'(a,,) 7r

< .iT(au)1/2_g{~IJ.) + ±T(au)-1/2 = ~T(au)-!/2.
- 7r auQ'~alJ.) 'Ii' 'Ii'

Here we also need u so large that Q(atr.) ?I Q(O) I. SO we have

In the other direction, (6.2) gives for large U,
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> e1!,1 T~aut{ t01T(Lu) ~.
- 1/2 Tau 1~ t2

> C
2
T(au{l- T~)) (1- ~)OlT«tu) r1 dt

- T(au) Tlau) .l1-1/T(au) Vl- f4

~ C?-T(a·u)-1/2.

Here we have used (6.3) and the quasi-monotonicity of T. So We have (6.4)(i). Then (6.5)

follows from the definition of T.

(c) We can assume !3 > 1. Then by (6.5), and quasi-monotonicity of T,

The rest of (6.6) follows from (6.4) and (6.5).

(d) Now

~ C2uT(au)1/2(1- a1l )1/2
aau

by (6.4). Hence,
au1- _._ :; C3/T(av.).
aau

In the other direction,

21(1.u/(10," dt 2. 11 dt:5 - acmtQ'(aa'U.t) j • + -aa-uQ'(aau) . . ;::;--;
IT 0 1_((1.~~t)2 IT au/aauyl-t
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by (6.4) and (6.6) (i). Then
1- au > t~1)2_j__.

ao:u. - C T( au)

(e) We apply (5.9) with y = a~~and :c == C3, so that

Rearranging thls gives (6.9). Finally, using (6.4) gives for any A > 0,

So (6.10) follows.

(f) For large enough u,
Q(ao:u.) == exp(laQ," T(t) dt)
Q(au.) a!J t

Z eXP(C6T(au)10g(a:u.u.)) ~ exp(C7) > 1,

by (d) of this lemma.

(g) From (5.9) with y == ai:« and x = au ,

This forces C2 > 1, as the left-hand side -+ (.,..)as L -+ 00. Then. with the constants in '"

independent of L, (6.5) gives
Q(aLu) LuT(aLu),-1/2
Q(au) '" nT(au)-1/2

> CL(Q(aLu) )-(C2-1)/2
- Q(au.)

Then using (6.1),
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and the right inequality in (6.12) follows. In the other direction, (6.1) and then (6.5) give

< (Ct":n:~~'f)<"",j :; (C3L)",;",j

Here the constants are independent of Land u, Then the left inequality in (6.12) follows. It

remains to show (/z.) ..Now by (6.5) and then (6.1)

which implies

(a
v) C (V)~-- < ,,> -uv.-"'u .

So we have (6.13) and then (6.14 - 6.16) also follow. 0

Lemma 6.1.3 (Infinite-Finite~Range inequality). Let W E Ell 0 < p :5 00 and 8 > L

Then for some L, C1 ,e']. > v, 71 ;::: 1, and P E 'Pn,

(6.17)

Moreover,

(6.18)

Remark: Note that (6.9) shows that for some C3 > 0, and large enough n,

We provide a proof as those in the literature [26], [37], [39J, ...don't quite match our needsj'

hypotheses.

Proof.

We may change Q in a finite interval without affecting (6.17), (6.18) apart from increasing
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the constants. Note too, that the affect on (1.4 is marginal, and is absorbed into the fact that

s » 1. Thus, we may assume that Q' is continuous in [.....1, 1]. This, and the strict monotonicity

oftQ'(t) in (0,00), allow us to apply existing sup-norm inequalities to deduce that for P E 'P)t,

For a precise reference, see [48} and [16, Theorem 4.5}. Moreover, the proof of Lemma 5.1

in [26, pp.231-232J gives without change

1 2~11I PW 11' (ansa;) ~ --.--1 I PW 11' (anst)dt, x> 1.
7r X - -1

(6.19)

Let < ~ > denote the greatest integer s: x. Let /) be small and positive, let I !==< on > and

let TICa;) denote the Chebyshev polynomial of degree 1. Using the identity

(6.20)

it is not difficult to see that

{
~exp(Jzv. x. -l),x' E (1,*)}

TI(a;) ~ 1 I •-x x> 1.2' -
(6.21)

We now let m ::= 7), + I:;: n+ < tSn >, m' != 1t + 21 = n + 2 < On > and apply (6..19) to

P (~) TI (a':) E P«. We obtain for x> 1,

Replacing (tmX by iV, and integrating from am' to 00 gives

Here using (6.21),
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(19/
8

1 1 -i 00 )<f: 0 --1exp(- ".lOP va: - l)dx + rv-1Pd:t.·
ami/am :t - V 2 9/8

(. (8 •. (ami 1/2 (9)_1 )<f: 01 log a I ) exp(-C2lp ~- - 1) ) + -8 p
=-1 amam

Here we have used (6.7) and our choice of l, Now if 8 is small enough, m' S sn, Then (6.18)

follows easily, and In turn yields (6.17).0

Lemma 6.1.4. Let W E &1' t > 0 be small enough and {3 > O.Put for u large enough

Set
'{. ak (JalL}n :=: n (t) := inf k : -k < -- .. - u (6.22)

Then

(a)
atl < (Jau < an-I.
n - u n-1 . (6.23)

(b)
an (Jau2an-<--<-.
1L - U n (6.24)

(c)

(6.25)

Proof. (6.23) follows from the definition of n, (6.24) follows from (6.23) as

To show (6.25) , we first show that 3 a > 0 such that

us an. (6.26)
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Suppose first that 1L 2:: n. Using (6.23) and Lemma 6.1.2 (h) , there exists C > 0 such that

which implies (6.26). Suppose u :S n: Then (6.26) follows with (l! = 1. So it suffices to show

that 3 01 > 0 such that

Well, if n - 1 ? tl by (6.23) and Lemma 6.1.2 (h) , there exists 02 > 0 such that

I

f3 < Iln-l/au < C2(n -I)-a
~n-l 'It - • 'It

which implies

for some G3 > O. Further, if u ? n - 1 were done.O

We next present various estimates involving the functions (7', cI>tl and differences. Through-

out, We assume that W = e-Q E £1.

Recall that:

a (t) := inf{a1' : :1' :S t}, t » 0

and

<Pt (it);= 11 - ;~~) I+ T ((7' (t))-t ,x> O.

Lemma 6.1.5. (a) There exists so, '1)0 such that for s E (0, so) and v ? Vo I we can write

s = ~, where v ? vo. Moreover, we can write

(7'(s)::::; (J' (a:)::: a.e(v) (6.27)

where

(6.28)
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In particular,
lim J3{v) = 1-
1J-too V

(6.29)

(b) There exist G1, C2 > 0 such that for ~ ~ t ~ s, and s ~ c-,

cr(t) G2
1~ cr(8) ~ 1+ T(cr(t))' (6.30)

Further, for t small enough, Wehave for some e > 0,

(6.31)

(c) There exist C3, C4 independent of s, t, x, such that for 0 < t < s ~ G3,

(6.32)

(d) There exists C5, such that for 0 < s S G5, and ~ S t S s,

(6.3:3)

(e) Uniformly for x E Rand n ~ 1,

(6.34)

Further given J3 > 0 and t > O,we have for some C6, 07 > 0 and for all x E R,

cI>~ (x) ;:::G6T (an)-~
n

(6.35)

and

(6.36)

Proof. (a) The existence of v for the given s, follows from the fact that u. ++ au is continuous

92



and
au- -+ 0, 11, -+ 00.
11,

See (6.10).

The continuity of au allows us to write 0'(8) ~ af3(v), some /3(v). Since

the left inequality in (6.28) follows. For the other direction, we note that by definition of

O'(~)and /3 (v) .we have /3 (v) S uand

a!3(v) < (tv

/3 (11) ~ V

so,

for large enough v, by (6.1). Using (6.5), we obtain

It follows that v :::;G2fJ (v) and so v '" f3(v) .Then

v av
1 Sf3 ( ) S--. - ---7 1, V ---7 00v a{3(v)

by (6.7) , so We have (6.29). Then (6.7) also gives the right inequality in (6.28) .

(b) Write s ~ ~ and t :::~. Then as c' is decreasing,

If we can show that
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then (6.7) gives
a(s) • 03

12: a(t) 2: ~ - T(all)

which together with (6.6) (i) gives (o.30). We proceed to establish (6.37). Suppose that it is not

true, say, for example, Wecan have
u- ---+ 00.
'11

For the corresponding .£I, t, our hypothesis is

Then

(6.38)

and (6.1) gives

for large 'U, v. But from (6.5),

again by our hypotheses on s, t. This contradicts (6.38). So we have (6.37) and hence (6.30).

Finally (6,.9), (6.27) and (6.28) gives for some e > 0,

so that we have (6.31).

f:) Let 0> 0 ')e fixed. Firstly for 1~ I ;r, Ila(s) 2: 8jT(i(s)),
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Next, for Il~ I ~ I /a(s) I::;8/T(a(s)),

cI>s(x) N T(a(s»-1/2.

This is bounded by C1cI>t(x) if 11- I x I/a(t) 12 8/T(a(s)), fora 'fixed 8 > O. Otherwise, We

have 11- 1~ 1/a(s) I~ 8/T(a(s)) and 11- 1a: I/a(t; I::; 8/1'(a(5)) , so

If {i is sma.ll enough, we deduce from (6.7) and (6.9) that

T(a(t)) rv T(a(s))

and again (6,32) follows.

(d) Write s = ~ and t = ~. Then we have (6.37), so

Then we obtain for x E IR:,

The converse inequality follows similarly.

(e) By (a) of this lemma, Wecan write
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Recall that

Here by (6.6)(i) and (a) of this lemma,

and much as in (d),
1- I~l "n_lxl

(T(~) an
for large n and I it 1$ a'll/2 01' Ixl 2:: a{l-' In the range anj2 $1 a: 1$ an, both the left and

tight-hand side of (6.34) are '" T(an)·</2.

Finally, note that (6.35) and (6.36) follow from the definition of <I!t and (6.34) ,0

Lemma 6.1.6. (a) For 0 < S < t $ C,

(' O'(t)).( t)T(O'(t)) 1~ 0'(8) $C1log 2+; . (6.39)

(b) For 0 < s < t S c.
e, (x) ( i)$t1p~( ) $.G21 log 2+- .

:tE!R; '*'t x 8
(6.40)

Hence, given 'Y > 0,

(

8. ,\,'1 <Ps (x) < csup - _'_-- '3.
~EIre t , iJ.>t (e) --

Further if m $ nand n, m 2:: C4, then

(6.41 )

<P.'!u. (x) (n)
sup ~(-) Sc, log 2+m .
:r:E!R; ~ X

(6.42)
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Proof

(a) We write s = ~ and t = 7" Note (with the notation of Lemma 6.1.5) that

aJj(u) = a (s) cO' (t) = a{3(v)J

so (3(u) c [3 (v) •Using the inequality

1
1 - u ;5 log:;71 U E (0,1)

we obtain
1- cr (t) < log cr (,~.) :;:: log ct{3(u)

a (s) - (T (t) a{3(v)

log (C~) log (C~)
SCI T(af](V}) =01 T(O'(t))

by (6.12). Next, f3 (u) = u (1+ 0 (1)) and similarly for [3 (11), SO it suffices to show that

(6.43)

log ~ S Czlog (2 + !.) .v . s (6.44)

But; from (6.1) for 8 < t and small t and then from (6.5),

1

< C ('4T (au)~)' < C ("T(ap("I) "') 2' < C (~). ~
- 1 1 - Z -1 - 3 v.

vT (av)T vT (af](V») T

as [3 (u) C ,8 (v) .So

and we have (6.44) .

(b) Now if:r; 2: 0,

I :J:: I I :r; I x·l· (T (t) 11 - cr (8) $ 1- aft) + cr (t) 1- (T (8)
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s 11 ~ a(t)I + (11 ~ a(t) 1+ 1) 11- :~:~ ,.
Using part (a) , we obtain

Since a. (s) ~ cr (t) also
~1 ~1

T(cr(S))T ~ T(cr(t))T.

So (6.40) holds. Then (6.41) and (6.42) follow.O

Len-una 6.1.'7. (a) Let L, > O. Uniformly for tt ~ 1, and I x I, I y I~ au, such that

we have

W{x) roo; W{y)

and

(6) Furthermore, if s > 0 then uniformly for 'U ~ 1 and I x I, I y I:::; aus such that

we have

W(x) N W(y).

(c) Let. L, M > O. For t E (0, to), I x I, I y I:::;O'(Mt) such that

1m - y I~ Lt<Pt(x) ,

we have (6.46) and
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(d) Recall the difference operator .6~ defined by (5,;3). Then we have Vx E lR, VP E

'Pr-l, r?: I, /3 E lR and t » 0

W ~~~<1>f(:r;)P (x) ::::;o.
(ii) r! (h4>r (x)Y == AtLWf(x)xr.

(6.50)

Proof

(a) It suffices to prove (6.46), (6.47) fat large u, Moreover, (6.46) and (6.47) are immediate

for I x I::;C, and large 'n. Let us suppose that. C ::;;c :5 Y S x + L~jfG ~ t. Then as Q'(s)

is quasi ...increasing for large s,

0:5 Q(y) ~ Q(x} :5 CIQ'(y)(y - x).

We have then (6.46) fol'
1y-x--O(--· )~ Q'(y)' (6.51)

We shall show that.

(6.52)

so that (6.45) implies (6.51) and hence (6.46). 'If firstly, 0 < y ::; ~, then

11 dt
:5 C4 aP,ltQ'(aut)« -. ::; CpU,

1/2 1....t:2

If on the other hand, '1'" :5 Y :5 aU)

So we have (6.52) in all cases. Next from (6.45) and as y ;f au,
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by (6.7) and (6.9).

(b) This follows much as in (6.46) using Lemma 6.1.2(b) j (c) and (6.8).

(c) Write Mt :::::~, so that I x I, I y Is O'(Mt) S (Llli and we can recast (6.48) as

by (6.7), (6.33) and (6.34). Then (a) gives (6.46), and (6.49) follows easily from (6.47).

(d) This follows from the definition of Ah.O

Lemma 6.1.8, Let W E s., 0 < 8 < 1; L, M> ° and 0 <P:5 00.

(a) Let s E (0.1) and [a, b] be contained in one of the ranges

(6.53)

or

(6.54)

Then

10 2 labIf (x ± s<I>t{!li))I dx S -----s: _ If (x)[ dx
a 1- U a

(D.55)

where

{. :} :={. inr}. {. ± s<l''(.) : • E [a,uJ),
b sup

(6.56)

(b) Let 7' ~ I, t E (0, k) ,li E (0, Mt) and [a, b] be as above with s == Mrt. Denne a and

b by (6.56) with 8:::; Mrt. Assume moreover that

[a, b] S [-0' (Lt) j a (Lt)] • (6.57)
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Then for some C i=- C (a, i, t, g)

II~hcI>t(a:) (9, a:, JR) HI (x )IILp[h,b) < G inf IIW (9 - P) ilL [1i bl (6.58)
w PEPr-t P 'UJ

< C IIW9I1Lp(t., ~ .

Proof. (a) Define K = ±1 and u (x) :== a: + Ks<l>t(a:).

We shall assume that (a, b] is contained in the range (6.53) and also a 2: O. The case where

a < 0 is similar, M is the case when (a, bl is contained in the range (6.54). Then for x E [a, b] I

by (6.53) . Hence u is increasing in [a, b) and Writing 11 := u (x) gives

1b If (x ± SWt (x))1 da:=16
If (u (x))1 dx

1U(b) d.a:
== If(v)l-d dv, v='u(a:)

u(a) U

1 1U(b):5-
1
•r • If (v}ldv

-!J uta)

1 iii
= 1_ 8 la: if (a:) I dx

in this case. The extra 2 in (6.55) takes care of having to split [a, bJinto two intervals if a < 0 < b.

(b) Now recall that we have

W (:v) ~h<I>t(a:) (9 (x))

=~ (:) (-1)iW(w)9 (x+ (~-i) h9?t (w)) ,

Also (6.46) gives
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uniformly in i and for 1X'1 :::; a (Lt) and h;; Nit. Thus we obtain from part (a)

::; G s~p rb 19lVIP .(x + .(r - i) h<"Pt(x)) dxO;::;;;::;r ia 2

~ 20 rblgWW (x) de,
1- 810:

Note that for 0 ::; i ::;'1', (6.53) with s == M rt gives

so the range restricrions of (a) are satisfied.

Finally recall that by (6.50) for P EPr-ll

Ahll>t{a:) (P, z ,R) = O.

Hence

IIAhll>t(a:) (g, x,R) W (x)IILp[a. b)

= 118.I.<t>t(:v) (g - P, x, R) tv (x)IILp[a, b]

~ C II(g - P) WIILp[a-, b]'

It remains to take iuf's over P.D

6.2 Some Inequalities

In this section, we prove an extension of the Markov-Bernstein inequality (5.27).
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Theorem 6.2.1. Let WE £1 and assume (5.27). Let 0 < p ::; 00 a:nd define fo7' n'2: 1,

(6.59)

Then for n '2: Cll 0 ::; l ::;nand VP E P« we have,

< C3 n (l+ 1] IIp(lhI,t/4W II. .' (6.61)- an I n Lp(R)

Here OJ i= OJ (n,l, P) j = 2,3.

We remark that (6.60) and (6.61) will hold with constants depending on 1 if we replace

'11}/4 by <P!!.n..
n

More precisely,

IIp(l+l)<p~lwll ::; O~{•.!!_ + _!_T (an)~} IIp(I)<I>k Wi'· (6.62)
n Lp(R) an an n Lp(R)

:::;C~!!:.. [l + l]llp(l)<I>kWII (6.63)an n Lp(R)

uihere C.;. -:f Cj (n, P) j = 4,5.

We need several lemmas.

Lemma 6.2.2. Let s > 1 and n ~ C1. Then there exist polynomials R of degree 0 (n) such

that uniformly for Ix I ::; asn
(6.(4)

and

IR'(x)/R(x)l::; C1W7-/ (x).
an

(6.65)

Pro»..., Let
3

'IL (x) := (1 - (2) -4" , x E [-1,1]

be the ultraspherical weight on (-1,1) and let An ('IL, x) be the Christoffel function corresponding

103



to u satisfying

Then it is known [46,p.36] , that given A > 0 we have uniformly in nand Ixl :::;1 ~ ~

l( 2)-t>'11 (u, a:) '" n 1~ :z: (6.66)

and

(6.67)

1
Now choose m := m (n) :::::the largest integer:::; T (an)-2 and put

Then by (6.9) , R has degree 0 (n) and by (6.7) , (6.9), (6.34), (6.59) and (6.66) Wehave uniformly

for Ixl :::; a.m,
1

R (x) "-' <I>!!.U. (x) rv wJ (x).
n

To prove (6.65) , we observe much as in [40, p.228] that

1>.;;1 (u, a::),1
IA~(U,~)I

= a2snA; (u1 a~n) , (6.68)

so that by (6.66), (6.67) and the definition of R we ha.v€'uniformly for Ixl $ a.m,

IR' (x) IR (a:) I :::;C2(1 _(~)2)-1
an a2sn

Our next lemma is an infinite-finite range inequality:

Lemma 6.2.3. Let W ~ £1. Let 0 < p :::; 00, S > 1 and 'lin be as in (6.59). Then for
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11. 2 ell VP E r; and 0::; 1::; ti We have,

(6.69)

Moreover,

(6.70)

Here, c, =f- c, (n, P, l) I i= 1,2.

We remark that (6.9) shows that for large 'n,

(6.71)

Proof. First note that by (6.35) and the definition of tlJ71.' given f3 > 0 we have,

(6.72)

Now write l ;:= 4j + k , 0 ::; k < 3. Then for some 0 < a ::;a and C1 depending on k w(~

have,

(6.73)

Now PXrxW?1 is a polynomial of degree::; n+l+3 ::;3n so by (1.18) I We may continue (6.73)

as

by (6.9) and (6.71).0

We can now give the

Proof of Theorem 6.2.1. We prove (6.60) . Then (6.61) will follow by (6.9). (6.62) and
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(6.63) will follow as

W~/4 (X),..., <1>~ (x) I $ E R.
n

Put s» 1 and write l == 4:1+ k, 0::; /r.: ::; 3. Put Q := p(t), Then

= IIQIWw~+~·I!· .
• .J:,P(j:z;I:5d.33>1)

Choose by Lemma 6.2.2, R of degree 0 (71,) such that

I

R (x) rv w~ (m)

and

unifol'ml3:' for 1$1 5 assn·

Then continue the above estimate for J as

where C'l depends only on k, This is in turn can be can continued as

;::::T1 +T2+T3'
We begin with the estimation of Tl :
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Note that Q'iJ!t~Rkis a polynomial of degree::; n +l + 0 (n) ~ 3n. Thus, we can write

(by (6.17))

< C5 11•. IIQW~~+*WII- an . Lp(I:uI~ct3sn)

s C5 :: IIp(l)wtwIILP(nt) . (6.74)

Next we estimate T2 :
Note that for l:vl :$ (J.sn and by straightforward differentiation, (6.7) gives

Thus

(6.75)

by (6.72).

It remains to estimate T3 :
Write

< ClOk 111'Tlj '''1 k':j"lQ1Xrll_ "J.'n!l:n n-
an • Lp(l:tJ$aa.,,)

(by (6.65))

(6.76)
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('

as 111 the estimation of T2'

Combining (6.74), (6.75) and (6.76) gives

(6.77)

where Cll -:j=. Cll (n, P, 1) .

Finally by (6.69), (6.77) becomes

as required where C12 I=- 012 (n, P, 1) ,0
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Chapter 7

Jackson Theorems

In this chapter we prove Theorems 5.1.3··5.1.6.

7.1 Polynomial Approximation of W-1

The result of this section is:

Theorem 7.1.1. FoT'n ~ 1, there exist polynomials Gn of deqtee at most en, such that

(7.1)

and
(7,2)

We remark l,hat this does not follow from existing results in the, literature on approximation

by weighted polynomials of the form Pn(x)W(anw) [28], [51] as our weights do not satisfy their

hypotheses. The methods of Totik [51] can be applied to ~ive sharper results but we base our

proof on:
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Lemma 7.1.2 There exists an even entire function,

00

G(a;) = ~!Jja;2.1,gj.~ 0 \;fj,
.1:::0

(7.3)

such that

(7A)

Proof. Set

Q1(1') := Q(vr);

1'1/)(1') := 1'Qi(r) == "2./iQ'(vFr).

Then '1/' is increasing in (0,00), and if ,\ > 1, l' C 1'0, the quasi-increasing nature of Q' gives

for some C :I C('\),
1

1fJ(,\1')- 'I/)(r)? 2./iQ'(Vr)(VXC -1) ? 1

if ,\ is large enough. Moreover, ¢(r) := eQt(r) admits the representation

if '1/1(8)¢(r) == ¢(l) exp] --ds), r 21.
1 s

By Theorem 1.5.1 I there exists entire

00

G1(r) == 1:!Jj1'i,flj C 0 Vj
.1:::0

such that

G1(1') rv ¢(r) :== exp(Q( ./i), r ~ 1'0.

Then, assuming 00 > 0 as we can, we see that

satisfies (7.4).0

In the analogous construction for Freud weights, D.S Lubinsky and Z. Ditzian used as the
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polynomials Gnl the partial sums of G. However, in the Erdos case, for partial sums of degree

O(n), we only have

for I a: I~ g'l' where qn was given by (1.7) .

Although, !1,71/f}n -+ 1, n -+ 00 for Erdos weights, in effect, qn is significantly smaller than

an. So, we use a more sophisticated interpolant:

Proof of Theorem 7.1.1. Let J be a positive even integer (to be chosen large enough

later) and let Tn(a:) denote the classical Chebyshev polynomial on [--1,1). Let Gn denote the

Lagrange interpolant to G at the zeros of Tn(x/an)J so that Gn has degree at most In - 1,

and admits the error representation

for x inside r. We shall choose I' to be the ellipse with foci at ±a'l I intersecting the real and

imaginary axes at nr (p+p-l) and -¥ (p - p-l) respectively. Here we shall choose for SOlUe fixed
small e > 0,

p :::::;1+ (...,..!__) 1/2•
T(at~)

Since G has non-negative Maclaurin series coefficients, and satisfies (7.4), we deduce that

Now for t E I',we can write t = ~(z + z-l) where I z I;::; p, so that

;?: ~(ll __p""~) ~ exp(C2nT(an)-1/2).

(Recall that nT(an)-1/2 ...., 00 as n -+ 00 and in fact grov. s faster than a power of n). It is
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important here .that C2 is independent ofJ. Next

if cis small enough, and n is large enough, by (6.7). Then,

,
where again it is important that c,t is independent of J. Since (p - 1)-2 N T(an) grows no

faster than a PQ,werof 7h we see that choosing J large enough, gives

Then ~7A)gives (7.2)',

We now turn to proving (7.1). It suffices to prove

fbr. then (7.1) follows 011 multiplying an by a suitable constant. Firstly, we can assume n is

even (for odd n, we can use G»+1) $0 that Hn(m) :::::(in (-0i) is a polynomial of degree at most

Jd~- 1 (recall Tn and J ~I.'€ even] that interpolates to the entire function J:l(x) := G(0) at

the .1;1 zeros of Tl£(¥f.)J that lie in (0, a~). Thus) Hn(x) is determined entirely by interpolation

conditions. Ll't '''/7~denote the leading coefficient of Tn(m/ Fn). Then, the usual derivative-error

formula f01' Hermite interpolation gives for :r. E (0,00) and SOl11e e E (0,00),

• (J;,)
(H-H )(:r.)::::-v-JX(Vi)JH ' (e) >0

n In 11 a ( In) I - •
7t 2 f'

(Recall that H is entire and has non-negative Maclaurin series coefficients). So in ~

To show that (it~ ~ 0 in ~j we note that it is true in [--an, at.) and we must establish
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it· elsewhere, We use an idea employed in proving the Posse-Markov-Stieltjes inequalities

[13,p.30,Lemma.5.3]. (There the proof is for (-00,00), but the proof goes through for (0,00)

with trivial changes). Now H is absolutely monotone in (0,00) and If - Hn has ~J1. zeros in

(0, a~]. If m is the number of zeros of Hn(x) in [a~, oo}, Lemma 5.3 in [l3,p.30] gives

In .... . In""2 + 'In $ deg(Hn) +1$.T'

So 'In __,0, that is Hn has no zeros in (a;, 00). Thus Hu 2 ° there, so .on ~ 0 in !R.O

7.2 Polynomials approximafing characteristtc functions

Our Jackson theorem is based on polynomial approximations to the characteristic function

X[a,llj of an interval [a, b]. We believe the following result Is of independent interest:

Theorem 7.1.3. Let 1 be a positive integer. There exist 011 02, no such that for n 2 no
and 1" E kanl an], tluwe exist polynomials R7hT of degree at most, Grn such that jor :v E R,

(7.5)

We emphasise that the constants are independent of n, r.», Our proof will use polynomials

from [24] built on the Chebyshev polynomials;

Lemma 7.1..4. There exist Oi, B, nl such that for ti ~ nl arid I , 1$ cos in! there exists
a polynomial V;tl~ oj degree at most n - 1with

(7.6)

BJI-1 (I1Vnl~(t) 1$ nit _ (I ,t E (-1, 1)\{(}. (7,7)
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Moteover,
(7.8)

The constants .ltre independent of ti,(, t,

Proof: Tite asaertions (7.(}L (7.7) are Proposition 13.1 in [24). The estimate (7.8) follows

from the cla.ssical}3ernstein inequality,O

The polynornialsJ{Rn,'1"1 are determined as follows: Let us suppose that, say,

Litter on, we shall suppose "hat r exceeds a fixed positive constant. We define

(7.9)

and if G'?t are the polynomials of Theorem 7.1.1,

fa:: G .(s)'\I, (-$-)/.} dsR( ).~ JO 71 • ll.( a21Jn '
11,'1" X .~ rr: G ()"110 (_§_)IJ d •

JO n S n,( a2l.J1l. S
(7.10)

The parameters r" > rand J are defined as follows: Let A E (0,1] denote the constant in

the quasl-monotonicity of Q', so that

Q'(y) ~ AQ'(x), y?: e, (7.11 )

Let Iv! denote a positive constant such that for say, u ~ 1Lo ,

(7.12)

The existence of such an M follows from (6.4) and (6.6)(i)

Wf:.'set

(7.13)
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and.if r ::::::aI"

(7.14)

The reasonfor"tliis (complicated!) choke will become clearer lat(~l. We assume that J 24

is so large th;l.t On has degree at most In ....1, ard also

J 2 16MIA (7.15)

where ,4" M are as abov€\. Note that then Rn'r has degree at most In + lJn, We first record
'G : ', ,'- -', " ':'. ,i ' , ," ,)

') " -~ _, () ::' ,) _ , .. ' , "', " _ _Ii , " , ',', -some estilna,t.~s ofth(> tenb If. t1.10).

(7.16)
o

,;wMreC2 '# G2(njr).

(b) For :v E. (1-, (1,2IJt~)\

('"' 1 '"')I.~ I

(7.18)

Proof. (a) Let us denote the left-hand side of (7.16) by I'. By (7.2) and (7.8),

w'iere we have used (6.46).

(b) These follow in a straightforward fashion from the estimates (7.6), (7.7) and the fact

that J > 4 so If > 1 + 1.0- ~
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Now we begin the proof of Theorem 7.1.3. We first show that it suffices to consider 7 in

the range [8}a71] t for some fixed S.

Proof of Theorem 7.1.3 for 171:5 S, where S is fixed. Note first, that since for such

7,

W(X)jW(7) :5 vV(O)jW(8), x E R,

Wemust only prove there exists Rn,T of degree at most n such that

for Iw I:5 a.2n, and then our infinite-finite range inequality Lemma 6.1.3 gives the rest. Setting

here ~ :;:::z 'FjatH S :=x/an, and Un,e(s) := R,.,T(X) = Rn,T(ans), we see that it suffices to show

We have used here that I e I:::; ~, for large n. The existence of such polynomials is classical.

See fat' example [9]. One could also base them on the Y;1,( above.O

It suffices to consider 'F E [8, (!,n], where S is fixed

For once this is done, we have the result for all 7 E [0, an]. With the result for 'F ?: 0, We set

Rl1,-r(:t) :=1 - Rn,r( -x), x E 1!\l'••

It is not difficult to check the result for r+T from the corresponding result for r, using the

identity

o

In the sequel, we define Rll,T by (7.10)~(7.14).

It suffices to prove (7.5) for r E [8,an] and 1 x I:::; ozu«
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For then (7.5) for this l'c..stricted range implies

where 04 :f:. C4(n, r). Since the polynomial in the left-hand side has degree at most 2l + In +
IJn ~ 172lJn, some-fixed 77 < I, if l ~. 2 and n is large enough (as we can assume), then the

infinite-flnite range inequality Lemma 6.1.3 gives

Then (7.5) follows for 1 x 12:: aZI.Jn .0

We can now begin the proof of (7.5) proper. W~ consider 5 different ranges of an [0, r),

[1', r*], (1'*, an], (an, aZIJn], [-a~/Jt~! OJ. Moreover, we set

6(x) :=1 X['T,an) - Rn,'t 1 (x)vV(.r.)/W(r).

Proof of (7.5) for x E [0\r). Here using (7.1), and then (7.16),

< C W(x) foX W-l(s)V7.,d~)/Jds
- .~~

r:cv: r( S)/Jd"1< CJO n,~ 'ii2i".ln '
- ~y'f=(

by the monotonicity of W. Then (7.18) gives the result.D

Proof of (7.5) for ill E [1",1"*). Here
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<cJt exp(Q(s) - Q(x))v.;~,((~)IJ ds

~ ~.Jl-(

by (7.1.)and (7.16). Now for S E (x, r"), the property (7.12) of Q' gives (recall 7"*5 a2r)

Q(B}- Q(x.) .5MQ'(o'r)($ - x) 5 MQ'(r)(s - r).

Then using our bounds 011 v.;~,<in (7.6) and (7.7), we.have

Jt exp(MQ'(7")(s - 7"))min{l Ba2!JnJE5}IJds
6,(:t) < G $ •.... •• ••. • 'n(S-T) -

- l ~Vl-(

n("'*-"'1-
-G'B. 1··. B..D. 2IJn\ll_,.(az.1Jn 2lMBu) . {1 ~}IJd
- .: '1. ____P("'\0 . exp an AH mm ! U '11,

B<t2IJn 1-{

fqr say n ~ nl ::::nl(J, l) by (7.14), and where

4lMBu . 1 IJ/2
y(u) := exp( AR ) mlll{l,:;;} .

We claim that if J is large enough,

2g(u) ::; C3, u E [0, BE log H),

with Os independent of T, n, Firstly we claim that if l is large enough,

H > e: fI > eBI?-, -

uniformly for T E [8, a1l) and n ~ no (.J, 1) .

(7.19)

Firstly recall that B, M, J, A are independent of l (see (7.7), (7.11), (7.12), (7.15)) .Then

also from (6.52) for r E [8, an]
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with G:;6 C (n, 1·, 1) .Then from. (7.13),

2l·. ( 1__ -r ) ~
H > a2n

- AC 1__ "_
a2lJn

Here for n 2:: no (J,t) .using' 1 - u Slog fI' u E (0, l],we obtain

log~
S 1+ 1-.~ S 1+ (h log (lJ)

a2n.

by (6.7,) and the left inequality in (6.12) .Thus for n 2: no (J, 1) .uniforrnly for T E [S, an),

So (7.19)follol if we choose 1 enough. Then

4lMB
g(u) S exp( Ae ), u E (0,1].

Next, by elementary calculus, 9 has at most one local extremum in [1,00), and this is a

minimum. 'I'hus in any subinterval of[1: 00), 9 attains its maximum a.t the endpoints of that

interval. In particular, Wemust only check that g(1JIIlogH) is bounded. Note that by (7.19),

2
BHlogH ?: e > 1.

So
2 . 8M J Jl 2

g(BHlogH) == exp(llogH{-T - 2} - 21og[B 10gH)) S 1

11.'> J ? 16M/A and H?: eBI? (See (7.15)). So we have

and then (7.5) iollows as .J ? 4..(J
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Proof of (7.5) for :t E (r'\ an)

Here
A{:t) _ W(w) J:: G'l(s}v,.,da~)IJds
. W(r) fri Gn(S)Vn,da2:J,,)IJ ds

« C. I;·exp(Q(,'1) ~ Q(:t))V7l!d~}IJ ds
- ·1 ~v'1- (

~.OI.(1'l\lr=-z{eq(,-¥)~q(X}L~¥ Vn,C( a2;Jn)IJ ds +J~Vn,C( (L2;J)!J dS)
~. C3{ ..eQ(Z!f$).-Q($)[1 + n(r*-1"lJ~I.~ (1+ n(:t ---7")I-I} (7.20)

/1 anv'l- ( (L"v'l- (
4

by (7.7) and (7.1\~" Herelf,f7"* > ~, the first term in the last two lines can be dropped and

we aJre&.dyhave the desired( ;'.timate, In the contrary case, we must estimate the first term.
, ,

We note tha.t Wecan assume that 1'* « am for otherwise the current range of :t is empty. We
consider two sul)cases (recall the definition (7.14) of 7"*):

(l)'T~ - T+27t~Hloglf
;)

We shall show that
r:= Q(:t) - Q(r.p:) > 1-

IIog(l+ n(:r.--r))-
a,,~

'I'hen, the first part of the first termin the right-hand side of (7.20) already gives the desired

(7.21)

estimate; the I:H~Cq:?dpart of that first term Can be bounded by 1. By quasi-monotonlcity (7.11)

of Q':

Setting
n(w-1')

71,:=---,
anv'1=(

we have
I'<> AQ'(1')~v1-=<u _ u
- 211og(l + u) - II log(l + u)'

But
n(r* - r)u> = 2HlogH.- an,/l - (
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Recall from (7.19) that Ii > e. Then since the function 109(l+U) is increasing for u C:
2H log If ~ we obtain

r > . __2_H_••.~lQ...;:;g_H_----,-:-
~ H log(l +2H log 11)"

"II So we have (7.2l,) and the result.

(II) 1"* \ (t2r
I) '.

III this ca.se,"from (6.7),

"Now. if r".S :t S 1"\. + -r{r») , then
x ~ I IV r* ~ I

and the second part of the first term in the right-hand side of (7.20) already gives the desired

estimate (the first part of the first term can be estimated by 1). If x > r(l + T(r»)' then

II
Ii
I',/

x 1 1
(~) 2': 1+ 2T(r) + 1 2': 1+ 3T(I)

fof large I, 'f) from (6.1),

(Recall that a:t > r}, Then

This will admit the desired estimate, namely
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provided

But,
t: . eC4 Q(x)I(I)

e04Q(1I;)/(I)T(r) ~ c, T(a:) ,. ~ C9Q(:I:) ~ C10:r; > C10(:r; - 1")

J...y (6.5), (6.9}a.nd the faster than polynomial growth of Q, so we have the desired estimate.O

Proof of (1 •.5) fo:t x E (an. (l,21JI1.]

Here, much <15 in the previous range,
I

L\() _ W(x)]riG?l(s)Y;\,da;f;;;)IJds
x - WeT) Jt Gn(S)Vn,CC12:Jn)IJds

WI?- must show that the nrst term on the last right-hand side admits a bound that is a

const'ant'multiple ofthe second term on the last right-hand side. Let us write x :::::CZ1J (so V ~ n)

and Tix :::::au (so that 'lL < v). If firstly u ~ ~, then

by (6.4) and (6.7).(Recall that ~::::: -a T .) In this case the result follows. If u < 1-2\,21Jn

by (6.5) and (6.9). Since
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the result again follows.D

Proof of (7.5) for x E [-lZz/Jn,O]

Here using the evenness of Wand (7.1), (7.16) as before gives

~c,{[1+ :~~r/+ iJ(~)-Q(rc)[l + (J,n~r/}.
Here 1 I --r 1= ¥ + r ",I x - r I. Also, if I x I::; 1", then r rv r+ I x 1==1x - r I. Otherwise

(recall T ~ S), we have

Again as I x I r ~ Cs(r+ I x I) == 08 I X -. r I, the result folIows.o

7.3 The Proofs of 'I'heorems 5.1.3 and 5.1.4

In this section, we prove Theorems 5.UI and 5.1.4. Recall that our moduli of continuity ar z

and

wr,p(f, W, t) :== n'lt II W D.ht1.>t(IC}(f, x, R) Iitp(i:cI$17(2t)) dh) *
+ inf "(f - P) W IIL{I:cI2:u(4t)) •
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Here,

We need further moduli of continuity. If 1 is an interval, and f : I -). lll, we define for t > 0,

Ar,p(f,t,J):= sup (r I b.Hf,.x,l) IP dx)l/'P
0<119 Jr

(7.22)

and its averaged cousin

Note that for some C1 • C'2 depending only on rand p, (not on I, I, t) [8] I [47,p.191],

(7.24)

For larg« enough n, we choose a partition

(7.25)

such that if

(7.26)

then uniformly in k and n,

(7,27)

(/ I I denotes the length of the interval I). We also set Inn := 0. There are many ways to do

this. For example, one can start with the classical Chebyshev points scaled to [-alll all], and

then drop an appropriate number near ±an. Let us set

(7.28)

and

OI:n(X) := X[T" nnJ(a:) = Xun-l!. (x).. .. ,;nt i::f:k .n
(7.29)
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We set

(7.30)

By Whitney's theorem [47,p195], we can find a. polynomial Pk of degree at most r, such that

(7.31)

with C~i= G2{f, n, k, lim)'
Now define an approximating piecewise polynomial! spline by

n.-l
Ln[f}(a;):== po (a;)OOn (a;) + 2:(Pk - Pk_l)(X)Okn(a;).

k==l
(7.32)

We first show that L)t[f] is a,good approximation to f.

Lemma 1.1.6. Let \lIlI : [-a)!, an] -t lR be such that uniformly in n, and x E [-am an],

(7.:33)

Then for 0 < p < 00,

(7.34)

and for P =.; 00, we replace the pth root and integral by sUPO<h::;02~ .

Here, Cj 1= Cjt(f, n), j = 1,2. Moreover, the constants are independent of' {\lin}, depending

only on the constants in '" in (7.33). For p =.; 00, (7.34) holds if we remove the exponents p.

Proof. We first deal with P < 00. Now

H-l
II (f - Ln[f])W Ilt,,(lR:)= ?J Lljn+ II fW Iltp(I:L'I~atl)'

.1==0

(7.35)
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where

~.in:;:::: f .: If - LnIf] IPWP•i; (7.36)

Note that in (Tin, Ti+l.n), Ln[j) = Pi, so that

~IIW I!L,,,(l)n) C~A~.p{f,I lIn I,IjrJ (by (7.31))

C 11·1
~H W lit (I -. )11 W-1 lit (1* )I·I}I r;n ( I W~:;(f,x, l;r.) IP d» ds, (7.37)

0() In OO)n in Jo lrJ"
by (7.23), (7.24). Now from (6.46),

uniformly in j and 'fl. Moreover, uniformly in i. n, and x E IJn,

Then we can continue (7.:37) as

(7.39)

Adding over j gives

10-1 . nlaG6~1 r2:::: D.in ::;C5- I W ~tlj)n(:C) (I, x,lR) IP dx dt,
i=O an 0 III
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This and (7.35) give the result. Note that we have also effectively shown that

For P = 00, the proof is similar, but easier: We see that

The rest of the proof is as before.D

Now we can define our polynomial approximation to f:

n-l
Pn[f]:= Po (X)Rn,To" (x) + L:(Pk ~ Pk-l) (x) Rn,TI<" (e),

k=l
(7.41)

Note, that this has been formed from Ln[f] of (7.32) by replacing the characteristic function

lh7~(X) = X(TI<Tl,(L,,] (x) by its polynomial approximation Rn,7",n(X) formed in the previous section.

Lemma 7.1.7. Let {Wll}n be as in the previous lemma. Then

(7.42)

and for P = 00, we replace the pth root and Integ; al by sUPO<h<C2 £n. •
- n

Proof. We see that if we define P-t{x) == 0,
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(7.43)

\

We shall make substa~\tial use of the following inequality: Let S be a polynomial of degree
c . I,

at most r".and[a,b] be a r~la,tinterva,l, Then for all a; E JR.,
\\
\\

IB(z) I::;C(~r ,a)~l/P(l+ min{1 x: ~I~Ia; - b I}y II S IILp[a,bJ ' (7.44)
i

;.-')
1/

_('. ..' " ---r'1

I;I(!.reC ;bC(u,b,x, S) btttC = C(p, r).
;_', 11,', ,:.' :: _\",i,

tllis fo1l0wS;{181l1\;,stand;~tdNikolski! inequalities and the Bernstein- Walsh inequality. See

for .~~a,tnple [47 IF 193J',
i! "': ,",D,·' ':i) ,',

lJ~f~nce for ,¥;E JR., and J ::;k ::;n - 1,

This is still ".true f9t k == 0 if we recall that P-l == O. Now for 1 ::; k ::; n - 1, (7.31) gives
_,,It;;/~':/ o
(/

k

II PI: - Pk-l IILp(Ikn)$ C1 E Ar,p(f, I I~~ I, I~J
i;:::k-l

where.G'l ;bC1(i,k,n).

This remains true for k = 0 if we set

and

Since (see (6.33), (6.34), (7.27) ) uniformly in k, n, and x E JR.,

1+ I a; - Tkn I rv 1+ I x - Tk-l,tl I
1 hn I I h-l,7t I
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()

We obtain from (7.44) and Theorem 7.1.3, uniformly for (J :s: k :s: n - 1 and x E 1&,

W(a:)I (Pk - Pk-l)(X)(Okn(X) - Rn,Tkn (x)) I tV(7"kn)

:5 02 i: I i: I~llp (1.+ I XI j. 7"i1Iy-lQr,p(fj I lin I, lhl)'
1=11-1 m

(7.46)

We consider three different ranges of p:

(1)0 < p -< 1

Bel'e from (7.43) and then (7045),

.-"1~1 1 I-lop (f· I 1*1 1* )WP( ) r (1+ I x - 7"kn 1 )(r-l)Pd (~ kt:l kn. ~'r,p' Jm, kn. 7"kn J'P/. I h71 I :1:, 7.46)

Here if (r -l)p < .....1,

So

k(I Ln[f] - Pn[f] IW)P

11-1

S G4 E n~,p(f, In; I, l};n)WP (7"kn).
k=-1

This is the same as our sum in (7.40) 'except for the term for k == --1. So the est' ate

(7.40) gives the estimate (7.42), keeping in mind our choice of !Jr,p (I, 11::1,71 I, r':1,71) •

(II) 1 '5 p < 00

From (7.43), (7.45) and then HOlder's inequality,

{I L7I[f] - P7I[f) I (x)W(x)}P
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< C ·~Ilk 1-1(1+ ••I.x - Tklt 1){r-l)p/2np(f .IIk* I Ik*)WP(Tk ). S (x)p/q (7047)·~ .i....J n· 1 11 't,p. 1 n l'n n 'I).

k=-l I kn

where q :=:; pl(p - 1) and

s; (x) :;::t (1+ Ix - Tkn I )(r-l)Q/2.
k=l I. hn I

We shall show that if (r -l)qI2 < -1, then

supsupSn(X) S; C1 < 00.
n;::1 a:ElR

(7.48)

Note that Sn{X) is a decreasing function of x for x ~ an =:; Tnn, so it suffices to consider

x E [0, anI. Recall that

II III I an l_ITknl.
kn. rv k+l,n· '" -n a'2n

It is then not difficult to see that

We make the substitution (1 - s) = (1 - x)w to obtain

11':'% I w - 11 dwSf: (x) < C3nv'1- x (1+ nv'1 - x )(r-l)q/2_
,- 0 v'W v'W
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+ lj~2[1·+nVl - '$ I 'IV -- 1 ll(r-l)g/2 d·w

12/(1-$) ./(r. -.-. . dw+ . [1+ n (1 - X)W](r-l)q/2 __ }.
3/2 ~

(We can omit the third integral if 2/(l- x) S 3/2.)

We now make the substitutions '111 == n"!(l- '$)v in the first integral, v = nVl - x(w.- 1)

in the second Integral, and 11 :::: n2(1 ..,.ti:}w in the third integral. It is then not difficult to see

that th~. resulting terms are bounded independent of n and x if 1 is large enough. So we have

{7.48}. Then, hitegrating (7.47) and using (7.40) gives our result.

«(Ill) P==~

Now

n-l

I LnIfj- }}I[f} I ($) s G L I Pk - Pk-l I ($) I (}kn - Rn,Tlm I (x)W(a:)
k;=:O

n-l I I< G n (f I J* I J* )W( ) "\'( 3;'- 'Tkn)(r_l)-' max ~Gr,p , kn' kn 'Tkn' LJ 1+ I I I .
-l;:;kstl-l k=O kn

As before, .the sum is bounded if 1 is large enough. Then we can continue this as

o

We can now turn to:

The Proof of Theorem 5.1.3. Now recall that Rn,T has degree at most 21Jn, where J
is as in the proof of Theorem 7.1.3, So Pn(f] has degree at most 21Jn + r, So, if M 3lJ, we

have for large Tt,

131



,; 0, {[ 2 f'ft II WL'.}; •• ,.I(f,z,iRllIl'",[e".,".J <lht
+ II jW IILp(la:I~(tn(l-02InT(an)1/2)-l))}}'

Here we have used Lemmas 7.1.6 and '7.1.7, and also (7.27), which implies that

Next for

Mn$j5M(n+l)

we write

n== /,i,j,

where K. = J{,(j, n). Note that
n 1

'" == j -7 M' j -7 00.

We set

(.) Majt :=t J := -.-.
3J

Note that then
t 1 Mn a' 1--- = - --. _2. _ -(I+ 0(1)), n -700.

un/n 3 J an 3

Let f3 > 3. We claim that for large enough n,

To see this, note from (6.9) that
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so that by (6.7), if 1 > a> 3/{Jj

for large enough i, by first (6.28) and then (7.52). Next, we claim that if 0 < 'Y < 3, then for n

large enough,

('1.54)

To see this, note that by (7.52) if 1 < ¢ < 31"1

Here we also used the fact that (T is decreasing, and also (6.28), (6.29) with ti large enough.

Since also 2t ~ (Ln/n ~ 4t for large enough n, (see (7.52)) We can recast (7.49) as

{ [
1 r: . .]~:5 c, .2t 10 IIWAh'l1" (x) (j,x, lR) Ilip[lxl~(T(zt)] dh

+ II jW IILp(lxl~(T(4t))} • (7.5.5)

Now we choose 1],1 := h/( 4C) and wn ;:::::<Pt/(4C) so that hWn = hI CPt. We must show that

(7.33) holds with constants independent of j and n, that is

But for this range of x,
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by (6.33) and (6.34). Then, with a suitable choice of Po EPr~l' we have using

that

~.2q!{[T£ IIWLi;;,.,{.l(f,x,R) 11£,II.b("l) dhl]~
+pJ~LlII (f ~ P) W IILp(lxl~(T(4t)) }

. Ma'== 2C3wr•p(f, Tv, t) = 2Cswr,p(f, W, -3 .J ).0'. . .. J

1 )

The Proof of Theorem 5.1.4.

Obviously (5,14) implies (5.13). The only difference to the above proof is that Wechoose

to replace t above. Then from (7.52),

tl P-- = -(1+ 0(1))o,:,Jn 3

and here ~ E [l~'~].Then as 4p > 3, (7.53) above shows that
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and as p :5 1, (7.54) above shows that

Moreover, al1Jn :5 3t.$ 4tt and ~ ~ 2t; = 7- 2 2tl' Choosing hI ;= h/(4C) and Wn(x) :=

<Ptl (x)/(4C), We note that (7.33) holds uniformly in p, We proceed as before to obtain

with constants independent of p, I, j.o

't.4 'Phe Proof of Theorem 5.1.5

W¢ turn to the proof of Theorem 5.1.5. We provide full proofs only where the details are

significa.ntly different, and otherwise refer back. We begin with an analogue of Lemma 7.1.6 for

Ln[/] of{7.32).

" Lemma 1.1.8

Here L is independent of I, n,
Proof

We do this for p < 00. Recall that the crux of Lemma 7.1.6 is estimation of
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(7.57)

We now choose L > 0 such that

(7.58)

This is possible by {6.40). Now we choose

No~,e that by (7.58)1
c'

sup ~nlk+l ((1;) < 1..
<z:e:~ 071,k (a;) - 2

In view of (7.27), (6.33) and (6.34), Wemay assume that L is so large that uniformly in 11"

(7.59)

Then from. (7.57),
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:r .

TIH~test of the proofis M befote.d

The analogue of Lemma. 7.1.7 is

if

P'l'OO£

This is exactly the same as the proof of Lemma 7.1.7, except that we substitute for (7.40)
'C'\

the estimate ot Lemma 7.1.8.D
, II,

Proof of T\~e()rehl5.1.5.

ThIs follows\'from Lemma 7.1.8 and 7.1.9 exactly as Theorem 5.1.3 followed from Lemma

7.1.6 and 7.1.7.0

7.5 The Proof of Theorem 5~1.6

Using (5.18) and the methods of proof of Lemma 2.2 in (26,p.209], we obtain

(7.60)

and hence

(7.61)

Since u -+ ~ is then strictly decreasing for large u, we obtain the identity

(7.62)
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· cr'(t). '. .1
(Y(t) '" -iT(cr(t)) ,0 < t s C4

Differentiating this, and using (7.60}j (7.61) leads to

(7.63)

..

and then using (5.19)\ we obtain

I t~T{cr(t)) I~C5T(cr(t)), 0 < t s (:4. (7.64)

These fast two bounds easily give

(7.6.5)

o
I x I e

0< t $ C5; 11 - cr(t) I~ l'{cr(t))' (7.66)

HerE!.t is any fixed positive number. We now estimate /ljn a little differently from the way
o
we proceeded after (7.57). Let us make the substitution s = LtWt(x) in the right-hand side of

\1.57) and keep our choice of L, 67t,l (x) to deduce that
(.

C731;>1 1o(13n/(3n) a3
~ -.- 10(:;(2 +3 tt) I W /lLt<I>t(:C) (I, x ,lin) IPdt dx

a311 1* 0 nt·,
)n

by {7.(5) and (6.40). In applying (7.65), we must ensure that the range conditions in (7.66)

must hold for x E 11,t and t ~ a3n/(3n.). In fact if I x I~ an, then

by (6.28), (6.29), then (6.7) and then (6.6)(i). Thus,

n-l

L: /ljn
j=O
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Os3n .;..(Ln1n.3nl(3n)~. .. .. a3
::; .~. . . log{2 +3. nt) IW LSLt<l>t(a:)(f, x,~) jP dt da:

as» -an 0 n

~c; sup ··1•.an· I WLSLt~I(4J){fj x, JR.) W da: r .hog(2 + !)ds.
O<t~a3"l(3n) -an io V S

HOi under the addItional condi ti am; on Q we·obtain
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Chapter 8

The Equivalence Theorem

~ 1.. A Crucial Inequality

In this section, we obtain a crucial inequality introduced in a similar context in [11], in order

to obtain an upper bound for OUrmodulus in terms of our realisation-functional. The main idea

is to approximate polynomials of degree ::; n by polynomials of degree ::; r ~ 1. Here n 2:; no

and r 2:; 1.

We prove:

Theorem S.1.1. Let W E £1 and assume (5.27). Let r 2:; 1, L> 0, 0 < p ::; 00, Pn E

Pn and n 2:; C. Set

(8.1 )

Then, 9 c, > 0, C1 # (,'1 (n, e; P) such that

(8.2)

We break the proof down into several steps. We begin with:

Lemma 8.1.2. Let W E £11 1 ::; l' ::;00. Then for n 2:; C and Vg E Lp[aLnl 00), :3 C1 >
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c

Proof. We notice that

w (a;)ki3; w (u)-t QI (u) du

- 2 [I .cl~iiil t] :;2
as :e.

" Next,c notice that for- u ~ a1.llU and n large enough, we have by Lemma. 6.1.2

Now recalling Jensen's Inequality for integrals

valid for It measurable functions f and non negative measures It, gives:

Case 1. p :::::00. Here (8.6) gives for x ~ ULn

141

(8.3)

(8.4)

(8.5)

(8.6)



Ca.c;e2. 1 < p < 00. Here

I['IW(:v) IX. 9 (u) dull
. (l.Ln Lp[a.Ln ,00)

1

::; an 1 [fOO [W (x) k {X IgW (u) IQ' (u) w-t (u) dU] P da:] Ii«r (an) 2 }(l,Ln 1aL"

:5 Oa an ..!.[t002P-1W(x)~ {X IgW(1L)lPQI('U)W-t(U)dUdx]isr (an) 2 JaLn JaLn

. . 1 1
by Jensens Inequality, with dp,:::: tV (a:) 2" Q' ('1£) ., (u)-~ OIl [aLnl x] and f djJ, :5 2 (see (8.4)).

Then

1·00·W(x)t1•..·.x IgW (u)JPQ' (u) w-~ (u)dudx
(l.Ln (l.Lnfa: IgW(u)IP f.loo W (x)~ Q' (u) dX] w-t (u) du

< 041: IgW (u)IP [.loo w (x)~ Q' (x) dm] w-~(u) du (as x > u)

::; Os "gWII~[,.. ) .Dup ~Ln ,00

We are now in the position to give

The Proof of' Theorem 8.1.1 for 1 :5 p :5 00.

We will repeatedly make use of (6.35) :

(8.7)

Firstly, if r = 1, Lemma 8.1.2 with 9 = p~ gives

Now apply (8.1) . If r ::::2, we apply Lemma. 8.1.2 with
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to give

llw (x)1X 1~1p,\2) (Uo) dUod'U111
»c« ULric Lp[ULn,eo)

- lIW{X)l:
11
g(ul) dUlIILptOJ;n.eo) S Csn~l'(:n)k IlgWIILp[U[.n,co)

_ C3 .. ,.a,~ , lllW rut' PA2} (UO) duo II'
nT(anF JOnL " Lp[OLn,,,,,)

< 04\,,1' ~~ It)' I[A\·lw IIL,(IIJ$ G, t~),IIAI') if>~ (m)W114(R) .

"'IApplying now (8.1), and an induction argument 011 r gives the result.D
/' '

I{ "
); We now tackle the more complicated case, 0 < p < 1. For this case we need two lemmas.

c temmft s.t.a, L~t W E: [;1 and assume (5.27). Let 0 < p < 1, r ~ 1, Rn E PM R E

'Pf'~l and n a G-'t Set for !(. E JR, and L> 0

gn (a::) := (Rn - R) (x)

,lind "

(8.8)

trhen

o (8.9)

Proof. Write
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and .set
O(1,n

T:=. . I

nT{anF

where 6> 0 is chosen smaUenough so .tha.t for n ~ 1 and VB E P7~j

1

IIS"WII . < (20-1.). nT (a~}21ISWII' .. Lp(~) - a Lp(~) •
71

(See {5.27} and (6.35))

Now given x ~ aLlll we set

a.nd.
(I

where

and

First we observe that for U E [x - (k + 1) T, x - kr]

~ ~:~ ::; exp (Q (x - kr) - Q (x)).

Further, as :l.: - hr ~ a1,71 > 0
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o

by (6.4). So
-2...,;_

(w ($)) 2(1-11) '. k
W (u) . $ a , U E [x ~ (k + 1) 1"., X ~ kr]

whefe a E (OJ1) is independent of $, u, k: Thus we may write
.)

t,+ 12 ~ O~$t ak
119:~wlltx)[x-(k+l}7". x-h]

+(lo Ilg:~WI11OQ[a,Ln' x-(k"H)r]
ko(x)

< E ak Ilg:lwll1oo(x-(k+1)r, x-kr]
k=O

+ako 119:1WIl1OQ[atn. x-(ko+l)rJ .

'l~ .Tn (x) dx
Ja~,n

We observe. that

and since

x E [aLn + (m - k - 1) 7, aLn + (m - k) 7] ==} m 2: ko 2: m - 1,

we have
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< ~[J.:::::,+I)"IIg~Wlli~I"'-HJdx( {~) <tk)•.l
s=m-k-1

+21::n+r
Hgi!wIIL,(clLn. x) a (I ~ a) dx

< C4 r13+ 14].

Here

(8.13)

and

(8.14)

We. begin by estimating la. Observe that g;1 is a polynomial of degree S; n - 1 in u E

[X,3; +7'J, so expanding it in a 'Iayor series about x gives

n gJ!) (;7;) (u _ x)i-1 P

- ;; --(j - I)!
n

< L: IgJ!) (x)IP r(i~l)p

i=l
(by the inequality, (a + b)i) :::;aC'( + b", 0 < a < 1, a, bE R)
~1 n

< 2: IR!!) (x) - R(i) (x)IP r(i~l)P +L: IR~) (x)IP r(i-l)p.
j=l j=r

Thus using

w (u) S; W (x) , U E [z,x + rJ, (8.15)

the definition of rand (8.10) gives
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(8.16)

To estimate 14 we proceed in a similar way to that of la, except that we use Lemma

6.1.7(b) instead of (8.15), which we may in view of the definition of v, (6.7) and (6.9}. Combining

OUrestimates for 13 and 14 give the lernma.O

Lemma 8.1.4. Let ltV E s, and assume (5.2"f). Let 0 < p < 1, r ~ 1, L > 0, tc; E

Pn, R E Pr-1 satisfying,

(Rn - R) (aLn) = O.

Then for n ~. 0 there exists 01 =f. 01 (n, Rn, R) such that

(3.17)

Proof. Set

971 (x) := (Rn - R) (x)

satisfying gn (aLn) = 0 and write
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Then

(8.18)

< [I.: Ilg~W (ull'" (~ ~:DI P x
Lcx>[aLt,. ee

(.( Ig~W (Ull" (~ ~:DldU)'d.t
Nee. apply Holders Inequality with l' ;:;:l':p! cr ::;:~ satisfying r-1 + 0--1 = 1 to give

where

(8.111)

and

(8.2(1)

Now by (8.8) we may write

00 !.:::l!. ["-1 ( ) (j-1)(l-p)
11=(1 In (m) da:) 11 ~ C l: an 1

at-It .i;::1 nT(a7~)2
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(8.21)

(by Lemma 8,1.3) .

Also

Now if q: ~ 14 ?;: aJ.,n, Lemma. 6.2 gives

so that

D
'0 Thls gives

12 S; G4 an 1 II(R~I- R') Wilt [at ,(0)'
tiT (0.,.)2 P It

Oombining OUf estimates for hand 12 give the result.o

(8.22)

We are now in the position to giVe the

Proof of Theorem 8.1.1 for 0 < p < 1.. Let Pn E P« and P E 'Pr-1 be given by

(8.1) ..We first note that if 0 $ I < r,

Thus applying (8.17) to .R~I)with fin (8.17) replaced by r _. l gives

(8.23)
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We show that for k == r - 1, r - 2, .. ,,0

(8.24)

Firstly, if k == r - 1, (8.23) with l == l' - 1 gives

Assume now that (8.24) holds for r - 1, .." k + 1.We prove (8.24) for k,

Substitutlng (8.24) with r - 1, ..k + 1 into (8,23) with I == k gives

Ilw (p,\'i - p(k))k[,,", co] ,,; C, [nT~;n)i (nT r:n)'tH)P IIwp~')II~'(.I

X [~(. (1,n 1.) (j-k-l)(l-p) (_;.an .l.)(r--.i)(l-P)] X Ilwp~r)III-P
j:::k ..j-1 nT (nn) 2 \ nT ((1,n) 2 Lp(JR:)

Thus (8.24) holds for all k. III particular, we have

::;as ((1,IL)rIIWPt~r)<I>~ (x) II ,0n n Lp(JR:)
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8.2 Equivalence of Modulus and Realisation Funcsional

In this section we prove Theorem 5.2.1 which establishes the fund~mental equivalence of our

modulus of continuity and its corresponding realisation-functional. We also deduce Corollary

5.2.2. Throughout fr t 0 < p :s; 00 We set

«= min {l,p}.

We begin by quickly recalling the definitions of our moduli and realisation functional. See

(5.11 (a)) , (5.11 (b)) and (5.24). Let 7' e. 1, 0 < t ::;C and let n = n (t) be determined by

(5.25) . Then we have

(8.25)

\

(2) wr,p (f, W, t) ;= [} /at IIW (~h<l>t(a:) (1)) "~p(lxl~cr(2t) dh] P

+R o(~~~~r-ll1(f - R) WIILp(Ia:I?cr(4t» (8.26)

where we set w :::W for ;p =:: 00 and

(3) l(r,p(f,w,tr'l:=:: inf {1I(f~P)WIIL (JR)+trllp(r)f}>t'(x)WII.}. (8.27)
, PE'Pn p Lp{JR)

We begin with our lower bound.

Lemma, 8.2.1. Lot W E £1, assume (5.27) and let L > 0 be fixed, Let r ;:::1, 0 < p ~

00 and 0 < t < C. Then there exists CJ =1= C1 (f, t) such that

(8.28)

Proof Let q ::::min{1,p} . Then by Lemma 6.1.5(a), there exists 'U such that 4Lt =::
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~. Now let n = n (t) be deterU1.in~d by (5.25) and recall it has the form

n == inf { k : ~ s t} .
Thus by (6.24) and (6.33) we have

a.It <. t an- ~<-
2n - 2 n

(8.29)

and

(8.30)

where the constants in the rv relation are independent of t and (c. Also by (6.27) and (6.25) , :3

f3 > 0 such that

(8.31)

Choose P E 'Pn such t.hat

~ uc.; (f, W, tt) . (8.32)

We show that

(8.33)

and

inf . 1I(f - R) WIILp(lxl>u(4Lt» ~ O~J(r,P (j,W, tr).R ofdeg:5r-l -
(8.34)

This then gives (8.28) using the definition (8.25). We begin with (8.34) .

We appeal to 'I'heorem 8.1.1 and choose for our given P, S E 'Pr-l as in (8.1) so that (8.2)

holds. Using Lemma 3.1 in [11], we may assume that (C ~ O. Then

:~ 1I(f - P) WlIlp(a;~u(4Lt» + !I(P - S) WIIJ,p(a;~tr(4Lt»
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(by (8.31) and (8.32))

(by (8.2) , (8.29) and (8.30)

Hence (8.34).

Next we proceed with (8.33).

Let 0 < h 5 Lt and write

We first deal with the estimation of 11. Note that given A > 0,

Ixl 5 0' (2U)

:=:::} 1_ _EL > 1_ 0' (2Lt)
0' (tL) - (T (tL)

C7 ( At )2
~ T (0' (U)) ~ 0' (tL)'

by (6.30) and (6.31), provided t is small enough. Thus (6.53) and (6.57) are satisfied so that

by (6.58),

(8.35)

by (8.32).
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To deal with the estimation of 12w~ observe first much as in [11J that for

r-l p{l) ( ). (·)1
S .( ) '::::.'""'. :v w - ~:_ 'rJw, L..J [t E.: rr-l

1=0 •

we have by (6.50) that 6.'t<l!t,t(IL') S == O.

Thus expanding P (x + (~- k) hipt (x)) , 0 $ k 5 r, in a power series about x gives

so that
1'( )lJ n [.(rl)/'1]J, < .. t: . Z 1, p(l) I. q

2 - CsE k, ~ ---zrq II· iptLWIlLP(\a:1~0"(2Lt)}

l' [(1'I)(I_r)'1]
< C 2rq hrg ,,",. '2 ~ • .11 p(l) ipl Wll q •
- 9 ~ ZIg tL Lp(ixlsO"(2Lt» (8.36)

Now by repeated. applications of Theorem 6.2.1, we have by using (8.29) and (8.30),

< Cr '1Ip(r)q,r Wll ct-r nl
-
1(!:+ j_T (a )~)

-- 10 tL L(IR) 1l n
P j=7" an a1t

(8.37)

where Cj, j ;:::10,11 are independent of n, x, l, Land h. Now we observe using (6.9) that given

EO > 0, we have for n large enough and r :::;I :5 n

(8.38)
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Here it is important that (':'12 does not depend on l, n, h or L and that C10 and Cll above are

independent of s.

We may now substitute (8.38) into (8.37) so that (8.36) becomes

[( ) (l-r}g ]
11- . r..hClOCHl~.JL l,g

1 < C hrqllp(r)q,rwI19 'X' 2 •an ..
2 ~ 13 t L (R) L..- 1!9

p l=r

(if e is small enough),

(8.39)

Thus combining (8.35) and (8.39) and taking sup 8 over 0 S h ::;.Lt gives (8.33) .0

We proceed with the upper bound. This is more difficult than the lower bound and does

not follow as easily using for example the methods of [11] . The crux is establishing the following

quasi monotonicity type property of w.

Lemma 8.2.2. There exists OJ, j ::::1,2 and 0 < 80 < 1 such that if 0 < )..< e'oand

o < s, t < 01 with
8)..< ~ < 80- t ~ (8.40)

Wehave

Wr,p (I, W, s) ::; C2Wr,p (I, W, t) . (8.41)

Remark We remark that the above property is by no means obvious as recall our modulus

is not necessarily monotone increasing . We prove it for p < ex') as the case p :::: oo is much

easier.

Proof. Let us write

Wr,p (I,w, s)
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- It +12, (8.42)

Firstly, by choice of 8 and t, I :::;1 so that

(T (48) 2:: a (4t)

(recall C1 is decreasing), Thus

12:::; . inf 11(1 - R) WIILp(lxl>u(4t»R of deg~r-l . -

(8.43)

Next we estimate It :
Write (flY:::; 13 + [4, where

11'~11 .(. ) liPf .~ - . W t:::..r . dh
3· S 0 h<l>.(x) (I) Lp(lxl::;oo(3t))

and
I .- ~ t: IIW (I:::/(f)) liP dh4 .- 8 Jo h<l>.{x) Lp(oo(3t)~lxl~(T(2s»'

We begin with the estimation of 14, To this end We make use of Lemma 6.1.8. Much as in the

proof of Lemma 8.2.1, we have

14 S; C1 inf II(I - R) Wilt (Ixl> (4t» S; c,Wr,p (I, W, t)P . (8.44)
R of deg~t'-l p _00

Here we used that

inf'{e - Mrs<Ps (x) : C1 (3t) $ :r :::; a (2s))

-12: a (3t) - CtT (cr (t))T

~ a (3t) + 0 (liT (cr (t))) 2:: a (4t)
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-(T (3t) :::::"'"0 < '11 ... < 'In :::::(T (3t)

for small i, see (6.7) , (6.9) and (6.30).

It remains to estimate 1.'3 :

As sand t are small enough, we can use Lemma 6.1.5(11) to obtain a large enough positive

integer n such that ~ f'J S and then much as in chapter 7, construct a partition of .J :=

[-(T (3t) , (T (3t)]

with the following properties: If Jk == In, l'k+1] and IJkl denotes the lengh of Jk then,

(2) tPs (x) rv e, (y) z , Y E Jk (8.45)

(3) W (x) rv W (y) , x, y E Jk

Here the constants in the >- relation are independent of x, y, s, k,

Then

Now by (6.40) for some C =1= C (s, t)

if f :$ co, where cO is independent of s, t, Then if A < co, we have for

s>. < - < co,-t-

. 157



Then

(8.4G)

Combining our estimates (8Aa), (8.44) and (8.46) give the lemma.O

Lemma 8.2.3. Let W E [;1 and assume (5.27). Let r 2:: 1 and 0 < p ~ 00. Then for

o < t < G\, there exists C21 C3 =1= G21 C3 (/, t) such that

(8.47)

Proof. Put ~ = ~ for some u 2:: Uo and let n = n (t) be determined by (5.25) , so that

. f {k. ak < .2au}n=lll :---k - u

and

(8.48)

Now it is easy to see that for large enough u and the given n,

au an ()t=2-= -). n C
u n

for some). (n) E [tl1J and C > 0 independent of ti. We then apply (5.13) ,and choose P E

P« such that

(8.49)
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We show that for some C3 =1= C3 (I, t) ,

for then by (8.49) j

/(t',p (I, W, tr) = j~ttl{"U _.R) YVllLp(~) + tr IIR(r)<p~WIILr

< 1I(f - P) WIILp(~) + tr IIp(r)<p~wIILp(R)
< (C1+G3) wr,p (f, W,C2t) .

\

Thus we show (8.50).

(8.50)

Now let 8 > 0 be a small enough positive number and put s := 8t. It is sufficient at this

point of the proof to choose 6 small enough so that by Lemma 8.2.2.

Later I we will need to choose 8 smaller still.

Let us recall much &'5 in .emma 8.2.1 that we have for 0 < h :S; s

t:,.r P(:z:) = ~ (r) (_1)k-\--. [(~-k)hiPs(:z:)]lp(I)(x).
h<I>.(:r:) L....J k.t.....J ['

k;:;;:o !=r .

Applying (8.52) to :z:r E PI' and using (6.50) gives

(.,)-1 Ar ,. _ (1 if, ( ))r _ ~ (r) (_I)k [(~ - k) hiPs (x)r
1, L.l.h<f!.(x)X - ~'i"s X - L....J k ,

k=o r.

We now combine (8.52) and (8.53) together with (6.63) to give much as in (8.39),

IIWll.i!<I> (x)p (x) - W (hips (x)? per) (a:)119 I
• Lp(l:r: ::;:o'(2s»
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(c"" ?>I) (l-r)q Z·Iqn '6- ~< C Wq Ilw~,(r)<I>r (X)llq "" .a",. •
- 5 ii II Lp(lR:)I. L.-l l!q=1'+

(8.54)

where C6 is independent of t; n, li, E?>and l.

Now by (6.8), (6.25) and (8.48) we can choose 11'> 3 Independent of t,1 ,h, P.." 1 and C'},

such that au < aan' Further (if necessary] We make 8 in the definition of s smaller ~W) so that

~ . (1 1)0<mm 8a' '2 (8.55)

so that
t aan2s<-<-.~ 40: - un

This gives

a (2.'1) > cr(!"') > (J' (ad?» > aen- 411' - om- (8.56)

for some fixed 3 < ~ < a.

It follows that we obtain using (8.56) , (6.33) and (6.70) ,

IIWA,tcl> (x)p (x) - W (h<I>$ (x)r per) (x)II'1 I
" ' Lp( :z:1~(7(2$»

< !:hrg Ilwp(r)cI>r.(x)',lq
- 2 s Lp(lxl~0'(211))

(8.57)

provided :nh ::S~! where A is a fixed rositive small number independent of t, h, n,Pn and 1.

Now by (8.55) and (8.48) l it is easy to see that b..s ::SA~ so that VO< h::S As we have

IlwAr p(x)llq
• h~.(x) Lp(lxl~0'(2s»

~ hrq IIW (<Ps (x))" per) (x)119
Lp(i~I$O'(2s))

-IIWA1t4> (x)P(x) - W(h~}8 (x)y perl (a:)llq
~ Lp(lxl~0'(2s»

> !:hrqllw p(r)cI>r (x)llg
- 2 s Lp(lxl~(7(2s)

160



(by (8.57))

(8.58)

by (6..70). Now raising (8.58) to the p/q th powers, integrating for h from 0 to D..s using the

fact that <I>.~ (x) '" <l>t (x), x E ~ (see (6.33)) and assuming that A < 1 as W0 can, gives

C l·6.Strpllwp(r)cJ.)f(x)IIP ::; 2. .IIW~/t<I>(:v)p(x)IIP clh
Lp(IR) 8 0 ~ Lp(I:vI$a(2s))

< 03 (SIIWD..r p(x)II'P dh
~ 8 10 M.(x)· L1,(lxl$u(2s»

C8 roll . . r .. . liPs -;'/0 WAh4J.(x) (P - f) (x) Lp(I:vI$cr(2s» dh

(by (6.58))

by (8.51) and (8.49). Thus we have (8.50) and the lemma.O

We now combine Lemmas 8.2.1 and 8.2.3 to give

The proofs of Theorem 5.2.1 and Corollary 5.2.2. We have for any L > 0 and

0< t < to,

(8.59)

where 03 is independent of L, f and t while 01 and C2 are independent of f and t but depend

on L.

Fix M > 0 and choose L;::: MC3 and $;::: C3t to deduce that

Wr,'P (1, w,Ms)

(8.60)
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and similarly

W",p (I, W, Ms)

S O},wr,'P (I,W,s) . (8.67 )

Then (5.30) holds and (5.31) follows from (5.12), (8.60) and (8.61).

Finally (8.59) then gives

with constants independent of j and s.D
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Chapter 9)

Applications of Theorem 50201

9.1 Converse Theorems

In this section, we present the proofs for our converse results of polynomial approximation.

We begin with

The proof of Theorem 5.2.3. For each n ~ 0, choose P::. to be the best approximant

to f satisfying

Here, we set P;-l = PO'. Now let t > 0 be small enough and define n by (5,25). Put 1 =
(log2n] =the largest integer::;; log27t so that 21 ::;; n < 21+1,

Then by Theorem 5.2.1 and Corollary 5.2.2
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as 7' 2:: 1 and by (6.42). This can be continued as

by (5.27) .

We can continue this as

Now by (6.24) we have that t '" i;.L. Also by (6.33),

so that

so that by Theorem 5.2.1

Wr,P (1, W, t) r..J wrlP (f' W, ~~) .

Thus (9.2) becomes

WrIP(I,W,W

[
I ( 2k ) rg 1~C8trg ~ (Z-k+1)T_- E2k[f]W."...J a II IV

k:::.-l 2 .

where 08 =t= Cs (I, +,) .D

We deduce
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The Proof of Corollary 5.2.4. Suppose first that

Then in particular

W"IP (i' w, ~ ) == 0 (( ~ ) C¥) ,n -"-} 00,

so th~t by Corollary 5.2.2

Next suppose En ff]w,v = 0 ((~ t) .Let 0 < e < 1. Then, by (5.32~(

I

::: G" (~). [t,j".;']' (for some 0 < a < 1)

(9.3)

Now for t > 0 small enough, we may determine n by (5.25) and using (6.24) and (9.2)

deduce the result for "t.O

9.,2 The proofs of Corollaries 5.2.5 and 5.2.6

We begin with

The proof of Corollary 5.2.5. Let p/! satisfy the required hypotheses. Then by the
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definition of i(r,p (I,W, (~~y) I we have

(9.4)

Next choose P,~such that

(9.5)

$ 2I<r,p (f,W, (; )r).

Then

II (Pn - p,n WII~p(R) $ II(Pn ~ f) Wlllp(~) + II (J ~ p!) WII:p(R) (9.6)

< Od<r,p (11w, (~ rr
(by (9.5)).

Further using (5.27), we can write using (9.6)

II(Pn-p!)(r)<p~W[p(R) s C2(~:rqll(Pn-P!)WII:p(~) (9.7)

< C3 (;:Jrq tc.; (r, W, (~trr .
Thus by (9.5) and (9.7)

s CS[(r,p (II W, (~~l)r) q .

~,) that (9.4) and (9.8) give the result.D

(9.8)
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We can now give

'I'he proof of Corollary 5.2.6(a). We shall show that

(9.9)

and

(9.10)

We begin with

The Proof of (9.9). We begin with an observation.

If h > 0 we may write

I~/t (1, x, lR)1 - If~f-: ...J=.: f(r) (x + tl + ...+ tT) dt1dt2 ..dtt·1 (9.11)
2.2 2

hr

< hr-1 J=.: .. l.r(r} (:t + s)1 ds.
2

Now note that for s E [- rh<T!~($\ rM)~(x)] and x E [-(7 (2t) , CT (2t)] Wehave by (6.49)

q,t (x) t'./ CPt (x + s).

Thus we may deduce from (9.11) that for Ixl ~ CT (2t) as

r/l'l>t{"')

IW ~h<l>t(x) (I, x, JR:)I S C3ht' ~ f-rn:d:<) IW j(r)q,i (x + s) Ids. (9.12)
2 2

Case 1. 11 > L We recall the definition of the maximal function operator

1 /uM [g](x) := slip - Ig (x + 8)1 ds
u>O 2u -u

which is bounded from Lp to Lpl 1 < p < 00. It follows that (9.12) can be rewritten as
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< C t'r Ilf(r)<prwl·1 .- 5 . t Lp(lR:)

Case 2. p::::: 1. Integrating (9.12) I and noting that if u :::::X + s; then for the range of x and

e above,

<Pt (x) rv <Pt (:1; + s)

so we obtain

< C6,{~1 f -. _1_ flwf(r)<l>il (x + s) dsd»
- JlxI5u(2t) <Pt (x) JlsI5!fclJt(x)

:5 C7/{-1 (:=x+s:lxI5U(2t) <I 1( ) IWf(r)<prl (u) (rh dsdur Isl$~h(I>t($) )t u JI.s15T<I>t(tt)

Next we give

The Proof of (9.10). We mimic the proof of (8.2) for p > 1. For the given t > 0, write

4t = ~. Determine n = n (t) by (.5.25) and recall u'" n (see (6.25)) so that

(a) 0' (4t) < au :5 attn

(b) 0' (4t) > a¥ :2: a{3n

(9.1:3)

for some a > 1 and !3 > o.
As in Lemma 3.1 in [l1J I we may without loss of generclity suppose that x > O. Suppose

first that r = 1. We have
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< G6· an) IIW f'IIL·[ > ]..< c7anIIWf'<I>tlll [ >. ] (9,,14)- T(cr(t))2"'n p'r_CLfJn - n IJPX~a.fJTI

by Lemma 8.1.2, (6.6) and (6.:36).

Assume (9.14) holds for 1,2", r - 1. Choose S E Pr .....-;such that

Set

P(x) := f (a{37~) +L· x S (uJdu
Cl.fJn

Then VIe can bound the left hand side of (9.10) by

IIW (f - P)I!LpIm;:;aj3t1) (9..15)

< C711w ($) lx (f' - S) (u) dull
a,sll ILp[X;:::CI,sn]

< c, an Illf(r)W<I>r·111 ~ c9tllf(r)<p~wll
nT (an) 2" Lp[lC~af3t1] Lp(Ilt)

and we have our result.O

We deduce

The proof of Corollary 5.2.6(b). Write t::: ~ and let n::: n (t) be determined by (5.25).

Firstly

I(r,p (f, W, n = inf{H(f - P) WIILp(lR:) + tr IIwpJr)<I>r II }PEP", Lp(lR:)

(9.16)

Next, we may choose 9 such that

(9.17)
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Also by Corollary 5.2.5, Theorem 5.2.1 and Corollary 5.2.2 we may choose Pn such that

and

(::1) r Ilwp~r)<l>rIILp(~) ~ C3Wr,p (g, W,a;) ..
Thus by (9.17 - 9.19) we have

tc.; (I, W, tr)

5 II(f - Pn) WIlLp(~) +e IIWPJt")<l>~'IILp(~)

::; C4 [IIU - g) WIILp(~) + lI(g - ~l) WIILp(~) + f'lIwpJr)<l>~IILp(l!t)]

< 05 [IIU - g) vVIILp(l!t) +wr,p (9,W, ~:l)]
5 C6[1I(f-fJ)WIILp(~)+WrIP(g,W,t)] (by (9.2))

< C7'[IIU - g) WIILp(~) + tr IIg(r)('\>fwIILP(lRJ (by Corollary 5.2.6 (a))

Then (9.16) and (9.20) give the result.O

9.3 A Marchand Inequality

In this section we give:

'I'he proof of Theorem 5.2.7.

(9.18)

(9.19)

(9.20)

Proof. First let n be large enough and let ~i be the best approximant to f which exists

and satisfies,

En [f]w,p := 1I(f - P) WIILp(~)

By Theorem 5.2.1 and Corollary 5.2.2, we may thus write using (9.21),
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v ..··•.~t

for some (;'9, 010 > O. Here we use the inequality (a+ b)" ~ a" + ba a, b > 0, 0 < tX < 1. Now

choose l = l (n) such that,

where n ~ 2r, and write,

where [x] :;:::thelargest integer ~ z,

Using Corollary 5.2.2 and (9.21) gives for O:S;k ~ I,

(9.23)

(9.24)

,,(Pf2'k-] (x) - PLk+J] (x)) wIi:P(~) (9.25)

:s; II(I - Pf#+T] (x)) WIi:P(R) + II (p[2l"] (x) - I) W[P(R)

< Guw,.", (1,w,1;;1r
for some Gu > O. Keeping in mind (9.22) I we can now combine (5.27), (6.42), (9.24) and

(9.25) to give,

11
p.*(r)<r>r.. WIIIJ

'11. ~ Lp(R) s C12 ·11~(p[..t)] (x) - p[*(~2 ] (x)) q>~ WII'
. k=o 2fi 2k+T Lp(lIl:)

+llp!(r) (x) <I>~WII
'2T Lp(lJI()

IT!:

(9.26)

(9.27)



Zt!i.p*(r) ( ) ihr W+ 7. [-T] X '¥[ (1n/1']
2 n/2 Lp(Jre)

g

< C14~(y'7]J)~" (k+21"11.(P[*n] (X) - p[+-] (x)).ll
q

(9.28)
k==O 21:+1 21: 2k+1 Lp(Jre)

( )

-rq

+ "[;1 • 1'lllfWllt,,1"1

some G12,C13and 014> O.

We can now combine (9.:32) with (9.29) and (9.26) and e) press this as an integral as,

( an)q
Wr,p I, W'n ~ GIS (an)rq[ rGlll Wr+l,p (I,W,U)9 (log2 (nu))T du

n J!!n. UTq
n

+ (log2 (;)) T IIIWHlp(~)]

(9.29)

whereby following the proof carefully, it can be easily seen that C15 and C16 are independent

of I and t.

Now let t > 0, small enough and determine n by (5.25). First, observe that using Lemma

6.5(a) ,(6.24.) and (6.10), we obtain constants 011 and 018 > 0 independent of t and n such

that,
Iogn

C18 ~ log (t) ~G11

so that using (9.2) and (9.30) , (9.29) becomes,

(9.30)

Taking tth roots gives the result.D
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