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Abstract 

The state of water quality in the Swartkops River catchment in the Uitenhage area, Eastern Cape 

Province, South Africa, continues to be degraded by anthropogenic activities, which include 

municipal waste water, industrial waste and agricultural runoff. The study area consists of two 

aquifers (Swartkops and Coega) that are separated by the fault (Coega fault). In the study area there 

are two main rivers, namely: Swartkops River and Coega River, which are situated in the Swartkops 

Aquifer and Coega Aquifer, respectively. Most of the degrading anthropogenic activities are situated 

in the vicinity of the Swartkops River. The focus of the study was on the pollution of the stream 

water and aquifer (groundwater), with particular emphasis on the groundwater management. The 

study objectives were to establish the relationship between groundwater levels and surface 

topography using Bayesian interpolation method and groundwater and surface water interaction 

using environmental isotope and hydrogeochemical techniques. The bacteriological assessment was 

also conducted to determine if hydraulic connections exist between groundwater and the polluted 

streams. The results of the Bayesian Interpolation Method indicated that there was a strong 

relationship between the groundwater level elevation and surface topography with the correlation 

coefficient of 0.9953. The results also indicated that the fault is permeable; hence it did not have 

influence on groundwater circulation; however, groundwater does not flow from Swartkops River to 

Coega Aquifer due to groundwater flow gradient.  The environmental isotope results indicated that 

both Swartkops Aquifer and Swartkops River were characterised by heavy isotopes signatures, 

which indicated the correlation between the two water components. The results further showed that 

the Swartkops River was recharging the Swartkops aquifer. However, no correlation was established 

between Swartkops River and Coega aquifer due to flow gradient. Although the flow gradient allows 

the flow of groundwater from Coega Aquifer to Swartkops Aquifer, Coega aquifer is a Government 

Water Controlled Area, which could have a very low to none impact on the other aquifer.  Piper 

diagram and stiff diagrams indicated one water type found in the Swartkops and Coega aquifers, 

which was: Na-Cl type. The water in the Coega aquifer indicated high salinity in the chemical 

properties, which was typical old marine water derived from deep groundwater source. It was noted 

that the electrical conductivity values in the Waste Water Treatment Work were closest to those of 

the Swartkops River and Aquifer, which was in central to those of Coega Aquifer. The bacterial 

analysis results indicated that during the wet season most of the bacterial counts were high as 

compared to dry season. It was noted; however, that during the wet season the bacterial counts 

appeared similar in both aquifers. It is unlikely that the similarities emanated from the interaction of 
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the two aquifers as the analysis of the results indicated that the bacterial counts found in the Coega 

Aquifer emanated from the farming activities. The study concluded that the fault act as a pathway for 

migration of groundwater flow. It was established that the groundwater only flows from Coega 

Aquifer to Swartkops Aquifer due to difference in the hydraulic gradient.  
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1. CHAPTER ONE:  INTRODUCTION 

1.1 General overview  

The study is about applying the environmental tracer’s method (hydrochemistry, stable isotopes of 

oxygen and hydrogen, and radioactive isotopes of tritium) and bacteriological analysis of the water 

from Uitenhage spring, Swartkops River and boreholes. As the Uitenhage spring supplies water to 

the nearby communities, it raises a concern for it to be in vicinity that is prone or exposed to 

pollution. The industries and agricultural sectors also require the stringent water quality standards for 

their activities and therefore, the water resources in the area should be protected against pollution. 

The study is meant to improve the knowledge of the groundwater and surface water resources in the 

area by establishing the interaction between two water sources. The conceptual model was developed 

in this study area.   

1.2 Background 

The water resources in Africa are facing the challenge of degrading quality and quantity, it has an 

impact in the economy as well (Ashton, 2002). From the South African perspective, the pollution to 

the water resources is of growing concern and needs to be controlled (SWLR, 1995) as well as their 

quality needs to be protected (Dallas and Day, 1993; Jagals et al. 1997; Quilbell et al. 1997); 

particularly, in case when polluted streams can also be the main sources of contamination to aquifers 

(Winter et al. 1998). The effects of contaminants may not be revealed for quite a number of years 

after it has entered the groundwater system.  

South Africa, being a water scarce country, is predominantly dependent on surface water resources 

(Davies and Day, 1998). The water resource of South Africa is prone to pollution primarily from 

sewage treatment works, agriculture and industrial waste water that contains metals (Vollenwider, 

1998). The second edition of the South African National Water Resource Strategy,  (NWRS2, 2013) 

clearly indicates that, water resources need to be sustained for industrial , agricultural and domestic 

water use as well as for ecosystem functioning. The contamination of streams might results in the 

contamination of the aquifers (Pinder et al. 2006); but it would be unlikely that the aquifers could be 

remediated for domestic water use (Kalbus et al. 2006; Feinberg, 2015). 

The Department of Water and Sanitation (DWS) – a government water custodian – acknowledges 

that South Africa is facing numerous water challenges and concerns, which include water 

accessibility, degradation of the environment and resource pollution, and the inefficient use of water 
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in different sectors. The DWS is responsible for the implementation of policies and strategies related 

to South African water resources management to ensure that everyone has access to good quality 

water and to ensure environmental protection. 

The DWS has a directorate responsible for water quality issues in South Africa – the Resource 

Quality Information Services (RQIS). The RQIS has both surface water and groundwater monitoring 

points across the country. The chemical components of water quality that the RQIS is monitoring is 

microbiological, and macro and micro chemical elements. Generally, the overall conclusion from the 

interpretations gathered from the currently accumulated chemical data is that the South African water 

resources state of quality is deteriorating. This deterioration can be associated to the increasing 

human developments impacts across the country. The escalation of bacteriological content in water 

resources is associated to the inadequate management of Waste Water Treatment Works (WWTW) 

by the municipalities in most parts the country. On the other hand, the escalation of macro and micro 

chemical content of contaminants in water resources can be associated with the improper 

management of the final effluent from the industries. The Uitenhage area, in the Eastern Cape 

Province of South Africa, is not different from the above mentioned circumstances. The Uitenhage 

area consists of two river catchments, viz. Coega River and Swartkops River catchments.  

The Coega River catchment is found at the northern boundary of the study area, which stretches from 

Groot Winterhoek Mountains, at the western part of the Uitenhage spring to the sea – Blue Water 

Bay, at the north east of Port Elizabeth. The catchment consists of the shallow aquifer, which is 

called Coega aquifer. The aquifer is a source of artisan groundwater and is economically significant 

for bulk water supply for Uitenhage, Amanzi Estates, Sandfontein, Coega Kop and Wells Estate 

(Maclear, 2001). The community of Uitenhage area depends on Uitenhage spring for domestic water 

supply. There is also an intensive irrigation (citrus fruit and Lucerne) taking place in the area under 

investigation.   

The Swartkops River catchment is found at the southern boundary of the study area, which covers 

the Nelson Mandela Metropolitan Municipality, which includes Uitenhage, Kwanobuhle, Despatch 

and part of the Port Elizabeth municipal areas. There has been a progressive degradation of the 

Swartkops River water quality due to contaminants from industries, agriculture, municipalities, 

urban, and rural or informal settlements. The main contributors to the river pollution around the area 

are   industrial and municipal wastes.  They are discharging the effluents directly into the river. The 

characteristic of contaminants that pollute the river are represented by bacteria, nitrates, and 

industrial chemicals (DWAF, 1996; Taljaard et al. 1998). Water pollution raises concerns to the 
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community and other water stakeholders of the Uitenhage area and therefore, the protection of water 

resources in this area is essential. Currently, there is no monitoring of wastes that is being discharged 

into the Swartkops River, although irrigation activities rely entirely on it as key for water supply. 

Several studies conducted in the Uitenhage area have made some recommendations on the protection 

of water resources in the areas. However, there is still a lack of implementation of these 

recommendations and less compliance with the legislation. This is because there is no adequate 

monitoring network established to record the information that needs to be reported to DWS (Eastern 

Cape Groundwater Plan, 2010). As a result, sustainable planning of the water resources in the areas 

is jeopardised. The DWS has established Catchment Management Agencies (CMA’s) that are 

responsible to ensure that sustainability is achieved and enforcing compliance. The CMA’s are 

tasked to set several catchment monitoring and management strategies to safeguard the availability 

of groundwater and surface water resources for future developments in the country. Monitoring and 

enforcing compliance should close the gap of understanding groundwater use, and impose penalties 

for water users that do not comply with the policies and management strategies. 

The industries are generally issued with licenses to discharge the waste into the river, but there seems 

to be less compliance with license conditions in the Uitenhage area. Thus, the pollution has not been 

monitored for years. The Water Quality Management Plan is one of the main recommendations from 

the previous studies and condition of the license issue. The plan states that there should be a 

continuous water quality monitoring, i.e. drilling of monitoring boreholes by industries, data 

collection (water samples) and supply to DWS for analysis to ensure compliance. Due to the 

unavailability of this information, the extent of pollution in the groundwater system is not known. 

Therefore, the current study intends to investigate the impact of pollution in the groundwater system 

in order to establish the rehabilitation and mitigation measures. 

Given the fact that there are a large number of groundwater users within the Table Mountain Group 

(TMG) aquifer in the region, it resulted in various essential investigations conducted to improve 

planning and management of the groundwater from the aquifers (Maclear, 2001). According to 

Maclear (2001), groundwater from this basin was extensively exploited in the early 21stcentury, 

which caused drastic decrease in the yield of the springs and water levels in the boreholes. As a 

result, the farmers were also affected by the groundwater over-exploitation until the investigations of 

the possible factors were requested. The Uitenhage Artesian Aquifer (UAA) was then declared in 

1957 as a Government Water Control Area (GWCA) to minimize abstraction to sustainable rates 

(Venables, 1985).  
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 Across the world, water pollution in the aquifers is mainly caused by the anthropogenic activities 

and it is a main concern in the groundwater resource management (Egboka et al. 1989). Considering 

the activities from industries, municipalities and agriculture that are taking place in the catchment, 

the UAA is also susceptible to water pollution. Environmental isotopes (stable isotopes of oxygen 

and hydrogen, and radioactive isotopes of tritium) have been proved to be useful techniques to 

understand and in the prediction of spatial distribution and temporal changes in the aquifer, tracing 

pathways and assessment pollution, and aquifer planning and management; it is also useful in the 

investigation of surface and groundwater interconnections (De Vries and Simmers, 2002; Yang et al. 

2012). Hydrochemical variables have also significant role in groundwater studies, because chemical 

parameters assist in the classification and assessment of water quality (Sadashivaiah et al. 2008). The 

bacteriological assessment is helpful to determine if there are any hydraulic connections between 

groundwater and the polluted surface water because where groundwater systems are recharged by 

surface water, microbials can also enter the groundwater systems. However, a majority of wells, if 

properly constructed, are bacteria-free and the soil could act as a barrier to contamination of the 

aquifers. 

Important works done conducted in the Uitenhage area includes Parsons (1983); Talma et al. (1982), 

Talma et al. (1984), Venables (1985), Maclear (1993), Maclear (1995), Vogel et al. (1999), and 

Binning and Baird (2001). Similar studies that involved the interconnection between groundwater 

and surface water have also been conducted worldwide, such as Egboka et al. 1989; Ekiye and Luo, 

2010; Kipkemboi, 2011; Maheshwari et al. 2011; Batisani, 2012; Yang et al. 2012; Bello et al. 2013; 

Miller et al. 2013; Scholz, 2014; West et al. 2014; King et al. 2015 and Celiker, 2016 are some of 

them. The literature survey of the study area revealed the need to conduct this study, due to 

unavailability of the information with regard to groundwater and surface water chemistry; owing to 

the fact that the pollution of Swartkops River had raised some concerns to residence of Uitenhage 

area (Binning and Baird, 2001). The literature suggests that there is no knowledge on whether 

surface water and groundwater are connected and if the interconnection exist; to what extent has the 

anthropogenic activities impacted the groundwater system. Water resource managers and decision 

makers need this information for efficient catchments water resource planning and management.  

This investigation focused on the pollution of surface water, specifically, in the groundwater 

management and the occurrences of pollution from municipal waste water, industries and agriculture. 

The scope of this study covered the types and sources of pollution as well as their impact on 

groundwater resources in the area of investigation. The primary objectives were (i) to determine the 
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connectivity between groundwater and surface water, and (ii) to determine the source of pollution by 

anthropogenic activities in groundwater systems.  

According to BRS (2006), the following hydrogeological parameters are useful when evaluating 

groundwater and surface water connectivity: groundwater availability (borehole yield), groundwater 

quality, groundwater flow paths, aquifer hydraulic properties (transmissivity and storativity), and 

aquifer structure (normally aquifer boundaries, structural contours of the aquifer both top and base, 

aquifer thickness, and specific features such as faults). 

1.3 Problem statement 

The chemistry of groundwater and surface water resources in the Uitenhage area are less understood; 

the lack of information on these components has been of a concern. The existing literature showed 

that for the past decades, the water pollution of the Swartkops River has raised many concerns to the 

community in the area (Binning and Baird, 2001). Amongst those concerns from the Swartkops 

River are that it has not received much attention and it poses a threat to the water users. The most 

obvious polluting activities are the domestic waste (sewage) and wastewater from industries. 

Therefore, the main concern is that, there is no monitoring of compliance from the industries and 

discharge from municipality. However, the Water Quality Management Plan was documented and 

the monitoring has been neglected. There is no knowledge to what extent the impact of pollution has 

propagated into the groundwater system. This issue can, in a long term, result in a complete 

contamination of the Uitenhage Artesian Aquifer because of the contaminants source from the river 

as indicated by Maclear (1993) and Robert (2013). According to Binning and Baird (2001), the 

concentration of pollutants in water can be low and discharge level of contaminants meet the water 

quality criteria, however, the levels maybe elevated in the sediment and in a long-term can 

accumulate and cause high loads of pollutants. Therefore, understanding the chemistry of 

groundwater and surface water resources can close the gap. 

1.4 Research questions 

1. Is groundwater connected with surface water in the area and what are the sources of water 

that feed the springs?  

2. Do the existing WWTWs and industries in the study area have any impact on water 

resources, if not, what are other sources of pollution? 
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1.5 Aim and objectives 

1.5.1 Aim of the study 

The study aims to establish an understanding of groundwater and surface water interactions of the 

TMG aquifers in Uitenhage area using environmental isotopes (stable isotopes of oxygen and 

hydrogen, and radioactive isotopes of tritium), hydrochemistry and faecal coliform bacteria. 

1.5.2 Objectives 

The objectives of the study were: 

 To establish the relationship between surface topography and groundwater level elevation 

by using Bayesian Interpolation method and to determine the groundwater flow direction 

using surfer 8 software.  

 To establish groundwater and surface water interaction in the study area using 

environmental isotope analysis, hydrochemical analysis, trace metals, bacteriological 

analysis and to develop a site specific conceptual model to illustrate the connectivity 

between groundwater and surface water.  
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1.6 Structure of the Thesis 

Chapter one: Gives the general overview, introduction, which introduces the research topic, the 

problem statement that has triggered to the study.  

Chapter two:  Provide the general overview of the study area such as sampling site, physiography, 

climate, land use, geological setting and hydrogeology of the area.  

Chapter Three: Describes the approach and gives the fundamental concepts that assist in general 

understanding of the groundwater and surface water components.  

Chapter four: Gives the discussion of the list of methods that have been used in the study.   

Chapter five: Discusses the outcome of Bayesian Interpolation Method, which was used to establish 

the relationship between surface topography and groundwater level elevation.  It also gives more 

information about the groundwater flow direction in the study area.  

Chapter six: It gives the overview of the use of the environmental isotopes analysis, hydrochemical 

analysis including trace metal as well as biological analysis.  

Chapter seven: It summaries the conclusion of the results as well as the recommendation where 

suggestions are made on what should be done in the next investigation.  
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2. CHAPTER TWO: STUDY AREA  

This chapter provides the description of the study area, data collection sites. 

2.1  Introduction 

The Uitenhage Aquifer Basin (UAB) is the main groundwater supply in the Uitenhage area, which 

supplies water from the springs for large agricultural irrigation schemes, domestic and industrial 

water use. The eastern part of the Uitenhage Artesian Aquifer (UAA) comprises of the Cretaceous 

siltstones and mudstones underlined by the confined fractured Table Mountain Group (TMG) 

sandstone that generated the artesian conditions (Maclear, 2001). 

The study area is located around the Uitenhage town, Eastern Cape Province of South Africa. It falls 

within Mzimvubu to Tsitsikama - Water Management Area (WMA 7). It covers the following 

quaternary regions: M30A, M30B, M10A, M10B, M10C and M10D and is sub-divided into two sub-

catchments, which are Coega River catchment and Swartkops River catchment. The total catchment 

area is 1938 km2 (Figure 1). The Coega River catchment is located in the northern part and covers an 

area of 515 km2. In the Coega River catchment, there is an artesian aquifer which consists of 

imperative springs, located in the northern part of the Uitenhage town. These springs are artesian in 

nature due to the underlying geological configuration. The community as well as irrigation schemes 

of the Uitenhage area are largely dependent on these springs and they have been regarded as the 

main water supply source since the 1800’s (Venables, 1985). The Swartkops River catchment is 

located in the southern part and covers the area of 1423 km2. The Swartkops River catchment covers 

almost the entire municipal area of Uitenhage, Kwanobuhle, Despatch, Ibhayi/Algoa and also half of 

the Port Elizabeth municipal area (Binning and Baird, 2001). The Swartkops River is an important 

source of freshwater ecosystem in catchment (Taljaard et al. 1998). It is the only large perennial river 

in the Uitenhage area that is assumed to have interconnection with the underlying aquifers. The 

Swartkops River catchment is impacted by high housing density that has been developed in the 

catchment and an increase in contamination from industries of Uitenhage (Binning and Baird, 2001).  

2.1.1   Description of the study area 

2.1.1.1   Sampling sites 

The sampling sites (Figure 1) were selected along the Swartkops River and they consist of three 

sampling points: i.e. upstream (S1), midstream (S2) and downstream (S3). The S1 point was selected 

as a control which has no anthropogenic influences. The Uitenhage comprised of a number of 
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industries which are continuously discharging pollutants to Swartkops River. In addition to 

industries, municipality also contributes with the discharge of wastewater directly into the river. The 

S2 point (Figure 2 and Figure 3) was selected as entry point of the water pollutants. The S3 point 

(Figure 4) measures the concentration of the pollutants that may have dissolved in water from the 

midstream point and intermediate catchment.  

Hydrocensus was conducted to identify production boreholes around the study area in order to 

determine the extent of pollutants that may have infiltrated into groundwater systems. Six production 

boreholes including the Uitenhage spring are found in the close proximity of the study area and are 

shown in Figure 1. The closer view of the Uitenhage Spring and some of boreholes is shown in 

Figure 5, Figure 6 and Figure 7.  
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         Figure 1: The location of the study area in relation to the Eastern Cape Province 
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Figure 2: S2 (Swartkops River-midstream point), during the high flows in November 2015. 

 

Figure 3: S2 (Swartkops River- midstream point), during the low flows in January 2016.  
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Figure 4: S3 (Swartkops River- downstream point). 

 

Figure 5: Uitenhage Spring. 
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Figure 6: Borehole at No. 287 Doorenkom farm (BH1). 

 

 

Figure 7: Borehole at Sovereign foods (BH3). 
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2.1.1.2   Physiography  

The study area has two major rivers: the Swartkops River and Coega River. The Swartkops River 

forms the southern boundary of the study area and extend towards southeast (Figure 8) where the 

flow is towards the Indian Ocean through the Blue Water Bay, north-east of Port Elizabeth. The 

Swartkops River has two main tributaries viz: north western Kwazunga and western Elands River. 

The other small ephemeral tributaries are the Sand, Brak and Chatty River, which drain the south-

eastern parts of the catchment area (Figure 8). The northern boundary is Coega River, which drains 

eastwards from the Groot Winterhoek Mountains to the sea. 

The western side of the study area is bounded by the Groot Winterhoek, Elands and Zunga 

Mountains, which stretch towards the south, in the low-lying Van Stadens Mountain (Marais, 1964; 

Maclear, 2001). The Van Stadens Mountain is the main recharge area of the Coega Artesian System 

(Venables, 1985). The eastern and south-eastern reaches are characterised by mountain ranges 

fringed by low-lying areas (Venables, 1985; Maclear, 2001), (Figure 8).  

The Uitenhage springs lie within the boundaries of fractured TMG aquifer at the foot of Groot 

Winterhoek Mountain (Figure 8). The Uitenhage Artesian Aquifer (UAA) is one of the well-known 

artesian aquifers in South Africa and the springs are found mostly in the north western parts of town 

of Uitenhage.  
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         Figure 8: The elevation of the study area. 
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2.1.1.3   Land-use  

Figure 9 shows the landuse and land cover of the study area which forms part of the Nelson Mandela 

Bay Metropolitan Municipality. The vegetation cover is mainly thick bush (thicket, bushland bush 

clumps and high fynbos) with patches of grasslands (shrubs and low fynbos). The sand mining areas 

occur in the i) western part of Uitenhage town along the KwaZunga River (upper tributary of 

Swarkops River), ii) along Swartkops River west of Uitenhage town, iii) north eastern part of 

Uitenhage, and iv) east and west of the Despatch. In addition to the sand mining activities west of 

Uitenhage the area comprises of rock outcrop that is mainly for aquifer recharge. 

The study area consists of several Waste Water Treatment Works that are assumed to have a major 

impact on the Swartkops River water quality. While livestock farming and cultivation occurs 

upstream of the Uitenhage town along the Swartkops River and Elands River, some small scale 

farming activities occur downstream of the Uitenhage town. The north-eastern part of the town, 

along the Coega River, has some forest plantations. The Groendal Dam (Figure 9), which is located 

in the upper reaches of the Swartkops River catchment is a source of water supply for irrigation. 

However, some farms in the areas are dependent on groundwater for irrigation water use. The 

intensive irrigation mainly occurs in the Kruis River area; Kruis River is a tributary of the Elands 

River. 
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Figure 9: Map showing landuse and land cover of the study area.
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2.1.1.4   Climate 

The study area experiences high rainfall in the western part during winter and summer season. The 

climate in the area is generally hot in summers and mild to cool in winters. The eastern part of the 

catchment is humid and receives more rainfall than the downstream parts. While the study area 

receives rainfall throughout the year (Figure 10), generally, the mean annual rainfall in the area is 

523 mm. The highest monthly average rainfall is received in October (73.9 mm) and lowest monthly 

average rainfall is received in May (21.2 mm) (Figure 10). Average daily temperatures at the 

Uitenhage area range between 19.8°C in July to 26.9°C in February (Schultz, 1997). 
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Figure 10: Monthly rainfall data collected from the period 2007 to 2016 at station M1R001. 

2.1.1.5   Geological setting 

The western part of the Swartkops River catchment consists of the Groot Winterhoek Mountain and 

Kwazunga River valley, whilst the Elands and Van Stadens Mountain lies on the southern part 

(Figure 11). The Groot Winterhoek Mountain and Kwazunga River valley are characterized by the 

quartzitic sandstone of the TMG (Maclear, 1993, 2001). The Elands River sub-basin, which forms 

part of the Swartkops River catchment consists of sandstones and black shales of the Ceres 

Formation (Toerien, 1989) and the central part comprises, predominantly of alluvium deposits in the 

valleys and floodplains (Maclear, 1993). The eastern part of the Uitenhage basin is characterised 

mainly by Kirkwood, Quaternary and Sundays River Formation and some patches of the Alexander 
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and Bluewater Bay Formation; whereas the northern part consists of predominantly of the Kirkwood 

and Sundays River Formation.  
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Figure 11: The main geological formation of the study area. 
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Table 1 presents the lithologies of both production and monitoring boreholes used for investigation 

in this study. The Doorenkom farm production borehole (BH1) was drilled (Figure 11) on the TMG 

with a depth of ±100m and depth of the pump was at 93 m. The Uitenhage spring is at the edge of 

the TMG on the Uitenhage group as well as three production boreholes, viz: Amanzi 3 (BH2: 

artesian well), Sovereign foods (BH3) and Sovereign foods at Rietheuwel (BH4). 

Table 1: The geological groups, subgroups, formations and thickness (Kent, 1980). 

Group Subgroups Formation Thickness (m) 

T
M

G
 

 Basalt Sardinia Bay formation 180 

 Peninsula formation 1500 

 Cedarberg formation 50  

Nardouw 

Subgroup  
 850 

U
it

en
h

a
g
e 

G
ro

u
p

 

 

Basal Econ 3000 

Kirkwood 2200 

Sundays River 1600 

2.1.1.6   Hydrogeology 

The Uitenhage Artesian Basin (UAB) aquifer system comprises of fractured sandstones of the TMG 

which are confined in the eastern part of the basin and overly the Cretaceous siltstones and 

mudstones, resulting in artesian conditions (Venables, 1985; Maclear, 2001). The aquifer is 

recharged mainly by rainfall on the Groot Winterhoek and Kwazunga Mountains (Maclear, 2001). 

The Cretaceous siltstones are weathered and intensively fractured with high capability to store water. 

They constitute important aquifer and their permeability is controlled by the stress of the regional 

pattern of the TMG aquifer. The TMG aquifer system is a regional aquifer, which is regarded as a 

main water source for future supply in both the Western and Eastern Cape Provinces. The TMG 

Aquifer (Figure 11) consists mainly of metasandstone (sometimes identified as quartzitic sandstone), 

minor conglomerate and shale; the quartzites are exploited extensively for agricultural purposes. This 

aquifer occurs at significant depth and is protected by an aquiclude that is important for the 

formation of springs and shallow aquifers. It is important to note, however, that this aquifer needs to 

be protected because of its high yield and good water quality. The quartzitic sandstone of the TMG 

are overlain by thick post-Palaeozoic sediments giving rise to an artesian groundwater flow 
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conditions. The other side of the Coega Fault, at the western part of the study area, consists of the 

confined TMG outcrop, which is also a source of aquifer recharge. In the Algoa Bay, there are three 

small islands consisting of the sediments of the TMG. These sediments comprise of quartz with 

minor conglomerate and mudstone beds (Venables, 1985).  

The lithology of the Enon Formation consists of conglomerates, subordinates lenticular sandstones 

and clay stones. However, it does not have a significant hydrological importance in the study area, it 

occurs in a small portion to the west and it is confined. The Kirkwood Formation relatively covers 

almost the entire portion of the north, east and southern part of the study area. Its lithology 

(Appendix B) consists of reddish brown and greenish clay, siltstone, sandstones and subordinates of 

grey shale, which act as an aquiclude (Maclear, 2001). The Sunday’s River Formation outcrop 

occurs in the north eastern part of the spring and more at the southern part of the Coega fault   

(Figure 11). However, these three formations viz: Enon, Kirkwood and Sundays River are grouped 

as Uitenhage Group (Venables, 1985). 

Figure 12 shows that the study area comprises of two imperative aquifers, which are separated by 

Coega Fault, i.e. the shallow unconfined primary aquifer (Coega Aquifer) to semi-confined and 

relatively deep secondary artesian aquifer (Swartkops Aquifer) (Maclear, 1996; Maclear, 2001).  

Figure 13, Figure 14 and Figure 15 illustrate the cross section of Coega (B) and Swartkops (C) 

aquifers as well as the diagonal cross section of both aquifers. These figures also show rivers, faults 

and borehole depths relative to the underlying geological formations. 
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Figure 12: The hydrogeology of the study area.  
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Figure 13: Aquifer cross section A (adopted from Maclear, 2001). 
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Figure 14: Aquifer cross section B (adopted from Maclear, 2001). 
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Figure 15: Aquifer cross section C (adopted from Maclear, 2001). 
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2.1.1.7   Coega Ridge Aquifer (CRA) 

The Coaga Ridge Aquifer (CRA) stretches from the western side of the springs towards the eastern 

side (coastal). It occurs at the northern portion of the Coega fault at relatively shallow depth 

(Maclear, 1996; Maclear, 2001). The Uitenhage Group of the aquifer consists of impermeable 

mudstone and siltstone, which are found in the eastern part of the spring. These impermeable layers 

overlie the quartzite of the TMG, which forms an aquiclude. The aquifer stretches towards the coast, 

in the easterly direction. The aquifer is a primary source for economical large scale abstraction of 

groundwater; as a result, groundwater is used for irrigation of citrus fruit and lucerne, as well as 

domestic use (Maclear, 2001).  

Uitenhage Spring  

The Uitenhage area has numerous springs that are well known in South Africa. They are derived 

from an artesian basin and used for water supply to the Nelson Mandela Bay Metropolitan 

Municipality. The springs are used for domestic water supply as well as irrigation schemes; they are 

found in the Coega Ridge Aquifer and are supplied by the unconfined part of the TMG aquifer 

system. The Uitenhage springs are at the edge of the TMG outcrop (mountain) and are fault 

controlled (Figure 13). The springs (eyes) are nine in total with combined flow of 45l/s, according to 

Xu and Maclear, (2003).  

2.1.1.8   Swartkops Aquifer  

The Swartkops River Alluvial Aquifer is a thin layer, which stretches to the south of the Coega Fault 

(Maclear, 2001). It further stretches from Groendal Dam, at Kwazunga Mountains, down to east of 

Port Elizabeth. The hydrogeological conditions of the aquifer are similar to that of CRA; however, 

the Swartkops Aquifer occurs at a greater depth of the TMG aquifer in relation to Coega Ridge 

Aquifer, approximate 100 m to 120 m deep towards east direction (Maclear, 1996).  
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3. CHAPTER THREE: LITERATURE REVIEW 

3.1 An Overview:  

Groundwater always flow from higher hydraulic gradient to lower hydraulic gradient area, which 

means an increase of the elevation of the surface will also increase the groundwater hydraulic 

gradient, where it discharges into the rivers (streams), lakes, dams and springs (du Plessis, 2010) as a 

base flow and get stored in rock interstices. Surface water features, generally, interact with 

groundwater features (Winter et al. 1998), which means the impact of the other can have a 

significant effect to the other in terms of both quality and quantity. Previously, surface water and 

groundwater resources were managed as individual entities. This has a significant effect in the 

planning and management of water resource, such as water allocation, i.e. the water parcel that has 

been allocated, can also be allocated more than once to groundwater users as well as to surface water 

users. Therefore, this overlap can cause serious problems where one water resource is over allocated 

(Annan, 2006). 

According to Wright (1980), “abstraction from surface water and groundwater for supply purposes 

are limited by both quantity and quality considerations. When there is a flow of water between the 

surface and aquifers, in either direction, there is a relationship between the qualities of water in the 

two systems”.  

The water resources optimum management requires a bigger picture about the connectivity of 

groundwater and surface water systems, which is also an important factor of the hydrological cycle 

(Robert, 2013). Over the past years, the main focus has been on studying and understanding the 

interconnection between groundwater with rivers and lakes as these are the dominant entrance and 

exit points of surface and sub-surface interaction that are critical in terms of water resource 

management (Sophocleous, 2002; Yang et al. 2012). However, the emphasis on the strategy of 

managing water resources requires a comprehensive investigation and thorough understanding of the 

interconnections between these two resource components, particularly, in case of pollution (Egboka 

et al. 1989). Understanding the interaction between these components has not received scientific 

attention especially in water management sector (Winter et al. 1998). Therefore, it is imperative to 

understand their connections for planning and water resource management purpose, as well as 

protection and pollution control thereof. 
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The available techniques for the determination of groundwater and surface water interconnection are 

broad; therefore, a method has to be chosen based on the purpose of the study (Kalbus et al. 2006). 

The interconnection between these two components have been investigated using several methods, 

for example, tracer tests (Ptak et al. 2004), time-series temperature measurements (Stonestrom and 

Constanz, 2003), heat tracer  (Kalbus et al. 2006), mass balance approaches (Kalbus et al. 2006), 

environmental tracer methods (Crandall et al. 1999; Herczeg et al. 2001; Baskaran et al. 2004; 

Abiye, 2013) as well as microbiological method  (bacteriological assessment or bacterial culture) 

(Bordner, et al. 1978). Amongst the above-listed methods, the environmental tracer method (isotopes 

and hydrochemistry) and bacteriological assessment (Bacterial Culture) have proven to be useful in 

understanding the interconnection between groundwater and surface water (Abiye, 2013; Suarez et 

al. 2015) and are mainly used in the current investigations. While these two methods are the most 

effective, they however, have their own advantages and disadvantages. Therefore, it is so imperative 

when selecting the method to be applied in the case study area, to first consider the study aim and 

objectives. The above selected methods (environmental tracer and faecal coliform bacteria) have 

following advantages: they are relatively easy to apply and cost effective, and they are commonly 

employed in investigating the interconnection between groundwater and surface water (Abiye, 2013; 

Suarez et al. 2015). The selected methods are described in more details in the sub-sections below. 

3.1.1  Environmental Tracer Method  

Environmental isotope studies provide important information on the source from which the water 

derived for management purpose and are also useful tools in the effective management and water 

resource analysis at different spatial scale both at local and catchment level (Abiye, 2013). The 

application of isotopes is essential in the identification of the sources of groundwater and pathways 

in different aquifers (Sophocleous, 2002; Kalbus et al. 2006,). They provide distinctive information 

on water resources connectivity and transport (Clark and Fritz, 1997; Abiye, 2013). 

The environmental tracer methods such as hydrochemistry, stable isotopes (18O and 2H), and 

radioactive isotopes of tritium or carbon are naturally-occurring dissolved constituents mainly used 

in the determination of groundwater movement (Cook, 2003). The most commonly used field 

parameters in environmental tracers include electrical conductivity (EC), pH, dissolved oxygen, 

temperature, major ions of calcium, magnesium and sodium, stable isotopes, and radioactive isotopes 

(Brodie et al. 2005). 
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The environmental isotope method was successfully established in the Isotope Hydrology Section –

Vienna in 1959. After some experimental studies, the United States of America, Canada and 

Germany successfully demonstrated the possible use of the environmental isotopes as natural tracers 

of water (Taylor, 1976). The environmental isotope method was sufficiently advanced in the early 

years of 1960s to be applied in the field (Taylor, 1976). In 1966, the use of environmental isotopes 

had become significant in the groundwater hydrology investigations. Therefore, most of the studies 

then started to make use of environmental isotopes or artificial tracers in their investigations, 

especially in the developing countries (Taylor, 1976).   

Isotopic methods and hydrochemistry were selected for establishing the groundwater and surface 

water interaction for the study area. The results will provide critical information about 

hydrological processes, such as the interaction of river water, groundwater as well as spring 

water.  

3.1.1.1   Stable Isotopes  

Oxygen and Hydrogen 

Stable isotopes of oxygen (18O) and hydrogen (2H or D) are essential tool for tracing the recharge, 

history, and contamination of groundwater (Clark and Fritz, 1997; Abiye, 2013). Stable isotopes of 

2H and 18O are commonly used in groundwater and surface water interaction since surface water is 

more enriched in 2H and 18O compared to groundwater (Yehdeghoa et al. 1997; Coplen et al. 2000; 

Hinkle et al. 2001). These isotope ratios have been used as tracers in several studies since the 1960s 

(Freeze and Cherry, 2002; Clark and Fritz, 1997; Abiye, 2013).   

Tritium 

Tritium (3H) is a radioactive isotope of hydrogen and with half-life of 12.43 years. It is a useful tool 

for tracing the circulation time of groundwater, particularly the recharge that occurred in 1950s and 

early 1960s (USGS, 1999). This is following the nuclear testing of bombs during 1950s and early 

1960s. These human activities have resulted in the accumulation of the chemical pollutants and 

isotopic constituents of tritium into the atmosphere. Therefore, chemical constituents from the 

atmosphere have mixed and spread all over the world. As a result, tritium dissolved in rainwater and 

became available in the hydrologic cycle. Therefore, these chemical constituents of tritium can 

indicate the source (stream, aquifer, etc.) from which the water is derived (USGS, 1999).  
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3.1.1.2   Hydrochemistry 

The understanding of hydrochemistry is important in determining the origin of groundwater 

(Zaporozec, 1972). Analysis of the chemical constituents and their interpretation in the water 

samples can indicate the source (e.g. stream or an aquifer) from which the water is derived. The 

groundwater chemical composition is controlled by various factors such as precipitation, lithology, 

climate, topography, and anthropogenic activities (e.g. agriculture, industries) (El Kashouty, 2013). 

The natural occurring dissolved constituents can be used to trace the groundwater movement such as 

heavy metals (e.g. copper, lead, and cadmium) and major ions of calcium, magnesium and chloride 

(Cook, 2003).   

Metals are toxic and are detrimental to human health. They are naturally occurring in the soil and can 

be as a result of geological processes (Radwan and Salama, 2006; Duran et al. 2007; Tuzen and 

Soylak, 2007), anthropogenic activities such as municipal wastes (sewage), agriculture (fertilizers), 

mining and industries (burning of fossil fuels and smelting of metal like ores), which carry large 

amount of metals that are released to the environment (Nriagu, 1979; Pendias and Pendias, 1989; 

Rai, 2009). According to Concas et al. (2006) and Rai (2008), the contamination from metals 

including acid mine drainage are the main concerns to the environment.  

According to Kamran et al. (2013), soils contain the following average levels of metals: Aluminium 

(Al), Lead (Pb), Zinc (Zn), Cadmium (Cd), Manganese (Mn), and Copper (Cu) are 66200.0, 0.097, 

22.6, 583.0, 26.0 and 74.2 mg/kg, respectively. However, high level of metals in soil can eventually 

have impact on plants, animals and humans when transferred through food chain.  

Cadmium and lead are most common heavy metals which are particularly toxic and poisonous; the 

excessive amount in food can cause diseases in kidneys, nervous systems and bones (Kamran et al., 

2013).  

3.1.2 Bacterial Culture 

Globally, human activities have proved to be the main cause of water pollution in many rivers as 

compared to the natural changes in the water quality (Makela and Meybeck, 1996). The urban 

settlements and municipalities produce nutrients from sewage effluent, industries (toxic substances) 

and fertilisers (nitrates) which can affect both groundwater and surface water quality (Dhiviyaa et al. 

2011). It has become a phenomenon that fresh water resources are affected by chemical, 

microbiological and thermal pollution (Bertsch, 2010). Worldwide, the linkage between the 
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groundwater and surface water has shown to be a major concern and understanding their interaction 

is essential to water managers and scientists at large (Winter, 1998). Mainly in case of contamination 

it is essential to understand their processes as well as the protection of water resources (Kalbus et al. 

2006). 

Pathogens are microorganisms that generally cause diseases in drinking water and can be categorised 

in different sizes such as, bacteria and viruses, which can range from 0.5 to 1.0 μm and from 0.01 to 

0.1 μm, respectively (Uwimpuhwe, 2012). The microbial of faecal origin can be transferred to 

drinking water and pose a serious threat, which includes Salmonella Typhi, Shigella spp, and 

Escherichia Coli (E. Coli). Microorganisms such as an E. Coli can accumulate in sediments and 

mobilized with the fluctuations of water flow. Hence bacterial pathogens will likely disperse 

extensively and quickly (WHO, 1999; UNICEF, 2008). 

The group of faecal coliforms includes other organisms such as Enterobacter group, which originates 

from non-faecal sources and E. Coli that is originating from birds and warm blooded animals. The 

presence of total coliforms in samples of water can indicate the presence of bacteria such as 

Enterobacter (pathogenic E. Coli, pathogens of   Shigella, and Salmonella) which can multiply in 

water environment (Uwimpuhwe, 2012). The availability of these organisms can results in diseases 

such as salmonellosis, cholera, gastroenteritis and typhoid fever (DWAF, 1996; WHO, 2003). Most 

of the E. Coli are harmless, however, others can result to various infections and diseases such as 

diarrhoea, urinary infections, respiratory diseases as well as other diseases (Potgieter, 2007). 

Enterobacter Aerogenes is a gram negative bacterium, it can be found in marine and freshwater, 

sewage and soils. It can also cause infections such as respiratory and urinary infections. Enterobacter 

is usually present in many healthy vertebrates (Langley, et. al. 2001). In addition, it also causes 

infections that may result to death, i.e. notorious nosocomial infections (Carbonne, et. al. 2013). 

Detection of bacteria in a water source could indicate the presence of pathogenic organisms that are 

likely to be the source of waterborne diseases; the type of bacteria may also indicate the source of 

water that is associated with, i.e. sewage, industrial waste, agriculture etc. (Macler and Merkel, 

2000). E. Coli causes various diseases, such as urinary tract infection, wound infection, 

gastrointestinal infection and Bacteraemia (Raina et al. 1999).  

Therefore, the infiltration of surface water carrying chemical and sewage pollutants into groundwater 

can result to gastrointestinal infections or diseases, as faecal material may contain numerous 

pathogenic microbes (Schijven et al. 2013). Groundwater is the main water supply in the study area 
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for agriculture, industries and domestic water use; therefore, its contaminants can result in poor 

drinking water quality, loss of water supply and high treatment costs. 

3.1.3   Previous Studies 

The review is not only limited to the previous studies that were conducted in the study area but it 

also covers the most recent global, regional and local studies. The main focus of this review was on 

environmental tracer’s methods such as hydrochemistry, isotopes, and bacterial culture method. 

These methods are commonly used worldwide (Abiye, 2013) and they were also applied in the case 

study area. 

3.1.3.1   International Context 

Celiker (2016) conducted a study on groundwater and surface water interaction in Uluova Region, 

Elazig, Turkey using environmental isotopes (18O 2H, and 3H) and hydrochemistry (chemical 

analyses). Water samples were collected for both hydrochemistry and isotope analyses; the samples 

were analysed for Oxygen-18, Deuterium, Tritium, and Chloride (Cl–) besides field measurement of 

temperature (T) and electrical conductivity (EC). The results of environmental isotopes indicated that 

there were three different groups of water masses in the basin during the wet and dry seasons. The 

isotopes results also identified that the aquifer at Uluova is fed by daily precipitation. This was also 

supplemented by the tritium and EC values which indicated the characteristics of mixing waters that 

is returning from irrigation into the aquifers and revealed that the aquifer also fed by daily 

precipitation. 

King et al. (2015) conducted the hydrochemical assessment and isotopic study at Cressbrook Creek 

catchment in Southeast Queensland, Australia. The aim of the study was to understand the 

hydrological response to flood and to identify the aquifer connectivity using isotopes in conjunction 

with hydrochemistry. The stable isotope results indicated that the surface water samples were the 

major source of recharge to the dam - catchment headwaters. The isotopes results also confirmed that 

“the flood generated significant recharge to the alluvium in the lower part of the catchment; 

particularly in areas where interactions between surface water and groundwater were identified and 

where diffuse aquifer recharge is normally limited by a thick (approximately 10 m) and relatively 

impermeable unsaturated zone”. Interactions were identified in several sites supported by 

hydrochemical assessment between the bedrock aquifers and the alluvium.  
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In Ijebu-Ode, Southwestern Nigeria, Bello (2013) also conducted a study to investigate the 

bacteriological and physicochemical qualities of water samples in the well and boreholes. Based on 

the results of the water samples from boreholes, a zero faecal coliform count was observed, and 

samples from the well water the range of counts were from zero to 4.1 x 102 cfu/ml. The conclusion 

made was that, not all the waters from borehole are safe for consumption before treated and present 

in well waters. 

The hydrochemistry and isotope study was conducted in the semi-arid to arid region of Namibia by 

Miller et al (2013). The samples were analysed for anions and cations including EC, pH and 

temperature. Only the selected samples were analysed for O, H, DIC, Sr, N and isotopes of 14C for 

dating and isotope of S. The concentrations of cations and anions including the EC and water 

temperature from boreholes indicated approximately 3 or 4 different water types within the region. 

The study illustrated that the dominant water types were Mg-bicarbonate and Na-K-mixed water 

type. The comparison of the results for different types of water from the known water table depths 

indicated that there are different aquifers in the area. The results of the hydrochemical analyses were 

further supported by analysis of Sr isotope in the groundwater and aquifers system, which “indicated 

at least two different water types present: a high Sr-concentration and low 87Sr/86Sr isotope water and 

a low Sr-concentration and high 87Sr/86Sr isotope ratio water”. The data of the stable isotope 

collected in 2008 and 2009 indicated that the composition of isotope of O and H of the boreholes 

were more depleted in the heavy isotopes compared to average precipitation within the region. The 

overall analyses of data assumed that the systems of groundwater in the Namib-Naukluft region were 

susceptible to human activities such as contamination and over abstraction (Miller et al., 2013). 

Yang et al. (2012) conducted a study on surface water and groundwater using environmental isotopes 

and hydrochemistry. The study was triggered by the severe contamination of Jialu River and a 

secondary tributary of the Huaihe River as a result of major contaminants sources of untreated or 

informally treated sewage waste in some cities. Groundwater systems along the river was assumed to 

be connected with the surface water and therefore, the study intended to investigate “temporal and 

spatial variations” of water chemistry that is caused by anthropogenic activities and to “characterize 

the relationships between surface water and groundwater” nearby rivers in the shallow Quaternary 

aquifer. The results of the chemical analyses revealed that the increase of the concentration of Cl− 

was due to the discharge of large amount of domestic water by the nearby city (north of Zhengzhou). 

The maximum concentration of Nitrate and Potassium was also identified in groundwater in one of 

the other nearby city (Fugou County), which was caused by the use of large quantities of fertilizers in 
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the region. Based on comparison of the results of surface water and groundwater levels, major ions 

and stable isotopes signatures shown that most surface water is continuously recharged by 

surrounding groundwater, however, it was identified that the groundwater of a transitional well in 

September 2010 was recharged by river water via bank infiltration. 

Batisani (2012) examined the groundwater quality from domestic water supply across Botswana 

rural areas using hydrochemistry. The author found that the groundwater was suitable for human 

consumption regardless of high levels of cations. However, in some parts of the country the levels of 

Na+, Ca2+, EC and TDS were presenting increasing trends showing the need for groundwater quality 

monitoring in order to terminate the pollution of the boreholes. 

The hydrochemical study was conducted by Maheshwari et al. (2011). The aim of the study was to 

assess the quality of both surface water (Yamuna River) and groundwater owing to industrial waste 

water, municipality sewage that was being discharged into the river. The groundwater is intensively 

used in India for industrial and agricultural purposes; however, the deterioration of the quality of 

water was discovered that it’s due to the land use and anthropogenic activities (De Vries, 2002). The 

samples were collected in both winter and summer seasons. The results of the physicochemical 

analysis indicated that the water quality allowable for drinking and other uses. According to the 

analytical results, it was also shown that during winter season the water quality was suitable for 

domestic use.  

Kipkemboi (2011) conducted bacteriological study in the Wamba Division, Samburu District in the 

Rift Valley Province, in Kenya. The aim of the study was aimed at determining water quality in 

Wamba Division of Samburu District and to assess the effectiveness of plant extracts in purifying 

water. For bacteriological analyses, both multiple tube fermentation and heterotrophic plate counts 

techniques were used, and for physiochemical analyses, standard methods were used. In the most 

samples, the results of qualitative bacterial determination indicated the presence of thermotolerant 

coliforms, Shigella and Salmonella spp. The presence of faecal coliform load was found to be higher 

in dry river bed wells compared to other categories of other sources of water such as rivers, dams, 

springs and tap water. It was assumed that the higher levels of mean conductivity in boreholes were 

due to long residence time that the water was in contact with minerals. The bacteriological analyses 

of water quality indicated that bacterial loads for most sources of water had exceeded the WHO 

values or guidelines for drinking water standards. The study concluded that the water from most of 

the sources is contaminated; as a result, need to be treated before use.   
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In 2010 a water quality study was conducted in Nigeria by Ekiye and Luo (2010). The aim was to 

analyse the state water quality in Nigeria’s industrial cities. Nigeria, as a developing country, has a 

huge demand in various aspects of living and the development of the economy; however, it is a 

priority to the Nigerian government. This has resulted in an increase in industries which led to an 

increased discharge quantity of pollutants to the water bodies. It was noticed that Nigeria has 

different regulations that were implemented to protect and control the dumping of the effluent to 

open water bodies and it has not been effective to protect the marine environment. The results of the 

study indicated that both urbanization and industrialization had an impact on the water resources of 

the Nigerian cities. The study discovered that there were no rehabilitation and mitigation measures in 

place.  

Gibson et al. (2005) conducted an isotope hydrology research on the Mackenzie River basin, which 

is forming contributions to programmes of the “Global Energy and Water Cycle Experiment”. The 

isotopes of 18O and 2H were used. The application of isotope tracers in hydrological studies was 

extensively reviewed and published by Mook (2000) and one of the objectives of the study was to 

review the applications of the stable isotopes (1H, 2H, 16O, 18O). The study indicated that the method 

is commonly used in the recent Canadian hydrological studies. The research also supported the 

‘International Atomic Energy Agency’s (IAEA) Global Network for Isotopes in Precipitation and 

IAEAs Coordinated Research Project on Large River Basins’. The conclusion that was drawn from 

past investigations in Canada was that the combination use of oxygen and hydrogen isotopes allows 

the distinction of variability of precipitation from evaporation effects. 

3.1.3.2   South African Context 

A study of groundwater and surface water interaction was conducted in the Upper Crocodile River 

Basin of South Africa by Abiye et al. (2015), using environmental isotope in the mining 

environment. The hydrogeology of the study area consists of fractured crystalline rocks as well as 

dolomitic aquifers where groundwater is abstracted for various purposes. The results of the 

environmental isotopes indicated that the decanting water from the mine was extensively mixed with 

shallow groundwater and streams. The tritium results indicated that in dolomitic areas that lie at a 

distance from the mine constituted unpolluted water. From the tritium results, it was also revealed 

that the aquifer was recharging from old water (which had long residence time), i.e. tritium 

concentrations were very low for water found in dolomitic areas in contrary to the water found closer 

to mine. The study also revealed that the stream loose water through fractures and sinkholes into 
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dolomite aquifer nearby the mine, as a result, the interaction between groundwater and surface water 

was identified.  

The environmental isotope and hydrochemistry study was conducted by Mengistu et al. (2015) to 

improve groundwater flow conceptualization. The study was intended to assess the origin of excess 

water from the pumping shaft, which is located near Stilfontein town in North West Province of 

South Africa. The results indicated that the water at Margaret shaft was derived from the seepage of 

tailings dam (Dam 5) of the mine that is nearby as well as in the upper aquifer (dolomite). The study 

revealed that if the pumping was going to continue at a rate that was pumping, the neighbouring 

shallow boreholes from the farm were going to dry up for approximately the next 10 years at time. 

The stable isotopes results indicated that almost 50% of water which was pumped from Margaret 

Shaft was recirculated from Dam 5. It was also supplemented by the tritium results, which indicated 

recent recharge that was taking place at fractures and man-made underground workings. However, 

hydrochemical samples at fissures from roughly 950 m below ground level indicated signatures of 

the mine water. Based on the analysis of the results, it was therefore, highly recommended that the 

water can be pumped from the shaft to reduce the shallow groundwater and seepage from the dams 

to prevent flooding of downstream mines. The study also highlighted the importance of 

environmental isotopes and hydrochemical analysis to improve the conceptual and numerical 

models.  

Adams (2000) used isotope and hydrochemistry analysis with an aim of gaining knowledge and an 

understanding of the groundwater hydrochemical processes in the fractured rocks of a 3 000 km2 

catchment around the town of Sutherland in the Western Karoo. It was found that the processes such 

as salinisation, precipitation of mineral and dissolution, exchange of cation and human activity had a 

huge impact on the chemistry of groundwater in the area. The isotopes results also indicated that the 

occurrence of saline groundwater is as a result of the infiltration of evaporated water. The 

hydrochemistry analysis also noted that, in high-lying areas, the dominant water type - Ca(HCO3)2, 

and in low-lying areas – NaCl type; areas where water table close to the surface, soil saline are 

formed. During rainy seasons the salts percolates to the groundwater. 

The groundwater and municipal tap water are key water resources for agriculture and domestic water 

use in many arid parts of the world. The study by West et al. (2014) attempted to establish the spatial 

relationship between groundwater and municipal tap water using isotopes. Groundwater, municipal 

tap water and rainwater samples were collected and analysed for hydrogen (2H) and oxygen (18O) in 

order to identify any coherent spatial pattern between groundwater and tap water isotopes that could 



38 
  

be geostatistically-modelled across South Africa. The stable isotopes were used in groundwater and 

tap water samples as they are important indicators of hydrological, ecological pattern and processes. 

The coherent spatial structures were found in δ2H and δ18O values of groundwater and that water 

samples that could be predicted by geostatistical model based on simple environmental parameters. 

Based on the results, considerable differences were noticed in isotopic compositions of groundwater 

and tap water. The study concluded that the direct comparison would probably be inappropriate 

between recent precipitation and groundwater especially in areas where abstraction is from aquifers 

containing fossils groundwater. It was also recommended that to resolve these issues it is crucial to 

capture the spatial variability of isotopes in precipitation, the temporal variability of groundwater and 

tap water isotopes, as well as to improve estimates of groundwater age.  

3.1.3.3   Study Area Context 

The following studies were found most relevant to the current study and were categorised according 

to their chronological order. 

Binning and Baird (2001) conducted a survey of metals in the sediments of the Swartkops River 

Estuary, Port Elizabeth. The concentration of Chromium (Cr), Lead (Pb), Zinc (Zn), Titanium (Ti), 

Manganese (Mn), Strontium (Sr), Copper (Cu), and Tin (Sn) was measured in the sediments taken 

from the section of the Swartkops River and estuary. The authors noted that the highest levels of 

concentration of metals were in both the river and estuary because of runoff from industries and 

informal settlements entering the system. The results from the study were compared with the results 

obtained 20 years ago for the estuary, which indicated the noticeable increases. According to Binning 

and Baird (2001), it has raised some concerns in the health aspect of the Swartkops River ecosystem, 

over the long term period. 

In groundwater, the solubility of Uranium (U) has proved to be very sensitive in redox conditions 

(Vogel, 1999). The evaluation of the rate of migration of U deposition front within the Uitenhage 

Aquifer was conducted by Vogel et al. (1999). The study aimed at investigating the present position 

of the barrier of the Uitenhage Aquifer using isotopic signatures of U, Radium (Ra) and Radon (Rn) 

of the 238U-series. The position of the barrier was determined using the Uranium isotopes and it was 

also found that the concentration of U at the barrier was reduced as it precipitates. According to 

Vogel et al. (1999) “Ra and Rn were used to evaluate the path of migration that the front of the 

oxygen depletion zone had taken”. At a time, the results indicated that from 28 000 years back the 

aquifer had no significant variations in the generalized Ra activity.  
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Maclear (1995) carried out a study on the groundwater Monitoring Network of Swartkops River 

Alluvial Aquifer in Uitenhage. The study indicated that industries of Uitenhage and Despatch had 

polluted the shallow alluvial aquifer. The installation of the boreholes for the monitoring network 

was strongly recommended as their monitoring network would assist in providing the management 

tool to control groundwater pollution from the Swartkops River Basin. 

A groundwater quality study was also conducted in the Swartkops River Basin by Maclear (1993). 

The aim was to investigate the status of the existing groundwater quality in the area and the extent of 

pollution in the groundwater reserves. The investigation was aimed to assist the Department of Water 

and Sanitation and Algoa Regional Council in preparation of Water Quality Management Plan of the 

river basin. This investigation was triggered by the concerns of the deterioration of the water quality 

in the region as well as the request from industries of Uitenhage to increase the discharge effluent 

into the river. The results of the study revealed that the point pollution of groundwater and surface 

water are due to discharge from both residential areas and industries of Uitenhage and Despatch. It 

was, therefore, strongly recommended that in order to manage the water quality and control pollution 

in the area the boreholes be installed for monitoring network. The study recommended that 

monitoring be conducted continuously in order to have long observation records that would aid the 

knowledge and understanding of the existing parameters of the Swartkops River basin. 

Venables (1985) conducted hydrochemistry and isotope (age dating) study covering the northern 

portion of Uitenhage – the Coega Artesian Basin – to evaluate the Table Mountain Sandstone (TMS) 

artesian aquifer in the Uitenhage area. The study also involved the following: geological and 

geophysical work, drilling of boreholes, aquifer testing and hydrochemical sampling. The results of 

the study were intended to form the basis on decision-making with regards to restriction on drilling 

of boreholes and reduce abstraction in the Government Water Control Area (GWCA) and redefining 

the boundaries of the area need to be controlled. Based on the analysis of the results obtained, it was 

recommended that the size of the control area be reduced and cover only the areas that are sensitive 

to fluctuations in piezometric level. 

Parsons (1983) conducted a study using graphical methods to differentiate the water types. The 

boreholes delivered water of mixed origin were able to be defined as well as water derived merely 

from TMS and Cretaceous aquifer was also differentiated. Based on the results obtained, three major 

water types were recognised, i.e. water derived from TMS, Cretaceous aquifer and from mixing as a 

result of the leaking aquifer condition caused by the corroded casing. It was found that TMS and 
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Cretaceous water are mixing in the borehole. This was as a result of upward water flowing through 

the corroded casing and the water entered through the holes of the borehole casing. 

The hydrochemical and isotope study was conducted by Talma et al. (1982) involved the use of 

carbon (13C, 14C) concentration and Tritium (3H) for age dating of water. Another study by Talma et 

al. (1984) investigated groundwater in the Uitenhage surrounding using Isotopes. The study reported 

that at a time “the age of groundwater from the Uitenhage spring increase from recent to 26 000 

years old near Coega and the increase confirmed that the flow direction in the central part of the 

Coega River was WNW-ESE”, (Venables, 1985).             
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4. CHAPTER FOUR: METHODOLOGY 

4.1   Data Collection Methods and Tools  

The following methodologies were followed in order to achieve the aim as well as objectives of the 

study. 

4.1.1   Data Collection Method 

The existing hydrochemical and isotopic data as well as available information were used with the 

recent data to observe if there are any hydrochemical changes occurred over times. The information 

on groundwater level, surface water level, recharge (rainfall data) was gathered from different DWS 

databases and other relevant institutions.  

The data for groundwater levels for monitoring boreholes were extracted from the DWS database 

(Hydstra and NGA) and are given in Table 2. The data were extracted to assess the pattern of the 

temporal variation of hydrogeological processes and understanding the characteristics of aquifer 

systems. The groundwater levels include boreholes drilled in shallow and relatively deep aquifers.  

The boreholes in the shallow Coega Aquifer were drilled in the Bokkeveld group, however, the 

boreholes: M3N0003, M3N0006 and M3N0007 penetrated the shallow aquifer group (the TMG 

aquifer). The boreholes in the relatively deep Swartkops Aquifer were drilled in the TMG group 

aquifer. The results of water level fluctuations that are presented in this report were monitored on 

hourly intervals; however, the data was averaged for monthly periods (Table 2). The relationship 

between the groundwater level elevation and surface topography of the area investigated was 

determined using the Bayesian Interpolation Method and correlation coefficient (R2) was calculated.   

Groundwater and surface water samples were collected at UAB in the Swartkops River catchment. 

Groundwater samples were collected from six borehole sites (BH1, BH2, BH3, BH4 and BH5) 

including the Uitenhage spring. The surface water samples were collected at upstream (S1), 

midstream (S2) and downstream (S3) points of the Swartkops River, as well as at discharge points of 

the two Waste Water Treatment Works (WWTW’s). The groundwater and surface water samples 

were collected at the sampling points along the Swartkops River for isotope, hydrochemical, heavy 

metal and microbial analysis. However, the samples at WWTW’s were only collected for microbial 

(bacteria) analysis. All these samples were collected on a quarterly basis (wet and dry season) – from 

November 2014 to April 2016. The heavy metal samples were only collected during the wet season. 
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Tritium results were used to determine the status of circulation of water within the aquifers and to 

determine the source, from which the water is derived. Tritium values can vary both spatially and 

temporally, it is therefore, imperative to establish the closest measurement of precipitation point in 

order to provide a reference to estimate groundwater recharge and travel times. Unfortunately, no 

tritium data was found at Sandveld rainfall station, hence the closest station to Sandveld (Cape Town 

Airport rainfall station) was used. This data was obtained from the Global Isotopic database hosted 

by the International Atomic Energy Agency (IAEA-GNIP, 2017). The monthly average tritium 

values for the rainfall station and the actual tritium values for groundwater and surface water of the 

study area, which were collected from the year 1961 to 2012 and 2014 to 2015 respectively, were 

used to estimate the recharge and age of water.  

4.1.2 The Field Methods 

During the sampling, the pH-EC meter was used to measure the electrical conductivity (mS/m), pH 

and temperature (ºC) of the groundwater and surface water samples. It was ensured the pH-EC meter 

was re-calibrated and cleaned with distilled water before it was used, for accurate reading. The 

Solinst dip meter was used to measure the borehole water level. The water samples were taken at five 

minutes intervals. When taking the sample from the borehole, the standard sampling procedure was 

followed, i.e. the pump was switched on for at least thirty to sixty minutes before the first sample 

was taken. All the samples that were collected from the springs and artesian boreholes were taken 

directly from the spring-eye.  

The surface water samples were collected from the Swartkops River at the upstream, midstream and 

downstream, sampling points during the site visits. 

The groundwater and surface water samples for isotopic analysis were collected using a 1-litre High 

Density Polyethylene bottles and were covered immediately after the sample has been taken to avoid 

direct sunlight and were stored in a cooler box at 40ºC before being submitted for analysis at the 

Environmental Isotope Group of iThemba Laboratory in Gauteng (iThemba Labs - isotope 

laboratory). 

Hydrochemical samples were collected using a 250 ml of polyethylene sample bottles. Immediately 

after the samples have been taken it was ensured that the bottles are completely filled and tightened 

with plastic caps. The macro samples were preserved with the preservative (MgCl2) and also stored 

in the cooler box. All information, as per site, was recorded in the booklet noting the EC (mS/m), pH 
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and Temperature (ºC). Where possible, water level was also measured using the dip meter and it was 

measured every time the sample is taken. The sample bottles were labelled correctly per station/site.  

The water samples for metal analysis were also collected in November 2015 and January 2016 of the 

study area. The variation in the levels of metals in groundwater and surface water samples can be a 

good indicator of either geogenic or human induced pollution. Samples for metal analysis were 

collected using 2 ml glass bottles. The samples were sent to Hydrogeology laboratory at the School 

of Geosciences, University of the Witwatersrand, Johannesburg.  

Bacteriological samples were also collected and stored in the cooler box. The samples were also sent 

to the Hydrogeology laboratory at the School of Geosciences - University of the Witwatersrand. 

4.2 The Analytical Methods and Procedure Followed 

4.2.1   Chemical Data and Laboratory Analysis 

The samples were then sent to Roodeplaat - Resource Quality Information Services (RQIS) 

laboratory in Pretoria for analysis. The chemical analysis was carried out as suggested by standard 

methods (APHA, 1995). The following major ions were analysed: Ca, Mg, Na, K, Cl, SO4, NO3 and 

F; however, Mg and Ca were analysed using titration - EDTA. The concentration of Cl in the 

samples was determined using Argentometric titration. The Piper diagram method (Figure 16), which 

is commonly used in filtering and screening large chemical data was used to interpret major anions 

and cations. This method explicitly defines the spatial change in water chemical composition among 

different environments (Domenico and Schwartz, 1998).  
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                Figure 16: Water type classification (Back, 1961; Hanshaw, 1965). 

The water chemistry was also represented by a Stiff Diagram (Figure 17), which is used to 

characterise water samples by analysing the concentration of major cations (Ca, Mg and Na+K) and 

anions (Cl, SO4, and HCO3). Stiff diagram was found to be useful in making comparisons of water 

derived from different sources and to identify the differences and similarities of water types.  Cations 

and anions are plotted on the left and right of the vertical axis, respectively. The contamination that 

was derived from the same water source was studied using the same pattern. As a result, all 

groundwater, surface water and WWTW water samples were analysed and demonstrated in this 

pattern to show the evidence of contamination, Figure 17. The analysis was done to determine on 

how the groundwater has impacted, to what extent has the contaminants migrated to groundwater 

systems, what is the concentration of contaminates and what are the sources of contaminants. 
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                               Figure 17: Stiff diagram of major ion analyses of water (Stiff, 1951). 

4.2.2   Bayesian Interpolation Method 

The Bayesian Interpolation method was also used to establish if is there any strong relationship 

between the surface topography and groundwater level elevation in the study area. This method was 

used in order to obtain good estimation of water levels and to establish if there are any illegal 

groundwater abstractions because the Uitenhage area is a Government Water Protected Area. The 

correlation can only exist in areas where there are static water levels. According to du Plessis (2010), 

the sudden variation of surface topography, groundwater abstraction and aquifer recharge may affect 

the results. 

In order to determine the interpolation using Bayesian Interpolation method, the following 

information was required: 

 The coordinates of several boreholes in the study area. 

 Groundwater level elevation (mamsl). 

In order to establish the correlation nine boreholes were selected for water level monitoring points.  
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4.3 Groundwater and Surface Water Interaction  

4.3.1  Groundwater Flow Direction  

The understanding of groundwater flow direction has critical importance for the investigation of 

groundwater and surface water interaction as well as pollution monitoring (Freeze and Cherry, 

2002). Unlike in shallow aquifers, the flow direction of groundwater in deep aquifers generally does 

not reflect the surface water flow direction. In addition, the groundwater flow direction is also vital 

in understanding the groundwater system in terms of recharge and discharge, especially in case of 

gaining or losing streams (Otutu, 2010).  

The groundwater flow direction was computed using surfer 8 software to gain an insight on the 

groundwater flow system (Figure 18). The groundwater and surface water elevations were used to 

construct water table maps (contour map) in order to predict the direction of groundwater flow. 

Eleven groundwater level monitoring borehole (Table 2) were used in the construction of the contour 

map, with which their longitudes, latitudes and surface elevations were measured in relation to 

meters above mean sea level. To determine the groundwater flow direction, the groundwater level 

(static groundwater level) monthly average data for November 2015 to January 2016 was used. The 

groundwater level (static water level) in the borehole was measured using a dip meter. The actual 

static water levels in relation to mean sea level of different locations were obtained by subtracting the 

borehole groundwater level depth from surface elevations, in relation to mean sea level. The static 

water level values were contoured using longitudes and latitudes in surfer 8 software. The lines on 

Figure 18 represent the water table contours and groundwater flows from the highest contour line 

values to the lowest contour line values. The flow direction is perpendicular to the contour lines. The 

colours on the map represent the magnitude/ intensity of groundwater flow (Otutu and Oviri, 2010).  
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Figure 18: Uitenhage groundwater contour map of the study area, using surfer 8 software.  
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4.3.2 Stable Isotope Analysis and Laboratory Methods 

The isotopic composition of 18O and 2H data was used to evaluate the connectivity of water from the 

different water systems and it is given in per mil (‰) deviation from Standard Mean Ocean Water 

(SMOW: Freeze et al. 2002; Clark et al. 1997). The global Meteoric Water Line (GMWL), equation:  

δ2H=8δ18O+10(‰) (Craig, 1961) and Local Meteoric Water Line (LMWL), equation: 

δ2H=5.8δ18O+5.2 (‰) (Van Wyk, 2010) were used in the interpretation of isotopic data as a result of 

linear regression of δ18O and δ2H data water samples.  

The stable isotope water ratios of D/H (2H/1H) and 18O/16O were analysed at the iThemba Labs, 

Gauteng and School of Geosciences, University of the Witwatersrand. Analytical results were 

presented in delta-notation. The equipment used for stable isotope analysis consists of a Thermo 

Delta V mass spectrometer connected to a Gas bench. Equilibration time for the water sample with 

hydrogen as well as with CO2 is 40 minutes and twenty hours respectively. Laboratory standards, 

calibrated against international reference materials, are analysed with each batch of samples. In term 

of the analytical precision, the O and H content were estimated to be 0.2‰ and 0.8‰, respectively. 

4.3.3 Water Microbiology Data and Laboratory Analysis  

Water samples for bacteriological analysis that were collected in November 2014, June 2015, August 

2015 and January 2016 were analysed for Enterobacter Aerogenes, Proteus Mirabilis and Escherichia 

Coli (E. Coli) using the Most Probable Number (MPN) technique (SABS) and the results were 

expressed as MPN/100 ml. 
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5. CHAPTER FIVE: THE ESTABLISHMENT OF A RELATIONSHIP 

BETWEEN SURFACE TOPOGRAPHY AND GROUNDWATER 

LEVEL ELEVATION BY USING BAYESIAN INTERPOLATION 

METHOD  

5.1   Results  

Surface Topography and Groundwater Level Elevation 

The relationship between the groundwater level elevation and surface topography of the area 

investigated was determined using the Bayesian Interpolation Method and correlation coefficient 

(R2) was calculated using equation in Figure 19 and the correlation coefficient of 0.9953 was 

established. The results indicated the strong relationship between surface topography and 

groundwater level elevations in the study area, in both aquifers.  

Table 2: Groundwater level monitoring data of the existing monitoring network; the borehole 

geographic coordinates, borehole depth, measured depth as well as the surface elevation and 

groundwater level elevation. 

Site No.  

Borehole 

Aquifer 

type 

 

Longitude 

(East) 

Latitude 

(South) 

Borehole 

depth 

(mbgl) 

Static water 

level (m) 

Surface 

Elevation 

(mamsl) 

Groundwater 

Level 

Elevation  

(mamsl) 

M1N0003 TMG 25.33086111 -33.78961111 n/a 21.690 95.000 73.310 

M1N0004 TMG 25.32944444 -33.80113889 182.900 8.767 81.000 72.233 

M1N0034 TMG 25.30125 -33.74361111 258.000 32.859 195.000 162.141 

M1N0036 TMG 25.331361 -33.777611 152.000 16.916 73.000 56.084 

M1N0038 TMG 25.34147222 -33.80227778 157.000 39.510 112.000 72.490 

M3N0001 Bokkeveld 25.27302778 -33.64422222 91.200 20.036 684.000 663.964 

M3N0002 Bokkeveld 25.45363889 -33.64716667 115.520 3.537 143.000 139.463 

M3N0003 TMG 25.45094444 -33.64305556 188.480 13.032 169.000 155.968 

M3N0004 Bokkeveld 25.38683333 -33.59675 31.920 7.714 285.000 277.286 

M3N0006 TMG 25.55813889 -33.73555556 53.100 3.467 62.000 58.533 

M3N0007 TMG 25.5800000 -33.73786111 128.000 0.000 52.000 52.000 
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                Figure 19: Groundwater Level Elevation vs. Surface Elevation. 
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The following boreholes: M3N0001, M3N0002, M3N0003, M3N0004, M3N0006, and M3N0007 

were drilled in the Coega Ridge Aquifer, whilst M1N0003, M1N0004, M1N0034, M1N0036 and 

M1N0038 were drilled in the Swartkops Aquifer. Figure 20 shows that there is a strong relationship 

between groundwater level elevations and surface topography, which indicates that both aquifers are 

shallow, however, Swartkops Aquifer is relatively deep as compared to Coega Ridge Aquifer. The 

groundwater levels increases as the surface elevation increases, which is an indication that 

groundwater levels are closer to the surface. This exhibits that groundwater elevation mimics the 

topography and groundwater flows towards the directions of the surface water depending on the 

slope.  
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        Figure 20: Shows Bayesian Interpolation Conceptual Model. 
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5.2   The determination of groundwater flow direction using surfer 8 software.  

The groundwater elevation contour map (Figure 21) of the study area shows that the direction of the 

groundwater in the alluvial aquifers is towards the easterly direction, following the topographic 

gradient, towards the Blue Water Bay, Indian Ocean. The aquifer systems of the Uitenhage area 

consist of four major hydrological units (Figure 29). The two aquifers, Swartkops and Coega 

Aquifers are divided by the Coega Fault. The fault acts as a path way for groundwater flow and due 

to the difference in hydraulic gradient, pollutants could not migrate from Swartkops Aquifer to the 

Coega Aquifer. However, groundwater does flow from the Coega Ridge Aquifer through the fault to 

the Swartkops Aquifer. This is probably due the artesian condition of Coega Aquifer and surface 

elevation, which decreases from west to east. The contours show that fault is permeable and has no 

impact on groundwater circulation. Figure 21 shows the vectors in the map that represent the 

groundwater flow direction.  
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    Figure 21: Contour map showing groundwater flow direction in the study area 
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6. CHAPTER SIX: TO ESTABLISH GROUNDWATER-SURFACE 

WATER INTERACTION USING ENVIRONMENTAL ISOTOPE 

ANALYSIS, BACTERIOLOGY AND TRACE METALS 

6.1 The determination of groundwater and surface water recharge 

using the isotope tracers (18O, 2H and 3H)    

Isotopes of 18-Oxygen (18O) and Hydrogen (2H) 

The results of isotopic analyses for five periods/sampling campaign (i.e. November 2014, February 

2015, June 2015, August 2015 and November 2015) are shown in Table 3 and Figure 22. The Global 

Meteoric Water Line (GMWL) and Local Meteoric Water Line (LMWL) based on the Sandveld 

station, which indicate precipitation with slopes s=8 and s=5.8, respectively, are also shown in 

Figure 22. The plot (Figure 22) indicated that the isotopic analyses data points are clustered into five 

separate groups, i.e. Group A to Group E. 
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Table 3: Analytical Results of Environmental Radiogenic Tritium and Stable Isotope Data (SMOW). 

Site 

ID 

Altitude 

(m) 
Date 

δ D 

(‰) 

δ 18O 

(‰) 
Tritium (T.U) 

Cl 

(mg/L) 

BH3 139 Nov. 2014 -20.28 -5.06 0.3 ±0.2 37.4 

BH4 127 Nov. 2014 -23.54 -5.25 0 ±0.2 4894.5 

BH2 116 Nov. 2014 -21.3 -5.14 1.4 ±0.3 35.9 

BH1 225 Nov. 2014 -19.1 -4.69 0 ±0.2 86.3 

Spring 176 Nov. 2014 -17.43 -4.82 0 ±0.2 32.9 

S1 138 Nov. 2014 -12.13 -3.17 1.4 ±0.3 44.2 

S2 41 Nov. 2014 -8.14 -2.12 1.2 ±0.3 251.6 

BH3 139 Feb. 2015 -20.84 -5.44 0.3 ±0.2 39.3 

BH4 127 Feb. 2015 -22.76 -5.67 0 ±0.2 37.2 

BH2 116 Feb. 2015 -20.03 -5.16 0.2 ±0.2 - 

BH1 225 Feb. 2015 -19.19 -4.69 1.1 ±0.3 79.1 

Spring 176 Feb. 2015 -18.9 -5.25 0 ±0.2 34 

    S1 138 Feb. 2015 -6.38 -2.28 2.1 ±0.3 45.1 

    S2 41 Feb. 2015 -4.18 -1.49 2.3 ±0.3 453.5 

S3 28 Feb. 2015 -4.45 -1.13 1.5 ±0.3 336 

BH3 139 Jun. 2015 -25.9 -4.73 0 ±0.2 37.9 

BH4 127 Jun. 2015 -27.5 -4.96 0.6 ±0.2 - 

BH1 225 Jun. 2015 -25.7 -4.49 0.5 ±0.2 83.3 

Spring 176 Jun. 2015 -23.8 -4.62 0.8 ±0.2 34.6 

S1 138 Jun. 2015 -17.7 -3.43 2.0 ±0.3 41.4 

S2 41 Jun. 2015 -11.5 -2.61 1.3 ±0.3 469.2 

S3 28 Jun. 2015 -15.9 -2.49 1.8 ±0.3 488.3 

BH3 139 Aug. 2015 -19.4 -3.34 0.2 ±0.2 35.6 

BH1 225 Aug. 2015 -18.5 -3.13 0.9 ±0.3 288.3 

BH5 20 Aug. 2015 -12.8 -1.67 1.8 ±0.3 1229.1 

Spring 176 Aug. 2015 -16.6 -2.81 0 ±0.2 32 

S1 138 Aug. 2015 -14.2 -2.66 1.4 ±0.3 33.4 

S2 41 Aug. 2015 -14.3 -2.26 1.9 ±0.3 127.1 

S3 28 Aug. 2015 -9.3 -1.3 2.6 ±0.3 483 

BH3 139 Nov. 2015 -19.2 -3.28 0.1 ±0.2 55.3 

BH4 127 Nov. 2015 -21.3 -3.5 0.8 ±0.2 2275.5 

BH1 225 Nov. 2015 -17.6 -2.5 0.5 ±0.2 155 

BH5 20 Nov. 2015 -11.1 -0.96 2.3 ±0.3 1217.6 

Spring 176 Nov. 2015 -16.3 -3.03 2.3 ±0.3 41.1 

S1 138 Nov. 2015 -12 -2.04 2.1 ±0.3 47.6 

S2 41 Nov. 2015 -14.3 -2.75 2.1 ±0.3 141.7 

S3 28 Nov. 2015 -5.3 -0.47 3.3 ±0.4 445.8 



57 
  

The groundwater samples as well as the spring water sample collected in November 2014 and 

February 2015 (Group B) are relatively isotopically less enriched with heavy isotopes signatures as 

compared to the water samples collected in June 2015(Group C), i.e. they plot above LMWL. They 

probably represent the rainfall water or local shallow groundwater circulation with no evaporation. 

The surface water samples for S1 (upstream) in November 2014 and February 2015(Group A),  plots 

on GMWL indicating the impact of rainfall water; however, S2 (midstream) in November 2014 and 

February 2015 (Group A) plot very close to LMWL indicating the impact of the rainfall as well as 

slightly evaporation. S3 (downstream) in February 2015 indicated high evaporation (Group E).   

All groundwater samples and the spring water sample collected in June 2015 (Group C) plot below 

LMWL, which indicates that the recharge took place when the evaporation process was also 

occurring. As a result, the water samples are more enriched with less heavy isotopes signatures. The 

other factor that may have caused the depletion is isotopic fractionation, which is greater at low 

temperature, i.e. δ18O values are more negative in winter. The clustering of groundwater samples 

indicates the deep groundwater circulation as well as seasonal change. This was expected during the 

winter season as the water table is usual lower.  

The surface water samples collected in June 2015 were clustered with the samples in Group D, 

which were more enriched with heavy isotopes signatures as compared to groundwater samples for 

the same month. The surface water samples clustered together with the groundwater samples 

collected in August 2015 and November 2015 (Group D), however, S2 water samples collected in 

August 2015 and November 2015 (Group D), also depleted with relatively the same magnitude as 

groundwater samples for the same months.  This was probably caused by the seasonal change from 

winter to summer.  The isotopic composition of the S2 water samples collected in August 2015 and 

November 2015 (Group D) in relation to other river water samples for the same period was probably 

due to damming effect of the river at that point which increases concentration of isotopes molecules 

resulting from higher water volume and the bathymetric characteristics of the dam due to variation in 

sediment fluxes. This could be also probably due to groundwater mixing with surface water, i.e. the 

groundwater discharging to surface water during that season, which was mixed with water that was 

slightly exposed to low evaporation.    

The samples collected in June 2015, which are in Group C, were more depleted as compared to 

August 2015 and November 2015 (Group D). This concurs to the expectation that the isotopes 

molecules least depleted before groundwater recharges during this season .i.e the evaporation was 
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expected to be very low. In addition, owing to temperature effect, isotope ratios of winter rainfall are 

lower than of the summer rainfall (Clark and Fritz, 1997, Datta et al. 1991).  

The surface water samples S1 and S3 as well as samples collected from the borehole - BH5 at 

Despatch in August 2015 and November 2015 (Group E) shows a greater evaporation than other 

groundwater samples and spring water sample for the same period. The results indicated that the 

isotopic composition of groundwater from borehole BH5 was related to the river water; there was a 

significant deflection from LMWL in relation to all other points. The samples were characterised by 

heavy isotopes signatures and this was probably due to high evaporation occurring during these 

months (summer season) and other climatic conditions such as high temperatures that was associated 

with drought, which was experienced at a time. The BH5 is nearby the Swartkops River, therefore, 

was possibly recharged by the surface water (river water) via bank infiltration, which was exposed to 

high evaporation before the recharge.  
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Figure 22 : δ18O vs.  δD plot in relation to the Global Meteoric Water Line (Craig, 1961) and Local Meteoric Water Line (LMWL in 

Sandveld). 
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Figure 23 shows high concentration of chlorine in BH4 with less enriched in heavy isotopes (18O) 

and BH5 enriched with heavy isotopes. The high concentration of chloride in the borehole- BH4 was 

noted only in November 2014 and November 2015, which was probable due to irrigation return or 

discharge of deep groundwater. 

The high concentration in BH5 was also probable due to the influence of the stream, which was 

influenced by industries (Uitenhage and Dispatch) and sewage treatment works that are discharging 

directly to the stream (river); owing to the fact that high concentration was noted at the S2 and S3 of 

the Swartkops River where Kwalanga WWTW is discharging, it was supported by the result of 

previous studies, such as Maclear (1993), Maclear (1995) and Binning and Baird (2001). The 

pollutants were probably due WWTW. The sample collected from the WWTW at Kwalanga (Table 

6) concentration was noted to be high (1499.90 mg/L). As a result, the BH5 was drilled ± 700m 

away from the stream, the borehole is expected recharged by the stream through bank infiltration, 

which was also supported by the isotope results.  

The shallow groundwater aquifer (Swartkops) was more enriched in heavy isotopes (18O) and 

consists of high concentration of chlorine, which indicated the interaction of deep groundwater 

circulation and surface water. However, artesian aquifer (Coega) indicated high concentration of 

chlorine and depleted 18O values, which indicated deep groundwater circulation with long residence 

time.  As it was indicated above that there was no influence of the fault, groundwater does flow from 

Coega Aquifer through the fault to Swartkops Aquifer; however, groundwater does not flow from 

Swartkops Aquifer to Coega Aquifer as a result of unfavourable gradient conditions.    
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         Figure 23: Relationships between chloride (Cl) and δ18O for stream water, groundwater and spring water. 
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Tritium (3H) 

The average monthly tritium data of the Cape Town rainfall station for the year 1961 to 2012 were 

plotted in Figure 24. The plot indicated the decline in the tritium trend, from about 56 TU in 1961 to 

2.0 TU in 2012. Tritium values from the Cape Town rainfall station were compared with those used 

in the current study as means of evaluating water composition as well as the age of water. 

 

The water age was estimated and classified according the following ranges of tritium values: 

The results of the tritium concentrations were shown in Table 3 and Figure 25. Figure 25 shows the 

mixing pattern of tritium concentration for both groundwater and surface water samples. Generally, 

low tritium values indicate water with long circulation time or deep groundwater circulation whereas 

higher values signify young or sub-modern water, predominantly in the shallow aquifer or recharge 

directly from rainfall.   

The surface water samples in November 2014 yielded the concentration of 1.4 TU for S1 and 1.2 TU 

for S2. The surface water samples indicated the recent recharge, which was mixing with groundwater 

emanated from the mountains (high altitude areas). This was probably due to seasonally variation. 

Figure 24: Tritium trend at Cape Town rainfall station from year 1961 to 2012 (IAEA-GNIP, 

2017) 
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The groundwater samples yielded the concentration of 0TU for BH1, 1.4TU for BH2, 0.3TU for 

BH3, 0TU for BH4 and 0TU for the Uitenhage spring.  All groundwater samples indicated the deep 

groundwater circulation pattern apart for BH2, which is an artesian borehole; this could be an 

indication of the mixing of recently recharged water with deep groundwater.  

In February 2015, the concentration of tritium in surface water samples were 2.1 TU for S1, 2.3 TU 

for S2 and 1.5 TU for S3. The high concentration of tritium indicated a direct recharge from rainfall. 

The samples of groundwater yielded the tritium concentration of 0 TU for spring, 1.1 TU for BH1, 

0.2 TU for BH2, 0.3 TU for BH3 and 0 TU for BH4. It is evident from the figure that the majority of 

groundwater samples have lower tritium concentration compared to surface water samples. The 

tritium concentration in groundwater indicted that the boreholes tap water from deep groundwater, 

however, the BH1 could be recharged from recent water derived from highlands, as it was drilled in 

the TMG outcrop.  

The concentration of tritium in June 2015 water samples for S1 was 2.0 TU, S2 was 1.3 TU and S3 

was 1.8T U. The high concentrations of tritium were noticeable, which in this case were also 

possibly indicating recent recharge from the surrounding high areas. The concentration of tritium in 

the Uitenhage spring was 0.8 TU, BH1 was 0.5 TU, BH3 was 0 TU and BH4 was 0.6 TU. The 

relatively high concentration of tritium in groundwater samples, including the spring, indicated deep 

groundwater circulation mixing with shallow groundwater. This indicated that the aquifer could be 

recharged from the high areas or it could be, as results of seasonal change. However, the zero tritium 

concentration in BH3 indicated water originating from deep groundwater water circulation.    

In August 2015, the tritium concentrations in surface water samples were 1.4 TU for S1, 1.9 TU for 

S2 and 2.6 TU for S3. As the case in June 2015, the high tritium concentration was probably an 

indication of the recent recharge from the winter rainfall. The surface water might also be mixing 

with groundwater derived from the mountains. The groundwater samples had relatively low 

concentration of tritium, which were 0.9 TU for BH1, 0.2 TU for BH3, 1.8 TU for BH5 and 0TU for 

Uitenhage Spring. The deep water circulation was again the cause of low tritium as it was seen in 

other seasons as well for in BH3 and spring. In the case of BH1, it was probably due to the same 

reason as that of February 2015, i.e., recent recharge that was emanating from the highlands. In the 

case of BH5, it was drilled next to the Swartkops River, therefore, was possibly recharged by the 

surface water (river water) via bank infiltration. This was an indication of the interconnection 

between the surface water and groundwater.      
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The high concentration of tritium was noticeable in surface water samples for November 2015 and 

the concentrations were as follows: 2.1 TU for S1, 2.1T U for S2 and 3.3 TU for S3. This was 

probably due to recent rainfall (winter rain). The tritium concentration was also high in BH5 (2.3TU) 

and Uitenhage spring (2.3TU). In the case of BH5, it was probably due to the same reason as in 

August 2015, i.e., recharged via bank infiltration.  The other groundwater samples yielded the tritium 

concentration as follows: 0.5 TU for BH1, 0.1 TU for BH3 and 0.8 TU for BH4. The relatively high 

tritium concentration of BH1 indicated the recent recharge from the mountains as in the case of all 

other months where samples were collected, except for November 2014. For BH5, it was again due 

to recharge from the river as in the case of August 2015. 

The results of the tritium indicated the limited interaction between the Swartkops River and BH5. It 

was revealed that the Swartkops River was recharged from groundwater emanating from the 

mountains, which in turn recharged BH5. There was no interaction established between the other 

boreholes and Swartkops River. This was expected since there are located on the other side of the 

fault (Coega Artesian Aquifer) due to the groundwater flow gradient as it was indicated in section 

5.2. This indicates that again the fault only acted as a pathway for groundwater flow from Coega to 

Swartkops Aquifer; as a result, the Coega Aquifer was not vulnerable to the pollution of Swartkops 

Aquifer.    
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Figure 25: Mixing pattern of deep circulation and low 3H water vs shallow circulating high tritium water. 
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6.1   Hydrochemical analysis 

The sample gives an overview of the water quality during the period of November 2014 to January 

2016 (Table 6, Appendix A). Groundwater, surface water and WWTW samples were analysed in the 

RQS Laboratory (DWS-Pretoria). The nature and change in water type (characteristics) was 

illustrated using the piper diagram. Figure 26 represent the groundwater and surface water chemistry 

data of the study area. Based on the plot, chemical analyses of groups of water samples from various 

localities in the TMG aquifer, the diamond field of the Piper diagram shows Na-Cl type of water 

except BH4, which indicated the high salinity in the chemical properties of water. The water type is 

that dominated by Na-Cl water, which is typical old marine water deep groundwater type. The 

chemistry signature indicates that water has undergone significant ion exchange because of the long 

residence time in the aquifer. The sample from the BH4 only in June 2015 plotted on the Ca-Cl-SO4 

dominated water type zone. BH4 water sample indicated that the water was typical of mine water 

environment, which it was not clear since there were no mining activities. The surface and 

groundwater samples plotted within the same position within diamond shape and both showed the 

attributes of being deep groundwater type. This means that there is an interaction between 

groundwater and surface water resources.  

6.2  Physical chemistry  

The electrical conductivity for BH4 was also very high ranging from 734 to 1402 mS/m. All the 

parameters in BH4 were noted to be high (Table 6), which exceed the maximum acceptable limit of 

70 mS/m of water quality guidelines - Second Edition (1993) for domestic use. These guidelines 

were set by the Department of Water Affairs and Forestry in 1993. The high concentration was 

probably due to influence of underlying geology. The BH5 electrical conductivity exceeded the 

maximum allowable standard of 300 mS/m to 444 mS/m in November 2015 and other parameter also 

noted to be high. This was probably due to some other activities that might be occurring in vicinity 

of the borehole within the settlement and industries. The isotopes results indicated that the borehole 

(BH5) was receiving water from the Swartkops River, which is also polluted. This was also 

supported by the studies done by Maclear (1993), Maclear (1995) and Binning and Baird (2001). The 

electrical conductivity of surface water samples for WWTW at Kwalanga and S2 in November 2015 

were   572 mS/m and 508 mS/m, respectively. This was probably due to the WWTW at Kwalanga 

that is discharging directly to S2 monitoring point.  
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The spring water samples indicated low TDS ranging from 91.12 mg/L to 97.30 mg/L showing low 

ion concentration, which indicates relatively fast groundwater circulation in mountains (Adelana, et 

al., 2010). The borehole BH1 also indicated fast groundwater circulation with low ion concentration 

and also relatively variable isotopic composition, however, the significant change in TDS (ranging: 

728.96 mg/L to 1583.21 mg/L) values were only noted in August 2015 and November 2015, which 

indicated that the deep groundwater circulation was mixing with fast groundwater circulation in the 

mountains. 
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  Figure 26: Piper Diagram of the Uitenhage Water Samples 
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The water chemistry was also represented in a Stiff Diagram (Figure 27) in order to characterise 

water samples by analysing the concentration of major cations (Ca, Mg and Na+K) and anions (Cl, 

SO4, and HCO3). The plot on Figure 27 represents average values of ten water samples for both 

groundwater and surface water samples including WWTW water samples. The BH5, S3 water 

sample as well as Kevin and Kwalanga WWTW water samples have funnel shapes, which indicated 

the relatively high Na-Cl and Mg-HCO3-SO4 with relatively low Ca concentration. The BH4 also 

had funnel shape but indicated Na-Cl and Ca-Mg-SO4 with low concentration of HCO3. The BH1 

and S2 water samples indicated the Na-Cl with relatively low Ca-HCO3 concentration but no 

concentration of Mg-SO4. BH3 water sample only indicated very low concentration Na-Cl water 

type.  Uitenhage spring and S1 water samples indicated only very low concentration of Cl. 
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Figure 27 : Stiff Diagrams of the Uitenhage Water Sample 
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6.3 Metals  

The concentrations of metals were investigated in the study area in November 2015 and January 

2016 (Table 4) in order to determine the possible link between concentration of trace metals that are 

within the upper soil surface and the concentration of the trace metal observed in groundwater 

samples through percolation.   

The concentrations of Pb in surface water samples in the November month from site S1 was 13.24 

ppb, S2 was 9.17 ppb and S3 was 6.13 ppb. The concentration of Pb from a groundwater samples in 

the month of November from sites BH4 was 2.28 ppb, BH3 was 0 ppb, BH1 was 4.4 ppb and BH5 

was 3.74 ppb. The Pb concentration from the spring was 71.48 ppb. According to South African 

National Standards (SANS 241-1: 2011) the acceptable limit for Pb was 26.0 ppb. This means that 

all the surface water and groundwater points were within the limit except for the water sample 

obtained from the Uitenhage spring. The Uitenhage spring might be directly fed from deep 

groundwater circulation that has passed through geological layers with a high content of Pb, which 

results to water from deep aquifer containing higher concentrations of Pb. The results for Pb from the 

surface water samples S1, S2, and S3 were 13.24 ppb, 9.17 ppb and 6.13 ppb, respectively. The 

depreciation of the concentration of Pb from upstream (S1) to downstream (S3) could be associated 

with dilution of highly concentrated water from upstream by stream water further downstream. The 

groundwater samples indicated the concentrations of 4.4 ppb, 0 ppb, 2.28 ppb and 3.74 ppb for Pb 

from BH1, BH3, BH4 and BH5, respectively; which were low concentrations as compared to surface 

water samples. This could be associated with the leaching from rocks, given the fact that the 

streamflow is recharged by water emanating from the mountains. In addition, the source of Pb could 

be the farming in areas surrounding S1, i.e. Pb might be emanating from the fertilisers (phosphate 

fertilizers and micronutrient fertilizers). The groundwater resource is protected from the runoff that 

comes with a high concentration of Pb from the farmer’s fields in the vicinity of S1 and that is the 

reason why the groundwater samples have the low concentrations of Pb. 

The concentration of Cu and Cd was zero for both groundwater and surface water samples as there 

are no known sources of pollution that contain these particular elements. The vivid variation of 

surface and groundwater concentrations of Pb was a clear indication of a limited interaction between 

groundwater water and surface water resource. However, Cu from BH1 had high concentration 

(46.83 ppb), which was way above the SANS 241-1: 2011 limits. Furthermore, this was an outlier, 

which its concentration could not be associated with any activity on site and it could not be 

associated with local geology of the area either. 
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The concentration of Pb in surface water samples in the month of January from site S1 was        

11.02 ppb, S2 was 9.42 ppb and S3 was 15.59 ppb. The concentration of Pb from groundwater 

samples in the month of January from sites BH1 was 0 ppb, BH3 was 16.89 ppb, BH4 was 0 ppb, 

and BH5 was not analysed. The concentration of Pb from the spring was 26.18 ppb which was above 

the limit in terms of SANS 241-1: 2011. Even during the month of January the surface water points 

and groundwater points were within the limit, except for the water sample obtained from the 

Uitenhage spring. The reason for the high concentration of Pb in the Uitenhage spring was the same 

as the one cited during the month of November, and the reason was that the spring might be directly 

fed from deep groundwater circulation that has passed through geological layers with a high content 

of Pb, which results to water from deep aquifer containing higher concentrations of Pb. On average, 

the concentrations of Pb on the samples obtained in November 2015 was higher than that one of the 

concentrations obtained in January 2016 and the occurrence of rain in January was lower than the 

occurrence of rain in November (Figure 10 in chapter 3). The less concentration of Pb in January can 

be associated with the low occurrence of rain in the same month, which led to an ineffective 

transportation of Pb content for detection of high concentrations to the resources. Even during the 

month of January 2016, on average, the concentration of Pb from surface water samples remained 

higher than the concentration Pb in groundwater; this can still be used as an evidence for the limited 

interaction between groundwater and groundwater resources.  

In month of January 2016, the concentration of Cd and Pb from spring water sample also exceeded 

acceptable standards. This was also probably due to deep groundwater circulation, which can be 

influenced by the underlying geology as a result of the long residence time or can be due to any 

influence of chemical factors. The concentration of Cd in BH3 and BH1, were 7.47 ppb and         

4.99 ppb, respectively, which experienced high concentration of Cd in January 2016. The 

concentration of Cu in BH1 was 415 ppb, which also exceeded the limit. These high concentrations 

may be due to farming activities that contaminate subsurface recharge, which leaks into the 

boreholes. This could also be related to seasonal change. Furthermore, the aquifer maybe mineralised 

with high concentrations of Cu then other metals. The TMG aquifers contain impurity of pyrite as 

well as sulphide metals;   BH1 is at the outcrop TMG.   
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Table 4: Analytical results of the concentration of heavy metals for groundwater and surface water 

samples 

 

Site ID 

Date Cadmium 

(ppb) 

Lead 

(ppb) 

Copper 

(ppb) 

 

Date 

Cadmiu

m (ppb) 

Lead 

(ppb) 

Copper 

(ppb) 

Limit  0.097 26.0 22.6 0.097 26.0 22.6 

Uitenhag

e Spring 

Nov 2015 0 71.48 0 Jan 2016 11.31 26.18 0 

S1 Nov 2015 0 13.24 0 Jan 2016 0 11.02 0 

S2 Nov 2015 0 9.17 0 Jan 2016 0 9.42 0 

S3 Nov 2015 0 6.13 0 Jan 2016 0 15.59 0 

BH4 Nov 2015 0 2.28 0 Jan 2016 0 0 0 

BH3 Nov 2015 0 0 0 Jan 2016 7.47 16.89 0 

BH1 Nov 2015 0 4.4 46.83 Jan 2016 4.99 0 415 

BH5 Nov 2015 0 3.74 0 Jan 2016 - - - 

6.4 Bacteriological analysis.  

Bacteriological culture was conducted to determine the link between the two water sources (surface 

water and groundwater). The distribution of different species for different water sources are 

presented in Figure 28 and Table 5. The wet season covers the months of November 2014 and 

January 2016 where as dry season covers the months of June 2015 and August 2015. Each bacteria 

count (MPN) is represented as MPN per 100ml. The negative (-) sign in the Table 5 indicates that 

there was no samples collected for the particular bacteria.   

Wet season (November 2014 and January 2016) 

During the wet season (November 2014), the E. Coli count for surface water samples, S1, S2 and S3 

were 56, 190 and 97 per 100ml of water, respectively. The E. Coli counts in the groundwater 

samples for the same month were read as 166/100ml in BH1, 150/100ml in BH2, 5/100ml in BH3 

and 219/100ml in BH4. There were only 7 counts/100ml that were found for the Uitenhage spring 

water sample. Figure 28 shows E. Coli count at S2 was high when compared to S1 and S3; this might 

be due to factors such as sewage effluents from treatment works that are discharging directly into the 

Swartkops River at S2. The bacterial count in borehole samples from BH1, BH4 and BH2 were 

found to be high as compared to BH3, however, BH4 had high number as compared to surface water 
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samples.  In the Uitenhage spring, low counts were noted as compared to surface water and 

groundwater samples, except that of BH3. The high counts on groundwater could be associated with 

surface runoff rich pesticides controls and fertilizers, which percolates into the aquifer and eventually 

leaks into boreholes. The high counts in groundwater can also be an indication of the recent 

contamination, which is due high water table that occurred during the wet season. Furthermore, it 

could also be associated with other farming activities that were occurring in that area during that 

season.  

The Enterobacter Aerogens (E. Aerogens) in Swartkops River was 53/100ml at S1, whilst none 

found at S2 and S3. In addition to the E. Aerogens living in water, it can also be found in the soil. 

The E. Aerogens found at S1 maybe from the soil in that area, which probably has a structure 

favouring their survival other than the soils structures found at S2 and S3. This could also be due to 

dilution when bacteria enter the river and mix with a high volume of freshwater. The bacterial counts 

in November 2014 for groundwater samples were 92/100ml, 0/100ml, 32/100ml, 51/100ml, for BH1, 

BH2, BH3 and BH4, respectively. The counts were high in BH1 as compared to other groundwater 

samples as well as surface water samples. This could be possibly due to land based activities such as 

farming activities and surface runoff during this season, as a results of high rainfall and irrigation 

flows as well as differing soil structures as indicated above. In the spring water sample, there was no 

microbial detected, which probably indicates that the spring water emanated from deep groundwater 

circulation. Unfortunately, the Proteus Mirabilis bacteria was not analysed for the month of 

November 2014.  

In January 2016, E. Coli was not detected in both surface water and groundwater, except in the 

Uitenhage spring; only one count was detected in the spring. Although this was a rainy season, the 

flows were very low as a result of drought; the low counts of the E. Coli bacteria indicated that the 

wastewater discharge was free of this bacteria. The E. Aerogens from the surface water samples the 

counts were 2/100ml, 35/100ml, and 17/100ml for S1, S2 and S3 respectively. More bacterial counts 

were noted in S2 followed by S3. The high counts were probably due to other land base activities 

such farming activities. The bacterial count at WWTW – Kwalanga and WWTW- Kevin were read 

as 0 and 2, respectively. The groundwater samples also had low counts that were noted as 1/100ml in 

BH1, 1/100ml in BH3 and 0/100ml in BH4. This low bacterial count was probably due to low 

rainfall during the month of January that is related to low runoff which was associated with year 

2015/2016 drought. In the Uitenhage spring, the E. Aerogens counts were high (80/100ml) as 

compared to surface water and other groundwater samples. This value seems to be related to surface 
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contamination. Given the fact that during the sampling period there was low rainfall received which 

could have transported contaminants into the spring through surface runoff.   

Proteus Mirabilis (P. Mirabilis) in the month of January 2016, S1 were read as 200/100ml; S2 as 

4/100ml and S3 as 61/100ml. The WWTW – Kwalanga and WWTW - Kevin were read as 7/100ml 

and 150/100ml, respectively. The counts in groundwater for BH1 were 32/100ml, 50/100ml for BH3 

and 180/100ml for BH4.  The counts at S2 were very low as compare to S1 and S3. This is probably 

due to damming effect at S2, which reduces the concentration of bacterial. The high counts at S3 

might be due to Kevin WWTW that is discharging between S2 and S3. This may be due to improper 

function of the treatment (WWTW) plant. In contrary, the counts were low at Kwalanga, which 

could be as a result of well-functioning of the WWTW. The P. Mirabilis was high (180/100ml) at 

BH4 as compared to BH3 and BH1. There could be many factors that can be associated with this 

high value as previously shown by hydrochemistry results in section 6.2. Besides the chicken farm 

that is located within the vicinity of this borehole, there could be other unknown anthropogenic 

activities that could be generating various contaminants which end-up in groundwater.  

Dry season (April to September) 

In June 2015, the E. Coli was observed to be 19/100ml at S1, 12/100ml at S2 and 7/100ml at S3. It is 

more likely that the high count of E. Coli in S1 maybe runoff as a result of winter rainfall and 

defecation, which is related to poor sanitation. The E. Coli was observed to be low at S3 as compared 

to S2. This difference in microbial community may be due to human settlement found in the area. 

There was no E. Coli detected in groundwater samples except in BH4, where one count was found. 

The Uitenhage spring also no bacteria were detected.  

E. Aerogens in surface water were 9/100ml at S1, 1/100ml at S2 and 74/100ml at S3.  The counts in 

groundwater were 1/100ml at BH1, 0/100ml at BH3 and 18/100ml at BH4. In the Uitenhage spring 

only one (1/100ml) count was observed. The S3 counts were high than S1 and S2, this possibly due 

to discharge from WWTWs that are discharging directly into the river between S2 and S3. The low 

counts in groundwater were observed and was probably due to seasonal change, except that of BH4, 

which was relatively high. As it was stated above at the vicinity of BH4 there could be other 

unknown anthropogenic activities that could be generating various contaminants which end-up in 

groundwater. It was possible that the relatively high count that month resulted from those unknown 

activities.  
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In June 2015 month, the observation of the P. Mirabilis counts from surface water samples were 0 at 

S1, 41 at S2 and 39 at S3. It might again be due to WWTWs discharging into stream between S2 and 

S3 as stated above. The bacterial counts in groundwater were 1 at BH1, 70 at BH3, 24 at BH4 and 9 

at Uitenhage Spring. The high counts in BH3 and BH4 were possibly as a result of seasonal change 

and/or land base activities in farms.     

The E. Coli counts were not found in samples collect in August 2015, except for S2 and BH5 (Table 

4), which were 5 for 3 respectively. The counts of E. Aerogens also behave similar as for the E. Coli 

for this period, again there were only found at S2 and BH5, which were 26 and 13 respectively. This 

again could be as a result of seasonal change.  

The counts on P. Mirabilis for surface water samples were 7/100ml for S1, 44/100ml for S2 and 

0/100ml for S3. The groundwater samples were 0/100ml for BH1, 12/100ml for BH3, 8/100ml for 

BH5 and 0/100ml for Uitenhage spring. The high counts on S2 were probably due to discharge of the 

WWTW (Kwalanga) that was discharging into the river at S2.  The counts found in groundwater 

were probably due to land base activities and seasonal changes. 

Overall, the results of the bacteriological counts indicated the evidence of limited interaction 

between the two sources (groundwater and surface water); there was good correlation between 

surface water (S2) and groundwater (BH5) in August 2015. However, it should be noted that the 

sample for BH5 was only collected in August 2015. Except BH5, all the other boreholes are located 

on the other side of the fault (Coega Ridge Aquifer). This was expected when taking into account the 

groundwater flow gradient. According to the groundwater water flow direction (Figure 12 and  

Figure 21), the fault that divides two aquifers acts as a pathway for groundwater flow, however, 

pollutants cannot migrate from Swartkops Aquifer to Coega Artesian Aquifer where most of the 

boreholes are located. The groundwater does flow through the fault from Coega Artesian Aquifer to 

Swartkops Aquifer. It appeared that the Coega Artesian Aquifer was not vulnerable to the polluting 

activities taking place in the vicinity of Swartkops Aquifer.  

Figure 28 depicts high bacterial count during the wet season (November 2014 and January 2016) as 

compared to dry season (June 2015 and August 2015). The pollutants were transported through 

runoff to the aquifers. This was an indication that both aquifers were vulnerable to pollution that 

emanates from land base activities (such as industrial waste, discharge from WWTWs and farming 

activities). 
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Figure 28: showing the bacterial count for different observation periods 
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    Table 5: Bacteria Analyses 
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S1 Nov 2014 56 53 Jun 2015 19 9 0 Aug 2015 0 0 7 Jan 2016 0 2 200 

S2 Nov 2014 190 0 Jun 2015 12 1 41 Aug 2015 5 26 44 Jan 2016 0 35 4 

S3 Nov 2014 97 0 Jun 2015 7 74 39 Aug 2015 0 0 0 Jan 2016 0 17 61 

WWTW- 

Kwalanga 

Nov 2014 - - Jun 2015 - - - Aug 2015 - - - Jan 2016 0 0 150 

WWTW-

Kevin 

Nov 2014 - - Jun 2015 - - - Aug 2015 - - - Jan 2016 0 2 7 

BH1 Nov 2014 166 92 Jun 2015 0 1 1 Aug 2015 0 0 0 Jan 2016 0 1 32 

BH2 Nov 2014 150 0 Jun 2015 - - - Aug 2015 - - - Jan 2016 - - - 

BH3 Nov 2014 5 32 Jun 2015 0 0 70 Aug 2015 0 0 12 Jan 2016 0 1 50 

BH4 Nov 2014 219 51 Jun 2015 1 18 24 Aug 2015 - - - Jan 2016 0 0 180 

BH5 Nov 2014 - - Jun 2015 - - - Aug 2015 3 13 8 Jan 2016 - - - 

Uitenhage 

Spring 

Nov 2014 7 0 Jun 2015 0 1 9 Aug 2015 0 0 0 Jan 2016 1 80 0 
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6.5  Conceptual hydrogeological model 

From the integration of geological, structural, hydrostratigraphic units and groundwater flow investigation, a probable hydrogeological 

conceptual model for the area has been constructed. 

Figure 29 shows the schematic hydrogeological conceptual model a, which represent aquifer configuration in the area. It also shows the 

structural control and an envisaged groundwater circulation in the main aquifers identified in the area.  

 

Figure 29: Schematic hydrogeological conceptual model   
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Based on the schematic groundwater conceptual model (Figure 29) and analyses of the results 

indicated that the Swartkops River was gaining water from the groundwater.  

The pollutants in the study area are probably due to WWTW, industrial waste and agricultural waste, 

which are all situated in the Swartkops Aquifer. In the Coega Aquifer there is an imperative spring, 

which is in the Government Water Controlled Area (GWCA); the area is impact free. Therefore, the 

Coega Ridge Aquifer is unlikely to negatively affect the Swartkops Aquifer even though 

groundwater flows across the fault. 
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7. CHAPTER SEVEN: CONCLUSION AND RECOMMENDATIONS  

7.1  Conclusion 

Integrated method was applied in order to achieve the set objectives. The Bayesian interpolation 

method resulted a strong correlation between the groundwater level elevation surface topography for 

shallow aquifer.  

Groundwater flows towards the direction of the surface topography. Both groundwater and surface 

water are draining towards east direction to the Indian Ocean through Blue Water Bay. The fault that 

divides the two aquifers (Swartkops and Coega Ridge Aquifers) is permeable (has no impact on 

groundwater circulation) and act as a pathway for migration of groundwater pollutants and due to 

different hydraulic gradient, groundwater only flow from Coega Ridge Aquifer to Swartkops 

Aquifer. Based on the groundwater flow gradient, it was observed that Coega Rigde Aquifer is not 

vulnerable to pollution from Swartkops Aquifer. It should be noted that the Coega Ridge aquifer is a 

Government Water Controlled Area; as a result, the flows from the Coega Ridge Aquifer were not 

expected to have an influence on the Swartkops Aquifer.   

The stable isotopes data also revealed that during the winter season the δ18O and δ2H signature 

indicated the depletion, which was greater at low temperature, i.e. δ18O values are more negative in 

winter. The groundwater samples revealed deep groundwater circulation as well as seasonal changes. 

The surface water samples were more enriched with heavy isotopes as compared to groundwater 

samples as a result of evaporation process and waste water return. The results also indicated that the 

isotopic composition of groundwater from borehole BH5 was related to the Swartkops River water 

samples, and hence an evidence for the mixing process. The stable isotope signatures of BH5 and 

Swartkops River are indicated that groundwater and groundwater interaction. The tritium results also 

concur with the stable isotopes of δ18O and δ2H. Due to the influence of the fault the Swartkops 

River did not have an influence on the other aquifer, hence no interaction established between the 

Swartkops River samples and the boreholes located on Coega Aquifer. 

 Based on the Piper diagram, the dominant facies of water is Na-Cl type, which is typical deep 

circulating water. However, the other water sample collected in winter (June 2015) from BH4 

indicated Ca-Cl water type, typical of mine water environment. This was an indication of longer 

residence time that results to higher degree of ion exchange, which also results to higher salinity in 

the groundwater. The study revealed that the sources of pollution were farming activities, municipal 
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waste water as well as industries. The results observed from the piper diagram and Stiff diagram 

were also supported by the results observed from trace metals.  The results also indicated the limited 

interaction, only noticeable in the BH5. The lack of evidence of interaction between Swartkops River 

and other boreholes could be due to flow gradient between the two aquifers.   

The distribution of microbials indicated the evidence of limited interaction between the two sources 

(groundwater and surface water); there is good correlation between surface water, which concurs 

with all other analysis stated above.   

Overall, there is an interaction between surface water and groundwater, as a result, the fault act as a 

pathway for groundwater flow between the two aquifers and a result of flow gradient and the 

pollution from Swartkops Aquifer is unlikely to impact the Coega Aquifer. Therefore, the Swartkops 

Aquifer is vulnerable to pollution from Swartkops River. Although the Coega Aquifer is not 

vulnerable to Swartkops River pollution, however, it can be impacted by minimal pollutants from 

farming activities.  

7.2  Recommendations  

 Ideally, it would be preferable to have boreholes in the close proximity of the three sampling 

points along the river. 

 Water quality monitoring boreholes need to be drilled, specifically for water quality as 

suggested by Venables, 1985.  
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9. Appendix A: Water Quality 
Table 6: Laboratory chemical analysis results of water quality samples. 
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ded) 

<1000 <10 <200 N/S <400 <150 <70 <200 <50 <150 5-9.5 

Class 

II:(Max. 

Allowable) 

1000-

2400 
20-Oct 200-600 N/S 400-600 150-300 70-100 200-400 50-100 150-370 

4-5 or 

9.5-10 

Nov. 2014 BH3 151.2 -0.1 37.4 29.3 7 5.5 3.4 -0.1 -0.02 21.6 6.7 

Nov. 2014 BH4 9814 -0.1 4894.5 162 369.1 690.4 162.1 0.25 -0.02 1402 7.5 

Nov. 2014 BH2 145.6 -0.1 35.9 27.6 6.1 4.3 2.5 -0.1 -0.02 20.8 6.5 

Nov. 2014 BH1 249.9 0.25 86.3 26.9 8.4 5 4.9 -0.1 0.14 35.7 6.3 

Nov. 2014 
Uitenhage 

Spring 
95.2 0.14 32.9 -10 -3 2.5 1.9 -0.1 0.04 13.6 5.2 

Nov. 2014 S1 149.1 0.3 44.2 10.5 7.1 3.8 2.6 -0.1 -0.02 21.3 7 

Nov. 2014 S2 879.9 0.97 251.6 120 48.6 22.3 21.8 0.55 0.12 125.7 7.6 

Feb. 2015 BH3 148.4 -0.1 39.3 25.5 8.4 4.1 3.3 -0.1 0.02 21.2 6.6 

Feb. 2015 BH4 8946 0.27 1355.3 184.2 355.4 565.2 149.6 0.21 -0.02 1278 7.8 

Feb. 2015 BH2 147 -0.1 37.2 33.8 6.1 5.4 2.9 -0.1 0.02 21 6.6 
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Feb. 2015 S2 1364.3 1.74 453.5 195.7 78.5 32.1 36.1 1.43 0.18 194.9 8 

Feb. 2015 S3 1232.7 3.21 336 220.7 123.9 36.5 28.5 0.19 3.25 176.1 8.1 

Jun. 2015 BH4 8562.6 0.27 1355.3 184.2 355.4 565.2 149.6 16 78 1278 7.8 

 



96 
  

Sample Date 

Site ID 

T
o

ta
l 

D
is

so
lv

ed
 

S
o

li
d

s 
(m

g
/L

) 

N
it

ra
te

 N
O

3
 a

s 

N
 (

m
g

/L
) 

C
h

lo
ri

d
es

 a
s 

C
 

l(
m

g
/L

) 

T
o

ta
l 

A
lk

a
li

n
it

y
 a

s 

C
a

C
O

3
 (

m
g
/L

) 

S
u

lp
h

a
te

 a
s 

S
O

4
 (

m
g
/L

) 

C
a

lc
iu

m
 a

s 
C

a
 

(m
g

/L
) 

M
a

g
n

es
iu

m
 a

s 

M
g

 (
m

g
/L

) 

S
o

d
iu

m
 a

s 
N

a
 

(m
g

/L
) 

P
o

ta
ss

iu
m

 a
s 

K
 (

m
g

/L
) 

C
o

n
d

u
ct

iv
it

y
 

a
t 

2
5

° 
C

 (
 

m
S

/m
) 

p
H

-V
a

lu
e 

a
t 

2
5

° 
C

 

Class I: 

(Recomme

nded) 

<1000 <10 <200 N/S <400 <150 <70 <200 <50 <150 5-9.5 

Class 

II:(Max. 

Allowable) 

1000-

2400 
20-Oct 200-600 N/S 400-600 150-300 70-100 200-400 50-100 150-370 

4-5 or 

9.5-10 

Jun. 2015 BH3 140.7 -0.1 37.9 26.4 6 5.7 3.2 22.1 7.3 21 6.9 

Jun. 2015 
Uitenhage 

Spring 
95.14 0.14 34.6 -10 3.1 4.1 1.8 16.9 -1 14.2 5.7 

Jun. 2015 BH1 244.55 0.44 83.3 21.5 9.4 5.3 6.1 52.2 1.2 36.5 6.6 

Jun. 2015 S1 119.93 -0.1 41.4 -10 5.1 4 2.6 23 -1 17.9 6.9 

Jun. 2015 S2 1449.21 2.91 469.2 146.3 112.5 47.5 44.5 645 16 216.3 8.1 
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Aug. 2015 BH1 728.96 0.55 288.3 28.5 19.3 18 25.6 152.7 1.6 108.8 6.3 
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Nov. 2015 BH3 144.05 -0.1 55.3 29.7 8.3 5.2 2.8 24.8 6.6 21.5 7.9 

Nov. 2015 BH5 366.49 13.79 1217.6 487.3 301.5 111.8 106.4 912.5 24.9 54.7 8.1 

Nov. 2015 
Uitenhag

e Spring 
91.12 0.17 41.1 -10 3.3 -2.5 -1.5 18 -2.5 13.6 6 

Nov. 2015 BH4 4917.8 0.11 2275.5 135.9 209.8 314.1 119.1 1181.7 17.2 734 7.3 

Nov. 2015 

WWTW 

Kwalang

a 

3832.4 9.82 1499.9 386.1 325.7 99.2 141.2 1359.2 40.3 572 9 

Nov. 2015 
WWTW 

Kevin 
1628.77 0.27 467 321.9 152.4 49.8 44.7 447 25 243.1 8.3 
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10. Appendix B: Borehole Logs     

BH3 -Private Borehole (Venables, 1985). 

Cadastral farm: Sovereign Foods 

Yield: ̴ 7.7 l/sec 
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BH4 -Private Borehole (Venables, 1985)         

Cadastral farm: Sovereign Foods at Rietheuwel  
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11. Appendix C: This paper was presented at the groundwater 

development conference for input. 

A STUDY OF INTERACTION BETWEEN GROUNDWATER AND SURFACE WATER 

USING ENVIRONMENTAL ISOTOPES, HYDROCHEMISTRY AND FEACAL 

COLIFORM BACTERIA IN THE UITENHAGE BASIN, EASTERN CAPE 

Nyawo B1 and Abiye T2 

1. Department of water and Sanitation and School of Geosciences, University of the Witwatersrand 

2. School of Geosciences, University of the Witwatersrand 

1. Abstract 

The Table Mountain Group (TMG) Formation in the Uitenhage region, in the Eastern Cape Province 

of South Africa, has many groundwater users, which could result in the over-exploitation of the 

underlying aquifer. Consequently, several investigations have been conducted to help in the planning 

and management of groundwater resources within the region. Traditionally, these investigations have 

considered groundwater and surface water as separate entities, and have been investigated separately. 

Environmental isotopes, hydrochemistry and faecal colifom bacteria techniques have proved to be 

useful in the formulation of interrelationships and for the understanding of groundwater and surface 

water interaction. The field survey and sampling of the springs, Swartkops River and the surrounding 

boreholes in the Uitenhage area have been conducted. After full analysis of the study, it is anticipated 

that the data from the spring, Swartkops River and the surrounding boreholes show interannual 

variation in the isotope values, indicating large variation in the degree of mixing, as well as to 

determine the origin and circulation time of different water bodies. Isotopes δD and δ18O values for 

the spring ranges from −23.80‰ to −17.43‰, and 5.25‰ to 4.62‰, respectively, while δD values 

for borehole samples range from −27.50‰ to −19.10‰ and δ18O values range from −5.67‰ to 

−4.49‰. In the river sample, δD values ranges from −17.70‰ to −4.18‰, δ18O from −3.43‰ to 

−1.13‰, respectively. The chemical analyses results of groups of water samples from various 

localities in the TMG aquifer, the classification of the water type is that dominated by Na-Cl water 

which is typical old marine water. However, the sample from Sovereign Foods at Rietheuwel 

indicated Ca-Cl water type, typical of mine water environment. Its electrical conductivity (EC) is 

1278 mS/m exceeding the limit of 150 mS/m, the maximum acceptable limit for domestic use. 

Swartkops River is an ephemeral, therefore it is expected that diffuse recharge occurs into the 

shallow aquifer. Therefore, the entrobacteraerogen and E.Coli bacteria were detected in the samples.  
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During wet season, the bacterial count downstream of the Swartkops River is high as compared to 

upstream, however there is very high count in the midstream and that may be due to lots of factors 

such as sewage effluents from treatment works. However, the bacterial count is vice versa during dry 

season. This could be due to dilution when bacteria enter the river and mix with a high volume of 

freshwater or the sewage systems management and treatment has been improved. 

1.1 INTRODUCTION AND BACKGROUND  

Winter et al. 1999, reported that, groundwater (GW) and surface water (SW) are two connected 

systems and by impacting the other, will eventually affect the other.  

Despite the importance of the effeteness of the management of the water resource systems, the 

interactions groundwater/surface water systems are still less understood globally. Groundwater 

interacts with surface water features such as rivers, lakes, wetlands, estuaries and the sea through 

vertical and lateral flows. Over the past years, the main focus has been on studying and 

understanding the interactions between groundwater with rivers and lakes as these are the dominant 

entrance and exit points of surface and sub-surface interaction that are critical in terms of water 

resource management (Tanner, 2013).The relation between these two systems is in part influenced 

by climate (discharge volumes and patterns), geology, (aquifer properties and changes in 

topography), and cultural activity (like land-use, groundwater abstraction and the damming of rivers) 

(Lerner, 1996). Changes in these factors along the influence of a river will impact the relative 

elevation of the water table, and so dictate the type and extent of the groundwater/surface water 

interaction (Saayman et al. 2004). 

Groundwater, surface water and springs are important source of water supply around Uitenhage area, 

and their protection is an essential part of hydrogeology. The water quality of these water bodies can 

differ depending on the location and environmental factors, such as the chemical composition of the 

underlying rocks, soil formations and the groundwater residence time (Aminiyan, et al., 2016). This 

groundwater is susceptible to contamination from surface water (Swartkops River). If the 

groundwater pollutants were not detected for years, it becomes costly to remove them. Preventing the 

pollutants is less costly than removing contaminants from groundwater. Common types of 

contaminants include bacteria, viruses, and nitrates from irrigation. Moreover SWLR, 1995 and 

Quilbell et al., 1997; Jagals, et al., 1997 and Dallas and Day, 1993 reported the need for awareness to 

control the pollution.  
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Adequate understanding of groundwater and surface water interaction processes plays an important 

role in the planning of water abstractions from the boreholes. Given the fact that there are a vast 

number of groundwater users within the Table Mountain Group (TMG) region, it has resulted in 

many important investigations conducted to help in the planning and management of groundwater 

from the aquifer (Maclear, 2001). Predominantly, these investigations are vital in understanding 

groundwater and surface water interaction processes within the TMG aquifers. However, these 

processes remain poorly understood in the TMG region. Therefore, there is a gap in knowledge of 

the amount of groundwater usage, in relation to water abstraction licenses that are administered by 

the Department of Water and Sanitation (DWS). 

Biological, hydrochemical and isotopic information can produce a practical management tool for 

groundwater resource. Patterns in biological, chemical and isotopic data are useful for fingerprint 

water sources and tracing flows and mixing processes in groundwater.   

There are several methods of determining groundwater and surface water interaction for example, 

using pumping tests (Moench, 1995), tracer tests (Kalbus et al, 2006), and environmental tracer 

methods (Coplen et al., 2000; Hinkle et al., 2001). Amongst the above listed methods, the 

environmental tracer method (stable isotopes of oxygen and hydrogen, and radioactive isotopes of 

tritium, hydrochemistry) and feacal coliform bacteria have proved to be useful in understanding these 

interactions (Border, Winter, and Scarpino, 1978). All the methods available have their own 

advantages and disadvantages. It is therefore important to consider the objective of the study before a 

method is chosen. One of the advantages of using these methods is that they are relatively simple and 

cost effective.  

This study is aimed at establishing an understanding of groundwater and surface water interactions of 

the TMG aquifers in Uitenhage area using environmental isotopes, hydrochemistry and feacal 

coliform bacteria. Environmental isotopes are employed worldwide in the groundwater and surface 

water studies, as they provide distinctive information on transport and interconnectivity of water 

resources (Abiye, 2013). The Interpretation of their chemical constituents in the water samples can 

provide an understanding in the stream aquifer connectivity. 

2. STUDY AREA 

The Uitenhage Aquifer is one of the well know artesian aquifers in South Africa. The study area 

covers about 211 km2 (Figure 2). It is lying on the Swartkops River catchment just 38 kilometres 

north west of Port Elizabeth. The Uitenhage aquifer is occurring mostly within the Port Elizabeth and 

http://www.sa-venues.com/accommodation/portelizabeth.php
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Uitenhage Districts in the Eastern Cape Province of South Africa, and is recharged by rainfall on the 

Groot Winterhoek and Zunga Mountain ranges to the west (Maclear, 2001).The area lies within the 

primary Drainage Region M. 

The Uitenhage Artesian Basin (UAB) is the most central artesian groundwater basin supplying water 

from springs for domestic use as well as supporting large citrus irrigation schemes in Uitenhage area. 

According to Maclear, 2001, groundwater from this basin was extensively utilised from the early part 

of the 21stcentury, including periods of over-exploitation that resulted in the declaration of a 

groundwater control area to limit abstraction to sustainable rates. 

The UAB is separated by the Coega Fault into two aquifer systems, which are Coega Ridge Aquifer 

at the northern part of the Coega Fault and the relatively deep Swartkops Aquifer located at the 

southern part of the fault, as illustrated in Figure 1. 

 

Figure 1: Map showing the locality of the study area 

The Swartkops River is at the northern boundary of the Study Area, which extends from west to 

southeast eventually to the ocean at Blue Water Bay. They are potentially subjected to pollution from 

the industries located in the vicinity of the Swartkops River. Swartkop River Alluvial Aquifer occurs 

as a thin layer in the Swartkops Aquifer.  According to Maclear, 2001 the two aquifers (Coega Ridge 
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and Swartkops) have a similar hydrogeological conditions, with the difference is the depth. The 

Swartkops aquifer is relatively deeper as compared to Coega Aquifer.  

   2.1 GENERAL GEOLOGY  

The geology and hydrological regime of groundwater characteristics are critical in assessment of the 

underlying aquifer systems as well as in planning for groundwater use. The aquifer comprises 

fractured TMG sandstones confined in the eastern part of the basin by overlying Cretaceous 

siltstones and mudstones, resulting in artesian conditions (Maclear, 2001). The western part of the 

Swartkops River catchment consists of the Groot Winterhoek Mountain and Kwazunga River valley, 

whilst the Elands and Van Stadens Mountain lies on the southern part. The Groot Winterhoek 

Mountain and Kwazunga River valley are characterized by the quartzitic sandstones of the TMG 

(Maclear, 1993, 2001). The eastern part of the Uitenhage basin is characterised mainly by Kirkwood, 

Quaternary and Sundays River Formation and some patches of the Alexander and Bluewater Bay 

Formation. 

Figure 2 shows the monitoring boreholes that were drilled on the Uitenhage group (J-Ku), 

conglomerate, mudstone and sandstone covers relatively large area north of Port Elizabeth and south 

of the Suurberg and Klein Winterhoek Mountains. The Uitenhage and other older rocks are overlain 

by semi-consolidated calcareous sands and conglomerates of the Algoa Group (T-Qa) from 

Cannonvale towards Alexandria (Meyer, 1998). 

Table 1: Shows the geological groups, subgroups, formations, thickness and reference. 

Group Subgroups Formation 
Thickness 

(m) 
Reference 

T
M

G
 

  
Basalt Sardinia Bay 

formation 
180 

Kent,  

(1980) 

  Peninsula formation 1500 

  Cedarberg formation 50 

Nardouw 

Subgroup 
  850 

U
it

en
h

a
g
e 

G
ro

u
p

 

  

Basal Econ 3000 

P.S Meyer October 

1998 

Kirkwood 2200 

Sundays River 1600 
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2.2 HYDROGEOLOGY 

The Uitenhage aquifer consists of the (TMG) sandstones, which are confined in the eastern part of 

the basin by Cretaceous siltstones and mudstones. This confinement causes the artesian conditions. 

Groundwater can be obtained from the discontinuous basal Alexandria conglomerate of the Algoa 

Group (P.S Meyer, 1998), the Uitenhage yield indicated to range between 0.1 l/s to > 5 l/s. 

The competent quartzitic sandstones of the Table Mountain Group contain numerous faults, other 

fractures and joints, which can be targeted for groundwater development.  According to Meyer 

(1998), the TMG yield indicated to range between 0.1 l/s to > 5 l/s.  

The Department of Water and Sanitation (DWS) hydrogeological map (1:500 000 general 

hydrological map Port Elizabeth 3324) of the area indicates that the major portion of the study area is 

underlain by a fractured aquifer and borehole yields in the range of 0.1 ℓ/s to 0.5 ℓ/s. The aquifer 

yield is slightly higher (0.5 ℓ/s to 2.0 ℓ/s) in the vicinity of the Coega Fault. 

The Table Mountain Group Aquifer occurs at significant depth and is protected by an aquiclude. 

However, it is an important aquifer to protect as it is high yielding and of ideal quality. The Table 

Mountain Group quartzitic sandstones are overlain by a thickness of post Palaeozoic sediments 

giving rise to artesian groundwater. There is an insignificant amount of groundwater abstraction from 

these deposits, mainly from areas along the Swartkops River.  

3. METHODOLOGY 

3.1 INTRODUCTION 

Groundwater and surface water samples were collected from Uitenhage aquifer. There are eight 

water samples that were collected from November 2014, February 2015 and June 2015 for both 

isotopes, chemical and bacteriological analysis.  

3.1.1 ISOTOPIC DATA AND LABORATORY ANALYSIS 

The isotopes samples were collected using a 1-litre High Density Polyethylene (HDPE) bottles and 

immediately covered to avoid direct sunlight and were stored in a cooler box at 40C before being 

submitted to the isotope laboratory (iThemba Labs, Gauteng) for analysis. Water D/H (2H/1H) and 

18O/16O ratios were analysed in the laboratory of the Environmental Isotope Group (EIG) of iThemba 

Laboratories, Gauteng. The equipment used for stable isotope analysis consists of a Thermo Delta V 
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mass spectrometer connected to a Gas bench. Equilibration time for the water sample with hydrogen 

is about 40 minutes and CO2 is equilibrated with a water sample in about twenty hours. Laboratory 

standards, calibrated against international reference materials, are analysed with each batch of 

samples. The analytical precision is estimated at 0.2‰ for O and 0.8‰ for H. 

3.1.2 CHEMICAL ANALYSES 

The analyses of the chemical constituents were conducted as suggested standard methods by APHA 

(1995). The major ions like Ca, Mg, Na, K, Cl, SO4, NO3 and F were analyzed. The Ca and Mg 

were analyzed using titration with EDTA. Cl concentration in the samples was determined using 

Argentometric titration.  

3.1.2 BACTERIOLOGICAL ANALYSIS  

Water samples for bacteriological analysis were collected from November 2014, February 2015 and 

June 2015. These samples were analysed for enter-bacteria and E. coli using the Most Probable 

Number (MPN) technique (SABS). Results were expressed as MPN/100ml. 

4. RESULTS AND DISCUSSION 

4.1 INTRODUCTION  

The variable of the hydrochemical and isotope analysis are essential components that indicate 

sources of water, recharge, residence time, and local geology without examining the geology. These 

variables can also assist in the investigation of groundwater and surface water interface. 

Groundwater and surface water can establish an integral part of a water cycle that can transport and 

spread contaminants from agricultural, industrial areas. 

4.1.1ENVIRONMENTAL ISOTOPES  

In order to evaluate the flow path regime of the local water resource, samples were submitted to the 

iThemba Laboratory of the Environmental Isotopes Group (EIG), Gauteng.  

 

 

 



107 
  

 

Table 2: Analytical Results of Environmental Radiogenic Tritium and Stable isotope Data. 

Sample Identification Date δ D (‰) δ18O (‰) 

Tritium 

(T.U.)   

Sovereign Foods Nov. 2014 -20,28 -5,06 0,3 ±0.2 

Sovereign Foods Rietheuwel Nov. 2014 -23,54 -5,25 0,0 ±0.2 

Amanzi 3 Nov. 2014 -21,30 -5,14 1,4 ±0.3 

Doornkom Farm 287 Nov. 2014 -19,10 -4,69 0,0 ±0.2 

Uitenhage Springs Nov. 2014 -17,43 -4,82 0,0 ±0.2 

Swartkops River Upstream Nov. 2014 -12,13 -3,17 1,4 ±0.3 

Swartkops River Midstream @ Bridge Nov. 2014 -8,14 -2,12 1,2 ±0.3 

Sovereign Foods Feb. 2015 -20,84 -5,44 0,3 ±0.2 

Sovereign Foods Rietheuwel Feb. 2015 -22,76 -5,67 0,0 ±0.2 

Amanzi 3 Feb. 2015 -20,03 -5,16 0,2 ±0.2 

Doornkom Farm 287 Feb. 2015 -19,19 -4,69 1,1 ±0.3 

Uitenhage Springs Feb. 2015 -18,90 -5,25 0,0 ±0.2 

Swartkops River Upstream Feb. 2015 -6,38 -2,28 2,1 ±0.3 

Swartkops River Midstream @ Bridge Feb. 2015 -4,18 -1,49 2,3 ±0.3 

Swartkops River Downstream @ Bridge Feb. 2015 -4,45 -1,13 1,5 ±0.3 

Sovereign Foods Jun. 2015 -25,90 -4,73 0,0 ±0.2 

Sovereign Foods Rietheuwel Jun. 2015 -27,50 -4,96 0,6 ±0.2 

Doornkom Farm 287 Jun. 2015 -25,70 -4,49 0,5 ±0.2 

Uitenhage Springs Jun. 2015 -23,80 -4,62 0,8 ±0.2 

Swartkops River Upstream Jun. 2015 -17,70 -3,43 2,0 ±0.3 

Swartkops River Midstream @ Bridge Jun. 2015 -11,50 -2,61 1,3 ±0.3 

Swartkops River Downstream @ Bridge Jun. 2015 -15,9 -2,49 1,8 ±0.3 

Doornkom Farm 287 Aug. 2015 -18,5 -3,13 0,9 ±0.3 

Sovereign Foods Aug. 2015 -19,4 -3,34 0,2 ±0.2 

Sovereign Foods Rietheuwel Aug. 2015 - - - - 

Despatch Aug. 2015 -12,8 -1,67 1,8 ±0.3 

Uitenhage Springs Aug. 2015 -16,6 -2,81 0,0 ±0.2 

Swartkops River Upstream Aug. 2015 -14,2 -2,66 1,4 ±0.3 

Swartkops River Midstream @ Bridge Aug. 2015 -14,3 -2,26 1,9 ±0.3 

Swartkops River Downstream @ Bridge Aug. 2015 -9,3 -1,3 2,6 ±0.3 
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The results of isotopic analyses for four periods (i.e. November 2014, February 2015, June 2015 and 

August 2015) are tabled in Table 2. The Global Meteoric Water Line (GMWL) and Local Meteoric 

Water Line (LMWL) which indicated precipitation with slopes s=8 and s=5.8, respectively, are 

shown in Figure 2. All other surface water sample shows the deflection from GMWL and LMWL. 

The residual liquid is enriched in the heavier isotope molecule because the lighter molecules move 

rapidly and hence has a greater tendency to escape from the liquid phase. The groundwater and 

spring water samples that were taken in June 2015 and including both surface and groundwater 

samples taken in August 2015 (Figure 2) plotted below the GMWL, however, the samples that were 

taken in November 2014 and February 2015 plotted above GMWL; water samples that were taken in 

June 2015 and August 2015 are more depleted compared to the ones that were taken in November 

2014 and February 2015. This is due to temperature effect, according to Clark and Fritz, 1997 the 

winter rainfall has lower isotope ratios than summer rainfall. Spring, Groundwater and surface water 

samples collected in August 2015 indicates that the two water sources are mixing.  

 

Figure 2: Show this data in a δ18O vs. δ D space relative to the Global Meteoric Water Line 

(GMWL, Craig, 1961) and Local Meteoric Water Line (LMWL in Sandveld). 

4.1.2 TRITIUM  
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Tritium is present in very small concentrations in the atmosphere and was used as tracer substances 

in this study; it was used to identify younger groundwater (water recharged after 1952). Therefore, 

groundwater and spring water samples, yielded water containing very low concentrations of tritium 

(<0.8 TU), indicating water that is more than 50 years old and this is due to radioactive decay with 

longer residence time in the groundwater. However, Amanzi3 yields the tritium ranges from 0.2 to 

1.4, indicating young water and had chemical contents similar to the river. 

4.1.3PIPER DIAGRAM 

The graphs below were plotted using WISH software package and represent the groundwater 

chemistry data of the study area. Based on Piper diagram Figure 3 showing chemical analyses of 

groups of water samples from various localities in the TMG aquifer, the classification of the 

watertype is that dominated by Na-Cl water which is typical old marine water. However, the sample 

from the two boreholes Sovereign Foods at Rietheuwel and Despatch indicated Ca-Cl and Na-K 

water type, respectively.  Sovereign Foods at Rietheuwel water sample indicates that the water is 

typical of mine water environment.  Their electrical conductivities (EC) are 1278 and 1229.10 mS/m, 

respectively; they are exceeding the limit of 150 mS/m, the maximum acceptable limit for domestic 

use.  
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Figure 3: Piper Diagram of the Uitenhage Water Samples 
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Table 3: The graphs below were plotted using WISH software packaged and represent the groundwater chemistry data of the study area. 
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Date Duration 7 years 7 years 7 years N/S 7 years 7 years 7 years 7 years 7 years 7 years No Limit None 1 year 

 Jun. 15 
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SOVEREIGN FOODS - 

RIETHEUWEL 8562,60 0,27 1355,30 184,20 355,40 565,20 149,60 16,00 78,00 1278,0 7,80 0,21 0,56 

Jun. 15 152 SOVEREIGN FOODS 140,70 -0,10 37,90 26,40 6,00 5,70 3,20 22,10 7,30 21,00 6,90 -0,10 0,52 

Jun. 15 
n/a 

ZQMUTH1(UITENHAGE 

SPRING) 95,14 0,14 34,60 -10,00 3,10 4,10 1,80 16,90 -1,00 14,20 5,70 -0,10 0,36 

Jun. 15 100 Doornkom Farm 287 244,55 0,44 83,30 21,50 9,40 5,30 6,10 52,20 1,20 36,50 6,60 -0,10 0,53 

Jun. 15 
n/a 

Upper Stream -Swartkops 

River 119,93 -0,10 41,40 -10,00 5,10 4,00 2,60 23,00 -1,00 17,90 6,90 -0,10 0,44 

Jun. 15 n/a Mid Stream-Swartkops River 1449,21 2,91 469,20 146,30 112,50 47,50 44,50 645,00 16,00 216,30 8,10 1,68 0,59 

Jun. 15 n/a Down Stream-Swartkops River 1564,45 1,50 488,30 258,00 170,10 53,70 38,00 575,00 23,30 233,50 8,20 4,09 0,74 

Aug.15 152 SOVEREIGN FOODS 14,41 0,10 35,60 34,50 5,60 5,70 2,60 25,90 7,00 21,50 6,70 0,10 0,56 

Aug.15 n/a ZQMUTH1(UITENHAGE 

SPRING) 9,11 0,14 32,00 10,00 3,80 2,50 1,50 20,90 1,00 13,60 5,30 0,10 1,10 

Aug.15 100 Doornkom Farm 287 72,90 0,55 288,30 28,50 19,30 18,00 25,60 152,70 1,60 108,80 25,60 0,10 0,34 
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Date Duration 7 years 7 years 7 years N/S 7 years 7 years 7 years 7 years 7 years 7 years No Limit None 1 year 

Aug.15 n/a Upper Stream -Swartkops 

River 10,18 0,10 33,40 10,00 4,90 2,50 1,90 24,00 1,00 15,20 6,60 0,10 0,10 

Aug.15 n/a Mid-Stream-Swartkops River 39,46 0,51 127,10 41,60 30,00 8,40 10,50 89,40 4,30 58,90 7,40 0,13 0,10 

Aug.15 n/a Down Stream-Swartkops River 183,65 1,98 483,00 306,50 181,40 55,00 46,80 420,20 26,90 274,10 8,10 3,44 0,38 

Aug.15  Despatch 823,50 14,57 96,30 440,10 267,30 96,30 84,20 809,90 22,30 1229,10 7,80 0,10 1,04 

 



112 
  

4.1.4 BIOLOGICAL ANALYSES  

Table 4: Bacteria Analyses 

 

During wet season, the bacterial count downstream of the Swartkops River is high as compared to 

upstream, however there is very high count in the midstream and that may be due to lots of factors 

such as sewage effluents from treatment works. However, the bacterial count is vice versa during dry 

season. The count found in the midstream is unacceptable for freshwater, and is its occurrence in the 

river water can pose a treat for agricultural use.  

The bacterial count in borehole samples from Doornkorn farm, Soveregn foods at Rietheuwel and 

Amanzi 3 was found to be high as compared to Sovereign foods. However there is abnormal count in 

E-Coli count in Soveriegn foods at Rieteuwel and this may be because of farming activities in this 

area. The bacterial count was high in ground water as compared to surface water.    

E-aerogenes is a gram negative bacterium, it can be found in marine and freshwater, sewage and 

soils. It can cause infections such as respiratory and urinary tract infections. It is usually present in 

many healthy vertebrates. However it causes infections in earthworms. 

The E-Aerogens in Swartkops River was high upstream as compared to downstream and this is 

unusual case with as it is normally known with other bacteria like E-Coli is always high downstream 

as compared to upstream as is known to be influenced by land based activities such as sewage works. 

However in the case of E-aerogens the case is different as it this study revealed that the E-aerogens 

count was high upstream (53.0) and low downstream (0.0). This could be due to dilution when 

bacteria enter the river and mix with a high volume of freshwater. In the midstream there were also 

low counts (0.0) as the downstream, and this may be because of the different soil structure found in 

this river as it is known that this bacterium is also found in the soil. This is an indication that there is 
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a problem of water quality downstream as the E-aerogens start to be depleted, this may be due to 

waste water discharge in the midstream going to downstream.  

There has been a different case with regard to the presence of this bacterium in groundwater as the 

data indicate that there was high count of E-aerogen in Sovereign foods and Doornkom farm 

boreholes. These sites indicated high count of E-aerogen, and this gives a conclusion that for this 

study it was found that E-aerogen was high in groundwater as compared to surface water (Table 5). 

5. CONCLUSION  

From the observations in Figure 2 above, there is no interaction between surface water and 

groundwater. Therefore we conclude that water from the spring is derived from the old groundwater. 

This indicates that the aquifer system is not in hydraulic connection with the river. However, Amanzi 

3 is an artesian borehole which indicated the mixing of sub-modern and modern water. From Table 2 

above it was noticed that the tritium values for Doornkom in February 2015 and June 2015 are 

indicating the recent recharge from the rainwater. It was also noted that the tritium values in June 

2015 for both groundwater and surface water were increased; and this is due to the winter rainfall 

recharge.  

The chemical analysis (Figure 3) results of groups of water samples from various localities in the 

TMG aquifer, the classification of the water type is that dominated by Na-Cl water which is typical 

old marine water. However, the sample from Sovereign Foods at Rietheuwel indicated Ca-Cl water 

type, typical of mine water environment. Its electrical conductivity (EC) is 1278 mS/m exceeding the 

limit of 150 mS/m, the maximum acceptable limit for domestic use. This could be due to the farming 

activities from the chicken farm. Swartkops River is an ephemeral, therefore it is expected that 

diffuse recharge occurs into the shallow aquifer. 

During wet season, the bacterial count downstream of the Swartkops River is high as compared to 

upstream, however there is very high count in the midstream and that may be due to lots of factors 

such as sewage effluents from treatment works. However, the bacterial count is vice versa during dry 

season. This could be due to dilution when bacteria enter the river and mix with a high volume of 

freshwater or the sewage systems management and treatment has been improved. 
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