
AN OBJECT-ORI5NTED COMPONENT-BASED APPROACH TO
BUILDING REAL ..TIME SOF1WARE SYSTEMS

Andre Baas

A project report submitted to the Faculty of Erlglncerlng, University of Witwatersrand,
Johannesburg, In partial fulfilment of the requirements for the degree of Master of Science In
Engineering

Johannesburg 1993

AN 08Jt:OT-ORIENTF.D OOMPONENT-BASED APPI10ACH TO BUILDING Rt:AL-TIME SOF1WARE SYSTt:MS

DECLARATION

This Project Report is being submitted for the Degree of Master of sctence in Engineering in the
University of Witwatersrand. Johannesburg.

Ideclare that:

a) This Project Report is largely my own unaided work. I have been instrumental in initiating,
guiding and managing a programme at my employers, SSW-Data (pty) Ltd, on w&1ichmy
research for the Project Report is based, Because the programme at SSW-Data will
eventually be far more extensive, the Project Report is contained to the specific area ot
lnterest as described in the Abstract.

I have received assistance from my employer in terms of facilities, literature. and real-time
systems design expertise. Idid receive input from project team members on detailed
technical issues, related to the Object-oriented software development project.

b) This Project Report, or any part thereof, has not been previously submitted to any
university for degree purposes.

~-
~.' ..'

J..f17:l day of t{Sl2l1fYl.f_ 1993

Title Page Pag~ i

AN OBJECT-OR/tINTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME som/ARE SYSTEMS

ABSTRACT

This Project Repolt r ''"lorts on the study of an approach to building integrated real-time software
systems based on re-usable object-oriented components. The basis of the approach is the
development of a a-layered structure of components, where each layer is built on the underlying
layer of components,

The lower layer of components consists of generic re-usable building blocks that may be re-used
for building and integrating other real-time applications. The middle layer consists of components
that are generic to the application domain, and the top layer consists of components that are
specific to each application of that application domain.

The Report includes researching and developing methods of communicating between these
building blocks using an OSI/CMIP-conformant 'software highway" and in this regard particular
attention is given to the formal and de facto industry standards.

With this approach, it is argued that the application engineer can effectively build new applications
using the re-usable components. This is demonstrated by reporting on the implementation of a
large real-world Telecommunications Network Management application.

The Project Report contains a critical analysis of the technical, organisational and project
management issues of this Object-oriented component approach as compared to the traditional
development approach. The Report concludes that despite certain technical and organisational
concerns, the object-oriented approach does indeed yield several worthwhile benefits for
developing real-time software systems. These benefits include genuine re-usability, and l"1proved
productivity, testability and maintainability.

Title Page Page Ii

AN OBJECT-ORIENTED COMPONENr-EJASED APPROACH TO BUILDIN3 REAL-TIME SOFTWARE SYSTEMS

DEDICATION

To fUlfilled dreams, and to my wife Ria.

ritle Page Page iii

AN OBJECT-ORIENTED COMPONENT·BASED APPROACH TO BUILDING REAL·TIME SOFf1l/ARE SYSTEMS

ACKNOWLEDGEMENTS

To the 'AccessView' project team at SSW·Data for their invaluable input, and to ',;t'NIf·D.:rtJ for the
facilities, encouragement and support.

Title Page Pilge iv

AN OBJECT-ORIENTED COMPONt:NT-BASED APPROACH TO BUiLDING REAL~TIME SORWARt: SYSTt=MS

ABBR

AccessV{:.tw

ADT
ANSI
API
BER
Building Blocks

CAE
CASE
CMIP
CMIS
CMISE
OMOQ
Components
Core components

CUI
CustomView
DBOM
DSM
ETSI
Framework

GOSIP
GUI
HOM
Lab View

MMI
MO
NE
ObjectView

ODBMS
OM
OOA
000
OOP

LIST OF ABBREVIATIONS AND DEFINITIONS

MEANING

A proprietary market name for the core components plus a subset of
application components required for telecommunications network
management applications.
Abstract Data Type.
American National Standards Institute.
Application Programme Interface
Bit Error Rate.
Re-usable generic components from ObjectView and AccessView ego
RTOMS, WMI, MMI, and subsets thereof.
Common Application Environment.
Computer Aided Software Engineering.
Common Management Information Protocol.
Common Management Interface Services.
Common Management Interface Service Element.
Common Management Interface over QCOMM.
Another term ~or building blocks.
The basic MMI, WMI, RTOMS, CONFIGUFlATOR and HISTORIAN
components.
Character User Interface.
A proprietary name for the customised portion of applications.
Database Object Manager.
Database Services Manager.
European Telecommunications Standards Institute.
Tile term used by recognised authors for a collection or abstraction of
object/class components that are specific to an application, and provide
reuse at the largest granularity
Government OSI Profile programme (USA).
Graphical User Interface.
Historian Object Manager.
A proprietary market name for the core components plus a subset of
application components required for laboratory applications.
Man-machine Interface.
Managed Object.
Network Element.
The proprietary market name for the toolbox of generic components sulted
for re-use in a variety of technical reat-tlrne applications. (Note that this is
a proprietary name which originated from the early days of this project,
and should not be confused with Borland's ObjectView product).
Object Database Management System.
Object Manager.
Object Oriented Analysis,
Object Oriented Design.
Object Oriented Programming.

Title Page Page v

AN OBJECr·ORIENTED COMPONENT·BASED N'1"ROACH 10BU,LDING REAL·TIME SOFTWARE SysrEMS

AGBR MEANING

ProcessVi~w

QOOMM
QUNK
RTOMS
SNMP
SOMI
TNM
Toolkit/Toolbox

WMi

A proprietary market name for the core components plus a subset of
application components required for supervisory monitoring and control
applications.
Proprietary process-to-procesc communications subsystem.
Proprietary cross-nodal communications subsystem using TOP/IP.
Real-time Object Management System.
Simple Network Management Protocol.
BSW-Data's Standard Object Management Interface.
Telecommunications Network Management.
Refers to a repository containing building blocks or components.
(Although this is the widely used meaning, and is used throughout this
report, it is technically not accurate. A toolbox/toolkit implies 'tools' to aid
the developer to design, build and test systems. However in this context
it contains components from which new systems are built).
World Machine Interface.

Title Page Page vi

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

TABLE OF CONTENTS

1. INTRODUCTION ••• •.• . • • •• 1
1.1 STATEMENTOF PROBLEM... • ..••. •. . .•.. . •• . .• . . . •••• . • • . . . • . .. 1
1.2 CLARIFICATIONOF TERMS............. •••. ...•....•..•..•••.••.. 2

1.2.1 Definition of the Project Report • • . • • . • . • • • • . • • • • • • . . • • 2
1.2.2 Definitior. of Real-timeSystems. • • • • • • • • . • • . .• 2
1.2.3 Definitio" of Technical Systems ..•.•••........•...•....••..•. 2

1.3 OBJECTIV!;!OF STUDY .••.......•.•••.....••...•.•....•......... 3
1.4 WHAT IS NEW IN THIS STUDY. . . • • • • • . . . • . . . • • • . . • 4
1.5 SCOPEOF THISWORK . . . • • . • . . • • • • • . . • • . . . • . • . . • • • . . • • • • • •. 4
1.6 ORGANISATIONOF PROJECTREPORT........... • • .••.•.•. . .•.••. .• 5
1.1 RESOURCESAND ENVIRONMENTOFTHE STUDY. • . . . • • • • . • • 5
1.8 INTRODUCTIONTO THE TELECOMMUNICATIONSNETWORK

MANAGEMENTDOMAIN••.•...•........•.•........•.. 6
1.8.1 Differentiating Telecommunications Network Management from

Network Management •....•.•.••........••....••.•••..•.•. 6
1.8.2 The Physical Model•....••...•••••••.••.......•.•.•• 1
1.8.3 Generic TNM Functions•.••.••....••••••.••.•.••..•.. 7
1.8.4 TNM Systems •••.•.•...•.....•.•..••..•...•.•...•.•....• 8

2. MOTIVATION FOR AN OBJECT"ORIENTED COMPONENTAPPROACH...... ••• 10
2.1 SOLlITIONS TO BUILDINGSOFTWARESYSTEMS..... . •. ..•.•.. 10

2.1.1 customeeo Solutions •........•••.•.••.•..•...••...• ,.... 10
2.1.2 Product Solutions . • • • • • . . • . . • • . •• • • . . . • • • •. 11
2.1.0 Packaged Solutions .• , . • • • • . . • . • . • . . • . • . . • • . . .• 11
2.i .4 Component Solut!ons • • . . . • . . • • • . • . . • • . . • • • .• 12

2.2 THE NEED FORA COMPONENT-CENTREDAPPROACH •.•....•.•.••..• ; 2
2.3 CRITICALANALYSISOF THE TRADITIONALPARADIGM. • • . . • . . • • • • . • • •• 14

2.3.1 The Traditional Paradigm • • • • . • • • • . . • . • • • • • . ..• 14
2.3.2 Modelling of Functions. , . • • • • • . . • • • . . . • 14
2.3.3 Not Suite'.. to Graphical User Interfaces ••.•.••••.•.•.....•.... 14
2.3.4 Changing Requirements . . . • . . • . . • • • • • . • . • • . . . • • . • . •. 14
2.3.5 Software Engineers lack Domain Knowledge .•.....• ,.......... 15
2.3.6 Inflexibility of Top-down Design .•.•.•.......•...•••••..•••.. 15
2.3.7 Not Suited to Re-use ,.................................... 15
2.3.8 Decreasing Hardware Costs highlights Software Cost • • • . . • . . . • • •• 16
2.3.9 Estimation of Time and ResourcesRequired. • . • . . • • . . . • • . . . • • •• 16
2.3.10 Effort of Maintenance • . . • . . • . • • . . . • . • • • • • . • . . • • • • • • • . • . . •• 16
2.3.11 Other Project Management Issues •.••.••••••••...•.••.•.•..• i6

2.4 CHAPTERSUMMARY ..•......•.•••.•.•••.•..•..•••.......••••. 17

3. THE OBJECT~ORIENTEDPARADIGM AND RELATED ISSUES.. • • •• • • ••• •• • •• 18
3.1 THE NEWOBJECT-ORIENTEDMETHODOLOGY•..•..•...•••••••. 18
3.2 NEWSOFTWARETECHNOLOGIESAND STANDARDS. • . . • • .• ••.•••... 19

3.2.1 The Move to Open Systems . • • . • • . • • • • . . • . . • • • • • • • • • • • • . • •• 20
3.2.2 Implications for the Object-orientedApproach. • . ••.•••••.•• 21
3.2.3 In Summary ..•......•. , . • . • • . • . • • • • • • • . • • • • . • • . .• 22

Title Page Page vii

AN OBJECT-ORIENTED COMPONSNT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

3.3 NEW HARDWARETECHNOLOGIES . • . • • . • . • • • • . • . • • . • • . • . • 22
3.4 THE OBJECT-ORIENTEDLIFE-CYCLE ••••.•..•••••• ,............... 23

3.4.1 The Classical Waterfall Life-cycle ..•..••.•.•.•...•••••.... ,.. 23
3.4.2 The Object-oriented Life-cycle •...•.•.••••.•.•....... ..•••. 24

3.5 THE DEVELOPMENTTEAM ROLES•.••.••.•.••• , .. •.•..••.• 26
3.5.1 The Component Builder •...••...•.......••.•.... ~ • • •. 26
3.5.2 The Domain Builder •....•.••.•••.....•......••. ~. • • . . . • •. 27
3.5.3 The Application Consultant. • . . • . . • • • • • . . • • • •. 27
3.5.4 The Application Engineer • • . • . • • . • • • • • • . • . • • • • • . • .• 28

3.6 ASSESSINGTHE OBJECT-ORIENTEDMETHODOLOGY• . • • . • . • • • . • . • . .. 28
3.6.1 Achieving the Goals of Software Engineering .•.•..•.•.....•..•. 28
3.6.2 Prototyping and Incremental Development••.••.•.•.•...•• 29

3.7 PROJECTMANAGEMENTAND CONTROL • . • • .•• . • . . • • • • . • . • • • . • • • . •. 29
3.7.1 The Management Information System. • • • • . • . • • • • • • . • • . • . • . . •• 30
3.7.2 The Project Planning Package ••••.•••.•••••.•••.•••.••••••• 30

3.8 COMPONENTMODELLINGAND DESIGNMETHODOLOGY •••..•.••.•••• 30
3.8. 'I The Object-oriented Development Process . . • . . . • • . . • . . . • . . . • .• 3';
3.8.2 The Object-oriented Development Notation • . . • • • • . .• 32

3.fJ CHAPTERSUMMARY • • . • • • • • . . . • • • . . • • • . • . • . • • • • .. 37

4. DESiGN AND IMPLEMENTATION OF THE cor-a BUILDING BLOCKS.......... 39
4.1 THE GENERICARCHITECTUREOF REAL-TIMESYSTEMS••••.•.•...•. " 39
4.2 THE STRUCTUREOF THE CORE BUILDINGBLOCKS '., •..• ,",., •••.. , 41
4,3 THE SOFTWAREHIGHWAY •••.•.•• , ..• , , ••. , , .•... , .. , . , • • . . • • •. 45

4.3.1 The Conventional Communications Approach •.•.•.•..•.••• , , • .. 45
4.3.2 The Requirements of a Software Highway. ,•..•...•. , . • . •. 47
4.3.3 The Approach Adopted for this Project • , . . • . • • • . . . • • • . . . •• 48
4,3.4 Developing t'le Communications API ., •..••..••.•..•• , ..• ".. 49
4.3.5 Object-Managers and Applications ,•.•. , •.•.•• , . • • . . • 51
4.3.6 In Summary , . , ~~. "' t • ~ ••• " •• It •• I, I • 'i 52

4.4. THE MAN-MACHINEINfERFACE •.•••..........•• , ..•. , , . , • •• 52
4.4,1 The Generic Requirements of the MMI .•...•.....••..•.••....• 52
4.4.2 The MMI Building Block Structure . , .•.•..••...•.•..... , •.•• " 53

4.5 THEWORLO·MAOHINEINTERFACE , ••••..••••.••.•.••..••• , 56
4.5.1 The Generic Requirements of the WMI ••...••...•••... , , •• , • •• 56
4.5.2 The WMI Building Block Structure ••••••••.... , ...••• , . . • 57

4.6 THE REAL-TiMEOBJECT MANAGEMENTSYSTEM •..•• , ..•...•• , •. ,.. 58
4.6.1 The Generic Requlrements of the RTOMS ••••.••.•..•.••.•• ,.. 59
4.6.2 The RTOMSBuilding Block Structure •.••.• ,., ••••••••. , .•. , .. 61

4.7 CONFIGURATOR .••..••.••....• , .•••.•• , •••..•..••. , .•. ,' ••.•• 62
4.7.1 The GeneriCRequirements of the CONFIGURATOR •.••.•..• ,.... 63
4.7.2 The CONFIGURATORDesign Issues ..•.••..•.••.•.•••••...•• 63
4.7.3 The OONFIGURATORBuilding Block Structure .•••..••....••. , •. 64
4.7.4 Associated CONFIGURATORComponents ••..• , •.••..•.. , . , • .• 66

4.8 HISTORIAN , iii •• iii ••• , •••• " •• " ••• "- • t, i .t • • • • • • •• 68
4.8.1 The Generic Requirements of the HISTORIAN. . . . • • • . . . • . . • . . • .• 69
4.8.2 The HISTORIANBuilding Block Structure .•.• , •...••.....•••. ,. 69

4.9 UTILITIES ., .," I •••••••••••••••••••••••• t • t. 71
4.10 CHAPTERSUMMARY, •.•.•...••• , •.••••.•••••.•••.••. , • • . •• 73

Title Page Page viii

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SySTEMS

5. BUILDING THE DOMAIN AND APPLICATION COMPONENTS ••••••••••.••••• 14
5.1 REVIEW OF THE ACCESSVIEW APPliCATION DOMAIN ••....••.•.•.••.. 74

5.1.1 The Physical Model ..•....•...•••..••.........•...•..•••. 74
5.1.2 Tl'le Object Model •.••..•.•..••..•..•.•.•••..•.•.•.•.•.•. 77
5.1.3 Generic TNM Functions .•.•••........••.....•.•...•••.•... 79

5.2 THE MAN-MACHiNE INTERFACE • • • . . • . • . • • . . . • . • • • . • . • • . . . • •• 79
5.2.1 The AccessView Components ..•.••.•••.•....••....•..•••.• : 80
5.2.2 The CustomView Software Layer•..•••.....•••... 81

5.3 THE WORLD-MACHINE INTERFACE. . • . • • • • • • . . • • • • • . • • • • . •• 82
5.3.1 The AccessView Components •........•.•............••.••. 83
5.3.2 The CustomView Software Layer ...•.•.•....•.•.....•...•••..• 84

5.4 THE REAL-TIME OBJECT MANAGEMENT SYSTEM ••.••.••.•..••...••. 84
5.4.1 The AccessView Components ...••.•..•.....•....•.•..•.... 85
5.4.2 The CustomView Software Layer •...••.....••..••.••..•..•.• 86

5.5 THE CONFIGURATOR ..•.•..•.•.••.•. •...................•..•. 86
5.5.1 The CustomView Software Layer ...•..•.•......••.•.•..•..•. 87

5.6 THE HISTORIAN ••.•..••..•.••..••••......•.•..•...•.......... 89
5.6.1 The CustomView Software Layer .•.•...••..............••... 89

5.7 CHAPTER SUMMARY...••••...••. •..••.•...•• ... 89

6. ANAL VSIS OF APPROACH .••••••••••••••••••••••••••••••.•••••••••• 90
6.1 FIT WITH CUSTOMER REQUIREMENT . . . • • • . • . • • • . • . . • • • • •• 90
6.2 SYSTEM DEVELOPMENT • • . . • • • . • . • • • . • • • .. 91

6.2.1 Object Modelling and Design •.•••...•..........•••.. , . . • . .. 91
6.2.2 Development Effort Profile .•••......••.•..•..•.•........• ,. 92
6.2.3 Effort, Productivity and Project Cost •••. , •.••........•.. , . • . .. 94
6.2.4 Integration and 1"estin,* .•••.•••.•.•• " •..••• , •.••.•.•. ,... 98

6.3 DEGREE OF RE-USE •...•.•.........•....••...•.. , • • . . • . . . • • . •• 100
6.3.1 Level of Re-use Achieved ..••.......• ,••.•..•..••. , .. 100
6.3.2 Generality and Size of Re-usable Components • • . . . • . . . • • • .. 102
6.3.3 Shrink-wrap Versus Effective Changing ...••.•••.••.••••...•.. 103
6.3.4 Modelling and Functional Abstraction Skills .•.•.....••••••.•••• 104
6.3.5 The Orgal1isational Environment for Re-use••..•.•..•...... 104
6,3.6 In Conclusion •.....••.. , • • • • . • • • • . . . • • 105

6.4 THE S-LAYERED COMPONENT APPROACH •.••.••••.•••..•.••. , • • • •• 105
6.5 MAINTAINABILITY,• , . , • . • . . • • . • • . • . . . • • . . . • . •. 106
6.6 THE SOFTWARE BUS ••.••.••. ,•...•...••..••...•......•... 'j09
6.7 APPLICATION ENGINEERING ..• , .•..... , ..••.• ,•••..•.•.••• , 111
6.8 ANALYSIS OF SYSTEM RESOURCES AND PERFORMANCE •••..••..• ,.. 111
6.9 MANAGING THE COMPONENT LIBRARIES .•.•..... , •...••.•. ,...... 115
6.10 PROJECT MANAGEMENT AND CONTROL .•....•• , ..• , . • . • . • . . • • • . .. 117

6.10.1 Progress Monitoring and Management • . • • . . • • . .. 1i7
6.10.2 Cost/Effon Estimation •.••....•.•..•. , •.... , •.•.....•. , . . .• 118
6,i0.3 In Summary • • • • . • • . . • • • . . • . . • • . • • • • • • . . • • .• 119

6.11 PERSONNEL TRAINING•..••.••.........•...•.. 120
6.11.1 Methodology and Technology Training . . • • . • • . • . • • • 120
6.11,2 Development Team Roles Training •• • . . . • • . . • . . . • •. 120

Title Page Page ix

AN OBJECT-ORIENTED COMPONENf..BASED APPROACH ro BUILDING REAL-TIME SOFTWARE S}'STEMS

6.12 OTHERORGANISATIONALISSUES••............••••..•.•.•.. 122
6.12.1 Managemant Commitment to the New Approach •••.••••••••..•. 122
6.12.2 Support and Commitment of DevelopmentStaff •..... • • . • . •• 122
6.12.3 A Phased Adoption of the NewApproach . . • • . • • . . • . . • . . • •. 122
6.12.4 Creating a Re-use Culture in the Organisation .•.•••.•......•..• 123
6.12.5 The SoftWarePorting Mistake • • . . • • . • . . . • .• 123

6.13 CHAPTERSUMMARY.••.•••.•.••..•..... : .•......•. " .•..•..•.. 124

7. CONCLUSION. • . • • • • • • • • • • • • • • . • • •• 125
7.1 RESTATEMENTOF THE STUDY'SOG"ECTIVES ••.••.•...••.••.•.••.• 125
7.2 REVIEWOF PREVIOUSCHAPTERS •.. • . . • • • . . • . . • . . . • • . • . • . • • . • . . •• 125
7.3 SATISFACTIONOF THE STUDY'SOBJECTIVES.•.•.•.•.•...•..••••.•. 126
7.4 CONCLUDINGREMARKS..••.••.•...••..•••.•....•.........•..•. 126
75 WHERETO FROMHERE•..•.••.••.•••.•.......•.•.•.......•. 127
7.6 FINAl. CONCLUSIONS .•• , .•..•.•..•.••.••...•...••.••.•..••••.• 127

8. FUTURE RESEARCH •••••••••••••••••••••••••••••••.••••.••.•••.•• 128
8.1 FORMALMETRICSFOR COMPARISONOF THE TWO APPROACHES .••..• 128
8.2 A TOTAL SUPPORTENVIRONMENTFORRE·USABILITY••••.•..•.. 128
8.3 MANAGINGAND CONTROLLINGOBJECT.ORIENTEDPROJECTS•...• 129

APPENDIX A: FORMAL AND DE FACTO STANDARDSFOR OPERATING
ENVIRONMENTS AND INTER-NETWORKING ••••••••.••••••••••••. 130

Ai COMMON INTERESTUSERGROUPS ...•••••...•.•..•....•.•..•... 130
A.2 CONSORTIUMS . . • • • • • . . . • • • . • . • . . • • • •• 130
A3 UNIXAS AN OPERATINGSYSTEMSTANDARD .••.•.......•...•.••... 131
A.4 OTHERCOMMON APPLICATIONSENVIRONMENTSTANDARDS ..•..••.•• 132
A5 INTERNETWORKINGAND PROTOCOLSTANDARDS ...•..•.•.......... 133
A.6 IN SUMMARY ...••.....................•..••.•.•..•..•.....••• 136

APPENDIX B: SAMPLE REPORTS FROM PROJECTMANAGEMEN1'TOOLS •..•.••..• 137

APPENDI){C: DESIGN SPECIFICATION AND IMPLEMENTATIONOF THE SOFTWARE
BUS ••• 146

C.1 INTRODUCTION. . • . . • • • • • . • . . • . . . • . • 146
C.2 GLOSSARYOF TERMSAND DEFINITIONS. . • • • . • . . • . . . • . .. 146
C.3 CMiS/CMIPOVERVIEW .•.....•..•.......•.••.•.....•.....•..•• 147

C.3.1 Association Service .•......................•...... 148
C.3.2 Management Notification Services .•......•.....••.....••.... 148
C.3.3 Management Operation Services ..••.••.••...••..•....•..... 148
C.3,4 Management Information Tree ..•.........•••......•........ 149
C.3.5 Managed Object Selection . . . • . • . • . • • • . . . • • . • . . . • . . • •. 149
C.3.6 Functional Units . • . . • • • • • . .. 150
C.3.7 Service Flow •...••.........•....•.....•..........••.•.. 151
C.3.8 Service Definition • . • . • • . •• • • . • . . • • . • . • . . . • . .. 153

C.4 USINGQCOMM AS THE TRANSPORTSTACK • • • . • • . . • • 158
C.4.1 QCOMM Overview•..•....••....•..•.••.•.....•.••.•. 158
C.4.2 QCOMM and SOMI .•.......••.••••.•.••.•...........•.•. 159
C.4.3 Adapting QCOMM for CMIS/CMIP•.•...••.••...•. 160

Title Page Page X

AN OB IECT-ORIENTED COMPONENT-BASED APPAOACH TO BUILDING REAL~TIME SOFTWARE SYSTEMS

0.5 SOMI DESIGN AND IMPLEMENTATION •.•..••.•.•.•..........•••... 163
0.5.1 The SOMI Class • . • . • • • • • . • • • • .. 163
C.5.2 The Containment Tree ••.••••.... . • • • • • . • . . • • . • . • • • .. 163
0.5.3 Connection to the Communication Layer .•....•.••••.... ,..... 165
C.5.4 Receiving Incoming Messages " • • • • • • • • • • • . • • • • • • . • • • .. 165
C.5.S Sending Requests ..•••...•...•..• • . . . • • • . . • . • • .• 166

C.6 SOMI API OALLS •••.••.•••••••••.••.•••••••.•••••.•• ;......... 167
C.7 OBJECT MANAGERS AND APPLICATIONS ••••......•..•...••.•••..• 168

APPENDIX 0: MODELLING AND IMPLEMENTATION OF THE RTOMS SUBSYSTEM • • • •• 171

APPENDIX E: EXAMPLE OF OBJECT-TO·TABlE MAPPING DEFINITION FOR THE
DATABASE •• 189

APPENDIX F: CLASS EXAMPLES ••••••.••••••••••••••••••••••••••••••••••• 194

REFERENCES ••.••••••.•••.••••••.•••••••••••••••••••••••••••••••••••• 208

BISLIOGRAPI IY ••• •• 212

Title Page Page xi

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

Figure 1.1:
Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:

Figure 3.6:

Figure 3.1:
Figure 3.8:
Figure 3 9:
Figure 3.10:
Figure 3.11 :
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.1:
Figure 4.8:
Figure 4.9:
Figure 4.10:
Figure 4.1'1:
Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure B.1:
Figure B.2:
Figure C.1:

LIST OF FIGURES

The Telecommunlcattons Networks.Physical Model. . • • • • •. 9
Approaches to Building Software Systems ..•.•......•...•......•.••• 11
Relationship of Standards Bodies . . . • • . . • . . . • • • . .. 21
The Waterfall Lifecycle Model . . . • • • . • . • • . . • . • . • . • • . • 24
The Object-oriented Life-cycle Model•............•.......••.•. 25
Development Team Roles •••.•........••.....•.....••• , • . • •• 27
The Responsibility Drhron Design Hierarchy Graph (as proposed by
Wirfs-Brock(49) . • . . • . • • • • • . • • • . . . • • • . . . • 32
The Responsibility Dri'/en Collaborations Graph (as proposed by
Wirfs-Brock(49)} .•...• . ••••...••.••.•..•.•• r •••••••••••••••••• 33
The Role Model Diagram (as proposed by Wirfs-Brock and JohnsonCG2

) • • • •• 33
The CRC Cards (as proposed by Becr<and Cunningham(56.57). • • • . •. 34
The Class Diagram (as proposed by Booch(45) •...................•.. 35
The Object Diagram (proposed by Booch(45I)..........•.............. 36
The Object Diagram Extensions for Modelling • • 37
Generic Architecture of a Real-time System•....•.......•..•. 40
Tile 2-Layer Building Block Structure ••...•......••••.•..•••...••••• 42
The a-Layer Building ~1,.,C~ Structure••.....•.•..•..•...••... 43
COnventional lnter-proeuss Communications. • • . • • • . . • . • . • •. 46
Generic Architecture of a Real-time System with Software Bus ••..•....... 47
The Communications Network Model•••.•...•.•.•...•... . • 50
MMI Subsystem Building Block Structure••......•••........... 54
WMI Subsystem Building Block Structure • . . • . • • • . • . . • 57
RT0: .•) Subsystem Building 810ck Structure ..•••••..••... ,.......... 61
Ct, IGURATOR Subsystem Building 810ck Structure •...••.••.•....•.. 65
The Application Configuration Manager (ACM) •...•..••..••... ,....... 67
The Configuration Builder and Loader ..••........•.•••......•...... 68
HISTORIAN Subsystem Building Block Structure . • • • • • . •• 70
The Error-log and System-log Utilities • . . • . • • • • • .. 72
Telecommunications Networks Physical Model Example .•.•..•..... , . • .. 76
Telecommunications Networks Physical Hierarchy ...•.•.....•••.•..... 77
Telecornrnunicatlons Networks Object Model Example •......•....•..••. 78
MMI AccessView/CustomView Components' • • . . • . • . . • . • . . . • . • . • .. 80
WMI AccessView/CustomView Components ••••••.•.••....•.......•.. 83
RTOMS AccessView/CustomView Components. • • • • • . . • .. 85
Configurator Custon'lView Components • • • . • • . . . • . • •. 87
The Application Configuration Manager •...•......•..•.•.•••......•• 88
Development Effort Profiles of the Two Approaches •....•......•...•... 93
Comparison (If Development Effort Data • . • • • • . • • •. 96
Building Bio:..:kStructure and Re-usability•• 0 • • • • • • • • • • • • •• 101
Maintenance Effort Comparisons•••..•••..•..•... 108
Example of TNM Hardware Configuration•.....•.•...••.....•• 114
Comparative Progress Curves ...••.•.•.•....••.••...........••.•. 118
Example of Monthly Project Management Report••.••..•.•...•... 138
Example of a Weekly GANlT Chart from the ONTARGET Project Planner ... 145
Event·driven QGOMM Operational Diagram .•....•••...•.•......••••. 161

Title Page Page xiI

AN OBJECT·ORIENTED COMPONENT~BASED APPROACH TO BUILDING REAL-TlME SOFTWARE SYSTEMs

----------------------------~----- ._---.---------
Figure C.2:
Figure C.3:
Figure C.4:
Figure 0.1:
Figure 0.2:
Figure O.S:
Figure 0.4:
Figure 0.5:

SOMI/OCOMM Interaction .•..•• .•.••.••.••••.••••••..••..•••.•. 162
Pseudocode Example of an Object-rnanager Ftame ••.•..•••••.•• . • • • •• 169
Pseudocode Example of an Application Process Frame .••• :............ 170
Example RTOMS Class Diagram. • • • • . • • • •.. . • . . • . • • • . • • . . • . . • • . • • .• 112
Example RTOMS Object Diagram . • • • • • . • . • • • • • • . • • • • • . • . . • • • • • • . •. 173
C++ Header File for the LEG Class Definition ••••••• , •••••••••••••.•• '174
C++ Header File for the EQUIPMENT Olass Defiriition •••••••••••••••.•• 180
C++ Header File for the INDICATION Class Definition ••.•••.••••••••..• 184

Title Page Page xiii

AN OBJE;CT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTVI'ARE SYSTEMS

Table 3.1:
Table 6.1:
Tablt-) 6.2:
Table 6.3i
Table 6.4:
Table C.1:
Table C.2:
Table C.3:
Table C.4:
Table C.5:

LIST OF TABLES

Example of Hardware Technology EvolUtion . • • . . • • • • • • • . . • • • • • . • • • • •• :23
Average Object-oriented Re-training Periods • • . • . • • • • • • • • . • . . • . • • • . • .• :92
Comparison of Development Effort Data • • • • • • • • • • • • • • . • • • • • . • • • • • • •. '97
Additional Resource Requirements of New Approach •..•.••.••...•••.•. 112
Memory and Disc Requirements per Object •• ,....................... 115
Common Management Information Services • • • • . • • • • • • . • • • • • • • . . • • . •• 152
CMIS Intrinsic Parameters .••••.••••.••..••...•••...••.•••••..•...• 154
OMIS Intrinsic Parameters (continued) .••••••••..•••••••.••.•.••••.• 155
QCOMM Application Programmer Interface Functions •.•...•••..••.•.•. 159
SOMI Methods Equlvalant to eMIP/S Services ••.•.•••••.••••.•••••.•• 167

Title Page Page xiv

AN OBJECT-ORIENTED COMPONENT-/3ASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

1. INTRODUCTION

1.1 STATEMENTOF PROBLEM

Of al/ the monsters tl1 3t fill the nightmares of our folklore, none terrify more than
werewolves, be ..,tu/Se they transform unexpectedly from the tamiliar into horrors. For these,
one seeks bullets of silver that can magically lay them to rest TI)e familiar software
project, at least as seen by the non-technical manager, has something of this ctuuecter; it is
usually Innocent and straightforward, but is capable of becoming a monster of missed
schedules, blown budgets, and flawed products. So we hear desperate cries for a silver
buffet - something to make software costs drop as rapidly as computer hardware costs do.

Brooks(l5),

The above quote from Srooks(lll) classically summarises the proble.ns of many software
projects. .

The traditional functional decomposition and structured analysis approaches to building
custom software projects has many problems. These problems include poor productivity,
low re-usability and complexity of maintenance and testing.

As students we have been taught all the good things about the traditional structured
analysis and design methodology(21,25,33I.As developers, we have all enjoyed starting
each new project with a clean sheet of paper, relishing the challenges of designing and
writing software systems from scratch.

However, it Is only .a matter of time and experience before the fundamental problems, are
appreciated. Initial excitement and commitment gives way to looming deadlines and
frantic activity. Problems of scope and complexity under-estimation, re-designs and
software changes, and the resulting overruns of budgets and time-scales. And after the
dreaded tail-end the post-mortem follows.

In recent years I have gained better appreciation of the problems, especially as seen from
the view of managing software projects. At times it appeared that development teams
were not practising the structured methodologies properly - so sdditional effort was placed
on further improving skills, and utilising CASE (Computer Aided Software Engineering)
technologies in the development process,

Apart from improving skills, two factors were evident in applying the traditional structured
analysis methodology to custom sy Jtems development:

Reuse - Although development teams did re-use software libraries to a very limited extent,
there was no substantial software re-use taking place,

Maintainability - Implementing software changes both during and after development was
complex and costly.

Chapter 1 Page 1

AN Of:3JECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOF7VvARE SYSTEMS

The above issues and others have been well researched and are claimed to be the
primary causes of poor productivity and quality in software systems. For these reasons
there has been a strong call for software r s-usabllity and the use of re-usable software
components implemented with the object-orlented paradigm. Some of the noted authors
who have done research in these fields include Brooks (15),COX(20·19),Yourdon(58), Lewis et
al(41).Meyer(46,44),Gibbs at al(27),Helm and Maarek(34).Barnes and Bollinger(5,27),and others.

With the advent of the object-orientation paradigm in recent years, there has been a
serious challenge to the traditional tlaradigms. The reason is that research has confirmed
that the object-oriented paradigm is particularly suited to building re-usable components.
Interesting studies on this have been done by Booch(13),Brooks(15),Cox(20)and Yourdon(58).

1.2 CLARIFICATION OF TERMS

1.2.1 Definltlon of the Project Report

This Project Report is submitted in partial fulfilment of the requirements for the Degree of
Master of Science in Engineering. It is based on a large software development project
currently being funded and resourced by my employers, SSW-Data.

It is important to note that this software development prcject was not initiated as part of
the Project Report, but it was believed that the subject of the Project Report would greatly
benefit the development project, and likewise the development project would benefit the
Project Repolt.

P"r this reason it is necessary to clearly differentiate between the software development
project, and this Project Report. Throughout this text, the development project is referred
to as the 'project', and the Project Report will be referred to as the 'report' or the 'study'.

1.2.2 Definition of Real-time Systems

For the purposes of this report, it is necessary to define what is meant by real-time
systems, seen in context of our current appllcatk r nomain. The Telecommunications
Network Management (TNM) application domain is ., .e focus of this study. This
application domain is real-time in terms of the timing, asynchronous and distributed
proces ~ing of real-time information, requiring real-time responses from seconds to
milliseconds. References to 'real-time' in this report does not extend to sub-microsecond
mlsston-erltlcat applications. (Refer to Section 1.8 of this Chapter for a review of the
telecommunications network management domain).

1.2.3 Definition of Technical Systems

In this report, reference to 'technical systems' is made. This Is indeed a lery broad
reference. For the purposes of this study the term 'technical systems' will be defined as
non-commercial software systems that are used to monitor, process, report on, and
perform control on external real-world physical Objects. Good exa-nples are systems for
process-control supervisory systems, telecommunications network management
applications, electricity reticulation, laboratory control etc.

Chapter 1 Page 2

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL~TIMIE SOFTWARE SYSTEMS

1.3 OBJECTIVEOFSTUDY

The objective of this study was to investigate and develop an approach to building
real-time software systems based on re-usable object-oriented components. A further
objective was to assess whether this approach was successful, particularly in terms of
improved re-usability, rnalntainabllit; and productivitY.

In terms of the above global objective, there were five major focuses in this study:

(1) To research, manage and guide the design and development of an object-oriented
component approach to building real-time software systems. The building blocks,
or software I.C.s (COX(20·19»), were to be implemented using the object-oriented
methodology and technologies. The goal was to create a 'toolbox' of generic,
re-usable building blocks that could be re-used to build and integrate new
dlstributed real-time applications.

(2) The second major focus was to guide the design and development of suitable and
practical component structures and layers for the various subsystems so as to
further augment the re-usability.

(3) The third focus was to research and develop methods of communicating between
these building blocks along a 'software highway', Particular attention was to be
given to the use of object-oriented terms of industry standard protocols, such as
081's CMIP/CMIS protocol and services, implemented on the OSI, TCP/IP and
proprietary communications stacks.

(4) The fourth focus was to use these components to build a real-world
telecommunications network management application.

(5) The final focus was to critically analyse the issues involved in adopting the
object-oriented approach to building real-time systems.

With this 'toolbox' of generic core components, the objective is for the application
programmer or 'domain expert' to rapidly build new applications, where it would be
necessary to develop only that portion of the system pertaining to the specific application
domain ego network management. materials handling, water treatment, plant control.

The research Includes a report on implementation of a real Telecommunications Network
Management application based on the 'toolbox' of generic object-oriented software
components. Examples of design approaches employed and notation methods to
document generic classes and application object classes are also included.

The technical and project management/control issues and metrics have been monitored
and recorded during implementation of the application. The project report concludes with
a critical analysis of these issues as compared to the custom software development using
the traditional structured analysis paradigm.

Chapter 1 Page 3

AN OBJF;CT-ORIENTEO COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTV/ARE GYSrEMS

1.4 WHAT IS NEWIN THIS STUDY

There is all abundance of literature on object-orientation written by noted authors such as
Booch, Meyer, Cox, Yourdon, Lewis, Wirfs-Brock and others (see references), Much of
the literature covers toplcs such as object-oriented analysis, design and programming, as
well as re-use and design and management of re-usable class libraries. Further research
and literature exists on object-oriented databases, project life-cycles and project -
management.

However, most of these studies are in-depth research of particular topics. There appears
to be limited consolidated work which addresses all the issues concerning the practical
application of this paradigm in the development of real-time technical systems. (Refer to
section 1.2 of this chapter for the definition of technical real-time systems). Tnese issues
range from the technical to broader organisational Issues. It is these issues that have
been studied, researched and reported in this research report.

There is however, one very interesting study done by Ahmad et al(1)on the application of
oblect-ortentod softWare In real-time systems. 1-l8rethe two vastly different paradigms are
used by rate project teams to develop the same functional system. The findings of
Ahmad's_darch are frequently referred to, corroborated and challenged in this study.

1.5 SCOPEOFTHISWORK

The scope of the project report is to research and guide the development of an
object-oriented approach to building generic building blocks that can be practically and
effectively used for applications in Telecommunications Network Management.

The topic has personally been a subject of intense interest since early 1991, and as such I
have been involved In the recent initiation of the development project.

I am performing the project management functions on the development project, and the
development team consists of an average of 14 systems engineers. In this role I have
had close involvement in the design and project management aspects of the project, as
well as being responsible for the management, control and direction of the re-usability
programme in the organisation.

This project report is not intended to be a computer science study of object-orientation as
applied to building re-usable components. Instead it is software engineering research
and stUdies a component approach to building real-time systems using th~ object-oriented
paradigm.

To clarify the definition of software engineering, Macro and Buxton(4J) define softWare
engineering as '... a whole set of activities needed to produce high quality software systems
within known limitations of resources such as time, effort, money and eqUipment. These
activities include specifications and feasibility studies, programming, 4~'ality control and
assurance, and documentation. t

However, this definition should be extended to explicitly define project management
considerations as an activity, since this is very important.

Chapter 1 Page 4

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

The paragraph above therefore implies that this project report researches the wider and
more global issues that are related to the whole life-cycle of building object-oriented
component-based real-time systems.

For my employers, thi:s programme is expected to continue way beyond the time and
scope constraints intended for this project report. For this reason it is necessary' to
clearly define the scope of this Project Report:

* To research, manage and guide the design of the structure of the components of
the various subsystems, and to direct, monitor and manage the software
development process and the development team.

* To plan, formulate and control other relevant issues, including resourcing, training,
quality assurance and testing.

* To record problems, analyse issues and draw conclusions on the object-oriented
building block approach as applied to the development of a real-time distributed
applications.

1.6 ORGANISATIONOF PROJECT REPORT

Chapter 1 summarises the statement of the problem, the purpose of the study, and the
organisation of the remainder of the project report.

Chapter 2 reviews the different approaches to building real-time software systems,
comparing and critically analysing the issues between the fully custom-developed systems
to complete product-based systems. These issues include the technical, cost, project
management and risk factors. A motivation for a component-centred approach is then
put forward, where re-usable components or building blocks are used to build software
systems. The functional decomposition or structured analysis paradigm traditionally used
to develop software systems (whether component-based or customised), is then crltlcally
reviewed and the failings are discussed,

Chapter 3 introduces the object-oriented paradigm as an alternative approach (to the more
traditional functional decomposition approach) to building software systems. The new
paradigm'S suitability to developing re-usable components is also motivated. The relevant
technologies, standards and other issues affecting the adoption and success of the
object-oriented approach are reviewed. The chapter concludes with a review of software
engineering and other organisational issues that had to be considered at the very
beginning of the development project.

Chapter 4 firstly defines what is meant by real-time distributed systems and describes
typical application areas. The generic requirements for these systems are reviewed, and
in this context the design of the generic architecture is introduced. The underlying
communications highway design is reviewed, and the 3-layered object-oriented component
philosophy is introduced. Within the 3-layered philosophy, the lower-layer generic
components are detailed for each of the software subsystems.

Chapter 5 first describes the Telecommunications Network Management (TNM) application
domain. For this domain, the second-layer domain-specific components for each of the
software subsystems are detailed. Chapter 5 also describes the technical details and

Chapter 1 Page 5

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

application engineering involved in utilising these building blocks in a real-world
telecommunication network management application.

Chapter 6 is a critical analysis of the object-oriented component-centred approach. All
related issues are examined, specifically the degree of re-usability and productivity, System
pevelopment, project management and other organisational issues are also questioned
and conclusions are drawn.

Chapter 7 concludes the study with a review of the objectives and major arguments of the
study. A summary of the findings and results is presented, together with concluding
statements.

Chapter 8 details areas where future research is required.

1.7 RESOURCESAND ENVIRONMENT OF THE STUDY

The material required for the research and study has been obtained from extensive
literature surveys, specifically current journals, publications and conference proceedings.
Material and information has also been obtained from conferences and training courses,
and interaction with other companies and interest groups. Most importantly, much data
and other material has been obtained from the development project itself, arid from
implementing and managing previous software projects.

The practical implementation and research of the study has been conducted at the
Author's employers' premises. Resources utilised included a network of Hewlett-Packard
9000/800 series computers and HP9000/700 series workstations with C++, MOTIF/X,
public domain software, peripherals and personal computers.

1.8 INTRODUCTION TO THE TELECOMMUNICATIONS NETWORK MANAGEMENT
DOMAIN

Extensive reference is made in this report to technical real-time systems, and the
Telecommunications Network Management [rNM) domain. The context of 'technical
systems' and 'real-time' systems has been previously defined in this chapter.

However, to fully appreciate the SUbsequent material in this report, this section contains an
introduction to the real-world domain of telecommunications networks applicable to this
study, as well as the generic functions required ot telecommunications network
management systems.

1.8.1 Differentiating Telecommunications Network Management from Network Management

The general industry definition of 'Network Management' concerns management of entitles
on an organisation's corporate or operational network, and involves management of
network elements such as routers, bridges, servers, hubs and other network resources.
This is quite different from the requirement for telecommunications network management
applications, the subject of this study. TNM involves monitoring and controlling network
elements in the outslde world, beyond the data communications network that inter-links the
hosts of the distributed systems. Examples of these network elements include microwave,
switching and telecommunications transmission equipment.

Chapter 1 Page 6

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE S}'STEMS

1.8.2 The Physical Model

Figure 1.1 below depicts tf"'e three relevant areas of telecommunicatlon networks, that is,
microwave, transmission and switching. .

Microwave - Carries the majority of telecommuntoatlons traffic, and microwave elsctronlo
eq";pment has outputs that indicate the operational and error status of that equipment.
Tilese indications are monitored and stored by the remote outstations situated in the
carrier rooms, and are periodically polled by nationally distributed TNM front ..end systems.

Transmission - This consists of 2, 8, 34 and 140 Mbit stream multiplexer and demultiplexer
equipment. which also has outputs indicating the operational and failure status of that
equipment. These are also monitored by remote outstations whiCh are periodically pOiled
and monitored by regional TNM front-end systems. The transmission and microwave
subsystems are merely bearers of traffic they are carrying.

SwItching - These are the end users of the transmission and microwave systems, and
outstations far monitoring this equipment are situated in the switching exchanges. These
outstations periodically poll and monitor the exchange equipment, and monitor not only
the faults and status, but also measures the amount and integrity of traffic being piped into
the transmlsslon multiplexer equipment, and the related traffic received at the other end
from the transmlsslon demultiplexer equipment

1.8.3 Generlc TNM Functions

From the above domain overview, it is easy to appreciate that such extensive transmission
equipment requires integrated and effective management. With successful
telecommunications network management, a high level of service is ensured to all users
of telecommunications, from private telephone subscribers, to high-speed
corporate!)anking customers.

So that the reader may better appreciate the structuring and design of the components
described in later chapters of this study. the generic functions of TNM systems are
summarised below:

Monitor equipment failures on microwave, transmission and switching equipment
(this will be referred to as Fault Management)
Monitor statuses and maintain configuration on microwave, transmission and
switching equipment (to be classified as EqUipment Management).
Monitor the grade (bit-error-rate) on the bearers or channels (also
Equipment/Performance Management).
Dynamically add, delete and reconfigure the telecommunications network
configuration on the TNM system (Configuration Management).
Monitor traffic (usage and utilisation) being carried by different bearers and links
(this will be referred to as Traffic Management).

Chapter 1 Page 7

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BW!.1JING RlEAL-TIME SOFTWARE SYSTEMS

1.8.4 TNM Systems

A TNM system typically consists of geographically distributed computers interconnected by
high-performance networks. Depending on several factors. some of the computers may
serve as regional front-ends, others as Man-Machine Interfaces (MMls), and others as
central database servers. The regional front-ends tYpically connect to the equipment via
direct or multi-dropped RS-232, X.25, Diginet etc. (Refer to Figure 6.5 in Chapter 6 for an
example TNM hardware topology).

The above concludes the overview of the telecommunlcauons network domain, including
what;s meant by microwave, transmission and sWitching, and the physical relationships
between the different types of equipment. This overview has been included so that the
reader can better appreciate later references to distributed real-time systems and the TNM
appllcatlen domain. Chapter 5 contains further details on the TNM application domain.

Cllapter 1 Page 8

....-~--""""T-

III ~ ... ~
0 .. ~ ..

§~ Il< Il<
....s ~ ..

Q .. :=
tl :;
." ~ is (.S r..i
"',0

...o
.... ~ ." 1! ~..~ ~ 0 0 0.. 1! ."

;r III

'" ..
......
~ III

i:$.s
ti... 11.1

1! ..
0 ;:.l
;:

11.1- :a,---.-

Figure 1.1: The Telecommunications Networks Physical Model

Chapter 1 Page 9

AN 08JECT-OAIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

2. MOTIVATIONFORAN OBJECT-ORIENTED COMPONENT
APPROACH

This chapter reviews the different solutions to implementing real-time software systems for
end-user requirements. this is necessary to clarify the meanings and differencp.s
between customised, component, packaged and product ..based software solutions. The
issues of each of the solution approaches are compared and critically analysed.

These issues include the technical, cost, project management and risk factors. A
motivation for a component-centred solution is then put forward, where re-usable
components or building blocks are used to build software systems.

The functlcnal decomposition or structured analysis paradigm traditionally used to develop
software systems (whether component-based or customised), is then critically reviewed
and the failings are discussed.

The arguments put forward in this chapter form the foundation for the nl,~""",'i.mof an
object-oriented component-based approach which is introduced in Chapter '3.

2.1 SOLUTIONS TO BUILDING SOFTWARE SYSTEMS

The approaches to building technical software systems, specifically real-time systems,
range from the fully customised solutions to packaged solutions. These different
approaches to providing solutions are briefly reviewed here.

A graph which depicts the relationship of the different solution approaches with respect to
re-usability and development cost is shown in Figure 2.1 below.

The graph in Figure 2.1 (which is based on personal observation and not empirical data),
essentially highlights the fact that the more customised a solution is, the higher the degree
of fit but also the higher the relative cost.

2.1.1 Customised Solutions

The customised method of building software systems involves custom bottom-up software
development. The development is customised around the specific requirements of the
application. Minimal software is re-usable from previous applications and likewise new
custom development produces little re-usable software for future applications.

The main advantage of this approach is the high degree of fit to customer requlrement
(provided the requirement specifications were accurate and thorough). The
disadvantages include relatively high costs, long development cycles and high risk. Also
a very low degree of re-usable software is produced by custom development. Further
valid argument is put forward by Ahmad et al(16)and Meyer(4d)in that the customised
solution is highly inflexible, and thus difficult and costly and change and maintain.

Chapter 2 Page 10

AN OBJECT,ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

100%

Degreeof
fit

0%

Relative
Cost

Custom Component Package Product

Approach

Figure 2.1: Approaches to Building Software Systems

2.1.2 Product Solutions

As seen in Figure 2.1, the product SOlUti011 is the extreme opposite of the customised
solution. The product solution is sold as any manufactured product and has a high level
of re-use. It also has the lowest cost and risk, but in terms of disadvantages it has the
lowest degree of configurability and fit.

This is not generally true of commercial ,lroducts, especially with personal computer
software products, bot the situation is very diff. rent for p;uduct solutions for technical
real-time applications.

2.1.3 PackagedSolutions

The packaged solution may be viewed as a 'flexible' or 'configurable' product solution. A
solution can be provided by integrating and configuring the package or packages to
provide a fit wtth the customer requirement. The installation and configuration of technical
packaged solutions is not always customer-friendly, and oeneially requires a domain
expert or integrator.

The packaged solution is almost a product and has a high degree of re-use for its
intended application domain. It is also substantially cheaper than the customised
solution. But the degree of fit is often poor. Because of its generic nature (ie. provides
solutions for all requirements in its application domain), it often suffers from roar

Chapter 2 Page 11

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOJ=TWARE SYSTEMS

performance and unwieldy operation and configuration. However, this approach is often
a valid one, especially in cases where the package closely meets the end-user
requirement.

2.1.4 Component Solutions

The component solution may be defined as functional software components each of which
encapsulate particular and associated functional behaviours. This solution is positioned
between the pure customised approach and the package solution. In fact, customised
developments try to a greater or lesser extent to make use of components from previous
applications.

Unfortunately, this re-use has not always been that effective when the software has been
developed with the traditional functional decomposition/procedural programming
methodologies.

Although this approach still provides a good fit to the end-user requirement, the degree of
re-use is relatively low, and the cost of implementation is still relatively high.

It is in this particular area (ie. component-centred solutions). where it is strongly argued by
authoritative authors like Cox(20"Meyar(Ml)and 801.1Ch(13)that tile object-odented paradigm
makes a major contribution. It has been argued that this paradigm is far more suited to
component re-use because of the very characteristics of the paradigm.

It is this very issue that is argued in this study. Later in this report it is demonstrated that
the component-centred approach based on the object-oriented paradigm results in a good
degree of fit coupled with the cost and risk advantages of a 'product' solut'« 1.

The different approaches to providing solutions have been outlined above, and the
advantages and disadvantages \.)f each have been reviewed. It is also evident that
although it would be ideal to tlrC'vide product-based solutions for technical real-time
applications, the unique requ'<ments of different applications (even in the same
application domain) make this olfficult.

The best compromise would be to address component-based solutions, and investigate
effective metrods to improve re-usabllity and lower the development cost.

!.2 THE NEED FOR A COMPONENT·CENTREDAPPROACt-'

In this section the need for a component-centred approach is motivated and some of the
concerns regarding marketable re-use are presented.

There has for a long time been a strong call to chanqe the software development process
from the custom cut-to-fit craft to a manufacturing enterprise. CO:«20) calls for the
assembly of software solutions from robust off-the-shelf reusable subcomponents. These
subcomponents are in turn supplied by multiple lower-level software producers.

Cox also talks of the 'software Industrial revolution' where the key elernern is to create a
standard parts marketplace where problem-solvers can purchase low-level pluggable

(';hapter 2 Page 12

AN OBJECT-OR1FN'TED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

software components to assemble higher-level solutions,

However this goal is optimistic, and even Cox admits that software products are not
tangible as are manufactured products, Although this is the ideal goal, there are many
problems in achieving it. In this study, where this component-centred approach is
researched, it was found to be a particularly difficult goal to achieve, This is mainly due to
the fact that real-time technical applications possess unique and constansy changing
requirements,

One of the challenges of this study was to observe how generic and re-usable the
components would really be, Many articles, papers and related studies are great
proponents of the object-oriented goals of high re-use, and building new applications from
large stable object component reposltoriss (eg, G!bbs(27),Arango!3). Others such as
Anderson(2) and Biggerstaff(lO)have challenged the market re-usability of software
components,

This state of re-usability has already been achieved in certain application areas, such as
graphical user interfaces anc CMIP/S communication protocols, where standard objects
and class libraries exist. However, in this study it became clear that this state of
re-usability would not be fully realisable - especially in technical real-time applications,
where needs and requirements are complex, unique and changing.

One of the most difficult challenges in this study was to model and structure the
components in a way such that a satisfactory degree of product reuse would be possible,
but at the same ensuring a good fit to the customer requirement and more important
ensuring adequate performance, It was important to avoid ending up with a toolbox of
components that were over-generalised, difficult to fit to requirement, and cumbersome
and unwieldy in terms of performance,

In addition to the goal of a component-centred approach, it was also vitally important that
this approach did not compromise any of the goals and principles of sound software
engineering (Ross et al(50)).

Of the different approaches to providing solutions it is therefore clear that the
component-centred method is best for enhancing re-usability with the object-oriented
paradigm.

In Summary

The previous sections have motivated the use (if a component-centred approach to
building real-time systems, This is in contrast to the use of the fully customised
'bottom-up' approach, The main benefits to be gained from this approach would be
improved software re-usability and hence improved productivity. (One must bear in mind
that component-based systems could be developed with either the traditional paradigms
such as functional decomposition and structured analysis, or the newer Object-oriented
paradigm),

It has also been concluded from research literature that the object-oriented paradigm is
clearly the better methodology to use for component re-use. But it is nevertheless
necessary to review why the more traditional paradigms are crltlolsed as being unsuitable.

Chapter 2 Page 13

AN OBJECT· ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL·TlME SOFTWARE SYSTEMS

2.3 CRITICAL ANALYSIS OF THE TRADITIONAL PARADIGM

Before an object-oriented component approach to building these systems can be
motivated, it is important to critically analyse the traditional approach and review the typical
problems and shortfalls, The more important issues are discussed here.

-
2.3.1 The Traditional Paradigm

The traditional paradigms utilise the principles of structured analysis and design, functional
decomposition, and the 'waterfall' software life-cycle with its project phases. This includes
the deflnltlon of the User Requirement SpeCification, Functional Requirement Specification,
the design phase, module design, pseudocoding, coding, testing, integration,
commissioning and acceptance. This approach to softWare engineering, which is widely
practised, is well documented by noted authors including De Marco(21), Yourdon(57),Gane
and $arson(25),and Ware and Mellor(53)who have extended the basic methodology with
real-time extensions.

2.3.2 Modelling of Functions

Generally structured analysis and design of non-comrnerclal systems places emphasis on
the modelling of functions, and little emphasis on data modelling, As Yourdon(58)
observes, more recent variants of structured analysis do focus more on data with the
ent:ty-relationship diagrams, but many project teams ignore them altogether when
modelling user requirements, focusing instead on the ubiquitous data-now diagram.

2.3.3 Not Suited to Qraphlcal USC" Interfaces

This problem refers to the fact that structured analysts provides little or no 9uidan~e In
daveloping the user interface of a system. As Yourdon(58)commented, structured
methodologies were developed in the 1970s before the advent of the GUI (Graphical User
Interface). These days often a major portion of the software is associated with the GUI.

2.3.4 ChangIng Requirements

The traditional top-down approach takes no account of evolutionary changes. This Is
observed by Lehman(4'»)who classifies programs into S, P and E-programs, of which P and
E programs indicate software evolution being an intrinsic, feodback-drlven property of
software. The functional decomposition approach does encourage a degree at
information hiding and generalisation through the use of functions and subroutines. But
because functions are still modelled around globally accessible data storage areas, any
changing user requirement that affects data structures has a domino affect on the rest of
the subsystem. So this approach results in systems with a low degree of robustness,

Expsrience has shown that changing requirements are a fact of life in software
engineering. How often has it not happened that a new requirement forces the designers
to back-track to earlier stages of the life·cycle, Often a change perceived as minor has
extensive implications because functions are modelled around common data structures,

Chapter 2 Page 14

AN Of3JSCT-ORIENTED COMPONENt-BASED APPROAOH TO BUILDING REEAL-TIME SOFTWARe SySTEMS

2.3.5 Software Engineers lack Domain Knowledge

CloselY related to the above issue, and aggravating the situation, is the lack of domain
knowledge by software engineers. Software engineers are computer literate and can
implement the requirements as perceived. However they are not necessarily domain
knowledgeable, and may not understand and correctly interpret the user's real
requirements.

There has been a strong call, particularly with the object-oriented paradigm, for a domain
specific approach in the software community(26·oUl.~).

Gibbs et al(27)have already proposed the ideal scenario where applications would be
based on generic software components accumulated by a software community familiar
with the application domain. Pliskln et al(<48)have taken this Issue further by proving that
rapid prCllotyping by end- users enables more effective utilisation of domain knowledge.
With the traditional paradigms, it is evident that it is mere difficult ~o 'Separate the functions
of implementing generic software and implementing domsl- f.~ "3ofuvarr Hence it is
necessary for developers to have the necessary domain 'well. As will be
demonstrated later in this study, the object-oriented p~' S '"Suitedto
separating these roles. On this basis, not all devalope,. ' pro!tJ',,~.·ad to have the
domain knowledge.

The Importance of domain knuwledge should never be under estimater!. At the start of
this study. it was required to develop additiol"al domaL, cn(jineers to assist wrth
development of the demain.specific components, It prov&ti ttl be p~rti('u'arly difficult to
gain knowledge of the complex telecommunications network "11anagement domain. In
some cases it took newcomers several months just to learn tin new domain vocabulary,
and took several more months to understand the domain function models.

2.3.6 Inflexibility of Top-down Design

Another criticism levelled at tlre top-down approach is its inflexibility. As Meyer(40)argues,
top-down design may be effective for developing individual algorithms and routines. but
goes against re-usability when applied at the systems level. The reason is that top-down
promotes one-of-a-kind development and relies orl a single. frozen top-level function ~ a
case that is rare in practise.

2.3.7 Not Suited to Re-use

A major problem of the structured approach is its unsuitability for re-use. As correctly
observed by Edward Yourdon(5t)). the programming and documentation notation of
structured analysis provides little mechanism for ernphaslslnq re-usable components. The
reasons are mostly due to the enormous emphasis placed on the modelling of functions,
with less emphasis on the data modelling. The result of this Is difficulty in abstracting
function models with clear interfaces.

Another interesting comment made by Meyer(4(;)Is that the top-down design method goes
agairst the key factor of software re-use, because it promotes one-ot-a-klnd developments,
rather than general purpose combinable software elements.

Chapter 2 Page 15

AN OBJECT-ORIENTED COMPONENT-I3ASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

2.3.1~ Decreasing Hardware Costs highlights Software Cost

Another factor is the ever decreasing cost of computer hardware which further highlights
the software crisis. In some past projects in our organisation, hardware has accounted for
as little as 25% of the total contract value, It Is becoming more apparent that software is
too costly, and of insufficient quality, and its development is near Impossible to manage.

2.3.9 Estimation of Time and Resources Required

Another problem characteristic of the 'waterfall' software life-cycle of the traditional
approach is accurate estimation of cost, time and other resources required for software
development and maintenance. Techniques available for estimation of resources range
from very theoretical empirical methods to crude estimation based on past projects. In
general, as observed by Lehman(40l, techniques estimating project requirements based on
objective measurement of such attributes as application complexity and size have proved
unsatisfactory.

It Is of interest to note that this study proved that the object-oriented approach proved no
better in this regard. This issue is discussed in detail in a later Chapter.

2.3.10 Effort of Malntenanco

Basill(6)neatly defines the following malritenanoe activities: corr~~ting faults in the system,
adapting the system to a changing operating environment, an' !:lapting the system to
changes in the original requirements.

The maintenance problem of tradltlonat data-structured software is well known and
dOQumentedC1·35,40.57l,The main criticism is that any change to data structures affects all
processes and functions associated with the data structures. This generally results in the
maintenance activity costing more effort than the original development activity.

What makes the maintenance issue even more important is the sheer size of this activity.
A statistic quoted by Lehman(40)indicated that in the U.S.A, 70 percent of programming
activity was spent on program maintenance, and only 30 percent was spent on program
development.

Another study by Wilma Osborne of the National Bureau of Standards in the U.S.A.
substantiates the above statistic by suggesting that 60 to so percent of the tot~1cost of
software is due to maintenance(47l• Since one w&.y to re-use a program Is to enhance it,
maintenance is a special case of software re-use.

2.3.11 Other Project Management Issues

In our organisation's experience, the relatively long project life-cycles of the traditional
approach creates other problems such as team demotivation and st ., turnover. Also, the
sometimes long periods of system commissioning at remote sites presents additional
problems.

Chapter 2 Page 16

AN OBJECT·OAIENTED COMPONENT·BASED APPAOACH TO BU/LDING REAL-TIMIE SOFTWARE SYSTEMS

The long project life-cycle also has financial implications. When developing for the
end-user, it is difficult to motivate progress payments for certain milestones. Some
customers do not regard the specification, analysis and design documents as 'products',
and progress payments can often only be negotiated for written software that can be
demonstrated. This may have implications on the project'financials and cash-now when
running the project over several calendar years, as demonstrable implementation only
proceeds only well into the project life-cycle.

2.4 CHAPTERSUMMARY

In this che ·er, two issues were discussed. The first was a review of the different methods
of providing software solutions, and the second was an analysis of the criticisms levelled at
the traditional procedural approach to developing sottware systems.

Of the different solution approaches, it was found that the packaged and product-based
solutions were not Ideally suited to the unique requirements of distributed real-time
technical systems, On the other hand it was noted that the customised approach is
expensive. risky and has long implementation times. However, it was motivated that the
component approach is where the best contribution can be made to improving the
software engineering process. This is primarily due to the object-oriented methodology's
suitability to building re-usable components.

In the second pal t of the chapter some of the criticisms levelled at the traditional functional
decomposition paradigm and the assoclated 'waterfall' IIfe·cycle were reviewed.

Based on the arguments reviewed in this chapter, it was believed that there is a strong
motivation for an object-oriented component-based approach to building software systems,
and later in the study tile results, analysts and criticisms of this approach are recorded.

--.---
Chapter 2 Page 17

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

3. THE OBJECT-ORIENTED PARADIGM AND RELATED ISSUES

In the previous chapter, the need for an object-oriented component-centred approach to
building software systems was motivated. The objective of this chapter is to firstly
introduce the object-oriented paradigm and then to review and debate some of the related
considerations. This is necessary before leaping directly into the design of the core
components.

Firstly, this chapter introduces the object-oriented paradigm as an alternative to the more
traditional functional decomposition approach to building software systems. The
introduction reviews the basic principles and characteristics of the object-oriented
paradigm.

The relevant hardware and software technologies, standards and other issues affecting the
adoption and success of the object-oriented approach are then detailed.

Because the object-oriented life-cycle is quite different from the traditional 'waterfall'
life-c~/cle, the object-oriented life-cycle found appropriate to this project is described. The
model used for the development team roles is also described.

Finally the chapter concludes with a review of software engineering and other 'soft'
organisational issues that had to be considered at the start of the development project.

3.1 THE NEWOBJECT·ORIENTED METHODOLOGY

The origins of object-orientation can be traced as far back as the early 1960s with
languages such as ALGOL 60 and LIsp. Since then there has been a steady evolution of
object-based languages such as Pascal, Ada and 0 and true object-oriented languages
such as Simula, Smalltalk, 0++, OlOS and LOOPS (Booch(13)). These languages
possessed many of the characteristics of object-orientation as we know it today. However
it appears that these origins were more language based, and it was only in •.he mid 19805
that object-oriented was first formalised as an actual methodology for constructing
software systems, and included OOA (object-oriented analysis) and 000 (object-oriented
design) as well ss OOP (object-oriented programming).

From the mid 1980s it has progressed from being an impressive buzzword in the software
marketplace to a more mature and developed methodology that is steadily gaining
acceptance and being more widely applied.

There exist many good books and article references on this methodology I and it Is beyond
the scope of this study to detail the methodology itself. However the baslc philosophy of
the methodology is outlined here, and the reader is encouraged to refer to the
bibliography of this study for several good references on the object-oriented paradigm.

The Object-oriented methodology is said to be a new method of viewing software, where
the emphasis is shifted to the objects we build rather than the processes we use to build

Chapter 3 Page 18

AN OBJSOT-ORIENTED OOMPONSNT-BASSD APPROACH TO BUILDING REAL-TIME $OF1WARE SYSTEMS

them. Object-orientation means abandoning the process-centric view of the software
universe where the programmer-computer interaction is paramount in favour of a
product-centred paradigm driven by the producer-consumer relationship.

It allows better factoring of functionality and related data into components that are
mlnimall~1coupled. The data is encapsulated with its associated processing and clear
interfaces are defined. This means application proqrarnmers do not have to be concerned
with the processes within objects - how they work and implementation detail is not
required,

The object-oriented paranigm includes object-oriented environments, databases and
architectures. It also includes the analysis, design and programming methods, There
exist many references anti studies on the different OOA and 000 specification and
notation methods. One of the references highly favoured by the majority of the
development team of this project was that of Grady Booch(13),titled Object-oriented Design
with Applications.

In essence, the Object-orientation paradigm has been narrowly defined by Wegner(54)to
contain 4 main properties:

(1) Objects have operations that define their behaviour and variables that define the
state of the object between operation calls.

(2) Classes describe the common behaviour of collections of objects.
(3) Classes may be specialised by defining a class that adheres to all the behaviours

of the original class. Additional behaviours and/or state variables can be defined
for the new class. (this is generally referred to as inheritance, where the original
class is called the superctass and the new class is called the subclass).

(4) Objects are first-class citizens and obey the semantics of other types in the
language. (This is generally called aggregation, as it allows objects to be
composed of other objects).

The section above on the object-oriented methodology has briefly described the origins of
the object-oriented paradigm and the basic characterlstlcs, For further details on the
methodology itself and the supportlng environments, refer to the bibliography.

3.2 NEW SOFTWARETECHNOLOGIES AND STANDARDS

Although the subject on open systems, and formal and de facto standards for Common
Application Environments (CAE) is very extenslve, it is necessary in briefly review the
current status of the industry in terms of standards and common operating environments.
This is because these standards very much affect the degree to which the object-oriented
components can be re-used. More Importantly, the status of the standards Industry
directly affects the use of the CMIP-conformant sottwara highway, which is one of the
research points in this study.

Chapter 3 Page 19

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

3.2.1 The Move10 Open Systems

While open systems mean different things to differ~'lnt people in different software
industries, the ongoing standards battles has significant impact on the evolution of an
effective open anvironment. liampel(31)and Held(33)believe that the scope of the Open
Systems tilive includes:

'"'"'*
'"
*
'*

consistent IJser interfaces
database systems and consistent data access
operating systems
local networks
backbone networks
inter-company networks

The primary Objectives of the Open Systems drive is to guaraf'itGe
portability,compatibility,inter-operability and scalability (HaYI9s(32I,Hampel(31). Each one of
these objectives determines the degree to which object-oriented components could be
re-used.

The evolution of tha de facto standards and formal standards for a Common Application
Environment (CAE) is quite interesting. UNIX International (UI) and the Open Software
Foundation (OSF) appear to be driving the industry towards different standards, although
the two bodies have several features in common (Hampel(31».

These include:

'"
'*

Transmission control Protocol/Internet Protocol (TCP/IP) for communications
Network File System (NFS)
Compliance to POSIX
Oommitment to the OSI standard

'*
'*
However these are bodies that drive the de facto standards, and they in turn are
influenced by several Industry pressure groups such as. the Petrotechnleal Open Systems
Oorporation (POSO), the Int. Public Sector Information Technical Group (IP$Il) and the
User Alliance for Open Systems (UAOS).

At the other end we have the emergence and evolution of the formal standards such as
ISO, IEEE, POSIX and ANSI. In between the de facto and formal standards, the X/Open
organisation has emerged as a bridge between the UI and OSF and the formal standards.
As an independent body, it takes on the role of combining formal and de facto standards
in an attempt to create a Oommon Applications Environment (OAE), providing portability
and i!"lter-operability.

Figure 3.1 below graphically shows the current relationship of standards bodies
(Hampel(31)).

Chapter :3 Page 20

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

Miscdlaneolls pressure
groups ea. pose, IPS IT, UAOS Pressure groups

--------------------------------1 I
Creates critical Ul OSF

f.2'~~1lc1tpr~d~~t~ ,
:'- !~::.el' common ~
' ... Hcenses "~r .~,

mass of users and
third parties around
common appJ1catlon
environment-------------------------------~,

DeVelopnu~ht
of UNIX
System V

Acts as bridge between
de facto standards (UI,OSm
and formal standards
Takes Input from users
to create eAE

x/Open

Detalled technical
statement of stabilized
technology

Formal standards
ISO,IEEE,POSIX,ANSI

Figure 3.1: Relationship of Standards Bodies

3.2.2 Implications for the ObJect"o,rlentedApproach

The obJectives of Open Systems and the associated standards are seen as a benefit both
to the users through greater choice of hardware platform and to software developers
through availability of a volume marketplace on an international basis.

In theory the objectives of standard operating environments and inter-networking sound
good and make sense. However in reality there are still many headaches for the systems
developer and integrator because 01' the different versions and flavours of products based
on the SO-Galledstandards. .

Apart from technical acceptance of and compliance to standards, another problem is

Chapter 3 Page 21

AN OBJECT~ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL·TiME SOFTWARE SYSTEMS

-------~---~--
end-user industry acceptance of the standards. One of the major decisions that had to be
made for this project was whether to adopt tile well-entrenched and proven TCP/IP
protocol stack for inter-network communications or adopt the much newer OSI
communications stack.

3.2.3 In Summary

It has been necessary to review the software technologies and standards applicable to this
project, since they have an effect on our object-oriented component approach strategy.
Since this project is not based on a Single computer, but on a real-time network of
heterogeneous computers, it was Important to evaluate which operating environments and
standards we would adopt, and which should be catered for in the 'future. With the ·ight
choices it was believed that the applicability and marketability of re-usable compone. ts
would be wider.

Although the goals of Open Systems are common, there still exist many divergent views on
standards, as observed by Hampel(31). Although further formalisation of the standards is
taking place and the formal and de facto standards are converging, the situation presents
many operational and strategic problems for a software development organisation like
ourselves.

As reviewed in this chapter and in Appendix A, the status 01 the standards industry ,.:.0
complex and extensive, and the material reviewed here is only the tip of the iceberg. An
extensive study and evaluation of the standards industry is not in context of this study, and
the reader is encouraged to refer to the relevant references listed in the bibliography. The
brief review of the standards industry given in this chapter, and in Appendix A, has been
sourced from the references in the bibliography and several other academic and
industry-related publications.

At the end of the day, it is Important to cater to the end-user demands. Currently many
end-users are very much entrenched in de facto standards, although they claim to be
committed to the direction of formal standards. The implication of this for our organisation
is to structure our object-oriented component approach strategy and deslqn so as to be
able to accommodate and migrate to the formal or whatever standards the end-user
industry adopts in the future. This strategy is evident in the philosophy and design of the
object-oriented component approach as detailed in the remainder of this study.

3.3 NEW HARDWARETECHNOLOGIES

In this chapter, we need to review the evolution of hardware tecnnoloqles, since this has
an effect on standardisation, portability, software complexity and the object-oriented
methodology. To have all these good things extra processing powsr, memory and disc
storage is necessary. Fortunately the evolution of hardware technology has been
remarkable.

An example of this is the Hewlett Packard HP9000 range of UNIX minicomputers (shown In
Table 3.1 below). whose models have shown an approximate doubling of performance and
memory capacity every 14·18months for the same relatlve price.

Chapter 3 Page 22

AN OBJECT·OR/f,Vrr::D COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOF1WARE SYSTEMS

I H/W Plattorm I Yea, IMIP,S I
Max.

IMemory

HP9000/825 87 8 48Mb

HP9000/832 89 16 64Mb

HP9000/827 91 38 128Mb

HP9000/720 91 53 128Mb

HP9000/730 92 75 256Mb

HP9000/735 93 120 256Mb

Table 3.1: Example of Hardware Technology Evolution

Why exactly do we require all this power for the object-oriented approach? Firstly the
building block approach with oblect-orlentaflon implies a high level of component
encapsulation with standardised software interfaces, application programmer interfaces
and a degree of redundancy in data and functionality.

Secondly, in real-time applications a great proportion of managed objects need to be
memory resident for performance reasons, and use ot a generic interface to the real-time
software highway requlres veri complex multi-layered communications software. These
issues are further reviewed and analysed later in this report.

3.4 THEOBJECT·ORIENTEDLIFE·CYCLE

From research of relevant Iiterature(35,2{l.38.40)and our own pilot prototyplnq, it became
obvious that the life cycle of the object-oriented approach to building components would
be quite different from the traditional 'waterfall' life cycle. In this section some of the
problems of the traditional waterfall life-cycle are reviewed, and the model we used for the
object-orlented component-based developrnent is described.

3.4.1 The ClaSSical Waterfall Llfe.cycle

The Waterfall model (which is generally attributed to Royce(51) used in the classical
procedural approach entails a unidirectional flow of development from initial requirements
to final product, 1"his is shown in Figure 3.2 below.

Chapter 3 Page 23

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOF7WAAE SYSTEMS

:ltequlr~mehts ------------ Customer
Needs

defhdtlon l
High-level
design

CodIng

l
Unit

testing l
Integratlen l

System
test

L Final product

Figure 3.2: The Wat.erfall Lifecyc/e Model

r~ere are various other refinements and adaptations to this life-cycle model, SUCi1 as the
seven-phased model of Boehm'!", the U.S. Department of Defence Standard 2168, and the
Yourdon structured life-cycle model(57). The problem with these approaches is that it is
very costly, if not impossible to go back to a previous development stage. Often
incons1stencies are only discovered in the system testing stage, and rectification at thls
stage is difficult and costly.

3.4.2 The Object-oriented Life-cycle

With the object-oriented approach, i~has been shown that it is feasible to actually
prototype and test the contemplated system before any commitment to a given
arohltecturs, Studies done by Jrad et <W38), Goldberg(29), Henderson-Sellers et al(35)and
others have shown the life-cycle model for object-oriented development consists of closely
related iterative steps of implementation, design and testing.

Chapter 3 Page 24

AN OBJECT·ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

--.--~-------
In this study. I observed a life-cycle model which is a combination of the models proposed
by Jrad(38).Goldberg(:!9)and Henderson-Sellers(35). This model is shown in Figure 3.3
below.

ColnpOhent
Libraries

I
ModelUngl
ObjfJct-orlellted analysis

I.Object
LlIirarles

I

Code
Proto typing

Refining
aud

l Revising
~.~-----------~ and

Generalizing

Object-orlented design

Testing

Release for use in
AppUcaUon and library

Figure 3.3: The Object-oriented Ufe-cycle Model

Figure 3.3 clearly shows the tight coupling between the different stages and the iterative
process to developing object-oriented systems. It also shows the bi-directional flow of
development. This means that when problems are found, they are always fixed in the
stage where they ought to be fixed.

This section has provided a review of the Object-oriented life-cycle, and examlncr' the
fundamental Ufferences between this life-cycle and the traditional waterfall life-cycle.
Discussion of the results and other Issues relating to the oblect-oriented life-cycle arc
contained In a later chapter of this study.

ChapterS Page 25

AN OBJt:Ct·OFllENTED COMPONENT-BASt:D APPROACH TO BUILDING REAL-TIMt: SOFTWARt: SYS7'EMS

3.5 THE DEVELOPMENTTEAM ROLES

Once we had defined, observed and further refined the iterative-prototyping life-cycle
model, the roles in the project team had to be defined and clarified. Severai authors,
including Arango(:l) and Pliskin et al(48)refer to the separation of the software development
roles of toolbuilders and application engineering, In this study it was necessary to develop
their models further: defining distinct roles of toolbullder, application engineering and
application consulting.

one of the more notable problems in the traditional structured approach is stated in an
interesting paper by Pliskln et al(48).They observe that 'end-users, not having any
knowledge of structured techniques, were struggling to comprehend the various software
engineering tools, products and methodologies. Software engineers, Jacking domain
knowledge in the area of the application, were struggling to seek domain knowledge from
usere and to comprehend the tmerecuone between users and the system sought',

The use of object-oriented building blocks presented opportunities to address this
problem. Right at the start I sought to separate the functions of generic component
builders, domain builders. application engineers and application consultants. The main
motivation for this was to optimise re-usability, particularly in this study where a specific
3-layemd component structure was employed (see Chapter 4).

However, in practice it was observed that these roles did not function as mutually exclusive
as one would have hoped. The application engineer was not entirely divorced from the
domain and component builder functions, and much interaction and co-operation was
necessary. (These issues are dlscussed in de~ail in the analysis of the approach in
Chapter 6).

The development team model I have proposed Is an extension and further formalisation of
the monels presented by Arango(3)and Pliskln(<I8).The functions of generic component
builders, domain builders, application engineers and application consultants are
separated. A diagrammatic depiction of these roles and their interactions Is shown in
Figure 3.4 below, and further description of the roles follows.

3.5.1 The Component Builder

The component builders were primarily involved in bUilding up the toolkit of generic
objects and their assoclated functionality. Objects were deemed generic if It was expected
to be used in other technical real-time application domains. The component builders
needed to have good knowledge of the overall generic building block philosophy, deep
knowledge of the object-oriented paradigm and knowledge on implementation specifics
such as language.

The component builders added further objects and object-based components to the
generic toolboxes, and also ruaintalned the existing libraries of objects and object
subsystems.

Chapter 3 Page 26

AN OBJEOT-ORIENTED OOMPONENT-BASED APPROAOH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

Functional Requirement
Specification

Applicatlon __ ..__ ,_"I"I '-~ -- Application

COnSUltlL.ng C_u""'l'fom iPucatiOft EoCI... ,I ••

I --,I r ::C Dom.ln_-_-_-_-.;;;.~=~==;;_.._-.. r- BuildingDoi ..aln Toolbox =_J
Component

_--__..---_- ...--- BuildingUser Requirement
Specification Generic Toolbox

Figure 3.4: Development·Team Roles

3.5.2 The Domain Builder

The domain builder maintained and added objects and object subsystems to the domain
toolboxes. The domain toolbox contained components expected to be generic to other
applications in the same domain. In this study, the domain was selected to be
telecommunications network management. These components were extensions and
speolallsatlons of the generic components, with a 'flavour' for telecommunications nel:\Aork
management.

3.5.3 The Application consuuant

The application consultant was the person or role tnat needed extensive application
knowledge. In this project, we had two application consultants who had wide knowledge
of telecommunications applications, their users and their domain specific problems and
concerns.

Because of their application and domain knowledge, the application consultants were quite
capable of understanding and documenting the application requirements, that Is,
Interpreting the user requirements into a functional requirement specification. Apart from

Ohapter3 Page 27

AN OBJECT·ORIt=NTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

the domain l<nowledge, It was also observed that the application consultant had to have a
reasonable technical appreciation of the components and the features and constraints of
the architecture and components.

3.5.4 The Application EngIneer

The application engineer was the person who made use of the Functlona! Requirement
Specification, the generic components and the domain components, This person then
\1eveloped the application layer of the software using (re-using) the oblect-onentec
components from the toolboxes.

The application engineers had a thorough knowledge.of object-oriented design and
modelling, as well as the implementation language. However, in keeping with this role, this
person had little knowledge of details within the component objects - only knowledge of
the services provided by the object components, and the interfaces to them.

The above 4-role model for the object-oriented analysis-design-implementation life cycle
worked reasonably well. Although the roles did have areas of overlap at times. Idid find
that focusing on this 4-role model strengthened the whole philosophy and attitude to
re-using the components. These issues are olscussed in detail in Chapter 6 of this report.

3.6 ASSESSING THE OBJECT-ORIENTED METHODOLOGY

3.6.1 AehlE::vlng the Goals of Software Engineering

Before adopting the object-oriented approach, it was necessary to assess whether this
was the right approach for building technical real·time systems and whether it was in line
with generally accepted software engineering principles.

According to Ross et al(5()),the four fundamental goals of software engineering are
modifiabliity, e'ificienC}I,reliability and understandability. The seven principles that affect
the process of attaining these goals are modularity, abstraction, hiding. localisation,
uniformity, completeness and confirmability.

These goals and principles are very much accepted in the lndustry with regard to the
traditional functional decomposition methodology. However, wOLlldobject-orientation
achieve the same goals and could the same principles be practised? I believed they
COUld.The very essence of object-orientation is claimed to be maintainability through
modularity, abstraction and information hiding,

The principles of uniformity, completeness and confirmability were also concerns at the
start of the project. Testability and confirmability are stated as advantaqes of
object-orientation • but In Implementation we initially found It diffiCUltLQ test objects and
object subsystems. However this was improved with trace and view and other utilities
specially written for testing and debugging. Further details and conclusions on this
appear in Chapter 6 of this study.

Would the goals of software engineering be achieved? There were several references to
th~ '''Ylprovedmodifiability and reliability that have been observed. but I had reservations
abour the goals of efficiency and understandability. What was particularly alarming was

Chflpter :3 Paga 28

AN OBJECT-OR!tiNTED COMPONtiNT~BASED APPROACH TO BUILDING REAL~TlME SOFTWARE SYSTEMS

the observation by Jrad et al(38)that execution time of object-oriented software in a
real-time system proved to be three times that of procedural software.

As far as understandability was concerr=d, the project team's initial introduction to
object-orientation proved that understai _.abilitywas an issue. It required a great deal of
effort to get 'traditional' developers and designers to truly understand the object-oriented
paradigm.

3.6.2 PrototypJng and Incremental Development

Systems development using the waterfall development methodology is usually a slow
process, in which the turnaround time from concept to commissioned system could take
up to several years. To take on a brand new methodology like object-orientation in this
fashion appeared to be very risky. It was felt that incremental development and rapid
prototyping was the correct approach to adopt (Jac()~son(3C),Goldberg(2ll). Jrad at al(38). at
least for the Initial development of the re-usable building blocks.

This advice was taken seriously. Eight months before the main development project
started, a C++ compiler was leaded onto a UNIX workstation, and two software
developers were set the task of developing a very simple prototype graphical user
interface using object-orientation. This was our 'pilot' system, to gain a better
understanding of object-orientation principles, how to apply it, and better understand the
constraints.

Based on the success of this experience, it was decided to approach the main
development of the object-orlented components in the same rnanner. The components
would be developed incrementally step-by-step, beginning with the core of the system and
a few of the more Important system functions. Components were then rapld-prototyped
and refined, and then in the same way the next component was developed. III this way
the system was incrementally enlarged.

3.7 PROJECT MANAGEMENT AND CONTROL

It was not the Intention of this report to explore all the project management aspects of the
object-oriented approach. This section briefly reviews the project management methods.
and tools used for management and control of the project.

In terms of methods, the same methods as used for the traditional approach to building
software systems were used. Formal methods included weekly progress meetings,
scheduled technical discussion sesslons, and quality assurance and auditing work-groups.
Informal methods included ad-hoc technical meetings and integration sessions.

The tools used were also similar to those used for the traditional approach. "''Wo primary
tools were used:

(a) The Internally developed Management Information System (MIS) which was used
for recording of progress as per budgets, and full financial control of the project.

Symantec's ONTARGEr project planning package was used for tracking of
progress on individual subsystems and components, and for task and resource

(b)

Chapter 3 Page 29

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH 10 BUILDING REAL-TIME SOF1WARI: SYSTEMS

scheduling and planning.

3.7.1 Tha Management Information System

The MIS ls a SCO UNIX-based 80386 PC running the ORACLE relatlonal database
management system. It reports the following:

* Recording of hours logged (on a weekly basis) by the development team, and
monitors progress as a percentage of logged hours to budgeted hours.

* All income accrued and costs incurred by the project, and net profit calculations.
Income would typically be income received as a result of sales orders, or received
as 'internal' incomes from other projects. Costs incurred Include manpower costs
and other organisational overhead costs.

3.7.2 The Project Planning Package

Symantec's ONTARGET package was used and proved to be successful in combination
with the MIS. It is a PC-Windows based package and provided detailed itemisation of
Work Breakdown Structure (WBS) tasks, allowing tracking of progress, task depencJencies,
resource sohedullnq, and an extensive user interface via PERT and GANTT charts.

The MIS provided tracking of manpower effort and other expenses against budgets, the
Project Planner provided tracking of progress and task and resource scheduling.
Examples of reports provided by these tools are contained in Appendix B of this report.

In terms of the contribution of these tools to the success of the object-oriented approach,
the MIS and Project Planning Package worked reasonable well, but did have shortfalls.
Problems were experienced with accurate tracking of progress on the object-oriented
components being developed. This proved to be due to the unique characteristics of the
object-oriented paradigm. This was no direct fault of the tools used, but it would be
interesting to note whether tools ideally suited tor object-oriented project management
become available in time to come. This issue is reviewed in greater detail in Chapter 6 of
this report.

3.8 COMPONENTMODELLING AND DESIGNMETHODOLOGY

This seorlon reviews the ouject·oriented analysis and design methodologies used in this
project. "(he documentation technlques are also reviewed and a modified hybrid of some
of the better known techniques is demonstrated.

Some of the earlier object-oriented development methodologies were not generic, having
being structured specifically for the Ada environment. In recent years however, several
non-Ada oriented methodologies have appeared. Meyer(45)focuses on class development
using formal specification of abstract data types (ADTs) to define behaviour. He also
provides examples on how to transform a functional design tv an object-oriented design.

Coad and Jourdon(IO)describe an OOA method uSing data modelling techniques which
define system architecture in terms of assembly and classification structures. Services are

Chapter 3 Page 30

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

specified for objects by techniques such as entity-life. history and state-event-response
charts,

Wins-Brock and Wilkerson(56)use a responsibility-driven approach which concentrates on
the responsibilities of an object and the information it shares with other objects. The
objective of this_approach is to increase encapsulation of information within an Object.

3.8.1 The Object-oriented Development Process

After evaluation of the different development methodologies, it was decided to use the
Booch(13)method as a basis. Booch suggests starting with a natural language description
of the desired system and using the nouns as a starting point for the classes of objects to
be designed. Each verb is an operation. The operation is implemented by a class when
the class Is the direct object, 01' the operation is one used by the class when the class Is
the subject, This resulting list of classes and operations can be used as a starting point In
the design process.

We found it essential to extend the Booch approach with the approach described by
Johnson and Foote(37),which not only defines classes for objects in the problem domain,
but where required, define classes for operations in the problem domain. Further
experience and the degree of abstraction dictates whether an operation should be a
method in a class or a separate class.

It is well accepted that the 000 process is neither top-down or bottom-up, but is an
iterative and incremental development of a system. This is due to the refinement of
different yet consistent logical and physical views of the system as a whole. This is the
essence of the Booch approach'!" which can be summarised in 4 steps:

(1) Identifying the classes and objects at a given level of abstraction
(2) Identifying the semantics of these classes and objects
(3) Identifying the relationships between these classes and objects
(4) Implementing the classes and objects

In thi~ project, the Booch Class Diagram and Object Diagram were two notation methods
which were extensively used for depicting the static semantics of the design. It was
observed that in each of the above steps, the class and object diagram products of the
previous step were further refined and modelled.

It was found that the Booch state transition diagrams and timing diagrams were
particularly useful for illustrating the dynamic semantics of the real-time components.
Timing aiagrams proved particularly useful in iIIustratirJ the timing and order of events
among associated sets of managed objects. Module diagrams helped illustrate physical
packaging of classes and objects into program modules.

(In this study, the term 'modelling' is used. I have defined modelling to be the next step
after the Object-oriented design and development process. Modelling is subtly different
from OONOOD, in that modelling determines which objects initiate activities and the
sequence of activities, the lifecycle of objects and the state at different parts of the cycle).

Chapter 3 Page 31

AN OBJECT~ORIENTED COMPONENT-BASED APPROACH TO BUILDING Rt=AL-TIME SOFTWARE SYSTEMS

3.8.2 The Object-oriented Development Notation

Class and Object diagrams were extensively used in the project for the object-oriented
analysis and design process. It was necessary to use both these notation methods to .
document the logical designs, since each illustrated entirely different design decisions.
Class diagrams were used to document the key abstractlons of the system, and object
diagrams documented the rnecbanlsms manipulating these abstractions. In a sense,
object diagrams captured the dynamic semantics of operatlons, and represented the
interactions that may occur among a collection of objects, no matter what specifically
named insl.~nces participate in the mechanism. Figures 3.5 to 3.8 illustrate the various
object-oriented design/notation methods that were evaluated.

A subset of Booch's notation standards were defined for this project, and certam
extensions were made. Examples of the extensions include the notation to depict the
software bus CMIP-conformant messages between objects, and notations to depict UNIX
inter-process messages and QCOMM-specific messages. These notation extensions are
depicted in Figure 3.11. The modelling aspects of the SUbsystems were notated using
extended object diagrams, state transition diagrams and timing diagrams.

The following figures illustrate examples of the various object-oriented design and notation
methodologies used on the project.

Class C

Class /,B1A

Figure 8.5: The Responsibility Driven Design Hierarchy Graph (as proposed by Wilfs-Brock(-#J))

Chapter :3 Page 32

AN OBJECT·ORIENTfED COMPONENT-BASED APPROACH TO BUILDING RE!AL-TIME SOFTWARE SYSTEMS

S,r.-lct ON,n ..
by tbls subsyst,m.

Figure 3.6: The Responsibility Driven Collaborations Graph (as proposed by Wirfs-Brock(4!J})

SYmbol in Circle - Denotes
the messages that tbe neal'
role may send to tbe far
role, No symbol muns no
messages.

htdlcates Cardinality
Double Circle - For one of tbe near role
there are nene, one or many of the far role.

Slrtgle Ctrde - For one near role there II:
exactly one far role.

Figure 3,7: T/1eRole Model Diagram (as proposed by Wirts-Brock and Johnson(62)

-------------------------------------------.--------------------------------
Chapt~r :1 Page 33

AN OBJECT·DRIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

Use eRe (Classes, llesponsib1lltles and Collaborations) and System Cards
to document the detail whfle you USe object diagrams to model the real world •

."...-A ... __"
''''d .)o~ S~~VICES r~lIlr~
f ..,. dalle' external to Ull.)
'\ -., .. em. ~.... . .,............. -:~ ~

__ '----..._~.,.. ...
,_..
I IJ.e .ile ruhd..llllle~ of'-
I t.I. elm. Jr nBotiler I:lm \

expect, til" cla •• to I
I •coUaborafe, tke requested I
\ •nl''l'lee "!I'lll lie tlle
\ ~elponll ..nU,. of t:lM clal~ I... .,......... _.- .. ;

• "-'1.tu,,: NalilE 0.1e-
C•• trada: laUoaJI

.--.,
,er ueil co.tract, Il:t,
I 'ile cl.u. Inter ... 1 '")
'\ 11IlJ.-IY"<l1ll til". IIe'ull,.

""rovidea t'h SER.VICJ....
~ -- --

.... -'-
~ IJI' If. BASE t1u.'"

, nd all daue. derl"4Id \
'\ ...from til', dan. "" I

-...._ ---

~--,_--".'"
, IJlt tile namu or tile "
I c!;lBltI 'WhOle lenten)
'\ .. It clan Ileed ••... ...-,-..._..~.J~~;

Figure 3.8: Tile ORG Cards (as proposed by Beck and Cunningham(56,57)).

Chapt~r3 Page 34

~
~
~
(0)

~
~

:n
~
f""
~
:::i
(j)

~
~.

e~.
ii3
3
Iii'
'""Ca
-0
~
@
Q.

.sr
~o
t.')::r
>:

...$

Oaft tM ... , ".", IJb&:r_ ... alr __ ,. .. Ii••
lacklt , .. ' .eIUl- ~ ulaa: ••• '..r at dI.
e-..nnolalioft.

/_._
"..j I "
~ _"
\

\. ,
I"....~ -_---r-

nIs Is1,.)01 {or flit ~12"

...t
,...--

I r'"
_/ I

I
\

I --x
\

A

I
\, llIlo.rlb fro.

"

(

Cal'lUulU., ,,1:
the ClaSJI
0/11n.

COJlcurrel1cy
•• U:dmloddIlJ/Actlyt
Perststance
static I D,..... Ie

...______,__G------

"../ C
r
I

,
I

".. _ r~
/ I

A A dl •••• t d:au "A·...... , s ... It•••
aha. ch.u....... Hull: S.d,ut •• 11.
r.... tn.d~t.,.HUI du, .. 'A' 'Ai 'r)

B
\ -,~ ------.. ,....0.......

\ _
'- ... -

....., .. """'"'-
/
~,

'''Zero \, A B
:1- Oat ~
•• Zero or 13iorc\0 ILeu.. t .r daN .,.••• ot ho .. "hal

(d.fault) 1 ~Ii"C.."U.' d........ (I.. u..... !y ,.. lacld.

+ .. 0••.o:y_or 1 t'll' fH du. 'IL')
1" Zeroor 1 T.-. I-- . .,.-

n* Usn Cia.. -""Una. Class

..

AN 08JECT~ORlENTED COMPONI:I''1r~BAS£D APPROACH TO BUILDING REAL-rlMtE SOFTWARE SYSTEMS

_." '
I Sen-lce lltq ••• t
\ .. Of .otlflcatlo..)

... ""......... --

.". ... - ,
P'lal.t~lIlct: ...
P.rd.taIH 1

'\ Static
... . DYllamlc ... '"..... ___
I ' A. cOllta!».u ...

,.,.,___ o,"j.c:t - cOlllal.. \
... Otlltr o'joeta ... I

fIIII4

This is a symbol ff)r an object

Additional Symbl;)!s:
I----l~~(--II.-8,...e'ro.0.'o TIIIII.Ollt

Figure 3.10: The Object Diagram (proposed by Booch(45))

ChapterS Page 36

AN OBJECT-OAIENTED COMPONfNT-BASED APPROACH TO BUILDING REl\L~TIMt SOFTWARE SYSTEMS

~SChedU)e

_~~~ C++ Object messages

--------CMIS messages

_______________ ._ Instantiation

............................. ,_UNIX IPC messages

•••••••••••••• " .. QC01vIM messages

Figure 3.11: The Object Dic:J.gramExtensions for Modelling

Investigating the OONOOD methodologies for this study revealed that there is a We, Ith of
literature in this field. For the purposes of the project and study, a modified but limited set
of the methodologies were practised.

I am currently investigating richer and more comprehensive OONOOD/OOP environments
for future development phases of this project. Of particular interest are CASE
environments which are now becoming available as mature products applicable to the
object-oriented paradigm. At time of writing, the TeamWork products from CADRE
Technologies were being investigated.

3.9 CHAPTER SUMMARY

After the motivation for an object-oriented component approach in the prsvlcus chapter,
this chapter introduced the object-oriented paradigm. Some (\t the more important
considerations relating to the adoption of the new paradigm were also reviewed. (Review
of this material has been necessary before attempting to leap directly into the design of
the core components).

The current available software snd hardware technologies relevant to this project were
described, since this has a impact on the degree of re-usability, portability and system
performance. As observed, the faster hardware available these days and the formulation
of standards has a j... ')sitive impact on tho effectiveness of the object-oriented approach.

---~---
Chapter 3 Page 37

AN OBJECT·ORlENTED COMPONEN1"-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

However, standards bring with it penalties in terms of more generic, heavier and complex
software layers - which compromises the performance and efficiency, particularly in
real-time systems.

This chapter also described the object-oriented life"cycle that was employed and refined
for this project, and reviewed the major differences between this life-cycle and that of the
traditional approach. Closely associated with the object-oriented life-cycle are the roles of
application consulting. application en,Ji"1E'9ringand component engineering, and the model
used on this project was described.

This chapter also reviewed some of the 'soft' issues that had to be considered at the start
of the project, particularly whether object-orientation was the right m(!thodology and
technology to use for the technical real-time environment. Finally the project manaqernent
and control mechanisms used on this project were reviewed, as well as the object-oriented
analysis, deSign and documentatton methodologies employed.

With the motivation and introduction 0: the Object-oriented component-based approach
complete, the stage has been set for the design and implementation of the set of generic
components for real-tlrne systems.

Chapter :3

AN OB.1ECT-ORIENTED COMPONENT-BASED APPROACH TO Bu/WING REAL· TIME SOF7WARE SYSTEMS

4. DESIGN AND IMPLEMENTATION OF THE CORE BUILDING
BLOCKS

Up until this chapter, the object-oriented component-based approach to building real-time
systems has been introduced and motivated. Several important issues relating to the
adoption of this approach have also been reviewed In the previous chapter.

this chapter introduces the five basic subsystems characteristic of most technical real-time
systems, and then proceeds to describe the 3-layer structure model that was used to
design the generic components of these subsystems. However, to better understand the
structure and design of the various subsystems, the software bus and the generic
requirements and architecture of technical real·time systems are first discussed.

The components generic to of real-time systems are detailed in this chapter, and the
following chapter describes the higher-level TNM domain-specific components. The
Appendices contain examples of the design, modelling and implementation of some of the
components.

4.1 THE GENERIC ARCHITECTURE OF REAI.-TIME SYSTEMS

This section reviews the architecture and generic requirements of technical real-time
systems relevant to this study. The purpose of this review Is to enhance the reader's
understandability of the design of the object-oriented components described later in this
report.

Generally in distributed real-time systems (refer to Chapter 1 for the definition of real-time
systems relevant to this study), there are many software processes running
asynchronously on inter-connected computers. Some of these processes are performing
interfacing to the world being monitored and controlled, other processes are involved with
processing of changes, logging of events and alarms, and performing controls on the
outside world. Other processes perform configuration, archiving, and man-machine
interaction - and all processes are communicating and synchronising with one another in
real-time. That is, the time between any events occurring (eg, outside events and operator
initiated) and their associated responses must be deterministic in time.

By analysing the architecture and functionality of our organisation's previously developed
real-time applications, a generic software architecture was identified that could be
Implemented with the object-oriented metl- ~dology. In keeping with object-orientation, it
was important that the major components of this architecture were defined not only along
functional lines, but they also had be Independent of each other's data structures.

Six major subsystems or components were identified:

(1)
(2)
(3)
(4)

the communications infrastructure
interface to the world (front-end)
man-machine interface
real-time image and processing

Chapter 4 Page :39

AN Ol3JECr,ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL· TIME SOFTWARE SYSTEMS

(5) configurator with configuration database
(6) historian with historian database

These subsystems and the information-flow relationships are depicted in Figure 4.1 below:

Man-
:machine
interface

Comma

,..........
Comms Real--time Comms

Configurator image " Historla
processing

Comms

~Fr.nt-.nd.1
L.,.....;. __

Figure 4.1: Grneric Architecture of a Real-time System

Defining these distinct subsystems .;; above lends Itself to the whole object-oriented
paradigm t~••ch of the subsystems Is a grouping or super-set of further object-based
components and sub-components, and components within each component subsystem
are related in terms of the required behaviour and functionality. These generic
subsystems are desor't d below.

ComMunications subsystem = Software Highway, since it was desired to have a common
highv.ay or bus to which any application processes could attach, and talk a standard
protocol to any other processes, much like a computer hardware bus,

Front·end = World-Machine Interface (WMI), since it is this subsystem that provides the
interface between the real-time system and the outside 'world' that Is being monitored and
controlled.

Man-machln.,; Interface = Man-Machine Interface (MMI). This provides the Interface
between the real-tlme computer system and the users.

Chapter 4 Page 40

AN 08JECT-ORIE:NTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTi:MS

R~al-tlme database and processor := Real·lime Object Management System (RTOMS).
This performs all processing, caloulatlons, derivations and real-time storage/image of the
objects that model the real world being monitored and controlled.

Conflgurator with configuration database ;:::Configurator. This component deals with the
storage and management of all configuration data pertaining to the real-world objects
being monitored and controlled. This includes the configuration which defines the
mapping between real-world physical objects and logical objects, as well as the
relationships between the objects and definition (If object hierarchies.

Historian with historian database == Historian. This component performs the storage,
retrieval and management of all medium and long-term infcrmation, typically logs, errors,
alarms, and events pertaining to the real-world equipment being monitored and controlled.

For the remainder of this report, these generic subsystems are referred to by their
proprietary names as described above.

With the generic architecture outlined and major subsystems identified, it was then
possible to design the structure of the components of these generic subsystems.

4.2 THE STRUCTUREOF THE CORE BUILDINGBLOCKS

In this section, it is intended to outline the overall approach adopted (or designing the
structure ':)f the building blocks or components, It is shown how the component structure
forms the foundation of the object-oriented approach and determines the approach's
success, particularly in terms of component re-usability, testability and maintainability.

In I<eeplng with the object-oriented component-based approach to building real-tlrne
systems, a unified effort was made to structure, abstract, and layer the design of the
subsystems to practically maximise the generalit)l' and re-usability of tile components.

A particularly difficult challenge was to design the philosophy and architecture to be as
generic as posslble, but within certaln constraints. It was required to have a core
component set that would be applicable to mast technical real-time systems. Our aim was
an ideal 60% level of re-use into new application domains. (The targ,E1tapplication
domains were primarily telecommunlcanons network management and lnoustrlal
supervisory and control).

However, it was important not to implement a core component set that was over-generic.
This 'solution for all possible problems' approach would suffer from Inflexibility, non-ideal fit
to requirement, lack of performance, and of course the cost effort of implementing such a
core component set.

An Important factor in the design of the generic components was to design components
and component frameworks into intermediate abstraction levels. (The framework Is the
term used b~' recognised authors for a collection or abstraction of object/class
components that are specific to an application. and represent the largest granularity for
re-use). This is convincingly proposed by Fischer(24)and Johnson'"! since this strategy
allows easy re-use by recombining eXisting intermediate abstractions with other bxisting
abstractions and new abstractions to form new applications and systems,

Chapter 4 Page 41

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL· TIME SOFTWARE SYSTEMS

Initially it appeared that a basic 2·layer approach was suitable. This approach is implied
by Gibbs et al(27),who advocates a generic set of 'boilerplate' components, with only a few
software components being designed to meet the requirements of the specific application.
Tha.~is, the bottom layer of components generic to most real-time distributed systems, and
the upper layer which would be very application specific. This is depicted in Figure 4.2
below.

Custom Colllponent9

Ge:nerlc "Botlerplate"
Components

Figure 4.2: The 2-Layer Building Block Structure

As Gibbs et al(27)observe, a higher level of re-nee is achievable if the application domain Il-
well characterised. In application domains such as telocommunicatlons network
management, industrial process monitoring, and electricity reticulation management, I
found that there existed strong characterisations.

To prove the paint, the initial MMI prototype development demonstrated that the granularity
of the component structuring was too course. It became evident that the upper layer
customised portion constituted 40 to 50% of the total software.

For these reasons it was apparent that an Intermediate layer of components characteristic
to the application domain (in this case TNM) would improve re-usablllty. And so was born
the 3-layer phiiosoiJ'ly, with a new Intermediate layer of components that would consist of
components generic and re-usable to other applications In the same application domain. I
believed that for application domains such as TNM, industrial process monitoring,
electricity reticulation and others, a distinct set of re-usable components could be
abstracted characteristic to that application domain, resulting in a potentially far higher
level of re-use in other applications of the same domain.

This study is contained to the design and development of an application in the
telecommunications network management domain. In this study, these 3 basic layers of
components have been termed ObjectView, which Is the lower level gene(") to most

Chapter 4 Page 42

AN OBJ~CT·OA/~NTf£D COMPONENT·BASED APPROACH TO BUILDING REAL-TIMe SOF7WARE SYSTE.'MS

real-time systems, AcvessView, the domain-specific components relevant to the
telecommunications network management domain, and Custom View, which Is the
application-specific customised components.

I have chosen to depict this structure C$ a di,f:lgramconsisting of layered and inter-related
set of building btocks. This is shown in Figure 4.3 below:

CustomView
(Cu~tom18ed AppUcatlons) - 1"'-------

Access Process Power
View View View -1"'--- ----

utmUee
ObJedVlew Toolbox

- ---

20%T---
I

C«>ruponent
Toolbox

20%----_. --_",;"",,;,.

60%

Percentage
of Software

Figure 4.3: TIle a-Layer Building Block Structure

Proceeding from this polnt, each of the generic subsystems, that is MMI, WMI, ATOMS,
Historian and Configurator were then divided into smaller abstracted components or
frameworks (Johnson(37),Fischer(24)structured into this 3-layered model. For example, the
MMI subsystem was designed as a set of structured and related components, some of
which fall within the generiC ObjectView layer. others in the domain-specific AccessView
layer, and the remainder in the Custom View layer.

Following below is a brief description of each of the layers referred to in Figure 4.3 above.

ObJectVlew

ObjectVi8w was the name given to the core generic object-oriented components that was
envisaged composing at least 60% of the total software in new real-time applications.
(Note that ObjectView was the name originally given at the early stages of this proleet, and
should not be confused with the Borland's OBJECTVIEW product). It would include the
generic software related to inter-process communications, database facUitips,man-machine
interfacing, front-end interfacing and real-time process manaqemant,

Chapter 4 Page 43

AN OBJECT-ORIENTED COMPONENi-E3ASED APPROACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

AccessView

This was the name given to the re-usaole components generic to applications 11'1~h"~
telecommunications network management (TNM) domain. It was based, and w!lt on the
ObjectView !aye;, • and can be viewed as an extension of the ObjectView objs ~\~r;;(and
object subsystems) with a telecommunications network management 'flavour'. it
incorporates the modelled objects required for generic nerwork management functions,
such as monitoring, routing and reporting of network alarms, and issuing controls to the
telecommunications network.

It was envisaged that this building block "?uld make up at least 20% of new
telecommunications network manageme •.• application software. The functions of the
AccessView building block are described in more detail in following chapters.

ProcessVlew and PowerVlew

These layers are similar to AccessView in philosophy. except that ProcessView Is an
extension of the ObjectView components incorporating the modelled funetlonality required
for applications in the industrial process monitoring and control domain. Likewise
PowerView is the building block for real-time electricity reticulation applications.

The PowerView and Processl/iew building blocks have been shown here for illustrative
purposes only. and are not part of this study. The scope of this study was to design and
implement only AccessView (Telece? lications Network Management) of this domain
layer. Figure 4.3 illustrates how ot., "ain specific building blocks can be built on top
of the generic ObjectView layer.

Customised AppliCations

This is the application-specific layer of software that was built and based on the underlying
domain-generic building blocks and their sub-components. It was envisaged that this
would make up the remaining 20% of software. It Is this layer which is the fully customised
portion of a new system, and is specific to an actual application ie. it will not be generic to
another application. even in the same application domain.

The Utility Toolbox

This was designed as the toolbox of re-usable les and functions that may be used by
any of ths other components. ihey include gl do,} utilities such as error reporting,
tracing, logging, command tracking, '!vatchdogs and object-manager housekeeping
functions.

It also contalns utilities that are not object-oriented in terms of Implementation This was a
particularly important requirement since our organisation has a substantial inve~~tmentin
generic utilities and function libraries previously written In conventional C. Since it is major
task to lit- "rant rewrite aUthese utiUtie,~using object-orientation and 0++, it was
necessary to be able to have access to these utilities ar.d libraries from the object-oriented
environment.

Chapter 4 Page 44

AN OBJECT-ORiENTED COMPONENT-BASED APPROACH TO aU/WING REAL-TIME SOFIWARE SYSTEMS

The Component Toolbox

The Component Toolbox was the general name given to the entire set of generic re-usable
components for distributed real-time systems, ie. the real-time environment generic
ObiectView components, as well as rJomain-specific components such as AccessView.

In this section the layered building block philosophy was introduced, and use of a
3-layered building block structure for this study was motivated. The basic structure of the
core building blocks was described and at the same time certain terms and proprietary
names that are referred to later in this study have been defined.

Later in this report, it will be evident how importcmt this general 3-layered building block
structure Is. It will be shown how this forms the foundation of the more detailed
component designs of the real-time software subsystems. It will also be demonstrated
how this S-Iayered building block philosophy does maximise the re-usabillty, testability and
maintainability of the object-oriented approach to building a real-time TNM system.

4.3 THE SOFTWARE HIGHWAY

Apart from adopting the object-oriented methodology for this project, the next biggest
challenge was deciding on, and designing the communications philosophy. This was
viewed as the heart of the system, since the entire system is dependent on it not only for
communications, but also for overall system performance and Integrity.

The following sections reviews the conventlonat communications approach and motivates
tile need for a software bus communications philosophy, with emphasis on its importance
to the overall success of the object-oriented approach.

Basic details on the software highway options and design are also described. However
further technical Information on the sonware bus and its CMIS-conformant implementation
is contained in Appendix C.

4.3.1 The COO\'entionalCommunlcaUons Approach

To motivate the need for a 'sottware bus' communications philosophy, and emphasise its
importance to the overall success of the object-oriented approach, the conventional
method of inter-process communications (used by our organisation) in real-time systems is
first reviewed.

Our organisation's approach has been based on the communications/messaging facilities
provided by the underlying operating system and platform In the case of UNIX this would
be UNIX messages or TCP/IP or 8S0 socket communications. Communications betwoen
processes on different nodes on a network would consist of' processes sending
asynchronous messages to the addressed process on the addressed node, This is
depicted In Figure 4.4 below:

Chapter 4 Paga 45

AN 08JSCT~ORIENTeD COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

Node 1

Node 2

Figure 4.4: Conventionallnter~process Communications

The above approach. although velY efficient, has several crawbacks:

*
*

It Is fixed, inflexible and very customised.
Every process is required to know the address I.d. of the destination process, and
the destination process node l.d,
Any changes to the message datagram structure or format, or change of location
of a process results in code change. This inflexibility seriously affects
non-embedded real-time systems.
It is generally dependent on the or'3rating system and to a certain extent the
hardware.
Any cornmunlcatlons software written on top of the underlying operating system
messaging facilities makes the communications system extremel, proprietary in
terms of data structure, syntax and protocol, and therefore is not readily open to
other systems. In these cases special interface or gateway software has to be
implemented.
It is not contorrnant to any formal standards, and with the move to Open Systems,
It is becoming more and more difficult to motivate to the end-user use of
proprietary communications SUbsystems and protocols.

*

*

*

*

For the above mentioned Issues it became clear that the conventional approach was not
suited to the proposed component approach to building real-time distributed systems,
where we desire communications flexibility. transparency and standardisation. These
attributes are necessary to enhance the re~usability of the communications subsystem
itself as well as the components which utilise the communications infrastructure.

Chb.pter 4 Page 46

AN OBJECr·ORIENTED GOMPONENT~BASED APPAOACH TO BUILDING REAL~TIME SOFTWARE SYSTEMS

4.3.2 The Requirements of a Software Highway

Having highlighted the issues associated with the conventional inter-process
communications approach in the previous section, what were the specific reqolrements for
communications In the Object-oriented approach?

It had to be conformant to indus" .I standards~ This would ensure Inter~operability,
system scalability, extensibility and flexibility.
Performance had to be acceptable for use in real-time distributed systems.
It had to provide transparency to the physical location of the inter-communicating
processes.
Changes to the lower communications stacks should not affect application
processes, and changes to application processes should not require changes to
the communications subsystem. In other words, a standard application
programmer interface (API) was necessary.
It had to lend itself to the object-oriented paradigm, with objects communicating
with objects.
The message content and syntax definition should be contained in the message
Itself, and not be defined in separate include files.

At the same time as my original experimentation and prototyplng with object-ortentatlon, I
began researching OSl's reference model and the proposed OSI Common Management
Information Services and Protocols (CMIS/CMIP). (Further detail on this is contained in
Appendix C of this report and extensive references are given in the bibliography).

*

*
*
*

*

*

The OSI CMIS/CMIP model was one example that pi ovided the concept of a SoftWare Bus
and satisfied many of the rsqulrsrnents desired for the Object-oriented approach to
building distributed real~time systems, p...rticularly standardisation.

With the generic real-time systems architecture described In an earlier section, and the
software bus proposed here, the architecture of a real-time system could be represented
as in Figure 4.5 below.

~ ~rsrORJ~l

a_.t-_. __ I
1l0FTW.uu: IUS

------~------------------. ------------------------------
Figure 4.5: Generio Arohiteoture of a Real-time System with Software Bus

Chaptar4 Page 47

AN OBJECT-OAIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOF7WARE SYSTEMS

4.3.3 The Approach Adopted for this Project

The preceding sections have reviewed some of the expected problems and issues
associated with using the conventional communications approach in object-oriented
real-time systems. Ideal requirements for a communlcationsapprcach suited to the
object-oriented pa;'9.digm were also outlined. This section describes the options that were
available aAd presents the arguments for the various options. Finally the CMIP-conformant
Software Bus approach is motivated as being the better solution for the project.

Having researched the current standards proposed by 051 for Open Systems {refer to the
section in Chapter 3 on standards) and keeping a general watch on industry trends and
end-user attitude and commitment to these standards, there were several communications
options which could be adopted for the object-oriented approach, namely:

(a) Continued use of our organisation's proprietary communications approach.
(b) Use the already well-accepted SNMP (Simple Network Management Protocol)

which is based on the TCP/IP communications protocol stack.
(c) Communications based on the OSI 7-layer stack and using OSI's defined CMIP

(Common Management Information Protocol) protocol.
(d) Communications based on the TCP/IP communications stack and using an

upper-level protocol whbh is OSI/CM1P-conformant. Thls is known as CMOT
(Common Manageml3nt information Over TCP/IP).

(e) Implementing a CMIP/S-con\(,Irmant API layer on top of our organisation's
proprietary communlcatlons subsystem (of option(a».

Option (a) was rejected for reasons already outlined. Further evaluation of the above
options showed that option (b), SNMP, although popular, was static and was perceived by
industry as being on its way out, being gradually phased out in favour of OSI'$ CMIP (see
bibliography (1,2,4». Option (d) is not widely used and seems unsble to gain acceptance
(see bibliography (1,2,14». It was cit" that certainly the network management industry
was pushing toward option (0), OSl's CMIP protocol (see CCITT Study Group XY(61) and
relevant bibliography references),

The problem is that there is much talk anJ discussion about OSI communications stack-,
but there is minimal implementation. Particularly in South Afrioa. it appears that everyone
is watching everyone else to see who takes the first big steps to converting their large
networks to the OSI standards for telecommunications networks management.

A second problem is that the OSI standards for CMIP and CMIS have not yet fully matured
and there are few products available that provide full worl<ing conformance. For most part
these standards still exists as proposals and definitions.

The last option (d) involved implementing our own communications layer which would
provide CMIS-confo~mance. This layer would be written on top of our existing proprietary
TCP/IP-based communications sub'Jystem.

Our organisation already has an in-house developed proprietary lntsr-process/cross-nodat
communications subsystem based on TCP/IP. This product, called QCOMM, offers
transparent process-to-process communications across UNIX, RTE (Hewlett-Packard) and
DECNMS platforms.

It also provides message buffering, prloritlsatlon and mS"tagement of system resources

Chapter 4 Page 48

AN OBJECT.ORIENTt:D COMPONENT·BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

used by the communications system, an essential requirement for realtime systems. This
product has thus far formed the cornmonlcatlons backbone of all systems delivered by our
organisation and is stable and reliable.

The QCOMM product already provided communications up to OSI'$ defined Presentation
Layer. By providing additional communications sottware on lVP of QCOMM as well as an
Application Programmer Interface (API), most of the required CMIS services as dt :;:.ed by
OSI could be provided. At the same time this approach provides for upgmding of the
QCOMM(fCP communications stack to OSI at a later time. Because of the) programmer
API and CMIP/S conformance, there would be little impact on crrrent applications when a
new communications stack is used.

The main question asked was why develop our own communications subsystem when
conformant OSI·OMIS communications stacks were Indeed available, such as from RETIX
and Hewlett-Packard, the reasons are summarised below:

(a) Network management standards are not yet mature and stabilised, particularly
those based on OSl's CMIP.

(b) "Chereis already extensive use and investment in TOP/IP networks, and many
end-users are sceptical about CMIPs benefits and are unwilling to wait tor
OSI·based network management solutions.

(c) For this project, our organisation required a short time to market for competitive
reasons.

(d) The costs involved of the OSt·eMIP route: the cost of evaluation, the high cost c~
the OSI stack products, and the costs of integration. testing and optimisation of
software not really under our control.

(e) There existed a growth path - at any later time the TOP communications stack
could be upgraded to an OSI communlcatlons stack without affecting current
applications.

So the above reasons provided enough motivation for implementing our own
communications API layer which would provide OMIP/S-coniormance. This layer would be
written on top of our organisations proprietary QCOMM communications subsystem.

This section has motivated the use of our existing in-house inter-process communications
subsystem. but with an added layer on top to provide the CMIS services as defined by
051. From an application point of view, this would provide OMIS servi~" conformance, and
the underlying QCOMM WOuld serve only as the transport mechanlsrn tor the messages.
This approach satisfies the object-oriented communications requirements identified earlier.
What remained to be done was to prototype and Implement thl\, additional software and
evaluate. Of particular concern was the performance of such a communlcatlons
subsystem, because CMIS conformance implied high generality I'esulting In complex,
multi-layered software.

4.3.4 Developing the Communications A '"'I

The additional communications software built on top of QCOMM consisted of software to
provide the CMIS conformant services, as well as a standard Application Programmer
Interface (API). This section follows on from the previous sections in this chapter. and
briefly describes the programmer interface which the project teem developed.

Chapter 4 Page 49

AN OBJfECT-ORI£NTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

SOMI was the proprietary name given to tile API, an acronym for Standard Object
Management Interface. Thorough study and inve~.igation of the CMIP/CMIS specifications
was done and a full specification was drawn up before this API was implemented. Figure
4.6 below shows how the SOMI layer fits in the network model, and its relationship to the
underlying communications layers and protocols.

ISO OSI
LAYER MODEL

CMOT
MODEL

CMOQ
MODEL

so~nAPI sosn API so~n Al'1
r-

CMlP C1.foT CMOQ

7 llOSE AC'IIE kOSE ACSE ROSE ACSE
CMtSE CMISE CMISE

PRESENTATION UDP QCOMM, LAYER ~SII

~ SESSION L D IFC
tAYEk ~SU

I
" TIlANStoll.T

tAYEII. osn
f---- TCl"

3 NETWORK INTElNtt
LAYER. l'R.otOCOL UP)

--
2 DATA LlNIt ETHEII.Ntt

LAYER

1 .IIYSICAL r- El'HER.NET
tAYER. (l1':EE 'Ol,3)

Standard Object Mana2ement
Interface API

Figure 4.6: The Communications Network Model

The above figure depicts the SOMI API layer, on either the CMIP, CMOT or CMOQ
communications stacks. (CMOQ is not an industry standard acronym • it was termed by
the project team, an acronym for Common Management information Over QCOMM) Th9
figure depicts how the same SOMI API could be bum on top of the OSI/CMIP stack or the
OSI/CMOT stack (Common Management over TCP/IP).

In der.igning and lmplememlnt; JOMI, several design and philosophy parameters were
defined:

'" SOMl had to be contorrnant to OSI's CMIP/CMIS to provide communications to
other existing and future OSl network entitles and elements.
It had to have an easy to use API.
It had to have a clean interface on the underside ie. to QCOMM, since this would

'"
'"

Chapter 4 Page 50

AN OBJECT-OAIENTED COMPONENT-BASED APPROACH TO Bu/WING REAL-TIME SOFTWARE SYSTEMS

allow replacement of QCOMM with a full OSI communication stack as and when
required in the future. This migration from TCP/IP to OSI must have no effect on
existing applications.
In design and implementation, performance optimisation was a serious
requirement, since the project was a real-time application.

*

The SOMI software was developed by the project team, and took only 6 man-months to
develop and fully test. This included near-full conformance to OSI's eMIS definitions.
Because of the generality and flexibility defined by CMIS, the API was Initially cumbersome
and complex, and several prototyping iterations were required to obtain a satisfactory API.
SurpriSingly, the eventual performance results were quite satisfactory. Further details on
performance are contained in Chapter 6, 'An::tlysis of Approach', and further technical
detail on aspects of CMIS, CMOQ, SCMI and the SOMI API are contained in Appendix C.

4.3.5 Object-Managers and Applications

There exist special names for two types of processes or programs that are associated with
CMIP/S and object-orientation. These processes or programs are caned Object-managers
and Applications, and are briefly explained here, since there are several references to
these later in this report.

Object-managers can be likened to 'Server' or 'Agent' processes which understand
incoming requests from remote or local 'Client' processes. Applications can be likened to
these 'Client' or 'Manager' processes from which the requests originate.

In terms of CMIS however, the major difference between Object-managers (OMs) and
Applications is that the Object-manager contains 'Managed Objects' (MOs), and
Applications do not. With an Object-manager, all MOs within its control are registered
within the Object-manager's containment tree (also described as a registry or directory).
This means that any Object-managers or Applications may address requests at another.'
Object-manager's objems via the containment tree.

However, Applications do not have Managed Objects under their control, and can
therefore receive no external requests to its objects. Applications can only j..,l+late
requests. A good example of a CMIS Application is a report program whir A.dd request
attribute data from oblects in the Historian Object-manager (which would leMIS
Object-manager) and di:')play the data in a formatted report.

Both Object-managers and Applications have to attach themselves to the Software Bus
before they can service or initiate any operations. It should be noted that Applications are
implemented in an object-oriented manner with classes and objects, but because it has no
CMIS containment tree, its objects are internal only and are not externally visible to other
Applications or Object-managers.

Further detail on SOMI and Object-managers and Applications are contained in Appendix
C. This Appendix also contains pseudocode examples of the Object-manager and
Application frames.

Chapter 4 Page 51

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOl-7WARE SYSTEMS

4.3.6 IIISummary

The chapter on the Software Bus has reviewed inter-process communications issues and
motivated reasons for implementing a CMIP-conformant API based on our organisation's
existing TCP/IP-based QCOMM communications product.

It has also identified the principal requirement thatlhe API should offer an easy migration
path to an OSI stack when required if! the future, without affecting the existing
applications. The reader will note that much attention has been given in this chapter on
the a-layered building block approach and the CM!S/CMIP software bus. The reason for
this is that it is these two systems concepts that have played a major contribution to the
success of the object-oriented approach in building real-time systems. This conclusion will
become further evident in the later chapters of this study, particularly in the analysis of the
object-oriented approach.

Once the 3-1ayered building block philosophy had been defined, and the design of the
SOMI software bus completed, the detailed definition and implementation of the real-time
subsystems could take place. In the subsequent sections, each of the subsystems'
structure, design and implementation is described.

4.4 THEMAN·MACHINEINTERFACE

In this section, the Man-machine interface is described. The generic requirements for the
ObjectView MMI subsystem is defined as well as the building block structure of this
subsystem. This section also demonstrates the potentially high level of component
re-usability in the MMI subsystem.

In keeping with the a-layered structure of the building blocks previously described, for
each of the subsystem components, Chapter 4 will concentrate on the ObjeclView core
components generic to distributed real-time systems. Chapter 5 deals with the
application-domain and application specific components (AccessView and Custom View) in
more detail.

For the sake of readability and relevance to this study, specific details on the
object-oriented design.) il)odelling and implementation of the MMI components have been
omitted.

4.4.1 The Generic Requirements of the MMI

For the purpose of developing ObjectView components which would be generic to most
technical real-time systems, the following basic requirements were identified for the MMI
subsystem:

'I<

*

It had to provide an X-based graphical use: interface, based on the X/Motif
standards.
It had to also provide for a terminal-based text user interface. The reason for this
is that there is already a large installed base of non-graphics terminals and for
reasons of cost it is not always possible to upgrade these to graphics terminals or
workstations.
Components (in the form of component libraries) for displaying and manipulating*

Cllapter 4 Page 52

AN OBJECT· ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

*
text and graphics symbols on graphical and character user-interface screens.
Picture Editor and Mimic Editor components, which would enable a user to
interactively define new picture elements, and create and maintain mimic diagrams.
The Mimic Editor to provide for definition of live 'dynamic links', linking screen
symbols to real-time statuses of attributes of the defined objects in the Real·Time
Object Management System (RTOMS).
The mimic display subsystem to include features enabling automatic
picture/symbol composition on the mimics dependent on the current configuration
as defined in the network's central configuration database at the time of display
call-up.
The different MMI components to be structured with clean interfaces to facilitate
selective component re-use in other applications.
To provide for context-sensitive help at ObJectView, AccessView and CustomView
component levels.
To provide security and protection to prevent unauthorised operator violation of
access and control.
To provide the necessary generic housekeeping functions and ·rtiUties including
startup, shutdown and system statistics.
To provide the mechanisms for driving an application-specific user interface via
three modes or windows: a graphical view, a textual viaw, and a detailed view with
statistics and logs. It must be possible to navigate between these modes or views
on a context-sensitive basis.
The core MM! ObJectView components to have no domain or application specific
functionality.

*

*

*
*

*

*

With the above basic generic requirements defined, the component structure of the MMI
subsystem was designed, and this is described in the following section.

4.4.2 The MMI Building Block Structure

With the generic requirements outlined in the preceding section, the required MMI building
blocks or components were deSigned and implemented. The structure and layering of
these components is depicted in Figure 4.7 below.

Chaptl~r4 Page 53

AN OBJECT-ORIENTED COMPONENT·BASED APPROACH TO £3u/LDING REAL-TIME SOF7WARE SYSTEMS

LSi

IA

L3

L2

Ll
1.0

SQMIJCMIP SOFl'WAllE BUS

I
so1.11API

MMI· OBlECr MA.JolAGEIt·AND HOUSEKEEPI.NG

.CUSn>MVIEW tOMl'O~E~
(Ap,UtaU peelllq

Acc-;:ssvn:w CO'MPo~tN1S
CrelecfllIIMI lI)'I/t Malll:t .o ... I.' ...,ecltlc)

X-Llll

cuasas

TEXT

OSF/MoUf .

.:

'----~-----..._"._..._.... -X-I.hlaalc.

Figure 4.7: MMI Subsystem Building Block Structure

Level 0 (LO)

The Levels LO to L5 referred to in Figure 4.7 above are described below.

These are the libraries that were used as the foundation of the MNiI
building blocks. For the graphical user interface. the Motif/X libraries were
used, and for the Character' User Interface (CUI). the UNIX-standard
CURSES libraries were used. As Guimaraes(30) proposes an extension of
Borkin's(14) database modelling terminology, this level provides the
syntactic level tools.

On the graphical side, the most basic access is provided by the Xlib library
,~fprimitive calls to the X·Window. However programming with this level of
abstraction is tedious and requires a great amount of attention to detail.
Motif provides a higher level of access together with a window
management system through 'widgets'. Although the Motif Toolkit does
provide extensive libraries for programming graphical user interfaces, and
rs object-oriented, it unfortunately does not provide interfacing via the
Object-Oriented Programming (OOP) C++ constructs directly.

In terms of the character user-interface, the use cf the CURSES libraries

Ohapter4 Page 54

AN OBJEOT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOF1WARE SYSTEMS

provided by UNIX offers many advantaqes including terminal-device
independence. However, these libraries are not object-oriented and are
also tedious to work with.

Level 1 (L1) This level is the ObjectView generic level of components for real-time
systems. This level provides the semantic level of components
(Guimaraes(30) that are closely related with the abstract v\~ gen,zric to
technical real-time systems. The components provided II.?Iudf' l~1U
object-classes and associated methods for displaying and ma:,i,f}:dating
text and graphics displays, the managing of pull-down and pop-up menus,
scroll-bars and multiple window arrangement,

Level 2 (L2) This level represents the domain-specific generic components. This is the
level where the semantic level of components associated with the
telecommunications network management domain (AccessView) will be
provided. Further details on the AccessView components are contained in
Chapter 5.

Level 3 (L3) Application-specific compone 1tS. This is the level of components that
require customisation for ea.m particular TNM application. These embody
semantics very specific to the particular application being developed.
Further details on these Custom View components are also contained in
Chapter 5.

Level 4 (L4) This level embodies the generic Object-manager and the associated
housekeeping functions. The Object-manager has been described earlier
in this Chapter, and further detail is contained in the Appendix on the
Software Bus. This is a generic 'program frame' that holds the
Object-containment tree and functionality required for SOMI as well as a
'program frame' for embodying the tower level object-oriented components.
This component can be regarded as part of ObjectView since this
'program frame' or template is generic to any object-manager process.

Level 5 (L5) This is the SOMI Software bus Application Programmer lntertaoa- the
actual function calls providing access to the SGMI Bus, This ObjectView
component is closely associated with the Object-manager component.

The component building blocks as described above were implemented as component
class libraries, with the exception of the MMI Object·manager Which is the process that
integrates the objects from the required lower-level components •

Each component was built on top of lower layer components, with extensive use of
multiple inheritance. The multiple inheritance was specifically directed at creating
'abstracted' objects that inherited from separate classes defining the interface and
implementation. Therefore if implemer.tation is changed, the virtual abstractec object (that
used by the application) is unaffected. Change is only required to the implementation
class. We found that multiple inheritance provided better re-use and a more generic set of
components, especially with real-time technical systems which are highly dependent ('f
external environment details. It was also found that the MMI subsystem was particularly
suited to component re-use because there is much software behind the visual user
interface that is generic to technical real-time applications.

Chapter 4 Page 55

AN OBJECT·ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

The MMI components as described above were designed with clear interfaces between the
different layers. That is, the programming interfaces between the different horizontal la\/ers
were clearly defined, with the objective of providing a 'mix and match' type of component
re-use.

A typical example of this is the TEXT component at level L1 which could utilise either the
OSF/MOTIF component at the lower level LO (for graphical user consoles), or the
CURSES component for character consoles. The TEXT component would not be aware of
which components it was interfacing to at the component levels below or above. It will be
observed that this 'mix and match' philosophy was characteristic of the designs of the
other subsystems too.

This section has described the design of the MMI subsystem's bottom level (ie. the
ObjectView level) of the s-layer philosophy described earlier. The second and third layers,
that is the domain-specific components and the customised components, are described in
Chapter 5.

4.5 THE WORLD·MACHINE INTERFACE

The World-Machine Interface (WMI) is described in this section, The WMI provides the
interface between the outside real-world being monitored/controlled and the computer
system.

It was observed that the WMI did not have as high level of general re-use potential as the
MMI subsystem. The reason for this is that the interfacing to the outside world is very
specific to the type of equipment being interfaced to, and the type of equipment is specific
to the application domain.

However, this section does describe the structure and design of those core WMi
components that were considered to be generic to most real-time application domains -
the ObjectView components.

Again, for the sake of readability and relevance, specific technical details on the deslqn,
modelling and implementation of the WMI components have been omitted.

4.5.1 The Generic Requirements of the WMI

For the WMI, the following basic requirements were identified for the generic ObjectView
components:

'*' It was to behave merely as the interface between the outside world equipment and
the RTOMS subsystem, and no real-time processing was to be Included in the
WMI functionality.
It was to be structured in a way such that new 'device-drivers' and
'interface-drivers' could be added in a rnlx-and-rnatch manner.
It had to provide for polling, receipt of asynchronous data, sending controls and
configuration downloads.
a had to provide ai, 02 and 03 levels of interface to the outside world, where 01
and Q2 are lower level protocols as yet not fully detlncd by CCITT's G.773
recommendation, and 03 is the CMIP interface as adopted by IEEE for Network

'*'

*
*

Chapter 4 Page 56

AN OBJEOT-ORIENTED COMPONENT-BASED APPROACH TO BUiLDING P.EAL-TIMF. SOFTWARE SYSTEMS

Management. lRefer to Appendix A and the CCITT Study Group XV reference(ll'l)
for further details}.

The design of the WMI component structure was then based on the above basic
requirements and the details are contained in the following section.

4.5.2 The WMI Building Block Structure

The design of the WMI component structure is depicted in Figure 4.8 below.

(Vlrtllli
Devlceo) Ll

(Vir'llal
Interfaces) to

SOMUCM:Il' SOnwARE B'O'S

IA

'" ""
.. !'
soar Al'I

•••••
WMI OBJE,CT MANAGER AND HOUSEKEEPING

«':USTOMVlEW COMPONENTS

(a"lIcatloa-Jl'ec1{lc)

ACCESSVIEW VIRTUAL DEVICE CO)lPONENTS
(telt.cohlMll til.,. nUII!.,t. c!oll1alll-Jpeclflc)

1.5-232 RS--422 HDLC X.2S QC(lMM

L3

Figure 4.8: WMI Rubsystem Building Block Structure

Level a (La)

The Levels La to L4 referred to in Figure 4.8 above are described below.

These lOW-level components provide the object-oriented data-link level
interface to the real-world equipment. They are referred to as virtual
interfaces, and for this project included interface drivers for RS-232,
RS-422, HDLC, X.2S anti QCOMM. The aCOMM virtual interface was
required for int~rfacing to our organisation's existing TNM networks
utilising the basic proprietary QCOMM messaging subsystem. In other
words, this virtual interface behaves as a 'gateway' device.

Chapter 4 Page $7

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TC B'JILDING REAL-TIME SOFTWARE SYSTEMS

Level 1 (L1)

Level 2 (L2)

Level 3 (L3)

Level 4 (L4)

At the upper end, these virtual interface components interface to the Virtual
Devices via a defined function call AP!s. This implies that any Virtual
Device can be matched to whatever Virtual Interface is required for
physically interfacing to the real-world devices.

lhis level consists of the Virtual Devices that are specific to the
AccessView application domain. Each Virtual Device component embodies
the functionality and behaviour required to poll, drive and control the
real-world equipment it interfaces to.

As with the Virtual Interface components, the upper end of the Virtual
Device components interfaces with the Custom View components via a
defined standard function call API.

For this project, these Virtual Device components consisted of AccessView
components for the telecornrrn mications network management domain.
These AccessView components are described in detail in Chapter 5.

This leve! contains the customised Custom View application-specific
components, They typically contain the polling and state algorithms
specific to the application. Additional detail on these components is
contained in Chapter 5.

This is the generic object manager with the associated housekeeping
functions. It is essentially a gen~rlc program or process 'frame' for linking
together the lower-level object-oriented components

The SOMI Software Bus Application Programmers Interface - the actual
function calls providing access to the SOMI Bus. This ObjectView
component is closely associated with the Object-manager component.

As with the MMI subsystem, each layer was built on top of the layers below, with each
component being contained and abstracted so that re-use, maintainability and testability
are improved.

From the design and implementation of these WMI components, it was observed that the
generic ObjectView components, that is the Virtual Interfaces, were very thin in this
SUbsystem. However, the AccessView domain-specific Virtual Device components of Level
1 proved to be quite substantial.

4.6 THE REAL·TIMEOBJECl MANAGEMENTSYSTEM

In this sectlon tne Real-limp. Object Management System (RTOMS) is described. it was
observed that of all the subsystems, the RTOMS had the lowest level of potential re-use at
the ObjectView lev.l, That is, the components in this subsystem were very specific to the
telecommunications network management domain and the application. It was observed
that the low level of re-use was due to the fact that the RlOMS contained much of the
functional models specific to TNM applications. Because of RTOMS' close relation to the
application domain, it was found that the AccessView components were quite substantial,
and this is described in more detail in the RTOM's AccessView description in Chapter 5.

Chapter 4 Page 58

AN OBJECT·ORiENTED COMPONENT-BASED APPROACH TO BU!LDING REAL-TIME SOFlWARE SYSTEMS

This chapter reviews the generic requirements of the RTOMS ObjecWiew components, and
details the component structure that was designed for RTOMS. Further technical details
and examples of the object-oriented design, modelling and implementation of the RTOMS
is contained in Appendix D.

The details of RTOMS have been included in an Appendix for two reasons: to better
convey the RTOMS model, which I considered to be the most important subsystem, and
secondly to demonstrate an example of the object-oriented design, notation and
programming methodology used on the project.

4.6.1 The Generic Requirements of the RTOMS

For readers not familial' with the requirements and concepts of real-time databases, the
following paragraph reviews the RTOMS philosophy.

RTOMS Philosophy

The RTOMS is a memory-based high-periormanc£' database In which all physical or
real-world objects are represented by object instances of certain class types, The statuses
of real-world objects are monitored by the WMI SUbsystem, and are stored directly as
attributes in the appropriate objects in the RTOMS subsystem.

The RTOMS also allows definition of live links of RTOM objects to any other objects, either
in the RTOMS Object-manager itself, or to any other object contained within a remote
Object-manager. RTOMS also permits definition of derived objects, which is a logical or
mathematical combination of any other objects' attributes.

The whole philosophy of RTOMS is that it is totally asynchronous and event-driven. For
example, a real-world digital device changes state, WMI polls this state change, this
Change of state results in WMI sending a SOMI message to the digital device's object in
RTOMS. The RTOMS objects' methods are triggered, which could result in further
processing, linking 'output' attribute values to 'input' attribute values of other objects, and
possibly sending SOMI messages to graphics objects contained within the MMI
Object-manager. The change of attributes in the MMI Object-manager object could result
in a defined colour change if that object was currently being displayed.

RTOMS Generic Requirements

For RTOMS, the following generic requirements were defined:

* It was necessary for RTOMS to store the entire real-world network image being
monitored, viewed and controlled.
Perform real-time processing associated with every object when it was triggered by
any event or state change.
For the required reat-time response this real-time database had to provide high
performance and throughput,
To provide for dynamic linking of objects, so that a real-world stimulus of an object
would trigger methods and processing of other linked and associated Objects.
To be logitally contiguous, but possible to distribute this image database
physically.
Provide for regular image snapshots, so that the real-world image could be

*
*
*
*

Chaptar 4 Page 59

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BU/LDING REAL-TIME SOFTWARE SYSTEMS

recovered with minimal impact after a system crash.
* To provide a memory-based short-term ristolY/profile archive which could be

accessed in real-time.
* To support several types of enquiries.
* It had to model both the logical and physical object models.

RTOMS Design Considerations

The RTOMS subsystem is a complex and extensive portion of the operation-critical
software. For this reason it would be impossible to review all the RTOMS issues.
However, some of the design considerations are reviewed here since thp.y relate to the
object-oriented approach and the relevant decisions that were made.

It was observed that this was the most difficult subsystem to model, since it was the heart
of the entire system, representing the entire outside w~rld being monitored in terms of
objects, both physical and logical representations. It also contained the object
representations for the hierarchy of the real-world objects as well as derived objects.

In real-time applications, even with the traditional systems design methodology, the
relational database has always proved unsatisfactory as the tool to store and manage the
real-world image. The Relational Database Management System (RDBMS) cannot cope
with the throughput, performance, real-time response requirements, and complexity of data
types. The RDBMS cannot perform the complexity of operations, and does not support
the concepts of dynamic links, linked lists and object attributes and object relationships
that are constantly changing due to stimulus from events fr!lm outside events and alarms.

The usual approach to real-time datal ~,Jeshas been CUStOInised memory-based
hierarchical databases, or integration with packaged real-time databases. But this
approach has resulted in designs and implementations that were very customised to the
application - and therefore a very low degree of re-use. At best it has been observed that
it is possible to re-use only the concepts and deSign of the RTOMS subsystem, and a
small portion of actual code.

For the above reasons, use of an object-oriented real-time database made good sense.
Several commercially available object-oriented databases were considered (1), such as
ONTOS (ontos Inc.), GEMSTONE (Servio lnc.), ORION (MCC) and Objectstore (Object
Design lnc.),

However, it was decided to implement our own OODS for several reasons:

*
>I'

>I'

Cost of proper evaluation of third party products.
Learning curve to use these products.
Fear about maturity and ruggedness of available products, particularly for real-time
use.
Reservations regarding the performance for real-time use.
It would be difficult to optimise a third-party product for performance if this was
required.
Further reservations about security, integrity and recovery facilities provided - these
are important criteria for a real-time database.

'#

*

*

Thus, as our first venture into building object-ol'iented systems, it was decided that the
risks were too high to use a commercially avellable 00013. It may well happen that once

Chapter 4 Page 60

AN OBJECT-ORIENTED COMPONENr.·BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

the initial components of this project have been developed. evaluation and lise of a
commercially available ODBMS may be considered.

4.6.2 The RTOMS Building Block Structure

The preceding section outlined some of the generic ObjectView requirements of the
RTOMS subsystem, and based on this the component structure of the RTOMS subsystem
was designed. This is depicted in Figure 4.9 below.

L3

L1

L1

Lt

It'rOMS OJJJECT MANAGER AND U()OSEJr:.:EEl'ING

·CUSTOMVIEW COMPONENTS

(a.,111caUo pwU.c)

ACCESSV!EW COMPONENTS

(felecolluus Itlw mililet. c1omaill-slIcclflc)

Figure 4.9: RTOMS Subsystem Building Block Strur:ture

Level a (La)

The component Levels La to L4 referred to in Figure 4.9 above are described below.

These low-level components provide the ObjectView RTOMS components
that are generic to real-time distributed applications. The WORLD
ACCESS LEVEL component, also referred to as WAL, consists of the set of
object classes that represent the physical real-world objects being
monitored and controlled. The LOGICAL ACCESS LEVEL component
likewise consists of the set of object classes that represent the logical
representations of the real-world objects. The OUTLINKS component is
responsible for providing the dynamic link mechanisms for linking object
attributes to other local and remote Object-manager objects. The
DERIVED LEVEL component consists of the set of object classes that

Chapter 4 Page 61

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BU/WING REAL-TIME SOFTWARE SYSTEMS

represent objects that are defined as derived, where a derived object is an
object whose attributes are derived from a logical or mathematical
combination of other objects' attributes. The SHORr-TERM HISTORY
component consists of those object classes that handle the local
high-performance memory-based short-term archive within the RTOMS
subsystem. The IMAGE SNAPSHOT component consists of those object
classes required for dOing real-time database memory snapshots to disc,
and executing rebuild recoveries.

Level 1 (L1) This level represents the AccessView Components that are built on top of
the LO components, and consist of components that provide abstracted
and packaged functionality specific to the telecommunications network
management domain. These components are covered in more detail in
Chapter 5.

Level 2 (1.2) This level is the Custom View component set that utilises the objects in the
lower level components to provide the customised processing for the
particular TNM application. An example is fault docket handling for a
particular application. Further detail on the Custom View components is
covered in Chapter 5.

Level 3 (L3) This is the generic RTOMS object manager with the associated
housekeeping functions. The RTOMS Object-manager framework is very
similar to the MMI and WMI object-managers, this being another advantage
of the $'oftware Bus concept coupled to the re-usability of the
object-oriented approach.

Level 4 (L4) This is the SOMI Software Bus Application Programmer's Interface - the
actual function calls providing access to the SOMI/CMIP Bus and services.

As with the MMI and WMI SUbsystems already described, these components were
structured, contained and abstracted so that re-use, maintainability and testability are
enhanced. As noted earlier in this section, it was observed that the RTOMS subsystem
had the lowest level of re-use at the generic ObjectView layer, and it is my belief that this
would hold true for any other application domains. The reason is that RTOMS really
contains the representation of the !ogical and real-world models, and the behaviours
associated with the particular application and application domain.

The RTOMS AccessView and 0ustomView components are described in Chapter 5, and
further technical details on the modelling and Implementation of the RTOMS subsystem
are covered in Appendix D of this report.

4.7 CONFIGURATOR

The CONFIGURATOR subsystem is described in this chapter. In "mtrast to the RTOMS. it
was observed that the CONFIGURATOR had some very clear ar., tandalone generic
ObjectView components. By standalone is meant that certain CONFIGURATOR
components could be used as standalone re-usable program components.

Chapter 4 Page 62

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

4.7.1 The Generic Requirements of the CONFIGURATOR

Performance was the primary requirement. Three factors affect performance adversely in
the CONFIGURATOA. The first is that the typical configuration database on a
multi-networked system is usually contained on a Single database server host computer,
thus the bottle-neck. The second factor is that when developing software systems for
end-users, there is often the constraint of having to adopt the database server technology
used by the end-user corporation. These databases are usually Relational Databases
which are notoriously slow in context of the real-time environment. The third factor is the
large size of typical configuration databases.

The following basic generic requirements were defined for t:,e CONFIGURATOR
subsystem:

* It had to be flexible t,,:, anoWupdate and access '10m any client object-managers
on the network.
To provide flexible lnteqration into thp, Relational Database Management Systems
(RDBMS), where the ADI:3MSdatabase table design is olten dictated by end-user
corporate requirements. Often this design is not compatible with the real-time
requirements, and even 'Jessso with the object-oriented paradigm.
To allow for on-line real-time and batch configuration update.
To provide for building of flat configuration files from the database tables for
downloading to th~ relevant nodes where re-configuration of the RTOMS and WMI
subsystems is requir.q,;.
Provide for partial (incremental) and full configuration buildirl'l.
It had to provide for the RDBMS to be taken oft-llne for periods for database
administrator activities and maintenance. For reasonable off-line periods, the
real-time system should not be adversely affected. That is, although the
consqurator service will obviously be unavailable, the real-time system should
r:-m.,1ue operation.

*

*
*

*
*

The above summarises the generic requirements of the CONFIGURATOR subsystem.

4.7.2 The CONFIGURATOR DesIgn Issues

Before the component structure for the CONFIGURATOR subsystem could be designed,
several fundamental design issues had to be reviewed:

The first was why use a Relational Database for the CONFIGURATOR functions?
The second issue which proved to be a big problem was that relational database
technology and objeot-orlentatlon are inherently incompatible.

Chapter 4

Object-orientation implies encapsulation of object functionality with its data structures,
whereas relatlonat technology implies integrated data structures with orders of
normalisation. This means that true object modelling does not necessarily have a
one-to-one mapping between objects and database tables. These and other issues are
discussed in further detail below.

Many technical real-time systems require configuration of some sort. Simply put, a
configuration database is required which defines what the world outside looks like. This
Includes the mapping of the physical objects in the 'world' to 'logical' objects, with types,

Page 63

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOF7WAAE SYSTEMS

characteristics, relationships and behaviours of n., objects. The configuration also
needs to define the behaviour of objects when certain events happen.

Listening to the oblect-orlenteo purists, we should have opted for a true Object Database
Management System (ODBMS). However, this has been implemented to a degree for the
RTOMS·subsystem, which is the real-time database image of the real-world and derived
objects. However a file-based configuration database is still required to provide backup to
the RTOMS memory-based image. In this object-oriented approach, it was decided to
use a configuration eubsystern based on relational database technology.

The motivation to use relational database technology for the CONFIGURATOR was
threefold:

The first was pure economics and risks - developing or integrating a commercial
OODB is expensive and risky.
There is already heavy investment in relational databases in our organisation's
typical end-users. The customers are not ready or prepared for a radical
departure from this technology to object-oriented databases, especially where
current relational databases are already integrated into their corporate
environments.
Powerful tools currently exist for reporting and database management. This
includes the industry Standard Query Language (SOL) and 4GL environments.

In the design of the building blocks, it was felt that there was place for both the OODB and
the Relational Database. The RTOMS building block, described In the preceding section,
is a real-time OODB, and it needs to be. This is because it is an active database -
because almost all of the knowledge and code exists In the database itself.

*
*

*

The relational configurator database; however, Is passive, and is intended to contain a
file· based image of the real-world configuration, for ATOMS backup, system integrity and
coordinated and synchronised re-configuration.

The ISO Product Data Exchange Specification (PDES) definition of data structures for
design data, has already moved in the direction of object-oriented specifications for
database. Object SOL, or OSQL is already being pursued by Hewlett Packard, Data
General and others (Stone(52). Most of these developments are based on adding
object-oriented extensions to their existing SOL and other database products.

For similar reasons as deciding to implement our t)wn RTOMS, for this project the team
designed the concept of a Database Object·Manager (termed DBOM). Which is an
object-oriented layer over the relational database.

The component structure design of the CONFIGURATOR subsystem with the
Object-manager layers is detailed in the following section.

4.7.3 The CONFIGURATOR Building Block Structure

With a conceptual understanding of the generic requlrements of the CONFIGURATOR
subsystem, and the related design issues reviewed, the subsystem building block
structure was designed. This Is depicted in Figure 4.10 below.

Chapter 4 Page 64

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

I SOMIICr.UP SOFl'WARE BUS

SQ';,"~~' S~~!~~~' If::~?~
l.1 r--...._------:j...,.--~-.- .•-- -.--._;_

OllJECI-TO-TABLE MAl'l'lNG }lutts
fCUST(lMVlEW - appUcaUu .,ecltltl

L5

IA

L3

L2

Figure 4.10 above depicts the structure of the main components of the Configurator
subsystem. These levels are described in detail below.

Level 0 (LO)

Level 1 (L1)

... ...

Level LO represents the Relational Database Management System
(ROBMS) products. In this project. use was made of the well established
ORACLE and INFORMIX rClutional database products.

This level consists of the SOL·Executor components. They consist of
generic SOL.Executor components which provide the Interfacing specific to
the underlying database product. For example, the SOL.Executor
(ORACLE) component provides a library of function calls which transform
the upper layer standard SOL calls to the embedded Pro-C calls for
ORACLE access.

Another feature of this level is the file-defined Object-to-Table mapping
rules which is really a Custom View component. as it is very application
specific. These Custom View components provide the mapping between
the managed Objects (MO) on the system and the tables In the RDBMS.
As previously noted in this report, the object-oriented and relational

Cht;.pter 4 Page 65

SOMI Al'1

DATABASE SERVICES MNGR (DSM) D~'l'AIlASE OIlJJ;:C1' MANAGER.
f--.-----'- ..._._.;.;_;---------i-----------.-- (DB()M)

SOMI ~ 'TRANSLATOR

SQL - GENEllA'l'OR

INIFOIUdIX-R.DJlMS QUol'RDBMS DBAOIlACLE R.J)BMS

Figure 4.10: CONFIGURA TOR Subsystem Building Block Structure

AN OBJECT·ORlENTED COMPONENT-BASED APPROACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

database technologies are inherently incompatible, and there is not
necessarily a direct one-to-one match between Obj~ct classes and
database tables. Further detail on this Custom View mapping component Is
contained in Chapter 5.

In keeping with the re-usability of the object-oriented component approach,
it was intended that any new RDBMS product may be used as the
underlying storage mechanism by merely developing a new SOl·Executor
component for interfacing to that database. The upper components and
application would be unaffected by this.

Level 2 (L2) TI':s leve! consists of a single component, the SOL·Generator, which
converts the SOMI/CMIP primitive calls to SOL strings.

For example, the OMIP primitive: GET (class_name, object_name, ...)

would translate to the SOL string:
SELECT F'ROM <class> WHERE <object=object_name>

'rhese strings are then passed to the lower SOL-Exec .tor component
which formulates the correct syntax for the embedded ProC interlace calls
to the RDBMS. This ObjectView ccmponsm is g<3nericto any application
requiring database services.

Level 3 (L3) This Is also a single component which unpacks the Incoming SOMI service
and translates it to the SOMI/CMIP prrmitives (GET, SET, CREATE,
DELETE, etc). It is generiC to any application requiring database services,
and it was therefore designed as part of the ObjectView toolkit.

Level 4 (L4) Level 4 consists of the Database Services Manager (OSM) and the
Database Object Manager (DBOM) ·~omponents. ThJse are ObjectView
components as they are generic to any application requiring database
services. The DSM receives all logon requests via the SOMI software bes
from the requesting client application and schedules a dedicated DBOM
for servicing subsequent database requests from the client application.
Any new client application gets a dedicated DBOM. The reason for this
DSM/DBOM arrangement is to be able to servlce requests from several
client applications simultaneously.

tevet s (L5) This is the SOMI Software Bus API - the actual function calls providing
access to the SOMI/CMIP Bus, and SOMI/eMlp services.

4.7.4 Associated CONFIGURATOR Components

Apart from the above Configurator co' uponents, three additional stand-alone components
were designed as part of the Configurator subsystem. These are the Application
Configuration Manager (ACM), the Configuration Builder and the Bulk Loader. These
components are reviewed in Figure 4.11 below.

Chapter 4 Page 66

AN OeJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

SOMIfCMIP SonWA:LE]IUS.. ~

...
so It API

..

APPUCAIlON CONFWUIlATlON MANAGER.

-
CONFJGUUnON DATAISASIi!AUUCAIlON ltULE8

(CUSTGUVIEW - a"UeaU •• ap«lflc)

Figure 4.11: The Application Configuration Manager (ACM)

The Application Configuration Manager (ACM) subsystem shown in Figure 4.11 above
consists .)f only 2 levels:

SOMI API

This is the SOMI Software Bus Application Programmer's Interface as described in
previous sectlons,

Application Configuration Manager

This 'avel consists of the generic ObjectView ACM component, and a CustomView
application-specific database rules component.

Any access/update of the Configurator is done via tt ie ACM to ensure the integrity of the
database, and consequently of RTOMS, since RTOM;' r~ceives its image configuration
from the Configurator.

The ACM tself was implemented as a state-machine engine, which operated on the
file-based state-table Database Configuration Rules.

Onthis way. the ACM was kept generic, and the appllcatlon-specitic rules were kept as a
separate tile-based definition in the form of a state table.

The application configuration rules component is essentially a Custom'll'iew component. It
is very application-specific, since it defines the rules for access and update of tile
Configuretor database. These rules define the relationships, limits and hierarchy of all
real-world and derived objects represented on the system.

Two other components associated with the CONFIGURATOR subsystem are the BUILDER
and LOADER ~these are depicted in Figure 4.12 below.

Chapter 4 Page 67

AN OBJECT·ORIENTE:D COMPONENT·BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

80MVCMIP SOF!'WAU .tlS

I
SOMI API

CONFIGURATION
LOADE ..

Figure 4.12: The Configuration Builder and Loader

The components shown in Figure 4.12 above are additional generic components
associated with the Configurator.

The Configuration Builder

this component was designed and Implemented as a generic ObjectView component
which Is activated when it is required to rebuild any RTOMS image on the network. A
request is made for a partial or full rebulld from a user via the MMI. The MMI request is
put on the SOMI software bus as a CMIP request to the destination CONFIG_BUILDER.
CONFIG BUILDER then accesses the RDBMS via the DSM/DBOM as a normal database
client application, and builds SOMI-SYNTAX ASCII fiat-flies of configuration. After this is
done, these local configuration files are then transferred to the host machine requiring an
RtOMS re-contlquratlon,

The Configuration Loader

The Configuration Loader was also designed and Implemented as an ObjectView generic
component. It reads the local configuration file (which is already In a SOMI-type syntax),
and sends update requests to the local RTOMS via SaM I 'CREATE' and 'SET' messages.
In this way the RTOMS memory-based Image is configured from the configuration
database.

4.8 HISTORIAN

The final subsystem is the HISrORIAN, Which is described in this chapter.

As was the case with the CONFIGURATOR, the HISTORIAN also proved to have a high
level of potential re-use, and all HISTORIAN components, except for the Object-to-Table
mapping component, could be classified as generic ObjectView components. It is
envisaged that the HISTORIAN components could be re-used in most real-time distributed
systems requiring RDBMS historian and archiving functions.

Chapter 4 Page 68

AN OBJECT-ORIENTED COMPONENT·BASED APPROACH TO BUILDING REAL· TIME SOFTWARE SYSTEMS

The only non-generic component was the Object-to-Table Mapper component. It would
not be re-usable in other real-time systems nor In other applications in the same
telecommunications network management domain.

The design of the HISTORIAN and CONFIGURATOR was Implemented in such c way so
as to ensure re-usability between the two subsystems during development. In fact, the
CONFIGURATOR was first developed, and thereafter it was relatively trivial to implement
the HISTORIAN, since all components were essentially common except for the Level 4
components of CONFIC:iURATOR and HISTORIAN. These components are the HISTORIAN
OBJECT·MANAGER (HOM), and the DATABASE OBJECT MANAGER (DBOM). The DeOM
for the CONFIGURATOR was designed as a generic database server
object·manager/agent, but the HOM wc.s designed as an extended DeOM with
functionality added to cater for specific historian requirements.

The HISTORIAN components are described in the following sections of this chapter.

4.8.1 The Generic RequIrements of the HISTORIAN

The followir .nerlc requirements were defined for the HISTORIAN subsystem:

* As with the CONFIGURATOR, performance was the primary requirement. It is
necessary for several client object-managers or applications (usually RTOMS
object-managers) to be able to archive or log data to the HISTORIAN server host
in real-time. It was necessary for the HISTORIAN to handle rates of up to several
dozen 'object-records' per second.
The HISTORIAN should be able to store and manage large volumes of data - for
the TNM application developed it had to cater for up to 3Gbytes of data.
It had to include a store and forward mechanism, meaning that data could not be
streamed directly into the Historian database server. A buffering mechanism
between the sending object-manager and the HISTORIAN had to be provided.
This would cater for situations where the database itself was down or the network
connection bptween the sending object-manager and HISTORIAN database server
were down.

*

With the basic HISTORIAN requirements defined, the component structure of the
HISTORIAN subsystem was designed.

4.8.2 The HISTORIAN Building Block Structure

Having defined the generic requirements of the HISTORIAN SUbsystem, the HISTORIAN
Component structure was designed. This is depicted In Figure 4.13 below.

Chaptar4 Page 69

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIMS SOFTWARE SYSTEMS

SOMIlCM.lP SOF1'WAAE BUS

LS SOMI API

HISTOR.IAN OBIECf - MANAGEIl

L3 SOMI ~ TIlANSLATOIl

L2 SQL - GENERATOR.

S.';,~":'" so~=~...]~:~~~-~~----- ~. ---__..-...,....,...".....- -,_..,..__---
, (lQ!ECT-TO-l'AllLE MAl>.,.lNG IltJlES

(CUSTOMVIEW - •• pllc~tlo. epeclrlcl

ORACLE RDBMS INFORMIX-IlDIlMS

to

Figure 4.13: HIS rORIAN Subsystem BuUding Block Structure

JUSTOIUAN
JlUCltET

SOMI

Figure 4:13 above depicts the structure of the HISTORIAN subsystem. These levels are
described below in detail below.

level 0 (lO) level lO represents the Relational Database Management System
(RDBMS) products. In this project, use was made of the wen established
ORACLE and INFORMIX relational database products.

Level 1,2,3 These are the generic SOL-Executor. Object-to-Table mapping.
Sal-Generator and SOMI-Translator components and are identical to that
of the CONFIGURATOR subsystem. Refer to the descriptions of these
components under the CONFIGURATOR in Chapters 4 and 5.

Level 4 (L4) Level 4 consists of two ObjectView generic Historian components: the
Historian Object Manager (HOM) component and the Historian Bucket
component. The HOM behaves in almost the same way as the
CONFIGURATOR's DElOM object-manager component. That is, it receives
historlan data messages from object-manager clients from around the
network via the SOMI software bus. It then transforms these into Sal
statements that are then executed in the RDBMS.

Chapter 4 Page 70

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO aUIWING REAL-TIME SOFTWARE SYSTEMS

A HISTORIAN BUCKET application resides with each historian client
Object-manager (usually RTOMS's) and all historian bourv' messages are
routed to this Bucket. The bucket stores these archive messages and
handles its own interaction with the HOM object-manager on the Historian
Server host. When the HOM is ready for the next database 'insert', it
requests the next historian record from each of tho running BUCKET
applications in turn. Once received, the HOM then stores it in the
database.

The reason for the store and forward mechanism cf HISTORIAN is to
prevent performance critical object-managers such as I"''TOMSfrom waiting
for returns from relatively slow database accesses. Tn ... ·.)~JCKET-HOM
interaction provides a secure buffering and handshakln; mechanism, and
off-loads fron: the RTOMS the problem of ensuring successful archive
storage to the BUCKET application. The BUOKET also provides for
extensive b "ffering for cases where the database server host is temporarily
unavailable due to maintenance.

LevelS (LS) The SOMI SoftWare Bus API, as previously described.

4.9 UTILITIES

Several utilities had to be implemented as part of the generiC components required for
building real-time distributed systems. These utilities are seen as ObjectView components,
as they are generic to any application domain.

The more important utilities are briefly reviewed in this section, but no additional details
and designs are included in this report for the sake or brevity.

The extreme benetlis of the object-oriented approach coupled to the SOMI softWare bus
became apparent with the addition of further utilities and functions. Most utilities were
ObjectView Applications which communicated to any other object-managers or
applications via the OMIS services provided by SOMI. This resulted in:

Generality of utilities, allowing use of a utility by other Object-managers or
applications anywhere on the network.
Transparency - as with Object-managers and applications, utilities are just
applications and may be run transparently on any node on the network,
Ease of re-use and development - writing a new utility involves re-using the
standard Application template and then writing the utility code within this template.

Error-los and System-log

'*

'*
'*

These subsystems are required in any real-time system, and are used to store error logs
and system logs generated by the Object-managers and application processes themselves.
Abnormal software errors encountered by processes on the network log 'error logs' to the
Error-log utility on the network, and any process wanting to log a change of operating
state or condition, logs a 'system log' to the System-log utility. These logs also store,
index and manage the log files and allow easy and efficient retrieval of logs from any
requester on the SOMI bus.

Chapter 4 Page 71

AN OBJECT-ORIENTED COMPONENT-l3ASE:D APPROACH TO BUILDING REAL-TIME: SOFTWARE SYSTEMS

The error-log utility receives error logs from any object-manager or appllcatlon process on
the network via the SOMI bus, and typically includes f'"'1e and date of tile error,
object-manager/application name. node, error code and description.

The S~stem-Iog is identical to the Error-log, except that it stores information on events
within tl.e object-manager and applications, such as start-up time, status and condition e"f
processes, The information in the System-log also include the date and time:of log,
objE'.;t-manager/application name, node and log message string.

Figure 4.14 below depicts the SOMI bus with object-manager processes and the Error-log
and System-log applications which receive, store, and allow retrieval of the logs.

son:WAllE B\lS

Figure 4.14: The Error-log and System-log Utilities

Gener!c Watchdog

The generic watchdog is also Is an Application attached to the SOMI bus and runs on one
of the nodes on the network. According to system manager defined parameters, it
regularly sends SOMI 'GET' requests to the defined Object-manager processes on nodes
on the network to enquire operational status. Responses are returned to the Watchdog
utility and necessary actions and logs 2re sent out by the watchdog when error conditions
or non-responses are detected.

For this watchdog utility, generic watchdog mechanisms had to be set up in the

Chapter 4 Page 72

AN OBJIECT~ORIENTED COMPONENT·BASED APPROACH TO BUILDING REAL-TIME SOF1WARIE SYSTEMS

object-manager processes. Firstly, all objects being managed (MOs), were designed to
contain status attributes, and methods to access these attributes. Secondly, each generic
object-manager was designed to contain a special class named 'STATUS' which itself
Inquires and stores the status of the required MOs in that process, and derives the
operational status of that object-manager.

Thus the generic watchdog utility actually addresses the 'GET' request to the STATUS
object of each object-manager and so derives the status of the entire system.

SOMI·Send Utility

This utility was developed to aid in debugging, testing and integration of the components
of ObjectView and AccessView and was also very useful In integrating and testing the
completed TNM application that was developed. It was written as an application which
attaches to the SOMI bus. Via interactive user input or input from a script file, it sends
SOMI messages (GET, SET, CREATE etc) to the addressed object-manager on the
network. Responses are returned to the invoking SOMI-8end utility, which can then be
analysed and browsed.

4.10 CHAPTERSUMMARY

This chapter has prim~rily focused on the introduction of the generic architecture, and the
design of the core gtmerlc components (ObjectView). Particular attention was also given
to the use of the software bus and nighway.

It is strongly believed that the designed structure of the generic components has
confirmed the suitability of the object-oriented approach for software re-usability.
Furthermore a 3-layered component structure was introduced and motivated. It was
demonstrated in this chapter that this, together with the SOMI software bus, further
contributed to the success of the object-oriented component-centred approach,

It has been demonstrated In this chapter how the major components wl)re further
sub-divided into smaller well defined sub-components or building blocks, which
incorporate the special requirements of distributed real-time systems. However, for the
sake of clarity and relevance, detailed examples of the real-timet data modelling and
implementation of these components have been omitted from this chapter, but an example
is contained in Appendix 0 of this report.

Chapter 4 Page 73

AN OI3JECT·Ofl/ENTED COMPONENT-BASED APPROACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

5. BUILDING THE DOMAIN AND APPLICATION COMPONENTS

This chapter further describes and demonstrates the object-oriented component approach
to building the TNM applications. Chapter 4 detailed the design and implementation of
the first layer (ObjectView) of the 3-layered building block design philosoph~·. In this
chapter, the design and implementation of the second and third layers (AcCElssView and
Custom View) are described, where the AccessView components are those that are TNM
domain-generic, and the Custom View components are those that are TNM
application, specltlc,

Again, specific emphasis was made on designing components for re-use, maintainability
and testability, without falling into the trap of over-generalising the functionality of
components.

Only that material of the AccessView and Custom View components that is relevant to the
report topic is covered in this chapter. However, Appendix 0 does contain examples of
the modelling and implementation of some of these components.

5.1 REVIEW OF THE ACCESSVlEW APPLICATION DOMAIN

The AccessView domain referred to in this report is contained to a specific portion of the
Telecommunications Network Management domain. This domain is extensive and
explanation in detail is beyond the scope of this report. However to better illustrate the
structure, design anci function of the AccessView object-oriented components, this section
contains a more detailed overview of the real-world domain of telecommunications
networks applicable to this study. It should be regarded as a follow-on to the description
of the TNM domain introduced in Chapter 1.

5.1.1 The Physical Model

In context of this study, there are three relevant areas of telecommunications networks,
namely line systems, transmission systems and switching. These have been previously
introduced in Chapter 1 - refer to Figure 1.1 for a depiction of these three relevant areas of
telecommunication networks in relation to a telecommunications network management
system, Descriptions of these three areas are restated below.

line Systems ~Carries telecommunications traffic via microwave, fibre-optic and other line
systems. The electronic equipment associated with the line systems has outputs that
indicate the operational and error status of that equipment. These indications are
monitored and stored by the remote data acquisition outstations (eg. OCTAVE 2000,
RICE-aD) situated in the carrier rooms, and are periodically polled by the regional WMI
hosts.

Transmission - This consists of 2, 8,34 and 140 Mbit stream multiplexer and demultiplexer
equipment, which also has outputs indicating the operational and failure status of that

Chapter 5 Page 74

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING RIEAL-TIME SOFTWARE SYSTEMS

equipment as well as bit-error indications. These are also monitored by remote
outstations which are periodically polled by the regional WMI hosts. lhe transmission and
line subsystems are merely bearers of Uamc they are carrying.

Switching - These are the end users of the transmission and line systems. Data
acquisition outstations for monitoring the relevant switching equipment are situated in the
switching exchanges. These outstations periodically poll the exchange equipment and
monitor the faults and status of the switching equipment.

The Telecommunications Networks Physlcill Model - t:igui'e 5.1 below depicts the
physical model of Figure 1.1 in greater detail. For the sake of brevity, the switching areas
of the telecommunications networks have been omitted.

Chapter 5 Page 75

...,----~.

.. '!! ~ ..
~ i It It J!::: Po< Po<
!! - -= !l "~ :::.. ~ ~ Ci.. ..
~ "0
0 ~ .., '" ~.. ..
-v::E 0 0 0.. ~ ...

~ •... ..
~::: •..
Q ~
tl.. JS..

~ ..
0 •.. ;:l~

...J._

Figure 5.1: Telecommunications Networks Physical Model Example

Chapter 5 Page 76

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO 8U1LDING REAL-TfME SOFTWARE SYSTEMS

The Physical Equipment Hierarchy - Figure 5.1 depicts the physical model of
telecommunications networks, the hierarchy of which is depicted in the physical hierarchy
diagram depicted in Figure 5.2 below:

tat Onler Pall.

I
2... Order P,(II

[

I
bdl<at l.faaU,_utu, error tat.)

Figure 5.2: Telecommunications Networks Physical Hierarchy

The nature of the physical telecommunications network model Is that the configuration of
equipment within the above hierarchy Is dynamic. For example, a fourth order Bearer
t ':I.yconsist of certain LEG-sets at one time, but later could be configured to consist of
ClIl'ferentphysical LEG-sets. This dynamic configuration is applicable to all elements in the
hierarchy.

5.1.2 The Object Model

Figure $.3 below depicts a Booch representation of the object model of the
telecommunications networks domain. This simplified object model is a representation of
real-world physical model and relationships - and relates directly to the physical model
depicted in Figure 1.1 of Chapter 1, or Figure 5.1.

ChapterS Page 77

Q
».:c:~ I 0en
~

....
(.A

5 o
7i·,....1 -..,-,.---- -"--'(I Eat.- 0
:0

~
iii:# ~eJ ~_____.J
~1

I D
t::

o
(i3 l'ri.. t:ry

I 09J Fall_ tt

~
fA?

a(iii
~<:

(i)

7i
C)

~
o
3

(J)3
@t::

».
::l~r •

~g
~

f;)

~~

ds
/ to~

S
Ctj

r-/ D
0

~
.!2'

/ o
ClI'

::0

C)...
~~
r-
I

g.
:::!
~-
rn~
(I)

Q:j

~

a.g

~~

j(i)

::0
I'll~ eB (I)-ee
~

<0

itt
CD

-8\9
I~ s

AN OBJECr·OAlENTED COMPONENT.BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

5.1.3 Generic TNM Functions

From the domain overview covered in the preceding sections, It is easy to appreciate that
such extensive transmission equipment requires integrated and effective management.
With successful Telecommunications Network Management (TNM), a high level and grade
cf service is ensured to all users of telecommunications, from private telephone
subscribers, to high-speed corporate/banking customers.

So that the reader may batter appreciate the structuring and design of the AccessView
components described in later sections of this chapter, the generic functions of TNM
systems are summarised below:

* Monitor equipment failures on microwave and optical line systems, transmission
and switching equipment (referred to as Fault Managem~nt)
Monitor statuses and maintain configuration on line, transmission and switching
equipment (to be classified as Equipment Management).
Monitor the grade (bit-error-rate) on the bearers or channels (also Equipment
Management).
Dynamically add, delete and reconfigure the telecommunications network
configuration on the TNM system (Configuration Management).
Monitor traffic (usage and utilisation) being carried by different bearers and links
(referred to as Traffic Management).

*

*

*

'"

The above concludes the overview of the telecommunications network domain, including
what Is meant by lines, transmission and switching, and the physlcal relationships between
the different types of equipment. This overview has been included so that the reader can
better appreciate the following sections which describe in detail the designed structure of
the AccessView and Custom View components.

5.2 THE MAN·MACHINE INTERf'ACE

In this section the network management domain-specific components, that is Access\llew,
of the Man-machine interface are described. This layer was designed to encapsulate the
functionality that would be required for typical telecommunications network management
applications, speCifically fault, equipment and traffic management.

The extended software specific to the particular application (referred to as CustomView), is
also described. For the sake of clarity, further description and technical details of the
design, modelling and Implementation of the MMI's AccessVitlw and CustomView
corneenents has been omitted from this project report.

Below, Figure 5.4 shows the same MMI component structure given in the Ob/ectView
description in Chapter 4, but with a breakdown of tM AccessView and CustomView
components.

C'hapter 5 Page 79

AN OBJECT·ORIENTED COMPONENt·BASED APPROAC,., TO BUILDING REAL·TIME SOFTWARE SYSTEMS

SOMIICMIP SOnWAaE BUSr--
r-...........--...............------~

L5

Ll

Ll

L2

Figure 6.4: MMI AccessViewlCuslomView Components

5.2.1 The AccessVlew Components

These are the domain-generic components. This Is the level where the semantic level of
components associated with the telecommunications network management domain are
provided.

Level 2 (L2) In the Figure above shows these AccessView components. In reality there
are many more detailed components at this level, but for the sake of relevance to the
subject of this study, the components at this leve! have been summarised into four basic
components as described below,

Fault Management: This oomponert contains the set of abstracted objects with the
encapsulated functional behaviour for the real-time display and user-manipulation of faults
and fault dockets. It can really be seen as an extension to the Text and Graphics
components of the MMI ObjectView layer, and includes the functionality for retrieving all

ChapterS Page 80

AN OBJECT-ORIENTEO COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SySTEMS

summary and detailed fault and docket information from the RTOMS via SOMI message
requests, and manipulation and display of this information on the screen. (Refer to the
RTOMS section in this chapter for the definition of faults and dockets).

Refer to Appendix F for examples of class definitions of objects developed for fault display
management in the MMI subsystem. Refer specifically to:

*
*

Include file DktSummary.h which provides for summary displays of fault dockets,
Include file MimDisp/ay.h which provides for general display func;1ions peculiar to
telecommunications network management.

Equipment Management: This component is also an extension to ObjectView's Text and
Graphics components object classes, and provides the functionality for the real-time
enquhy and display of status of real-world objects as stored In RTOMS. The functionality
includes the MMI·RTOMS interaction for retrieving the real-world object statuses via SOMI
requests, and real-time display on the screen.

Traffic Management: The traffic management component contains the objects and
functionality for displaying traffic information relating to the links in the telecommunications
network. This traffic information includes traffic volume, traffic users, and link and bearer
quality, performance and utilisation.

Refer tc Appendix F for a class definition example of a traffic performance object, defined
in include file l,inePerfDisp.h.

All three of the above AccessView components include functlonalin r reporting of
archives from either the long-term c;rchive in the HISTORIAN subsyi, em, or the short-term
archive contained within the RTOMS subsystem,

MMI·Conflgurator: The configurator component includes the MMI functionality for entering
and updating the telecommunications network configuration in the Configurator
s Jbsystem. For example, the configuring of digital and analogue indications to
equlpment, equlprnent to logical equipment groupings (LEGs), LEGs to sections, and
sections to paths.

5.2.2 The CustomVlew Software layer

Level 3 (L3) in Figure 5.4 above shows the Custom View application-specific components.
These components are not really generic and are customised for a particular TNM
application, since they embody semantics very specific to the particular application.

Again as with the MMl's AccessView components, there are many rnor« detailed
components at this level, but for the sake of relevance only three basic Custom View
components are described:

Operational Interface: ThiS component provides the look and feel of the graphical (and
character) operational user interfaces required for fault, equipment and t~'''fj'ic
management. It defines the windows arrangement and representation at id presentation of
telecommunications network objects on the screen. It includes objects that display the
current network configuration, inter-relationships and equipment hierarchy.

Chapter C Page 81

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYStEMS

Operational Reporting: Operational reporting provides for the display and management of
the archives, the short-term archive from the RTOMS subsystem, and long-term archive
from the Historian subsystem.

Graphlcs-conflgurator Oeflnltlon: This component provides the application-specific
definition of what the graphl~al and character screens would look like for the configuration.

The component philosophy of these AccessView and CustomView components is the
same as for the ObjectView components "ascribed In Chapter 4 - abstracted object
component libraries that are -hooked" Into the generic Object-manager process.

5.3 THE WORLD-MACHINE:INTERFACE

In this section, the telecommunications network management specific components of the
WMI are described. Referring to the WMI structure described in the previous chapter,
these are the AccessView components represented by Level 1 (L1) components in the
subsystem structure design. For the initial. phase of the project, three components were
designed and implemented. This was required for driving three specific types of
telecommunications data acqulsltlon outstation equipment, the OCTAVE 200, OCTAVE
2000 and the RICE-SO. (Further details on the outstation equipment Is contained in the
description of the AccessView components below).

The next higher level 2 (L2), the WMI CustomView components, are also described.
These components represent the customised portions of the software speolno to the
particular application that was developed. Again, for the sake of relevance, further
technical details on the deSign, modelling and implementation of the WMl's AccessView
and CListomView components have been omitted.

Below, Figure 5.5 depicts the WMI component structure with the breakdown of the
AccessView and Custom View components.

ChapterS Page 82

AN OBJECT.ORIENTED COMPONENT·BASED APPROACH TO BUILDING REAL"TIME SOFTWARE SYSTEMS

lA soar API .;

L3 WMi OBJECT MANAGER. ANn HOUSEi:EEPING

ltf($-II
ROtn'E-M()IV~OCT" J'li :lUI

ll.Otn'E-MONl7'OR
OCT.t4.f'E .IN

ROCI7IM.f(JNI1'OR.

(Vlth.tal
OCT"fT OCTA.f'E' JUCA'

lkvlcu) L1
':HI :JIf ",

T
(VIrtual

R.S-:m RS-411 HDW X.2SIIlterfacu) to QCOMM

Figure 5.5: WMI AccessView/CustomView Components

5.3.1 The AccessVlew Components

This level (L1) is the AccessView abstraction of the WMI subsystem, and the Virtual
Devices shown in the Figure above represent a few of the relevant devices used as
outstations in telecommunications network management systems. For this project, only
three devIces were implementedj the OCTAVE 2000, the OCTAVE 200 and the RICE-80
outstations.

The Physical Outstation Devices

To better understand the structure and functions of the WMI interface components, a brief
review is given of the outstation hardware devices used in this project.

These outstations monitor digital and analogue indications from transmission, optic,
microwave and multiplexer and bearer equipment. They are usually physically situated In
transmission carrier rooms and exchanges around tile country. The indications monitored
relate the operational state and condition of the transmission equipment, for example
communications break, power fail, and degraded bit-error rates in transmission.

More specifically, the OCTAVE-2000 is a proprietary intelligent monitoring and control
outstation used for monitoring digital and analogue indications from Transmission and
Microwave equipment, as well as bit-error rates (SER) associated with transmission
systems. These digital and analogue indications are used to indica~e transmission and
line faults.

The OCTAVE-200 outstation device is an older version of the OOTAVE-2000. and is a

Chapter 5 Page 83

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

non-intelligent monitoring outstation that monitors digital and analogue indications.

Lastly, the RICE-SOoutstation device is another type of semi-intelligent proprietary device
for monitoring transmission and microwave equipment in telecommunications networks.

The WMI Virtual Devices

On a conceptual level, the OCTAVE-2000. OCTAVE-200 and RICE·SOVirtual Device
components behave and perform in the same way. They poll and receive data from the
relevant remote outstation devices. as well as sending enquiries and controls and
configuration messages. Tho major difference between these Virtual Device components
is the protocol syntax and semantics which are obviously very specific to the relevant
hardware outstation devices.

5.3.2 The CustomView Software Layer

Level L2 of Figure 5.5 represents the CustomView abstraction or oustomised
appllcatlon-speeltc components. Each is referred to as a Route-Monitor, since each is
responsible for talking to one route, which is physicaUy a single multi-dropped or point-to-
point line to which addressable outstations are connected to at the remote locations.

Each of these components contain tile following basic functionality:

*
*
*
*

Poll of outstation on multi-dropped line using intelligent sequencing algorithms.
Enquiry of outstation status.
Control of configuration downloads to outstation devices.
Control of embedded software downloads to outstation devices.

5.4 THE I.·;:AL..TIME OBJECT MANAGEMENT SYSTEM

In this section. the telecommunications network management specific components of the
RTOMS are described. The RTOMS subsystem structure given in Chapter 4 shows level
1 (U) to represent the AccessView components, anc.level2 (L2) to represent the
Custom View components. In this section, the level 1 and 2 components are described,
addressing the fault, equipment and traffic management.

Further technical details and examples of the deSign, modelling and implementation of the
RTOMS AccessView and Custom View components are contalned in Appendix D.

Below. Figure 5.6 Shows the RTOMS component structure given in Chapter 4, but with a
breakdown of the AccessView and Custom View components of RTOMS.

Chapter 5 Page 84

AN OBJECT· ORIENtED COMPONENT·BASED APPROACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

SOMIICMIP SOFfWAllE BUS

IA

L3

L2

L1

WOR.LD
La LEVEL

. SOMI API

RTOMS oarscr MANAGER AND HOUSEKEEPING

CUSTOMnEW COMP()NBN:I:'$
UpplJc.rtJ_..sJHC/fIc)

Figure 5.6: RTOMS AccessView/CustomView Components

5.4.1 The AccessVlew Components

Level 1 (L1) in the Figure above depicts the design of the RTOMS AccessView
components, and these are briefly described here.

Fault Management: This component provides the set of defined objects for handling
real-world equipment events and faults as monitored by the WMI. All faults are tracked
and are associated with a 'fault docket', The fault docket tracks the status and all
information relating to the fault and its associated faults. The tracked Information includes
time of fault, type and location, action taken for fault, time of fault clear, reason for fault
clear, and other faults that may have been related to this fault.

Refer to Appendix F for the class definition of the fault docket object of the RTOMS
subsystem. The include file is named Docket.h.

Equipment Management: The equipment management component is the extension to the
World Level 0NAl) ObjectView component of RTOMS that provides the functionality to
store, derive and report the status of all real-world equipment, where all real-world
equipment indications are represented by objects in the World·Level component.

Traffic Management: The traffic management component contains the objects for
monitoring, measuring and reporting the quality and level of telecommunications traffic
flowing through the telecommunications transmission and microwave links and paths. It
also includes the functionality for reporting link utilisation. All three the Fault, Equipment

Chapter 5 Page 85

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL· TIME SOFTWARE SYSTEMS

and Traffic management components include functionality for storage of required
information to the long-term HISTORIAN archive or the ATOMS memory-based short-term
archive.

Performance Management: This component is an AccessView extension of the objects in
the Logical-Level component of RTOMS. It provides extensions to the objects
representing the paths in the logical-level's 'indication-eqLJipment-sectlon-path' hierarchy.
These extensions provide for performance monitoring and measurement of aUthe links on
the system.

other AccessView Components: Configuration, Security, Billing, Security Management
and Provisioning are other AccessView components that are not described any further In
this report. They are relevant to the telecornrnunlcatlons network management domain,
and are currently seen as components that could be developed in the future.

5.4.2 The CustomVlew Software Layer

L.evel 2 (L2) in Figure 5.6 above depicts the CustomView application-specific components
of RTOMS. During design of these components, it was observed that this layer was very
thin - since the AccessView components themselves contained much of the
application-domain and applleation-specflc knowledge.

It is Intended to deliver similar systems to two other applications in the same domain over
the next two years. Analysis of their requirements has proved that such a low level of
RTOMS re-customisation is required, that the differences have already been incorporated
generically into the ACCessView components objects.

5.5 THE CONFIGURATOR

In this section the non-ObjectView components are described. Referring to the
Configurator Component Building Block Structure in Figure 4.10 of Chapter 4, it is
observed that no AccessView components exist In this subsystem. and only two
CustomView components exist. Of all the subsystems, the Configurator proved to be the
most generic subsystem, being entirely generic to other systems requiring configuration
services except for two Custom View components which are described below.

--------.,-------------~---------------------~--------------------~--~--------------
Chapter 5 Page 86

AN OBJEOT-ORIENTED OOMPONENT-BASED APPROAOH TO BUILDING AEAL· TIME SOFTWARE SYSTEMS

5.5.1 The CustomVlew Software layer

LJ.~__~~~~~~_S_O_M_V_C_M_~lP_"_SO_y.nw.AR_~E__B_U_S~~

LS

L3

L2

L1

. DATABASE OBJECT MANAGER.
, --,IDIIOMI

DATABASE SERVICESMNGIl (DSM)

SOMI - nANSLA'l'Ort.

SQL-EXECtITOR
. (ORACLE)

SQIrEXECUTOR.
(INFORMI'"

OBJEGT-TO-TABLE MA.l'PINC IUI/.ES

(CUSI'OJI'YJEJf' - "I'JiUUllllit 'JI#CifJc)

INFO)lJ\(IX-IU>JlMS.OR.ACLE RDBMS DBA

Figure 5,7: Configurator Customview Components

The two CustomView components of the Configumtor were the Object-to-Iable Mapping
Rules Which is part of level L1 of the Configurator building block structure diagram (Figure
5.7 above). and the Application Configuration Rules (shown in Figure 5.8 below). which is
associated with the ACM Configurator component.

OhapterS Page 8'1

AN OBJECT·ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

IIOWIIOU. 1I0FrWAll:E IIUS

SOMI API

CONE'lGURArION 1JA.TA1JMHAJ>PUCArION Il.U/.E$
(CUSFOAlJ'IEJ'I' - JlppJlclltJ.,,, $/Hclflc)

Figure 5.8: TIle Application Configuration Manager

The ObJect-to-Table Mapping Rules Component

This component is very application specific and defines the object-to-table mapping rules
In a user-definable ASCII definition file. This definition file provides the definition for the
mapping between the managed objects (MO) on the system and the tables in the ROBMS.
As previously described, the object-orientation and relational database technologies are
inherently Incompatible, and there Is not necessarily a direct one-to-one match between
object classes and database tables.

The object-to-table mapping rules could also be viewed as objects, where each class (eg.
indications, equipment, logical equipment groups) that needs to be mapped to database
tables, could encapsulate its own mapping rules. However in practise it was not
implemented as C+ + objects, since it is a requirement to be able to alter the mapping
rules without having to edit and recompile C+ + programs.

For this reason the object-to-table mapping rules were defined In ASCII files via the UNIX
file editor. An example of tile syntax of this mapping definition file is given in Appendix E
of this report,

The Configuration Database Application Aules Component

Tile Application Rules component is a ASCII file-based set of application-specific rules for
accessing and updating the Configuration database. It is closely associated with the
ACM which is the state-machine engine which reads and operates on the rules and
definitions contained in the Configuration Rules. These rules define the relationships. limits
and hiprarchy of all real-world and derived objects represented on the system.

Chapfor5 Page 88

AN OBJECT·ORlENTED COMPONENT-BASED APPROACH TO BUILDINO R€AL.-TIME SOFTWARE: SYSTEMS

5.6 THE HISTORIAN

As with the Configurator subsystem, no Historian AccessView components were deSigned,
and likewise the only CustomView component was the Object-to-Table mapping rules. As
already noted in the previous chapter dealing with the Configurator·and Historian, the
generic ObjectView components of these two subsystems are identical. This is readily
observed by stud~ng the Component Structure Oi3grams of these two subsystems in
Chapter 4.

5.6.1 The C!..i;stomVlew Software Layer

As with the Oonfigurator, the only CustomView component or the Historian subsystem is
the file-defined Oblect-to~Table mapping rules which is 2tlPlication specific. This
component provides the mapping between the managed objects (MO) on the system and
the tables in the ROBMS. An example of the syntax and operation of the ObJect-to-table
definition tile is given in Appendix E of this report.

5.7 CHAPTER SUMMARY

This Chapter has detailed the structure and design of the AccessView and Custom View
components which were deSigned and developed tor an application in the
telecommunications network management domain.

It must be noted that the entire scope and detailed design and implementation of the
application has not been covered in this report. Since this study concerns an
ohject-oriented approach to building real-tlme systems, discretion was used to include only
that material which would demonstrate the process and results of this approach, and thus
the focus is not on the application itself, nor the detailed Implementation details.

Chapter 5 focused on the object-oriented component approach for the domaln-qenerlc
and C:iPrll .atlon-specltle layers. The design has demonstrated that it is possible to
optlrr ~fJ component or building block structuring for optimal re-usabllity, maintainability
and tes~ability. l'his chapter has also highlighted the effort that was expended in the
d~flgn and structure of the components required for the real-time systems.

Furthermore in this chapter the effectiveness and practicality C'f the 3-layered component
structuring has neen demonstrated. These 3 layers were the real·tima system generic
components, domaln-qenedc components and then application-specific components. It
proved to be very effective because re-use was optimised, and the a.layered structuring
also provided sensible and practical abstractions.

Chapter 5 Page 89

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

6. ANALYSIS OF APPROACH

At this point the object-oriented component-based approach to building real-time systems
has been motivated and described. The design of the building blocks or components,
and the integration of the components in building a telecommunication network
nanagement application has also been described. In this final chapter, the re&tllts of this
approach are analysed and observations of relevant issues are made.

In the final analyses, some of the motivations put forward at the beginning of this report
are corroborated and others are challenged. Likewise, observations made by noted
authors on the related topics are also corroborated or challenged.

In terms of the focus of this study, namely an Object-oriented Component-based Approach
to Building Real-time Systems, I have intended to put forward three arguments:

*

That the object-oriented paradigm proved to be a successful approach for building
real-time systems,
That the a-layered structured component approach coupled with the
CMIP-conformant software bus further enhanced the success of the object-oriented
approach,
That several serious technical and organisational issues need to be noted when
considering this approach.

*

In this final chapter, it is intended to use the results and observations of the study as a
basis for the motivation, proving and endorsement of the above arguments.

6.1 FITWITH CUSTOMER REOUIREMENT

One of the criticisms levelled at the traditional procedural approach to building custom
software systems is the fit with the customer requirement, These criticisms were reviewed
in an earlier chapter of this report. Of particular note was the accuracy with the original
requirements were interpreted, and the fact that requirements do change. This change
takes place during the entire life-cycle of the project, from specification to well aftAr
delivery.

The fact that the traditional top-down approach takes no account of evolutionary changes
has been observed and noted by several authors including Lehman(04Ol,and is also
confirmed by personal project experience. In fact, the later in the project life-cycle
changes to requirements occur, the more severe the Impact to the d'!lsign, integrity, and
re-development effort.

From the observations of this study, the object-oriented approach proved to be far more
amenable to changing requirements. Thls was largely attributable to two factors:

* The obje"t-oriented life-cycle model (refer to the Object-oriented life.cycle, C; .spter
3) is a tight iterative coupling between the modelling, design, code prototyping and
testing phases.

Chapter 6 Page 90

AN OeJECT-ORIENTED COMPONENT-BASED APPROACH TO BUlWING REAL-TIME SOFTWARE SYSTEMS

* Tho object-oriented paradigm is based on abstraction and encapsulatlon, with
message interfacIng between objects as opposed to data-structure interfaces.
Changes made to any objects behaviour had minimal effuct on other objects.

Because of the properties of object-orientation and the iterative life-cycle model, changes
could be locally modelled, prototyped and tested very effectively with very little impact on

. the associated objects and software subsystems.

During the design, development and tasting phases of this TNM project's lifecycle, several
new requirements were presented. In very few cases was it necessary to call together the
entire design team to discuss the implications of a functional software change. In each
case, the new requirement was directed to the relevant person/a on the team.

In summary, the study clearly observed that the object-oriented approach was far more
suited to changes than the traditional procedural approach. This has resulted ;., a
delivered system with a close fit to the end-user requirement.

In fact, the object-oriented approach proved so amenable to changes, that it brought with
it a new set of problems. Because changes were easily implemented, the formal softWare
change request/proposal procedures were sometimes bypassed, resulting in designs of
changes not being properly controlled and audited, and the risk of uncontrolled project
scope cht>nges.

6.2 SYSTEMDEVELOPMENT

Several Interesting and important issues were observed during the system development
phase of this project. Of particular note was the difficulty experienced in modelling of the
objects. the unique development effort profife, lower project effort and cost, and difficulty in
performing lntegrstlon and testing.

6.2.1 Object Modelling and Design

After initial theoretical OOD/OOP training courses and some practice, the project team
found it not too difficult to identify real-world data-carrying objects. But as Jacobson (3tl)

observed, it is more difficult to identify the 'dynamic' objects that describe how the system
is used. Other authors state that such objects require no modelling - they simply
constitute operations on data-carrying objects and therefore should be included in these
objects.

However there are certain behaviours that do not naturally belong to data-carrying
real-world objects, and in the team's experience it was better to model separate dynamic
objects. Each and every team member experlenced some degre\) of difficulty with the
modelling/design of objects. The main reason for this was the very different nature of the
object-oriented paradigm as compared to the traditional procedural approach.

The new paradigm required a whole new way of thinking, observing and modelling the
world in terms of Objects, and ignoring the classroom theory on functional decomposition
and modelling the requirements in terms of data-flow diagrams.

Chapter 6 Page 91

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

Specific difficulties included:

*
*
*
*

designing real-world domain objects
designing dynamic cr virtual objeCts
how far to breakdown into objects
defining the 'uses' and 'contains' class relationships

As WaS observed In this study, the best solution to this problem was a combination of
relevant OOD/OOP training, and real experience, (Further review of the training aspects as
covered later in this chapter). For systems engineers with average to good C
programming experience, it was found that at least 1 to 2 months of programming in an
object-oriented environment (such as C++) was an essential prerequisite to any formal
OOD/OOP training. After formal training an additional 2 to 4 months was required (on
average) before the systems engineer was proficient in OONOOD and OOP.

From the project team of 15 members, the re-tr ling period ranged from 3 months for
highly skilled senior systems engineers, up to 2. months for junior programmers with
minimal previous experience. Table 6.1 below surnrnarlses the findings, and indicates the
average re-traininq perlods required to acquire solid OOA, 000 and OOP skills.

Junior programmer 12 months
(1 year programming experience)

Programmer 7 months
(2/3 years experience)

Systems Engineer) 5 months
(5/6 years experience)

Senior Engineer 3 months
(8/10 years experience)

Table 6.1: Average Object-oriented Re-tralning Periods

Although tho figures in Table 6.1 are not conclusive because of the small slngie sample, it
does suggest that acquiring proficient skills in OOA, 000 and OOP requires a steep
learning curve which should not be under-estimated.

6.2.2 Development Effort Prome

In Chapter 3 of this report, the life-cycles of the object-oriented and the traditional
development approaches were discussed, and the differences were highlighted. From
these models, it was expected that the development effort profiles of the two approaches
would be different.

With the relevant project management tools, it was possible to monitor the progress and
manpower effort being expended on the object-oriented development. The effort proms of

Chapter 6 Page 92

AN OBJEOT-ORIENTED OOMPONENT-BASED APPROAOH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

this new approach did prove to be quite different on the development project.

Figure 6.1 below depicts the effort profiles of the life-cycles of the two approaches. The
Object-oriented life-cycle curve Is based on the actual man-hours required versus progress
measured continuously on this project. This curve closely matched the object-oriented
life-cycle as observed by Henderson-SeUers(35).

Since this study did not include a control group to implement the identical project using
the tn-dltlonal approach. the effort profile is based on previous experience and promes as
observed by Lehman(40)and Yourdon(571.

TlltAB •
.ul'.U)ACH nal ,I.

Dntlo,.eat
f;Uorl

(•• lIl1oUII

L.
OllJ£<:T-

.ul'II.OAl:!H
YJ.n .tll.
~aal)'.I.

(lOA.

Project Life-Cycle

Figure 6.1: Development Effort Profiles of the Two Approaches

The above graph shows some Interesting results. The first Is that the oeject-oriented
approach requires high initial effort in the analysis/design/implementation phase. This Is
mainly due to two factors:

(a) The developer has to Initially model and Implement a large proportion of the
objects and its object manager before threads of functionality can be worked and
tested.

(b) To benefit from the whole re-use paradigm. greater effort is required to designj
. 'Ina and reclassify components and component clusters to Improve their
generality.

OhapterC P~ge 93

AN OBJECT·ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL·TlME SOFTWARE SYSTEMS

The second interesting result is that the effort for the traditional approach as the life-cycle
approaches completion of implementation climbs steeply. The effort at this stage is much
greater than the object oriented approach. The reasons for this have been well stated by
noted authors and have unfortunately beer. -<perienced by most organisations practising
the traditional approach; .

(a) In the object-oriented approach, the detailed design of procedures and data
structures is deferred until much later in the development process, and are private
to the object. Thus these procedures and data structures are no longer frozen at
a high level of system design. Therefore changes at the implementation level are
more easily accomplished without requiring changes to the system design itself.
This is because object development focuses on data abstraction rather than
freezing specific data structures into the object specification.

(b) With the traditional approach, changes In the late" part of the life-cycle (and
changes there will be), often have a ripple effect right back to the analysis/design
phase. The later in the life-cycle the changes are made, the worse the effect.

The third interesting result is the maintenance effort of the two approaches. The ongoing
maintenance effort is lower with the object-oriented approach for the same reasons listed
above - since maintenance is nothing more than effecting software changes after the main
development.

The system life-cycle of the object-oriented and traditional approaches and the related
issues have been thoroughly studied and reported by authors such as 800ch(13),Meyer(45),
Coad and Jourdon(18), Henderson-Sellers(35), Yourdon(5a)and Lehman(40). For the purposes
of this study, it is sufficient to note that the results of this stUdy corroborate tile findings of
these authors, particularly the object-oriented effort profile as observed by
Henderson-Sellers. Probably the most important aspect that was evident in this st'.1dy wasthat the object-oriented approach required less manpower effort to develop.

Referring to the graph above, the profiles take no account of previous re-use, and the
object-oriented approach includes the extensive training and re-training that was required.
Discounting extensive training effort and taking advantage of re-use in future projects, it is
expected that future projects can be implemented with significantly less effort using the
object-oriented component approach to building real-time systems. This fact is further
substantiated in the following section which reviews the project effort in greater detail,

6.2.3 effort, Productivity and Project Cost

One of the primary arguments put forward In this report is that the object-oriented
approach results in better productivity and lower total development cost as compared to
the traditional procedural approach. Although this study was not Intended to lncll'1e an
empirical study on the productivity of the two approaches, the measurements and
observations made on this project are noted in this section.

One of the most interesting and comprehensive emplrloal studies undertaken on
productivity and re-use issues of the object-oriented and traditional approaches is that of
Lowls et al(41). In their study, several production variables of the two approaches were
SCientifically measured and assessed.

Chapter 6 Page 94

AN OBJE:CT·ORIE:NTED COMPONE:NT·t3ASE:D APPROACH TO BUILDING REAL-TIME: SOFTWARE SYSTE:MS

Some of the more relevant conclusions reached by Lewis include:

(a)

(b)

(c)

the object-oriented approach substantially Improved productivity, although it was
believed that a significant part of the improvoment was due to the effect of re-use.
software re-use improves productivity irrespective of whether the object-oriented or .
traditional approach is used,
the object-oriented paradigm has a particular affinity to the re-use process.

In a more recent empirical study by Lewis, Henry, Kafura and Schulman(42),Lewis observed
that:

(a) The object-oriented paradigm substantially improves productivity over the
procedural approach.

(b) With re-use, the object-oriented paradigm promotes higher productivity than the
procedural paradigm,

(c) Software re-use improves productivity no matter what language paradigm is used.

In terms of this study, our findings concur with those of Lewis, except on one point. Lewis
believed that their experiment resuns could not clearly prove productivity improvement with
object-orientation when re-use was not a factor. On the development project associated
with this study. a definite productivity improvement was noted.

At the start of this project it was believed that the obleot-orlenteo paradigm would require
high initial effort and that productivity benefits would only be gained with subsequent
re-use, However, as development proceeded, it was observed that the object-oriented
project (which initially had no benefit of re-use). was Implemented I'lith tess effort than what
WOuld be required for a comparable traditional development.

The extent of the difference was difficult to prove as the study did not have a control group
from which to draw empirical measurements for comparison. However, the estimate for
productivity improvement (with no reuse) Is of the order of 10 to 15 percent, as can be
seen from Figure 6.2 below. This In itself in significant when one considers that although
the development team attended Object-oriented courses as part of the Ire-training'. this
project was the first object-oriented development. For this reason, I believe that it is not
unthinkable to achieve a productivity Improvement (with no reuse) closer to 20 - 25
percent with fully trained resources.

The reasons for the productivity improvement even with no reuse are twofold:

(a)

(b)

The particular properties and characteristics 0,1 the object-orlented.paradlqm as
described in elsewhere in ttus study.
In the study It was observed that there is technically no such thing as 'no-reuse
benefit' on a first development. Although the development project had no benefit
of classes and subsystems developed on previous proleots, they were constantly
re-uslnq classes and components from the development project itself. In other
words, benefits were being gained from re-use on a smaller scale.

Chapter 6 Page 95

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

Figure 6.2 and Table 6.2 below reviews the development effort (Which relates to
productivity and cost) for the two approaches compared, with no benefit of re-use, and
J'Iith benefit of re-use. The development efforfflgures for the object-oriented approach are
based on actual measured data .. see Table 6.1 below. However, the data for the
traditional approach are estimates only. being based on data from comparable systems
previously implemented.

5

15

Dev,
Effort

(man ...years)

10

o
Trad.

110 reuse
•••• Trad.

reuse
....

no reuse reuse

Figure 6.2: Comparison of Development Effort Data

The data for the two approaches with re-use are also estimates. Tile data for the
traditiona: approach with re-use is based on prevjously implemented comparable systems
in the same telecommunications application domain. The data for the object ..cvianted
approach with re-use Is based on the findings of Lewis et al(41),Jrad(30),and personal
observations. (I have been Involved in Application Oonsult:,g for the preparation of
proposals for similar applications in the telecommunications applicatlon domain).

Jrad et al(30)have done an impressive study by comparing controlled identical
developments using the object-oriented and procedural paradigms. In their study, the
Issues of productivity and performance are empirically compared. It is Interesting to note
the conclusion that the object.orlented development was developed in half the time the
procedural development took. This finding very much endorses the results illustrated in
Figure 6.2.

Chapter 6 Page 96

AN OBJECT-OR/EN1ED COMPONENT·BASED APPROACH TO aU/WING REAL·TIME SOFTWARE SYSTEMS

Table 6.1 below details the man-hours actually expended on development of the different
subsystem components using the object-oriented approach. The estimates for the
man-hours expected for re-using these components in other applications in the application
domain are also detailed. (As noted in the previous paragraph, the Application Consulting
role in the company has required doing detailed requirements analysis for new
applications; identifying components that could be re-used; and estimating manpower
required to develop and customise additional components. These new applications have
included a fault management application for prcssunsed transmission cables, and a full
network management system for a client managing their own communications
nfrastructure).

In terms of terminology used in this project, the first column represents development -·ffort
measured for the ObjectView, AccessView and Custom View components for the first
application in the telecommunications network management domain (ie. no benefit of
re-use), The second column represents the estimated development effort for the
Custom View components required for a new application in the telecommunications network
management domain.

BUILDING BLOCK Development Estimated
Effort In Man- Development
hours (Initial Effort (RE..USE)
dev.)-

WMI 2500 1000

MMI 2800 600

RTOMS 2600 1300

HISTORIAN 1500 200

CONFIGURATOR 2200 400

COMMUNIOATIONS 27'00 0

UTILITIES & 0••ier 2800 700

TOTAL MANHOURS 17100 4200

Table 6.2: Comparison of Development Effort Data

To explain the figures q • T'1ble 6.2 in terms of a typical example, the 'pressurlsed cables'
application could be used. For this new application:

* A large portion of the WMI would be re-used - all that needs to be developed is a
new WMI device-object for' interfacing to the outstation hardware monitoring tne
pressure breaks. Expected re-usability 60%.
The MMI would have the largest re-usability, and the only effort required would be
to customise a few mimics suited for cables monitoring. Expected re-usablllty
80%.

*

Chapter $ Page 97'

AN OBJECT·ORIENTED COMPONENT-BASED APPROACH to aUILDING AlEAL-TIME SOFTWARE SYSTEMS

* The RTOMS, as described In the previous chapters, would have the lowest level of
re-use of all the subsystems. Here the cables' physical network would need to be
modelled in terms of related objects in RTOMS. Expected re-usability 50%,
The Historian and Configurator subsystems would require minimal customisations
to cater for particular fUnctionalities particular to the cables environment. Expected
re-usability 80 to 85 %
Communications - a 100% re-usabltty is expected.
The Utilities estimated effort caters tor development of customised and additional
utilities particular to the cables environment.

*

*
*

It will be noted that the development effort estimated for the CustomView components
required for a new application in the same domain represents approximately 25% of the
original development. This represents a re-use of approximately 75%, which is extremely
promising.

However, the Building Block Structure depicted in Figure 4.3 of Chapter 4 represents this
Custom View layer representing approximately 20% of the total system. In retrospect, this
was a little idealistic, and the GustomView layer is in reality closer to 25%.' In other words,
re-use in the same application domain is expected to be around 75% instead of the
originally envisaged 80%.

In summary of this section, this study has indeed confirmed aile of the primary arguments
put forward in this study. That is, the object-oriented paradigm results in improved
oroductivity and thus lower development and project costs. More specifically:

*
*

With the traditional approach, re-use gives half the development effort of no re-use,
Developing new software systems with the object-oriented approach, re-use of
object-oriented components requires as little as a third of the development effort
as compared to no re-use,
Contrary to Lewis's(41)findings, this study has observed that even with no re-use,
the development effort required for the object-oriented approach is still less than
for the traditional approach - mostly due to smaller scale re-use within the project,
With re-use, the object-oriented approach could potentially result in a development
effort one half of that required using the traditional approach. (It is intended to
formally prove this in a later study).

'I<

*

6.2.4 Integration and Testlng

Although this study argues strongly In favour of the object-oriented component approach,
several detracting Issues need to be noted. Integration and teS1ing is one of the technical
ISSuesthat require consideration when adopting the object-oriented approach.

It is necessary to distinguish between IIJw-level component testing undertaken by an
individual developer, and integration and system te$tlng undertaken by various members
of the development team. Low-level component testing with the object-oriented approach
was noticeably easier than testing a similar traditional approach component. This is
because the data and functionality are encapsulated within objects, and with clear
interfaces to these components, testing of these object components is more directed and
deterministic.

Chapt,'lr 6 Page 98

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BU/LDING REAL-TIME SOFTWARE SYSTEMS

For example, the ObjectView components of the MMI subsystem were under the
development control of a single person. Testing the functionality of, and interaction
between the classes such as Display, Motif_widget, Popup, Pulldown, Option, Push_button
and Toggle_button proved to be no problem. However, it was the integration and system
testing of the components under development of more than one person that proved to be
difficult - because of the iterative nature of the development life-cycle of the object-oriented
approach. This life-cycle was a continuous iteration of modelling, design, implementation:
and testing. With the software engineers on the team, at anyone time different
components were in different phases of the object-oriented development life-cycle.

This made it difficult to synchronise and freeze development activities for integration
testing between components. For example, when one subsystem component is ready for
integration testing, its associated subsystems could be back In re-modelling or
implementation phases. (In the traditional approach, all subsystems reach an
integration/testing phase about the same time, and at this stage hopefully all design and
implementation has been completed).

Again, an example of this was the MMI subsystem. The developer of the MMI ObjectView
components and the developer of the MMI AccessView components had difficulty in
synchronising their' development activities so that all required components were in a similar
state of readiness to test the AccessView fault-handling mimic functionality which required
the ObjectView display objects. An even more daunting task was to synchronise
development activities of the MMI live mimics and the RTOMS subsystem. Both
subsystems had to be in a stable 'test' phase before testing of the dynarruc links between
the live mimics and RTOMS 1etwork image could be tested.

In this project, the problem was managed and contained in two ways:

(a) Instead of a single period of integration testing which is characterlstlo of the
traditional approach, several shorter but formal integration tests were planned and
scheduled during the entire development cycle of the project. These tests were
planned with the involvement and commltment of the development team members,
who ensured that their particular subsystem components were in a state fit for
Integration testing.

(b) A separate integration and testing computer environment was set up, where
relevant, 'completed' subsystem components were ported to the testing system.
Here these components Would be ready for any subsequent formal or ad hoc
integration tGsting with other subsystem components. This allowed developers to
continue iterations of remodelling, redesign and prototyping on the development
environment. As new versions became available, they would again be ported to
the integration computer.

In this project the above technical Issue was one of the more unexpected problems
associated with the object-oriented approact to building real-time systems. Fortunately,
this problem was identified quite early in the project development life-cycle. After adopting
a combination of the two measures noted above, the problem was contained and
manageable.

Another testing issue that proved to be a problem was that of testing the objects
themselves le, to be able to view attributes and relationships of objects. To overcome this
problem the team developed trace and view utilities. For example, for the 'View' utility all
classes Included a standard 'status enquiry' method which would respond to an external

Ohapter6 Page 99

AN OBJECT-ORIENTED COMPONENT-BASF.D APPROACH TO BUILDING REAL· TIME SOF1WARE SYSTEMS

enquiry on its attributes and current state. The generic 'View' utility would then be used to
enquire and report on the attributes of the specified object Instance.

6.3 DEGREEOFRE·USE

The major argument put forward and motivated in this study was the need for re-usability
of software, and in the earlier chapters of this study the reasons for re-usability were
strongly motivated.

For this reason re-usability was the prime focus at all stages of this project, designing and
Implementing for future re-usabillty, and re·using what was available to re-use. In Chapter
4 the design of the re-usable component structure was detailed. Components were
abstracted laterally according to functional area (eg, WM!, MMI, RTOMS), and abstracted
vertically according to the 3-layer component structure (eg. ObjectView, AccessView and
CustomView).

In this section where the re-useability is analysed, it is necessary to reflect back on the
original 'designs and philosophies and evaluate the level of success achieved as far as
re-use Is concerned. Some of the more significant issur that influenced the re-usabiiity
during the project are also discussed.

6.3.1 level of Ae-use Achieved

As observed In the previous section, the re-usable ObjectView and AccessVle"- layer
components in reality accounted for approximately 75% of the total application software.
That Is, 25% of tho software would be customised for the specific application. The original
expectation was a domain (ObjectView and Acce.ssVlew) re-usability of approximately 80%.

The approximate re-usability achieved in reality is shown in a revised Building Block
Structure In Figure 6.3 below.

However, it is Important to note that the estimates for re-use below are based only on two
additional applications that are currently being developed by the project team. It is
necessary to corroborate these findings, and it Is intended to publish the findings in a
future study once further applications have been developed.

Much has been researched and authored abot ...t large-scale re-use and tho design of
re-usable classes and libraries by authors such as Bames and Bolrnper(5), Lewis et al(41),
Gibbs et al(27),Meyer(4O)and Fischer(24). However, In many cases tr.,s ..e-use scenario is
rather Idealistic. Some application domains, such as business/commercial. are well
characterised and it is believed that the scenario works well. But in technical real-time
systems. where there are very spscific requlrernents, the level of re-use based on stable
and static component libraries is not as high.

Chapter 6 Page 100

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL~TIME SOFTWARE SYSTEMS

CustomVlew
(Cl1stolnl~ed Appllcations)

T-----+--"-r--.------- - - ,- ---
Access p.r. ocessl·. . Power

f-._V_le_w__._--,-_ Vle_w___ _ __V_ic_W 1-- _ _ _ _ _ _ _ __ ~O~ _

r-------------- __---------~------~---------~
25%

Component
Toolbox Ut1l1t1es1.____.1 O_h_Je_c_tV_I_t._W. -J.-_T_G_O_Ib_O_X__.__ . _ ~5_% __

Percentage
of Sof,ware

Figure 6,3: Buifding Block Structure and Re-usability

Furthermore in this study we observed a relatively low degree of 'wholesale' re-use of
stable component libraries. As Gibbs et al(:malso observed in their paper 'Class
Management for Software Communities" re-usable classes are derived from an iterative
process of testing and improvement. Also. because user's requirements are rarely etable,
additional constraints and functlonalities have to be constantly integrated into existing
components.

Anderson'" in his publication 'Hierarchy Evolution and the Software Lifecycte' was sceptical
of wholesale re-use, and observed even domain re-use to be disappointing. He expected
the number of new classes Introduced per new application (in the same application
domain) to slow down. and for the library to become stable, but no such convergence
occurred. The re-usability results observed in this study agree with Anderson's
observations, and likewise it was also observed that the key to effective use and re-use of
domain libraries is to be able to cope with change.

From the results of the project, it can be stated that even at this point the re-use level
attained has been v~ly good, and not far off original expectations, The results also concur
with those of sElveral other authors who have conducted related studies. These include
Meyer(Ml),Fisch'.'r'~1)and Lewis et al(41),Lewis conducted an Interesting research Which
empirically stud.€.d the re-usability and productivity Issues of object-orientation versus the
traditional approach to developing software systems. They observed that the
object-oriented paradigm had a particular affinity to the re-use process and that
object-orientation yielded no benefit if it was not re-used.

However, observations from this study did not concur with the latter statement of Lewis.
Even if no re-use of the object-oriented components were made, the relative ease of
maintenance and testing of the implemented system was certainly notable.

Chapter 6 Page 101

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

A more recent and more extensive empirical study has subsequently been conducte-i by
Lewis, Henry, Kafura and Schulman(42). They have concluded that:

* L.anguage differences are far more important when programmers te-use than when
they do not,
With re-use, the object-oriented paradigm promotes higher productivity than tile
procedural paradigm,
Software re-use improves productivity no matter what language paradigm is used,
The object-oriented paradigm has a particular affinity to the re-use process.

*
*
Although the results from this study require further verification it is believed that the results
of this study and other related studles argue strongly in favour of adoption of the
object-oriented component approach to building rea-time systems. However, It must b()

noted that to achieve this level of re-use, serious attennon was gil:en to several lmpo.tant
factors - these are detailed in the subsequent sections of this chapter.

6.3.2 Generality and Size of Re-usable vomponents

In tho project, generality and size were two issues that affected the level of re-use attained:

(a) In terms of generality of appllcaolllty: the more general the components were
deslqnsd and implemented, the lower was the eventual and eft'ectlve re-usability
benefit.

(b) In terms of component size it was observed that components that became too
large did not aid the component fe-use model. It was observed that components
became too large for one of two reasons:

* the component contained too much functionality which resulted In the
component being more specific to a particulC:trrequirement, and therefore
less applicable to other requirements.
due to too much generality· being implemented in the component w making
it sometimes unsuitable to re-use.

Biggerstaff and Richter(10)made a similar observation that as the component grows, it also
becomes more and more t pecific, narrowing its application and increasing the cost of
using it when modifications are required.

To address the issues of component generality and size, breaking up of the components
into smaller components was indicated. However, if components were deslgnAd and
abstracted too small, the 'hassle' factor in locating, browsing, understanding and using the
component exceeded the benefit gained - thus defeating the requ •ed objective. During
development, there was a concerted eFort to make generiC components that were not too
large.

An example of this in the project was the WAL (World Access Level) Object components of
the RTOMS subsystem. These t.~j('cts were initially designed such that each physical
indication monitored was represented by a WAL object instance. However, there are man)'
different types of indications, some are single physical bits, while others are complex
indications (eg. representing several statuses of that indication).

Chaptet 6 Page 102

AN OBJECT-ORfEl'vrED COMPONENT-BASED APPROACH TO BU/LDING REAL·TIME SOFTWARE SYSTEMS

This resulted in the WAL class becoming very large and also very specific to TNM type
indications. The WAL class was then redesigned and broken lip so that even coded
components of indications were represented by a WAL object. So although many more
WAL objects were required to represent the same indications, they were smaller, mora
general, and thus potentially re-usable in application domains other than TNM. Refer to
Appendix F for an example of the base level WAL t:ltms definition. This is contained in
include file WAL.h.

In summary, it was noted in this study that the size and t '<:;1erality of re-usable
components had an effect on their level of re-use. It was impossible to devise formal
parameters to control the size and generality of components - but an awareness of size
and generality considerations of components was required in the development team so
that re-use could be optimised.

6.3.3 Shrink-wrap Versus Effective Changing

As observed by Barnes and 80Illnger(5), re-use intensive development is best achieved by
focusing more on how to change software effectively than on how to keep it from
changing.

This study proved this observation to be extremely valid. Especially in the technical
real-time environment, we found it unwise to try develop excessive component generality at
high Investment cost, with the specific objective of making components stable,
unchangeable and 'shrink~wrapped'. We attempted to develop a component set with
moderate generality, but focused more on ease of changing and maintenance of
components, since it is reality that changes are always required.

To focus on effective changing was not difficult ~the Object-oriented design and
programming environment provided a far better platform than that provided by the
traditional approach. Since changes to components are an aspect of maintenance, these
issues are analysed in a later section of this chapter.

On the project, ease of changing components was further enhanced by establishing the
following procedures:

(8)

(b)

Setting up a full software configuration control system (seeS of UNIX) to control
and track changes to components,
De\lislng a component library structured similarly to the design of the components
as detailed In this study ~ObjectView, AccessView and Custom View, and within
each of those container directories were dlreotorles oontaining components
specific to MMI, WMI. RTOMS, Configuratof, Historian and Utilities. With this
approach, components were relatively easy to locate and retrieve.
Setting up rigorous software development and documentation standards so that
components could be understood, copied and modified by anyone on the
development team.

(c)

Cflapter () Page 103

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOfTWARE SYSTEMS

6.3.4 Modelling and Functional Abstraction Skills

During the development process of the generic components, it was necessary to
constantly ensure adequate inheritance structure, good abstractions and modelling, and to
guard against over-specialising classes. As the project progressed, the team improved
their object-oriented analysis, design and programming skills, resulting in a re-think on the
current designs. This would 'Uften result in a re-modelling exercise with restructuring of toe
class components. Every new improved iteration resulted in better re-use potential of
those components.

6.3.5 The Orgt:.nlsatlonal Environment for Aewuse

Apart from the technical issues that affected the level of re-use resulting from this proJect,
important organisational lssues were also observed. Some of the more significant
organisational issues are reviewed in this section, and it is intended to show that without
due attention to these factors. it would be difficult to sustain and perpetuate the
object-oriented re-use objective in the organisation.

Reviewing the literature from noted authors, specifically Booch(13)and Barnes(5), it was
apparent that to realise the full bcnetlts from the object-oriented paradigm, it was
necessary for the team/organisation to fully commit to the paradigm. In this study where
re-usability was a specific objective, it was ensured that the required equipment, personnel
and financial resources were committed to the project. Thls included:

* proper object-oriented development environment,
* necessary training,
'" supply of relevant literature and references and text books,
"" setting up of component archive repositories,
* class/component browsing and retrieval environments,
"" class/component organisation and configuration control.
'" documentation of the components.

Of particular importance was the documentation aspect • specifically the class component
documentation that would be required by potential re-users, It was observed that the
object-oriented approach relied more on graphical documentation than textual
documentation • particularly for documenting the class and object diagrams. For this
reason the documentation environment included top-end pes with ample disc and memory
capacity, WordPerfect text·editing environment, the Graphics Gallery and PowerPoint
graphics drawing packages, and letter-quality printers with graphics capability.

There is much argument whether re-use Is driven by technical factors such programming
environment, or by management and organisational factors A large school of thought
sees organisational, management and economic issues as (he biggest obstacles to
progress in softWare re-use. Others such as Meyer(46)believe that management factors are
over-emphasised, and that it is more important to focus on the technical factors. From the
results of this study, it Is my opinion that both management and technical factors are
equally important, and addressing the one without the other is a sure way to lose out on
the full benefits to be gained from tile object-oriented approach.

There are many good works and studies on component and class re-usabllity and
management, including that of Gibbs at al(27)that proposes techniques such as class

Chapter 6 Page 104

AN OBJt:CT·ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL· TIM::: SOFTWARt: SYSTEMS

tailoring, class surgery, class versioning and organisation. However this is a major topic in
itself and is not in the scope of til is study. Its application to this project is certainly worthy
of further study and research.

6.3.6 In ConclusIon

In this analysis, the level of re-use attained in this study was described. Issues such as
component generalisatron and SiZl'. managing component change, OONOOD skills and
the organisational commitment were also reviewed. l::ach of the above factors affected the
Ultimate level Of re-use.

An Important contribution to this study was the level of re-use actually attained on the
project, both in terms of re-usable components for new applications as well contlnuous
re-usability within the project itself during development.

With reg~rd to the telecommunications network management domain, an approximate 15%
to 80% re-usability of components appears achievable - a very pleaslnq result. However,
several issues had to be addressed, especially the need for a supporting organisational
environment.

One disappointment, though not unexpected, was that the component Interfaces w~re no,
always that clear. The ideal concept of the pure 'software I.C.' Which is plug-for-plug
compatible with other 'software I.C.s' is really a dream. This study has observed how
difficult it is to design and build components that are genuine 'software I.C.s'. However as
stated earlier in this chapter, successful re·usabUity was attained through focusing on ease
of changing and maintaining components.

It must be noted that the scope of this study was to build a first TNM application based on
the object-oriented component approach. Since then, our organisation has almost
completed development of two additional applications in the same TNM domain and it is
from this experience that the 75% re-usabllity is based, It is intended to refine and further
substantiate the re-usability claims as additional applications are built in the future.

6.4 THE 3-LAYEREDCOMPONENTAPPROACH

Before development of the o~'lect·oriented componr 's began, much careful thought went
into the philosophy and !.;~~\!;n of the 3-layered ObjectVlew, AccessVlew and Custom View
approach. In this secHan, tha SUCceSsof 3-layered philosophy Is briefly reviewed.

The arguments relating to the size ana istractlon of components (see previous section -
Degree of Re-use) may also be used herf:l to motivate the 3-layer categorisation of
components.

The 3·layered categorisation provided a practical abstraction of:

'I< real-time distributed systems generio components (ObjectView),
* TNM domain generic components (AccessView),
'it and application-specific components (CustomView).

Chapter 6 Page 105

AN OBJECT·ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

111 practice, the lines dividi~1g these 3 layers were not always clear. Often, object
components developed as ObjectView components took on TNM domain characteristics
and would then become AccessView components. Likewise on occasions it was found
that AccessView components were potentially re-usable ir'l non-TNM domains, and would
then be categorised as ObjectView components.

A goM exam pia of this was the set of objects belonging to the Fault Management
component of RTOMS (refer to Figure 5.6). It was initially envisaged that this was very
specific to the TNM domain, thus it was an AccessView component. However, recent
investigation has shown that with very little modification, this component is applicable to
other real-time domains, such as industri3J process monitoring systems - where process
alarms are handled in a similar way. This component was then placed in the ObjectView
class repository.

Although the dividing lines were not always clear, the 3-layer philosophy created the right
'rnlndset' in the team and organisation, to optimise for re-usability. In retrospect, this
a-layer abstraction was an excellent deslqn decision. Omitting the AccessView 01'
ObjectView levels would have resulted In lower re-usabllity in other application domains,
and addition of furthe: levels of domain characterisation would complicate class
repositories and retrievals.

Already we are investigating implementing other domalr, abstractions with re-using the
core ObjectViewomponents, Of particular interest is the industrial process
control/monitoring domain (Process View) and the electricity reticulation domain
(PowerVlew).

This study has therefore proved that the 3-layered approach was another major factor
contributing to the success of the object-oriented approach to building real-time systems.
It provided a good compromise of practical component abstraction and optimal
component re-use.

6.5 MAINTAINABILITY

The Importance of Maintenance

In earlier sections of this chapter the importance of software modifiability was stressed,
and for that reason more effort was expended on ease of change rather than
'shrink-wrapping' components. A cogent observation made by Lerman and Belady(40)
regarding the maturation of deployed software systems was that 'a program that Is used in
the real world environment must change or become less and less useful In that
environment (the law of continuing change)'.

It is acknowledged that software maintenance is a m:ajor activity in most organisations, and
as Basset(7)observes, the cost of maintenance is by far the most expensive part the
system life cycle. In fact, an extensive study by Wilma Osborne of the National Bureau of
Standards in the U.S.A. (47) suggests that 60% to 80% of the total cost of software Is due to
maintenance.

One of the criticisms levelled at the traditional procedural approach to building software
systems is the cost of maintaining the systems. Much has been authored about the
maintenance advantages of object-oriented systems, and in this section the practical

Chap tar 6 Paga 106

AN OBJECT·OR/~NTED COMPONENT-I3ASED APPROACH TO BUILDING REAL· TIME SOFTWARE SYSTEMS

maintenance issues as observed in this project are reviewed.

The Maintenance Experience on this Project

This study focused on the first development of the generic building blocks using the
object-oriented approach, and as such conclusive metrics on software maintenance effort
during the full life cycle are not available. However, there were several changes required
during the prototyping, testing and Integration of this project. these changes may be
viewed as a form of maintenance.

One subsystem on the project that had its fair share of changes, even during
development, was the MMI subsystem:

Monitoring of the multiplexer equlpment in the transmission systems was a first time for the
client and the development team. Much time was spent at technical forums with the client
deciding on the graphical symbols and graphical depiction of relationships of the
transmission equipment. The consequence was that object components of the MMI had to
be regularly modified and the result evaluated with the client. Surprisingly, this was
effected easily, and particularly noticeable was the low impact of changes ana
maintenance on the associated components. This may certainly be ascribed to the
encapsulation and data abstraction properties of the Object-oriented paradigm.

Analysing the traditional approach, it is well known that the later in the life-cycle changes
and maintenance are effected, the more extensive are the ramifications on the assoclated
subsystems' designs and implementations (Lehman(40I).But in this study it was observed
that the low maintenance effort experienced so far on t.he project was primarily due to
encapsulation of data and functionality within objects. As noted with the MMI components,
changes affected mostly the contents of the objects, in terms of its data or the methods
that operate on this data. Particularly noted With the MMI components was that where the
classes were well modelled, interfaces to the objects rarely changed, and maintenance
had limited effect on the other components.

Malr.tenal'lce Comparisons of the Two Paradigms

It was not intended to conduct a detailed analysis of the maintenance issues of the two
paradigms in this stUdy, as this Is an extensive topic in itself. However, Figure 6.4 below
depicts proposed maIntenance effort profiles of the two approaches for the different
phases of the system life-cycle. Here maintenance effort would be defined as the number
of man-hours to effect a given unit functional change.

Although these profiles are not based on sturdy empirical data measured In this study 'Or
elsewhere - the comparison provides an interesting proposal. It is based on
measurements from previous procedurally developed systems, literature readings(8.7.35.4057),
experiences on the object-oriente' project development so far, and future expectations.

Chapter $ Page 107

AN OBJECT·ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

Main tenanee
Effort

•. , , TralilU.uJ !inroad.
- O'h(t ...rh.t"

c....o••• t ."roacill

• ~ * ~ .~......

.. -~-.~---------
"'-'-,~'"

,; .
//.,,' "

.-1'

System Life-Cycle

Figure 6.4: MaintenanCI3 Effort Comparisons

Referring to Figure 6.4, the following points are noteworthy:

* It has oaen observed that during early phases of development, modifying
obleot-orlented components requires a little more effort than procedural
components. It would be unwise to regard this observation as conclusive at this
stage - it may have been due to the project team's unfamiliarity with the
object-oriented environment during initial development.

* During the second half of the development, the object-oriented and procedural
profiles cross, the procedural effort steadily increasing (even during stable systems
operation), and the object-oriented maintenance effort stabiHslng.

Verification OT lower Maintenance

The development project on which this study Is based is currently at the installation phase,
and therefore conclusive statistics and metrics on software maintenance effort during the
life cycle are not available. However, from the above review the expectation Is that the
maintenance effort with the object-oriented approach will be considerably better than the
procedural paradigm. Therefore the expected malntenance advantages further motivate
the adoption of the object-oriented approach for developing real-time software systems.

It is envisaged setting up the mechanisms and procedures so that the long-term full life
cycle maintenance rnetrlcs can be observed and compared to metrics that exist for the
traditional procedural approach.

Chapter 6 Page 109

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING ReAL-TIME SOFTWARE SYSTEMS

6.6 THE SOFTWARE BUS

At the start of the project, there were many reservatlons about implementing or integrating
a CMIS communications stack as the basis of inter-process communications. In this
section, the results of adopting the C~'IS-conformant approach are reviewed.

In this project the software bus philosophy proved to be flexible, versatile and powerful. It
provided for easy system extensibility, but also proved to be complicated :"nd initially
cumbersome to use.

System Extensibility

One of the most powerful features of the CMIS-conformar.(bus was the ease with Which
system functionality could be extended. Object-manager (or Agent) processes could be
added to the bus as required, as couid Applicatic·: ":esses (refer to earlier definitions).
Addition of these processes required no modificat,.l ' recompilation of the other
processes and components. In the worst case, an Application could request the services
of (or access to) an object which is not contained or registered in any of the
Object"managers on the network. In this case the relevant application errors are returned
to the requester.

On the core project, the MMI, WMI, ATOMS, Configurator and Historian subsystems were
implemented as Object-Managers, since they need to provide services to external
requesters ~ including other Object-managers. However, utilities such as error-log,
system-log and watchdog were implemented as ~ "'Ins. Subsequent extensions
have proved to be very easy to Implement. One ~"{ \ has been trace and debug
utilities which were developed. They were develop •Appl1cations, developed and
complied separately, and when run merely attach themselves to the software bus and
interact with the Object-managers (Agents) on ttl" bus.

Further proof of the ease of extensibility was evident with the development of additional
report Applications. A separate team was given Application program templates (a
re-usable component in itselO, and Object dictionaries. Writing a report Application was a
case of identifying the objects required, which Object-managers contained those objects,
and writing the relevant SOMI 'GET' requests to those objects. Returned attribute data
would then be formatted and displayed or printed as required.

Flexlhility

The software bus provided the flexibility because Object-mana, .. and Applications could
be started up, shut-down, modified, and run on othe- nodes .. all In real-time ..without
affecting other unrelated processes or requiring the entire network to be taken down each
time.

Re·use and ProductivIty

The core Object-manag and Application process so; Iree tiles served as a 'template' or
'frame' from which new processes were implemented. Therefore productivity Improvement
was attained due to re-use at this level.

Open Interfacing Platform

Chapter 5 Page 109

AN OBJECr ..OAIEN7'ED COMPONENT·BASED APPROACH TO BUILDING REAL"TIME SOFTWARE SYSTEMS

An obvious advantage of the CMIS·conformant software bus, although not related to the
obIect-oriented paradigm, is its capability for open interfacing. The entire d'ive by
organisations such as ISO and CCITf (refer to Appendix A) has been to provide industry
standards for services and protocols to promote open systems. In the network
management domain, the OSI/NM and the CCIIT M.30 recommendations ~jpecify common
'Q' inten'~('es between different operating platforms sr- that multi-vendor ec;uipment can
interface at the same level.

As far as the software bus is concerned, it has been designed to be OSI/CMIP/S
conformant with a '03' communications interface. Although there has been no immediate
need to provide the software bus with the full OSI/CMIP stack, the design of the software
bus is such that it can be integrated when required without affecting the applications using
the bus.

Performance Issues

There were initially serious reservations about the performance of a software bus which
conformed to the CMIP/CMIS services and protocol as proposed by OSlo Because of
OSI's objective of generality for Open Systems, the OSI services involved complicated
multl·layered communications software. Hence the concern for performance and suitability
in a real-time environment.

After several prototyping and benchmarking exercises, a slightly reduced CMIP·conformant
software bus was implemented, where not all CMIS services were implemented. The
performance figures attalned for local and cross-nodal message communications were
satisfactory. Actuai performance figures are tabled later in this chapter.

Complicated to Use

For the same reasons detailed under the performance issues above, the generality and
flexibility provided by OSI's definition fOi CMIP/CMIS made the sottware bus complicated to
use.

Because the CMIP definition provides for variable argument lists in the service calls (the
GET, SET, CREATE, DELETE, EVENT_REPORT and ACTION calls) together with dynamic
argument typing, the arguments are in the form of complicatecl and extensive linked
structures. Accessing thase calls requires definition of all arguments. This required
tlme-oonsumlnq and extensive al'gument definition for each CMIP service call. The result
was low productivit.y and a high level of syntaotlo and semarrdo software errors.

ShQrtly after t. ils, the CMIP-conformant AI'll (SOMI) was extensively modified to provide a
much more usar-trlendly API. Since then the development team has experienced Uttle
problem with using the software bus API. However, it is accepted that a steep learning
curve is still required to understand the underlying philosophy and operational concepts of
the software bus.

In summary, the CMIP·conformant software bus was one of the major factors contributing
to the success of the object-oriented approach to building real-time systems. In particular,
the philosophy lent itself to some of our primary objectives of re-usablllty, flexibility and
extensibility, and at the same time providing an open bJt standard interfacing platform.

Chapter I.l Page 110

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO Bu/WING REAL-TiME SOFTWARE SYSTEMS

6.7 APPlICAilON ENGINEERING

As described in an earlier chapter, the project team was divided into three functional roles:
the component builder. the application consultant and application engineer. Having come
to the end of the first phase of the project, it was necessary to revl=w the validity and
practicality of these roles.

In general these defined roles did work, although during the initial development phase of
the project the roles of component builder and application engineer were often exercised
interchangeably by the same development engineer. As the ObjectView, AccessView and
CustomView developments progressed, the roles became more distinct and clear.

Particularly pleasing were two recent occasions where 'Application Engineers' worked
closely with an 'Application Consultant' to build TNM application prototypes for client
demonstration purposes. Here the Application Engineers made use of the AccessView
and ObjectVlew components. and developed the relevant prototype Custom View
components.

ihese exercises did prove the success of separating the functional roles and also proved
how effectively rapid prot ,types could be developed using the re-usable components.

6.8 ANALYSIS OF SYSTEM RESOURCES AND PERFORMANCE

In this section the system resources and performance considerations of the oblect-ortsnted
approach are reviewed. The memory, disc and CPU requirements are analysed, and a
comparison is also made with the resource requirements of a comparable traditional
system.

System resources and performance are always Important parameters in any real-time
systems. What was observed was how hungry the object-oriented approach (including the
eMIP software bus) was for system resources, particularly memory, disc and processing
power.

ihe object-oriented approach coupled with the CMIS-confoimant software bus did lItilise
more system resources than would be used with a similar procedural approach with
conventional Inter-process communications. Table 6.3 summarises estimates of the
additional resources that were required by the new approach au compared to the
conventional approach, expressed as a percentage.

As the study did not cater for a 'control' traditional development, the percentages are
based on estimates for a similar development using the traditional approach with
conventional inter-process communications. Because both the Object-oriented p~radigm
and the software bus were responsible for additional system resources, Table 6.3 reflects
the percentages separately.

Chapter 6 Page 111

AN OBJEOT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE S't'STEMS

RESOURCE OBJECT·ORIENTED CMIS.CONFORMANT
PARADIGM SOFTWARE BUS

Memory 15% 100%

Disc 10% 10%.
MIPS 15% 41"1%

.:.

Table 6.3: Additional Resource Requirements of NewApproach

From Table 6.3 it is therefore evident that the object-oriented approach implemented with
the C+ + programming language utilised 10 to 15% more resources - which is not too
significant. However, the use of the CMIP-conformant communications required
substantially more memory and processing power.

Why more memory

The object-oriented approach (as applied to real-time systems) requires more memory
because each object encapsulates its data (attributes) with its behaviour (object methods).
That is, data structures are not shared between 'functions' and there is a certain degree of
accepted data redundancy with the object-oriented programming environment. Because of
the real-time application environment, the entire real-time image is memory-based, hence
the heavy memory usage. In the traditional approach, the real-time image would obviously
also be memory based, but data structures would be common and shared, hence more
efficient memory usage.

But the OMIP.conformant communications was a very heavy consumer of memory. rhis
was mainly due to Object-manager processes that are required to 'hang out' their objects
in their containment trees so that its objects are visible to other Object-managers and
Applications via the sottwaro "'us. It was also necessary for these objects to be memory
based.

Why more disc

In terms of disc usage, the object-oriented approach (as experienced on thls project) and
the OMIP communications also required marginally more disc capacity than the traditional
approach would have required.

Why more processing power

Benchmarking and testing of applications proved that the object-oriented programming
language used, 0++, was particularly efficient and powerful. If good object-oriented
programming techniques were followed, stand-alone 0++ programs proved to execute
marginally faster than their procedural 0 counterparts. However, in instances where
extensive virtual objects were used, tho additional de-referencing caused these programs.

Ohapter 6 Page 112

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDIN(3 REAL-TIME SORWARE SYSTEMS

to be marginally slower than their C counterparts.

However, the CMIP-conformant software bus and the assoclated communications required
far more processing 'horse-power' than a conventional process-to-process
communications approach would require.

The main reasons are:

(a) The CMIP-conformant SOMI API calls are very general, with variable argument
naming and typing. It was noted that the average CMIP message was six to seven
times longer in size the equivalent aCOMM process-to-process message.

(b) The CMIP·conformant protocol suite and services are extensive and complicated.
and is a large software subsystem in itself.

(c) The very nature of the CMIP protocol is very message intensive. Any call results in
an indication message (going out) and a response message (returned). With
scoping and filtering calls, multiple responses are generated. Thus for a given
application, the level of software bus traffic is three to four times that of
conventional protocol communications.

In terms of disc capacity. the project experienced no serious problems, as the incremental
cost of adding disc capacity was less than trying to manage disc utilisation. But problems
were experienced with processlnq power and memory usage, and the development team
had to perform several iterations of remodelling mid prototyping in order to limit memory
usage and CPU utilisation.

Example of Actual Resources Used

The Diagram in Figure 6.5 below is included to illustrate a typ:cal segment of the hardware
topology and configuration of the target TNM system that was developed.

Chapter 6 Page 113

AN OBJECr~ORIENrED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOF1WARE SYSTEMS

JOHANNESBURG

X-Ter.l ... h/Workalatlou
(MUll

DATA ACQtTlSI110N OtITSTATIONS

CAPE TOWN

. PRETORIA

Natlnal

X-T~r.I ... JstW(lrbfallou
(MMII

__L~
.oons.
Semr
,IlTON)

???9

DATA-ACQUISITION OtITSTATIONS-

DURBA.N

Figure 0.5: Example of TNM Hardware Configuration

With reference to the topology illustrated in Figure 6.5. the Table 6.4 lists the average
memory and disc capacities required by the target system of the development project.
The memory and disc requirements are expressed 011 a per object basis. (Note that the
figures in the table cannot be used as general guidelines· they are very specific to the
telecommunications network management application domain).

Ct(lpter 6 Page 114

AN OBJECT-ORltNTED COMPONENT-BASED APPROACH TO BUILDING nEAL-TIME SOFTWARE SYSTEMS

I Subsystem I Memory I Disc I. (Bytes) . (Bytes)--
RTOMS (per configured object) 1209: 200
RTOMS (per fault docket) 772 400
RTOMS (per dynamic link) 100 0
MMI (per display object) 950 0
MMI (per uYllamic link) 100 0
WMI (per device object) 3000 a
HISTORIAN (per alarm) 0 532

CONFIGURATOR (per object) 0 761--
Table 6.4: Memory and Disc Requirements per Object

What has been observed in this study is that the oblect-orlente« approach (together with
the CMIS-conformant software bus) In the real-time environment is a heavy consul'. ~ercf
resources. In this project, the problem was not too severe, since the required hardware
technologies are available at ever dec. ~asing costs, It was evident that often it was more
cost-effective to purchase additional memory, disc and processing resources than to
spend man-weeks attempting to cptlmlse resource u...age. Nevertheless is was tmpofLdnt
to monitor the sltuatlon, as it was easy for the situation to get out of control.

6.9 MANAGING THE COMPONENT LIBRARIES

In this section, some of the issues relating to the management of component and class
libraries are discussed. This is a particularly important issue, because without proper
management of component libraries, it is difficult to locate components for re-use and
maintenance.

Gibbs at al(~1)have defined class management as Including:

* class packaging,
* class organisation,
* class retrieval,
* class browsing,
* class maintenance (evolution),
* and class versioning.

In terms of this study it would make sense to extend this definition to refer to components
rather than classes, since in this object-oriented approach, the definition of a component
could be a single class or a set of related or associated classes. Therefore, in terms of

Chapter 6 Page 115

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

management, components need to be treated as classes.

In this project, component management was set up to consist of:

* standard documentation of classes,
'I< development environment standards,
* quality assurance procedures on code and documentation,
* software configuration control and
* component browsing and retrieval tools.

All of the above have been addressed in a satisfactory manner except for the component
browsing and retrieval. Rudimentary utilities have been developed for extracti ..m of
selectable class information from associated C++ source and header files, but this is seen
as a first step.

I am currently evaluating more advanced information systems that would provide full
support environments for class and component management. One such environment
being investigated is the TeamWork object-oriented CASE environment from Cadre
Teohnoloqlss, The main obstacle is that setting up such an environment requires large
financial and organisational commitment.

The team on this project is also investigating developing a component management
system, which would include a graphical browser/retriever based on the MMI subsystem
re-usable components! The team is llsing a very interesting paper by Helm and Maarek(34)
as the basis of the browser philosophy.

Helm and Maarek(34)acknowledge that the emergence of large collections of re-usable
components poses new problems for the software engineer. They propose techniques for
browsing amongst functionally related classes, and retrieVing classes from libraries based
on two sources of information: the source code of each class, and its assoclated
documentation. They have also proposed interesting techniques to meaningfully browse
and navigate amongst functionally related components, and integrating information
retrieval and browsing tools.

In the project, where the object-oriented approach has been applied to building a TNM
application, it was evident that the managing of change was as important as retr' , and
browsing mechanisms for locating re-usable components. This has also been (] by
Anderson and Gossain(2l,that domain analysis is a continuing process, and the ,deal of
finally owning stable product-oriented domain-specific libraries is not realistic. Domain
libraries are In a constant state of evolution, since there is always a change in the current
needs, views and solutions.

This study proved Anderson's observation to be mostly correct, and this had the following
effect on this project: as well as developing good mechanisms for browsing, retrieval and
documentation of component libraries, it was as important to have good mechanisms to
manage change to component libraries.

The problem of class management and related issues is an extensive topic and is beyond
the scope of this study. The above review serves only to note the basic issues and
highlight the importance of component management. It is also clear that successful class
management is paramount to the success of the object-oriented approach, specifically
where re-usability and maintainability are concerned.

Chapter 6 Page 116

AN OBJECT-ORIENTED r:OMPONENT-8ASED APPROACH TO BUILDING REAL-TIME SOF1WARE SYSTEMS

6.10 PROJECT MANAGEMENT AND CONTROL

Project management and control encompasses many issues. In this analyses, some of the
more significant issues relating to project management are highlighted.

In terms of the project scheduling and planning techniques, the techniques practised on
this object-oriented approach were no different from the conventional techniques.

our organisation's Management Information System (MIS) did the tracking and costing of
time booked and all financial aspects of this project. Refer to Appendix 8 for an example
of a typical MIS monthly project status report. In conjunction with this, Symantec's
PC-based ONTARGET project management package was used. This project rnanaqernent
package was used for visual week-by-week tracking of progress, task scheduling and
resource planning. Refer to Appendix 8 for an example of an ONTARGET GANTT chdl (.

Although these tools worked well for previous traditional systems development projects,
they did not work properly with the object-oriented approach. The reason for this is that
the input data (specifically time/cost budgets and progress) to these tools were inaccurate.

Two problem areas in project management were identified:

(1) Progress monitoring and management during project development.

(2) The cost/effort estimation for object-oriented systems.

6.10.1 Progress Monitoring and Management

The two above problems are associated in that if progress cannot be accurately
monitored, then it is impossible ~o estimate additional effort required. Or put more simply,
if you don't know where you are, then you can't possibly know how much further you have
to go.

The causa of these problems is inherent in the very nature of the object-oriented paradigm
itself. Unlike the traditional approach's lifecycle which has distinct phases to monitor
progress, the object-oriented development life-cycle consists of iterative design, modelling
and prototyping phases.

Whereas the progress curve with the traditional life-cycle is ideally near linear, the
object-oriented life-cycle progress curve has a sinusoidal characterlstlc. Figure 6.6 below
illustrates the comparative progress curves observed in the study.

Chapter 6 Page 117

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

nADlT!ONAL

APPROACH Allar,. ...

Protr, ..
Carvel

~erc~llla.e
eo_plete

I Y
I." \

:1 \ \
,f'): 1 \ I
I .' \ I '-'

J .: ' V

1""'"\ .',
"."""_ / \ .," I

". - <>:-: .
0% .t •••

., (
1\ i-:I,'

I "'\ "4'

\ I)/,

•• Prot. U"'I'. _

Tra •. ,roc, e..rve .•..........

OBJEC'l'-

APPROACH
User R.q.
a&\aly.11

OOA

Project Life-Cycle

Figure 6.6: Comparative Progress Curves

It was observed that on average at least 3-4 Significant remodelling/implementation
iterations were required during development of each of the subsystem components. This
made it extremely difficult for the development engineers, and even more so for the project
manager, to monitor and track the current state of progress.

As an example, after a design, modelling and implementation cycle with the
object-oriented approach, the completion status of a cornoonent may be estimated at 50%.
However, integrating with another subsystem proves modifications are required. This
could Involve re-design of the classes and object model - which sets progress on that
component back to an estimated 35%. As fast as the estimated progress can be retarded
due to redesign/remodel, it was observed that it also advances at unreal rates. Because
of these characteristics experienced, it was e}rtremely difficult to gauge and report
progress.

6.10.2 Cost/Effort Estimation

Accurate effort estimation for the traditional approach is difficult enough, but estimation of
effort (manpower) required to implement object-oriented SUbsystem components was even
mol's difficult.

Chapter 6 Page 118

AN OBJECT~ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOF1WAAE SYSTEMS

In the traditional approach, data flow diagrams from the functional analysis could be
broken down into functional or process modules. From this breakdown, effort estimations
can be made. This same breakdown could be used as the basis of the WBS (work
breakdown structure) which is used to control project development and progress.

Based on the same lines, in this study the WBS was composed from a breakdown of the
class and object diagrams produced at the early analysis phase. However the results
have not been very satisfactory and more accurate and appropriate mechanisms need to
be investigated.

6.10.3 In Summary

It is not an understatement that the above project management issues proved to be
significant problems w1th the oblect-orlented approach. By the time total project
implementation was (approximately) 50% complete, I had built up an 'experience' model of
where we: really were in terms of progress. But this is unsatisfactory, and more formal
models for effort and progress management of object-oriented development is required.

Some of the project management issues experienced in object-oriented projects have
been researched and reviewed by other authors. Booch(13)proposes that in this
evolutionary approach, one can measure progress by counting the classes in a logical
deslqn, or the modules in a physical deslqn, that are completed and working. 'this is a fair
statement, but does not take into account that a 'completed' class may not really be
'complete' due to modifications and remodelling inherent in the object-oriented
deveL,)jJment lifecycle.

Laranjeira(3S)has done research on software sizo estimation for object-oriented systems. It
is based on building up a statlsrical model (which ultimately depends on expert
estimations). Ou Plessis et al(22)proposes a modification of the Boehm Spiral)Vlodel to
form d framework for object-oriented software development and management. One of the
more detailed works on the subject 01mettles for object-oriented systems has been done
by Chidamber et al(l7). They have devised an extensive theoretical model for determining a
metrics suite for Object-oriented deSign. Other related work has also been undertaken by
Goldberg et al(29)and Boehm(12).

However, it is interesting to note that no specific references to these particular progress
management problems have been found. Further reading and research on these critical
issues Is required, and it is expected to publish the findings in a future paper. The author
is currently Investigating object-oriented progress management and effort estimation along
the lines of:

'*
'*

the average number of design/implementation iterations per class,
and avera~e effort required to implement a class.

Apart from this it is also necessary to investigate what computer-based tools (ideally suited
for oblect-orlented project management) become available in time to come.

C/Japter6 Page 119

AN OBJECT~ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME: SOFTWARE:SYSTEMS

6.11 PERSONNELTRAINING

In this section the training approach adopted is reviewed and noteworthy problems and
issues are discussed.

At the start of the project, none of the development engineers had any ei!.~rienCe with
:abject-orientation, c++ programming or with the eMIPsoftware bus conee \t(and
protocol. The training was structured in two parts: methodology/technology i ,ainirf;li end
training in the development team roles.

6.11.1 Methcdology and Technology Training

This included training on object-oriented analysis, design, and object-oriented
proqrarnmlnq in c++.

All members of the development team (except Application Consultants) underwent
technology trainIng. Most of this training was conducted by external organisations, but
training was backed up with the purchase of sev }fal good reference books. The external
training was l combination of OONO courses mil by the University of Witwatersrand
Electrical Engineering faculty, and C++ training run by outside consultants.

It was noted that even experienced software engineers struggled somewhat with the
concepts of object-orientation. Learning how to model real-world problems in terms of
objects, and not fall into the functional decomposition mindset, was difficult. From the
experience gained in the study, two conclusions can be made about technology training:

* Miracles should not be expected after a technology course lasting a few days.
Much practice was required before development engineers learnt how to truly
apply object-oriented principles in their designs and code.

* It became evident that development engineers gained far mora benefit from
OONOOD technology courses if they had at least some exposure to an
object-oriented programming environment such as c++ or ~malitalk prior to the
courses. The reason tor this is that the OONOOO courses are focused more on
the theory of the paradigm. Previous OOP experience gives students better
appreciation of the application and implementation of the Object-oriented
methodology from a programming point of view.

6.11.2 Development Team Roles Training

The development team roles defined for the project (the tool builder, application engineer
i:tod application consultant) were described in detail in Chapter 3 of this study. It was an
adaptlon of the roles described by Pliskin'oUlland Booch(13l, Pllskln proposed separating
software engineer functions from domain engineer functions, and socch defines the roles
of class designers, class implementers and application programmers. Training of the
development team was structured around the roles defined for the project.

Chapter 6 Page 120

AN OBJECT-ORIENTED COMPONENT-BASED APP,qOACH TO BUILDING RfAL-TfME SOFTWARE SySTEMS

Component Builder training

Training for Component Builders consisted of:

*
*
*
*
*

philosophy of the building block approach,
design of the ObjectView and the AccessView components,
thorough technology training (dONOOD, C++, UNIX)
use of the CMIP-conformant software bus,
coding Object-Managers and Applications.

Application engineer training

This training was focused at Application Engineers and included:

*
*

philosophy of the building block approach,
using the ObjectView and AccessView components to build new Custom View
applications as defined by the Application Consultant,
use of the CMIP-conformant software bus,
coding Object-Managers and Applications,
integration of the components to build a working s 'em,

*
1<

*
Application Consultant training

It was more Important for Application Consultants to have thorough knowledge of their
application domains (eg. telecommunications network management), as this type of
knowledge is not easily or quickly acquired. Additional training consisted of:

philosophy of the building block approach
primary subsystem components
functionality of these components
applicability of the components to domain problems

The development team role training was conducted Internally by the project managers and
the more experienced development engineers. They were run mostly as participative
workshops.

*
*
*
*

Success of the new object-oriented approach to building software systems required full
commitment in so far as personnel training was concerned. Training based on the
development team roles described earlier proved to work, but special attention was
needed to teach object-orientation as a new way of thinking about software systems, and
special attention was also required to train aUthe development engineer$ on tha use of the
SOMI software bus.

Chapter 6 Page 121

AN OBJECT-ORIENTED COMPONENT-BASED AF, rlvACH TO BUILCING REAL-TIME SOFTWARE SYSTEMS

6.12 OTHERORGANISATIONALISSUES

Th6re are several important organisational issues that were observed in this study. These
are described in this section.

6.12.1 Management Commitment to the New Approach

From a management point of view:

(a) There had to be a clear and unambiguous statement of intent of why and how the
approach would be adopted.

(b) There had to be a commitment of financial and personnel resources in line with the
statement of intent.

(c) The necessary infrastructure had to be set up, such as computer and software
development resources.

An important observation made in this study was that there should not be, or perceived to
be, a half-hearted approach to adopting the new methodology.

6.12.2 Support and Commitment of Development Staff

Again, to ensure the success of the new approach, it was important to get the support and
commitment of the development staff. It should be remembered that people are normally
afraid of, and resist change, and if the object-oriented approach is perceived as a radical
change that may obsolete their knowledge, the perceived threat can be
counter-productive. Chuck Duff and Bob Howard(23)in their article 'Migration Patterns'
describe how object-orientation must be introduced as evolutionary and not revolutionary.

To gain the support and commitment of the development staff, it was thus necessary to
adopt a phased approach to introducing the object-oriented paradigm to the organisation.
The phased approach is discussed in further detail below.

6.12.3 A Phased Aduptlon of the New Approach

Both Duff et al(23)and Yourdon(58)strongly advocate a phased approach to Introducing the
object-oriented paradigm to the organisation. In this study, the object-oriented paradigm
was not introduced as the 'Silver Bu!let" the radical solutlon.to all software's problems.
Instead, it was phased in. starting with a small graphics man-machine prototype. Further
work and research was encouraged, and initiative was recognised. Once the roots had
taker. hold in a few individuals, the concepts and philosophies were further driven by
project management. It fact, it was so well accepted, that technology declslons were
eventually driven by team members themselves.

To review the motivations for a phased approach to adopting the new oblect-orlented
methodology:

(a)
(b)

It gave our organisation an opportunity to assess the potential benefits and risks.
It allowed our organisation and development staff to gain experience at relatively
low risk.

Chapter 6 Page 122

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

(c) It was less disruptive on the organisation's resources as a whole.
(d) It minimised anxiety because of the safety ties to the existing technology.

It is therefore clear from this and other research studies that a phased approach has many
benefits which would assist in a successful transition to the object-oriented paradigm.

6.12.4 Creating a Re-use Culture In the Organisation

One of the major objectives of adopting an object -oriented approach to building real-time
systems. is re-usability. It c,),..ld have been quite easy to develop our first 'object-oriented'
project as a custom one-off project, but to benefit from re-usablllty, it was necessary to
develop a strong re-usability culture in the organisation.

In this project we did manage to create such a culture, and two factors contributed to this:

(a) Separating builders from re-users

This means separating the building of generic components from the reuse and
customising of the components. Chuck Duff and Bob Howard(23)in their article
'Migration Patterns' detail how their research has highlighted the importance of
separating 'builders' from 're-users', This was exactly what was done on this
project - separating the Toolbuilder role from the Appllcaden r':ngineer function,
Separating these roles encouraged the re-use culture. It was also necessary to
have regt:lar interaction between these groups - this ensured that ToolbuUders
were not developing classes too generic and therefore of limited re-usability, and
also ensured that Toolbuilders identified all application requirements that could be
modelled generica.lly for reuse.

(b) The re-usabillty Champion

To help drive the organisational awareness of reuse, and to ensure the new
approach became a re-usable component approach, it was necessary to have a
'Re-usability' charnplon, This essentially was one of the author's roles on the
project. Under client pressures and deadlines 1 . develop the TNM application. it
was easy for the project team, including the Tooibullders, to focus entirely on the
application problem! to the detriment of the reuse objective. It was necessary for
the champion to be regularly involved in design and modelling sessions to identify
and keep focus on potentially generic object classes and components that could
be re-usable in other technical real-time applications.

6.12.5 The Software Porting Mistake

One particular argument that needs to be noted is the folly of 'porting' code from the
traditional environment to the new object-oriented environment. By porting is meant trying
to fit the procedural flow of traditional programming software into an object model of the
OOP environment.

On this project it was attempted to 'port' the original data-acqulsltlon programs (that

Chapter 6 Page 123

AN OBJEct-ORIENTED COMPONENT-BASED APPROACH to BUILDING REAL-TIME SOFTWARE SYSTEMS

interface with the telecommunications outstations) to object-oriented components in the
WMI subsystem.

Objects were modelled to fit with the structure of the existing code, but the object methods
became too lengthy, complicated and untidy. It was then decided to discard this; .iea .
totally and a complete re-model of the WMI component was done, based on tht: real-world
breakdown of the equipment (to be inteifaced to), into objects. The results were a great
improvement. So the lesson learnt was not to be tempted to 'port' procedural code to an
object-oriented environment.

In reviewing the general organisational issues, several important points have been raised,
each one a factor in affecting the overall success of this approach. Thesa include the
commitment and support of management and development staff, creating a re-use culture
in the organisation, and the use of a pilot project as a first introduction to the
object-oriented approach. A more technical issue that has been highlightEld is that the
organisation should not be tempted in allowing code porting from the procedural
environment to the object-oriented environment.

6.13 CHAPTERSUMMARY

In this chapter, the results of object-oriented component-based approach to building a
real-time TNM application were analysed. This chapter covered many diverse topics
associated with adoption of the new approach. Nevertheless, several important notes and
observations have been made. Some of the findings challenge those in other related
studies, while other observations are corroborated. Notwithstanding some of the pitfalls
associated with this approach, the important paint of this chapter is that there exists
sufficient motlvation for the primary arguments of this study.

Chapter 6 Page 124

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

7. CONCLUSION

In this concluding chapter, the overall objectives of the study are firstly restated. Within
context of these objectives, the arguments and contributions of the previous chapters are
reviewed, and a final conclusion is presented.

7.1 RESTATEMENT OF THE STUDY'S OBJECTIVES

f' 0 that the conclusions and arguments in this final chapter can be viewed in perspective,
.he objectives of this study are restated below:

* To research and develop an Object-oriented component-based approach to
building real-time distributed systems.
To demonstrate the application of this approach by developing a real-time
Telecommunications Network Management system,
To crltlcally analyse the results of the object-oriented approach, specifically from
the re-use, cost, maintenance, performance and project management point of view.

*

*

7.2 REVIEW OF PREVIOUS CHAPTERS

Chapter 1 introduced the objective of the ttudy, defined the scope of the work and
detailed the organisation and outline of t: ,e report.

Chapter 2 reviewed the different approaches to building real-time technlcal software
systems, and reviewed the general criticisms levelled at the traditional procedural
approach.

Chapter 3 introduced the concept of a component-centred approacn, and how this could
be achieved with the object-oriented paradigm. Several aspects of the object-oriented
approach are detailed, including the implications of software standards and hardware
technologies.

Chapter 4 presented the architecture and structure of the generic core building blocks
required for real-time systems, and described the components of the various subsystems.
The motivation for the software bus was presented and its philosophy and design was
described.

Chapter 5 focused on the telecommunications network management application domain
and described how the core building blocks were extended to produce a set of
domain-specific components or building blocks. Chapter 5 also detailed the
customisation and integration of these components to build a real TNM application.

Chapter 6 presented the analysis of the approach, reviewed the arguments, and noted the
issues. Specifically, aspects such as re-usability, maintenance, development effort,
training and other organisational issues were addressed.

Chapter 7 Page 125

AN OBJECT-O/i'IENTED COMPONENT·BASED APPROACH TO Su/WING REAL-TIME SOF7WARE SYSTEMS

7.3 GAl'lSFACTION OF THE STUDY'S OBJECTIVES

In terms of the objectives set out, the study has been successful. A component-based
object-oriented approach to building real-time systems was developed, and from the
components were built a real-world telecommunications network management application.
The issues and problems associated with this approach were also id.entified and analysed.

The study has clearly confirmed that three major factors contributed to the success of this
approach:

(1) The object-oriented paradigm, which includes the object-oriented analysis, design
and programming environments.

(2) The 3-layered component structure philosophy, with the real-Ume-generic
components, the domain-generic components and the customised components.

(3) The CMIS/CMIP-conformant software bus philosophy.

7.4 CONCLUDING REMARKS

The analysis of the approach in Chapter 6 has highlighted the benefits of the
object-oriented approach. It has been demonstrated that if the noted issues are
addressed, this approach does yield rewarding benefits including genuine re-usability,
effective rapld-prototyplnq, shorter application engineering life-cycles, and improved
maintainability and testability.

This study has also shown that this approach can place severe constraints on the
organisation. For it to be successful, it requires total commitment from both the
development personnel as well as management. The approach requires a very steep
learning curve, commitment to relevant training programmes, and availability of suitable
development and computer resources.

From a project management perspective, the monitoring and management of development
progress proved to be very difficult because of the iterative nature of object-oriented
design and software development. Addressing this satisfactorily remains a challenge and
is certainly a subject worthy of further research.

Most important, it was observed that to achieve the primary goal of genuine re-usability, it
is necessary to instil a 're-usability' culture in the organisation. Contrary to some other
studies, the object-oriented approach did not prove to be the 'silver bullet' to all the worlds
software problems. As COX(19)states, the possibility of a software rev...·JtiO'l wher=
developers stop programming everything from scratch and begin assembling ap[... Ions
from well-stocked catalogue of re-usable software components, is an enduring, but elusive
dream.

I can only agree with the above statement, as well as the comment by Goldberg(29)that
components placed in a market face a wide variety of different demands: even well
designed components with minimally constrained interfaces will have trouble attracting a
critical mass of customers.

Rather re-usable components should be seen within the context of a sing!s organisation,
where the re-usable code can become an important business asset, to be treated as an
investment and a capital good, rather than simply a cost.

Chapter 7 Page 126

AN OBJECt-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

7.5 WHERETO FROMHERE

In terms of the future, this approach has so far shown such rewarding benefits that " and
our organisation, are fully committed to its further development and application in the
real-time systems development arena.

One of the biggest challenges ahead is structuring our organisation to best manage its -
Investment in creating and maintaining re-usable software components. This includes the
development and execution of re-use metries mechanisms, managing practices for design
for re-use and design with re-use, library management, best re-use practices, consulting,
training and workshops.

Most important is to provide an information systems for cornpor. snt library management,
including mechanisms to effectively change and maintain the components.

7.6 FINAL CONCLUSIONS

tn summary of this concluding chapter, the study has successfully argued that:

(a) The Object-oriented paradigm proved to be a successful approach to building
real-time systems - achieving genuine reusability, lower total development cost,
and better maintainability and testability.
The a-layered structured component approach coupled with eMIP-conformant
Software Bus proved very effective in this environment D further improving
reusability, maintainability and testability of this approach.
There are several technical and organisational issues that need to be observed
when considering this approach.

(b)

(c)

Chapter ., Page 127

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO Bu/WING REAL-TIME SOFTWARE SYSTEMS

8. FUTURE RESEARCH

From the content of this report, it is evident that the scope of the subject is extensive. This
has resulted in several unanswered questions, and has highlighted areas where further
work is required. Chapter 8 concludes the Project Report with a review of these areas
requiring further research and study.

8.1 FORMAL METRICS FOR COMPARISON OF THE TWO APPROACHES

Because it was necessary to limi\' the scope of this study, it was not posslb'e to include the
measurement, analysis and comparisons of certain metrics. "hese inch. de accurate and
substantiated metrics for the olalmed improvements in produc:ivity, maintenance effort and
testability of the object-oriented approach as compared to our olganisation's traditional
approach to building software systems.

I have already set up mechanisms to monitor these parameters over the life cycle of future
applications based on the generic and domain-specific building blocks, and to report the
findings in future artlcles,

8.2 A TOTAL SUPPORT ENVIRONMt.:l"T FOR RE·USABILlrY

Another area worthy of further study is implementing a total support process for
developing generiC, re-usable software. As proposed by Gibbs et al(2n,Fischer(241,and
Anderson", this includes designing systems for maintaining and changing the component
libraries, defini~. , how to integrate such systems and establishing the appropriate
lntrastructur, assure wide accessibility of these systems. This should be extended to
making re-use and re-design possible, with the design of intermediate abstraction levels
being an integral part of the software engineering process.

Much of this can be addressed with use of an information system which will store, manage
and cateqorlsc !!braries or clusters of object class groups, manage a quality control
rnechanlsrn for classes submitted, and ensure completeness of component/class libraries.
Also with a repository, application engineers are more likely to get a standard vsrslon
rather than a version full of undocumented local modifications.

In fact, on completion of the first phase of the project, it become apparent how important
this issue really is. To promote real re-use, a full support environment is required, with
tools, help, browsing and information retrieval environments. Our experience confirms the
findings of other authors such as Fischer(24),that the cost of finding the required
components, understanding them, making changes and re-using must be kept low.

I am currsnny investigating a whole support environment, using a combination of
third-party tools and our own tailored environment, and this could be the subject of a
further interesting study.

Chapter 8 Page 128

AN OBJECT-ORIENTED COMPONENT·BASED APPROACH TO BUILDING REAL-TIME SOFTWAR£ SYSTEMS

8.3 . MANAGING AND CONTROLLING OBJECT-ORIENTED PROJECTS

Lastly. a critical issue stressed in this study is that of project management techniques
required for object-oriented software development projects, specific areas requiring
further research are techniques for effort estimation and formal techniques for measuring
and monit~ring progress of oblect-orlented projects.

Chapter 8 Page '129

AN OBJECT-ORiENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

APPENrJIX A: FORMAL AND DE FACTO STANDARDS FOR
OPERATING ENVIRONMENTS AND
INTERnNETWORKING

In Chapter 3, the new software technologies and standards affecting the re-usable object-oriented
approach were briefly reviewed. Of specific interest is the current status of the formal and de facto
standards for Open Systems, and the gradual convergence of these two camps.

The subject of standard technologies for Open Systems is extensive and is not in the scope of this
study. However this Appendix, which supplements the Chapter 3 discussion on Open Systems,
attempts to review the subject in more detail.

A.1 COMMONINTERESt USERGROUPS

Because of frustrations with the continued disagreement between (II and OSF, vendors
and other users have banded together to form their own groups. This has primarily been
motivated by their need to assert their needs for standards and portability rather than be
at the mercy of vendor-created ·standards bodies'. The following are the more recognised
bodies.

International Sector Information technical Group (IPSI1) - This is an international council
trying to harmonise the government OSI profiles (GOSIP's) of its various International
members. Its main objective is to encourage a "European Handbook fl)r Open Systems"
which defines a common set and OSI interface for technology procurement.

Petroteohnlcal Open Systems Corporation (POSC) - This is an Industry-specific association
founded by the oil industry, notably Mobil, Texaco, Chevron, BP and EI Aqu!taine. Its
mission is to standardise on the access, storage and sharing of databases.

User Alliance for Open Systems (UAOS) - This user group's objective is to achieve
'lnteqratable' business information environments. This is to be achieved by an operating
system free of vendor affiliation, and believe that even UNIX is still too proprietary. They
have Joined the Corporation for Open Systems (COS) to support the advance of OSI and
Integrated services digital network (ISDN) standards.

A.2 CONSORTIUMS

Unlike user groups, consortiums are funded by computer industry hardware and software
suppliers. Their motivations are varied and not always in industry's best Interest. The
motivations to join a consortium include:

* to lead the industry in a technology - to ensure they are not left behind should the
technology become a de facto standard
to evaluate future product development of competitors
to disrupt progress of the consortium to enable them a marketing edge for a
competitive product

*
*

Appendix A Page 130

AN OBJEOT-ORIENTED OOMPONENT-BASED APPROAOH TO dUlLDING RI:AL-TIME SOFTWARE SySTEMS

The OSF and UI are two of the larger consortiums often competing with each other.

The Open Software Foundation

This foundation was formed to prevent the growing control of UNIX as the Open Operating
System by a limited number of vendors. It has released its first operating system OSF/1
which provides for 'standards' operating system, user interface, and distributed computing.
Apart from being supporter by vendors, government agencies and educatlonal institutions,
OSF consists of a sc .'ivdre development company and research institute intended to
define specifications, and develop products supporting open portable application
environments.

Its direction is consistent with the XlOpen Common Application Environment, the US
National Bureau of Standards Application Portability Profile and other equivalent
international standards. It also provides interface compatibility with XPG3 and POSiX
specifications meaning that implementations must provide the specified application level
lnrarfaces to support portability.

UNIX International (UI)

This is a mum-vendor organisation originating from an earlier alliance between SUN and
AT&T in 1988 to develop UNIX, and finds itself competing with OSF to be perceived by
users as the standard for Open Systems. Its oh;Gctive is to direct the evolution of UMX
System V through participation from vendors, softWare developers, end-users and
academic mstltutlons,

UI does not develop any products, rather it C:afinesspeclflcatlons that can be turned into
licensable products by UNIX System Laboratories (USt" a subsidiary 01 AT&T. Preducts
are developed to comply with IEEE 1003 POSIX standard and the Open Systems Directive
issued by the XlOpen Group.

A.3 Ui'JIX AS AN OPERATING SYSTEM STANDARD

This development has been centred on an operating environment originally developed by
AT&T called UNIX. This operating system, whioh was originally developed by the
academic community, is open in the sense that it is available in a documented form to any
software and hardware developers, as well as end-users.

However since the advent of AT&T's UNIX, a considerable number of proprietary versions
of the environment have emerged and further standards have evolved.

- 1969 AT&T's UNIX and Open Systems
- 1975 Bell licenses UNIX to Universities (eg. Berkeley)
- 1976 Microsoft first release of UNIX
- 1977 seo and ISC founded
- 1978 VAX UNIX adopted as unlverslty research standard
• 1979 UNIX version 7 from Bell Labs

AppendIx A Page 131

AN OBJECT-ORIENTED COMPONENT-l3ASED APpROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

- 1980 UNIX becomes standard for US Department of Defence DARPA project
- 1982 System V Interface Definition (SVID) developed
- 1983 UNIX System V release 1
- 1986 X Consortium formed
- 1988 UI and OSF formed
-1990 AT&T creates USL and OSf/1 released
- 1991 MP SVr4.0 released

Unfortunately, the different UNIX standards potentially undermine the fundamental aim of
portability. Nevertheless associations of interested parties have been created to steer
future development towards a single, standard version of UNIX and other operating
environments. These include GOSIP o POSIX and X/Open(31;.

A.4 OTHI:R COMMON APPLI~ATIONS ENVIRONMENT STANDARDS

There exist several other organisations, either non-profit, educational or driven by
govemmant, which define, control and promote operating environment standards. GOSIP,
POSIX and X/Open are amongst these.

GOSIP
This is an acronym for Government Open Systems Interconnect procuremenq?rofile, and
outline') the government policy and strategy for converting to an OSI communications
systemr.'l).

POSIX
This is a formal standard relating to Open Systems which assists governments and
corporations assessing compliance in the procurement process, and ensuring applications
portability, The long-term objective of POSIX is to specify a UNIX-like portable operating
system which could well result in creating alternatives and competitors to UNIX and be the
start of a new generation of open systems(32), Originally a project of the USA IEEE
Computer Society, in recent years the IEEE's POSIX work has been endorsed by both the
American National Standards Institute (ANSI) and the National Institute for Standards and
Technology (NISl). It comprises a multitude of lEES co-ordinated working groups which
are defining specifications and standards for user Inter' '"I~,networking, multi-processing,
security, systems administration, testing, tools, real-time elt:. Because POSIX was
originally intended to be a generic, non-brand-name specification for UNIX, AT&T's real
UNIX will obviously, at least for the moment, become the preeminent POSIX-compllant
operating system, However, In the future it may face much of competition In the open'
systems arena.

X/Open
As discussed previously, X/Open assumes a pivitol role in combining the formal standards
and de facto standards created by the market. It Is an open international organisation that
is evolving a Common Applications Environment by working directly with users, the
software industry and hardware vendors. Several governments including the Edfopean
Community Parliament endorse this body. X/Open's mission is to support the Open
Systems movement in order to bring greater value to users while increasing market
potential for computer suppliers and independent software vendors. It h-is formulated the
X/Open Portability Guide (XPG) which is a set of specifications combining both formal and
de facto standards't".

Appendix A Page 132

AN OBJECT-OR/lENT ED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

A.S INTERNETWORKING AND PR010COl STANDARDS

The more widely used inter-networking and protocol standards can be classified as
follows:

Formai Standards De facto Standards

OSI TCP/IP

CMIP/OMIS ARPNBSD

OMOT SNMP

OSI/NI\1 OSF/DME

OCllT/TMN SNA

Tep/IF'

TCP/IP is the de facto standard tor inter-rtetworldng heterogeneous systems in a network.
It originated in the late 1970s as a network techno:'1gy to link systems in the USA
Department of Defence's ARPANET. Because of its longevity and popularity, TCP/IP has
acceptance and support amongst almost all major hardware and software vendors, and
many applications based on this protocol suite are available. Since the early ARPANET
days, TOP/IP has gained new enhancements such as Remote Procedure Calls (RPCs) and
Network File System (NFS) to aid development of distributed applications. Tep/IPs
strength is that it is one of the few proven mature technologies for inter-operability that
works.

TCP/IP is generally regarded as a lightweight solution for managing TCP/IP networks that
is easily implemented without large scale resource requirements typically required by OSI
implementations. However, it is now accepted that the TCP/IP internet standard can no
longer be considered as an interim solution but will continue to be used and coexist with
formal standards.

ARPA/sSO

The U.S.A. Defence Advanced Research Projects Agency (DARPA), formerly known as
ARPA, is a government agency that began funding in the mid 1970 research with the
ARPANET and later the Internet. The Berkeley Software Distribution (BSD) was a version
of UNIX that the University of California integrated with the TCP/IP suite of protocols via
external funding. This resulted In useful extenslons to the basic TCP/IP protocols,
including a suite of utility programs as well as 'socket' Interface that allowed application
programs to access communication protocols.

This is now formally part of the Berl<eley 4BSD UNIX distribution, and an abstraction of the
services, known as Berkeley Services, has been incorporated into many other vendor's
UNIX environments.

AppandixA Page 133

AN OBJECT·ORI£NTED COMPONENT-BASED APPROACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

SNMP

The Simple Network Management Protocol (SNMP) is the de facto standard for TCP/IP
network management, supported by a wide v<Jrietyof network devices and software. Both
TCP/IP and SNMP have been criticised for a number of limitations, such as not addressing
all areas of systems and network management in a consistent, complete fashion, and work
remains to be done in the area of security.

OSF/DME

The OSF/DME is the Open Systems Foundation's specification for the Distributed
Management Environment (DME). It complies with current formal standards and
addresses the need to unify the management Of systems in heterogeneous environments.
Its objective is to support different management protocols and communications stacks, as
well as the underlying object models. This it achieves through the use of gateway
technologies and Application Programmer Interfaces (API) that translate management
protocols and object models, and meet the requirements of both procedure-oriented and
object-oriented programming methods.

SNA

This is IBM corporation's proprietary Systems Network Architecture (SNA) which was first
introduced in 1973. It defined the architecture and network products for providing a
cohesive communication system in a distributed processing network. It defines the rules
and protocols for the interaction of computer, peripheral and software components in a
network.

Although SNA'!:I functions are quite similar to the OSI model, the manner in which the
functions are implemented are quite different. For this reason it is regarded as too
proprietary I and while some regard it as one of the de facto standards, many have
questioned this.

OSI

The OSI protocol suite is based on the internationally recognised seven-layer Open
Systems Interconnect (OSI) model which was formulated by the International Organisation
for Standardisation (ISO). In contrast to TCP/IP, OSI is not yet a product or an established
set of protoco's. Rather it is a model for applying open standards to help ensure
networking computability between heterogeneous systems. Or expressed another way,
OSI provides a structure into which internationally agreed standards can be fitted. The
OSI Reference Model is a seven-layer framework consisting of the physical, data link,
network, transport, session, presentation and application layers. Because of the layered,
structured approach, it offers the most global and flexible environment for global networks.

Today, several international governments and organisations have wholly endorsed the OSI
standard as the best way to achieve Integration of systems and to ensure the widest
possible choice of products and suppliers. Examples of this are the U.S.A. and U.K.
authorities that have implemented Government OSI Profile (GOSIP) programmes to ensure
OSI conformity, and similar support comes the Japanese and European Commission.
Many standards organisations such as ANSI (USA) and ETSI (Europe) have adopted OSI
for LOGaland Wide Area Networks.

Appendix A Page 134

AN 08JF.CT-OAIENTED COMPONENT-BASED APPROACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

CMIP/CMIS

ISO has provided a suite of standards for management of diS1ributed systems. They have
specified a Common Management Information Protocol (CMIP) and its associated
Common Management Information Services (CMIS). CMIP is intended to provide a
consistent means of interfacing with a highly varied set of networked resources.

However, CMIP alone does not provide for managing distributed systems. For this reason,
standards have also been specified for:

- how management data is organised
• how operations on this data is performed
• and how managed resources can be found in a network

These standards have been partially defined by ISO's Structure for Management
Information (SMI) and Guidelines for the Definition of Managed Objects (GDMO). These
standards define the conceptual model of how information is to be treated abstractly.

CMIP and the associated standards are based on the concepts of object-orlentatlon and
Managed Objects (MO), which is a representation of the resources and services to be
managed in terms of its current state (attributes), its behaviour (operations) and the event
notifications it may generate. In this way, all operations can be carried out through the
same interface and with the same style of interaction - by communicating with objects.
The concept of managed objects unifies the seemlngl~' different approaches of systems
and network management.

CMIP is the formal standard for OSI management. It is gaining further support and many
organisations have incorporated it into their procurement specifications. Already CMIP has
been implemented in a variety of environments and on top of several protocol stacks.

CMOT

Because today's de facto standard for networking is the TCP/IP suite of protocols, the
upper layers of the OSI protocols have been implel iented on top of them as well. An
example of this is the Common Management lnterface Over TCP/iP (CMOT) , which has
been specified by the Internet Activities Board (lAB).

OSI/NM

Tills Is OSl's definition of inter-operable interface protocols for Network Management (NM).
It is primarily based on existing and draft formal standards from ISO and CCITT. It
specifies the protocol elements for network management for use in operations,
administration, and providing related communication between different management
domains.

CCITT/TMN

CCIlT has issued Recommendation M.30 which defines the standards and principles for
Telecommunications Manaqernent Networks. Within this recommendation, CCITT have
defined Recommendation G.773 which defines the protocol suites for "0" interfaces of
transmission systems, and RecommendatiQn G.7B4 which addresses aspects of the
Synchronous Digital Hierarchy (SOH).

AppandixA Page 135

AN OBJECT-ORIENTED COMPONEN7:BASfD APPROACH TO BUILDING Rt:AL-iIMfS SOI-'7WARE SYSTEMS

The "0" interface of G.773 supports bi-directional data transfer for the management of
telecommunications. It speoltles 5 protocol suites for "0" interfaces: two she.' stacks (Ai
and A2.) for local communications (LAN) and 3 full stacks for either local or wide area
communications (LAN or WAN).

The CCITT Recommendation G.784 addresses the management of SDH, including tho
monitoring and control functions. This recommendation describes a full protoGol stack for
network management to be carried as an embedded control channel over the SDH data
communications channel.

A.S IN SUMMARY

This Appendix is a brief review of the standards and technologies that had to be
considered for this study. The subject of Open Systems and standards is extensive and
the reader is encouraged to refer to the references in the Bibliography of this report for
more detailed reading.

Appendix A Paga135

AN OBJECT~ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

APPENDIX ~: SAMPL~ REPORTS FROM PROJECT
MANAGEMENT TOOLS

In Chapter :3 the project management methods and tools used on the object-criented project were
reviewed. This appendix contains an example of a Management Information System (MIS) monthly
report and an ONTARGET project Planner GANTT chart as used on this project. For the sake I')f
brevity, the MIS report has been summarised.

Figure B.1 is an example of a typical monthly project management report as obtained from the
company Management information System (MIS).

Figure B.2 is an example of a typical weekly ONTARGET GANTT chart. Note how this project
planner package displays task inter-depencies on the GANTT chart, effectively including the
primary feature of the PERT chart on the GANn- chart.

AppendixS Page 137

SSW-DATA (I'TY)LTD. - PROJECT MAtlAGEMEflTREPORT
===================~=====================:======
Job: BDJ2618 Description: ASLAN
Owner: AB Job opendate : 21-FEB-91
Cost Centre : I'ROJ Classification: INDIRECT INCOME

Menu : 11.1.1 Printed on : 26-JAN-93 Page: 1

Weeks 9227 to 9231 21-JUN-92 to 31-JUL-92
CLose dnte :
FIN CHARGES: Y

TOTAL HOURS======:==== ACTUAL BUDGeTED RFVISED ESTIMATE TASK
WORK DeSCRIPTION HOURS HOURS BUDGET HOURS STATUS
==== ===~====================~=======~===~= ======== =====~========== ======== =====~
10A UTlLITIES
10B SYNTAX CHECK
~2A AS~AN MARKETtNG
12B ASlAN MARKETING LITERATURE
12C ASLAllPRODUCT DEMO PACKAGE
13A ACCESSVIEW pROOUCt SPEC
13B OBJECTVIEW pRCOUCT SPEC
13C ACCEPTANCE TES, PROCEDURE
1A PROJECT MANAGEMENT
1B PROJECT PLANNING
1C MF.ETINGSON SITE
10 TRAVEL
1E TECIINICAL,..gETINGS
1F ASLAN PRJ. ADMIN
1(;pac STANDARD
2A INTEGRATION
2B pORT/EVAl/BENCH
2C SYSTEM ADMIN/MANAGE!4EHT.
20 CONFIG DATA TAKE-ON
2E CONFIG DATA FIX
3S UNIX/C++ TRAINING
3C 000/001'TRAINING
3D TOOLKH ENG. TRAINING
3E API'. ENG. TRAINING
3F SALES TRAINING
4A MAN-~'ACHillEINTERFACE (MMD
SA WORLD-MACHINE INTERFACE (WMI)
6A REAL-TIME OBJECT MANAGEMENT SYSTEM RTOMS
7A CONFlGURATOR
8A HISTORIAN
8B CONFIGURATION REPORTS
8C HISTORIAN REPORT MANAGER
80 JSM DAILY REPORts
8E DB DOCKET REPORTS
9A COMMUNICATIONS

185.00 850.00 850.00 550.00 A
162.00 162.00 120.00 162.00

.00 .00
14.00 14.00

.00 .00
214.00 1300.GO 1300.00 "100.00

.00 400.00 400.0r. ,00.00

.00 150.00 150.0Q 150.0G
826.00 1500.00 1500.00 1500.00
71.00 100.00 100.00 100.00
24.00 77.00

.00
176.00
222.00 500.00 500.00

.00
104.00
a1.00
7'.00
.00
.00

85.00
226.00
169.00
29.00

.00
1575.00
1399.00
1854.00

2.00
191.00
500.00

200.00 200.00

200.00
1760.00 1760.00 1760.00

200.00

120.00
400.00
400.00
400.00
200.00

2000.00
1700.00
2000.00

120.00
400.00
400.00
400.00
200.00

2000.00
1700.00
2000.00

400.00
150.00
120.00
400.00
400.00
100.00

.00
4500.00
2400.00
3600.00

1067.00 2200.00 2200.00 3700.00
97?00 1400.00 1400.00 1000.00

C
C
C
C
A
A
A
A
A
C
C
C
A
A
A
A
A
A
A
A
A
A
A
C
A
A
A
A
A

.00 100.00 A

.00 120.00 A

.00 400.00 A

.00 60.00 A
548.00 1500.00 1500.00 1032.00 A

====:=== ==~=~~==:====;:: ========

% COMPLETE : 38.66 % OF BUDGET : 52.01

10008.00 19242.00 19200.00 25888.00
=====~========== ===~========~===

TIME BOOKED DURING PERIOD

% OF REVISED BUDCET : 52.13

===============~=========
INITIALS HOURS
======== :::::;:::.==::==

AB 126.00
BOP 19.00
BH 200.00
CS 39.00

DDB 14.00
GE 175.00

JGBF 207.00

Appendix B
--

Page 138

printed on : 26-JAN-93 Page ; 2BsW-DATA (PTY) LTD. - PROJECT HANAGgMENT REPORT Menu: 11.1.1
=======~================================~=======
Job: BDJ2618 Description: ASLAN
Owner: AS Job opendate : 21-FES-91
Cost Centre: PROJ Classific~tion: INDIRECT INCOHg

Weeks 9227 to 9231 27-JUN-92 to 31-JUL-92
Close date :
FIN CHARGE:S: Y

JP 90.0C
KJL 2.00
Ls 71.00
HZ 152.00

PBB 228.00
PGF 215.00
PPS 204.00
RO\.l 1.00
SJ 211.00
TK 47.00

2001.00

========

DATE

PRODUCTION MEETING NOTES

NOTES
~===~==~==================~=====------------------

========================

07-NOV-91
07-NOV'91
14-NOV-91
14-NOV-91
14-NOV-91
10-DEC-91
10-DEC-91
13-FES-92
02-MAR-gz
02-MAR-92
27-MAY-92
27-MAY'92
24-JUN-92
24-JUN-92
07-JUL-92
07-JUL-92

GENERAL: GENERIC GUI • FUNCTIONALLY COMPLETE. CURRENTLY IMPLEMENTING TXVIEW
APPLICATION USING THE ACCERSI"E\J TOOLBOX
% COMPLETE: ONGOING
OPERATIONAL PROBLEMS: SYNTAK CHECKER COMPLETE
OUTStANDING BUGS REPORTED NOT FIXED: CORE GUI (MOTtF) TOOLBOX COMPLETE
MMI AND \lMl CoHPONENTS CURRENTLY BEING DEVELOPED. EXPECT TO BEGIN RTOM
DgSIGN START JANUARY
10 JAN 92 IlTOMS, COMI~S, CONFlG, HISTORIAN DESIGN CURRENTLY IN PROGRESS
SOMI VERSION 0.1 COMPLETE:. MMI, YMl, RTOM \.IORKONGOING. TECHNICAL DEFINITION
STILL REQUIRED FOR CONFIG/HISTORIAN.
ACCESSVIE\.IPRODUCT FOR SASNAC, MIMNAC + TESS·ABOUT 30% c~~rLETE. Hi'll
SUBSYSTEM BEHIND SCHEDULE. NEED RESOURCE HERE, POSSIBLY JJT AT END JUNE.
40% COMPLETE - ESTiMATIO~ ON SCHEDULE. CALENDAR MILESTONES UNDER PRESSURE
BECAUSE OF MM1.
ACCESSVIEW PROJECT ABOUT 42% COMPLETE. MMI AND RTOMS SUBSYSTEMS ARE ON
CRITICAL PATH.

DATE

PURCHASE ORDERS PLACED

P ORDERS S ORD C#.C#2
=~================~===

QTY GRV DESCRIPTION UNIT PRICE eXTD PRICE CANC
========= ======== ======= ============== ==== === == =========== =~========== ===:
15-JAN'92 BDP4236
15'JAN-92 BDP4236
15-JAN-92 BDP4~40
15-JAN-92 BDP4240
26-MAR-92 BDP4434
18-JUN-92 BDP4593
18'JUN-92 BDP4593
09-JUL-92 BDP4650
09-JLJL-92 BDP4650

3.6
3.7
7.13
7.14
2.361
11097.1
11098.2
11415.0
11416.0

1 DELEGATES FOR : PRACTICAL
7 OBJECT-ORIENTED DESIGN COURSE 945 6615
!) PHOTCOPY OF ISO DEVELOPMENT
1 ENVIRONMENT USER'S MANUAL
1 10M 25PIN MALE TO FE~ALE SE:RIAL PRINTE:R 33 33
1 V COLOUR 500c DESK JE:T CARTRIDGE: 91 97
1 Y BLACK 500C DESK JET CARTRIDGE 82 82
~ Y COLOUR 500C DESK JET CARTRIDGF. 97 97
1 Y BLACK SOOC DESK JET CARTRIDGE: 77 77

============
TOTAL AMOUNT OF ORDERS : 6999

=====;.:======

AppendixB Page 139

BS\.J-DATA(PlY) LTD - PROjECT MANAGEMENT REPORT Menu: 11.1,1
==================~~============================
Job : BDJ2618 Description : ASLAN
Owner: AB Job opendate : 21-FEB-91
Cost centre: PROJ Classification: INDIRECT INCOME

Printed on : 26-JAN-93 Page: 3

~eeks 9227 to 9231 27-JUN-92 to 31-JUL-92
Close date :
FIN CHARGES: Y

ORV'S
=====
DATE GRV=====~========== =:== ===========~; ==== ========== ===========
27-MAR-92 BOG6538 GP
29-JUN-92 8DG6752 GL
29-JUN-92 80G6752 GL
29-JUN-92 BOG6752 GL
29-JUN-92 BDG6752 GL
29-JUN-92 80G6752 GL
29-JUN-92 80G6752 GL
29-JUN-92 BDG6752 GL
29-JUU-92 BDG6752 GL
29-JUN-92 80G6752 GL
29-JUN-92 eDG6753 GP
01-JUL-?2 90G6760 GP
15-JUL-92 8006796 GP
15-JUL-92 BOG6796 GP

DELIVERY NOTES
=::=:::=======:::::;
DATE DN NO C#.C#2
========= ======= ==========~== ==== =================~==TYPE DESCRIPTION

29-JUN-92 BD06433 11321.0
29-JUN-92 8006433 11321.1
29-Jutl-92 B006433 11321.2
29-JUN-92 Boo6433 11321.3
29-JUN"'92 B006433 11321.4
29-JUN-92 8006433 11321.5
29-JUN-92 8006433 11321.6
29-JUN-92 8006433 11321.7
29-JUN-92 I;1D0643311321.8

TYPE C#.C#2

2.361
11321.0
11321.1
11321.2
11321.•3
11321.4
11321.5
11321.6
11321.7
11321.8
11098.2
11097.1
11415.0
11416.0

QTY PRODUCT SERIAL

1 cLOe1
1 CC001
1 CC001
1 Ce001
1 CC001
4 CCOOl
1 CC001
1 CC001
7 CC001
1 CCOOi
1 516261
1 516251
1 516251
1 516261

ON SMP PC
DN 64 KB MEMORY
ON 2.0 GIGABYTE OAT DRIVE
DN 15u MB TAPE STREAMER
ON CPU
ON VGA CARD
ON 8 X 4GT
DN 8/TCi'
ON 8/TCFM+

SALES ORDERS RECEIVED - INtERNAL========~====~~=================

DESCRIPTION CANCLII
== ======
10M 25PIH MALE TO FEMALE SERIAL PRINTER
SMP PC
64 KB MEMORY
2.0 alGABYTe OAT DRIVE
150 MB TAPE STREAMER
CPU
VGA CARD
8 X 4GT
8/tC+
8/TCFM+
BLACK SOOC DESK JET CARTRIDGE
COLOUR SOOC DESK JET CARTRIDGE
COLOUR SOOC DESK JET CARTRIDGE
BLACK SOOC DESK JET CARTRIDGE

aTY CUSTOMER ORDER NO ACCOUNT 10 CANCL
==: ====:~===u=====~====__========================== ==:==

1
1
1
4

1
7,-

16-JUL-92 16-JUL-92 80S628 AB ASLAN

EXT INCOM EXT COST

-20000

ORO DATE REG DATE ORDER REP DESCRIPTION
========:. ========= ======= ==== ==================== ========= =========

=~======= =========
-20000

None

SALES ORDERS RECEIVED * EXTERNAL

========= =========

===========================~====
COSTING TRANSACTIONS
=========~==========
EXTERNAL INCOME
===============
None
EXTERNAL COST
=============

INT INCOM INT COST ~lANPOWER TYPE
========= ~===~==== ========= ~===

2470000 -1000 1894000
:======== ========= =========

2470000 -1000 1894000
========= ========= =========

AppendixB Page 140

BSY-DATA (f>Ty) LTD. - PRJJECT MANAGi:ME:tITREPORT MehU : 11.1_1==~===========~====~~==:~=======================
Job: BDJ2618 Description: ASlAN
Owner: AB Job opendate : 21-FEB-91
Cost Centre: PROJ Classification: INDIRi:CT INCOME

DATE TRANS NO DESCRIPTION TYPe S ACC ACCOUNT IQ

===== :. ==== ========::=-:========================== ========
AMOUNT

========= ========== ===~=====================
22-JUl-91 BOCBi:1264 J.J.T. - EXPRESS SHIPMi:NT DEV T 200
30-ocT·91 BDCBE1629 S&T - AB D!:V T 200
14-JAN-92 BDCBi:2040 YITS UNIV - OBJECT DESIGN CRSE DEV T 200
03-FEB-92 BDCBE2089 PHOTOCOPY DEV T 200
05-MAR-92 BDCBE2238 lIP - TRAVEL (YJTS) DEV T 200
24-APR-92 BDCBE2550 ~. i..AING- TRAINING TRG T 374
24-APR-92 BDCBE2567 LB - S&T DEV T 200
09-JUN-92 BDCBE2642 JGBF • S&T DEV T 200
1S-JUN-92 BDCBE2662 APPLIED LEARNING TRAINING DEV T 200
16-JUN-92 BDCBE2657 BtFSA WISHOP ACCESSVIEY DEV T 200
26-JUN-92 BOCRI2748 DESKJET 500C BlK CART DEV T 200 UN IDATA
07-JUL-92 BDCBE2762 ASLAN OUTING lEV T 200
21-JUL-92 BDCBE2806 AS - S&T OEV T 200
31·JUL-92 BDCRl2889 DESKJET COL CARTRIDGE DEV T 200 UNIDATA

DIRECT RESOURCi:S - CROSSBIllINGS
==~=============================
DATE TRANSNO DeSCRIPTION TYpe S ACC
========= =====~==== ===========:============= =:::=== :: ==;:::

15-NOV-91 BDCJE532 ASlAN CONTRISUnON TO ~IlMNAC GEll T 259
15-JUl-92 BDCJe713 ASLAN RECOVERY ~ROM IDC J2854 GEt.(T 259
1S-JUL-92 BDCJE713 ASLAN RECOVERY FROM IDC J2854 GEN T 259

31-oCT-91 BDCJE517 DOCUMENTATION XBtlLING - OCT91 Gi:~ T 259

15-JAN-92 BDCJE776 EQIP XBILL 01-JAN-92:31-JAN-92 GEN T 252
15-~IAR-92 BDCJE782 EaIP XBILL 01-MAP.-92:31-HAR-92 GEN T •
15-APR-92 BDCJE784 EaIP XBIll 01-APR-92:30-APR-92 GEN T i
15-MAY-92 BDCJE705 EaIP XBIll 01-MAY-92:31-MAY-92 GEN T 252
22-JUN-92 BPCJE775 EQIP XBILL 01-JUN-92:31-JUN-92 GEN T 252
15-.JUL-92 BDCJE786 EQ!P XBILL 01-JUL-92:31-JUL-92 GEN T 252

31-JUL-92 BDCJE984 FIN CHARGE 27-JUN-92:31-JUL-y2 GEN T 258

22-FEB-91 BDCJE404 MAN XBILL weeks 9106:9109 GEN T 250
29-MAR-91 BDCJE407 MAN XBILL weeks 9110:9113 GEN T 250
26-APR-91 BDCJE410 MAN XBILL weeks 9114:9117 GEN T 250
28'JUN-91 BOCJE443 HAN XBILL haeks 9123:9126 GEN T 250
26-JUl-91 BDCJi:486 MAN XBILL weeks 9127:9130 GEN i 250
30-AUG-91 BDCJE497 MAN XBILL weeks 9131:9135 GEN T 250
27-Si:P-91 BDCJe521 MAN XBILL weeks 9136:9139 GEN T 250
01-NOV-91 BPCJE659 MAN XBILl weeks 9140:9144 GEIl T 250
29-NOV-91 BDCJE618 MAN XBXLL weeks 9145:9148 GEN T 250
27-DEC-91 BDCJE619 MAil XBILl weeks 9149;9152 GEN T 250
31-JAN'92 BOCJe625 MAN XBILl weeks 9201:9205 GEN T 250
28-FEB-92 BDCJE628 MAN XBIlL weeks 9206:9209 GEN T 250
2/-MAR-92 BDCJi:647 MAN XBILl weeks 9210:9213 GEN T 250
01-MAY-92 BDCJE676 MAN)(81LL I~eel<s9214:9218 GEN T 250

Printed on : 26-JAN-93 Page: 4

Weeks 9227 to 9231 27-JUN-92 to 31-JUL-92
Close date :
FIN CHARGES: Y

-1194
-23

-6615
-168
-gO

-1585
-50
-66

-1960
-1764
-8?

-711
-105
-97

========
-14560

========
uROSS CONTRIBUTION: -14560

========

AMOUNT SUBTOTAL

300000
195000
70000 565000

·32 ·32

-710
-710
-710
-710
-710
-710 -4260

993 993

-495
-2805
-1400
-4322
-7136

-20747
-21854
-7510

-13979
-11340
-73404
-91979

-102286
"113664

Appendix B Page 141

printed on ; 26-JAN-93 Page : 5SSW-DATA (PTY) LTD. - PROJECT MAIIAGEMENT REPORT Menu: 11.1.1
===~===~
Job: BDJ2618 Description: ASLAN
OWner: AB Job opendate : 21-FEB-91
Cost Centre: PROJ Classification; INDIRECT INCOME

Weeks 9227 to 9231 27-JUN-92 to 31-JUL-92
Close date:
FIN CHARGES: Y

29-MAY-92 BDCJE679 MAN XBILL weeks 9219:9222 GEN T 250
26-JUN-92 BDCJ~708 MAN XBILL weeks 9223:9226 GEN T 250
31"JUL-92 BDCJE976 MAN XBILl weeks 9227:9231 GEN T 250

24-MAY-91 BDCJE351 MISALLOCATION OF EXP CLAIMS GEN T 200
24-MAY-91 BDCJE351 MISALLOCATION OF EXP CLAIMS GEN T 200

26-JUN-92 BDNJE521 PETTY CASH - SS DEV T 200

29-MAR-91 BocJe416
26·APR-91 BDCJE419
31-MAY-91 BDCJE422
2S-JUN-91 BDCJe446
26-JUL-91 BDCJE504
30-AUG-91 BDCJE507
27-SEp·91 BDCJE524
01-NDV-91 BDCJE544
29-NOV-91 BDCJE554
27-DEC-91 BDCJE565
31-JAN-92 BoCJE600
28-FEB-92 BOCJE633
27-MAR-92 BDCJE651
01-HAY-92 BDCJE674
29-MAY-92 BOCJE723
26-JUN-92 BDCJE772
31-JUL-92 BDCJE981

13-MAR-92 BOCJE612
27-MAR-92 BDCJE680
24-APR-92 BOCJE681
29-MAY-92 BDCJE682
1S-JUN-92 BDCJE683
20-JUL-92 BDCJE717

PROJ OVERH 23-FEB-91:29-MAR-91 GEN
PROJ OVERH 30-MAR-91:26-APR-91 GEN
PROJ OVERH 27-APR-91 :31 MAY-91 GEl!
PROJ OVERH 01-JUN-91:28-JUN-91 GEN
PROJ oVERH 29-JUN-91:26-JUL-91 GEN
PRoJ OVERH 27-JUL-91:30-AUG-91 GEN
PROJ OVER~ 31-AUG-91:27-SEP-91 GEN
PROJ OVERH 28-SEP-91:01-NOV-91 GEN
PROJ OVERH 02-NOV-91:29"NDV-91 GEN
PROJ OVERH 30-NOV-91:27-DEC-91 G~N
PROJ OVERH 28-DEC-91:31-JAM-92 GEN
PROJ OVERH 01-FEB-92:28-FEB-92 GEN
PROJ OVERH 29-FEB-92:27-MAR-92 GEN
PROJ OVERH 28-MAR-92:01-MAY-92 GEN
PPOJ OVERH 02-MAY-92:29-MAY-9, GEN
PROJ OVERH 30-~IAY"92:26-JUN'92 ':;SN
PROJ OV~RH 21-JUN-92:31-JUL-92 GEN

QCOMM SUPPORT XBILLING - FEB92 SUP'
QCOMM SUPPORT CROSSBILLltIG SUP
QCOMM SUPPORT CROSSBILLING SUP
QCOMM SUPPORT CROSSBILLING SUP
QCOMM SUPPORT CROSSBILLING SUP
QCOMM SUPPORT XBILLING SUP

31·JAH-92 BONJE444 RECRUITMENT/TRAINING/COS

29-MAR-91 BDCJE427
26-APR-91 BDCJe424
31-MAY-91 BDCJE423
28-JUN·91 BOCJE4S0
26-"UI,-91 BDCJE508
30-AUG-91 aOCJE509
27-SEP-91 aOCJE525
01-NOY-91 BDCJE~45
29-NOY-9' BDCJES55
27-DEC OCJES68
31-JA.. S[I(::J f 463
_d-FE& ~J~ lB
27"~IAR to:JE657
01-MAY-92 BOCJE688
29-MAY-92 BDCJe730
26-JUN-92 BDCJE774
31-JUL-92 BDCJE983

TRAN XBILL 23-FEB·91:29-MAR-9' GfN
'fRAN XBILL 30-MAR-91:26·APR-9 \irll
TRAN XBILL 27-APR-91:31-MAY-9. G~N
'fRAN XBILL 01-JUN-91:2S-JUN-91 GEN
TRAN XBILL 29-JUtl-91:26·JUL-91 GEN
TRAN XBILL 27-JUL-91:30-AUG·91 GEN
TRAN XBI LL ~h4UG-91 :27-SEP'91 GEN
'fRAN XBILL ,~·SEP·91:01-NOV-91 GEN
TRAN XBILL 02·NOV·91:29-NOV-91 GEN
'fRAN XBILL 30·NOY·91:27-0EC-91 GEN
TRAN XBILL 28-DEC-91:31-JAN-92 GEM
TRAN XBILL 01-rEB-92:28-FEB-92 GEN
TRAN XBILL 29-FEB-92:27-MAR-92 GEN
TRAN XBILL 2S-MAR-92:01-MAY-92 GEN
'fRAN XblLL 02-MAY-92:29-MAY-92 GEN
TRAN XBILL 30-MAY-92:26-JUN-92 GEN
TRAN XBI1L 27-JUN-92:31-JUL-92 GEN

15-.IUL-92 BDCJE709 XBILL ell LIC J2926 > J2618 GEM
15-JUL-92 BoCJE710 XBILL AV/RT LIC J2931 > J2618 GEN

AppendlxB

-1~0402
-123996
-176945 -884264

-43
-800 -843

-187 -187

T 256
T 256
T 256
T 256
T 256
T 256
T 256
T 256
T 256
T256
T 256
T 256
T 256
T 256
T 256
r 256
T 256

-50
-50
-50
-50
-50
·50
-50
-50
-50
-50
-50
·50
-50
-so
·50
-so
-50 -850

T 255
T 255
T 255
T 255
T 255
T 255

-375
"375
-375
-375
-375
-375 -2250

DEV T 200 6615 6615

T 257
T 257
T 257
'I' 257
T 257
T 257
T 257
T 257
T 257
T 257
T 257
T 257
T 257
T 257
T 257
T 257
T 257

-40
-40
-60
-40
-55
-10
-10
-60
-15
-10

-202
-69

·145
-122
-24

-291
-461 -1654

T 259
T 259

157500
75000

Page 142

BSW-DATA (PTY) LTD. - PROJECT MAtIAGEMENT REPORT Menu ; 11.1. 1 Printed on : 26"JAN"9l Page : 6
==========~=====================================
Job : B[lJ2618 Description : AS LAN
Owner: AB Job opendate : 21"FES-91
Cost Centre: PROJ classifi ation • INDIRECT INCOME

~eeks 9227 to 9231 27-JUN-92 to 31-JUL-92
Close date :
FIN CHARGES: Y

15-JUL-y2 BDCJE711
1S-JUL-92 BDCJE712

XDILL AV/GUl LIC J2931 > J2618 GEN
XBILl AV/DB LIC J2931 > J2618 GEN

T 259
T 259

42187
112500 387187

11-MAR-92 BDCJE607 XFER COST OF FLOPPIES GEN T 259 ·100 -100
========

65355
::=======

CONTRIBUTION AND DIRECT RESOURCES: 50795
========

SUPPLY CROSSSIlLIIIG========:=====~====
DATE TRANSNO DESCRIPTION TYPE S ACC AMOUNT
========= ======~=========~==========z~====== ===== = :=== ========
26"JUl"91 BDCJE485
01"NOV-91 BDCJE541
31"JAN"92 BOCJE597
28-FEB-92 BDCJE630
27-MAR-92 8DCJE654
01-MAY-92 BDCJE678
26-JUN-92 BDCJE769
31"JUL"92 BDCJE978

SUPL XBILL 29-JUN"91:26-JUL"91 GEN
SUPL XBILL 28"SEP-91:01"NOV"91 GEN
SUPL XBILL 28"DEC-91:31-JAN-92 GEII
SUPL XBILL 01"FEB-92:2S'FEB-92 GEN
SUPl XBILL 29'FEB"92:27"MAR'92 GEN
sePL xarLL 28-MAR'92:01'MAY-92 ti~N
Sl)7lL XBILL 30-MAY-92:26"JUN'92 GEN
SUPL XBILL 27-JUN'9G:31-JUL"92 GEN

T 254
T 254
T 254
T 254
T 254
T 254
T 25ft
T 254

-12
-5

-66
-s
-5
"5

-39
"9

====::::::=
-146

========
SALES CROSSBILLING
==============::===
None

CONTRIBUTION AFTER ALL RESOURCES 50649
=======r.t

TIMING DIFFERENCES
=================:
None

NET PROFIi 50649
:==::;===::;:

'::t:======
BALA~CING TOTAL 50649

========
EQUIPMeNT
=========
C#.C#2 SERIAL NUMBER PROOUCT.OPTlON LOC DESCRIPTION O~NER ORO GRV ON========~==== ========_======.zz== _=============a=====x==== ===~=== ====================S==M====~== ======== === === ~=
2.361 CL001. CONSUME 10M 2SPIN MALE TO FEMALE SERlA BS~ Y Y Y
4.221 5162!lA. CONSUME COLOUR SOOC DESK JET CARTRIDGE BS~ Y Y Y
4.222 516261. CONSUME BLACK 500C DeSK JI!T CARTRIDGE BS~ Y Y Y
11097.1 516251. CONSUME COLOUR sooe DESK JEI CARTRIDGE BSW Y Y Y
11098.2 516261- CONSUME BLA~K 500C DESK JET CARTRIDGE BS~ Y Y Y
11415.0 516251. CONSUME COLOUR 500C DESK JET CARTRIDGE BSW Y Y Y
11416.0 516261. CONSUME BLACK SOOC DESK JET CARTRIDGE BSW Y Y Y

k ,

Appendix B Page 143

BS\.I-DATA(PTY) LTD•• PROJECT MANAGEMENT REPORT ~lenLl: 11.1.1 printed on : 26-JAN-93 Page ~ 7
===n========~=======~====================== =~==
Job; BDJ2618 Description: ASLAN
Owner: AS ,lobopendate ; 21-FES-91
Cost Centre: PRN Classifieation: INDIRECT INCOME

\.leeks9227 to 9231 27-JUN-92 to 31-JUL-92
Close date:
FIN CHARGES: Y

JOBCOSTING HISTORY
=~================
MTH PERC TOT EST RSUD PERC SALES

YEAR COMP HOURS HOURS HOURS RBUD ORDERS
TOT ACT

!NcoME E COST
GROSS OiRECT NET MONTHLY NET
coNTR RESOURCES CONTR XBILLING PTO PROFIT

9101 2
9102 5 -495 -495 -495
9103 22 -3390 -3390 -3390 .
9104 32 -4880 -4880 -4880
9105 32 -5833 -5833 -5833
9106 60 -10245 -10245 -'...::45
9107 131 -10245 -10245 -10245
9108 2 333 19210 19080 2 -1194 -1194 -38293 -39487 -12 -39498
9109 21 639 3090 3090 21 -1194 -1194 -60132 -61326 -12 -61337
9110 24 770 3230 3210 24 -1194 -1194 -68663 -69857 -12 -69869
9111 6 880 13920 13920 6 -1217 -1217 225607 22',390 ·17 224373
9112 7 1011713920 13920 7 -1217 -1217 214207 ~12~90 -17 212973
9201 13 1786 13920 13920 13 -7832 -7832 147368 139536 -83 139453
9202 19 Z786 14520 14520 19 -8000 -80!l0 55339 47339 -88 47251
9203 21 4041 1901$819000 21 -8140 -8140 -/,8395 -56535 -88 -56623
9204 28 5421 19088 19000 29 -8140 -8140 -161886 -170026 ·93 -170119
9205 34 6636 19330 19200 35 ·9775 -9775 -280766 -290541 -98 -290639
9206 41 8003 19330 19200 42 -13565 -13565 -405063 -41S628 -98 -418726
9207 39 10008 25888 19200 52 -14560 -14560 65355 50795 -11.6 50649

MQVE -3 2005 10 -995 -995 470418 469423 -48 469375

FORECAST
====~===
MONJH
YEAR

FORE
INCOME

FORE
r COST

FORE
CONTR

PRIOR

9208 50649
9209 50649
9210 50649
9211 50649
9212 -1000 49649
9301 ·1400 48249

END ~16960

PROGRESS REPORT
========~======
Sales order ineome :
Actua l income :
sates order e;.r.ternalcost ~
Actual external cost :
% Hanpower
X Profit

% invo.ce (to date): % invoice (end of forc8st):
-zcooo
-14:;60
47
2

% cost (to date): 13 % eost (end Qf foreast); 85

Appendix 13 Page -144

~
(])
::J

~
to

I.....
A
01

AccessView
Ta.k Hame I UUf.lIon I Start I End Mav~

~
to
i\,
'.

OV H;.lorian Object Man.".t I 16.00 dI 231Sop/19921 I3I0cti:S92

111M PROJECT I 1.00 d! 02lJ~Oilg~g.2! 02/Janl1992
,1r.MISUBSYSTEM

MII.! Core 01>J~c:!·m.r:aa"r
OV G~pl:ic8 Toolkit I &l.00 dl 02iJariTlIl92! 131Mctll992
OV Pi~M8 Edilor I 30.00 di 161Mor/19921 24fApr/J992

~
Qj.g
en
Q,
!J)

~o~
~
~
<=
::t
~
~
~
~
S
CD

o
<=
~
::0m
-J
""0a
~a
~
::J
::J
~

OV fA:m!c Editor I SO.OO Itl 27iApr/tlla21 O6IJu1J1992
OVT~lCtToolkl! • ! 26.oodl 02lJ.nllIl921 O8lFebff992
OV A,·tomimic. 30.00 d! 01fJulJ1D92117JAuof1992
AV Fau!t M'Mea.menl 20.00 d118/AOO/19921 16/Sap118l12
AV Eculemenf MM£!)ement 16.00 d! 161S"pI18921 O6lOctlUI92
AV Traffic Manae.manl 16.00 dl 071001119921 281Ocll1992
AV MMIConF.gur.tor 46.00 dl 181Aua!l9a21 2OlOctlla9:Z
CV Opereticmallnt.rfacc 36.00 dl 21/0ctI199~ 101O.Clt992

WMI SUBSYSTEM las.OOd! 02lJlnl1G921 2615&11/1992
WMI !:<Jr. Objecl·m."OQe. I 2O.00dl 02fJ.nllll321 3OfJ.nlt992
OV RS-232 Intarfacs Db;':1 ! 10.00 &,31fJ.nllB921 13IFebl1992
OV RS·422 Interface Obloct I 6.00dl 14/Fabf'9921 211f-ebf1992
OV 'leO"'M Interfa"e Obi.ct I 6.00 dl 24fF.bJIQ921 28lFebflSII2
AV OCTAVE2000.v!ce Oblee! 3O.00dl 02lM.r1191121 IOfADt/1992
AV OCTAVE2000 Device Obl.1 46.00 dl 131AcrIlge21 16fJunllGS2
AV RICE-SOOovlce Obiact I 25.00 d! lB1Jun119921 20fJulJt99
t;V OCTAVE200 Route Monitol 25.00 dl 211Jullt9921 24iAililng92
CV OCTAVE2000 Rout. """"Ii 16.00 dl 2SfAurJil GlI2I15!Seplf992
CV RlCE·eo RooI" Monltor tP'!'epllQ)21 261Sepfl9S2

RTOMS SUBSYSTEM 4JanI1S.2i 241l'lovll9112
RTOMS Core Ob;.et·man.a.t , C2/JanlIl19_21 3OfJ.nl1992
OVWorld Aceo ... leval (WAU 1 16.00 d! 31/Jenlt1lQ2\ 2t1Feb/ll1i12
OV~~l_teVIII , 22.oodl 241Feb/19S2\ 24IM •• /1992
OV OUtfdlU I 20.00 dl 26lMarltQg21 21M2rl10l92
OV Deri.ed lev.1 I 26.00 <II 22/Apri1<.la2l. £siMtW!1992
OV Sort Torm Hi.tcrv ! 46.00-cif29IM.;v/1 G921 3OfJulJ1992'
AV Fault Manao.ment I 33.00 d] 3t1Ju1Jf9921 leJSeDf1i192
AVP.rfarm.""" M.~.aement I 26.00dl l1IS.IIItSg2t 261Octl19112
AV EQuipmanl Manaoement I -20.00 dl 21iOctlll1l121 24ffloVll99

CQt,FIGURATIOtlSUBSYSTEIA 1186.00 dl 02lJ.nlt992! 221Sellil9J2
OV Dat.base ObJect Maneaor I 16.00d! 02/Janl1992! 2:lfJ.n1tS92
OV SOL-Executor I SO.OOd! 24fJ.nI~99:zj 17/ADtlll!92
OV SOL-G.ne .. ::'t I SO.OO <Ii 2OfADlll9Q2I 29fJun:tS9:Z
OV SOL-Tt6nalatar I W.OOC!l 3OfJunlI9S2I101~lg9~
OV 0.1.&.';; Service. MmllO.1 X.OO d! fl/AOO/laa2j 22JSollflS92
cv ObJect-Tabl" M.~ Rule I 40,00<11 16/Jun119921 07fAUa/1992

HiSTORIANSUBSYSTEM I 16.00ell 231Sep/tQg21 131Ocl/1992

1992lGlll

i· [
.luI t AiJO-rSop I Oct I N:>v I Do., Jon

I
I

Feb
1993
Mar I Aor

1

I

I I I

De., Jan I rob I Mar I Allr I Mav I Jun

UTlLmES I 61.00 dI 311}.1>O11992126/Novl11!11
INTEGRATlOi-S&flHAl TESTS I 53.rod! 1110..,119921 02lMatllS93
OOCUMENTATIOfl I 30.00 dI 0211.1.,,19931 131Apr/Ul9

I
I
I

I

J' .'

I=.::=:

AN OBJECT-ORIENTt;D COMPONENT-BASED APPROACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

APPENDIX C: DESIGN SPECIFICATION AND IMPLEMENTATION
OF THE SOFTWARE BUS

Further technical details on the design and implementation of the SOMI software highway are
covered in this appendix. The reader is encouraged to read this appendix if it is required to
understand the communication services provided by the CMIP·conformant highway, and the
typical API calls available to the application programmer.

C.1 INTRODUCtiON

This Appendix provides further technical details on the CMIP/conformant software
communications highway used in this object-oriented approach to building real-time
software systems.

Firstly, some of the very many terms and abbreviations are defined, and this is followed by
a brief overview' of the Common Management Information Services/Protocol definition. Our
orqanlsatlon's proprietary TCP/IP communications subsystem, QCOMM, is then described
as the transport mechanism for the CMIP-conformant software bus. The Standard Object
Management Interface API that was designed is reviewed, and CMIP conformance issues
are discussed. Lastly, examples of typical Object·mansger and Appli(dian programs are
given, and relative performance rnetrlcs are tabled.

C.2 GLOSSARYOF TERMS AND DEFINITIONS

DEFINITIONS(as specified In ISO/IEC 9595/9596)

Attribute:
A property of a managed object (MO).

" mrnon Management Information Service Element (CMISE):
The particular appllcatlon-servlce-element defined in the International Standard.

Common Management Information Services (CMIS):
The set of services provided by the CMISE.

CMISe.service-provider: .
An abstraction of the totality of those entitles which provldss CMISE services to
peer CMISEwservice·users (SOMI, in this case).

CMISE-service-user:
The part of an application process that makes use of the CMISE.

Functional Unit:
The unit of service used for the negotiation of service options (during association
establishment).

Invoking CMISE-service-user:
Thl') CMISE-service-user that performs a management operation or "otification.

Performing CMISE-service-user:
The CMISE-service·user that performs a management operation or notification
invoked by a peer CMISE·service·user.

Appendix r Page 146

AN ()8JECT-OR!ENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOF7WARE SYSTEMS

Standard Object Management Interface (SOMI):
Is the SSW-Data proprietary interface for CMIP/S. The SOMI object encapsulates
the functionality provided in a single class. This specific implementation uses
QCOMM as the message carrier but provides the mechanisms to change it later to
CMOT or even pure CMIP. .

SYMBOLS AND ABBREVIATIONS :

ACSE
ASE
ASN.1
AVA
CMIS
CMISE
CMIP
CMOT
CMOQ
FTAM
ISO
MIT
MO
OSI
PDV
ROSE
SOMI
TCP/IP

Association Control ServicE' Element
Application Service Element
Abstract Syntax Notation 1
r .•tribute Value Asertion
Common Management Information Service
Common Management Information Service Element
Common Management Information Protocol
Common Management information Over 7CP/IP
Common Management information OVer QCOMM
File Transfer Access Management
International Organisation for Standardisation
Management Information Tree
Managed Object
Open Systems Interconnect
Protocol Data unit
Remote Operations Service Element
Standard Object Management Interface
transmission Control Protocol over Internet Protocol

CONVENTIONS USED IN CMIP/S PARAME1'EB DESCRIPTIONS

Conf Confirm
lnd Indication
Req Request
Rsp Response

M the parameter is mandatory (=) the value of the parameter is equal to the value
passed in the request

U the use of the parameter Is a service-user option - the parameter is not present in
the interaction described by the primitive concerned

C the parameter is conditional

0.3 CMIS/CMIP OVERVIEW

Management information services are used by Manager processes and Agent processes
(in this study these are respectively referred to as Applications and Object-managers) in
peer open systems, to exchange Information and commands for the purpose of systems
and network management.

AppendfxC Page 147

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING AE:AL-TIME SOl-WARE SYSTEMS

There are three types of information services provided by eMIS:

(a) an association service;
(b) a management notification service;
(c) a management operation service.

These 3 service categories are reviewed below.

C.3.1 Association Service

Before any two Applications can exchange information, an association between them must
be established. During the association establishment phase, various ASEs (such as
Manager and Agent processes) may exchange initialisation information to establish an
association using ACSE.

The application context specifies the rules required for co-ordinating the information
belonging to different ASEs, embedded in ACSE user information parameters. The
application context, presentation and session requirements are conveyed using
parameters of the M-INITIALlSe: service.

The M-TERMINATE and M-ABORT services are used for the termination of an association.
These may be invoked by either of the CMISE-service-users.

C.3.2 Management Notification Services

The definition and notification and the consequent behaviour of the communicating entities
is dependent upon the specification of the managed object which generated the
notification and Is outside the scope of the CMIS. However, certain notifications are used
frequently within the scope of systems management and CMIS provides the following
definition of the common service that may be used to convey management information
applicable to the notification.

The M-EVENT-REPORT service is lnvoked by a CMISE-service-user to report an event
about a managed object to a peer CMISE-service-user. The service may be requested in
a confirmed or a non-confirmed mode. In the confirmed mode, a reply is expected.

C.3.3 Management Operation Services

The dsfinition and notification and the consequent behaviour of the communicating entities
is dependent upon the specification of the managed object at which the operation is
directed and is outside the scope of the CMIS. However, certain notifications .;il·eused
frequently within the scope of systems management and OMIS provides the following
definition of the common service that may be used to convey management information
applicable to the operations.

* The M-GEr service: is invoked by a CMISE-service-user to request the retrieval of
management information from a peer CMISE-service-user. The service may only
be requested in a confirmed mode, and a reply is expected.

AppendixC Page 148

AN OBJECT·ORfENTED COMPONENr-SASED APPROACH TO SUILDING REAL-TIME SOFTWAREESYSTEEMS

* The M-SET service: is invoked by a CMISE-service-user to request the modification
of management information by a peer CMISE-service-user. The service may be
requested in a confirmed or a non-confirmed mode. In the ccnnrmed mode, a
reply is expected.

* The M-ACTION service: is invoked by a CMISE-servlce-user to request a peer
CMISE-service-user to perform an action. The service may be requested In a
confirmed or a non-confirmed mode. In the confirmed mode, a reply is expected.

* The M-CREATE service: Is invoked by a CMISE-servlce-user to request a peer
CMISE-servlce-user to create an instance of a managed object. The service may
only be requested In a confirmed mode, and a reply is expected.

The M-DELETE service: is invoked by a CMISE-servlce-user to request a peer
CMISE-service-user to delete an Instance of a managed object. The service may
only be requested In a confirmed mode, and a reply is expected.

0.3.4 Management Information Tree

Management Information may be viewed as a collection of managed objects (instances of
different classes of objects), each of which has attributes, and may have defined events
and actions (methods). Names of instances of managed objects are arranged
hierarchically in a management Information tree (MIT).

It is conceivable that there may be dynamic changes to the MIT and that this knowledge
may not be instantly available to other open systems.

C.3.S Managed Object Selection

Managed Object selection involves two phases: scoping and filtering.

Scoplng entails the identification of the managed object(s) to which a filter Is applied.

Filtering entails the application of a set of tests to each member of the set of previously
scoped managed objects to extract a subset.

The subset of scoped managed objects that satisfy the scope is selected for the operation.

If no filter is spocified, then the set of scoped managed objects Is selected for the
operation.

Scoplng

The base or level zero managed object is defined as the root of the subtree of the MIT
from which the search is to commence. Four specifications of scoping level are defined
indicating whether the filter is to be applied to:

- the base object alone,
- the n'th level subordinates of the base object,
- the base object and all of its subordinates down to and including the n'th level,

Appendix C Page 149

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

- the base object and all of its subordinates (whole subtree).

Filtering

A filter is a set of one or more assertions about the presence or values of attributes in a
seoped managed object. If the filter involves more than one assertion, the assertions are
grouped together using logical operators. If a filter test succeeds fer a given managed
object, then that managed object is selected for performance of the operation.

SynchronisatIon

eM IS allows a synchronisation parameter to provided a CMISE-service-user to indicate the
manner in which operations are to be synchronised across managed oblect Instances
when multiple managed objects have been selected by the scope and fllter mechanism.
The CMISE~service·user may request one of two types of synchronisation: atomic or
best-effort. Since the order in which Object instances are selected by the filter is a local
matter. synchronisation based on order is not meaningful.

C.3.6 Functional Units

The general service capabilities are designated as functional units, where functional units
correspond to the support of service primitives or parameters.

All of the CMISE services listed in this Appendix are included in the kernel functional unit.
Additional tuncttonal units include:

• multiple object selection functional unit,
- filter functional unit,
- multiple reply functional unit.

Further detail on the functional units and the detail description of the CMIS parameters has
been omitted from this Appendix for the sake of clarity.

AppendixC Page 150

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

C.3.7 Service Flow

The typical service flovl between two processes (a requeste, ·.J!'plication and
server/object-manager) is depicted below. These peer-to-peer processes utilise this flow
when communication to each other over the software bus.

SERVICE-USER SERVICE-PROVIDER SERVICE-USER (SOMI)
(Application) (CMIS) (Object-manager)

(1) Req --> (2) <- Reject -.~
(2) --> (3) Ind ->

1--'
(4) <- Rsp

(5) <-- Reject

(5) <--

(6) <- Conf

-"

The Reject is indicated in the confirmation (Cant) call of the CMIS service. A reject is
generated for protocol data unit (PDU) type errors and include the following error types:

- duplicate invocation,
- mistyped argument,
- resource limitation,
- unrecognised operation.

Steps (4) to (6) are c.nly performed in the contlrmsd mode.

Refer to Table C.1 for a summary of the service flows relevant to each of the CMIS
services.

------------------ --
Appendix C Page 151

~'

(i)
:::r
Q..~.
C')

'11
<g
....
Ri

.Q;i
0-
<n
p
:-!'

Ute.: ~ c;.cSE. User I User OISE· UJeft U'5IJf: OISE. User

A-RB.EASE

Common Management Information Services
M-GET M-DB.ETEA-ABORT

Usod to. I8(Jf..,e attfibJ~
yJ!!!sff •• peer

~t lWl.tr'iIpI. fl!t1'lWlAti:' -f; fUport, an over.! !O a pew
of~.soeiatiot'l.

EstaUsh.nA.oeie.1lcn_hl Rttease.pr~~
.. ~CM::C:Us8'.' e:s.!abisfl4!daslCClllicn

A-ASSOCiATE

Ccr.Jif~'"

I::::r
~
i5
~s...
5-
Ci'
§l
IIIg.
C/)
(!)s.o
,~

M-EVPlT -REPORT

Usedt!) request tNt I;MIl
~lI'leebltdletldi!rld
der'9r.t'rtd

M-SET M-ACTlON M-CREATE

Usedt¥i'Iotcfl;i'IoCMISE.\lSoet ,.' ~dbyir"Noflit9CM1S£~fi(
t01equ!st1hetmdJeationo" tot~statctt.OUSE
.UribJtesby"~f().f1SE u'Urr!o:>erfafmenaeLon
lIS ..

Usedb{ u,e;",oqCMISC
user 10 reque,st another"..."
CMlSE ~et to a,at~ an
r.~.tuClfa).(O

Ccmfifn,ed ConrrJled

PRIMITIVE

FUNCTION

.UPPORTED MODES

PRIMITIVE
ACTIONS

r'S.c.tGAL
"93'01107

CM'Sf. u..,

AN OBJECT-ORIENTED ~OMPONENT·BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

C.3.8 Service Definition

The basic CMISE services are listed below.

I SERVICE TYPE

M-ACTION confirmed or non-confirmed

M·CREATE confirmed

M-DELETE confirmed

M-EVENT-REPORT confirmed or non-confirmed

M·GET confirmed

M-SET confirmed or non-confirmed

Parameters returned as part of the confirm primitive may occur as the result of a
successful operation or as the notification of an error condition.

Some operations may report an error code. In the event of multiple errors, with one of the
errors being a security violatioil, then the error code ftaccess denied" Is returned.

ASSOCIATION SERVICES

Association Establishment

The M·INITIAL.lSEservice is invoked by a CMISE-service-user to establish an association
with a peer CMISE-service-user. Association establishment is the first phase of any
instance of management information service activity.

The parameters of this service are specified by the association-initiator and exchanged
when establishing an association. Exchange of this initialisation information is required
prior to using management operation and notification services.

Refer to Table C.2 for a summary of the CMIS intrinsic parameters that are defined to be
the CMIS specific part of the user information parameter of the M-ASSOCIATE service.

Appendix C Page 153

eMIS Intrinsic Parameters

CN'IS Activity Intrinsie Function Parameters Reply

AuOdlMnEs,j1iidmenl A-ASSOCIATE Et.t.bhh M mod,tlon wKh • pe(!t 04$ uset •,JI'CHoAlI\Jnlts- Spedl!",. SOlO' .d;fnlo"""F\tIclionlll U,ils
U

UAtt;.M'lCnmrol .. I1e,~"'Oro'L
U Vllbrh'OflN,iit)fJ- .~'~liQn ~ifi¢' ii

Release In .. sodation A-REI.EASC Release I pte~ttv eGtat:U.h!d assodatlon
N"",

lIt..,.j boJ """'''Q eMIS ' I. IOQ""I the
modiflt&tlOn of ilubJles bv' pee; C'MISuser

A-ABORT M Abort SOIlf'ee-ln::Iie.tes the irilialr.o1our~ 01 the .trAt
TN CMts 'eI'~<le ptOVi:det Of CMts.iS4f

Abort

P.eporlMl.Event
Rtpor(an event to il peel

M irl.9k¢ 10 ;;-.ldtnllfler nti'}flM 10 ltit IloUfltatbn
M Mer ... -Roo",,, _ (ConI'moj 0' u-.eonfirmod I
0.0 Me cis" ..O.i. of obj~t In which event otcU'red U
0.0 Me) Ins;!lft(.'e "'!rrJIIIOt'O of Qt.,~t U

ME .. ,.rl\><-Tl<><of ... nt a=l
(iJ ~vo'" Tme: .. TiIN! of Eyent Genet'llOft
lU E'font klfo "1n1o~I'I"'tlOf't .bout He event
U OKrenl Tme: T~ The ACf.o_'''''1:wa.' oenerited U
U Event fl4tfy Rrotf to 1M i!vef'Jlfepo(t C
UE:IlOiS'" (tlot NollfY~hen (SoNeo'ot 1$1) C

M-!lET Ulied to Httrleve ittribUte yakittt hom i peer
Cbnf.med rrcde onfy

~qJe'IMo.,\('lfj(6tiofi()f
IUr(b.lluve.IUI:Is,

M-sET

MlrM>kelll- ~"'.. Mloot
U l.hktd 10 . tf ~tioleo tepfiet ,ro 10 he: lent bid!.. U.en It 'riI C

have the: "me "'lie. II tho: !twoke 10
1M) Ba,y,e Obl~t ("JA" .. The ct.t.'5 of the MO vud as " slartinO

DOnt Jot the iele:tliQl\ of the MIl.on 'lltacli the. fillet is to
t>c -.J

M ...Baf;1t Object ll1ltence .. ~illeS the ba,c objlttt Init~e
&1.1\1' above

at secee ...!rIdieal~ the Stbttff. rooled Ii ll-c bese MO.

iest lobo4llOpICd
(IJ Aetett eonf,d .. ~,"iilQnl
IU S'(I'lC:ttOtlution" How teltlc"'l$ $houldbf ,yn:hro(liS«l.ttfQS ..

Qbiet\ ms1aN:tt
tu AUlbuttJ;ldent~jei U~ '" Stt et 1~hflet. fot .",wl,,· to) ~

relwnru:(
UMOclat$.. 5Oetifiei the oUt of I~ MOfot Whkh a'!rbule, C

lreral1'l!d
U MOfrCt~(;O .. The lnsiirce for v-tll;h ai1Iita,j1es .re tilulhed C
U OKrent rltl1e: .. tt~ ti'n¢ ., \lltJi(:h th~ t.m.m'~was Oe1tafl'ed ~

LJ ""tibJt. L~I .. the Wi of IHlibJ't: 10',- and wlUli!1 fClt.lU'led C
U Eri"" .. See ht. C

M IrM>k. 10-
Ul~kodlD
0.0 .. Mo~ of ®elatiOn t Confirmed Of i\Ineonfrmed
It<) S... Obj«, C~...
1M) Bai\Q (lbject hillt~(1 •

IU SeQpe.
lU·fiI,,, •
(lJAteet,ContCQt ..

III ~hlOnis.ali6n'"
UMOa ... • e
UIIOlrolanpe- e
{t.Q ",(rib.ite liSt "l;;.t of IlllibJIual'ld vt"'es b be C

u\ed by ~lf9fmro CM!S uce,Uo,.,,,,,_- U
UEnor$- C

1-41,*
c

1
Table C.2: CMIS Intrinsic Parameters

AppendixC Page 154

eMIS Intrinsic Parameters (continued)

eM IS A,;livily Intrinsic Function Parametern Reply~~!~---+----~----------+---~-----'----------~~-----I

etc.le t)110 ,,",st.1C:ft
-------,--+----

--.-_._---
~.", MO .,~t.nee.

Used by il'o'd'.ho CMIS LIef to Jeq~' • peer
CMIt $et to fl!Ifoul'lin action

M"""~'O- M!4
U L""" '0 C6.0.,; M¢~ of Operitlon (C-OrlirlTlO.1 Of '1\Jr'IeonfrMlld
MI3... 01;,,'0. .. -
Me. .. OI>jee ,~~.",,·
IJScooo·
P-Rl,,-
UMOC!o... C
UMO'ro'_- C
OJ AtunCotli,oI"

~~~1r:t~~;~to ~ per10rrned ;:
... AttlonhfotlTlilllQn .. Oefirl8s tt.t nature, Vlrittionor (lpeI'Drds

fOf the .:tbft

Uo..rent rmt- U
UAtti.)n~" ..." C
UF:ffOf5'" C

~ bv h1OkiiO'CMIS IMf to ,eq\.e1t • peel
CMG.Ul.ei to dUt, Inil'lltlllC:'li:of. MO.
C>nhrned""cIoonlV

!Md"" U"hI",h~C"I$ .... , '. ,_t ,
pN:f eMit \lWf 10 c;ld,tll • )110""'f'Qt as >4tTI
IS dereg;stel the if'IItin:e.

O>IIIIrned ... ",o"'"

M""'''ID- lAW
0.01.400", .. HUrflltle4'tflCOobjflttI111Wtt.ronot ....'"'ltd C

then 1ne ,-""IIn::e 'Mt be i'1ilil~\MIg the delalJlt. of the
tI••

U )110blaree ... nc!Ithet the: 'It.IO!'tlQ, object mitatee n.."f the MO C
fnt,tjj'ipe pit,arrell'!I' t\ torJdiedbV ,M: &WOWnoUSei' then the
peffOf'lnitlgl U'S41 MI tuC)Pt • \'lIiJC

IU ~i04' Obt~t tno;ta/'lee ... 16:Mif." the temting Me> nllihee

wtUch~ to be lhet&.C:*tiOiOf lhe new MO IOllaneo.lf tNt.
ptllrntter -Ii ~plitd IMn the MQ .nn.ree p"'imtlet IhIltf'lol
b:-~Ud.

(IJ Aeceu, C1JntIQl ..
OJ Ref"erce Objtc:t Ittsll~" ~jfi" In .,,!sting obfec:t

inlt~ce of ...t.~h u~ ,111"'111«1.,.I~ it, to bJ tAed IS delt:1I
tor thll! rew 1n,I.l"I(':'~

U "'t!tcole Ust .. A set et Idel\tif!l!I'f to be u;""" del .... tts bt Ch __ ~ U
U~~~' C
UEUOf''''

"I"C
1).9"",,,,IP-
UL~""lb·
1J.1Ie."0~"'1 Ck.. •
f,() s.~Obj«:1 nt;I.r..::t ...
USa>"" •
tlJFt!tef'"
(,J Aec-;n Cohllol"

tU~tyftI'liMtiOn'"

UMOO... -
UMOlns1tnc»"
UO ..trntTirn,,"
LJEnot; ..

e
c
u
C

Table C.3: CM/S IntrinSic Parameters (contimJed)

Appendix C Paga 155



AN OBJECT-ORIENTED COMPONENT-eASED APPROACH TO BUILDING REAL-TIME SOF7WARE SYSTEMS

Association Release

The M-TERMINATE service is invoked by a CMISE-service-lJser to request tho orderly
termination of an association between peer application entities. The International Standard
(CMIS) does not speci!Y any parameters for the M-TERMINATE service.

The M·AE30RTservice is invoked by a CMISE-service-user to request the abrupt
termination of the assoclatlon between peer application entities.

Refer to Table C.2 for a summary of the intrinsic parameters that are defined to be the
CMIS specltlc part of this service.

MANAGEMENT NOTIFICATION SERVICES

Event Reporting

The M-EVENT·REPORT service is used by a CMISE-service-user to report an event to a
peer CMISE-service-user. It is defined as a confirmed and a non-confirmed service. An
M·EVENT-REPORT notification is invoked by a CMISE-service-user whenever an event
occurs thst should be reported to a peer CMISE·service-user.

When the invoking CMISE·service-user has information associated with the occurrence of
an event In a managed object, it supplier, the identification of the managed object, the time
that the event occurred, the type of the event, and other event related information as the
arguments to the M-EVENT-REPORT request prhli~ive.

If the event is invoked in the confirmed mode, a result or error primitive is issued by the
performing CMISE·servlce-user to acknowledge its receipt to the invoking
CMISE·service·user.

Refer to Table C.2 for the summary of the M-EVENT·REPORT parameters.

MANAGEMENT OPERATION SERVICES

These include the M-GET, M-SET, M·ACTION, M·CREATE, M·DELETE services. Refer to
Tables C.2 and C.3 for the summary of the parameters of these services.

Get Management Information

When the performing CMISE·servlce-user receives an M-GET Indication, it validates the
semantics of the following parameters (no order implied)

• the base managed object,
• the optional access control lntc.rnatlon,
- the optional scope information,
- the optlonal filter Information,
- the optional synchronisation information,
- the list of attribute identifiers.

Appsndix C Page 156



AN OBJ£cr.oAIENTED COMPONENT·BASED APPROACH TO BUILDING REAL· TIME SOFTWAAE SYSTEMS

If any parameter is invalid, the operation terminates and the performing
CMISS-service·user Issues an error response. In the event of multiple errors being
detected, with one of the errors being a security violation, the ·access denied" error code
shall be returned. If no errors are detected, the performing CMISE-service-user attempts
to read the value(s} of the attribute(s} requested according to the filter, synchronisation
and security parameters, and returns the resUlt(s) and/or error(s) as appropriate.

Set Management Information

When the performing CMISE·service-user receives an M-SET indication, it validates the
semantics of the following parameters (no order implied):

• the base managed object,
• the optional access control information,
• the optional scope information,
- the optional filter information,
- the optional synchronisation information,
- the list of attribute identifiers and values.

If any parameter is invalid, the operation terminates and n the confirmed mode, the
performing CMISE-selVlce-user issues an error response. In the event of multiple errors
being detected, with one of the errors being a security violation, the "access denied" error
code shall be returned. If no errors are detected, the performing CMISE·service·user
attempts to modify the value(s) of the attribute(s) requested according to the filter,
synchronisation and security parameters, and In the confirmed mode, returns the result(s)
and/or error(s) as appropriate.

Management Action

When the performing CMISS-service-user receives an M-ACTION indication, it validates
the semantics of the following parameters (no order implied):

- the base managed object,
- the optional access control Information,
• the optional scope information,
- the optional tilter information,
- the optional synchronisation information,
- the action type,
• the optional action information.

If any parameter is invalid, the operation terminates and in the confirmed mode, the
performing CMISE-service-user issues an error response. In the event of multiple errors
being detected, with one of the errors being a ~ecurity violation, the -access denied" error
code shall be returned. If no errors are detected, the p~10rmlng CMISE-service-user
attempts to apply the action to the managed object(s) according to tho filter,
synchronisation and security parameters, and in the confirmed mode, returns the result(s)
and/or error(s) as appropriate.

Create a Managed Object

When the performing CMISS-service-user receives an M-CREAIE indication, it validates

Appr:mdix C Page 157



AN OI3JECT·OAtENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOF7WAAE SYSTEMS

the semantics of the following parameters (no order implied):

• the managed object class and instance,
- the optional superior oblect instance,
- the optional access control information,
- the optional reference object,
- the list of attribllte identifiers and values.

If 81 Y parameter is invalid, the operation terminates and the performing
CMlnE-servlce-user issues an error response. In the event of multiple errors being
detected, with one of the errors being a security Violation, the "access denied" error code
shall be returned. If no errors are detected, the pSrforming CMISE-service-user attempts
to create the managed object I and returns the result and/or error as appropriate.

Delete a Managed Object

When the performing CMISE-service-user receives an M-DEl.ETE indication, it validates
the oemantlcs of the following parameters (no order implied):

• the base managed object,
- the optional access control information,
- the optional scope information,
.. the optional filter Information,
- the optional synchronlsatlon information.

If any parameter is invalid, the operation terminates and the performing
CMISE-service·user issues an error response. In the event of multiple errors being
detected, with one of the errors being a security violation, the "access d9nled· error code
shall be returned. If no errors are detected, the performing CMISE-service-user attempts
to delete the managed object(s) according to the filter, synchronisation and security
parameters, and returns the result(s) and/or error(s} as appropriate.

0.4 USINGQCOMM AS THE TRANSPORTSTACK

C.4.1 QCOMMOverview

QCOMM is a cross-nodal process-to-process communications subsystem that Is
proprietary to our organisation, SSW·Data. It Is based on the de facto TCP/IP protocol and
provides high. performance transparent cross-nodal datagram communlcatlon, Its
particular features are:

w management and control of resources used by tl1e communications system,
• message buffering and prlorltlsatlon,
• gllaranteed and confirmed message delivery,
• destination addressing by node number and process name.

Without going into too much detail into the workings of QCOMM, the baste QCOMM API
function calls available to application processes are summarised In Table C.4.

Appendix C Page 158



AN OBJECT·ORIENTED COMPONENT·BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

READING DATAGRAMS

Qopen Opens 3 primary queue

Qopensecondary Opens a secondary queue

Qread Reads a diagram from opened queue

Qclose Closes a primary queue

Qclosesecondary Closes a secondary queue

WRITING DATAGRAMS

Qwrite Writes a datagram to a queue

Qblockopen Opens a block write

Qblockwrite Writes a datagram to the block

Qblockpost Writes the block to the queue

UTILITY FUNCTIONS

Gnode Returns the local node number

Nodesall Returns a list of all nodes

Nodesup Returns a list of up nodes

Nodesdown Returns a list of down nodes

Nametonode Converts alias name to node

Nodetoname Returns all alias names for node

Table 0.4: QCOMM Application Programmer Interface Puactkme

0.4.2 QOOMM and SOMI

In the main text of this Repon, the reasons and Justifications for uSing QCOMM WliJ(eput
forward. A brief review of these reasons are:

(a)

(b)

Network management standards are not yet :'1ature and stabilised, particularly
those based on OSl's OMIP.
Thera Is already extensive use and investment in TCP/IP networks, and many
end-users are so, ptical about CMIPs benefits and are unwilling to wait for

Appendix C Page 159



AN OBJECT-ORIENTED COMPONENT·BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

oat-based network management solutions.
(c) For this project, our organisation required a short time to market tor competitive

reasons.
(d) ihe costs involved of the OSI·CMIF' route: the cost of the stacks, and the costs of

thorough Integration, testing and optimisation,
(e) Our organisation already had the proven QCOMM product.

For the above reasons, it was decided to develop a CMIS-conformant protocol based on
QCOMM, in much the same way as the CMOT protocol, which is the Internet Activities
Board (lAB) specified OMIP protocol over TOP/IF'. (In this project, this CMIS-conformant
protocol was termed CMOQ - Common Management interface over QCOMM).

This protocol was then implemented as an API layer which was termed SOMI, the
Standard Object Management Interface. SOMI provides for most of the eMIS services end
effectively shields application and object-manager processes from the underlying
communication protocol. This will enable porting to other communications stacks, such as
the full OSI stack, in the future.

C.4.3 AdaptingQCOMM for CMIS/CMIP

It was not necessary to make any major changes to the existing QCOMM product for use
with SOMI. The primary modification required was to make QOOMM event-driven.

The original OREAD call allowed only for reading a queue with wait in which case the
receiver process waited on the queue indefinitely until a message arrived. The other mode
allowed for QREAD with no-wait, in which case the QREAD C'111wr .Jld return immediately if
no message was available for reading.

This meant either an indefinite wait or a queue read polling algorithm In application
processes. For CMIS conformance and true object-manager (agent) operation, it was
necessary for processes to be able to receive messages asynchronously from any
requester, In any order, send replies, and stili get on with the business of managing and
processing its objects in a non-atomic fashion.

For this reason it was necessary to provide event-driven extensions to QCOMM. With
these extensions it is possible to deflne an event queue (as opposed to ::1 normal queue),
and define an associated event handler which executes should any message arrive for that
queue. In this way a receiver process can define as man}' event queues as required with
never havin~Jto explicitly read or poll the queues for messages.

Refer to Figure C.1 for an operational diagram for the Event·driven QCOMMI and refer to
Figure C.2 which shows the SOMI/QCOMM layers and interaction.

AppendixC Page 160



AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

----,

I
I
I
I
I

, I__ '_, J

, "..
_l cc
(Q:' (f)

~:, ~:(/)

.,.. ---" ....
I

I X
I ZI
\ :::':l
\

I
I

.'.. ,. ... ~" ...

r-----
I

.~ I
{ij 1

t I I
I II J

Figure C. 1: Event-driven QCOMM Operational Diagram

Appendix C Page 161



AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

E
o
(/)-o
co
~
'-
(\)
a.o

Eo
(J)

.§
o
(J)

Figure C.2: SOMIIQCOMM Interaction

Appendix C Page 162



AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

C.5 SOMI DESIGNAND IMPLEMENTATION

C.5.1 The SOMI Class

The interfacing to the SOMI communication layer is totany handled by and through an
oblect-orlented class called SOMI. The SOMI class is defined as follows:

Association Establishment Methods:

AssAbortReqO
AssAbortRspO
AsslnitialiseReqO
AsslnitialiseRspO
AssTerminateReqO
AssTerminateRspO

Information Transfer Methods;

ActionReqO
ActionRspO
CreateReqO
CreateRspO
DeleteReqO
DeleteRspO
EverltReportReqO
EventReportAspO
GetReqO
GetRspO
SelReqO
SetRspO

C.5,2 The Containment Tree

The containment tree, also known as the naming tree, is a hierarchical structure of
managed object instances. It is used to specify the names, or attribute value assertions
(AVAs) of the object instances, and their relationships with other object instances.

The SOMI object provides the necessary methods for maintaining the containment tree.
There is only one containment tree per application, even if more than one SOMI object Is
in use. This optimises the CMIS requests should they be directed to an object in the same
application but different ASS.

The containment tree is only used in Object-manager processes (in other words, only the
processes that receive Indications). to reflect the containment of the Objects that are
managed by it. The EVENT_REPORT_lND can be received by any application type
(normal or pure object manager or any mix).

CreateEntry
FindEntry
FlndSuperior

Creates an entry
Finds an entry
Finds the superior of an entry

AppendixC Page 163



AN OBJECT-OAIENTED COMPONENT-BASED APPAOACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

FindSibling
DeleteEntry
FindScopedEntry
GetScopedEntry

Finds the sibling of an entry (L -> R)
Deletes an entry
Finds all entries through the passed scope
Gets all entries previously found with FindScopedEntry

The object naming in the containment tree Is done through the use of AVAS and is
composed of the attribute name and its value, ego

·Sectionld = 50·
·SectionName = JHB_HouseKeeping"

In this example the specified object uses two AVAs to identify itself, one which is the
section identifier, the other one the section name. This makes it possible to find the object
with anyone of the two attributes (on this level in the containment tree). The object's
name on a specific level in the containment tree is known as the Relative Distinguished
Name (RDN). To find an object in the containment tree, the full Distinguished Name (DN)
is required. The full ON is the concatenation of all the RDNs. For example:

Class: Top

Class: Section
Sectlonld = 50
S'lctionName =

JH -,_Housekeeping

Class: LEG

Appendix C



AN OBJECT·ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

TOP is al~'/aysthe top of the containment tree (per application context). The DN of the
LEG instance is either

·Sectionld = 50 ; LEGName = JHS·

OR

·SectionName = JHB_Housel<eeping : LEGName = JHB'

C.5.3 Connection to the Communication Layer

The application programmer uses the Attach method to attach to the communication layer.
A parameter passed specifies the name by which this SOMI object is known on the
network. This name must lJe unique per node.

The application can have more than one SOMI object attached to the communication layer
(indicating more than one ASE).

The application programmer uses the Detach method to detach the SOMI object from the
communication layer. The Detach method cancels ail olf~standing messages.

Attach
Detach

Attach the SOMI object to the network
Detach the $vMI object from the network

The following utility methods are typically used to determine the name and status of nodes
configured on the network:

GetNodeNameO
GetNodeNumberO
GetAllNodeNumbersO
GetAUUpNodeNumbersO
GetAlIDowr'NodeNumbersO

Get the name of a node number
Get the number of a node name
Get all the configured node numbers
Get all the up-node numbers
Get all the down-node numbers

Any error number returned from the SOMI communication layer can be converted to a
printable string by calling the following method:

ErrorToStringO Convert error to string

C.5.4 ReceivIng Incoming Messages

The SOMI object uses a callback mechanism to handle all Incoming messages, which
makes it totally event driven. There Is no need for the application to sit and wait in a
specific function for data to arrive. This mode of operation makes it feasible to use SOMI
in X-Window type applications or applications that must poll an external device.

The programmer can block incoming messages in places where interrupts cannot be
handled. The method to do this is:

DisableReceiveO
EnableReceiveQ

Disable the receiving of messages
Enable the receiving of messages

Appendix 0 Page 165



AN ObJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOF1WARE SYSTEMS

Note: While In a handler function called by the SOMI object, the receiving of messages are
automatically disabled until the handier function returns to SOMI.

The application programmer specifies the handlers for each type of CMIS message that is
to be received. If no user defined handler is specified, a delault t:~ndler is called. The
default handler will log an error indicating which message was received.

The user defined handler is specified as follows:

SetHandler(HandlerType, UserFunct10n):

where HandlerType can be anyone of:

I INDICATION I CONFIRMATION

ASS ABORT_tND ASS_ABORT CONF

ASS_lNITIALlSE_lND ASS_lNITIAUSE_CONF

ASS TERMINATE_lND ASS_TERMINATE_CONF
1--"::-

ACTION_lND ACTION_CONF

CREATE_lND CREATE_CONF

DELETE_lND DELETE_CONF

EVENTREPORT_IND EVENTREPORT CONF

GET_lND GE.i_CONF .-
SET_lND SET_CONF

UserFunction is a pointer to a user defined function to handle the specific incoming
indication or confirmation.

The SOMI layer keeps track of all incoming messages (Inds) that require a Resp message.
That is done through the use of the Invokeldentifier variable. Combined with the
Invokefdentifier the SOMI layer maintains two timeout values, one for the time allowed to
issue the first response and a second one for the time allowed between replies (should
there be more than one reply - which is Indicated in the first reply by the Linkedfdentifier
variable). Thesa tilT'~out values are originally specified by the request originator. The
request is cancciied (ie. an error confirmation send back) should the performing
application taks longer than what is specified in the timeout values.

C.S.S Sending Reque!>:s

The application programmer uses the _Req type methods to send requests to a
performing CMISE:Mservice-use; (or Object-manager). In SOMI the object is addressed
either directly or the request primitive is sent Jia the appropriate manager to the object (if
the association is known to the programmer, and then mainly to optimise the access time

Appendix C Page 166



AN OBJECT·ORIENTED COMPONENT·BASED APPROACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

to the object). Sither way, the association between application entities are maintained by
SOMI.

The SOMI layel keeps track of all outgoirlg requests Vieqs) that requre a confirmation
(Cont) message. That is -.Aonethrough the use Uf t:';e In~'Okeldentifier variable. Combined
with the Invokefdentifier !tie SOMllayer maintains two timeout values, one tor the tima
allowed to wait for the first confirmation and a second one for the time allowed between
confirmations (should there be more than one M which is Indicated in the first confirmation
by the Linkedldentifier variable). These timeout values are specified as parameters in the
Req method. The request is cancelled (ie. an error ~onfirmation send back) should the
performing application take longer than what is specified in the timeout values.

C.6 SOMI API CALLS

Table C.5lndicates which SOMI methods are the equivalent of Ui~ associated CMIP/S
service:

CMIP/S SOMI API

Association Sstablishment:

M • ABORT AssAbortReqO.
AssAbortRspO -

M - INITIALISE AsslnitialiseReqO,
AsslnitialiseRspO

M - TERMINATE AssTerminateReqO,
AssTerminateRspO

Information Transfer:

M·ACTION ActlonReqO,
ActionRspO

M-CREATE CreateReqQ.
CreateRspQ

M-DELETE OeleteReqO,
DeleteRsl=O

M-EVENT·REPORT EventReportReqO.
EventReportRspQ

M-GEr GetReqO,
GetRspO

M-SET SetReqO,
SetRspO

Table C.5: SOMI Methods Equivalent to CM/PIS Services

Appendix 0 Page 167



AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUIlDING REAL·TlME SOFTWARe SYSTeMS

C.7 OBJECT MANAGERS AND APPLICATIONS

New oblect-manaqer processes and application processes can be created by building
onto templates which we created. These frames contain the default composition, services
and options for the application domain.

With CMIP/CMIS conformance and object-orientatio!l +i lert;. are two types of processes or
programs; Object-managers and Applications. Objeci'-m6:nagers can be likened to 'SelVer'
or 'Agent' processes which understand incoming request .., rom remote or localOllent'
processes. Applications can be likened to these 'Client' or 'Manager' processes from
which the requests originate.

In terms of OM'S however, the major difference between Object-managers (OMs) and
Applications j.'.> that the Object·manag3r contains 'Managed Objects' (MOs). and
Applications do not. With an Object-manager, all MOs within its control are registered
within the Object-manage"'s containment tree. This means that any other Object-manager
or Application may address requests at any OM's object~ directly.

However, Applications do not have SOMI objects under its control, and can therefore
receive no external requests to its objects. Applications can only initiate requests. A good
example of a SOMI Application is a report program which would request attribute data from
objects In the Historian Object-manager (which would be a SOMI Object-manager) and
display the data in a formatted report.

Both Object-managers and Applications have to attach themselves to the SOMI Bus before
they can service or initiate any operations. It should be noted that Applications are
implemented in an object-oriented manner with classes and objects, but because it has no
SOMI containment tree, its objects are internal only and are not externally visible to other
Applications or Object-managers.

Figure 0.3 depicts an example pseudocode listing of an Object-manager frame, and Figure
0.4 depicts an example pseudocode listing of an Application frame.

Appencl/xC Paga 168



AN OBJECT·ORIENIED COMPONENT·BASED APPAOACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

TYPICAL. OBJECT MANAGER

Include AT_OM.h

/* Define a class that inherits from OMObject class */
1* ego TOP. This class should contain all the OMIS */
/* primitive handier functions that Object Manager */
/* is expected to receive. */
class Top: OMObject
{
the Constructor
{
I" Besides doing whatever Is needed to set up */
l" your Top object this function must also "l
/* create the OM object supplying the name ot */
/* this Object Manager ego RTOM */

CreateOM (SomlError, Context Name)

/* This will attach your Object Manager to */
/* the SOMI software bus. */

/* Additionally Top must also register all */
I" the classes that it is able to create *1
/* instances of. (The class names must exist "]
/* on the naming tree before instances of */
I" them be created. "l
}

Createlnd (...)
{
/* Do Whatever you want In response to a CMIS */
I" create call. Typically this will be to */
I" create other ohjects. */
}

Other CMIS primitive call handlers.
};

Other classes to be used.

Start of mair f program
main ()
{
/* Create an Instance of your Top object. ego Top */
While (True) pauseO;
}

Figure C.3: Pseudocode Example of an Object-manager Frame

Appendix C Page 169



AN OSJECT·OAlE/I,'TED COMPONENT·BASED APPROACH TO BUILDING REAL-rIME SOFTWARE SYSTEMS

TYPICAL APPLICATION

include AT_Somi.h

/* Declare the Somi Object (Global) */
/* Declare confirm handlers for each type of */
/* request that this application is going to use. "!

void CreateCnfHandler(... )
{
Display Returned Message.
}

'Void GetCntHandler (... )
{
Display retur~ed Message.
}

start of main program
main ()
{
/* Attach to SOMI Bus, and tell SOMI about your */
I" handlers. Prepare variables for the CMIS "I
/* primitives (SOMI Variable argument lists) */
/* ego for a ·create" the variable argument list */
/* contains: */
/* */
~ ~C~~ ~
/* MO:INSTANCE */
/\~ Attribute list. */
/* Do the Create Request call. */
While (True) pauseO:
}

Figure 0.4: Pseudocode Exampleof an Application Process Frame

Appendix C Page 170



AN OBJECT·ORIENTED COMPONENT·BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

APPENDiX D: MODELLING AND IMPLEMENTATION OF THE
RTOMS SUBSYSTEM

This Appendix contains a few examples of modelling and class definitions of the RTOMS
subsystem. These have been Included in the Appendix of this study to serve as an example of the
object-oriented analysis, design and class definition process that was undertaken for the project
The examples illustrated ~re real but have been approprlate'y abbreviated for the sake of clarity.

Figure 0.1 depicts the Class Diagram of the Indication, Equipment, LEG, LEGset model of the
RTOMS subsystem. (Refer to the TNM domain descriptions in Chapters 1 and 5 for a review of the
TNM domain and associated hierarchy modej), Note how the Class Diagram illustrates the static
abstractions of the RTOMS subsystem.

Figure 0.2 depicts the Object Diagram associated with the Class Diagram. Note how the Object
Diagram illustrates the dynamic mechanisms of the object abstractions, such as tne 'contains'
relationships and the message passing between the objects.

Figures 0.3, 0.4 and 0.5 are listings of the associated C+ + header files for t'1e LEG, Equipment
and Indication classes.

Appendix D Page 171



- .... \,...... - - - .... ~,
\
I
I "

./ " " " ",
\
\
\

,
\

I
I
I
I
I

,
\
\

-_
\
\

~
\
I ....

\

\ _'
\ ____,"",-- \
I \
I

I

I
I
I
I
1

,
\
\
\
\
I
I
I

I
I
I
I,

I
It' j, /'

I ....
-1 I

I

I
I
I

I
I

I
I
I
I
I

-_ I
I
I

I
I

I

\ ,
- tI ..

I.
I

Figure D.1: Example RTOMS Class Diagram

AppendixD Page 172



~g;
Q..x-
o

;;v
(Q
\II....
(;j

11c:a
p
!'?

~.g
(j)
:n
d
~
o
~(II
Q.
o
~.
~
:3

The Network Element Model: Object Structure

{
\
\

\
\

" -

.:
~

~J\)
~-----=:
\\\

ObJ~ct Mods! ; Expresses the 'contains'
r.laUonl!hlp 01 the ObJects.

Object Model : Expre3S8s the IIessage passing
between objects



~s
~
o

1
~4
5
67
a
9m
tlRU
~U
N
V~
Umu~~•~~U
~.,
u
n~
"5
•B
U'Iaa~0UR~U~
"~~~
"DB

~ I
~w

~
~

~
~
~

Printed by revision 3.' of Iprt.c
file H~ : leg.n ' O.t~ : lied Jan 27 11:35:31 1m Pogo,

'* This tine I. for ldentlflcatfon by ~. ·"".t' coornandl '"
,. ~(*)L.g.h 3.2 93'01126 C9:211:19Aslan \v RTQI) (e) &S\I·Oata (Pty) ltd •• ,I···***···* ··*····**.. ··*··**.rt.*..,.·~* ··*" **••** ,r ~
'" TlTtE BLOCK: '"
,. :.::c~==.=.=z:z *1
r ~
;. Name : te;.1: */
r ~
,. :.0. lIurb<or : ...=tAH Rev: 0.00 R.t: 0.00 '"
r ~
,. Scft".re Ceveloped By ; 8S\1·PATI> '"
/" Private lag X35 '"'* Katfway ficuse *'r 1~ ~
r ~
to ftlnCtior : ll.finltlon 111. for the LI!llcla.~ *'r ~r ~
,'fll.tory : *'r ~'* Event Date Author ".ppr"oved */
r" ~,. Specification 92/03,12 PPS 100( =r
'" Oe.l.., 92'03/12 PPS 100( '"'* Jopt""",nt.tf"" 92,03'12 PPS 100( -r
'" Audit xxrxxm. XXX *'r ~r ~'* Revislens: RevIsion Date Author Approvo<f *'
'" 0.00 XXrxxrn. XXX XXX '"r ~'* RovlslO<!OescrlptlOn: "/
1* :::=~::'==:==--c===Z'== -,'* 0.00 • 11_ »rr ~r ~'* ftrlCtlOl1lll SpecIfication, 0,
/* ::::=%:--~:;.. SSZ:J::sz::::s::::a ..l
r ~
'" Cia:. definition <ne for leg *fr ... ~1***·;t··~··~*~*·**·*...**t:*··....*·..***·***··****···*·..1tIt*•...... *••• ,

~~!7fn!t~g3~~~
. IIlnclude "Q!.h"
'Include "OocketUnk.!)K
#Include .outLlnk.h"
#Include "LegSet.h"
#Include .Exectontrol.h"

r············** ·***···** • ·······n ****•••••••••• **/
r ~
/" CllSs l/ome : ~eg 0,
r ~
'" C.scrlptlon t "I
" Leg Is en ecton)'!ll10r logIcal Equlpillent Groop. Its functl",., Is to"'* contain all the equlpr.ent that is logically assocl.ted in some *'

61
62
63
64
~5
66
61
68
69
10
11za
73
74
15
16
77
78
79
so
81
82.
83
84
85
86
57
ea
89
90
91
92
93
94
95
96
97
9a
99lot
101102
103184
·35
106
107
loa
IllS'
110
111
11~
113114
115
116
117
118
119
120

,t- bsblon. for Inst"""e, a uans..l.sron .yst .. consists of ·'•• 1....'$ "'j: equlpaent ....It. linlced tog.ther via. tran,!",sslon !lied".... :~
1··****·**ft****~*•••*c**•• ,,:11 ........ ** •• '*'2 •••••••••• 11' •• ** •• ** ......•• "*.f
ctOS$ leg , pUblic OHQbJect {

private,.

If< Indicates posItion of attrll:xJte In ~ta block

typedef ....... (
LEG_status: & O.
LEG_type,
L~G_descrlptIOn.
lEG:..!nstall_dete.
LEG_servlce_date,
LEG_servlce_ltVel.
LEG_optyI>¢,
LEu_aliocatlon.
LEG_.t_stJpp_flag,
LEG_ar_stJpp_fhs.
LEG_locatlon_lo:qu<nee
) I.EGattrs;

Dock.tllnk
ooc~.tLlnk
ExeeControl

-flrst_entry;
·last entry:
*exec:controt:

I" Pointers to dockets "'/'* Pointer to control cbject*'

,. protected:

A<tlons Ccmncn to all tell ty;>es.

typedef etUO {
leg_Aft.cted & 0,
leg_RecooeH~4
Leg_Control.
te!J_E•• eEnqul ry.

) Le~:~t~~I"bl.

? _",.. ,e:

OUtl!nk
CUtllnk
OUtLlnk
OUtllnk
OUtlink
logical
tcoglcal

"first affect.;
*last_affects;
'first arfeetedby;
"lest iffeetedby;
·next-entry-
-lir Sl~ fl.g;
··Cs"PP:tt.g;

,* Pointers to affects I{nkso,

/* for affected by links */

'* AI..... '''!'Pre.slon flags *'
1*·.",**·.,·..**······Q*~~···....·**...*····**·*...*·····t .•*.*•••••••••• ,.••••/r ~'* Name : Leg "'r ~
,. Descrfptlon: -,'* The eonstr.x:tor. Initialises the painters ond flags. *'r . ~, •••••• **.* ••**" **•• _••••••••••••• * **/

*'

..

-,

~
a

~
-;-ts

is
~
~

~
()

(tj a
p

~~
~

C) <:
+ -;-t

+ ~

~
(/)

~
Q)
Q.

)::.

(1) i5....
~

::0

CD ~
0- £-.
s d
(!)

r-
to

rn
c::

9 b
C) ~
tu o
:n
(I) ::0

0 ~.
CD r;-
~ :::l.-. s;.g. 111
~ (/)

0~.
::0
I'll
(I)

~
rtl.
~



~
II>
::J

~
D

~
'g
.....
dl

Pelnted by revision 3.4 of lprt,,,
Fll. H""",; Leg.n

Lese>;

ll.t~ : lied Jan 2111;3SJ3J 1993 Psge : 2
121
122
123
124
125
126
127
1211
121
130
131
ua
133
134
13S
136
137
136
139
140141
142
143
1~4
1.5
H61(7
145
149
150
151
152
153
15'4
155
156
157
156
159
161)
161
162
163
164
165
166
16i
165
169
170
111172
173
~74175
176
177
Wi
179
160

1····*···*..**·*.. •..*.. ***····...H...**•• *.*~*.H.**...*...... 1'!... *...... 1r ~
1" M_ : -tell .,
r ~
I" DescrIptIon; *''* The destructor. aIOblect !lIlt delete the dou block. .,
r .. . ~J••*•••••*:t•• ~* **.**H**.*." .......**..... *•••••• *•••• *.**."* •••**/

-teg!);

I·H.H.*" ••****•• ..t ..... ~ri .... *{••• *••• **••••• *••• **........ **.*** .. I
r ~
/* H_ ; AddC<>monJ,ttr ./
r ~
,. Descrlptton: .,'* lrwoked by arrt cf the el..... InherItIng frail this clan to odd ./
" all attrltute. CCll1BXl to all the sub-ct.sses. */
r ~
, ii•• 7.***.lt •• 1t ** d •• **.** 1II"•• I

Yold AddCoc:nionAttr();

' •• *** H.**.** ** _..•••• ,.. *••• 1tH• ..., .. *****.,
r ~
J' W_ : 'etId *'r ~'* Descrlptfon, *'/* Thl~ fenetlon ..HI return the pointer to the S"",(Value lJSed.. .,'* the 10 of this object. *'r. ~
I·****...**.. ·*.... ·*~·.".·..·...*·....*.....*.... **..*·* ..••• ........ ***.. •I
SCIlIlv.tue 'Getld ( void ): '*. Pointer to S"",IValue *1
, n ** .. - *tt* ** *** •• *,***.,...*/
r ~
1* k_ : S.tAt..... .,
r ~
~: ~!:~r~~~I~.~ deta!ls to an .cceptlr,g dock.t. The ®cket will :~
I" :.tums lal •• If al.1lI Is not accepted. *'r. . ~
I*·· ..**..... "· ... •.......*******~..**·····**...*·····....··*** ...·*·*****"*Ivoid SeUb"" C

atObloet 'equlp,
OILtnk '{neI,
chel' ·.category,
chef ·crIteria,
sh~rt urgency,
long JeYerlw.
long s.t_U ... ,
LogIcal affected,
,,!far "'eqt id_va[#
char 'IricCld_val,
logIcal IUW_.t,
loglc.l suw_er);

,. Polnt.r to equlpnent'* Point.r to Irdleatlonr Pointer t~ catogory
I" Criteria value
,. Urgency of the alar ..'* Saverlly of the .t.rm
,. tim of new .talll'* Network Integrity flag
1* Equlpnent Id pointer
,. Irdlc.Uon Id pointer'* Ale .... suppression,. ArchIve s"PPro .. l!)n

-t
*'./*'*/»r
*'*/./.,
«r.,

I... ·····***·**......."****'*'r··***·· .. *·....**... •• .. ..-..e·····*····· .. *Ir ~
I" H8If4e : CtearAlanl *'

181
~82183164
185
1M
t87lsa1119
i'iii
191197193
;94
195
196
197
196
199
ZOO
20t
202
203
204
205
206
2072ea
209
210
21t
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
22~
221
230
231~2
233
234
235
236
237
236
239
240

r ~'* Description ~ *'J* P.... ~"" .iana detoll& to an accepting docht. The docket wit t */
r ret""ns fat.e If the .tIna" not accepted. *'r . ~
1·~*···***·*'*iI'*..*···***·····****·***·..*·*****·*·****·***· ..... ** •• ****/

yold CtearAhna (
aIObject ·eqt_ptr,
a,lInk ·Ird_ptr,
ch,ar '*cltegory,
char ·cr!torll,
long •• t_U ... ,
tong e\ear_t.hl'e,
Logical affected,
char ""'It Id val,
char * IricClc[y,t,
Loglc.t ,upp_at.
logical supp_"r);

'* ~olnt.r to equlpnent *''* Folnter to equlpnent .,'* PoInter to category ..,'* Criteria yalU<' *'
'" Time of bst state chang."
J* time <>f alarm c\tar "
/* Network Integrity tlag "'
,. Equlpnent Id pointer *'
'" Irdi,.tion ld pointer "
'" Alar .. suppreSSion "'
'" Archive suppreSSion .,

/**** ••••••• **,,**'** *.** •• *•••• **.*'11:•• ***** ,.**.*** ***" •• ,
J* ~
,. Name : Ar~hlv""la,... *'r ~
,. C•• crlptlon: </
,. Srnds the arcillv ... cord to 8UC~T. "'
/* .AttrfDute to $end lJhere from *''* tog Id Doc~.t *'I" eqt-Id E<I\lIP1!"nt·,
~: ~~!~I. l~~·t'on:~
,. ser time Al.,... ( lut sot ti ... 1 */'ft drct Docket - - */
'" det"ynr - <ateu,ned "'
~: ~:~_~th : ~:!~!::~ :~
,- clt.r ti... Atar" ",'* loele, Equlpnent",'* I • 1<1 Docket",'* will)"~ Indication",'* 1I.ICnua Incllcatlon"/
/* wal, nua Indication *''* ."aI3-nua Indlcltlon",
1* wal4-nua Indh:.tfo.~ *'
'" wIIS-nua Ir.dleltlon *'
,. cat_Td Ala.... *''* al.....de.e Irdlcatlon"
" flag.- At.....·'r ~/*.** ,,*.* •••••••• **, ** •••••••• * ,

yold Archlv.M {
atObject ''''It_ptr, '* PoInter to th~ equlp' ..nt I *'
otUnk ·'nd_ptr, '" Pol"t er to the Indication *'
char ·category, 1* Poirter to category .,
char ·crlterla, ,. rhe Indication crlterll "/
tong let tlll1e, '* TI.... 1...... Itas set *'
long cltir tiJrIll-,. ,It- tiMe a{ulll was cleer *'
Logical .cw_ir ); '* Mchlve suppression flag .:

'**.**"'*.* •••*•• *.*."H*** ••*~. ;:;•••••**** •• ** ** ,
r ~

~
0

~
0

J ';I
0
::0
5i

~
D
0
0
~
0
~
~
~
~
D
):.
"l):g
~
~
d
to
Sr-
D
~
Ci)
::0
~r;-
:::!

*en
~)i
::0rn
en
(ij
rrl
~



:R
II)
::::s

~
D

~
tg
......
~

pr!n:td by revision 3.4 of lpr-t.c
file Home: Log.n . .

241
Z~t!
243
24,
245
246
247
248
249
250
251
2!'2
253m
255
256
257
258
259
260
261
262
263
264
265
266
267
2M
269
270
271
272
273
274
TIS
276
277
278
279
2M
261
282
233
284
285
286
287
US
289
290
7.91
292
~93
294
295
296
2Y7
298
299
300

Date r. lied J.n 27 il~J5:3t 1993

,- Hame: : Pr«e3stonst */
r ~'* Description, *'
,. lhls flnCtlon wltl .... t.te the OHObject process Co,"1Struetlon "'
,. But It th" s_ tl"'" will set up the condenstd rtcIWd .truct ...... ·,
J* used by the leg. *1
r . ~p.*.....~...**••*"* ...'***.... ~* ••• *...H**.f.*** ••:t...... *.a•• ****.*.*/

SOOIiEr.rorI'toeusConst(
C+IObj.ct ·father,
ClassEntry ·c~,
~:!~:~::!~l"".
tHlbject "ref_obi,
RXMe$sage 'message,
Rsp!lloeK ·respons.);

'* the f.ther pointer
/* Tile d ... entry
,. The ld
'" Th. value
/* The act Ion type'* The "'S"ge blockr The r••por... block

"'*1*1.,
"'./*'1···*H••*.* ~"." •••• ******.* ••• ** ltfr.**..,*;f" ••... */

r ~
I" a..., : Construtuecot<! *'r ~
'" aescrlptlon: "i'* ThIS tInCtion wHt proc ••• the reecrd into. cmpacted version "I
,. "pe~lflc to each Leg type;. */r ~p _ H '* **" ••••• ** ••• *** ••••••• ***'*.*/

logIc.! ConstttX:tRecD<"d C /" return true if ok '"
$Cl1IIErrcr *error, 1* Return error for falted *'
SCGlIV.lue *val_ptr. /* PoInter to vetue *'
wid ·vatlle'., /* Pofnter -to a value */
Int entry); '* The attribute I'l<Jli>or. '"

1 **.** ***"* *.*••* *.**It1!r *~ •••**••••• **0 •• ;
r ~r II.... : Proc ... Cet "'r ~
I" Oe"criptlon: */
/* This flnCtlon replaces the Frocesse.tlnd, Leg doea .cme */
I" terrible thing~ to optliolse It .....,ry ..... g.. *'r . ~
I* .........***"*H~*.* *.H*...*·..*** .. "·****.. ·*·**··*·*·****I

$""I£rrol" ProcessG.tC
RXHessage .~13g-e,
lspalock "respar.'e,
$cmIV.lue ·"_Id_l'-'t);

'* The .,..$.90 blOCK
'" The response block
/2 The attribute Id 1I.t

*/

*'-t
,. *** H **.."'** **** •• ***•••• *** •• * ,
r ~
,. Heme : BulldS ... 1 */
r ~
,. Descr,;>tlon: *1'* Constt"JCt the SOOII'IalfJerrOOl the data block. HOTE:The record */'* entry has been ,,,,,,,lally treated In this case, R."".,ro.,r to free *'
,. up the 'p!lce used !Joltarns fr.eCQpyV.tue *'r.. ~
, · H ******* t1t ** *** I

void Bu!tdSCl1Il(
SOOII':alue *sCClI_value, 1* Th. d~stlnatlon ~I
Int Indel<l; ,. Attribute Indel< */

"age, 3
lOt
.302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
311
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
3'..4
335
336
337
338
339340
341342343
34.
345
346347
348349
350
351
352
353
354
355
356357
35&359
360

, ** ** ••••••• *** *** ,
r ~r 11_ : eetp.ecord */r ~
/" 1l•• crlptlon: *''* c.t the ccoprossed record Into sOillIValue construct. ./
r .. ' ~, •• *** ••••••••••••••••• H .......*** •• ** •••• , ••••• **•••••••••............... ,

logical e.tRecord ( '* return true If ok *,
veld ·value, '" Pointer to a v.lue */
scmlV.tue ·vat_ptr, '* Pointer to value .,
lot entry); '* The attribute nt..;iJer. *'

pf: **••••••• , *** 11 ,

r ~'* 11o"", : ProcessDynamlclll'lks *'r ~r Description: »r
r This fLl1CtlO<)witt send Its OlIn closs Ind full distinguished ""'* n.... to be "..ocesstd for dynamic link Ilpcbtes and ~lIl then -r
'" request.It.lts ~hlldren to do the s_. ./r -r/** **** "' ****.** */
voId FrocessnynamlcLlnkS(DtKlpdateType update_t· '>el;

j* ••• *** ** "**.* •• *.,. •• ** * ~··"1
~ ~'* N."" , OetLOCSequenc.. .,r ~
r: Description: =r
,. This fLl1CtlO<)wltl ccopare the loc_ld SUpplied .. Input WIth .,
/+ the lo~.tlon sequence record arod it witt return tho ""$Itlon *f
,. as weU as the longitude and l.tltude of tho location, If tho *''* lOCatio" given Is not SUpplied then this fLl1Ctlor. will .. turn a *'
I'"~ -I. .,
t= "/, *** *** **.** •••••••••• ** •• * */
short eetlOCSeqoenc:e(

d;lr *loc_fd,
flo.t "longitude.
float *'atl tu;!e);

" The locatiO<) fd to find "''* The. location longitude "'
,. Th. 10cattO<) latitude *'

, ••••••••••••• **•••• :t.w ••• e-** ••••••• ** •••• *** •••••••••• jI> ***/
r ~
/. 11_ ; Setllord!!Ot.ndary *'r -r'* Description: *''* Set position SUpplied to • WOrdbotJnd.ry. *'r '.. .... ~
, •• f1 ••• ***.* **_•••• **** ••••• *••••••• *.* ••*.'t*~•• *.*.* ••* c •• *I
Int S.tllordBOI.inC!ary ( Int cut're<lt );

I**.... • ..··**·······*....~··" ..*·*..*.....······**··..···**..····*••••• *•• ,r ~
,. II."", : C.tAttrUst *'r ~
/* Pescrlptlon, .,
I" lhb flnCtlon wilt e~tract the entlr~ attrlbut. (ist .s "'

~
o

~
"';'i

~
ill
~
tj
C)
o
~o
<:m
~.

~
Ci)

~

j
g
s
d
OJs
b
~
G}
::0
!i!r;--
::im
Ci)o

~
~
Ci)

~
ilt
~



~
~
~
D

16J
362
363
3601-
365
366
361
36t
369
37G
371
372
3H
374
375
376
377
373
379
3l5O
3111
352
3lI3
384
3lI5
386
361
386
3119
390
391
392
393
394
395
37£>
397
376
399~OO
~OI
~G2
403
'0';
405
406
437
'oJ.!'
409
410
411
412
413
414
415
416

cl' I 417
41&(Q 419(!)
420......

:::J

Printed by revision. 3.~ of Ipre.c
tile H_ : Leg.n Date.: )led.an 27 fI:35:3J 1m

'" stored In tb. deta bioct. .,r .. .. ~, ...,•• ** *,UI •••• "/

yoid GetAttrL tnC
S01l1"ilue -.ttr trst,
ScalValue "obi class,
SCXlJVatoe "obj:lnstlt)C:e,
long access);:

'" the .t;tlbOJte ll$t:* the ctass list
I" The retU1'ned InstMce'* Acces~ pen1issfons

"/
./.,
"', **** ** ***~* *••• *••••• * * ff •••••• /

r ~
'" 11_ ; A<ldI.ffectsLlnks "'r ~
'" oescrJptlon, ..,
I" A?j Aff ee t. Una to tb. list. .,r ~, ** t.,•••• .)•• **t-ot ••••••••.......... ~.*••I
vord J.ddAffectsllol:s(

scaiError- ·error,
SOIlIIVatue "Id Ust,
sOIIIVatlJe *vaT""_Ust,
lY.Heuage "'~U~I
Rslllliock "rO$"""".);

,. Error r.tU1'n "alue
'" 1I5t of IttI'" ids.
'" list of !6"alues
,. ~ee reYed lieS sag.
J* The respoIlSlt block

.,
"'«r'"'"

, .., **** * ff/
r ~
,. 11_ : Ac!dAff~ed3ytlnl:. *'r ~
lot ~eserfptton:. . ~. -,

~: ~r!~CI~J.(~~ ~~!~~~l!t~~~t~~ }:~tS~. r<.nber~r dJplf".te and r_.aU entries {rCOl lh. duplicate <·",srd. .,r .. ~
I·..·t-····**'***....*.... ·*·.....·*··...··..*··fi ......... *..... ~* •••• ~..... I
'{old Add!.ffected8yi.!oI:sC

!ccaiError -error,
SOIIIValue 'Id t1st,
sOIIIValue 'vaTue list,
itXKessI2e ·.mess.ge~
IspBloci: "r'$flOIlSe};

J* .Error return vatue
/" LIst of attr ids.
I" list of i::l "a lues
'" lecleved lO9$1ge
'" the response block

"'"/"'-r"/
1·*·H.** .......... **•• **ri .... H~!t.... *••****•• *" ..H •• «: ... Ir**.*." •••*I
P ~r 11_ : Det.t ....ff.c!stlnn .,~ ~
r~~tl~1 ~
'" Delete Affects links free: the tlst. 0,r ~, ** ,...••• , ..***** ******.I
void od.t ffectsllnks(

scnfError -error t
sO!lIIValue -Id lht
SOOIIV,(ue ·vaTue_dst);

/If: Error return vatue'* List of at'r ids.
,. List of iei values

-r.,..,
I*·*......*····*.. *~H* ............... *******~••***** ••• ~*..... **.* ••,r ~
'" lI_ : !)el.t ....f(ee tedB~l.Inks "r ~
/* Description, »r'* Celetes Affe-:ted8y lfnb fr"", th" Ust. *'

Pase , 4

42'
422
423
~24
425
~26
421
428
429
4"]0
431
4lZ4»
434
435
43f>
~31
43&
439
,40
441
442
~43
444
445
446
441
448
449
450
451
452
453
454
'55
456
457
458
459
460
461
462
'63464
465
466
467
466
469
410
471
472
1,73
474
475
476
477
478
479
4eo

r ~' **** ** *•••• t.lIt ** ••••• l
void OeleteAffocted8yLlnks,

Scmifrror ·error, ,- Error re:.urn value */
s... rv.lue: "Id list, " Ll$t of .ttr Ids. "'
Sor.IValue *"aTue_tlst); '" dot of Id values *f

j *** ** •••••• Il•••• ** */
r ~
,. N_ : Propogat.Stat~. *f~ ~
, Description: ~,'* $'000 the eUr,ent obJect status to III Affects enrrIes, "/'* lho action Information needed Is u follO\l~; "r v
J~ action info H....... 'I,
r heard I *'J* R.eeord .~........ ,... - ........ -..................... 1(1

,. I I"'1* .Record -........................ "I
r 1 ~r 00000L "ststusH .,

/* I I .,
/* "Le."' - Reeord "source_class" */,
,. I I "'* "leg 1<1"•.,. •••••••••• R«.rd "src.lnst ids· *'
/* - I T - "',. "JSK itT\{ tP01'" ..- .......... aeeerd It~re~_'f\$t_...&ls" "Fr ~
,. the objeCt Instance {" constructed so thlt .nv object MY "'k~ */
," use 0; the .ffects'affoctedby objects. currently only Leg Is *t
1* capable ot usfllll the." objecu. "'r .... .. ~
1·*·..~· ..·**···..****"··..··**·*·.. ·1>* .. • ..···*·*··*·······* /vord Propog.toStatus(

OUttlnk "speclflc_lInlt >; '* Pornter to speclfl" lIoI: "/

1···*···*·*···2"·*······*H H ••• *••**.~."'*••#t.* ••• *••* /,. .,
/. M_ • ProcessStatus "'
r ~
,. O."crlptron: "
1* Precesses the Iffected action. This \I!ll .e.'eh through the "
'" Affected8y links lNItll OM Is fot.n:l contalnl,,!! the 60llBOC a. "
I" supplied. This entry ~ltl then have the status value updated ./
" lh. leUon Information needed Is as foUO\IS: .,r • ~
'" action Info ••••••• "/
'" Record I "'/* Record', - ~-"' ~.,.............. .,
,. I I .,
/* Record *''* I',/* ooo6oL "status" */'* I I "'J* -"Les::1t _ Record "source clISS" ./

/* I! - "'/fr: ttleg left' "' Record "srCE fnst Ids" *1'* - I T - "'*' "JSM iT'" lPGt" Record usrce_ins.t_vals" */

)::.
~
o
~o
';"i

~
~
~
()
o
~
~
~
';"i

~
CI)

~

~
~
~
d
OJ
£::
5
~
(j)
::0
~r;-
:::!
~
~

~
~
CI)

~
rTt
~



:g
CD
:::J

~
D

l....
""Q)

Printed by revision 3.4 .of !prt.c
FHe Hari'lC; : Leg.b Date: II,,:! Jan :2.7 11:35:31 1993 PAige ~ 5

~81
'82
~83,e~
'85
486
487
488
489
4~11
491
49Z
493
494
495
496
497
498
499
500
SIlt
50Z
503
5fk
505
5~
50;
soa
509
510
511
SIZ
513
514
515
51f.
517
518
519
520
,21
522
523
524
Sa
S26
527
52B
529
530
531
532
533
534
535
536
537
538
5395'0

r ~
,~ The oblect !roSt""". I,. constructed so that any object lillY... te "I
,~ use of the affects,.ffected>y objects. CUI"renHy only leg Is Of

'" cepGble of using these obje;:ts. "'r ~
1*.*H_H* .•*~* •••• "ll'1t"."'''"''''**''' ••**•• *.**'''tth •••*''H ••• *••• 1!/
S~iErtcr Pr«.s.stato$C

SOBiVa!ue o.ct£CI'I,-lnfo); J" Action proc.s.ir~ Info <,
I··*·*··*.·***··*·*••··*·.·*...*.** ..***·~.** ...... *****11'* ••••••••••••• ,r ~,0 H""'" , ~ul!dAttrlbuteLlst 0,
r ~
'" Description: .,
" RetUl"nI attribute Ifst f"" the ilynaa1c Links. '/r ~, •• ** *** *** •• ,
S""IVat 'BulldAttrlbutelfst(

long aeeess
S""IVatue ·a_!d_hst);

j* Aecess ""nal .. Ieos,,< Jittrll:o.!t .. Id_lfst
.,
./

, ••• ** ··*~··**............***·"' .....*....·*·*··**......···**..*****···...:a-··· ..*Ir ~'* !lace : 8ulldAttrlbutei.fst .,r ~
,. Descrfptlon: ./
/* Returns attribute tlst for the Oynaalc: LInks. "r ~, ..** ** ** » '!*** ••• **.**.n ***/
Sao!Yatue 'SulldAttrlbuteLlstC

se.olValue ·clou_ptr,
SCIIIlYalue ·'n<t_e_ptr,
Cl.$SEntry ·c(_pt t: );

/. HOC polr.t~r
,. HOI poln.t er
, .. Cless entry pointer.

'"«r
"

1*·~·** **·* :\>·*·H **" **a*".********.*.* *' ,r ~,II" .Hame ! ProeessCOtitrol "I
r ~
r Description; *'
'" InlH.tes the cer.trol funcHen proces.ing. If there '$ net "'* alroady a centrol in progress th.n this function will extract '/
I~ the action •• S'.....,ts. After ,<.lIdating th... tI•• func"TO!'!"Ill "
/* aUOIIl't to fetch the pr«O<iJre for the controt ftxlCtlon .,
J' specified. If the proce<lJre does net ",,1st or rt Iny ....f the .f
,. action arguoonts arlOnot vd id then In error wlH be returned *'
,. to the Inithtor of the control. "'
r ~
1·"*·**·.........*·****.....**·* *·..*····*~*·*··*** ··*··*..··.,......·..·1t••• /
void Proc,ssControl(

RspBlock *response, J* aOltponse btock. ./
SOOIIValue ·.~tfon_lnfo); '* Action .r~ts *'

l ..••.....•.... H*...... b* ........•..... •••••••• ..•... •••• ....·fo:···.. ~·.,.···*·..·1r ~
r 1/..., t Process:xed:nqulry *'r ~'* O.. crlptlcn: *1'* Prot;esses t:le ExecEnquiry rec~:ived IS an action. the fUoctk' *'
/* lIitt ".Udate the ~tlon_lnf" .r~t .. and If aU Is Ill: the */

5'1
542
5'3
544
545
5t6
547
548
547
550
551
552
553
554
~55
556
557
558
559560
561
562
563
564
565566
567
568
569
570
571
572
~?3
d.
"~
r (c
~i.
518
571'
580
581
5l1Z
583
584
585
586
5S7
5M
589
5*
591592
593
59'
595
596
597
59!
599
6DO

'* ne error will be returned to the r.."..t ee, If the specified "'
'" category ®c. not exist t~m no error IIIlI be ret~"'"ed but with *'
J' • flag to Indicate this. "
r .. . . ~
, ' .,. e.-:t •••••••••••••••• 11/
voId Proce.sExecEnqulryC

RXM!:Ssage ·message;
RspB\ock "response,
SomlValue '.ctlon_info);

'" l""elve ,..sslg"'* l!e$Sag. response block
'" Action Info ft ....reqoest

"""
, •••••••• • .., H ........••••••••••• ,

r ~
/* lIame : ExecEnqui'Y "'r ~
/* Description: .,
,. FQrllarc!s the Execute .nqulry request through to III equlpnent" "'
I" (chlldr.n) of tMs Obl~ct. '/
r ~1··..······· · ·*··*··*· ~··1l····*·..··· ··'*-e-········..".** _,Loglc.l [x ecEnqulryC I" False • cat Id nee found "'

SomJError =errer', /* Error to be.":"'returned .,
InvokelO Inv Id, ,. In'lokelO to be returned "
void •• uti key~vat, 1* Sib key vatue *'
toglcat dlspTay, '" Return Indlcltlon attributes "'
char *cot Id_ptr·, I" Pointer te clte,ory to ... teh "
eher- "quantIer, '* Pointer to qual to ... tch *'
Int state l; '* new stete to Ut point too "

I·..··*·..~·*·····*'i'**·····*·'*··*·*···..*,io····+··;·······.•• *•••• "'•••• ,r ~'* Hame : aetClrlProc *'
J* .1
,. Io.tsc:rfptlon:.... ......,
" [.equests the parent of tills Object to return the pointer te the "'
.~ centrol procedure IMlcated by t~. teg t)'pe sod function no... :~
~•••• *•••• o.* •• **** •••••••• *** * ...,*•••••••• *.*•••• ;\-.** ,
$"",IRec.rd °CetCtrtProc(

char *ftxlCtioo_name >; ,1It Haae of control functJon -,
, ...v "'•••••••••••••• ,

r ~
I" J(""", : Sencll ispl*y "'r ~'* D.scrlptlon. *''* Invoked by the teg If the display flag was set true. TM.. "'
I" fuoetlon will only be caUed If an IMicatlon w.s found to be "'* v.tld. .,r . . ...• ,rn*••**f>* ••• *•••• *.** · * ~*·•••••••• *.** ••**.*..:h."* •••• ,
void SendllsptlY(

InvokelD Inv Id,
void ·."IU:ey_ ....t ,
ellar *eqt id_ptr,
<hlr ~1r>(la_ptr,
thar ecat Icf~-
char ·.alarm due;

;~i~rror :~~!Fi~~,

,. The Invoke Id to us ..,'* Sub key value
,. Equipnent Id pointer

~:~:;1~~:~I~~~t~~~,r
/* 'Pointe!"" to- Alarm dese
1* IIA~ Id (1st.
/* Error return if any.

*1

"'"''f"/
"0,
-r

».
<:
@
~o
7i
§5
iii
~
D
oa
~a
fi!i<::
"jI

~
~

~
~s
d
co
5;
r-
D

~
::n
~r;--
::::!

*~
~
~

~
Ttl
~



Printed by revision 3.4 of Ip<"t.c
Fl;. H""", : Leg.b 1).to f lied Jan 27 11:35:31 1993 Pog" , 6

601 J#H.* '* * **-t*.* •• ~ *.****.**.* ;, **.*** **., 661 / "***.*** •••• ** ..,•• *** ••••• ** .,, «••••** */
~02 I~ "I 662 I~ *'
603 '* 1/..,." : EnqResponse *' 66~ '* n..., : CI .. rel .. ble "
604 '* -r 664 /. *'60S I· D"scrlption: . *1 665 '" Description:. "'
606 '* Response to enquil')'. It lIitl be fCM!ard«d to the Ex.cControl *' 666 ,. loops thrClJgh all equlp' ..nt to find an entry wIth. matching *'
6fl7 '* ".lId. *' 667 /k equ!pncnt !d. ihe equlJl1lent. t!earel .. ble ~ill be invoked and If*,
;;08 /* "/ M8 r the location matches the given tee !d the ... the Indications lIit! *'609 llt 1i***u ** c- .. h */ 669 /* will boP. f~ked to clear the: locatTon dfsable ,alam. *'
610 void EnqResponse' 670 /*. *'
611 lnv:JkelD Inv fd, I~ The t:":'7vki:lti to tiit!" .: 671 /** t** *••• *** U .. **.H h ri */
612 voId *.1£ keY.v...l, '* Sub key va!tle */ 672 void Ct.arer .. bt.,
613 char *eqC!djit~. ,. Polnt.r (0 equlJl1lent Id *' 673 Int f_tlcn.
614 ~har 'Ir<!-Id_ptr, J* Pointer to Indic.tlon Id "' 674 char *tocld_ptr.
615 Log!e.l state "aloe, '* Ck"tretlt state of point ./ 675 Int t)'!l<l>;
616 SCGlIError errcr-': !' Error return If any. *' 676
ill .. m
618 1..•...•..··**..···*·I:'u~••*.** ...*.~.*..* *.* **...... :t.**.* •.... ** •••••• / 678 ); /* leg */
;;19 '* -r 679 #endif
620 Jr "_ : ProcessOisab!es *'ru p ~
622 ,. Desc;lptlcn. *'
623 I" Thi. f<n::tlon wilt validate the rnc""lng ...... ge, If the cpld *'
624 I" I. valid then this f1Jr1l;tlonwill eXtract the fllt.r par_ters *'
625 '" and v.Udate th.... If the par .... ters are v.lld then att the *'
626 J" children uill be Invoked to perfol'Q the disable request. "f
621 '* *'628 l*·~ ..•...*·*****:i**** ... • ....*....*....*··*·*...·····*·...·*·..*··*..*•••• ".,
629 vo!d Procl!$.sO!sabte. C
630 RXMcssage '*Q)eSs8ge"
631 Rsp1l!ock "r.sponse,
632 SomiVa!ue ·.acU""_lnfo);
633
634
635
636
637
63&
639
640
641
642
643
644
645
Me
M7
648
649
650
;;51
6S2
653
.654
655
656
657
6511
659
660

~
(!)
::I
Q.x-
D

i
.....
~

1* The receive 1Dessege'* The response block'* AcUon Info.
*'*/
"1*..··*·····*····..H!*·Ir~.*.. * ri.**.* H 2•• *.* *.* ,r . ~

,. 11_ ! Contro!Cocpl.te '"r ~'* Oe.crlptlon: *',. Clear.s LIp at the End of • Contrel cocpht!on. It Is c"l~ by *1
,. Exectontro!. -r
r . . . . ~,.,.* •••• **.**** •.,..*.«* .... *...~......**".***." ••••*.*** ••• *.** ........#(
void CcntrolCa.pletet void );

, ••• :*" **** .,••••••••• ** ••• * *.*••* ,
r. ~'* II.... : Setolsabte */
p ~,Ii' Descr~ptfort: .., */
'" loops thrOlJ9ll all equlpoent to fir<! an ""try 1Ilth a .. tchlng */'* equlj:mOnt Id. The equlpnents Sotol .. b!t wilt be Invoked or<! If "''* the location ..atches the gIven !oc_ld then the tndlcatfons ~Il[ .,'* will be Invoked to .. t t.~.Location dl,"bl. al...... '"r .. ~,.* *** "*- **** '1: ""* ,
veld S.tOlsabl.,

rnt ftnCtfon,
char *tocld_ptr,
Int t)'!l<l );

'* Type of disable r<n::tlon */P Pointer to II locIl!on. '"'* Type of lD ./

," T)Pt of dlnble f_'ion"
,. pointer to • toc.tlon. */
I" Typo of LO '"

.1

~
o
~o
j"'I

§5
i'ii
~.
gj
oo
~
~
~
j"'I

~
(/)g:
:t>.
~
::tJ
~s
(j
llJs:
~
~
::tJ
~r.-
:.:!s=.
I'ti
(/)o

~
~

~
·rrI
~
(I)



:g
(l)
::J

~
D prln,ed by reVision 3.4 of lprt. e

File Hame ; Equipoer.t.n nate, \led Jan 27 03:03:08 1993

1 , .. This line Is for fdentlfic:ati,,-~ by the 'lIl1.t' cCllJlllll"ii!'" 60
2 '" llC#lEq<oipcMnt.h 2.1! 92/11/1J9 09:58:49 A.len Av (RT\l'Il CCl S$\I·Dat. (Pty) ltd. 61
2 -r 62
3 , ..................... **............ t::1- ..... " ••• IIi...... *............••••••• H; 63
4 /" ., M
S r TITLE illOC!:, "' 65
6 I" =:===:.:s= ., 66
7 '" '" 61
I! /" N.... : EqOlpcMnt.h -r 68
9 r 21 69,~J* I.D. JI","",r : ASUJI ~ev,0.00 Ret: 0.00 '" 7;:;
U /" .J 71
12 /. Seftware. D""dQPed Iy : !SII'OATA .., n
u /" Private Bag Y.35 "/ 73
14 ,. Halfway House ./ 74
15 fir 1685 *' 75
16 '" */ 76
:7 r: f<.neticn : Peflnitlcn fne ~or the Equl""""'t chss. ./ 17
II! 1* */ 7&
19 I" -r 79
20 '" History , "" I!O
21 t= *, 61
22 r Event Oate .....thor ApprOVed '" 82
2~ ,." *, • M
24 /. spocffication 9"-104/21 PI'S' ., XXX *' I

M
25 '" Cesfgt1 92/04/21 PI'S XXX *' as
26 ,. lopleoentation 92/04'21 PrS XXX 'I M
Z,7 ,* Audit XXIXXIXX XXX *' 87
U '* ., 88
29 I'" ., 89
30 '* .;~*lsions: Revision Date A!JthQ('" Approved *' sc
31 '* 0.00 XXJXXIXX XXX XXX ,,' 91
32 I· 1.00 92112114 PBS .... ~. r-
33 " «r 93
34 I" R.vlsion Description: ., ~
35 1* ====:;::.:r.:"=a=:a~ *' 95
36 I" 0.00 - Hone ., 9637 /. 1.00 • !Iodel Char,.: Indications Nde Into pera'OIlS <Ib;teu.·/ 97
36 ,* "I 98
39 /" ., 99
~') '* functional Speclffcatlon: "/ 100
41 ,. ==~=aJ:'u:#:=ss~ *' 101
~2. " *1 102
43 '* 'his Is tile definItion tfte foc the £qolprner.t clast " 103
~4 I'" . . .. . ~ 104
45 I····***..~**·*·*··*****··***·**··* ....***..... *·** ........**......*·.... *.. •·t 105
46 106
47 lif ldeflr.ed (£CKJIP!lENTH; 107
411 #deU"" £OOll'lIElIt_d _ loa
49 109
50 il:x:lude "IJi.". Ita
51 'lllClt.<!e "Dllfnl:.h" '" Indlcatfon til'll u.t *f 111
S2 112
53 /***.. '.*.. ~ •••*.. *.*....... *.............*.*.*.*.* ..***H ..... **.k ...*·*·1 ti3
5' '* At~ -!t.ute .. ..roers • last ruber is JlI".ys the ....mer cf */ 114
55 '* ttt,:butes ,ontoine<! fn objects ef this CIa.. *' 115

I I
56 j ••• • ........ **•• **"' ........ ,. ......................... , ••••••••• u*••_ ••••,

I
116

57 typed<f ~ < 117
58 Equf pDef''' $' :atus =- O. 'US

e 59 Equip> :de3crlption, 110
_..
Q:)
0

Page:

Equip:;et\t_frequency,
E'1"Ipr.ent_Sequence_11O,
£'1"lpcMnl_loc_'equence,
Equlp:ll!nt_!oc_s_long,
E<jUlpoont_loc_s_lat,
E<jUipr.ent_code,
EqOIpr.ent_locld,

) £qulpr.entAtt. No,

typt!def enuo (
£qolpcMnt_reconell" = 0,

) EqulpnontActlQIIS;

,.** v ••••• **••••• " "... •••• *:t* :.*1
r ~
I~ tta.s : Eqo;pcMnt "/r ~'* DescrIption: *''* This c: _ contains CHIS Into ..... tlon .pec!flo to tt•• actuel */
1* H~t....ori" .eeent , th.is class also flets IS. container for the .,
I" obj.cts ( Indications l representing the O\ItpUts generated by *''* the Network El-..t ( EquipcMnt ). Th ... output. or .. IIlOI\ltored ':Jy*l
I'" SUMlelttenee Eqolpnent !Iodel ( SEll ) and the !MI. ArIf chenge of "I
I" sute s.... r.ted by the HE Is detected by th" WI, paneo to the */'* SEll and thence to the Indications contoinK ':tf this class. *1
/* lIhen tho Indicnion processes the stote change it witt Initiate *'
I'" the generation of Dockets'I,ler. v Ia this cl.... */'* liD!". -rI· 1. The stitus of thf£ object represents the cOb.Jllitlvestatus *1
/* of .11 its Indlc.tI...... "/
/* 2. 1I0c_. of the _ry cost lq:lIcatlon:: all Indications are "/'* ir'-:>I.....,t.d os P.u.o.·CHIS obJects. IE. Ihey do I10t ... k. use *''* ,,;standard Il1Qbject constructs and eYerything destined for *1
'" Ind'~ations I'USt pan thr~ this object. */r ~/* **, *./
e!.:·, Equlp:ll!nt t publfe tflObject (

,;rlvate;

natle logical first instance;
stat'e Clas.&luePrint *blueJ"'int;

~ecte(h

DlLink *ifrst .nd;
Dllfnk ·tast_Tnd;

,0 Pointer to first he:flc.tlon 0,
I" Pointer to last lrdicati .., *1

public:
p•••..,••e *11*** •• c •••••••••••••••• *••••• ".f../
r ~,0 II""", , Eq••rpoent *'
'" *Jto Oescrfption, The constructor for the Eqofpnent cia3$. ./r. . .. ~, •••••••••• * ••• *•• "•••• I!'••••• H.*** **/
;q<olpr.ent {

SocaiErtor ·errorl '* Error re-tvrned to parent "'I

~
0

~
0
j'is

~
iii
~~

\D
0

P 0
0

.;:..
~t..•

o 0

+ ~
+ <:

-;-t

~ ~
III (/)

g. {g
""' ::;,.
~ :g
t1) ::0
0- ~
""' ~s:
\D a(q tn
S s;
~

1""".
D

~
~
G)

-t ::0
Q ~
III r;-
~ :::!
D ~t1)

~ (I)
ag.
~::J
)i
::0rn
(I)

~
tit
~



~s
~
o

Dete ; lied Jan 27 06.08:04 1993
Printed by revision 3.4 of Iprt.c
file Heme! fqulpnent.h

123 OiCIbject ·father, I" Pofnter to parent "/ 160
121 CI.ssEntry Oct entry, Ilt Pointer- to class. entry «r 151
122 SC<1IIValue "rd,' r lns'once Id Id "' 182
123 SaRiVatoe evafue, /. Instance Id value *' 183
124 OHObject *ref_cobj_, ,- A rde-nee object *, 184
125 axHessage -message, ,. The received JV,!ssage «t 165
126 Rspalock ·response: l; '* A response block *' 186
127 187
12l! 168
121 , ............ ** ••• ** .. **•••• **•• **.**** ......... **.* ...... ".**.. ***** ••••• , 189
130 ," ", 190
13. ," kame • -EqulpnentO "' 19\
132 ,* *J 192
133 J* Descriptioo : The dest.troctar. *' 193
13-'< r *' 194
135 1.* ••••• ~ ••• **••• *••**••*.~**.**•••,........jI"*H***.* ••• ,.••••• ***11..****/ 195
136 -Equlpnent (); IS6
137 197
138 ,.**•••._..• *•• .....,..... 11"* ••. *** ••••••••• *••• **** ............. ..,** ••••• *•• _fl.I 198
1!9 ," Hame ! Cr".telnd *' 199
"D /* oescriptiQt'J : *' 200
lU /* .""ipneot create. Instances of the following class ... «r 201
142 /' Inputlnd. -r 2DZ
14~ ,. OUtjlUtind. 'f 203
144 '* tpislnd. «r 204
"5 '* C.rlvedlnd. «r 205
146 '* -r 206
147 1*· ...··*....·1r ... **·** ..h** .... ****** ••• *.*.*.... ~*.**••*...... A*** ••• ".... , 207
148 'Void Createlnd( 208
149 R.XXe$S2:9~ -message, I~ lhe received essage *' 209
ISO IspBtock ·response; '* gespccse block "' 210
151 ClsssEritry ·ct entry_,. " Retated el ••• entry «r 211
152 soaiV.:.lue *jrJ; '* Kewobject Id Id ., 212
153 Somivatue svetue, '* He!{object Id value =r 2\3
154 fMlbject ·ref~object ); ,'II' A reference object *J 214
155 215
156 l*·····1t'** ....• .. •••• ... ••••••••• ....... ·-t······**······**··**···..·.,,** ......, 216
1:;7 '* *, 217
1511 t= Hame o Deletelnd -r 21S
157 /- ., 219
160 '* Description: Deletes the named objects. This wilt aU"ays *' ,20
1M t= del~te the children. R_r that the childs children root be *' 221
162 " cared for es wet!. *' 222
163 ," "/ 223
164 I···it*......... *•• *....... *.*•••••••••• ~*.*••**o ••• *.* •• ******.** ••• _.i 224
165 void Oet.t.I-.d( RXKessage *...... se, ,. The Re,.lve ...... ge *' 225166 RspBtock "response, '* The respeose block 0, 226
167 CtassEntry °cl entry, '* The etsss entry ptr ../ 227
168 OHcl>ject *deI_CbJect>; '", T~e object ~o delete *' 228
169 229
17G 1.... *...,•••** •• *.trlrHt .... *••u~.* ........ ,.....**• .,,*'Jt* ..... *.*•••• *••••• It, 230171 ,0 */ 231
172 /'" Heme : G.tlnd '" 232
173 ," -r 233
174 ,. Coscrlptlon! Retrleve$ att t, ",to. spec{fiod. If the *, 234

"J1 I
175 t" =t:rlbute list contains an ent, does not ."Ist or Is not »r 235
176 j" visible then an error aust be '*" ... .d. 0, 236

CCl 177 ,* ", 237
<D 178 '**1I*.** •• *** •• *.* •• ;** .. *••• 3'._1l................. *.*••••••~••*......... / 238

-4
179 void Get(ndC RXKessag'!' *me'S8ge. 1* Th~ receive message */ 239

CO.....

Page, 2

RspBtock "re.ponse,
somlValUf>

*'att,_fd_ti.U;

,. the response block WI

'" Attt to be returned .,
J*** •• * ~•• ****•• tr ••• **..* *",.••••••• .,,*ft ..*•••••••••• *•••• */
r ~
I" Hame : Sctlnd *'r ~'* Description: Sets the speciflod attrlbut.~ to the .Upplled *'
,. values. The attributes IIlJSI first be validated before any *'
'" changes ere Nde ond an .rror IlU$t be returned If any of the *'
l* AVA entrles ar~ tncorrect. "l
r ~
/****.".*.*1: •• * ** ••• _.*****,.**.**.* ••••• *****.* ..*••• 1: ****11',
void SetInd( RXHessage -mesGlge; /. The receive lnessage */

Rspalock -response, ,. ;h. response blOCK *'
sOOIIVolue

*.ttr_mod_llst>; j" Attr to be modified *'

,* 1 •• **.*.**.* •• **.** •• *••• *** ••••• * ••• *.***.**.*.** •• *.* **•• ,r ~
'* H""", : Actloolnd *'r ~
'" C.scrlptlon I p.tfor ... I""," sort 01 action. *'r .. . ~l*·"**·*·*"*······**·~··**·t.***·.. ····*·*·***···*·**.. **•• *.* ••••••• *,
void Actionlnd( RXKe$$age ·message, '* The receive messaQe ./

RspBlocl; ·r.spons., 1* The response block *'
SC<1IiVah;.*actl"'Ltype, '* Type of .etlon ./
somlV!'lue *actlon_..info); i· Action 'nfonr.ation *'

, •• **.*** ••• **•••• *** *•••••••••••• ** •• * ••• *** **** ,
r ~'* Narne .: CreateCr.f .,r ~'* O.scrlption: This routine I. callod If this object had *''* requested that an abje<:t ~ created via 50111 */r ~,.*** •..... **•• ** ....1:** •• **••••• * •••• ** •••• ***.** ••• ".*.**....**.~•••*..I
void CreateCnfC RXMe$sage: "'*rxm); '* The reeefve message *',.*..............• 11''''.**•••• .,., "•••••• *.~•••••••*/
r ~
/' 11_ : D~I.teCnf *',- *''* Description: Thf& routine Is cal l ed if this obJ"ct had *'
/* requested that an object be deleted vi. SOIIl "Ir ~/*** ..... *••• "'•••••••• "'<t1t •••• *••••• II ••• t:••••• **•• *••••• "•••••••••••••• ,
void OeleteCnf( R)(IIessage *rlClli); '" The rec.lve message .,
/*••••••• ** *••••••••• * * ft/

1* *'1* ne.1Jle :: GetCnf */r.. ~'* Desc rlpt!on: This routine Is cat ted If thl .. object hod 'f
,. requested a get v!a 50111, *'r . . . ~.,•."...... *••••• *••• *,,* **•• ***.....t:****..... **** ••• *.* ••• ***.' •• ,.•• }'.**If I
void GetCnf( RXHessage *rx.m); /ft The eeeetve lM$sage */

~

~o
";"I
§5
~
iT!o
o

~o
:2:

~

I
~
~s
d
to
S
5
~
::n
~
~
:::::!
~
rs
~::nm
(I)

~
ni
~



:g
(I)
::3
Q..x'
o

2~0
24 1 I **rl-** *******.' **•• ** •• *••• ~* •••• * * ** ****11:_,m r ~
243 ,. Mane ; Setenf "'~ r q
245 I" OescriptllXl: This routine Is called If this object had *'
246 '* requested a set "fa SCliI. *'
ill r q
248 11- .. ••• .. ·*...····~*...···*·····***···*······**···...*..*·*2;***·*** ..**••• ,249 void SetCnf( JUMessage *rxra); /* The receive messeg":,, */
250
251' ,.****.** ..****•••• "******** ..**....,,•• ,,"'.;>: « ••• ****** •••••••••• ** ••• **,,,/(/
m r q
253 '* ~a""" • ActiO<'Cnf "'m r . q
255 t" Descr!ptllXl: This '''''tine [~ coiled If this object hed .,
256 '* requested that an IICtilXl be perf"r..-.ed "ia SClii *'m r q
a r ~a r q~ r ~
261 j*.****.rl ••• , , * **1I!.**** .. r.tt ••••• 1t1It •••• ************/
262 void Act100CnfC RXHes:;Bge *rxra); t* The receive message 'III,
Z53
2~ 1*·*·*e********.** .... *.*..... *.*** .. ***.** .. **.... *1H' •• *****.*~****.*/
lli r ~
266 1* Name : Et.;entReportCnf *'
ill r q
268 '* Descrlpti",,: lhls routine Is coiled If tl1ls object had "
259 I· Sent out an e",entReport in comfirmed mcde:.. */m r q
271 I"***·*····· .. ····" ..****·**·*..··*·**~>S·****···**····**·*****••***.**/fJ yold EyentReportcntc RXHe... ge *rm); /" lhe recdYe "'~SD~e */

274 '*.**.~....*••**H.* ......**~**.~••*•••n.*,.*.*......t'I.* •• **.*.*••***...... ,
ill r q
Z16 '* Name ~ •• tAlana '"m r q
27i1 I" D•• crl pti on. : '"
279 '" This function \lHt send. set .. tar .. to the teg for loclu.11XI In ./
2ao I" • docket. *'W r q
282 , ***.*.** **'11'•••••• ,..••••••••••••• ***** **•• */
Zl!3 void SetAL., ... (
Z84 DILlok ·'nd. '''' Pointer to Indication *'
285 char "category. /* Pc:in!er to category '*/
286 char ·crlteriJl~ '* triteria of alarm .,
287 short urgency, '* Urgency "aloe "'
288 1(l<l9 .everlt-/. '* Severity of 81a". *'
28'1 1_ set_till... '" Set time of the 8l.na *'
290 lOllIcal at ·~cted. '* HetllOrlc Integrity flag '"
291 char *100 Id val. '" Indicad"" fd vetue *'
292 Logi.ol suppaI'; /. Alana suppression ·f
~~ ~oglcal s'W:ar); 1* Archive suppression *'
Z9S /* ••••• _ ..**••••• *....... **......*._;,***** ••• *.~*.*....*.:t.tir ... ***** •• ***,
296 ,. 'AI
297 I" lIame , CleorAlana *'m r . q
29'1 '* Cescrlptlon ~ *'

Printed by revls!on 3.4 of Iprt.c
file H.,>o ; Equfpr.ent.h Date: lied Jan 27 08:08:08 1993 Page: :5

i
"'"~

300
301
302
303
304
305
306
307
308
309
310
3H
312
313
314
315
316
317
318
319
320
321
3U
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
35i;
35;
356
357
358
359

/** •• **••• *.* ** *** ** *,,** ***.****/r q'* I/eme : Ex.c'nqulry *'r q
I" Description: . */
/* forwards the Execute enquiry request through to an equlpr.ents "/

'* This fooctlon will send.a cl.ar 010"" to the leg for peulos *''* on to a decker, . */r q
, ••***.* **•••••••• ***•• ** *****.*** ••• f<it ••••••• **.**".**.*'* ••• ,
void el.arAtarm (

DIUnk *fnd_ptr,
char ·category.
chat *criteria,
long set t~me,
leng clear tj;Df;~
logical affected.
char *Ind Id val,
logical supp-.r;
Logical supp:ar '.Ii

'* Pointer to indication *'
I" Pointer to category '"'* Criteria of .larm .,'* T( "" of pre ...lous chaose '"'* clear tl",. of the olana *''* lIetwork Integrity flag *''* Indication Id */'* Marm suppres.lon "/
1* Archive suppression *'

J*•••••••••••• ****j. ,,* *.* •• **••• ****a* ** •••• ***••• *•• *.* Ir q'* ~.... : Getld "'r q
/* Description: ... -,
J* This functiOi'1lo1Hl return the pointer to the scmiv8lu~ used as */'* the lD of this cbjeee, */r q
/** **•••• *.**.** •• *.* •••• * **•• **** ••• ".,•• *••• " *••• *,
SomiValue .Getld ( void )1 '* Pointer to SomlV.lue "'
1.*~...*••• *•• ,.*...... *.".•• *•• **....2**.t;'* •••• *'* ...... ****.*****"'** ••• 1(/r q
/* Mame : Proc(.ssOynamiclfnks */
r q'* Description: "'I" rnls h:""tlon "Ht send Its own clan and full distinguished "''* ".arne to be processed for dyn8lllic link updates ond will then *'
,. request aU Its children ta do the "me. .,r q
/* ••••• *••• **** •• ****...*.... ...".*** ••••• *•• **** ..... *.**** •• *.*.~*•••**** I
void ProcessDynarniclinlts(DlHUjXlateTr.>e update_type);

,*.* ••• .,.•• *••• *'** ***•• " *."'.** •••••• ***.** ••••• ** • ..,*,
r q
'* Ha",e • GetlccS~e *1r q
I" oescrlptlon: *'
,. Get the location sequence nurber, the ecr~tpnent sequence runber *''* the locktlOM latitude and longitude as welt a! tne location *'
rid. *'r q
/ ••• 1t*•• ***.*t: •• *••• ***.. **•• * ••••• * •• * *** *~ ••• **•• ***.**/
short GetLocSequeoce ( '" Return locatloo soqu.oce ,.... ·f

char "Icc_rd. '* Pointer for locatloo Id *'
float "longitude; r Pointer to longitude '"
float *latitude. '* and latitude .,
short "equip_seq); '* EqulJ:ri>ent.. queoce I'IU1ber "'

):..
<:
Q

~o
-;-ts
til<:
-1

d
o
Q

~
Q

~
~
~
~o
):,.

~
~s
d
OJs
5
~
G)
::0
~r;-
::j

~
~.~
::0
1'1'1
CI)

~
itt
~



~
[
x-
c

,60
361
362
363
3M
365
:566
351
368
369
370
371
3n
373
374
375
376
377
;m
379
380
381
,82
383
3114
385
385
387,88
389
390
391
392
393
394
395
396
3';7
398
399
400
401
402
403
401i
405
406
407
40a
1,Q9
410
4tf
412
413
414

~ I
415
416

(Q 417
(l) 418

.... 419

CO
c..>

Printed by revision 3'.4 of !prt.c
file 11_ ; Equlpnont.h Date • lied Jan 27 08;08;08 1m

/* C children) of this object. */r . .. . ~1····....*··......**~***,...,..*···*·*·***'lhl·.·1!r***·....·*.*** ••*·*.******tt*l
loglca! E~~Enqujry, '* I'al •• = cat id not fOlJr)C! °1

SoraiError ·error, /" Error to be:-returned *1
IlM>kelD 1m Id, /* Invoke ID used as key *1
void *SlJ6 key "at, /* Sib key vetue *'
logical dispTay,- /* Return Indication attrlb,;us *'
char ·cat id..,ptr, , .. Pointer to: category to IMtc..i *'
chat ·quaTlfler, " Pointer to qual to ... tch */
int state ); /* newstett: to set point too ~I

,*** •••• *a** ** _••••• **G> ** *1
r ~
1* )I""", : Sen::Illsploy *'r ~
/* Description: */
1* Invok.d by the Indication if the display fhg was set true. 01r ~
j'*" _.*** •••• ****.**..,. •••• "'"•••••••• .-w** "'** ***** *"/
.".Id SeocCfsplay(

Invok<lO ;rw Id,
void ·su; key_v.!!!l,
char *f~i·t ..ptr,
char *cat_id,
char ·alara cesc,
short *It..i. SCJs,
Somi£rror error 1;

" The invoke ld to use.
I" Sib key value'* Indlcetion fd pointer
Jft 90i!"'ter to category
I" Pornter to Alarmdes",'* LIst of !/At Ids
J" Error- reter, jf any.

*1~,
°1
»t

*'*'«r
, - •• **** **** •• ** •• **** **fl. J
r ~'* II...... : Enqltesponse *1r ~
/* C~cript;ion:. It,'* Invoked by the leg If the dlsp!.y Hag was set true. This "/
" fuoction will only be called If "n Indication wa. fOlJr)C! to be °1
/* vatid. "'r .. ~t·**~·**........**·....·****.fIi!'*,.k •••• ****••• **...... **.* ••• **........ '*******/
veie: EnqResponse(

lnvotelO im Id,
v~iu *St.b key_val,
char *Inc[id_p,r,
logical .state_vahJe,
SCCtIErre:r- ,rror)i

'* The invo':e Id to use, */
J* Soh key value *'
J* Pointer to Indication Id ~,
I" CUrrent state of point "'
J* Error return If any. *1

1····.,··I':·~.. **·*** ..... *·..*..*·'f:··**.. ·**·**·*".*··****····~··*·***/r ~'* Mace : AcXflrdlcation *'p ~
" Description: .,
" Add an !ndlCAtlon to t.~e U .. provided It doesn't a1t.ody exist."1r ~
j * *****'***'** **** -t.** ..**** J
SOIIIIErrorAddlrdlcatlonC

SonaiValue -rd list ..
:iomiValue ·vaTue_l ist#
RXHesnge ·Jf1,!Ssa~);

,- list of sttt Ids.
I' list of Id values
1* Recie..ved message

*'*'*1
1**·*~· ....**'*~*-- ............*... ·*··~*·*·It.._*...~····*·........·....".1

r ~
1* Name : D.letelrdlcatitlnS *'r ~'* Descriptfon, *''* Delete Indlcatlo,,", frOO! the list. "'r ~, •••••••••••• **.11" **••••••••• ** •• * •• ***** •••••• ,
void Deletelnd'catlons(

Soaai£rror =errer t

scmiValue tid 1I0t,
scmlVa!ue *v.tue_lIst);

, •••••••••••• **.** ••••• **** ••• **** ••••• **** ••• 0 •••••••• *.*,.,.**' •• *.*.* /
1* ~'* W..,. : pracessOluble' *'r ~
" Description! *1
'* This func:tlon witt pror es~ the loglca! disabl. requests. *'
1* . ~1·~·····w****.'*.*"",*••**.*"1t***.* •• **••• *.**. "'••*** ...... *•• *•• ******.,
void FrocessDisablesC

fnt fLnCtion,
~ogics( disable_ctrl,
lnt type,
char *\ocid mask,
char *c.tlc[mas~ );

I••1t **.*.** •••• **.*.***.****••*••• ~***.*.** *•• *•• ** t ,
p ~
/' ij.~ : SetDI.able *1r ~
J. Description,: . */
" If the given loeld lnatches th.t of equipment then the S.tDI .. ble*,
,. function of indication will be invok.ed to' set the correct alam */r If the correct alarm:was, f()U")ld then the function win return *1'* with true. "Ir ~
, ••• s•• ** ••••• *.* •• !t**•• ** .... *.*** ....... ***** •••••• -e:*••••••• ** ...... **/
t.C)lca! SetOrsabl.(

r<lt function,
char ·locld_mask.
Int ~ype );

/** •••• *.** •••• *•••• * ••••••••• *** •••• **•••• *••• ****.*.·**·········***1
1* ~
" Name , clenrDI.abl. "'r ~
1* D.scrlp~lon: *'
'" If tho given !oeld matches that of ~Jlpment then Ih. *'
~ CI.arOluble function of Indication will. be Invoked to c\ •• r */
,.. the correct alarf.""tf the cerrect .ta1m' was fcund then the */'* function will return wltll true. "r ~
/******"."**".*"*** •• 'It"*******l'1'.**'*•• "i***f:*ft* ..... *.***.* ... *.******ir/
lQglea! ct •• relsabl.C

int flilt.tion,i~:r ;~i1rmask,

.20-
421
~2Z
~21
~24
425
~26
427
428
429
430
m
432
433
434
435
436
437
438
439
440
441
44<
443
444
445
446
447
448
449
45~
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
4n
473
474
475
476
477
478
479 ); /* Class Equipment*/

Pag!: :

/* Error return value
J' tlst of .ttr Ids ,
" list of Id volues

*1
'J
*1

" Ty~ of tD to perfon; "'* lovel of dl .. ble control ./
" type of di.able ( er l t ) "
/* location masl< *J
,- Category mask *'

" Type of f'""'tlon. "
/' location mask "'
I" Type of disable ( crf t ) *'

" type of function. *'
/" location ""s" *'/* Type ,,( dis.ble ( crlt ) .,

~

~
?fs
ins
I'Ti
D

~
~<:
?f
~
~

~
§2s
d
toc::r:::

i
~r;-:
::::!
~
~

i
fTJ
(/.)

~
n:t
~



Date , \led Jan 27 08,01:23 1993

E!l~!~~ij~~~~ikEtil
lldefine IND tDAR PER lOC 000000400

~~f!:!~~~m~m~:~=
lldefine: IND:STATE _ 000000001

1* Some mIlIcrOf; to make things clearer

ldeflne naglsCl •• r( a ) (0 z= C ind_l:ltmap & (long) • ) )
'define: fhglsS.tc a ) (( Ind blt ... p & (1_> a ) )
'define SetFlag( e ) (iOO bltiiiap,. ( Ind bitmap I (lonq) " ) )
#define CleBrHag( a ) Cli'id_bitmap" ( liic!_bitmap & -(long)a ) )

:g
<D
:J

~
i:J

Print:::! by revision 3.4 of iprt.c
file 1'..,., : lndic.t!on.h

1 I" This tine: Is. for lc!er.,:ffcatlon by the 'what' c"""",nell -, 61
2 r ...'% %E% %U% ";lsn Av {Rl..Ril CCl BS\I'Oata (Pty) ltd. "' 62
l I***"'·*·***·*··* ..*····**·*·*:t·*****·*~*··..·***··****·..... *~**.**••*I 63
4 r '" 64
5 ," TIRE BLOCK: -r 65
6 ,~~===:::=-, V 66
7 r '" 67
B ,* Neee o Indication.h '" 68
9 ~ ., ~9
10 i" r,n, Ht.rdoer , ,.SUN ReV' 0.00 Rei: 0.00 =r 70
t1 ,- ", 71
12 ," Software !lev.loped Sy ! SSII'OATA "/ 72
13 ,,, Private Sag X35 '" 73
14 ,. 1t.!fWiY House */ 74
IS '. 1685 -r 7S
16 ,,, -r 76
17 :* Function , Base class f~" all indications. */ 77
HI ," */ 78
19 ,- =r 79
20 '" History , -r 80
21 ," «r 81
2~ ,* Event Date Author Approved '" B2
23 ,. '" 83
24 '" Specification 92/12/04 PSS AS «r 114
25 ," Design 92,12/04 PBS A~ "/ as
26 '* l;;plementatioo 92,12,04 PBS AS '" 86
27 /* Audit XY:/XX/XX Xl(){ «r 87
28 ,. ./ B8
29 ,. *, 89
30 r RevISions: Revision Date Author Approved -r 9G
31 ,. 0.00 XX''nIXX XXX XXX ./ 91
32 J* */ 92
33 ," Revisi"" Description: ./ 93
34 ,. ;::::t========:'#1:=:===== "' 94
3~ ,. O..CO'" Hor.e *' 95
36 '" */ 96
37 '" */ 97
38 '* functional Specification, ; " 9S
39 '" =====:=====::::Z:Z::=:=:;II:

, .
*/ gy

40 J" =r 100
41 '" co/lt.ins the class description for the Indication et ass; -, 101
42 ,* *, 102
43 11I'** ... *···IIt**~"'*.**.*.*""*".""'**.*"'**** ••***.*****.**'** •• "** .. *.J 103
44 lIifndef I~DltAnON INCLUDE:) 104
45 fdefine IN~IC.ATlC1ONCLUOED 105
45 106
47 ilnclude ·CI1.h" 107
48 'Include "RtCllllTypes.h· 108
49 #Incl.>de "Dllfnk.h" 109
50 110
51 '* BitMp ... lues for Indication bitmap. *' 111
52 112
53 #deffne IND_AR_s..l'P l!10000D00 '" oetaul t ••ttlngs =r 113
54 ~:n~~~-~R~J SUP?~= J* Default •• ttlngs */ II.
55 / .. Current :settings '" 115.;;? I 56 lIdeflne IHD-CUillCAC$'JPP001000D00 '* Current .ettlngs -r 116
57 itd'flne IHD-AADISABLE 000400000 Itt:Disable in force «r

I
117

(Q 58 ::n: l::g:~:~~~~~E~~=,. Disable In force «r 118<D 59 I*' Enctble In force ., 119
-4 r 60 "define Ih'O:::Al:EHASLE Il(l()04OOOO ,. Enable in (orc~ *' 120
~.

rage ::

,'* Integrity problem *'
/* Reconcile in progre.. '"
'" Legs archlv. disable flag"'
'" legs alann dis.ble flag "'
,- State change during dls.b·,
J* D;•• bled per location "''* Of.abled per locatIon *''* Disabled per Indication '"'* Ois.bled per Indication *''* Indication state ,,/

"/

,- Link typos ( For IIlre links)

'define IND_IIIRE 0
Ndellne lND_UPLm:: 1::n: :ro:~~j~~tIlIREZ 99

.{ !

, *** •• **.** c ••••• *** ••••••••••• *** ..1\C•••• "k/

~ ~'* C;•• s H.... : Indication *'r ~'* Oes ...ription: . */'* This ·c183s contafns et t the data 3nd functions thet are COImlOO*/
/* to aU th~ Indication cl.asses , */'* aeeacse of the ."""c>ry I."tlc.tlons this object will be a '"'* para·CHlS object incluchng any link details ( 1Jire etc) *''* The links are contained in a spec.ial structure ;to optimise the */
,. amount of """""ry used by these objects. 'lhe Input/OUtP\lt ind's *'
,. support a llire end any nt.rdoer of Uplin~ s, lIhile the Derived .,
,. supports UplinkS and DownlinkS. Each of these types are .,
I" classified using. nt.rdoer, '"
,. 0 •• > III:. entry *'
" 1 •• , Uplin!: entry. "
'" 2 •• , Downlink entry. *''* 99 ._) IIi re to IIAlFault. *''* These entrl •• will be pecked fnto • byte string as follows: ~I'* Depending on the .llUIi>erof ,,!.Wlled entries the string will be */
J* ~.. ll ee 'd to the correct size. The string will contain eaeh entry*''* in c"""ressed for ....t , The first byt •. will indicate the t)'ll':! */'* white the following n bo,t •• will contain the entry depending on "/'* the type. !o,r •• ft.r .ach entry wUI follow en. The length. of *'
/* these .ntry will always be dependent on the entry type. *'
/* "'* III rer 2 byte type.. *'
'" 14 byte. containing the full IIALid as short vatues "/
'" Uptink/OownLlnk, 2 byte type. */
,~ 40 byte. contailling th" destination ID as LegS,t(shortl"/
,. Leg(12 char ). Equipnent(12 char) and IndicatIon ./
,. (6 char) end the Input and output attributes 8S shorts "'
/* \lire to' U'Alhul ts: *l
t" 2 byte type. *'
/* 2 byte nunber-of elements in structure */

~.
0e
~
";"Is

~
fn
~a D
o

~ 0
OJ ~'.

0o ~+
~+

~ ~
(/)s:u
~g.... :t>;g ]CD

0- §Z...
~So

<ll d::a: tnD S
~ IS
:::! ~s G>

::0
C') ~ilr r;-
~ :::!
0 ~fl)

§ CI)
0

~
~::;,
::0
I"rl
CI)

~
ilis



~s
~
o

~s.....
~

Printed by revision 3.4 Qf lprt.c
File No..ee ; lndic:atlon.h Date. lied Jan 27 Q8.09:23 1993 PIg~ ,

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
1~4
14$
146
147
148
149
150
151
152
153
154
155
156
157
ISS
159160
f62
163
164
165
166
167
168
169
170
171
In
173
174
175
176177
178
11'1
fda

,. n elements of two bytes each, *1
r ~I···..· ··..··*·······***··..*****··*·*~··*·*·*'*··**..••..*· -**/etass l'ldication : public DtLink {

private:

protected,

chat'"
long
char
short
long
char
char

Ind fd[lND 10 SiZE]: '* The Id of this obI *'
'sta:.JS; - - Iff Object status value */
Ind_typer21: J* [ndicatlon type *'
urgency; '* Urgency val ue "'I
ird_bltmp; '* Indication bitmap *'
cat IdrCAT 10 SIZE!: '* full category */
aler.._ tabeT !ALARH_LABEL_SI ZEI ;

1* Label of ~laNII .,'* Configured severity *''* II...of last traos .,
long
long
struct

int
char-
tlr.ks;

severity;
l,ut_tt_time;

n ellAt$';
-Tist;

J* N(.nb;r of entr-Ies "'
/* Poir:ter to list.. ..,
/* links to other objls */

pUblic. •,.** *** ***** h R•••••••. ***.** •• "' ****.*****_**.*.,r ~'* Nome , IndlcaUon *'
1* ~
1* aeeerfpt tco s . *'
'" The constructor. Initialise. the general varl.bles. *'
1* . . . ~I···*·*··..****'**·· ........*··**~..........*·*ri* ...*•• *****._**.****.* •..... ·*1
Indication ;( vo.id );

j ** ••••••••• ** •••• **.** •• ** "••• ** ,
p ~'* Name : -Indication *'p ~'* oescrlption: '1'* l~is function wit! "lea" I.p aU reseere •• used by this ctass *f
p ~,.*...*.*1:.*~.*H"********* ••****.****.**.* ..~••• *.* ...........*.*;)******/
-Indic.tlon ( );

/** 1I!***••••• *'**** lt *** ,,** **•••• *••••• *** ••• =r
r ~'* Hame I f.tractC_ttr «rp ~
/* O•• crlpUoo: . . *'
,. Extract.1l attributes frCII thotsupp,'ed list that are conrnon 'f
'" to all Indications. "
p . .. . ~/ •••• **.*.***ft***** ..... *.. ******.** ••••• **#!**"*.*.*"* •• **** ••• ~*.****••,
SOOIiErrorcxtractC_ttr( '* Retum Error If filled '"

ScmlValue- *.ttrs); 1* StrtJc:tur~ to process */
/ C .,.** •• *** H.* *****.* ••••••••••• ** ,
p ~,* n_ ; CoopressLlnks .,
p ~

, .

/* Oescrlptlon. *'
,. Pack erxf corrpress the deHtfnat,fon ids, according to the rutes ..,'* Indica. J by th~ c!".~. "'
~. ~
J *•••••• Il •• ~'*.*•••JII' •••••• *.. *.,.. ••• **••• *.** ••***.**.*,.~••*.**I
Sat'~rr(jr C"""ressLinks( ,. Iteturn Error If failed "'

SomlP.ecord "record); J* The record to corrpress */

101
182
1B3
184
185
186
187
188
189190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
20B
209
210
211
212
2\3
214
215
216
Z17
21&
219
220
221
222
2i!3
(:24
225
226
227
228
~29
230
231
232
233
234
235
236
237
238
239
240

/ •••••••••••• ** ••••• _••• ,.. *** **** •• *:11.*,,. *'1* N"ame :. Sui,ldlinks *'
p ~
'* O.scrlption: *{'* u"pac~ the c"""ressed I{nk Into. maaoced somivalue structure "'
1* ... ... . ~
J*** .. *".***••*~.**••**.*.***.**.* ...*.*.*.* •••*•• **".* ....,.*.*It •• **1t/
SomiValue ·Bulldllnks( P Retum SomlValues "I

scmierrQr *error); J*' Return error if failed */

1;;*·****··***·**·ft*ot' ..~****.*'*.*..iIt* ~ *,.. ~.**.****"****** •• **/
1* ~'* ~ame : Cle.rtJp "'~ . ~
'" Description: . *'
I~ Cleans I.p all the malloc'd structur •• created ~y BulldUnk. *''* Specific attention .needed her-e because the structure fir( not *'
" have been c"""l.tery filled so the routine .... t check before "
1ft free'ing up any space, *'
P . ~/.....·*••**.....lIr ••••• **.*** •• ft.*** •• *••• *** •.,..** ....... *•••************/
~Id CleartJp~

SomlValue * re cord_ptr l; 1* Rteord to eteen "p .,

Ifj**.****.~••••*•• ***•••• **.*.It ...... *** ..... **......**..*.*tl*********.***/
P ~
'" Hame : Get~Al "/
1* ~
J* Oescrlption, "J
j* Cople. the UALIds Into the SUpplied array, *'
1* . . . . ~J*1...*********.****.* ..**Il**** ••• *.***.**.***,..*H~* ••• *.* •• ********1:***/
lnt GetUAL{ '" Return -I If LI'lOooflgllred*1

short -array 1; /'* }.rrIY to return values in-I
/*••••••• ***e- •• **a*1l" •••• **•• ******* **••• *••• *.*,
1* ~
/* Name :- GetStatus -.,
P ~
,. Description; */'* Returns the status word of this object. *'
/. . ... .,/" *••••• "•••• ** ",._** •• ** - ••••••••• .,. ~ f' 1**1
(ong Get~tDtl.iS( ,. Return status '" .,

void J c
return ( status );

I"·····..--····..····..···*·········..·"'!····..···· ·· ,..•.. "$ ' ~""·I
1* ~,* Name : a.~Al.r;rL.bel "'

~
o
~
C)
71sm~.
ti
C).~
~
~
~
CJ)

~

~
~s
d
IIIss
~
(j)

~
:::!
~
CJ)
o

~
:::0rn
CJ)

~
:-i

~en



~s
Q.
~
D

l.....
~

-Printed by revision 3-.-' 'of lprt.c
file Rar.:-.e : Indication ..h: Pet. : lied Jan 27 08:09:23 1993 Page :: 3

241
Z~2
243
244
245
246
241
248
249
250
251
252
253
254
255
256
257
258
259
26<1
261
26~
26l
254
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
W
2114
255
Z.l6
287
285
289
290
291
29Z
~9J
294
295
296
297
298
299
300

r ~
/* Oesc:ripticn: -,
,. Returns. pointer to tbe .[ors labe[. *'
r . ~r*..*...**••• *•• ****** ***tt •• **.ll.*.****** ••• *••~**fI/.**.*1I'******fo/
clIar *C.tAlaraabdC I~Return pointer to descrip*'

void) (
return ( ataro.Jlbet );

,** ••••• ** ••••••••• tr *'**** **fr e** ••• ** ,
r ~
(. H_ : cIUd *J
r ~
'* Cescription: "'
I" Xeturns. pointl!r to the Indication Id. "'
~. .. .. . ~I·***·*·*·..***'* ..·*··.....H*.*** ... *~H* •• *..... *.....**~*........ **.*.**.I
dJa~ *Getrd( /* RcttK"n {d' of objec.t 'Iii,

~~Id) {
} return< lnd_ld );

I·C .......... ****.**~*.......... **.***1t .. **... M·.. ***··**· ....**... *·*·*1t·1P ~
/.. flame ! TeitEntty */
J* */
J*: Description: . . */
/.. Return true rt the ld 'Valuepair SUpplied INltches that of this. */
/" entry, ttlr ~/* ****: ** * 1.;.**** **,,*.*** ..***1Ht*/
Leglc&( Te.tEntry ( '* R"tum true if Blatch "/

SOI1Ilv.t... • ide, ,. The Id Id ./
SO!niValue ·vall.JCS); /* The Id valoe ttl

, ••••••••• ,,**.*.;a,**.... ******* ....****.***.*.******* ••• *** •• **** •• **** .. ,
r ~
I" 11_ : Setlnd .,
r ~'* Oescrlptlon: *'
t= This function will extract thelllOdif1.r values and depending on "'
J" th~ exser attribute. the follawl"ll will f:>e essuned: "/
j* I. If the last tt ti ... is supplied then this Is .. suned to be Q "
I" st.te chong;; .ncr 1t wHI be proce•• ed '5 such. *'
I" Z. ,Jther"is" this entry ",HI be precessed as .. nonnal .et and *'
/* an attribute. "ill bve extracted and updated. *'r .. ~
/*****.**'***** ....... ***.* ....*** .... **.**."****** •• **._-***.*******,,.***'
Sc:atfErrorSetJod ( i* Return error *'

Rs,atoc:k *respon!'8,. '* Response t!ock */
CIiObjeC:t -parent,_ If: Pointer t~ fk.rent .,
SOtIiV.lue *attrs); /* Attribut~ lDoc:ftfiers */

, ** ***_***** * *6•• * *.,.. ****" •••• _ ••••• ,
r ~
/* Name : ProcesSStateChaoge .../r ~
/* Oescriptioo: .,
r This fo.roetlonwilt construct a v",_arg str.JCture and send It *'

301
30Z
303
304
3~
306
337
308
309
310
3ft
31Z
3U
314
315
316
317
318
3\9
320
321
322
323
324
325
326
327
32a
329
330
331
332
333
334
335
336
337
338
339
3~03"342
343
3'4
345
346
347
345
:14'>'
350
351
352
353
354
355
356
357
358
359
360

,. out using tho hther" OMpointer. *'r ~
1·**·**· ..···t-*""*..*'*.,.*·****···..·1t**···w***••••• :t****.*.,.*ri~* ••• ***.*,
void PrceessStsteChange (

long tt_timej
Log~;al new sute,
char- ·crTt_labet 1;

'" lime of l •• t transition */
'" M.~ state of indication ./'* Criteria label */

, ••• *•••••••••••• * ***** •• *"•• ** ••• * "**1:-:t•• ''\t*''*1r~ •• *I
r ~'* Yame , Cetlnd "'r ~'* oescrlption, =r
j* This function will construct • V&rerg >tructure and send It */
/* out using the fathers OMpointer. _ */r ~
,.********.*****.*****.* •• ***** ...... **.* ... ******** •• * ••••••••• 0 ........ '

SomiErro~ GetInd ( r Return error */
Rspalock. ·res-pense# /* lesponse block *'
OMObJect "father'. / .. pointer to father .,
Logical linled • BooIFII.e l; /* seeped replies *f

, ••• *.*.* 'If ••••••• **.'111'* **•••••••.•••• ** ••• *** •• **t",*.,,*/
r ~
I~ II""", I GetPcCt.ssMdfDII *'r ~
'* "es~riptIM: . *j'* Builds Up a class and Instanc~ Id list of Objects In this .,
'* objects naming tree Including this object khicb happe.'1Sto be '"
/* a Para'"OUS object. .,
/* NOTE,The S"",jVoluenriables classes .r.c! Inst.nces .... t be */
'" pointers to .xlstfng s... IValucs. "'r .. . . ~/* .1t"****•• ** ** ***. *.*.*.IJ .**** *•• *** oIJ'oI'1t •. * *2 *./
S... iE,ror GctPcCtassAndfDNC /* Return "tor If failed "'

OMObject ·father, 1* point~r to the father */
SomiVal ·classes, ,. the. ele~s: t\st .,
Sa1IIVa *Instances, 1* Instance Ide ood valucs */
SomiVah... *Itl'f. 'citlS$.1 , .. This (lojec:ts etess */
SomiValuo *my-Id, 1* This obJe,;ts Id nome "'
ScmlValue *"Y:.,..lue l; /* Thia objects Id value */

/ ***.* •• ** 40** *1It*.**.** It•• " •• **.*** ,
~. ~
" Hame , BulldAttrlbute. *Jr ~
/* Description: *''* Baj(d Up the c"""lete attribute list "J!lPlled. .,P ~
, •• ***.*." •• ** ••• *** ••• ***.* ...l'lht.'lI•• **.H2*"', ••••••••••••• **".* •• *****,
SemiError BulldAttr!but •• C J* Return error If probl .... "'

SomiVs(ue ·ciasses, ,. Pointer to cla~& list */
SomiVatue ·rnstances.. ,. pointer :0 iosunc~ tist 'II,
SomlValt:e -attr_list); '* pointer to attr list. *'

,.'*.*.* ••••• ~•••••••••• *..*..... *...*•• *... *.*** •• *..****•• 1l'* •••••• *••••• ,
r ~
/* Heme : Testld *'r ~
/* O.scriptlon, */

~
o
~o
-;-ts
~
[!l
8
~o
~<:
71
~
(/)

~
),.

:g
:0

~
~
d
OJ
S
I'"'-
D
2
G)
::0
~.

r;-
:::!
m
(/)o

~
I'll

~
ills



~
~
~
t:J

cl'
IfS
.....
Q)
"I

Printed by revision 3.4 of lprt.c
Fite Hame: !ndicadon.h

, ,

nate : lie<! Jan 27 08;09,23 1993 '4

361 '* Valid.te the suptlfed S"",IV.I~ Id .g.l".t tbls objects Id. *'
362 ,. =r
363 1*·"*..*·.·*1Hl·** ... .t***··** ..... ***'*·*·*··*··tt** .....*.*** ......*~*.****** ...,
364 logical Teotld( '* Rlturn True if match *'
~ SoorolValue *id...;,,"1 >; ,* s"",iVal'!e polnt~r *,
367 I******·*··**'**"' ...***·****.. *·****·****·· .. *..**··*....*.~··*ft*•••*•• -...I_ r ~
369 r lI_ : Proces3Oyr.... iclinks *'~ r ~
371 '" Oescrlptl9n: *'
372 Ir This fLYlCtionwlH serd of • DLMCat!SackR.p. *'m r ~
'314 1***·**··***·~·**1t·*.**·***··*· .. ·#·*·....*·**·**··......*******.*** .... *.,
375 SOOIle,.rorProce;lSO)'llOlllictlnU( '* Return error (or hi! .,
376 OOOhject ·f.thert '* Polr;tet to FOrent *'
317 DlKUpdatl:Type ty;>e l; '* cta.s Id list *'
378
379 1***· ...*.*·.!I;* ....*•• ****Il**** ........ *.**H.**It-* ...*.... *.** .....*•• ~ •• *:;;f;-:i-:>/~ r ~
3et ,. Name , "".C£;,quiry *f~ r ~
383 ,. Oescr!p:ion: -r
384 '" Vatldate category against Internal criteria and .end an enquiry *'
385 ,. to IIA~5 If yalld. If the display flag Is set then .end display */
386 ,0 Info_tion te the Leg for forwarding to the E><eeContral <*>leet ·fw r ~
3M J * c•• * * * -.* **'* **.*~.*•••w** I
389 Logical execEnquiry( '* Fatse e cat fd not found */
390 sOIIiEtt'or -error, J* Error' to' be-returned */
391 lnvok.W inv id, '* The Invoke !d used as key·'
392 votd "stb key vat, '* Sub key ytl"" *'
393 Log lea ! dispTay,- '* Return Indication .ttributes *'
394 char ·cat fd_ptr, /*" Pointer to category to mfltch */
395 iot state ); ,. new state to -set point too */
396
397 , *"" 0. _•••••••• *** « ••••••••••• *** •• ,
~ r ~
399 r H...., : Seno:Enqulry .,
~ r ~
401 j* Description, .,
'02 '* Thl. "itt send the enquiry off to tbe wire<! IiAl5 ( If any ) *'~ r ~
404 I·*....*········~···*·*··*·..····'lt·..•..·····*·***·····**·:t··..*••••••• *•• I405 l"""kelD SendEIlq<IiryC " Return the Invoke Id *f
406 SorlliError ·e;-ror, ,,,, Ertor return val~ '*'
407 logicol • flag. '" Indicate. ~.It fer resp "'
~08 fnt new &tate ); /* Hew state of crit... ./
409 -

4 to I···*..···*·*....···***·.. **·**·*·*·**·~'**·*··*········*····.... *** .... ,411 ,. «r
412 '* Hame : Indlcatlon::Cetlilre *'
ill r ~
4g '* oescrlption; .,
41S '* Return true if th" entry Is ,tired and .Iso copy In the wire "'
416 ,. details. *'
417 '" NOTE:All painters .... t be for existing sttuctures *1
~18:* ... . ... . *'419 , *••••• ., _*****:**** •• *.**** ••••• ."••• ***** ,
.1;20 Log! at, tndtcatlon::G!:tSlire tL , .. RetUrn true ff wired. */

Page,

421
'22.
423
42'
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
'41
442
443
444
445
446
4~7
443
449
450
451
.52
453
454
455
456
457
455
459
460
461
;'62
463
464
465
466
467
468
469
470
471
472
~7.3
474
US
476
477
478
479
480

Somtfrto~ *error,
S~{ConteJ.t *contei<.t,
Sc.mfVaitle ·classes,
seerlvetue ·instances,
SomiValue ·a~tion_info);

/* Error-vetue ce return .,
,.,. Oestination c;ont~X,t *(
'" The returned cia ss lht *'
I"t' r:le- returned instances */
JO Action Info C crit ) *f

1':.*** •••••• **** ••••••• *.*** *."'**1::* ••••• ** "*••••• **••• **1
r ~
1* name , Proces.ActionCnf "/
r ~'* Description: 'f
,. Process the SUpplied mes.. g. and If the Invoke Id Is the same 0,.
" as the one In the put away In the FIFO then extract the data *'r .. ~
1*·***..·*·*··*··~ ...·**····*·*·· ..***·...•.. ··**·Il••**••*•••*.*'*** ..... ",.*/
lOgical ProeessActlonCnf( '* Return true If valid entry *'

Jt1.H~ssas.l "Jr.essagl!); ,,, the received message *'
'* ••*'IJIt.* •• ~*.**.**.*••••1t*.~•••**** •• ***••• **1t •• *.* ••.......... *.*** I
r ~'* N..... : Disable .,r ~
'" Descrfptio.,: . *1'* Process the lO!jIc::J1Ol•• ble for this indication. If the entry·',0 Is IMtchO<fthe Indication wi1I be loglcetly dh.btetl and the "'
pi fcnctlO;'\ ",Ht return true. */r ~,.*.•"•.•**....... "'•••• **** ...... ** •• *** •••• **'**.* .... **.... *..t*.*** •• *** ••• /
Logical OlsableC ,. Return true if matched .,

logical ·cle:3r, J* True if LD alarm clear. '"
Int type, " lype of disabl.. "'
toglcal disable ctrl, r Disable control .,
ehar ·cat_icCmask: ); J* Category mask *'

/*. 'IP. ** •••••••• ft • .,.... * * **.It•••••••• * *~••• ~.ft:.t •• ;. •• **.il. **1
r ~
1* Name : Enable .,r ~,0 a.scriptlon: *,'* If ,h.re was" prior dl •• ble then the dis.blw will be cleared. *f'* If tne indlc.tion was disabled by th~ configuration then It will"'r cleared ane. the function will return true. *'
'* "'I*··*·······****e-·:ir··**·*·*·*..···**t:·**····~..···*···* * ,
~ogic.l ENlbte( '* Retvrn true If matched *'

logiea! ·clear, ,. True:if tD ali5rmclear. */
int tyPe, t" T\". of disable. *f
LOgical disable_ctr!, ,. Disable contre] .,
char *cBt_id_mesk. ); ,. Category mask */

/**.:t «**••••• 'It**.* * ****'t1t n =.t;* ••••• **••••••• ***I
r. ~'* H_ : o.foult *'r ~
I*' Description 1. . *'
,. If there was. prior :l,••ble o.r eneble th"" the Indlcatlen wl(1 .,'* be restored to its formerself and III usocfatcd' (Hsable alarms",'* wi tl be c!eoretl "r . . ~, _.** "...fI•••• It.,,*ot•• ** **•• ***.***** •••••• *_•• ,

~

~o
71s
5i

~
\)

8:<:
"1:j

~
~
71
~
C/)

~

~
~
£
d
OJss
~
tj)

::n
~r.-
:::!
~
~

~::n
l"I1
C/)

~
rrt
~



:g
s
Q..
)(.

o

~
'g
.....
~

Printed by revision :3.4 of Iprt.e
f!t. U.... , Indlcatlon.h Dote , lied Jan 21 :08:tl9:23 1993

, •• eturn troe if "",telled '"'* True if LO ,,101'111clear. *'
,. Type of disable. "''* Disable control */
,. Category ","sit *'

Ps~e' , S
481
482
483
484
(85
486
481
48!l
489
490
491
4920
4"'>
4Y'~
495
496
497
498
499
500
~Ol
502
503
SD4
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
5<1
5<2
523
524
5~5
526
527
528
529

L~!at De:~lt{
logIcal .clear",
Int type.
LOg!<" dls.ble errt ,
ch.. *ut_I<[...sl: l;

, ....... **.** ...... ** •• ****'** ...... **.....1t ••• ** •••••• *******fi.******«** .. ,'* .,'* K.... : SetDlsable ( VIRTUAL i .,P ~t" O.. erlption: *f
1* INt ...eers lOlnd to set Dluble nagS and generato .1._. "'
/" SIIIply atl_ Inh.rlting etrss .. to malte use cf this ft.nctlon. */
1* ". . .. ~, *ft.u.~*.*.*••*••• *.. *.**H #r*IIi.*" •• ." ***.1r* ••• 1: •• **/
virtual Logicat s.tDi •• "toc '" Return true If fl8tched */

int, '* TyPe of disable function *'
Int) { '* Typeof dls.bl". *Jreturn ( SoolFatse );'

l.t·*·...•.....***..... *.....••..*~..···*··*···*·*..·.**.*··••••*.·...*•• e... */~ ~'* Hame : CI•• roi •• bl" ( VIRTUAL) "'
1* ~
I" Description: #/'* Instructs LDlnd to cle., Disabl. flags and generate alarms. "
1* Silpty allows inheriting classes to rr.a~e~..! of 'thiS fU"lCtion. */
~. . ~
r ..··**··*··..··..*···..·•·•·..·**·*······*·~s.·*·••··*··..* ,virtual logical C[.arols.ble' " Return true if onatch«l ~I

Int. i« TyPe of d's.:'l. ft.nctlon ~,
Int) { ,. Typeof drubl.. "'
rctvrn ( Boolfalse >;

1**····****2.*.*SI ...l'."'~**ri*.*IIi..*... • ..·* .......*..... **tt•• *••**•••• **••••• */
~ ~'* Hame : fr'eeAII'Ia(U<!. .,
1* ~
1* Description: */'* frees all SOIOiVaLuess"!'Plied. "'
1* ~/··············,,··.· "'•• "'.H••• ***_* ,
void freeAItV.IIleS(

s"",iValue .vl); '* SOIlIIValU<!to free */

n
'endif

. ,

h
<:
Q

~o
";"is
iii
~n;o
o
Q

~
Q

~
~
~mt:;
~
:E
~
£
:)
~1
f::o
~
G)
:l'l
~r;--
::::!
m
~

i
(I)

~
rtl
~



AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO 8U/WING REAL-TIME SOFTWARE SYSTEMS

APPENDIX E: EXAMPLE OF OBJECT ..TO..TABLE MAPPIf\~~
DEFINITION FOR THE DATABASE

Several references have been made in the study to the oblect-to-table mapping definitions. This
was required for the Historian and Configurator subsystems where it was necessary to 'interface'
objects to tables ot the underlying Relational Database Management System.

The definition file is in the form of an ASCII file" so that the mapping rules are user-definable and
not proqram-coded, Both the Historian and Configurator Object Managers read in the entire
definition file into memory on startup - this being done for performance reasons.

The file is divided up into 3 main sections:

(a) The first section is for definition of the class hieran.hy (in other words, the Historian or
Configurators containment tree).

(b) The second section defines the mapping of object classes to RDBMS tables.

(c) The third section defines the mapping of object attributes to columns of the relevant
RDBMS tables.

Figure E.1 Is an example listing of the definition file for the Configurator subsystem .

..

Appendix E Page 189



AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO 8U1LDING REAL-TIME SOFtWARE SYSTEMS

Figure E.1: Example listing of Object-to- Table Definition File.

# This line Is for id~htiTlcatilm by the 'what' comnandl
II il(lI)cibdef.conf 3.'193/02123 13:28:S9 Astan Av [CONFl CC) BSI/·Datll (Pty) ltd •
....... ** *••••• **
.. SOL DF,FINlTloN FilE ..
.. ~ .. iI*-& •• *.......*......,.* "'lit•••

• *••• **.*.*.******* •• ***tir** •• ***ttlt********* ••••• *.*.* ••••• ***.*.*"' ••• w*.** •• *.
CLASS HIERARCHY DEnlll'rION
··1r·***** .. ··"'**·**••• *** •• **•• **Itr***.* ••••• *••••••••••• ***.*.~••••••*.***.,..'*
c
Ctltegol'Y

Fl ickOption

GRicet~

GEquipT~

GEquipT~.. ,GEquip

GEquip

GEq<.eip .Glndlcation
* ;
GEquip ,Glndication ,Indication;

" ..,
GEquip ,Equipment..
GEquip ,Glndication ,GtndRiceOPtion;.. ...
GGraphE lrnnt

GOpT~

GSeverlty

GIIAl01yp.:.

GIIAlOT~.. , GIJAlOIiAL tryp.:. t

GIIAL1T~

GIIAL1T~.. , GCPUType

GIIAL2Type

GIIAl:5Typ.:... ,GIIAL3Indr~ ;

GliAL

GlIAL ,GIIALFllut t..
Re~pon$ibillty;

Responsibi l ity,LcgSet..
Location

Appendix E Page 190



AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

LegSet

leg

lecSet ,leg..

leg
•
Leg

'*
Leg..
Leg..
leg..

leg

'*
leg

'*
leg

'*
leg

'*
IIAlO

IIAlO..
IIALO..

IIAlO..
IIAlO

"
IIAlO

lop

Top

Top

Top

Top

Top

Top

Top

Top

Top

,lIAlO

,locSequence

,Equipnent

,Affects

,Affecteday

,Equipment
,'*
,Eqdpment
,*
,Equivm.:nt
,*
,fquipnent
,*
,Equlpnent
,*

:
,Indication;

,Indication ,Uplink
,*
,Indication ,DollnLink
,'* ,
, Indication ,l/ireL
,* ,
,Indication ,IndRiceOptioo:
,*

,IIAU

,lIALl .I1Al2
,'*
,IIAll ,IIAl:! IIAl3
,.. ,,.
,lIAll ,IIfll2 IIAl3 .IIAl4
,* .. *, .
,UAU ,IIAl2 , IIAl3 ,IIAl4 ,lIAlS

." ,.. ,.. ,*
,l/ALl .IIAl2 , IIAl3 ,IIAl4 ,lIAlS ,lIireP
," ,.. ,.. .. .., ,

,C!ltegory

,FlickDption

.GRiccTyPe

,GEquipType

,GOpType

,GEquip
.*
,G~quip
,'*
,GllfllQType

, GI/AlOTYIX'
,*

,Glndication

,Glndication ,GlndRiceOption:..,

,GIIAlCIIAl1Type

AppendixE Page 191



AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-liME SOF/WARE SYSTEMS

lop

Top

Top

Top

TOp

Top

Top

Top

Top

lop

Top

Top

)

,GIIAL1Type

,GliAl2Type..
,GIIAt3Type

,GII,\L

,Respcnslbi l i ty;

,locatiun

,legSet

,legSet
•,

,IIALO

,IIAlO
•,
,IIALO
*,
,lIAtO

,IIAL1

,I/All ,IIAl2
,..
,I/All ,I/A~2 , IIAL3
,.. *,,*

**·*~·*·"****··****"**"."*••*****."'*IIr."'''.*.'itI •• ~*'''.*.*f*.'\*•••• *.**~**...... *••
ClASSI PRtAARYTABtE DEFIIIITIOIl
·.*·*.***** ••****.****~**fr.**********."'.* ******* tc:*", **1Ir ,'t*****.*****"ft*********
CLASS
c
Top ,top;
Category ,CATEGORY ,cat_id;
Equip!lCnt ,EOUIPHElli ,t!CIt_id ;
FlickOption ,FLlCK~OPTION. ,ft_option;
GRic.Type , G_RICE_TYPE , rice_type;
GEquip ,G_EOUIP ,code;
GEquipType •G_EOUIP_TVPE , type;
GGrapOElrmt ,G_GRAPHICS_CLEMENT,graph_elrmt;
GOpType ,G_oP_l¥PE ,op_type;
GS.verity ,G_SEVf,RITY ,s~verity;
GIiALOType ,G_IIAtO_tVPE ,WlIlO_type;
GliALHype ,G_IIAL1_iYPE ,wall_type;
GIiALOI/AL1Type ,G_IIAL()_lIAL'_TYPE ,l-Itll1_type;
GCPUType ,G_CPU_TYI'E ,cpu_type;
G\lAL2Type ,G_IIAL2_TYPE ,wal2 ••type;
GIIAl3Type ,G_IIAL3_TYPE ,w~l3_Wpe;
mm31ndType ,GJ'AL3_INO_TYPE • ind_type;
GIndlcation ,G_INDICATION ,ind_ld;
GlndRlCel)ption,IUND_RICE_OPTION ,rice_type~
GlIAL ,G_IIAL ,Nal_level;
GIiAlFault ,G_IIAlJAULT ,fault_id;
Indication ,INDICATION , ind_ld ;
IndRlcCOptlon .IHO_RICE_OPTION ,rice_type;
UpLink ,1I10_L1NK ,out_sttr;
Downlink ,INO_L1NK , in_attr;
Leg ,lEG ,lc9_id;
Affects , LEG_LINK ,lIffeets_les_ld;
Affecteday ,LEG_LiNK ,uffected_by_leg_id;
LcgSet .LEGSEr .l_s_id;
Location

TABLE ClASSIO

,LOCATION , loc_id;

Apper;dix E Page 192



AN OBJECT·ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

Lccsequence ,lOC_SEQUENCE ,seq_no;
Respons ib] I Ity ,RESPONSIBILITY • resp_code;
IIALO .IIAlO ,lIaIO_m.m;
IIAL1 ,IIAL1 I will '_nun;
IIAl2 ,IIAl2 I wQl,_ntrni
IIAl3 ,HAl3 ,>I'113..,nt.m;
IIAl4 ,IIAL4 ,\1£\\4_01.111;
IIALS ,IIALS ,\(al~_nll";
IIlrel t!w!~e .;crit_,id;
lIireP ,IIIRE ,crit.,ld;
)

..*•••••• **.*** ••*.~.i'.**.........*••*.......*•••• **••• *** •••••••• ** •••• ***** ...... **
ATTRIBUTE/COLlJHN DHINITION
••••• *** •••• *•• ** ••• **.** .......... ;,.',\.t .**~•••***.* *****tt..*." ******** •• '**.* •••
ACTIONClASS OI<SECU,SS AtTRIButE TYPE TASlE rolUMN TV~e
c
Cl)tegory, Category, cat_id, OOJ_STRING, CATEGORY, CA1_ID, Ch"~;
Category, CategorY, eat_type, OBJ_STRING, CATEGORY, CAT_TYP~, CHAR:
Category, Category, cat .. df SC, OBJ_STRING, CATEGORY, CAT_DESC. CHAR;
Category, Category, alarm_label, OBJ~STRING, CATEGORY, ALARM_LABEL, CHAR;
C$tegory, Category, urgency, OBJ_SHORT, CATEGORY. URGENCY, NUMBER:
Category, Category, severity, OBJ_STRING, CATEGORY, SEVERITY, CHAR;
CategQI1', category, graph_"lIl11t, OBJ,.STR1NG, CATEGORY, GRAPH_ELKNT, CHAR;
Equipment, Equipment, eqt_id, 03J_SlRING, EQUIPMe~T. EQr _10, CHAR;
Indication, Equipment, eqt_id, OBJ_SrRING, INOICATION. EOT_IO, CHAR;
IndRiceOption, Equipment, eqt_l.:l. OBJ_STRING, INO_RICE_OPTlON.EOT_IO, CHAR;
Uplink, Equipment, eqt_id, OBJ_STRING, IND_LINK, EOT_IO, eHA";
Downlink, EqUipment, eqt_Id, OBJ .. STR1NG, IND_LINK, UP_EOT_IO, CHAR;
lIireL, Equipment, .oqt_\d. OBJ_STRING, IIIRE, EQT_W, CHAR;
i:quipment, Equipment, description, OBJ_llTRtlIG, EOUIPMENT. DESCRIPTION, CHAR;
Equipment, Equipment, frequench OBJ_~TRIN(), EQUIPMENT, fREQUENCY, CHAR;
Equipment, Equipment, sequence_no, OBJ_SHORT, EQUIP!'ENT, SEQUENCE_NO, NUMBER;
Equipment, ~quipment, code, OBJ .. STRIIIG, EQUIPMENT, CODE, CHAR;
Equipnent, 'il:ipment, loc_ld, OBJ_STRING, EQUIPMENT I LOC_IO, CHAR;
Equipment. Equipment, graph_ellll1t, OBJ_STRING, EQUIPMENT, GRAPH.. ELHNT, CHAR;
FllckOptlon, f'llckOpthm, ft_optlon, OBJ_LONG , FLICK_OPTION, FL_OPTlON, NUMBER;
Fl iekOpttun, fi ickOptlon, set_fl_t .. o. OBJ_SHORT, FLl Cr._OPTI ON. SETJL_T_O, NUMBER;
FtickOptlon, fl ickOption, renet_fl_t_o, OBJ_SHORT, FLICK_OPTION. RESET _FL_T_O, NUHBER;
fllckDption, fl ickOption, fl_thresh. OD~_FLO"'T • FLICK_OPTION, FL_TfIRESH, F~O"'T:
Fl ickOption, fl ickOption, fl_decay, OSJ_SHORT, FLICK_OPtiON, FL_DECAY, NUMBER;
FllckOption. Fl iekOptlon, ft_desc. OBJ_ST~lNG. FLICK_OPTlON, fl_DESC, CItAR;
GRiceType, GRlceType, rice_type, OIlJ_STRING. G_RI CE_TYPE, RICE_TYPE. CHAR;
GRiceType. GRicetype, description, OBJ_STRING, G_RICE_TYPE, DESCRIPTION. CHAR:
GEqulp, ilEqulp, code, OBJ_STRING, G_EQUIP, CODE, CHAR;
Equipment, GEqulp, code, ~BJ_ST~ING, EQUIPMENT, CODE, CItAR;
Glndicatlon, GEqulp, code, OBJ_STRING, G_I NDI CATION, COOE, CHAR;
GlndRiceOption,GEquip, code, OBJ__iHRING, G_IND_R1CE_OPrlON,CODE, CHAR;
GEqulp, GEquip, type, OBJ_STRING, G_EQUIP, TYPE, CHAR;
GEquip, GEquip, description. OBJ_S'rR !NG, O_EQUIP, OESCRIPTlON, CHAR;
GEqulp, GEquip, IIltloufacturer, OBJ_STRING, G_EOUIP, MANUfACTURER, CUAR;
GEquip, GEqIJip, power, OBJ_STRIHG, G_EQuIP, POI/ER, CUAR:
GEquip, IOEqu1r.. model, OBJ_STRING, G_EQUIP, MOOEL, CHAR:
GEquip, GEqulll. grepO_ellll1t. OBJ_STRING, G_EQUIP, GRAPH_ELM»T, CHAR;
GEqulpType, GEqulpT}pIY, type, OBJ_STRING, G_EQUIP _TYPE, tYPE, CHAR;
GEquip, GEquipType, type. OaJ_SlRING, G_ECUIP. TYPE. CHAR;
GEqulpType, GEquipType, description, ClUJ_STRING. (i_EQUIP_TYPE, UESCRtPTlON. CHAR;
GGr3pOEllll1t. GGraphEllll1t, grnpO_ellll1t. OBJ_STRtNG, G_GRAPHICS_ELEMENT. GRAPH_ELMNT. CHAR:
GGraphEllll1t, GGrophElmnt. ellll1t_val. OBJ _LONG, G_GRAPHICS_ELEMENT ,ElHNT_VAL, NUMBER;
GGr~phEln.,t, (iGraphElmnt, description. OBJ_STRING. G_GRAPHI CS_ELEMENT .DESCRIPTlON, CHAR;
GOpType, GOpType. op_t)'pC, OBJ_STRING, (i_OP_TYP!;, 01'_TYPE, CHAR;

Appendix E I'age 193



AN OBJECT·ORIENTED COMPONENT·BASED APPROACH TO BUILDING REAL·TIME SOFTWARE SYSTEMS

APPENDIX F: CLASS EXAMPLES

Appendix F contains examples of class definitions as referred to in this report, in the form of
abbreviated listings of the c++ include files. The filenames are: DktSummal}'.h, MimDisplay.h,
LinePerfDisp.h, WAL.h and Docket.h.

AppendixF Page 194



~
~
~
"

l....
~

Printed I:y revision 3.4 of Iprt.c
File ~....e : cktS.rn1IOry.h Date: lied Jan ~7 11:45:26 1993 Page ~

1
2
2
3~
5
67
6
9
m
11
U
n

"BUrrWW
m
DU
II
aauuu••~~
n~
g
~~~BWUQ
U«e
uQg
W~~R~~DY~~B

J~ This tine is (or fdentt~ic.ation tJy the 'what/ ca;mandf ..,
1* O:("Okt~lMUry." 3.1 93/01119 05:~:57 Ast." !.V !HHI 1 (C) B,w'Oata (Pty) ltd.
"'/
, ".**** **** ** ••• * ******* ••• **.** ,
r ~r: TITLE BlOC!(: */, .. =====~ */r ~
/*)I.... : OktSUrnlary.h *'r ~
'" 1.0. NU!ber : ASl!.N Rev: 0.00 Ret, 0.00 */
r ~r ~oftw2r" llevetQped By : BSlI'DATA '"
I" Private BeS 1<35 "'
/* Halfway House "I
/. 1685 *'r ~
/* ftr.ction : this is th" Interface for the OocketS...",.ry class.",r ~r ~
'" Klstory : */r ~
I" Event Oate Author ApprOVed ./r ~
'" Specification 92/1!3/19 PCE XXX ~I
!' Desig" 9,103/19 PCF xxx *1
," ll!plement.tlon 92103/19 PCE XXX "I'* Audit XX/XX/XX XX~ *'r ~r ~
,. Revis.ions: Revision ':Jst¢ Author Aoproved */
/" 0.00 XX/XX/XX XXX XXX *1r ~'* Revision Cesc.ription: "/'* =====:::=:==== */
/' 0.00 • None *Jr ~r ~
'" Functional Specification: "'J* ========:::====== "I
r ~'* Provides stJF!>Ortfor docket :runnarle. In either the Ust of *'
/* dockets cOntrolled by the operator position or dockets In */
f* any general display ttsr, "/r ~,.** *** ***** ** *****.******"'._.*,
#Unclef Docl(E~SVII!W!Y_IHCWlED
flckfi no OOCl(E,SUMMARY_iHClUlED

Jli.,.tude
#fnctude

"ai ..hl"
"RtOCllTypes.h"

/H1I •• **.*** nut ••*** .-r.1iI*** ** •• ***'****.** •••• .,..*." •• ,
,. Class name: Oock.etSt.-mary "I
'" Oescri'pticn:: Ihis etass contains. the 5Uin'.ary information for "1
/* docket. It also provides ""'thod~ for the ... nlputatlon of "f
/* d<A:kets. Any "/
I~ Updates to the docket sumaary informat ion are done 'by R.JOK, "1
I'" with the eAception of changes to the rlocket's category */

~U~~M
6~Q
68~ro
nnn~~
Nn
n
nMM~~~~
MU
M~
W
n
92
93

"~%
W~
99
100
WI
WZ
11!3
1~
I~
1~
lW
1M
1~
lW
III
In
13
II.
liS
IN
lU
lW
lW

1* filter or detaYt which are controlled internally in theMI,"r . . ~
11i~~*'t*••••• *.**********.********* ...*••*...***** '*"**~*"1r.*.~ •••• *1
ctass l)ocketLlst;
cvass OocketSumsary

: phlle linkLlstc
phUc:
,.*** ***** ••• ** •••• "" 9 *•••• ** *.**.*.-t*/'* Fl.<>Ctionname: Oocke~SlJllllOry (construct,") ./
,. Description: Creates en Insunce trOll the gtven list of -/
/" attributes and valves. A matched pair of records gives the *f
fO ldentlf!er$ and vatues, 0/
r ~/*- .******* ,,* •••••••• **."* ••• *••"••'/

Dock.tSlJIIIIOry (SomiV.tue *rec '* attribute records Of
,S"",iContext *rt"'" '* """log RTot'. =r
,SOOIiError ·err); /* err(tr' return */

'*1r**~.*.1t•• *.*,..*.**"".** •• *.* ••• *•••••• *.* ••_•••• *.*._*** ••••• **.'**1
l· flNlCtion name : -DocketSunnary , */
/" Description: Th~ destructor I~ invoked .s • result of an "'
/* "_SET (REHOYl;_VAt)to the parent Dock.tLI.t. */r ~1··=t:::;~·····..••••••••• .. ·***·*#·····*··,l''C······**···*··$I*•••••• ** ••• ,-DocketS""",ry ();

J* •• * •• *e- * *.* •••• *••••••••••••••• *,.**.*,'* fU'lCtion name: SetValue:; .,
/* Description: This ""'thad handles SET_tHD(HCDVAllto et ter- +/
I· the val~'es of et rr-Ibetes; ./r ~/.* ••• *,. •• "'••••••••••• ** ••••• * * •••• > "' ••••• ,

SomiError servet ues
(SonaiVa[L<e *attributes); /. attribute records *'

,. Attributes Of
SOOt Error OoSet

(SQn\iV,due *attributes); ,. attribute records. *f

'" Attribute values .,
chllr dref IDREFSIZE + 1:;
long docket time;
char teg_id-CLEG,-lD_SIZE~ 11;
char cat_llst (I!AX_C:ATEGOII1ES+ !];
short urgency;
char opld tOPID_SIZE+ 11;
char f_toc (F_lOC_SI2E+ 11;
long d_flags;
ebar progress_cooe- [PCOOE...:.~lZE + 1];
short l_s~.Jd;

J* subU.t Identifier (A,a,F,p for Mimac) */
char subt 1st;

,. category fnter */
char <at filhr ll'.AX CATEroRIES+ 11;
static char deCc.t_fllter 'IKAX_CATEGOIUES+ 11.
char prev_eat [XAX_CATEGOIUES+ 1];

~

~
1"is
iii

~
D

8
~o
~
<!
1"i
~
'"gj
~
~
§t
d
OJs
5
~
G)

~r;-
:j
~
t't1

~

~
~

~
nt
~

~
It)
=:I.

~
-n

.""&
~
-4.~

Printed by revision 3..4 of lprt ..c
III. H_ ! DktS"""ry.b Oat., : lied J8fI 27 If,45:Z8 l!i'93 P.ge :120

121
122
123
124
125
126
127
12S
129
130
131
132
133
134

'* d;xket' timer 1r I
void -tfmer; 1* active tiJl'ler *'
jot delaySet; I" Irdi~t.5 .mether delay WI. set .,
int de!.y: /* ti_ delay for docket "'
U""'_t del.yEl<plry; '* erd of tl_ut ~rf"" "''* OWner node' .. ,
sonaiContext rtOll;

private:
OocketSum>ary 0; '* hide th.. deflJ<J1t cons"ructor */};

,I.roif /. DOCl(ETSIJI\!W!Y_'II~lI.l)EI) *'

~

~
";i
o
::0n;
~
1:1

~o
~<:
"j"I

~
tI)

Pi
~:g
~
§t
_c]
o
trJ
£
b
~o
::0

~
:::!
~.

~

~
~
(I)

~
rrI
~

:g
(I)
;:,

~
-n

l
......co
"I

Printed by revlsfon 3.4 of Iprt.c
file U_ : MillOtsp.h Date : I:ed Jan ,7 1.1:4S:4S 1991 Page:

I
2
2
3,
5
6
7
8Y~
"RUUUNaHw•~~~M~~
V~•D~
g
D~~»~~D~~Uo«o~Q~UH
"HDM
"~~~B

'" "ihls U"" is for identiflcatfon by the '''''at' c"""",ndl *'
'" C(#)Hi.olsp.h 3.2 93'D1!~ 12:33:44 ,..Ian Av !MHl] CC) aSl('Data (Pty) Ltd. •
/
I....*_ •••***~... *•• *.,.:a-If.f:' •• *•• ******** ...**..... ***~.*"'......**...It.,
r ~
/" HTlE SlCC):: "/
/fr :::.===--:== "I
r ~
'" Harne : MiROisplay.n *'r ~
'" 1.0. MUlDer : ASlAH Rev: 0.00 Ret: 0.00 */r ~
/" Software neveloped By : e511'OAT4 "/
/* private Bag)\35 */
/* Halh;ay House '*'r _5 ~
r ~
I" fl.l1Ctlon : litis is t~. Interface for the *''* HimacOisptBY c(ass. "'r ~r ~'* 8istory .: "'r ~,* E/ent Date \ut.~or ~FI'rovec! '/r ~
t= Specification 92/03/<.3 PGF XXX -r'* Design 92/03,<.3 PGF XXX "/
'" loplementaUon 92/03JZ3 PGF XXX .,'* Audit "/r ~r ~
J* .Revisions: Revisio., Date Autnor Approved *''* 0.00 XX/XXJ)(l(XXX XXX *fr ~,* R.vl$i~...Description: 'f
/* =:.==~:::=::==:==:r== *"
/* 0.00 - H~ *'r ~r ~,*. ftrtetionel Specification: */
I" .::--:::s::=::s.=:=====-=::=z:=# •J
r ~
,~ JII'pI"f!ts the general (0l'1li of all Ill..,.., displaYS. *'r . ~'.H** **6 ****••• **•• *Ii •• ~*****••**•• *** .. *** ** /

:!s!'i~:l~~~:~~H:~~g
illfdef CU[
inclode: "CtJIDspn.C.hlt
'else
If include "Il'p"xG.b"
•• rolf
, ••• "•• .,.* u ** * ,
'" CIa .. name: KlmacOl~play *'r D•• cdptIO<l: This etass lopl...,nts the bes te toll.,.,.. toxt dl.pla~_ *'r AI! Ilioma~ displays have two header t lnes; the first containing .{
r the display tide, the operator poslUen """"', the node nUlber *'

60
61
62
63
64
65
66er
65
69
70
71
rz
n
74
75
76
77
78
79
80
8'
82
83
84
85
56
87
58
89
90
91
92
93
94
95
96
97
98
99

100
101
10;;
103
104
105
106
101
ICIl
109
110
HI
112
113
114
115
116
117
118
119

*f
*f
./
*/

,.. on wHch the 'SKI exists, the user ~" and the date and tfme. '*1
/* The second header ltoe contains information pertI~ilt to the */
f* dlspley. There Is also. top·of·display..arker U"" and a *,'* bottom·ot-display marker line. The sOrt keys of tho top and *'
/* bottom: r.arkers are se't to '1.' 300 '2.' re.spectively. '1:/
/* Displays derIved frail this cIa .. ca" set L'P tho sort keys for *'
'" lines In the display .~~rding to th.lr needs, Ofr ~
1·*.....**··***·_·.-n··*·*··..*··*·**·1"**.. ··****···*fI fr ... ~*****lI ••• *l.*"** I
class H.~iTop:
etsss lIll'TUIcDlsplay:

public Gt_HaflPed\linclowG
(
public!
/" *** ***. :,.••• it ** it ",*•••••••• ****.:c:*,,0 function l)IIIIlC! : Hh",acOlsplay "/
/* Description, The constructor for this chss "UI Invoke the *f
I" bose class constructor to create the mapped .. indow. It wlU "'
/* then set up the first header line .nd the top .nd bott"" "'
J* marker tines. "'r ~
/ir ... *****.*.*****.******** ••• *.... ii •• e"••••••••• ** ... c ••• ********* •• **/

Kill1'1lcDisplay (Gt_Dlsptay &dlsplay
, char *wlrdoliTitl.
, char *c:!splayTltle
, Int headerFlel"
• Int llneFI.ld.
• IlKlTop ·top);

, •• ** •• ***01: *** ..*•••• *•••• *.**••• **.** ****** •• *"..,
f* function nm>O , -lIum.COocketDlspl.y *f'* Description: The destructor for thl$ etass IIItI shut down */'* tho display. *fr .. ~/ •• **.** **••**•••••••••• ** ••• **••• ***••• *ft ••••••••••••• *** **",

-lIlnnaCOi.play el;

J "'* *•• * ~ •• ** •• * **.**.*'ft ••• *.*.* **/
" function lIal1l'" ClosCOlsplay *'
/. D~soriptlon: This Is • virtual fur","on Whi~h [$ letlv.ted When */'* the Gt MaflPed\lfndol<G'$ etese button Is clicked. The base ..,'* class Tunctlon does nothing - displays der Ived frOlll this .,
i- et ess can specH{ othe. functionality. .,
r . .. ~
1..'2.**.*'*'* ••• **~••'f:.*1r.**.*******."'A.*.*~.a,.* •••• Crlt*.*.*Nt****** ••• */

virtual void ClcsCOI'I"ay 0 c;>
, ••• :t.*.<t: 2 *•••• H.**** *••• ****.' ••• '**••••• *••••• '"I
/* function name: RepOrtErro!' .,'* Description: Raise. In error dialog to into", the user-, 'f
/. ('pril'ltf''''stylz: lIrgunent lJ.st) *ir ~
/ a••• a •••••••••••••••• ***•• tr ••••• ***.'**j

void RepertError (char '*fcrmat, ...);

private:
Gt Mafl'CdLlneG
GCHafI'edLlMG
Gt-H'fl'CdFle1dG
G()i.ppe-jfiel<>G

to?lark;
IY.>tllark;
topFleld;
botFI.ld;

'* top of display ... rker-
~: ~~tITn~f .1~f~ari~~ker'* bot line sing I. field

~
o
~o
";"i

~
iTi<:
~
D

8
~o
~<:
";"i

~
{g
~:g
:0
~
~
d
tos
b
~
(j)

~r;--
:::!
~
jTj

~

~
~
(/)

~
iTt
~

:g
Q)
:J

~
"

Pdnte,d by revision 3.4 of lprt ..e
fil~ 11_ : 1ll.olsp.lt

rze
121 '* If.acts to ~indo:: close *'
122 static void C(osecattba:~ ("(Old "tid, void *ed);
12l
124 '" Reacts to error dialog etese *J
125 statle ~old ErrorClosec!l (Yold "tid, yold oed):
126 J:
127
~2g 'endif '* IIIH11AtoISPLAT_INClOOED *'

;g.
(Q
Q).....
~

Date : !Jed Jan 27 11:48:45 t993 Fag" : 2

~
o
OJ.
~
C)
'j"I
§5
iii<:
iii
ti.
C)

I
~
~
~o
~:g
::0
~
£
d
to
£;
5
5E
(j)

~
';'"
::::!
~

~
~
~
CI)

~
iii
~

:g
s
~
"l1

~
<g...;g

Printed by revi:sic:n3.' of lprt ..e
File n""", : tiJld>.rfPhp.h

122
3
4
5
6
7
8
9
W
11RDRUU
rr~wD~~
aH~•u~•D
nDD~
g
un~Dooo~«
u

"u~wm
51
£~~~~H~D

J* this line is for identification by the '''''at' e<mMMl ~J
1" ~('Rlner.rfDisp.h 3.2 "'101m 12:34:08 ~sl.., Ov [l!M1 1 CC) 85\1·0.to (Ptyl L
td. */

Date: \ltd ;.., U 11:51:27 1993

1" Define tMxill'". nUItler of outstations .,
#define HAX_amTATlOIIS 20

/.~••._••••*., * " **•• **.*.*.* *.. *.**.* **...••••• ~ **.,
1" ~
'" rmz 8L~: P//* c.::=====::: ./
1" V'*)I.... , linePortPisp.h */
1" V
'" 1.0. HUliber : ASlAH Rev, 0.00 ReI: 0.00 .,
1" V
,. Software Oevetoped By : ISI/·PATA */
'" Private 80g X35 */
/''' Hzlfway H:JIUse *''* 1685 "/1" V
/. flllCtfoo :: *1~ V
1" V
1" V
1* History : *.1
1" V'* Event nete A.uthor Approved *1r V
'" sp<clflcatlcr. ~2!12,04 cY XXX "'
,. O.si!ltl 9Z/12/04 CO: XXX .,'* :<:pl "t.tion 92"2{04 ex XXX *'/* Audit -,
1" V
1" V
lie Reyisicos: Revfsion OJOte Author Approved "'/
1* e.eo XX/XX/XX XXX XXX .,
r v
J* Revision a.scrlptlon: *f
/* ===::%%%:II::=:::%%:'=: */
{' 0.00' None *'
1" V
1" V'* F!A'lCtfonal Specification: "
,. ===%:::::=:=~-==::s-z::r:& *1
1* V
1" . . V
J *.... ~**•• *•• ****"*.****1r* ... **.***.****** ** ••• * **.1r;.••••• ****.,

~'tn!g:i~~:~m~:l~~~~
,. include flies '"
#include "OM.hOl

#include "!!H!top.h"
#include ·KIIOIs?h·

#lfdef cur
/I ·,,..f!de "ClJIOspotXG.h·
'else
II inclU<je "llsplO(G.h"
lIendif

'.g. :
60
61
62
63
64
.65
66
67
£8
69
70
71
72
73
74
75
16
77
78
79
SO
81
82
83
M
85
56
87
B8
89
90
91
92
93
94~
96
97
98
99
100
101
10Z
103
10.;
las
106
107
104
109
110
111
112
113
114
115
116
'17
1111
119

J* Oefine '
lId.flne t

,ngth for the df~pl.y identifier .,
~O_LEnGTK 4S

J. Oet.",,''''' ojrt of proHI" dat. '"
II<lefi~ STLP_PROfllE_lINE_I«J!1 6

J* Deii"" ,Oft keys */

EH~~m~~r~~i~E:~~",
'W
'N'

1* D~t~nafnc the co!t.rrn pnitioos. *l

E~!§m~~g~!~~~;i
t= The ""'xl nUItler of l;nes *f
lldeflne STU' -'IAX_lIMoS 50

~:H:~~!~_SIlE 24

tyPe<!ef struct (
short OCJtstatr~Lnt.n;
char tocatlOOllOCAHOfl SIZE);
ohart profile dataOOX OATH:
iot eletriet1ts; -

} linePerformance;

'* line !perfonnance data type *'
tyPe<!ef """" (

HOURS = 0,
MINUTES

) STlPOataType;

, ***••• **" *•• *H ** \t .. O•••• **•••• *•••• *•••• 1tH :2*-s*a •• " '
'" Clus : lIJld>erIO!:;pley "/'* Description: Thb cI... Is" coo;aiMr lor th!> deull 11....$ of the "f
" tine Perfaononce Display. ""en the LIM Performance Display Is "I
1* selected by the operator. an Instance of th(c c(c~ is eeeeted In */
J* the HIli's object tree, and MI M_ACTIOO request {s .ent to !t"" to "f
'" notify It the detarts .r. reqtllre<i at th~ !!HI. '"
t" The RIO'll "Ill then g_rate an "_SET Cr.pllee} directed at this "'
/" ;nslan<:. for all outstatIon line. perforlllnce lofonnatlon. *'
J* This display is not .cttv.. "/
j** ***.11 1t-* •• a* •••• ** *••••••••••••••••• *'
etl.S AA1Top;
cta.s LimPer/Display: p<bHc CHlbject,

p<blfe lIi:macOisplay
(
private:

static logical flrstlnstanc.:
static CbuBtuePrfnt ·bluePrint;

p<btic :

~
o
~o
7is
Oi
~
~
g
~s
~
7i

~
t:I
~
~s
d
en
S;s
~
G)

:::0
~
~
;:i

~.

~
~
~
~
(I)

~
rtl
~

~
(tJ
::Jo,
x'
"

I
8

Printed by revision 3.4 of Ipr~.c
fite Home ; LtneP<rf~i.p." Date: lied Jon 27 11:51,27 1993 P.g~ ,

120 /* ** ** *-- ,
121 '* fl ;.fon " : lInePe,fDlsplay (ccostruetor) *'
122 ,. De~cliptlon : This constructs U.e Line Perforllane e Olsplay. It "
123 '* notifies. Rt"" of edstence via a., 1i ACTIO!! request te the IIhlO *'
124 ,. In the lItClOl. This instance Is cro"~ed as • child of the HIlI root *'
ill r ~_.. ~
126 !••••••*It •• .,. •••• *•••••• * *•••*~.*.**** *••••...." ,
127 LlnePerfDfsplay(SOIIIiError ~error.
128 l1!!lTop ·father.
129 Cla.sEntry ret entry.
130 S""IValue 'Id.
131 S"",IV.lue ·value.
132 aiObject *refObJ.
133' RXKessa~e *rx:_m59,
134 Rspillocl> *resp);
135
136 1··*fl**.O ** * * *'** *•• iir**** 'a'~.f:.ofl ••.... ** */
137 ,. function name: -LlnePe"fPlsplay (destr~tor) 0,
138 '* OeSorlption : The destructor will be Invoked when the line ""
139 I" PerfonJlal1CeDi"ploY r, closed. ./
140 /'" **** **.*** •••• **.** ..******** •• ** 4..t** •• *._** ,
141 -linePerfDlsplayO <;>
14,
11f3 , *".. ** ."...... fi.*** •• :ftH **.*** ..**••• **.****.*1t*** .. ,
144 '" F..-.eUon no",e, SeUnd ~,
145 " Description : Thl< _r Is invoked when ~ SET tHO is received fo"-'
1..6 J" the d!:play. . _ .,
~4; , ;r!li' ** *** ••• r..**, •• "'****" ** ** ***••• 10*_'
1(8 void SeUr.d(P.xH.essage ·rx_rnsg,
1~Y: R'sp61ock =resp,
150 SaniV.lue ·.ttrllo<iList);
151
152 1**·* ..·.,,**········-· .. •·..***·**** ..·_*··***--·· ··.. . ** ••••••••• !
153 r fUllCtion'_: Actioncnf ./
154 ,. Description : handies the response to tho, J.e;IOllReq issued by tne "'
155 ,. constructor. 0,
156 / ** *****-*.**.*** •••• ***••** *** •• *** •••• ****."'*.**/
157 void Actloncnf(Rl<M g. 'r"_"'9);
158
159 /*.,;1.** ••••• *** •• ".**** "••••• ,
16(1 ,. function ~: formatWSendActlonReq "'
161 ,. Description ,Puts together t~. action request and I$sues It. *'
162 /* •••••••• * * ..,.•••• *•••• ***** ** •• ...0* ••••••••• ,
163 void fo tArdSendActlooReq(S"'IContext *dest.
164 Invo~eJO "Invokeld);
165
166 , •••• *"** *.*.* ~ **.* lt**•• " •• '**•••• *.il-.••..*.· ••••• *1
167 t" r_tI"., name: SetupAetfonlnfc *'
165 I" aescrlption : ASSeo"lbt03the action lnforr.atlon So:mIValue .,
169 , ••••••• *.** •• ,.••• ******* **._ •••••••• *•• *•• **.*** .,••••••••• **/
170 void Sett,pActionlnfo(S"",IVahJe "AI);171
1n /.** ..., **••••••••• fr.*" *h.** *..*..,. ••• ,
173 '* f..-.etl.,., name! CloseDIsplay - .,
174 /* Oes:rJptfon : This invokes- the constructor'". . _ _ ./
1?S I{ .*••*.***••~.*••••'21t *•.•••. **.*•.••• ·,.*·~··_a.··*·*··••*·······*·.·1
176 virtual vole! Clo>seDlsplay();
177
178 1 **···*··1Hirt ··_ _ •• ·· .•. *.·1"·•• ~,a••••••••• IIt*•••••• ** ",
!79 ,,,, FtnCdon· name: -: Extreetperfonnance *'

180.
181
182:
183
184
185
186
157188
189190
191
192
193
194195
196197
198199
200
201
202
203
204
205
206
ZQ7
208
209
210
211
212
213
214
215
216
217
218
219
220
221
22Z
223
224
225
226
227
2211
Z29
230
231
232
233
234
235
236
237
238
239

r·······_············ ..······**·····..·····..·····*···..··*.****** •••• ** •••• */
1* f<metion n_: OisplayffourlyProffle "'

,.. Oescription ! This eAtr'acts the perfonnaoce values frcaa,th~ *t
/* record and stores theM in the IDeffber strrJCtut'C".. ",'" */
, *** •••••• ****.*. ~•• * *.* •• * * •••• **••• ~ ~••• *.*.*.,,*** •• **** •••• I

SOIl(Error ExtractPenorl'BhCetSClIIilvalue *sttll'Val.
linePer-fonr.enc:e- *perf_ptr);

,." ** ••••••• * ** .. ** ••• *.*.*_.,.** •• ,*.* 11 •• "' •••• ,

'" f ..lCHen name, fo tDl$pt.yLln~ "
'" O~scdptlon 'Fo t. the data In the required format for display"
,-- JX,Irposes.., , " , ",*'I···~·······*....··Q·.. ·*·*···**··**·***···..······***···....··*·*···*·*·j#···~*·1void fonnatDisplaytln"CLlnePerfonnance *UneP.rf_ptr,

Gt_llappedl.ineG "llne_ptr.
Gt_HappedFieldG 'field_ptrl;

/"' •• :*....... ftil+ao*.** * • .,..***lIi1 ***** ••• *.*.* ••• *** ••• ** *****.** ,.... »r
'" fll'1Ctfon n ' Addr(eldToLine "''* D..scriptlon : Add•• field to the line. */'*.**** **•• **.**.. ****** ..*****.. iI***.* ••*.~.*...,...*1l' **"'•••• J

void AddFI~idToLineCGtKappedllneG ·line_ptr.
'CKappedFI.ldG *f!elo_ptr.
~)I.r *(JeldTOxt);

'* Ttbe and .sequence r1.lIbers *'statie int nextTI.be:; ,. }~:,ements to give new tube *l
illt t;be; 1* tu.:, for :his display",
fnt seq; /. Ne,..t sequence eXDeeted */

/* creation status -,
int c!'eated; ,. 1 = successfully created *''* tine- performance structure --/
lfnePedotmance lftir.ute_PfOfHe(ftA.X OUTSTATIONS* 2:;
fnt fftif"Ute_proffle cotKit;
tineFerfor nce houdy_proflle1iwc curSTATlOIIS* 21;
Int hourly"profil._~cxKit:
shOft route_OUR;
short node_nun;
long release l'1lI1ii
long rr.tease:datej
long startup_date;
short stlrtup_node_ntJ1I;

,. Display InfortiOll *'
HIlltop
char
STLPD.t3Type
Ct_HappedJir.dowG
Gt_HappedllneG
Gt_Hal'?edfleldG

-;rryTcp:
display _"..,. 101SPLAY_ID_lE~GTHI;

~~;
IIneCHAlC_CUTSTATIONS* 21;.
fl.ldlMAX_CUTSiATlOij5• 21;

protected ,
,.** * ..tr •• .,..j ..,.. ** ***•••• "••• .,.. **.***,
'* f<metion name: Dhptay1llCclnfo *'
/* Description '! Oisplays the ,ueE information. , ' *1
/**.**.**.** •••••• * *.* *., .t***.** •••••••• At:·**·l

void Dlsplay1lICElnfo();

~

~
~.
-;-t

~
~
£g
oo
~
~
~-;;
~
~
D

~
:B
~
£
d
COs
5
~
G)
::0
~r;-
:::j

~
C/)
Q

i
f}.;

~
iTt
~

~s
~
"

l
~.....

Printed by revision 3.4 of Lprt.c
file 'lame: LlneFerfOfsp.h Date : lied Jan 27 11.51 :27 1993

240 f" Oe.cr!pt!Q, : Ol.pLayS a line of hourly profile data. */
241 I*·..***··..•..*,..'*·*·*· ·***·~*··....•..«- ,.. *~*... ******.** ..**.....********* I
242 void Dfspl8y1fourlyProfiteCLInePerfonnanee *perfonce..Ptr);
243
244 , ••••••••••• ** l11 **'** •• ,...Ii•• 1t**•• ** •••• ",* ***1
245 ,. I'''''''tl'''' name: Dlsptaylfour[yP(ofileH •• dlng */
246 '* Description : Displays tho h.o<iings for the hourly proflte data. *'
247 / ** ••••• ***** ..** ** ••• *******" •••••• **** **** ******* •• ****,
248 vole! Oispl8Yl{ourLyProfll.Heo<iingO;
249
250' J** •• ***"*.*.~*"*.'****.*".*.** ••••••••*.*".***.*"' ••*.***"'*"'*.****;11 ••• "/
251 /. Function name: Olspla)'l'l,...t~Proflt. */
252 " Description : Displays. line of ",inute profile data. */
253 /* * *•••• ::t*** a.*** 1I'*b••••• * *.* **/
254 void UisplaylllnuteProfile(LinePerformance *perfonnance..ptr>:
l'J5
256 I·*·*"**..****·*****·**·....·*~·**···'**·*·*··*··**··*"·*·** ••••••"'**.** •• "'.*/
257 I" ft..ncU<>r,,,..,.: Olspl.yMll'XJteProffle~e.:llhg */
258 1* aescrlption : Displays the heaciogs for the .. inute profile data. *1
259 / •••••••••••• *.** **•• _ **••.• **.**.**.** ••• ****a-.*111**.*."***j
260 void Dlsp'ayMinuteProfileKeedingC>.
261
26'l); /* clus lineVerfOlspl.y */
263
264 #tndif" UHEPfJlfOISP_IUClWED "/

page, 3

b.::z:
o
~
Q
71sm:z:
iTl
ti

8s:
~
~
~
(I)

~
):,.

:g
::0
~s
d
\l:J
S;
8
~
G)
:n
~
r;'
:::j

~
~~.
~
CI)

q
ili
~

~
-0s
~
"'n

D~t .. : ~ed Jan 27 06,1(),25 1993
PrInted by revision 3.4 of Iprt.c
file Hame: IIAl.~

1 '" ThiS Ilne is for Identification by the 'what' """","001 *' 61
2 I" = %EX%<.1% AsIan Av (R'()1] (C) BSII·Qata (Pty) ltd. */ 6Z

~
r*** ..t ... ItI*** **,.* It •• ** ••••• It,•• **;t.* *..... *......*.*.*, 63
P *, 64

5' r: TITLE alOC''(, »r 65
6 I" :::=#==:::=== "/ 66
7 ," =r 67
8 /* H_ : IIAL.h =r 68
9 ,. *' 69
10 ,. r.e, Huttler ! ASLAM Rev, 0.00 ReI, 0.00 =r 70
11 ,~ '" 71
12 /" SoHw.,. Developed BY: BSII·OATA */ 72
13 ,- Private Bag X35 *' 73
14 ,. Halfway House */ 74
15 ,. 1685 " 75
16 ,* Of 76
17 ,. f...-.:Uon ! ct •• s deflnltlc:n for IIAL. '" n
18 l" ., 78
19 ,* *, 79
ZO /'* History : *J 80
21 r: *' 81
2Z ,* Event Date Author Approved '" 82
23 ,* *, 53
24 '" Specification 92/09/01 P9B 1.8 " ~
Z5 ,. Oesl9n 92'09/01 PB8 1.8 -r 85
26 '" IJlllementation 92109,01 paa 1.8 '" 66
21 '" AuGlt 'XX/XXtxX XXX */ 87
28 '" '" 8B
29 /" *1 69
30 " Revisions: RevisIon Date Author Apprcved "' 90
31 ,* 0.00 'XX/XXl'XX XXX XJ(J(*' 91
32 '" */ 92
33 J"~ RevisfOl1 Descrfp:ion: 'r 93
34 ,. ==c.====::.:z:====z===== "' 94
35 r 0.00 - Hone *, 95
36 ,. -r 96
37 ," -r 97
38 '" Ft<1Ctlona[Specification: */ 98
39 " =:r=~-=========%=%===:::,:;: '/ 99
40 ,. =r 100
41 ,. Cefln:tlon fer the IlAL class -r 10.
42 ,. -r 102
~3 /*•••••••6**** ... **** ****** •••• **** **.** •............... 1 103
44 ~~~IT'~~t:lm~~ 10.
4S 105
46 #i""tude "OK.h" 106
47 107
48 1***··*·.. *·***·*·*·.. •...•••... **'*Ifi!'·*·**···*·~:t"·H.*.... *..*.* */ 108
49 J* »r 109
50 '* CI.u Hame : Il~t *' 110
51 1* ., 111
52 '" Description :: ., 112
53 ," This etess forms:the base' class of the !lorld "'.tees!;Level *' 113
54 '* hiererchy .. It .\tows the conf\!;uration ~oeess to- do its thing *' \14
55 I- without having to know: what:"level or class it is de&ling Sthh. '" US

~ I
56 ," */ 116
57 J..*.* ••• **•• **H... ri.**** *...h *'***.*.*~,•• **...***** *I 117

(Q 58 etass IlAL: pubt Ie OHObject (115
tI> 59 119

I\l
60 priV'Dte. 12Q

~

Page

pubtle,

/** •• ** ••• *••••• ** •• ** ** 1)-**••• *** ••• *•••• ****•• ***•••• **/
1* ~
'" P.ame : IIAL::IIAl 'f
1* ~'* O"""lptIOll: "'
'" The e.,...~tnu:tor for this OKObjeet *'
p ~
6 •••• **.~**...~*..*..***.******.1t.1;.* •• :jr** .. ***.** 01: •• *********.*.****l

IIAL ();

{" ,.* I).,.. •••••••••••• ** •• ** -,a: ••••••• " ••••• *** •••••• ,
r ~
/. N"",e , !lAt: :-IIAL *'r ~'* Oesoriptlon; */
'" The destructor for this (IM(lbI.ct =rr ~,.** ** •• ** •••••••••••• ** •••••• ***._.,.····*********·1

-IIAl();

, "•• **** •• M•• **.·**.** •• *<t •••• **.*** *.~..* *.frl
1* ~
,. Ha.'1le , OoUpdate (virtual) *'
1* ~
/* Description i *'
1* This virtual f,"",tlon allows DoUpdate. to be tre.tod g.nerlc~ltY*1
1* ~I.**.*.*.* •••***.* *••••• ***•••• _ ••• *.*~••••*-t •••• *••••• ***.t:1t*/
virtual void OOUpdateC

short id,
Logical neg,
long retease ...J1UII);

J* The wet Id ~r
'" forced Upd.te Hogr The htest reteese II

-r
'',*.* "..".* _*" *. '11.<1: ••• It•••• ** * ••••••• _•• * *•• *t* ••• ItI

1* ~'* Name : ConfisStatus (virtual) .,
1* ~
,., Description: . */
'" This virtual function alto"s the """fig statu. to be .subll.hed*!r ~,,, •• *** ..*."* oQ,,*•• e '* *.*.***.** •• * t ••• _.e ...••• ~*••• '¢.'tI
virtual logical ConfigStatus{ ,. Return true If l1usy *'

void);
,t;*..•..•.. 'fr.. t •• * ** •••• ri.* ••• *•• * , ••••• w •••• o*•• *,
l" ~
/. H_ : Stop<:onflg (virtual) ./
1* ~'* Description: .,
,.. rhi'" virtual fU'lCtl'uo allows thO' configuration to ~ stopfX!d *'
r ~
/* *·················:11··············,,·"'·· ..·······1
virtual void StopConfig(void n
1•••••• *****.*1t ••••••••••••••• *.*.'iII...... *•••• 1tlt•••••• ttf...... *'**r' ** ...,
p ~
I·)lame : SendConf i9 ./

~
o
~o
7is
til<:
ili
D

8
~
Q

~<:
7i
~
~

~
§Z
~
d
OJs
5
~
G)

~r;--
~
~

~
~
~
(/l

~
ilis

~
(!)
=:i

~
."

;;\'
caJ

8

Printed by revision 3.4 at tpt't.c
FiIe lIame , IIAl.h

121
122
123
124
125
126
127
128
129
130
131
B2
133.
134
135
13.6
137
138
139
140
141
142"31(4
145
146
147
1'8

Ilat e : lied :3n 27 08:10:25 1m,-
~: ~:Sndr!h;f~r;ent,configuration to tbe ,soecSffed dest context.

1*..•• ..·t:·**·*·*·"*....*·**11' .. *··*..~·ri**•••• *•• **•••• ".*••****.**'* ••• */,- "''" Name : SendCr.ateAction (virtual) *1~ ~'* OescrfptiQCl: *1'* rett der;vt!d classes to send the 'Configuration data. */~ . . ~/ *** ••• ** ••• ** •• ** ** ,
virtual SantError Se.ndCreateActionC /* Return error if failed *1'

Logical ·wel5 vallc, '* IIAL5entry valid f!lll .,
short wetl_Td# I" YAl,1 i::f value *'
SOIIJiContext"'ContExt 1; J* Destination context .,

>;
lI.ndff

Page:, ~ 2

. ,

».
<:
o
~
(')
71
~m
~o
8
~o.~
~
~en
8
)
~
£
d
(ll
c::
S
~

~r;-
:::!m
~

~
~
Ci)

~
~

~s
~
."

Printed by revision 3.4 of lprt.c
fHe !fame : Dock.t.h Date , 1Jed Jan 27 08'~:5!J 1993

1 '* Thl~ line I,. for Identification by the 'what' e"""",ndl »r 61
Z ,. %\I)' ==AsIan Av [RT()HJ(Cl BSII·o.ta (Pt)'l Ltd •• , 62
3 ' 11 *** ... ** **** ••• ****** ..****.*******It** tt***** ... **., 63
4 1* ., 64
5 ," TlTU, BlQCJ:, -r 6S
6 j* ::::=~:== -r 66
7 r ., 67
8 r: If.... : Do<~et.h -j 68

" ,- *, 69
10 /" J.P. HU1ber : ASl~.11 Rev: 0.00 Ret, C.OO *' 70
n r: -r 71
12 r So(t".r. Deve!op¢ By : BS1I'DATA -r tz
U r Private Bas X35 rr 73
14 r HaUwey flouse -r 74
15 ,. 1685 '" 75
16 " -r 16
17 ,. f..,.tlon , Ihe Doc~.t hlll1dling. Object. '" 71
18 '" '" 78
19 ," '" 79
20 '" HlEtorY : -r 80
21 ,. ", 81
22 '" Event Date- Author Approved '" 82
Z3 ,* «r 83
24 ," Speclflc.tion 92/03/30 PBS XJO(«r &4
25 ,. eeslgn 'lX/XY.'XY. XJO(XXX ., 85
26 1* i~lf'""tation XX,XX/XY. XXX XXX -, 86
27 /" XX/XX/XY. XXX '" 87
28 ,. '" 88
29 ,- -r 87
30 1* .Rev;sfonc: Revision Date Autho,_. Approved "' 90
31 ,* 0.00 XX/XY./XY. XXX xxx "' 91
32 r -r 92
33 '" Revision Pescrlptlon: »r 93
34 r: =s.:--=:a=::~====::; ., 94
35 ,* 0.00 - Ilene *, 95
36 ," -J 96
37 ,. *, 97
38 ," Functional Speclfio:atlon: *' 98
39 ,* ========--'-T ...-- ...z:......:== " 99
40

" *, 100
4J /- This class provide. (or the creatloo/manfp.ll.tlor. of fault Log. *1 101
42 '" (c.lled dookets j , The actual cre.tlon .ro .,.n{pulation of "' lDZ
43 " these d""kets Is perfo"""" by the logicaIEquil:",entGrO<.'P Object *' 103
44 /* in RTttI. *' 104
45 r ~ 105
46 , ••• JIIt *** ; ••• ., ** e••• ",**....... , 106
47 107
'5 :~!trn!~~H~gt~~g 108
49 107
51) 110
51 Mfnelo:le "OocketLlnl:."· '* Object manager goodies. *' 111
52 #Inclt.<le "Rt""rypes.h" '" Typed.fs and ether .torle. -r 112
53 #inclo:le "AI.,.,.."" '* AleMilet -r 113
54 'include: "nct".~tf '* Hote etass */ f14
55 #lnclUde ·Cle.reede.h" '* CtearCode class *' 115
56 #ir.clt.<le ~Det.I{.t>· '* Detail c.lass »r \16

'J? I 57 #inc(lJde IIl~ ..h" l# Leg e[ass */ 117sa flinctude lIi.egSet.h" '* The:legSet etass .. -r f1a
co 59 flinc:tude ·SCEntry.hlf '* The Scenario entry clISS .. *' 119
Q) 60 120
M
~

Page:

/ ••• ** ***** * * e ••• ** * * ".*/
1* ~
1* ~l'''~ Ham. : Docket *'
1* ~'* De.crlptior., *1
1* .. ~
'" Each Docket _t maintain Usts of the following obIect type.: *1
" 1. Motes: This is a generalised object which is used to *'
" contain the 1I0t. Information as follows: *f
I~ The date znd tfme of .:nry. *'
'" A. message text, *'
'" the Note information i. divided into the following "'
1* groups, The Operator ~ote, control Hesse ges, CI•• r *'r(cedes, Mandover ~!'sages, Erased JndiC:ltior.s, Cross ..,
/* reference me~sage$. "I
1* ~'* 2. Ala..... , This conti!"" the alerm ,,"s.oQe with the foU""lng *'
1* 1letds: -,
I*' Sta, t date .arrl time; Abril CateGory, Alar. .,
~: ~~~rl~:~i~l~ft~~g:t.rm.occ:urancecO\X\ter, :~
1* ~'* HowIt !lorks: *'r ~
I' On reeelpt of a He" AI.rm request the Log!c.IEqulpnentGraup *''* object will have to-perfo"," the follOWing antics: 0,
'" i. ~.k eaeh Docket In Its liMed list whether or not they'"'* cart accept th~ alarm.. */
1* H. If the al.rRl can not be accepted theo a new docket IIlJst */'* be instantiated and given the alarm for furthr */
1* proces$lng. Of course the ebject IIlJSt add it.~lf to the *'
,.. contafrwnent tree once it hes a Docket Referen.:e nurber */
I" which's generated by DrefGon '"
/* iif .. Whenever a New-Alarm is processed then that ltam rust */'* be checked agaInst the Generalfilter In the ease of the "'
1* Cocket sfat~. been future and against tho Docket .Ierm "'
1* filter In the ease of a Current Docket. If a new alarm */'* Is been added th.n the alarm IlUSt be checked Ittalnst the *'
J* dockets .le"" aeceptlOnee time windOw. *'r ~
/* things that Docket .hQUld be able to do: *'
1* V
I" Dudng COfI!ltruct!on, "
r ~'* I. Obtain a Docket Rete,.ne. HU'ber (rom DrefGenerator. The *'
1* response handler ...,st r.try If necc •••• ry and once • Dr.f *''* has been obtained then Register the Docket ill the Hlb. *'
,. if.. If the Docket Is been created because of a Hew Atam th,..~ ...;
I" er •• re the AI.r .. entry on the Alar", I lit and send • "''* Updates to t~. HHf via the HHIHar.. ger. Docket IIlJSt .Iso *'
" pass the Informatfon to the Ceneral Display mar"ger for *'
" sending to the n.n.ralDispIDY If this docket ... tehes the ./'* filter settings. The docket IWSt also ~ chec~ed ag.inst *l
J* the' Scenario Filter mechanfSlll to see if the presentation "/'* of the docket "",t be held off or not. If the e•• e Is NOT *'
lit then the docket fs madeCUrrent and' presented to the *'
/* cperator. . */'* iff .. If the Docket Is been created as II result of the '*'
/* Create_Docket request then ser .ne Created flag'. *'

~
o
~o
'ji

~
~
n:Io
8:s:
"'1j

~
~
~
(/)

lB
:t>.:g
::n
~
~
-Ia
toc:
b
~
G)

~r,-
:::l
~s
~
I'll
Ci)

~
rtj.
~

~
(J)
::J

~
"Tt

l
g

'.

Printed by revlsien 3.4 of lprt.c
file Home: Docket.h Date : lied Jon 27 na:23:50 1993

121
122
123
124
125
126
127
128
129
13a
131
H2
133
134
135
136
137
138
137
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17t
In
173
174
175
176
In
1711
179
18()

'* Iv. Th. ala"" SlmMry Hne infol'lilatlon rust be constru<:tod oro:!*/
I" gener.Nd to the MHI indicated. */P ~
/* */
/* CurJog Oestruction: */
r ~
f* Release.V <!yman;c ",.,.cITY (malloc) and detach all children *'
/. as ~ll as free th!!ir eeseurces, *lr ~
1* Other Actions: *'r ~
'* I. lIhe""ver an al.". is. """.ted then notify all dlspl.ys 'f
/* currently active.. . */
,. il. lIhen. ~ot'/Cle.rCode'C""trot Is adtied then er •• te a Hate *'
'* oro:!add to list. */'* III. III'en C~trol is performed then add oetes as CGlltrol *'
'* ftxlCtlon prog:ess.s. *''* Iv, tlhen .alarms are processed then valfdate each against the */
'* Docket alar .. filter as vet t as the general alarms filter *''* and If the eriterla ... tch es th notify designated */'* designated IIHI". *''* v, T..... lnat.: I!a~e D""ket Inactive and notify dl.?lays and "'* add r.tatlve note to II.t. .,'* vi. H.n:'.:lver: Set up Opld list and .end a "_SET (t.dd) to the *''* destination MHt as weH .s •• nd display updat es to already *'
'* established "Ispl.ys •. Usa ~ rel.tlv~ Note to list. *'
/* ·,11. Hand9.~k: Update Opld list and send an H SET (. r-eecve) to *'
,. ._Ifie IiMI and =.nd """"te. to all ."iibU,hed displays *'r ~r . . ~, •• *** ••••• ,. lII*h* ,..*"'•• *'I"~ * ***.* *••......... 1

typed'e; entriI (,. Entmerated values for elemt pointers *'
DOCKE1_RESP_COOE .. 0, /* resp code element I1l!iber.. */
DOCKET_l_S_IO, '* 1_$_ld .r_nt I"/.JTtlEr. *'
DOCKCT_LEG_ID" '* leg fd dement nurber.. ./
DOCl:EIJLA~S, '* doc'.t flags element nuTber. .,
OOCKET_OP_ID, /* !>p_fd element Ok~r. .,
DOCKET_OP.,TYPc, I" ~_fd type • "
DOCKET_OREf, '" The current Dref *'
DOCKET_FIRST_SET, '* First set tl.,. *'
DCCKET_LA9T_CLEAR,'" last cl.ar d.... .,
~Et_:TU"E~, J* Doc!r;et c:reation thne */
DOCKET_URGENcY, '* Urgency of docket. *'
DOCKET_llST_TYPE,I" list type of docket (eIF'M) *'
OOCKET_STATUS, '* Object status. *{
DOC{El_f_lOC, '* location of fault. *'
DOCKET_PCOOE. r Progress code of peeker, *'
CROSS_REfr /* Cross Reference Oref nu7ber. */
DOCKETFe TI"", '" Final etear tI...of docket. "'
DOCKE(:TE:TIKE. '* Docket t lnatlon time. *'
DOCKE1_A~K_T1I1E,'" TI"", of aclcnowledgement. "I
DOCKET I!I.'M AlTR
> "ttcKo;

et •• s Dock.t : public 'Oock.tlf~~ {
private::

, **,. ***.*** *** ***''* f'rh:ate data used by the docket leveL */

181
182
153
le4
185
186
187
188
189
170
191
192
193
194
195
196
197
198
179
200
201
202
203
204
205
206
207
208
207
210
211
212
213
ll4
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

,.** ** ****1i** •• **.** •••• *••••• *•••••• -a ••• ***", •• 111 ••••• ***••,
Page: 2

., .
static logical flrst_lnsto"".; '* Fir~t Instanc. of thl .. class */
static ClcssBluePrint

*bLue_prfnt;
static char ·docket cUss name: ,. Nameof class (errors l */
void *.ttr_ptrIDOCKET_NIJl(ATUJ;'* pointers to eetuet attributes",

..... igr.ed l""9 tlme_wlndow;

..... Igned l eng sot RIOp;
IJOsig~d {:>ng clr)·.ap;
Alarm "'first_alarm:
Alarm ·last abrut;
list 'first entry;
List, ·last entry:
char ':,Qver t 1st;
•• tall *flrst-detall;
O.:tail "'last detail;
int alarnCcOU'lt:
int entry-cO\Mlt;
Int dotail_count;
lrog *le9_ptr:
legSet *legset_ptr;
ScEntty *sc entry_ptr:
char *ATo'ITlist;
Of1Object "'atloc mi;
,0000ject *·l'mIi~tr-_l ist;
tnt ImIf_count;
fnt ;rmi_space;
long ace time;
lOfl9 eec:cOU1t;
long alarm to;
long docket to;
TiroooutEntry *dock:et timeO'..!t;
TimeoutEr.try *hovers:time:out:

InvakelD
InvokelO
InvokelD
InvokelD
InvokelO
Invokt ..o:
InvokelD
lr.vok.IO
Invok.IO

dre.f get;
cCoc:Je_create;
new_doc!cet;
upd8te_docket;
delete_doc~et;
neW_Blann;
hoy.r id;
scenario id,
sth_utid;

'* rhe curr.nt tlwindow ero:! ·f

J* 8it map of set categQries "'/'* Bit .mapof ctear categories *'
/* Pointer to Hrst alarm *'
I" Pointer to last alarm */'* Polnt.r to first entry. *'
'" Pointer to l.st .ntry. *'
'" Pointer to haro:!iver opl~s *'
'" Point.r to first detail 0,
,. Pointer to last detail *''* Nurber' of al.r ... In docket "
'* Nurber of entrtes In decket , *f
,. Hurber of detail displays ./
,. PoInter teo object.. Sf
/* Point~r to •. te;su", */
/* Pointer to 8 scenario entry *'
,* List of destination opid,; *'
'* Allocated ""I point.r */
I" Tebl. of .ssocla~ed IiMl's "'r Hurber of opids "'
I" opld storage available. .,
/* AccurlJlllt(ve time. */
,,,,, AccUJUlat lve count. */
I*" Al-arn time out ../
'" Dock.t tIM<!out. *',« Pointer to time out entry. ./
1* Pointer to time out entry. */

'* Id nurber of dref ~.(c.1I *'
/. Id nuTber or et •• r Lod. colls*,
,. Id nuTber of doc~et create *'
t" Id IlUTber of docket """.te *'
'* Id nuTber cf dooket dolet. ~,
/* Id N.JJber- cf alarm create */
'* Id ncnbor of haro:!ov.r *'
1* Id 1lUTbe(of se ete r""""st"'
,. Id nuTber of scenario:mset *'

/** *.t.******.*** ***.****."...**;t•• ** •• **.***** •• 11*"****1111** •• ,
'" Prototype definitions for docket. . *'
I...··H~.*"'••*.***********.** •• **••******.*** •• ******* ••*•• **-**.** •• *,

'* Id nuTber for erehlve r.cords"'

public:

InvokelO or ehlve_ld;

t"*.. .. * **iI••• ** •• * ••• **'***It********** •• "' ** *"'/~ ~
... 1. = Docket::Dock:et */~ ~

»
:<:

~
71s
iTi

~o
o

~o;:;.
rn
~
~
g]

~
§Z
o:::c
d
tD

I
:0
~r;--
::::!
~
eno

~
:0rn
~
iT!
~

:g
CD
::J

~
'"T'I

D.~e r lied Jan 27 08:23:50 1993
Printed by revision 3.' of lpr t ..c
file U..,., : Oock.t.h

241 /* Oe:;c:ription:. */ 301
242 I· " 302
243 I' Called by 'he leg object. *, 303
244 ,r Requ; res the foU ... ing: *' 304
245 '" 1. Abuff.r """talnlng .Il the "oneatenated fnfo tlon that *' 305
246 " wiH represent th,. .ht object 10 8S foll~s:: -r 3:J6
247 ,- Resporulibll ity, LegS ,leg, Equipnent, Indic.tiCHl elong -r 307
248 " with the class namesfor each level .. *' 308
249 " 2. ... buffor containing the infor ... tion t~ be retBlned lYy the *, 309
250 " deck.t which will be sent to the historian and event log " 310
251 ,. .menev•• the ala or <locket has cleared. I(ote that this =r 311
252 " infcr ... tion will be osed to construet the docket SlIlJ11aty -, 312
253 " Ii"" as wet! as the first alarm entry. ., 313
2:54 r lnfo tlon required: ., 314
2:55 ,. " 315
256 r . .. ~ 316
.257 , ••• "................. ***.** **.*** •••• ***** •• *****··***·**·**,t 317
258 Oocket (316
2:59 SomlError ·error, /* Error return value -,

I
319

Z60 Char ·llleeatiM. I· Cest oper:ltor 10 -r 320
<61 char *ql-_type, ,. Dest operator tYl"< *' 321
262 C¥«lbject :t:::et; J* The legSet object .: 322
263 OI'.obJect !" the ~eg Object »t 323
264 aiObjOOt *equfpnent~ " The equlpnent object -, 32.
265 DIUnk ·indicatittn; '* The indication object "' 32:5
266 char

:~t;~~~!terla,
'* category of alarm *' 326

267 char '* The .181111 criteria =r 327
268 short a\anaUf"9~Y, /" Urgency of th t sal &~ ~. 326
269 lor.g seventy, J Severhy of alar,.

i
329

270 long set_time. /* die of atarm set 330
271 logic.l affectEd, '* AI.r .. is aff ec ted ., 331
272 char -eqt_ld1, " E~lpnent Id ., 330l
273 char- 7Ind_!«val , '* Indlc.tion Id */ 333
27. Logical s~_ar >; '* Suppress. -lIrc::flfvfog fII, 334
275 335
276 /;It III III It **••••• Ii ~ '"'•• *•• , 336
277 ,. *, 337
278 ,Ir ll~ :' -Docket "' 338
279 ~ ~ 339
2110 I" Deserfption.: The destructor.. ., 340
21!1 ,. i_r to add you, own variables to the .rg nt·' 341
zez ,* list '" 342
283 /' *' 343
284 ,*** ••••••• * ** * ** ••••••••••••••• *••• *, 344
21!5 ..f)ociet C void " 345
2116 346
287 Ift.* ••••• ***•• *..........**.*.:. ••• *....~ ,.......... *•• .l •........... , 347
2M '" '" 345
2B9 ," N_ : S.Und Of 34y
290 ,. -e- 350
291 f* Description: Sets th~ specifiEd attributes to tho supplied ., 351
292 '" vatues, The attrl!lutcs must first be validated before any " 352
293 ,. chiang" are: made and an error n.iSt be returned ff any of the ·f 353
294 '" AVA entrie3 are incorrect. -r 354
295 r: 'f 355
296 1····....*···*·,··..*·f':··.. ·#*··.....*'fI'.... • .. ···*·1ft_*·*~·*·ri*....... .,........., 356

"& I 297 void SeUnd, 357
298 RXHessagC!' ·message, I· The recefve .. .essage =r 358

(Q 2S9 Rsp8loct ·response, '* The rzsponse: block "' 359
(l) 300 SorAiVa(ue 'Attr_Hod_lIst); I" AUr to be modified '" 360

8

Page 3

, "'•••••••••• *•• *••••••••• "••••••• 1t.,.. "'•• I
~ ~
,. Name : Actlonlnd '"r ~,0 Description; Perfor",. some tort of Action. .,r .. ~, •• • ** ••••• * n••I1.*.** •• " **.** •••••• 111' ••• *•• *.*'
void Aeti onlnde

RXMessB9f "message,
ItspBlock "response,
S"",iValue -"ction type,
SO'RiVatue *sctfon:info"

,. The receive message 11,
,. The response bleek .,
/* Type of .otlon *'
,. Action info_tlon "

J*.**.* **.er** *.*.*.* •••• *•• *.....••• *••••••••• "*,
r ~r: Hame : CreeteCnf • J .1~ ~
, .. Description: */
,. All creates will return here. Therefore this reet iee !rust handle*,'* all of the foU ... tog seenar-iess *'
/. A create Oref request: *'
/* A Create Ood:et reques.t to the MMI .. ,
" A Cre.te d~tall lin. If any current detail diSplays. *'~ ~,.* **•• ** 111' •••• ,...'** #1' ••••• **.* ••••• ***.*."" •• ** •• *"'*1
void CreateCnl(

RXMessage '*rxm); ,. The receive message' *'r···· * ~.*••••*••• *.*1i* I
~ ~
1* w_ , Del~teC"i "/
r ~r' Oc.cripti"'1 =- This routine- Is celled if this object hod ./
,.. requested that en object be dt:leted vfa SCM! ·1~ ~
J*rt ••• **••• '* iII »iII " •••• *~*•••.•••••*.*.* *.** •••••• *I
void OeleteC['If{

RXliessage *rX$); ,. The receive ll'i!ssage: *'
, * * •••••••••• *•• *••••••••• 1I'1it'fI'*•••• ,. ••••••••••• *** ••• " *frlI/
~ ~'* II""", : Cettnt .,~ ~'* Description, This routine Is c.lled if ~h!s object had *'
1* t"ecp:Je'Sted.a 9e:t vi e SOKl~ */r . . ~, •••••• * *•••••• *••••• ** * *.* •••• 111; **1
void ~ettnf(

RXHess8ge ·nun >: I'll The r~ceive: messege *,
I ** ~ "••••• *••••••• *•••• a ••••••••• /

r ~
'" Ii_ : SelCn! #,~ ~'* D•• cdptlon. This routlm Is called If this obj."t hec .{
/" requested a :et via scsr, */,.. ~,._.* ..".." " *11 * "';,••• **/
void SetCnlC

~
o
~o
7io
::t:!n;
<:
iT!o
8
~o
~
~

~

j
§2
£
o
OJ
S;
5
~
(j)

~r;-
:::!
~
~

~
f11
CI)

~
iT!
~

~s
~
"'ti

~
.->o.....-

printed by revision 3.£ of Iprt.c
File Ifame : Docket.h

361
362
363
364
365
366
367
368
359
370
371
3n
373
374
375
376
377
378
371'3SG
381
382
383
354
365
366
367
388
361>
390
39l
31>2
393
394
31>5
396
397398
399
400
401
402
403
404
40S
406
4074ca
401'
410
411
"2
413
414
415
416
417
418
411'
420

RXMessage *~); '* The receive sage "'

Date : ~ Jan 27 06;23:50 ~993 Pa;. :

1** **:U: '* *' **'** ••• rII ••• ***~**.H***.*\t •••••• ~**I
r ~'* Ifame ; A<:tioncnf */r ~
/* o.. odptiCCl: Thi~ "",tl ... Is catted if this object had ./
J* requested that ;;n action be pecfonoed via sail */r ~r ~r ~'* *'I.*.** * * *•• ~ * * < *.1:~**..**._.** **.* * ,
"oid AcUonCnfc

RXMessag'l *rx.'I)j ,* The receive ~S2ge */
/ •• ** ..** •••• *** ••• _ *** ***** •••••• 1:** *.*** •• ,
r ~
/* u_ ; EVl!flt~epo<"tCnf *'r ~
/. aescription: This r""tl~ is c.ned if this object toa<l 'J
'" Sent out an EV..,U:epo.rt In CCllfil'!lled 1IlOde. "
r ~J.*.* •••• "•••*.** .. *.* ***••" fI' ". ••• fI' ~ .. ****" I
yeld £verltRepcrtCnf,

iXMessage *rXJR;); 1ft- lfl~ receive .ssase -/
/*10 * * ·••• ~ •• *.* * I
r ~
/* Name :: REqUeStDref • f
r ~
,. Description: *''* This function will ~r.t" the request to f.t".h the dref .,
,. (rai' th~ cref generator object.. */

'" *', •••••• "•• *•• "'••••• ~*•••• **tIr.* •••• ,..*.*." •••............. 1l *** ,
void """",.tD,.f (

(If{ *locat_O!II_ptr); /* Po[n:er to the Of .,.,

, •••••• * •••••••• *** * ** ••• ** ** • .-.**•• *Q~It··**··l
r ~'* 11_ : "...oocket •Jr ~'* Des"'lptICCl: .,
/* Til 'Lr'OCUon"ill construct the info tlon required for the *'
I" doc,., SlJmIi!ry If"" pair and send It to the configored l1li1 */
r ~r'.**••**.*--'.**...... *•• *....*~ *.*.2 *.....*.* •• **'* *.*I
Sccai£rror H~wOod:et(I" .Returns error on failure' *'

char "opid, '* The opld to und It to "'
Int t.g); '* The opld ta~ ruro.r ./

1...····#..**·*****······· ... •.....···*·....*...*...• .. 1It··ri.*•.~.*....**Ir ~
I" If__ : UpdateOocket ./r ~'* Description: */
/' 1hl~ function .. Ilt send the info tlon required f~r t.pd&tlns *'r the docket s""""ry lil')e end send It re the eonfl9U"ed HIlI. *1~ ~

421 , ****.*.,. ••• * *** ** *."*** .., .. ,
422 SOIIiError UpdatoOocht('* aeturns error on flllor.. */m vold)_
425 /*" ••• * "•••• *•••• ** •••• *•• ** •• * •••• * ''''' ••• *•• 1'.*/
426 " "'42T " 11_ , n.teteOocket "'
428 I" "
4,9 1* Oescrrption: */
430 /. This f"'tlon wilt send • reqJOSt to the HIli to r"""'e the "
431 '* docket fr"'" its sumoory list. *'
432 " ."'33 ,"** **fI:.*"." ••• *a*••• ***1I:" •• 1I:••• *** c•• ,***.** ••<fI**.1I**.4t.1It/
'34 S~iErl'or OeleteOoeket(,. leturns f!!:rroron. failure *'!~ I"'t tag); /* l1li1Entry tag *1

431 1··*· ... ·········-.·,,11'**····**· ... ··***··**····· ..••••••••* ***'***••,
43B " .,
439 '* 11_ ! Cte.rAlar" ./
440 r *'441 /. Description: *1
"2' /. 1M. f:.netioo Is u. eo inlona docket of an alarm coming clear~"'1
ill r.. .. ~444 , _* _ .,. "' *........•••**11 /
445 logicat CI.arAla.,.('" letum t ~. if probl.... */
446 char *eqt ld val, /* EquiplII!'ntId ./
447 char *jnd:lc[vat. J* IMitation Id "/
'''8 char *cetegory, J*' Ih;! allt.nn- category */
~~9 :har- ·criteria, I~ TM~ a1em criteria .,
450 long clear time, /'*' cteer- time of .tam *'
451 Logical affected, '* At.r .. IS "ff~cted */~~i Logicat supp_.rl; '" At IIlUS~ lie archived *'
liS' , _•••••• _ ~f
ill ~ ~
456 '* Hame ! SetAl.r. *1
ill r ~
451) '" Description, "/
459 ,. This function Is In"eked by th" leg class to .Ither !.¢ate an *'
460 1* =xisting ,alam or ttdd the at-ria to the docket. If tl.e .tani */
461 1* belOf'lgs to the docket but camet be accepted the. -1 lIilt be */
462 '* returned to leg •. tf the alar .. Is ~ec.pted then a 0 wia be *'
463 ,. returned. If the .t.....camot be .c~ted the" 1 wlli be "'
464 ,. rf turned. "!~ r ~
'66 , •••• "**-.•••••• ,,,•• *.••• * ••••••••• *11 •• *•••• *••••••••••• *.*.*.~*••".*.*'I
467 lOglc.1 SetAl.... , '* fils. If atr .. not valid ./
468 CMObJect 'equlpnent, '* pointer to Equipnent "'
469 DILink ·'ndicatlon, '" Pointer to Indication *'
470 char 'category, '* the cetegory of tbe .lm '"
471 cher ·crlterla, 1* Criteria of .'a"" *'
472 .hort urgency. ,. Urgency of ala"" '"
~73 long .everlty, I~ Severity of the ala.... ",
474 long set time, ,. TI of allm '"
475 logical effected,. '* Ah Is affected *'
476 char • ... t Id ""t, '" Equipment id *'
477 c~.r *i.'dld-val, '" Indication id *J
~~ logical supp:arI; ,.,. SUFPress archiving -,

-486 , ". •••• ,.·· ···.·····- *.t.,.. •• • •••• 1t1it **•• I

~

~
";"I

~
~
19
o

~

i
";"I
~
~
~
]
~s
d
OJ

~
t:ls
:n
~r;-
:::!
~
rg
~
~

~
it!
~
CI}

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH TO BUILDING REAL.-TIME SOFTWARE SYSTEMS

REFERENCES
1 Ahmed S., Wong A., Sriram D., Logcher R., Object-oriented Database Management

Systems for I:ngineering: A cornpanson, Journal of object-oriented Programming, vots,
no.3, p27-43, June 1992.

2 Anderson 13.,Gossain S., Hierarchy Evo/!Jtion and the Software Lifecycle, (publication
source unknown), Dep. Electronic Systems Engineering, University of Essex, England.

3 Ar~r.go G., Self-explained Toolboxes: A Practical Approach to Re-usability, (source
unknown)

4 As quoted in Sommerville I., Software Engineering, 3rd edition, Addison-Wesley, P546,
1989.

5 Barnes B.H., Bollinger T.B., Making Re-use Cost-I:!ffective, IEEE Software, p14-24, Jan.
1991.

6 Basill V.R., Viewing Maintenance as Reuse-Oriented SoftWare Development, IEEE Software,
p19-25, January 1990.

7 Basset P. G., Frame-based SoftWare Engineering, IEEESoftware, p9-16, Jul. 19S7.

a Beck K., Cunningham W., A laboratory for Teaching Object-oriented Thinking,
Proceedings of OOPSLA, 1989.

9 Beck K., Think Like an Object, UNIX Review, vol.s, no.tn, p3943, November 1991.

10 Biggerstaff T., Richter C., Reusability Framework, Assessment, and Directions, IEEE
Software, p41-49, March 1987.

11 Boehm B.W., SoftWare Engineering, IEEE Transactions Computers, p1226-1241, 1976.

12 Boehm B.W., Software Risk Management: Principles and Practices,IEE£ Software, p32-41,
JanualY 1991.

13 Booch G., Object Oriented Design with Applications, Benjamin/Cummings Publishing
Company, 1st ed., pia7. i95, p472-511, 1991.

14 Barkin SA, Data Models: / SemantIc Approach for Database Systems, The MIT Press,
1980.

15 Brooks F., No Silver Bullet: Essence and Accidents of SoftWare Engineering, IEEE
Computer, Apr. 1987.

16 ccrn Study Group XV, Draft Recommendation G.77'3· Protocol Suites for Q Interfaces for
Management of Transmission Systems, Geneva Meeting 16-27 ,July 1990, CenT. August
1990,

References Page 208

AN OBJECr.·OAlENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

17 Chldamber S.R., Kemerer C.F., Towards a Metric Suite for Object Oriented Design,
OOPSLA '91, p197-211, 1991.

18 Ooad P., Yourdon E., Object Oriented Analysis, prentice-Hall, Engelwood Cliffs, 1990.

19 Cox B.J., The Econom;cs of Software Re-use, Panel discussion: OOPSLA '91, p21S4-270,
1991. .

20 Cox B., There is a Sliver Bullet, BYTE, p209-218, Oct. 1990.

21 DeMarco T., Structured Analysis and System Specification, Yourdon Press, Engelwood
Oliffs, 1919.

22 Ou Plessis A.. Van der Walt E., Modelling the Software Development Process, IFfP WG8.1
Working Conference on Information Systems Concepts (Alexandria, Egypt), p1-26, April
1992.

23 Duff C., Howard B., Migration Patterns, BYTE, p223-232, Oct. 1990.

24 Fischer G., Cognitive View of Reuse and Redesign, IEEESoftware, p60-'72, July 1987.

25 Gane C., Sarson T., Structured Systems Analysis: Tools and Techniques, Prentice-Hail,
Engelwood Gliffs, 1979.

26 Gangopadhyay 0, Helm R., A Model Driven Approach for the Reuse of Classes from
Domain-specific Object-oriented Classes, Technlcal Report RC14510, IBM Research
Division, March 1989.

27 Gibbs S., Tslohrltzls D., Casais E., Class Management for Software Communities,
Communications of the ACM, vel, &3, no. 9, p90-103, September 1990.

28 Gibson E., Objects ~Born and Bred, BYTE, p245-254, Oct. 1990.

29 Goldberg A" Rubin K.S., Taming Object-oriented Technology, Computer Language, p34-45,
Oct. 1990.

30 Guirnaraes N., Building Generic User Interface TOOlS:an Experience with MUltiple
Inheritance, OOPSLA '91, p89-95, 1991.

31 Hampel T,L., Understanding Unix Industry Consortiums and Standards Groups, Mark:3ting
Communication, WYSE Technology lno., August 26 1986.

32 Hayes F., How POSIX is redefining UNIX, UnixWorld, December 1990.

33 Held G., Understanding Data Communications, John Wiley and Sons, 1991.

34 1-113101 R., Maarek Y.S., Integrating Information Retrieval and Domain Specific Approaches
for Browsing and Retrieval in Object-Oriented Class Libraries, OOPSLA '91, p47-61, 1991.

35 Henderson-Sellers B., Edwards J.M., The Object-oriented Systems Life Cycle,
Communic!ltlOns of the ACM, votas, no.s ,p142-159, Sep. 1990.

References Page 209

AN OBJECT.OAIENTED COMPONENT-BASED APPROACH TO BUILDING REAL-TIME SOFTWARE SYSTEMS

36 Jacobson I., Industrial Development of Software with an Object-oriented Technique, Journal
of Object-oriented Programmmg, p30-40, Mar/Apr 1991.

37 Johnson R.E., Foote B.• Designing Re-usable Classes, Journal of Objeot-oriented
Programming, p22·35, June/July 1988.

38 Jrad A.M., Un C., Rebman T.M., Object-oriented Software in Real-time Systems, 'IEEE
Software, vol.4, no.6, p71-89, Oct. 1989.

39 Laranjeirlil L.A., Software Size Estimation of Object-Oriented Systems, IEEE Transactions on
Software Engineering, vol.ts, no.5, p510·521, May 1990.

40 Lehman M., Programs, Life Cycles, and Laws· 'f Software Evolution, proceedings of the
IEEE, vol.Ga, nO.9 I p1060.'1076, Sep. 1980.

41 Lewis A.J., Henry S.M., Kafura D.G" An Empirical Study of the Object-oriented Paradigm
and Software Re-uso, or;p·~kA 'f11, p1134·196,1991.

Lewis A.J., Henry r
Object,oriEm~ed P .
object-orlentcd Pr

• Schulman R.S., On the Relationship between the
Bh. "are Re-use: an EmpiricQ! Investigation, Journal of

,"ng, vo. ...~no.4, p35-41 , July/AuquSt 1992.

43 Macro A., tluyton J., The Craft of Software EngIneering, Addison-Wesley Publishing
Company, 1st ect , p1J.4, 1987.

44 Meyer B., Lessons from (he Oes!qll of tile Eiffel Libraries, Communications of the ACM,
vol, 33, no. 9, p69·8S, S~ptember 1990.

45 Meyer B., Object-oriented Software Construction, Journe ~of Object-oriented Programming,
Prentice·Hall, Hemel Hempsteac, 1988.

46 Meyer B.• Re-usability: The Case for Object-oriented Design, IEEE Software, p50·64, March
1987.

47 Meyers W., InteNlew with Wilma Osborne, IEEE Software, vol.5, nO.3, p104-105, 1988.

48 Plis!dn N., Balaila I., Kenigshtein I., The Knowledge Contribution of Engineers to Software
OevE.:"'pment: A Oase STudy, IEEE Transactions on Engineering Management, vol.38, no.4
,p344-341, Nov. 1991.

49 Prieto Diaz R., Freeman P., Classifying Software for Reusability, IEEE Software, volA, no.t,
p6-16, January 1987.

50 Ross T.O., Goodenough J.B., Irvine O.A., Software Engineering: Process, Principles and
Goals, Computer, p54-64, May 1975.

51 Royce W.W., Managing the Development of Large Software Systems: Concepts and
Techniques, Proceedin{;js, WESCON, 1970.

5~ Stone C.M., Hentchel 0," Database Wars Revisited, BYTE, vol., no., P223-242, October
1990.

References Page 210

AN Ol3JECr-ORfENTED GOMPONENt·BASED APPROACH TO BUILDING REAL·TIME SOffiVARE SYSTEMS

53 Ward P.T., Mellor S.J., Structured Development for Rea/·Time Systems (Volumes 1-4),
Yourdon Press, Engelwood Cliffs, 1985.

54 Wegner P., Perspectives on Object Oriented Programming, Private communication, 1986.

55 Wirfs·Brack R.J., Johnson R.E., surveying Current Research in Object·Oriented Design.
Communications of the ACM, vctas, no.s, p105-123, September 1990.

56 Wirfs·Brock R.J., Wilkerson 8., Object Oriented Design: a Responsibility Driven Approach,
Proceedings of OOPSl.A, vol., no., p71-75, 1989.

57 Yourdon S.N., Managing the System Life-cycle: a Software Development Methodology
Ovetvlew, Yourdon Press, 1982,

58 Vourdon E., Auld Lang Syne, BYTE, p257-262, Oct. 1990.

References Page 211

AN OBJECT-ORIENTED COMPONENT-BASED APPROACH ro BUILDING REAL-TIME SOFTWARE SYSTEMS

BIBLIOGRAPHY

Further reading on object-orientation:

1 sooch G., Object Oriented Design with Applications, The Benjamin/Cummings Publishing
Company, 1991.

Further reading on Open Systems and Inter-networking standards and protocols:

1 Black U.O., Data Communications and Distributed Networks, Prentice-Hall International, 2nd
Edition,1987.

2 Comer D.E., Stevens D.L., Internetworking with TCP/IP (Volumes 2), Prentice-Hall
International, 1991.

3 Comer D.E., Intemetworking with TCP/IP (Volumes 1). Prentice-Hall International, 2nd
Edition, 1991.

4 Held G., Understanding Data Communications, John Wiley and Sons, 1991.

5 Network Working Group, The Common Management Information Services and Protocol
over TCPIIP (CMOT), April 1989.

6 OSIMformation Technology, Common Management Information Protocol Specification,
Final text of DIS 9596, January 1990.

7 OSI/Information Technology, Common Management Information Service Definition, Final
text if DIS 9595, January 1990.

8 OSI/Information Technology, Structure of Management Information - Part 1:Management
Information Model, ISO/IEC ProposaI10165-i, June 1989.

9 OSI/Information Technology. Structure of Management Information - Part 2: Definition of
Management Information, ISO/IEC Proposal 10; 65-2, December 1989.

10 OSI/Information Technology, Structure of Management Information - Part 3: Definition of
Management Attributes, ISO/lEG Proposal 10165-3, September 1989.

11 CSI/lnformatlon Technology, Specification for Abstract Syntax Notation One (ASN.1), Final
text for DIS 8824, April 1990.

12 OSI/Network Management Forum, Application Services, Issue 1, June 1989.

13 OSI/Network Management Forum, Protocol Specification, Issue 1, January 1989.

14 Van Norman H.J., LAN-WAN lntemetworking, Technical Report, Faulkner, 1991.

Bibliography Page 212

I"
j

Author: Baas Andre.
Name of thesis: An object-oriented component-based approach to building real-time software systems.

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2015

LEGALNOTICES:

Copyright Notice: All materials on the Un ive rs ity of th e Witwa te rs ra nd, J0 han nesb u rg Li b ra ry website
are protected by South African copyright law and may not be distributed, transmitted, displayed or otherwise published
in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page)for your personal and/or
educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

