
Lattice Boltzmann methods for shallow
water flow applications.

Tumelo R.A Uoane

School of Computational and Applied Mathematics,
University of the Witwatersrand,

Johannesburg, South Africa.

A Dissertation submitted for the degree of
Masters of Science in

the field of Computational Fluid Dynamics.

June 3, 2011



Declaration

I declare that this dissertation is my own, unaided work. It is being submitted as partial

fulfillment for the Degree of Masters of Science to the University of the Witwatersrand,

Johannesburg. It has not been submitted before for any degree or examination in any

other University.

June 3, 2011



Abstract

The lattice Boltzmann (LB) method has become an effective numerical technique for

computational fluid dynamics (CFD). The method is based on gas kinetic theory and is

used as an alternative numerical method to simulate shallow water equations (SWEs). In

this work, an overview of the Shallow Water LB method will be presented and the stability

of this approach will be investigated. The stability structure will be used as a guideline

to determine the stability of LB equations applied to SWEs. For instant some of the

parameters in the LB equations are adjusted based on the stability structure. With this

method, stable LB models are prescribed. To verify the stability theory, computational

results for a few examples used in the literature are presented.
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Chapter 1

Introduction

Recently, before the arrival of fast computing machines, solving a dynamical system re-

quired sophisticated mathematical techniques and could only be accomplished for a small

class of dynamical systems. Structural stability was adopted as the main study for dy-

namical systems because most systems studied were only known approximately and the

parameters of the systems were not known precisely.

Shallow Water Equations (SWEs) are part of computational fluid dynamics where

instability often arises. For example, they have been applied to coastal regions, rivers,

open channel flow, with numerical methods that are sometimes partially stable. Most

of the schemes, for example, finite difference method (FDM) when applied on SWEs,

suffer from numerical instability. They produce non-physical oscillations mainly because

discretization of the flux and source terms are not well balanced in their reconstructions.

Lattice Boltzmann (LB) method was developed to model fluids under such flow regimes

hence, adopted in this dissertation.

1.1 Shallow Water Equations

The present dissertation investigates the stability of the LB method applied to SWEs

in the domain of Computational Fluid Dynamics (CFD). SWEs are a set of hyperbolic

partial differential equations (PDEs) widely known as the Saint Venant equations. These

equations describe the flow of a fluid below a pressure surface. Hence, the equations have

1



1.2. LATTICE BOLTZMANN METHOD 2

a variety of applications which include a wide spectrum of phenomena including water

waves. SWEs can be applied to environmental and hydraulic engineering, for example,

these include flows in coastal regions, rivers, reservoirs and open channels.

SWEs are derived from depth-integrating the Navier-Stokes (N-S) equations, in the

case where the horizontal length scale is much greater than the vertical length scale. Under

such conditions the vertical velocity of the fluid is minute and vertical pressure gradients

in the momentum equations are nearly hydrostatic. Horizontal pressure gradients are

due to the movement of the pressure surface, causing a constant horizontal velocity field

throughout the depth of the fluid. Therefore, the vertical velocity is removed by vertically

integrating the equation, thus resulting in the SWEs.

Solving SWEs is numerically challenging. So much effort is invested in developing

numerical schemes for the resolution of these equations, rather than adding complexity

to physical terms. Computational approaches such as FDM, finite volumes (FVM) and

finite element (FEM) methods have been applied to simulate SWEs [3, 39, 42, 52]. The

treatment of bed slopes and friction forces for some of the methods mentioned above, cause

numerical difficulties in obtaining accurate solutions [3, 44]. Solving the SWEs using the

above schemes can be viewed as a top-down approach of fluid modelling, starting with a

simple conservation law and adding new equations on demand based on theoretical and

phenomenological considerations.

The LB method was introduced as an alternative method to solve SWEs due to its ap-

pealing features. These include simplicity in programming (parallel implementation) and

straight forward incorporation of complex geometry and irregular topology. For example,

the LB method was used to simulate SWEs with wind-driven ocean circulation [34, 53].

It also models three-dimensional (3D) planetary geostrophic equations [35].

1.2 Lattice Boltzmann Method

The numerical approach known as LB method is the one used in the dissertation as

mentioned in the previous section. The method originates from the basic idea of Ludwig

Boltzmann’s work, where a gas is viewed as composed interaction of particles as described
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in classical mechanics. The statistical measures have to be used because of the number of

particles [19]. The LB model reduces the number of possible particles’ spatial positions

and microscopic momenta of the continuum (Boltzmann equation) significantly. There are

a number of evolution stages from the Boltzmann equation to the LB equation, refer to

Table 1.1. In this table; ξ is the velocity; ξα is the particle velocity in α direction; f is

the distribution function; fα is the particle distribution function in α direction; feq is the

equilibrium function; feqα is the local equilibrium function in α direction; Ω is the collision

integral; τ̃ is a relaxation time; τ is a dimensionless single relaxation time and t is time.

Alternatively, the LB method evolves from the Lattice Gas Cellular Automata (LGCA).

LGCA is a particular class of Cellular Automata (CA), developed fully from discrete mi-

croscopic model of a fluid. Historically, the first model named HPP was proposed by

Hardy, de Pazzis and Pomeau in 1973 and developed as part of LGCA [18]. This model

was used to simulate the N-S equations but failed due to an insufficient degree of rotational

symmetry of the lattice. After a decade in 1987, the FHP model was developed and it

was the first successful LGCA to be used to derive macroscopic equations which led to

the N-S equations [15]. It was found that LGCA for the N-S equations are plagued by

several drawbacks, such as the non-isotropic advection term and numerical noise [45]. The

summary of drawbacks, cause and treatment of LGCA can be viewed in Table 1.2. As a

result, LB method was developed to treat such drawbacks.
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Boltzmann Equation:

∂f

∂t
+ ξ · ∇f = Ω, ⇓

Boltzmann Equation using the BGK approximation:

∂f

∂t
+ ξ · ∇f = −1

τ̃
(f − feq) , ⇓

Discrete Boltzmann Equation:

∂fα
∂t

+ ξα · ∇fα = −1

τ̃
(fα − feqα ) , ⇓

Lattice Boltzmann Equation:

fα(x + ξα∆t, t+ ∆t)− fα(x, t) = −1

τ
(fα − feqα )

Table 1.1: Evolution from Boltzmann Equation to the Lattice Boltzmann Equation.

The LB method is relatively new and compared to other schemes in computational

fluid dynamics it uses a bottom-up approach to fluid modelling. To achieve this, a fluid is

described at a molecular level in which case the molecules are transported and collide. The

collisions are resolved by different models, for example, the Bhatnagar-Gross-Krook (BGK)

model [2]. This differs with other traditional methods in which the top-down approach is

used to model fluids, i.e the full continuum-level physics of the fluid is implicit, refer to

Figure 1.1. Therefore, the method always has a model which consists of various physical

ingredients to be identified one by one and properly allows segregation between relevant

and negligible properties, for example, using the collision term. Based on this, the collision

term is modelled in a simplified way for numerical treatment. Unlike other methods, the

LB method adapts well in simulating complex fluids, for example, in the two-phase flow
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Drawbacks Cause Treatment

1.Advection term is

non-isotropic

The lattice tensor is of

rank 4

Higher symmetric lat-

tice are used

2.The Galilean invari-

ance are violated

Fermi-Dirac distribu-

tion

Rescaling is used

3.Too much numerical

noise

Boolean variables are

used

Averaging is used

4. Spurious invariants Regular lattice Increasing collision

Table 1.2: The summary of drawbacks, cause and treatment of the LGCA

the method can represent the two phases in one fluid model. Therefore, the LB method

became a powerful numerical tool to simulate fluid flow problems, mostly in engineering.

The main advantages of the LB method can be summarized as follows:

1. it is easier to programme since it consists of simple arithmetic calculations;

2. there is only one unknown variable that needs to be determined, the microscopic

distribution function;

3. convenient for parallel programming since the current value of the distribution func-

tion depends only on the previous condition 2;

4. simulation of flow in complex flow is easily achieved, for example, multiphase flows

and flows with variations of boundary conditions and

5. flows in complex geometry are easily simulated, for example, flows through porous

media since boundary conditions are easily implemented.

It is well known among LB researchers that instability problems arise frequently, when

the LB method is viewed as a finite-difference method for solving the continuum discrete-

velocity Boltzmann equations. It becomes clear that numerical accuracy and stability

issues should be addressed. The stability structure is used to investigate the stability
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Figure 1.1: Top-up versus Bottom-up approach.

of the LB equations which are currently being applied to simulate SWEs. Stable LB

equations will result in stable simulation using LB method.

1.3 Content of the dissertation

The dissertation consists of six chapters. In the first chapter, we briefly introduce SWEs,

LB methods and the background of the dissertation. The second chapter presents theory of

hydrodynamics and derivations of SWEs. The depth-averaged property is used to achieve

the suitable mathematical model for SWEs. Chapter 3 studies the LB theory to solve the

SWEs. The most useful technique to the recovery of the SWEs from the LB equations is

described in detail, namely the Chapman-Enskog expansion. A brief discussion on stability

conditions, boundary conditions and the force term is also covered in the chapter. The

relation of the continuum Boltzmann equation and the LB equation will also be discussed.

The main core of the dissertation is formed by Chapter 4, where we introduce the stability

structure. The stability structure is used to investigate the stability of the LB equations

which are currently being applied to simulate SWEs. In Chapter 5, we implement the LB
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method and test the results obtained from the stability structure on selected Benchmark

problems. In the last chapter, the conclusions and recommendations for future work are

presented.



Chapter 2

Shallow Water Flows

2.1 Introduction

Fluid flows obey the conservation of mass and momentum. A set of differential equations

representing fluid flow can be derived based on these conservation laws, namely the N-S

equations. These equations form a mathematical model for general fluid flow and are used

in modelling shallow water flows. The SWEs which are a depth-averaged form of N-S

equations are used to describe the horizontal structure of fluid flows. In this chapter, we

introduce SWEs and look at their derivations which were obtained from Zhou [51].

2.2 The Navier-Stokes Equations

The governing equations for the incompressible flows are the three-dimensional incom-

pressible N-S equation which can be written in the form

∇ · u = 0,

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u + f,

(2.1)

where u = (u, v, w) is the fluid velocity, ρ the fluid density, t the time; ν the kinematic

viscosity, p the pressure and f represents the body forces (per unit volume) acting on the

8
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fluid and ∇ is the del operator defined as

∇ =
∂

∂x
i+

∂

∂y
j +

∂

∂z
k

where {i, j, k} are unit vectors in their respective directions. The x, y and z are the

Cartesian coordinates, refer to Figure 2.1, with u, v and w being their corresponding

velocity components. The Laplace operator ∇2 is a scalar defined as

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Figure 2.1: Cartesian coodinate system.

Equation (2.1) can be written in tensor form as

∂uj
∂xj

= 0 (2.2)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

+ fi (2.3)

where the subscripts i and j are the space direction indices and the Einstein summation

convention is used.

The terms in the N-S equations have physical interpretations. The left side of Equation

(2.3) describes the inertia terms and consist of two main contributions: the local accel-

eration and the convective acceleration. These terms can also be viewed as time-rate of

change of momentum per unit mass. The right side of the equation is the summation of a
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pressure term, the viscous term and body forces. The N-S equations are generally known

to have few analytical solutions. As a result various numerical methods were developed to

solve the flow problems, taking advantage of computer technology. These made numerical

methods a powerful tool for solving flow problems.

2.3 The Shallow Water Equations

The flow of water has always caused amazement in various fields of interest. Usually the

depth for flows in rivers, channels, coastal areas, estuaries and harbours is much smaller

than the horizontal scale. Therefore, such flows are characterized by horizontal motion,

refer to Figure 2.2. These flows can generally be described using two-dimensional and

three-dimensional SWEs model. (Note that the assumption of the hydrostatic pressure is

often used in the mathematical model to replace the momentum equation in the vertical

direction, so the vertical acceleration is ignored [51]).

When a two-dimensional model is used, the depth-averaged quantity provides the

horizontal flow structures without vertical velocity. While in three-dimensional model the

continuity equation is used to calculate vertical velocity. Both models predict the vertical

separation inaccurately [39], suggesting that both models have the same disadvantages.

As a result two-dimensional SWEs are widely used as a mathematical model for shallow

water flow and are applied in this dissertation.

There are two body forces which act on water flow on earth, namely: the gravitational

force which act vertical due to gravity and Coriolis acceleration due to the earth’s rotation

[13]. In three dimensional space the forces can be written as follows

fx = fcv, fy = −fcu, fz = −g, (2.4)

where u and v are velocity components in x and y directions; g = 9.81m/s2 is the gravita-

tional acceleration and fc = 2ω sinφ is the Coriolis parameter in which ω ≈ 7.3×10−5rad/s

and φ is the earth’s latitude.

The two-dimensional SWEs can be derived from depth-integration of the N-S equa-

tions, where horizontal length scale is much greater than the vertical scale. The derivations

are shown below.
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Figure 2.2: Shallow water flow sketch.

If Equation (2.2) is integrated over depth, the continuity equation with respect to

depth-averaged quantities is obtained as∫ h+zb

zb

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz = 0, (2.5)

leading to ∫ h+zb

zb

∂u

∂x
dz +

∫ h+zb

zb

∂v

∂y
dz + ws − wb = 0, (2.6)

where wb and ws are the vertical velocities at the channel bed and the free surface, respec-

tively, h is the water depth and zb is the bed elevation above the datum, refer to Figure

2.2.

Using the Leibnitz rule [37]:∫ b

a

∂f(x, y)

∂y
dx =

∂

∂y

∫ b

a
f(x, y) dx− f(b, y)

∂b

∂y
+ f(a, y)

∂a

∂y
= 0, (2.7)

the first term on the left side of Equation (2.6) can be written as∫ h+zb

zb

∂u

∂x
dz =

∂

∂x

∫ h+zb

zb

u dz − us
∂(h+ zb)

∂x
+ ub

∂zb
∂x

, (2.8)

and the second term as∫ h+zb

zb

∂v

∂y
dz =

∂

∂y

∫ h+zb

zb

v dz − vs
∂(h+ zb)

∂y
+ vb

∂zb
∂y

. (2.9)
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Substituting Equations (2.8) and (2.9) into (2.6) gives

∂

∂x

∫ h+zb

zb

u dz +
∂

∂y

∫ h+zb

zb

v dz +

[
ws − us

∂(h+ zb)

∂x
− vs

∂(h+ zb)

∂y

]
−
(
wb − ub

∂zb
∂x
− vb

∂zb
∂y

)
= 0,

(2.10)

The kinematic conditions are given by

ws =
∂(h+ zb)

∂t
+ us

∂(h+ zb)

∂x
+ vs

∂(h+ zb)

∂y
, (2.11)

and

wb =
∂zb
∂t

+ ub
∂zb
∂x

+ vb
∂zb
∂y

, (2.12)

at the water surface and channel bed, respectively. By substituting the above kinematic

conditions (2.11) and (2.12) into Equation (2.10), we obtain the continuity equation for

shallow water flows:
∂h

∂t
+
∂(hū)

∂x
+
∂(hv̄)

∂y
= 0, (2.13)

where ū and v̄ are the depth-averaged velocities, defined as

ū =
1

h

∫ h+zb

zb

u dz, v̄ =
1

h

∫ h+zb

zb

v dz. (2.14)

Integrating the x-component of the momentum Equation (2.3) gives∫ h+zb

zb

[
∂u

∂t
+
∂(u2)

∂x
+
∂(vu)

∂y
+
∂(wu)

∂z

]
dz =∫ h+zb

zb

[
−1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)]
dz +

∫ h+zb

zb

fcv dz.

(2.15)

Using the Leibnitz rule (2.7), on the first three terms of the left side of Equation (2.15)

gives ∫ h+zb

zb

∂u

∂t
dz =

∂

∂t

∫ h+zb

zb

u dz − us
∂(h+ zb)

∂t
+ ub

∂zb
∂t
, (2.16)∫ h+zb

zb

∂u2

∂x
dz =

∂

∂x

∫ h+zb

zb

u2 dz − u2
s

∂(h+ zb)

∂x
+ u2

b

∂zb
∂x

, (2.17)∫ h+zb

zb

∂(vu)

∂y
dz =

∂

∂y

∫ h+zb

zb

vu dz − vsus
∂(h+ zb)

∂y
+ vbub

∂zb
∂y

. (2.18)

The last term on the left side of Equation (2.15) can be integrated directly as∫ h+zb

zb

∂(wu)

∂z
dz = wsus − wbub. (2.19)
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Then Equations (2.16), (2.17), (2.18) and (2.19) are put together and rearranged to obtain∫ h+zb

zb

[
∂u

∂t
+
∂(u2)

∂x
+
∂(vu)

∂y
+
∂(wu)

∂z

]
dz =

∂

∂t

∫ h+zb

zb

u dz +
∂

∂x

∫ h+zb

zb

u2 dz +
∂

∂y

∫ h+zb

zb

vu dz

+us

[
ws −

∂(h+ zb)

∂t
− us

∂(h+ zb)

∂x
− vs

∂(h+ zb)

∂y

]
−ub

(
wb −

∂zb
∂t
− ub

∂zb
∂x
− vb

∂zb
∂y

)
.

(2.20)

Using the kinematic conditions Equation (2.11) and (2.12) together with (2.14), then

Equation (2.20) can be simplified as∫ h+zb

zb

[
∂u

∂t
+
∂(u2)

∂x
+
∂(vu)

∂y
+
∂(wu)

∂z

]
dz =

∂(hū)

∂t
+

∂

∂x

∫ h+zb

zb

u2 dz +
∂

∂y

∫ h+zb

zb

vu dz.

(2.21)

Applying the second mean value theorem for integrals [38] gives∫ b

a
f(x)g(x)dx = f(ζ)

∫ b

a
g(x)dx, (2.22)

where f(x) and g(x) are continues on [a, b] with g(x) ≥ 0 for any x ∈ [a, b] and ζ ∈ (a, b).

The following terms can be expressed as∫ h+zb

zb

u2 = û1

∫ h+zb

zb

u dz = û1hū, (2.23)

and ∫ h+zb

zb

vu = û2

∫ h+zb

zb

v dz = û2hv̄, (2.24)

where û1 = θ1ū and û2 = θ2ū, θ1 and θ2 are momentum correction factors which can be

determined based on Equations (2.23) and (2.24).

θ1 =
1

hū2

∫ h+zb

zb

u2dz, θ2 =
1

hv̄ū

∫ h+zb

zb

vu dz. (2.25)

It is observed that using the second mean value Theorem (2.22) implies no change of

directions for u(x, y, z, t) and v(x, y, z, t) over the water depth at time t. The velocities

are assumed to satisfy u ≥ 0 or u < 0 from channel bed to free surface at the horizontal

location (x, y), and v is treated similarly. This gives the reason why a model based on
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two-dimensional SWEs can not be applied to flow separations in the vertical direction [51].

Inserting Equation (2.23) and (2.24) into (2.21) leads to∫ h+zb

zb

[
∂u

∂t
+
∂(u2)

∂x
+
∂(vu)

∂y
+
∂(wu)

∂z

]
dz =

∂(hū)

∂t
+
∂(hθ1ū

2)

∂x
+
∂(hθ2ūv̄)

∂y
.

(2.26)

In a similar way, when using the y-component of the momentum Equation (2.3), the

following equation is obtained,∫ h+zb

zb

[
∂v

∂t
+
∂(uv)

∂x
+
∂(v2)

∂y
+
∂(wv)

∂z

]
dz =

∂(v̄h)

∂t
+
∂(θ2ūv̄h)

∂x
+
∂(θ3v̄

2h)

∂y
,

(2.27)

with θ3 defined by

θ3 =
1

hv̄2

∫ h+zb

zb

v2dz. (2.28)

Integrating the last term on the right side of Equation (2.15) gives∫ h+zb

zb

fcv dz = fchv̄. (2.29)

Since the vertical acceleration is insignificant compared to the horizontal effect, the z-

component of the momentum Equation (2.3), is reduced with w = 0 i.e when i = 3 to

∂p

∂z
= −ρg. (2.30)

Integrating, gives

p = −ρgz + C0, (2.31)

where C0 is the integration constant. Knowing that the pressure at the free surface is the

atmospheric pressure pa, then using boundary conditions p = pa when z = h+ zb yields

C0 = ρg(h+ zb) + pa. (2.32)

Substituting Equation (2.32) into (2.31) gives

p = ρg(h+ zb − z) + pa. (2.33)
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In practice, pa is almost constant in the modeling domain. The difference in the atmo-

spheric pressure at the water surface is often insignificant, especially in hydraulic engi-

neering, therefore, we set pa = 0 and Equation (2.33) becomes

p = ρg(h+ zb − z). (2.34)

The above Equation (2.34) is usually referred to as ”the hydrostatic pressure approxi-

mation” in shallow water flow. Differentiating Equation (2.34) with respect to x leads

to
∂p

∂x
= ρg

∂(h+ zb)

∂x
. (2.35)

Since h and zb are independent of z then, they should be dependent on x and y. This

suggests ∫ h+zb

zb

1

ρ

∂p

∂x
dz =

h

ρ

∂p

∂x
. (2.36)

Substituting Equation (2.35) into (2.36) gives∫ h+zb

zb

1

ρ

∂p

∂x
dz = ρg

∂(h+ zb)

∂x
. (2.37)

The following approximations are introduced for the second and third terms on the right

side of Equation (2.15), respectively, since the acceleration in the z direction is small and

ū (the average of component u along the z direction) is taken.∫ h+zb

zb

ν
∂2u

∂x2
dz ≈ ν ∂

2(hū)

∂x2
(2.38)

∫ h+zb

zb

ν
∂2u

∂y2
dz ≈ ν ∂

2(hū)

∂y2
. (2.39)

The forth term on the right side of Equation (2.15) may be calculated as∫ h+zb

zb

ν
∂2u

∂z2
dz =

(
ν
∂u

∂z

)
s

−
(
ν
∂u

∂z

)
b

. (2.40)

The right side terms of Equation (2.40) can be approximated with the wind shear stress

and the bed shear stress, respectively, in the x direction, giving(
ν
∂u

∂z

)
s

=
τwx
ρ
,

(
ν
∂u

∂z

)
b

=
τbx
ρ
. (2.41)
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By substituting Equation (2.41) into (2.40) leads to∫ h+zb

zb

ν
∂2u

∂z2
dz =

τwx
ρ
− τbx

ρ
. (2.42)

Substitution of Equations (2.26), (2.29), (2.38), (2.39), (2.40) and (2.42) into Equation

(2.15) leads to the x momentum equation in the x-direction for the shallow water flows,

∂(hū)

∂t
+
∂(hθ1ū

2)

∂x
+
∂(hθ2ūv̄)

∂y
= −g ∂

∂x

(
h2

2

)
+ ν

∂2(hū)

∂x2
+ ν

∂2(hū)

∂y2

−gh∂zb
∂x
− fchv̄ +

τwx
ρ
− τbx

ρ
.

(2.43)

The momentum equation in the y-direction can be derived in a similar way:

∂(hv̄)

∂t
+
∂(hθ2ūv̄)

∂x
+
∂(hθ3v̄

2)

∂y
= −g ∂

∂y

(
h2

2

)
+ ν

∂2(hv̄)

∂x2
+ ν

∂2(hv̄)

∂y2

−gh∂zb
∂y
− fchū+

τwy
ρ
−
τby
ρ
.

(2.44)

If velocity profiles for u and v are assumed or already known, the momentum factors

θ1, θ2 and θ3 can be calculated by Equations (2.25) and (2.28) theoretically. In most

situations, however there are no valid universal velocity profiles. It is difficult to estimate

the momentum correlation forces θ1, θ2 and θ3 in circulation or separation flow, or in

channels with complex geometry. Therefore θ1 = 1, θ2 = 1 and θ3 = 1 are adopted

for shallow water flow, which give a good approximation in most situations [4, 24, 27].

Substituting θ1 = 1, θ2 = 1 and θ3 = 1 in Equations (2.43) and (2.44) leads to

∂(hū)

∂t
+
∂(hū2)

∂x
+
∂(hūv̄)

∂y
= −g ∂

∂x

(
h2

2

)
+ ν

∂2(hū)

∂x2
+ ν

∂2(hū)

∂y2

−gh∂zb
∂x
− fchv̄ +

τwx
ρ
− τbx

ρ
,

(2.45)

and
∂(hv̄)

∂t
+
∂(hūv̄)

∂x
+
∂(hv̄2)

∂y
= −g ∂

∂y

(
h2

2

)
+ ν

∂2(hv̄)

∂x2
+ ν

∂2(hv̄)

∂y2

−gh∂zb
∂y
− fchū+

τwy
ρ
−
τby
ρ
.

(2.46)

The overbars in the Equations (2.45) and (2.46) are dropped for convenience. The conti-

nuity Equation (2.13) and the above momentum equations can be concisely written in a

tensor form as
∂h

∂t
+
∂(huj)

∂xj
= 0, (2.47)
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∂(hui)

∂t
+
∂(huiuj)

∂xj
= −g

2

∂h2

∂xi
+ ν

∂2(hui)

∂x2
j

+ Fi, (2.48)

where Fi is defined as

Fi =
τwi
ρ
− τbi

ρ
− gh∂zb

∂xi
+ Ωi, (2.49)

with Ωi denoting the Coriolis term given by

Ωi =



fchv, i = x

−fchu, i = y.
(2.50)

The bed shear stress τbi in the i direction is given by the depth-averaged velocities,

τbi = ρ Cb ui
√
ujuj (2.51)

where Cb = g/C2
z is the bed friction coefficient [51]. The Chezy coefficient is given by

Cz = h1/6/nb where nb denotes the Manning’s coefficient or the Colebrook-White equation

Cz = −
√

32g log

(
Ks

14.8h
+

1.255 νCz
4
√

2g hu

)
, (2.52)

Ks is the Nikuradse equivalent sand roughness [14]. The wind shear stress is defined by

τwi = ρaCwuwi
√
uwjuwj (2.53)

where ρa is the density of the air, Cw the resistance coefficient and uwi the component of

the wind velocity in the i-th direction [51].

2.4 Numerical Methods

Solving hydrodynamic systems require a sophisticated mathematical technique and can

only be accomplished for a small class of systems. N-S equations are part of the hydro-

dynamic system where a limited number of analytical solutions are found. Based on liter-

ature, SWEs are part of hydrodynamic system where analytical solutions are not found.

These challenges make numerical methods a popular tool for solving flow equations.

A Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) which is based on

finite volume discretization to solve velocity -depth coupling in the SWEs is one of the
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methods proposed in the literature to find the solution of SWEs [27, 52]. Other methods

like Godunov-type [43] and Semi-implicit methods [6, 8, 31] are also used. The former is

based on solving hyperbolic partial differential equations which requires knowledge of an

approximate Riemann solver because all properties such as shock and rarefaction waves

appear as characteristics in the solution. And the latter is based on a high order finite dif-

ference method where certain schemes are embedded for data reconstruction to guarantee

the non-oscillatory behavior and to improve the resolution.

All the methods described above are formulated based on a direct solution of the SWEs.

Proper initial and boundary conditions were used in schemes like finite element, finite vol-

ume and finite difference method to obtain numerical solution of the discretized equations.

These methods have common disadvantages, their convective terms, or numerical flux, or

source terms require a careful treatment in their numerical procedure.

Lattice Boltzmann (LB) method was developed to model fluids under a variety of flow

regimes. The method is based on statistical physics and describes the microscopic picture

of particle movements in an extremely simplified way, but on the macroscopic level it gives

a correct average description of fluid flow. It is a very promising computational method

for simulating fluid flows and in this dissertation, the method will be adopted to simulate

SWEs.



Chapter 3

Lattice Boltzmann Method

3.1 Introduction

The LB method was briefly introduced in the first chapter as a numerical technique to

solve problems in CFD. The method generally comprises of three components. Firstly,

the LB equation, which can be obtained from the discretization of Boltzmann equation,

this equation describes the transport of particles. Secondly, the lattice pattern, which

is represented by the grid nodes, this determines particles direction. Lastly, the local

distribution function, the flow equations are recovered by this LB model, for example, the

N-S equations and SWEs. These three components for the LB method are described fully

in this chapter together with some related topics. It is important to introduce continuum

kinetic theory for the understanding of the Boltzmann equation.

3.2 Continuum Kinetic Theory

In kinetic theory, the single-particle distribution function f = f(x, ξ, t) represents the

probability density of particles at position x, moving with velocity ξ at time t in a phase

space. A simple Continuum Boltzmann equation with the BGK equation is given by [2]

∂f

∂t
+ ξ · ∇f = −1

τ̃
(f − feq) , (3.1)

19
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where ∇ is a gradient operator, τ̃ is the relaxation time and feq is the Maxwell-Boltzmann

equilibrium distribution function in D spatial dimensions given by

feq =
ρ

(2π/3)D/2
exp

[
−3

2
(ξ −V)2

]
. (3.2)

The fluid density ρ and the velocity V are macroscopic variables recovered from the

moments of distribution function f , with respect to the microscopic particle velocity ξ

using

ρ =

∫
f dξ, ρV =

∫
ξf dξ. (3.3)

The two particle velocities ξ and V can be normalized by
√

3RT , where R is the ideal

gas constant and T is the temperature, giving Us = 1/
√

3 which is the speed of sound [9].

The equilibrium distribution function in Equation (3.2) can be expressed as

feq =
ρ

(2π/3)D/2
exp

(
−3

2
ξ2

)[
1 + 3(ξ ·V) +

9

2
(ξ ·V)2 − 3

2
V ·V

]
(3.4)

to second-order accuracy if, the fluid velocity V is smaller compared with the speed of

sound [23]. The continuum Boltzmann (BGK) equation as given in Equation (3.1) can be

written in a discrete form

∂fα
∂t

+ ξα · ∇fα = −1

τ̃
(fα − feqα ) , (3.5)

where ξα is a discrete particle velocity with α = 1, 2, . . . ,M , (M is the number of directions

in the lattice node) with the distribution functions fα(x, t) = f(x, ξα, t) and feqα (x, t) =

feq(x, ξα, t). By integrating Equation (3.5) along the characteristics, we obtain

fα(x + ξα∆t, t+ ∆t) = fα(x, t)−
∫ ∆t

0

1

τ̃
[fα − feqα ](x + ξασ, t+ σ)dσ, (3.6)

and approximating the integral by a simple rectangle rule (σ = 0) yields

fα(x + ξα∆t, t+ ∆t)− fα(x, t) = −1

τ
(fα − feqα ) . (3.7)

This is the standard LB equation used today with a single relaxation time denoted as τ

and given by τ = ∆t/τ̃ . The left hand side of Equation (3.7) represents the streaming of

particles and the right hand side denotes collision of particles.
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3.3 Lattice Pattern

In LB method, lattice pattern can be used for two main reasons, namely to set up grid

points and determining particles motion. This is done for models at microscopic level.

Two-dimensional models will be considered and there are various lattice pattern selec-

tions for which the LB method can be written down in simple form [23, 34]. The popular

square and hexagon lattices are used in this dissertation, refer to Figure 3.1, Figure 3.2

and Figure 3.3. They are referred to by D2Q5, D2Q7 and D2Q9, respectively, i.e the two-

dimensional five, seven and nine velocities according to Qian’s notation [32]. The models

we have chosen to work with have lattice patterns which have sufficient symmetry, which

is a dominant requirement for the recovery of the SWE, excluding that of D2Q5. There

are other lattice patterns which are used in LB method which will not be used in this

dissertation, for example, D3Q15 and D3Q19.

The theoretical analysis and numerical studies have shown that both D2Q7 and D2Q9

lattices have such a property and satisfactory performance in numerical simulations, but

it was proven that D2Q9 lattice gives more accurate results than those of D2Q7 lattice

model [36]. Square lattices have advantages when implementing boundary conditions [50]

(Note that the D2Q5 model provides us with computational advantage, since we have

fewer directions for the recovery of SWEs [34]).

For the lattice square with nine velocities (D2Q9), each particle moves one lattice unit

at its velocity along the link as indicated with numbers 1 - 8 and 0 represents the rest

particle (particle with zero velocity). The velocity vector of the particles is defined as

follows:

ξα =



(0, 0), α = 0

e
[
cos (α−1)π

4 , sin (α−1)π
4

]
, α = 1, 3, 5, 7,

√
2e
[
cos (α−1)π

4 , sin (α−1)π
4

]
, α = 2, 4, 6, 8.

(3.8)
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Figure 3.1: The five particle speeds ξα in the 2D square lattice.

It can be shown that the D2Q9 lattice has the following basic features

∑
α

ξαi =
∑
α

ξαiξαjξαk = 0, (3.9)

∑
α

ξαiξαj = 6e2δij , (3.10)

∑
α

ξαiξαjξαkξαl = 4e4(δijδkl + δikδjl + δilδjk)− 6e4∆ijkl (3.11)

where

∆ijkl =

 1, i = j = k = l,

0, otherwise.
(3.12)

Now if Equation (3.8) is substituted in Equation (3.16) it leads to

Nα =
1

e2

∑
α

ξαxξαx =
1

e2

∑
α

ξαyξαy = 6, (3.13)

then substituting (3.13) into (3.24) results into

fα(x + ξα∆t, t+ ∆t)− fα(x, t) = −1

τ
(fα − feqα ) +

∆t

6e2
ξαiFi(x, t). (3.14)

The above Equation (3.14) is the most common LB equation used to simulate SWEs.
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Figure 3.2: The seven particle speeds ξα in the 2D square lattice.

3.4 Lattice Boltzmann Equation and BGK Approximation

In the LB method streaming and collision steps can be considered as two different steps.

The former involves the movement of particles from one node to the neighboring lattice

node in the direction of their velocities, which is given by

fα(x + ξα∆t, t+ ∆t) = f
′
α(x, t) +

∆t

Nαe2
ξαiFi(x, t). (3.15)

where fα is a particle distribution function; f
′
α is the value of fα before streaming; e =

∆x/∆t (∆x is the lattice size and ∆t is the time step); Fi is the force term in the direction

of i and Nα is the lattice constant given by the lattice pattern as follows

Nα =
1

e2

∑
α

ξαiξαi. (3.16)

The collision step, involves interaction of particles where their velocities change direction

according to the scattering rule which can be written in the form

f
′
α(x, t) = fα(x, t) + Ωα [f(x, t)] , (3.17)

where Ωα is the collision operator (the speed of fα is controlled after collision).

The collision operator Ωα, is generally a matrix decided by the microscopic dynamics.

This matrix was found to be very complex to solve, hence the idea of linearizing it around
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Figure 3.3: The nine particle speeds ξα in the 2D square lattice.

its local equilibrium state was introduced [20], i.e Ωα was expanded about its equilibrium

value [30]

Ωα(f) = Ωα(feq) +
∂Ωα(feq)

∂fβ
(fβ − feqβ ) +O[(fβ − feqβ )2], (3.18)

where feq is the local equilibrium distribution function.

The LB equation’s solution process is characterized by fβ −→ feqβ , which implies that

Ωα(feq) ≈ 0. Neglecting high order terms leads to

Ωα(f) ≈ ∂Ωα(feq)

∂fβ
(fβ − feqβ ), (3.19)

which is a linearized collision operator. If the assumption that the local particle distribu-

tion relaxes to an equilibrium state at a single rate τ [32] is made, then

∂Ωα(feq)

∂fβ
= −1

τ
δαβ, (3.20)

where δαβ is the Kronecker delta function, defined as

δαβ =



0, α 6= β

1, α = β.
(3.21)
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Substituting Equation (3.20) into (3.19) gives

Ωα(f) = −1

τ
δαβ(fβ − feqβ ). (3.22)

The above equation results in the BGK collision operator [2]

Ωα(f) = −1

τ
(fβ − feqβ ), (3.23)

where τ is a single relaxation time. The efficiency and simplicity of the LB equation is

defined by τ , hence used widely in LB models. Substituting Equations (3.17) and (3.23)

into (3.15) results in the most popularly used LB equation given by

fα(x + ξα∆t, t+ ∆t)− fα(x, t) = −1

τ
(fα − feqα ) +

∆t

Nαe2
ξαiFi(x, t). (3.24)

3.5 Local Equilibrium Distribution Function

The most important aspect of the LB method is to determine a suitable local equilibrium

function. The local equilibrium function plays an important role because it decides what

flow equations are solved by the LB Equation (3.14). A suitable local equilibrium distri-

bution function feqα must be derived in order for the solution of LB Equation (3.14) to

recover the two-dimensional SWEs (2.47) and (2.48).

The theory of LGCA says that an equilibrium function is the Fermi-Dirac distribution,

which is often expanded as a Taylor’s series to second order on macroscopic velocity level

[15]. It was noticed that the Maxwell-Boltzmann distribution function in the LB Equation

(3.14) can only recover the Navier-Stokes equations. Therefore, an Ansatz method was

used to find a proper expression for the local equilibrium distribution function for the

SWEs. The method uses the assumption on the equilibrium function. It states that

equilibrium functions can be expressed as power series in macroscopic velocity [33]:

feqα = Aα +Bαξαiui + Cαξαiξαjuiuj +Dαuiui. (3.25)

This approach proved to be useful in other flow problems [9]. Its accuracy and flexibility

made it famous, hence used for finding suitable equilibrium functions for SWEs. The
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equilibrium function has same symmetry hence we can write

A1 = A3 = A5 = A7 = Ā, A2 = A4 = A6 = A8 = Ã. (3.26)

Similarly this can be applied to Bα, Cα and Dα. For convenience Equation (3.25) can be

written in the following form

feqα =



A0 +D0uiui, α = 0

Ā+ B̄ξαiui + C̄ξαiξαjuiuj + D̄uiui, α = 1, 3, 5, 7,

Ã+ B̃ξαiui + C̃ξαiξαjuiuj + D̃uiui, α = 2, 4, 6, 8.

(3.27)

In order to determine the coefficients in Equation (3.27), conservation of mass and mo-

mentum are used as the constraints. The following three conditions must also be satisfied

on local equilibrium function for SWEs:

∑
α

feqα = h, (3.28)

∑
α

ξαif
eq
α = hui(x, t), (3.29)

∑
α

ξαiξαjf
eq
α =

1

2
gh2δij + hui(x, t)uj(x, t). (3.30)

After finding the above equilibrium distribution function, Equation (3.25), then the above

constraints (3.28), (3.29) and (3.30) are used together with Equation (3.14) to recover the

solution of the two-dimensional SWEs (2.47) and (2.48). The Chapman-Enskog analysis

is used at microscopic level for the recovery of SWEs. This will be shown in Section (3.7).

By substituting Equation (3.27) into (3.28), results in

A0 −D0uiui

+ 4Ā+
∑

α=1,3,5,7

B̄ξαiui +
∑

α=1,3,5,7

C̄ξαiξαjuiuj + 4D̄uiui

+ 4Ã+
∑

α=2,4,6,8

B̃ξαiui +
∑

α=2,4,6,8

C̃ξαiξαjuiuj + 4D̃uiui = h.

(3.31)
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Substituting (3.8) into (3.31), and separating the coefficients of h and uiui, respectively,

leads to

A0 + 4Ā+ 4Ã = h, (3.32)

and

D0 + 2e2C̄ + 4e2C̃ + 4D̄ + 4D̃ = 0. (3.33)

Substituting Equation (3.27) into (3.29), we obtain

A0ξαi +D0ξαiujuj

+
∑

α=1,3,5,7

(
Āξαi + B̄ξαiξαjuj + C̄ξαiξαjξαkujuk + D̄ξαiujuj

)
+

∑
α=2,4,6,8

(
Ãξαi + B̃ξαiξαjuj + C̃ξαiξαjξαkujuk + D̃ξαiujuj

)
= hui.

(3.34)

Separating the coefficients and using Equation (3.9) leads to

2e2B̄ + 4e2B̃ = h. (3.35)

Similarly, inserting Equation (3.27) into Equation (3.30) leads to∑
α=1,3,5,7

(
Āξαiξαj + B̄ξαiξαjξαkuk + C̄ξαiξαjξαkξαlukul + D̄ξαiξαjukuk

)
+

∑
α=2,4,6,8

(
Ãξαiξαj + B̃ξαiξαjξαkuk + C̃ξαiξαjξαkξαlukul + D̃ξαiξαjukuk

)
=

1

2
h2δij + huiuj .

(3.36)

Substituting Equation (3.8) into Equation (3.36) results into

2Āe2δij + 2C̄e4uiuj + 2D̄e2uiui + 4Ãe2δij

+8C̃e2uiuj + 4C̃e4uiui + 4C̃e2uiui =
1

2
gh2δij + huiuj .

(3.37)

Separating the coefficients of the above equation leads to the following four relations,

2e2Ā+ 4e2Ã =
1

2
gh2, (3.38)

8e2C̃ = h, (3.39)
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2e2C̄ = h (3.40)

and

2e2D̄ + 4e2D̃ + 4e4C̃ = 0. (3.41)

From above, Equations (3.39) and (3.40) can be combined together resulting into

4C̃ = C̄. (3.42)

Based on symmetry of lattices and using the above Equation (3.42), it is feasible to assume

the following three relations,

4Ã = Ā, 4B̃ = B̄ and 4D̃ = D̄. (3.43)

Now Equations (3.32), (3.33), (3.35), (3.38), (3.39), (3.40) and (3.41) are solved simulta-

neously, resulting into the following

A0 = h− 5gh2

6e2
, D0 = − 2h

3e2
, (3.44)

Ā =
gh2

6e2
, B̄ =

h

3e2
, C̄ =

h

3e4
, D̄ = − h

6e2
, (3.45)

Ã =
gh2

24e2
, B̃ =

h

12e2
, C̃ =

h

8e4
, D̄ = − h

24e2
. (3.46)

Therefore, substituting the above Equations (3.44), (3.45) and (3.46) into (3.27), results

into

feqα =



h− 5gh2

6e2
− 2h

3e2
uiui, α = 0,

gh2

6e2
+

h

3e2
ξαiui +

h

3e4
ξαiξαjuiuj −

h

6e2
uiui, α = 1, 3, 5, 7,

gh2

24e2
+

h

12e2
ξαiui +

h

8e4
ξαiξαjuiuj −

h

24e2
uiui, α = 2, 4, 6, 8,

(3.47)

which is the equilibrium function for solving SWEs. The equilibrium function (3.47) is

used together with the LB Equation (3.14) for the solution of SWEs (2.47) and (2.48).
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Equation (3.47) can also be written in the form

feqα =


h+Wαh

(
−15gh

8e2
− 3

2e2
uiui

)
,

Wαh

(
3gh

2e2
+

3h

e2
ξαiui +

9

2e4
ξαiξαjuiuj −

3

2e2
uiui

)
, α 6= 0,

(3.48)

where

Wα =



4
9 , α = 0,

1
9 , α = 1, 3, 5, 7,

1
36 , α = 2, 4, 6, 8.

(3.49)

3.6 Macroscopic Properties

The purpose of this section is to examine the macroscopic properties of the LB Equation

(3.14). Then the remaining task is to determine the macroscopic variables h and ui, which

will be done in the next section. The examination of the macroscopic property of the LB

Equation (3.14), is done by taking the zeroth discrete moment of the distribution function

in the LB Equation (3.14) over the lattice velocities, leading to∑
α

[fα(x + ξα∆t, t+ ∆t)− fα(x, t)] = −1

τ

∑
α

(fα − feqα )

+
∆t

6e2

∑
α

ξαiFi.

(3.50)

Note that
∑

α ξαiFi = 0, which implies that
∆t

6e2

∑
α

ξαiFi = 0. Then Equation (3.50)

collapses to ∑
α

[fα(x + ξα∆t, t+ ∆t)− fα(x, t)] = −1

τ

∑
α

(fα − feqα ) . (3.51)

Note that, the cumulative mass and momentum which correspond to the sum of the micro-

dynamic mass and momentum are conserved. This is an explicit constraint to preserve

conservative properties in the LB method. Therefore, the mass conservation requires the

following identity ∑
α

fα(x + ξα∆t, t+ ∆t) ≡ fα(x, t). (3.52)
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Substituting Equation (3.52) into (3.51) leads to∑
α

fα(x, t) =
∑
α

feqα (x, t). (3.53)

With reference to Equation (3.28), the above Equation (3.53) gives the macroscopic water

depth h as

h(x, t) =
∑
α

fα(x, t). (3.54)

The macroscopic velocity ui can be found in a similar manner by taking first discrete

moment of the distribution function fα in the LB Equation (3.14) over lattice velocities,

giving ∑
α

ξαi[fα(x + ξα∆t, t+ ∆t)− fα(x, t)] = −1

τ

∑
α

ξαi (fα − feqα )

+
∆t

6e2

∑
α

ξαiξαjFj .

(3.55)

Since
∑

α ξαiξαi = 6e2δij , then Equation (3.55) can be reduced and rearranged to∑
α

ξαi[fα(x + ξα∆t, t+ ∆t)− fα(x, t)]

= −1

τ

∑
α

ξαi (fα − feqα ) + ∆tFi.
(3.56)

Note again that, the momentum conservation in micro-dynamic variables requires the

following identity ∑
α

ξαi[fα(x + ξα∆t, t+ ∆t)− fα(x, t)] ≡ ∆tFi. (3.57)

Substituting Equation (3.57) into Equation (3.56), we obtain∑
α

ξαifα(x, t) =
∑
α

ξαif
eq
α (x, t). (3.58)

With reference to Equation (3.29), the above Equation (3.58) gives the macroscopic ve-

locity ui as

ui(x, t) =
1

h(x, t)

∑
α

ξαif
eq
α (x, t). (3.59)

Since the distribution function fα relaxes to its local equilibrium function feqα via the LB

Equation (3.14), then Equations (3.28) and (3.29) are satisfied, i.e mass and momentum

conservation is guaranteed on Equations (3.54) and (3.59).
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3.7 Recovery of the Shallow Water Equations

In this section the Chapman-Enskog analysis is used to prove that the solution of the LB

Equation (3.14) leads to the recovery of macroscopic two-dimensional SWEs (2.47) and

(2.48). The method basically allows the restoration of hydrodynamic equations from the

Boltzmann equation in the low Knudsen number limit. The procedure starts from the

continuous Boltzmann equation and then, it is applied to the discretized LB equation.

The present section only deals with the latter. The assumption that ∆t is a small time

step and equal to ε is made, i.e

∆t = ε. (3.60)

Then the LB Equation (3.14) can be expressed as follows

fα(x + ξαε, t+ ε)− fα(x, t) = −1

τ
(fα − feqα ) +

ε

6e2
ξαjFj(x, t). (3.61)

Applying the Taylor’s expansion to the first term on the left side of Equation (3.61) in

time and space around the point (x, t) results in

ε

(
∂

∂t
+ ξαj

∂

∂xj

)
fα +

1

2
ε2
(
∂

∂t
+ ξαj

∂

∂xj

)2

fα +O(ε3)

= −1

τ

(
fα − f0

α

)
+

ε

6e2
ξαjFj(x, t),

(3.62)

where f
(0)
α = feqα , and by expanding fα around the f

(0)
α leads to

fα = f (0)
α + εf (1)

α + ε2f (2)
α +O(ε3). (3.63)

Substituting Equation (3.63) into (3.62) results into

ε

(
∂

∂t
+ ξαj

∂

∂xj

)(
f (0)
α + εf (1)

α + ε2f (2)
α +O(ε3)

)
+

1

2
ε2
(
∂

∂t
+ ξαj

∂

∂xj

)2 (
f (0)
α + εf (1)

α + ε2f (2)
α +O(ε3)

)
+O(ε3)

= −1

τ

(
εf (1)
α + ε2f (2)

α +O(ε3)
)

+
ε

6e2
ξαjFj .

(3.64)

From the above Equation (3.64) terms with higher order ε3 are ignored. Separating Equa-

tion (3.64) by ε and ε2 leads to the following two equations(
∂

∂t
+ ξαj

∂

∂xj

)
f (0)
α = −1

τ
f (1)
α +

1

6e2
ξαjFj , (3.65)
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and (
∂

∂t
+ ξαj

∂

∂xj

)
f (1)
α +

1

2

(
∂

∂t
+ ξαj

∂

∂xj

)2

f (0)
α = −1

τ
f (2)
α . (3.66)

By substituting Equation (3.65) into (3.66) and rearranging, results into(
1− 1

2τ

)(
∂

∂t
+ ξαj

∂

∂xj

)
f (1)
α = −1

τ
f (2)
α −

1

2

(
∂

∂t
+ ξαj

∂

∂xj

)
1

6e2
ξαkFk. (3.67)

Taking the summation of Equations (3.65) and the product of ε and Equation (3.67) leads

to
∂

∂t
(
∑
α

f (0)
α ) +

∂

∂xj
(
∑
α

ξαjf
(0)
α ) = − ε

12e2

∂

∂xj
(
∑
α

ξαjξαkf
(0)
k ). (3.68)

By applying the first order accuracy of the force term and substituting Equations (3.14)

and (3.47) into (3.68), leads to
∂h

∂t
+
∂(huj)

∂xj
= 0, (3.69)

which is the continuity Equation (2.47) for SWEs. Similarly, by taking the summation

of the product of ξαj and Equation (3.65) together with the product of ε and Equation

(3.67) leads to

∂

∂t
(
∑
α

ξαif
(0)
α ) +

∂

∂xj
(
∑
α

ξαiξαjf
(0)
α ) + ε

(
1− 1

2τ

)
∂

∂xj
(
∑
α

ξαiξαjf
(1)
α )

= Fjδij −
ε

2

∑
α

ξαi

(
∂

∂t
+ ξαj

∂

∂xj

)
1

6e2
ξαjFj .

(3.70)

Again, by applying the first order accuracy of the force term to the above Equation (3.70)

with reference to Equation (3.14) and (3.47) results in

∂(hui)

∂t
+
∂(huiuj)

∂xj
= −1

2
g
∂h2

∂xi
− ∂Λij

∂xj
+ Fi, (3.71)

where

Λij =
ε

2τ
(2τ − 1)

∑
α

ξαiξαif
(1)
α . (3.72)

By considering Equation (3.65) and using Equations (3.14) and (3.47) after some manip-

ulation the following results are obtained

Λij ≈ −ν
[
∂(hui)

∂xj
+
∂(huj)

∂xi

]
. (3.73)
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Substituting Equation (3.73) into (3.71), results into the following equation

∂hui
∂t

+
∂(huiuj)

∂xj
= −1

2
g
∂h2

∂xi
+ ν

∂2(hui)

∂xj∂xj
+ Fi, (3.74)

where the kinematic viscosity ν is defined as follows

ν =
1

6
e2∆t(2τ − 1) (3.75)

and the force term Fi is given by Equation (2.49). Note that Equation (3.74) is known as

the momentum equation for the SWEs, Equation (2.48).

The above proof is of first order accurate for the recovery of SWEs due to force terms.

Therefore, the centred scheme can be used to treat the force terms in the LB equation to

second-order accuracy of the macroscopic continuity and momentum equations, refer to

[51].

3.8 Force term

In fluid mechanics, for fluids to flow there must be external or internal forces that drive

the fluids. Therefore, the study of force terms in LB method is important for accurate

predictions involving external forces.

Zhou [49, 50] has shown that direct incorporation of force terms into the LB method

produces accurate solutions to many flows. This was done by incorporating wind shear

stress and the bed slope into the streaming step. This makes the force term to be evaluated

in a straight way, allowing any additional natural force terms to be taken into account.

After numerical tests, it was realized that for some straight evaluation of force terms, the

LB equation gave inaccurate results for other flows. Hence a centred scheme was developed

[51] and it is described as follows.

The force term is evaluated at the mid-point between the lattice points and its neigh-

boring point as

Fi = Fi(x +
1

2
ξα∆t, t+

1

2
∆t). (3.76)

The force term can also be written in the semi-implicit form as

Fi = Fi(x +
1

2
ξα∆t, t). (3.77)
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Substituting the above Equation (3.76) into the LB Equation (3.14) and applying Chap-

man Enskog expansion gives

fα(x + ξαε, t+ ε)− fα(x, t) = −1

τ
(fα − feqα )

+
ε

6e2
ξαiFi(x +

1

2
ξαε, t+

1

2
ε),

(3.78)

where ∆t = ε is assumed to be small. Applying the Taylor’s expansion to the first term

on the left side of Equation (3.78) in time and space around the point (x, t) results in

fα(x + ξαε, t+ ε) = fα(x, t) + ε

(
∂

∂t
+ ξαj

∂

∂xj

)
fα

+
1

2
ε2
(
∂

∂t
+ ξαj

∂

∂xj

)2

fα +O(ε3).

(3.79)

Similarly,

Fi(x + ξαε, t+ ε) = Fi(x, t) +
ε

2

(
∂

∂t
+ ξαj

∂

∂xj

)
Fi +O(ε2), (3.80)

which results from taking Taylor’s expansion to the force term on the right side of Equation

(3.78) in time and space around the point (x, t). Substituting Equations (3.79) and (3.80)

into (3.78) yields

ε

(
∂

∂t
+ ξαj

∂

∂xj

)
fα +

1

2
ε2
(
∂

∂t
+ ξαj

∂

∂xj

)2

fα = −1

τ
(fα − feqα )

+
ε

6e2
ξαiFi +

ε2

12e2

(
∂

∂t
+ ξαj

∂

∂xj

)
Fi +O(ε3).

(3.81)

Now when expanding fα around f
(0)
α leads to

fα = f (0)
α + εf (1)

α + ε2f (2)
α +O(ε3), (3.82)

where f
(0)
α = feqα . Substituting Equation (3.82) into Equation (3.81) and separating O(ε)

and O(ε2) terms lead to the following two equations(
∂

∂t
+ ξαj

∂

∂xj

)
f (0)
α = −1

τ
f (1)
α +

1

6e2
ξαjFj (3.83)

and (
∂

∂t
+ ξαj

∂

∂xj

)
f (1)
α +

1

2

(
∂

∂t
+ ξαj

∂

∂xj

)2

f (0)
α = −1

τ
f (2)
α

+
1

12e2

(
∂

∂t
+ ξαj

∂

∂xj

)
Fi.

(3.84)
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Substituting Equation (3.83) into (3.84) results in the following equation

(1− 1

2τ
)

(
∂

∂t
+ ξαj

∂

∂xj

)
f (1)
α = −1

τ
f (2)
α . (3.85)

Taking the summation of Equation (3.83) and the product of ε with Equation (3.85) leads

to
∂

∂t
(
∑
α

f (0)
α ) +

∂

∂xj
(
∑
α

ξαjf
(0)
α ) = 0. (3.86)

Similarly, by taking the summation of the product of eαj and Equation (3.83) together

with the product of ε and Equation (3.85), i.e (
∑
ξαj [(3.83) + ε (3.85)]), leads to

∂

∂t
(
∑
α

ξαif
(0)
α ) +

∂

∂xj
(
∑
α

ξαiξαjf
(0)
α )

+ε(1− 1

2τ
)
∂

∂xj
(
∑
α

ξαiξαjf
(1)
α ) = Fi.

(3.87)

When comparing the two Equations (3.86) and (3.87), it was observed that terms regarding

external forces disappear leading to

∂hui
∂t

+
∂huiuj
∂xj

= −1

2
g
∂h2

∂xi
− ∂Λij

∂xj
+ Fi, (3.88)

where

Λij =
ε

2τ
(2τ − 1)

∑
α

ξαiξαif
(1)
α . (3.89)

By considering Equation (3.83) and using Equations (3.14) and (3.47) after some manip-

ulation the following results were obtained [51]

Λij ≈ −ν
[
∂hui
∂xj

+
∂huj
∂xi

]
. (3.90)

Substituting Equation (3.90) into (3.88), results into the following equation

∂hui
∂t

+
∂huiuj
∂xj

= −1

2
g
∂h2

∂xi
+ ν

∂2(hui)

∂xj∂xj
+ Fi, (3.91)

where the kinematic viscosity ν is defined as follows

ν =
1

6
e2ε(2τ − 1). (3.92)

Equation (3.91) is known as the momentum equation for the SWEs and its accuracy is of

second-order for the recovery of SWEs due to the force terms. Other schemes can be used

but the centred scheme used above is more accurate in comparison (e.g the basic scheme

and the second-order scheme) [51].
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3.9 Stability Conditions

It is well known among LB researchers that instability problems arise frequently, when

the LB method is viewed as a finite-difference method for solving the continuum discrete-

velocity Boltzmann equations. It becomes clear that numerical accuracy and stability

issues should be addressed. For example, the work on stability theory was done in [40, 25]

based on an explicit difference scheme. Most of the works were based on the von-Neumann

stability analysis for the difference scheme and the resulting growth matrix was not treated

analytically. In both [40] and [25], approximation methods based on linear algebra were

used to compute the eigenvalues of the growth matrix, while perturbation technique was

also employed in [25].

Computationally, the LB method was often found stable when certain conditions were

met. Firstly, when fluid flows then diffusion phenomena is present. As a result, kinematic

viscosity should be positive [40]. Based on Equation (3.92), we have

ν =
1

6
e2∆t(2τ − 1) > 0. (3.93)

Therefore, from the above equation, it is deduced that

τ >
1

2
.

Secondly,

Cr =
√
ujuj

∆t

∆x
< 1, (3.94)

which can be written in the form

√
ujuj <

∆x

∆t
= e,

i.e the maximum speed e that the lattice can support is much bigger than the wave speed.

In shallow water flow, the wave speed is
√
gh, therefore

√
gh <

∆x

∆t
= e. (3.95)

Since LB method is limited to low speed flows, this implies that the flow is suitable for

sub-critical shallow water flows. Therefore, the wave speed should be greater than the
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resultant velocity, i.e √
gh >

√
ujuj . (3.96)

The above Equation (3.96) can also be written in the form

Fr =

√
uiuj√
gh

< 1, (3.97)

which is known as the Froude number in hydraulics. This number can be used to decide

the flow state, i.e Fr > 1 implies supercritical flow, Fr = 1 implies critical flow and for

Fr < 1 implies sub-critical. From the above Equation (3.97), we can limit our study to

shallow water flows in the sub-critical regime. Generally, the LB method becomes stable

if the conditions described above are satisfied.

3.10 Initial and Boundary Conditions

3.10.1 Boundary Conditions

Boundary conditions play an important role in the LB method since they can influence

the accuracy and stability of the LB method, refer to [55] for more details. The correct

implementation of SWE boundary conditions, in the framework of LB schemes, is made

complicated by non-availability of analytical methods to assess the consistency of such

discretizations. The following boundary conditions will be used and were proposed in [49]:

1. For solid boundary conditions, no-slip or slip boundary conditions are applied. For

no-slip condition, the bounce-back scheme is used and for slip conditions, a zero

gradient of the distribution function normal to the solid wall is used.

2. For inflow and out flow boundary conditions, if given the velocity and depth, then

the distribution function fi at the boundary can be calculated as follows: After

streaming, the unknown f1, f2 and f8, refer to Figure 3.4, can be decided as [49]

f1 = f5 +
2hu

3e
,

f2 =
hu

6e
+ f6 +

f7 − f3

2
,
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Figure 3.4: Inflow and Outflow lattice notes boundaries.

f8 =
hu

6e
+ f4 +

f3 − f7

2
,

where e = ∆x/∆t, ∆x is the lattice size and ∆t is the time step.

If a zero gradient for velocity or depth at either inflow or outflow boundary is re-

quired, the gradient of the distribution function normal to the boundary is set to

zero.

3.10.2 Initial Conditions

Initial conditions can generally be specified in two ways, when LB method is used. The

first way is to assign a random value between zero and unity for the distribution functions

and the second way is to use the local equilibrium distribution function feqα with respect to

the macroscopic variables [51]. The latter is more convenient for implementing on SWEs

because it speeds up the numerical computation.

The consistent initial condition designed in [28] is the other way to set initial conditions,

but the approach is not popular in practice. Therefore, in this dissertation the local

distribution functions feqα are calculated using initial macroscopic variables u, v and h.
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3.11 The Basic Solution

The LB algorithm basically consists of two steps the streaming-step and the collision-step

as described in Section 3.4. These are usually combined with boundary conditions and

initial conditions. When using the LB method, the particle is limited to a number of

directions. For example, in two-dimension, the D2Q9 model is usually used and is being

adopted in this dissertation.

When finding the solutions for LB method for the SWEs, the following solution pro-

cedure can be used [49]:

1. when given initial water depth (h) and velocity (ui),

2. the f
(eq)
i is calculated from Equation (3.47) or (3.48) together with Equation (3.49)

and in the next step,

3. the fi are computed via the LB Equation (3.24), when this step is implemented,

proper relaxation time τ is used.

4. the water depth and velocity are updated accordingly using Equations (3.28) and

(3.29),

5. steps (2) - (4) are repeated until the solution is obtained.



Chapter 4

Stability Structure

4.1 Introduction

The LB equation is used as an alternative numerical method to simulate SWEs. The

method is viewed as a particular discretization of discrete-velocity Boltzmann equation

[40], which are hyperbolic equations with stiff source terms. Certain stability criteria were

used to ensure a well behaved relaxation limit, namely, the structural stability condition

[46], the sub-characteristic condition [21] and dissipative entropy principles [5]. As a result,

the LB equations were constructed to satisfy some physical requirements like Galilean

invariance and isotropy, to possess a velocity-independent pressure and no compressible

effects [23, 54].

Note that the continuum Boltzmann equation satisfies a dissipative entropy condi-

tion (Boltzmann’s H-theorem) [7]. Since the discrete-velocity LB equation is viewed as

a discretized version of the continuum Boltzmann equation, one might expect that the

dissipative entropy conditions are satisfied in both equations. But it was proven in [47]

that such entropy conditions do not exist for many used LB equations. Hence, conditions

like structural stability in [46] were used in such cases.

In the following work, stable LB models will be defined by using stability conditions

in [46, 1]. In most of the models used, it is not yet proven that the diffusive limit of

the discrete-velocity Boltzmann equation are SWEs at least in the regime of smooth flow.

But we can remark that, incompressible fluids are modelled using either SWEs or the

40
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N-S equations. The latter satisfies the diffusive limit of the discrete-velocity Boltzmann

equation, see [22], when certain models are used. These models are similar to the ones

used in this dissertation. Therefore, it is reasonable to consider the stability condition

as a new requirement in constructing LB equations for the SWEs. Note that the present

theory is valid only for isothermal models.

To explain how the stability requirement guides the construction of the LB equations,

we will show that the LB models for the SWEs are stable using Definition (1), which

will be stated in the next section. We will do so by testing the stability structure on

some examples which will be shown in the sections below. In other models, we will

also investigate the parameter range for which the models are stable. Computational

experiments were taken on examples which are used commonly in literature, to confirm

the usefulness of the stability structure.

4.2 Stability Notion

We consider the LB equation derived from a particular discretization of the following

d-dimensional, N-velocity Boltzmann equation.

∂f

∂t
+ ξi.∇fi = Ji(f) (i = 1, 2, . . . , N), (4.1)

where fi(x, t) = f(x, ξi, t) is a distribution function representing the probability density

of the particles at position x moving with speed ξi at time t, i.e ξi represents velocity

contained in the set of discrete velocities, {ξ1, ξ2, . . . , ξN}. The left hand side of Equation

(4.1) represents the transport of fluid particles. The right hand side represents the collision

term, which describes the interaction of the particles.

Definition 1. Stability Structure:

Let f∗ be a constant state satisfying J(f∗) = 0. The Lattice Boltzmann model (4.1) is called

stable at f = f∗ if there is an invertible matrix P ∈ RN×N such that P TP is diagonal and

PJf (f∗) = −diag(λ1, λ2, . . . , λN )P with λi = 0 for i ≤ d + 1 and λi > 0 for i > d + 1.

Here Jf (f) ∈ RN×N is the Jacobian of J(f) = (J1(f), J2(f), . . . , JN (f))T [1].



4.2. STABILITY NOTION 42

In the above definition, d represents the space dimension, J(f∗) is the Jacobian matrix

and λ is an eigenvalue.

Remark 1. This definition is based on the stability conditions [46] for hyperbolic systems

with source terms. It was noted that the usual entropy conditions cannot be used for many

used Lattice Boltzmann equations, see [47].

Remark 2. In general, a consistent and stable lattice Boltzmann model implies conver-

gence, which can be proven using the approach in [1].

Definition 2. We will say that a square matrix A is diagonalizable if A is similar to

a diagonal matrix. This means that there is an invertible matrix P and diagonal matrix

D = diag{α1, α2, . . . , αn} such that P−1AP or AP = PD [10].

Definition 3. Two n×n matrices A and B are said to be similar if a non-singular matrix

P exists with A = P−1BP [48].

Definition 4. A real symmetric matrix A is positive definite if and only if there exists a

real non-singular matrix P such that

A = P TP,

where P T is a transpose [48].

Theorem 1. Suppose A and B are similar n × n matrices and λ is an eigenvalue of A

with associated eigenvector x. Then λ is also an eigenvalue of B and if A = P−1BP then

Px is an eigenvector associated with λ and the matrix B [48].

Theorem 2. If A is an n×n symmetric matrix and D is a diagonal matrix whose diagonal

elements are the eigenvalues of A, then there exists an orthogonal matrix P such that

D = P TAP

[48].

The examples below will be using definitions and theorems stated above.
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4.2.1 Examples

To introduce the stability structure, we will consider the following examples below. The

models to be used are taken from [51, 34].

Example 1

Consider the following D2Q5-velocity model, with

ξ0 = (0, 0),

{ξi : i 6= 0} = {(±e, 0)T , (0,±e)T }

where e is a lattice constant and usually scaled to be 1. i.e e = 1, refer to Figure (3.1)

and

Ji(f) =
feqi (h, u)− fi

τ
.

Here τ is a positive constant (relaxation time) and

feqi =


h− gh2

e2

gh2

4e2
+
hξiu

2e2
, i 6= 0,

(4.2)

with

h =
N∑
i=0

fi,

and

hu =

N∑
i=0

ξifi.

The model was taken from [34]. Unlike other LB models, this model has no momentum

advection term. Therefore, there are two advantages when this model is used, the physical

basis and computation. But both advantages are more significant in three dimensions than

in two dimensions [34].
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To show its stability, it is noted that the following can be verified directly∑N
i=0 f

eq
i = h =

∑N
i=0 fi,

∑N
i=0 ξif

eq
i = hu =

∑N
i=0 ξifi.

(4.3)

Computing Equation (4.2) gives

∂feqi (h,u)

∂fj
=


1− 2gh

e2

gh

2e2
+
ξjξi
2e2

, i 6= 0,

(4.4)

see Appendix A.

Definition 5. A projection matrix P is an n× n square matrix that gives a vector space

projection from Rn to a subspace W. The columns of P are the projections of the standard

basis vectors, and W is the image of P. A square matrix P is a projection matrix iff [29]

P 2 = P.

Remark 3. Eigenvalues of a projection matrix are either 0 or 1 [41].

By using Equation (4.3), we deduce from Equation (4.4) that

[feqfi (h,u)]2 = [feqfi (h,u)],

that is, the Jacobian [feqfi (h,u)] is a projection matrix, see Appendix B. Thus, the eigen-

values of

Jf (h,u) = ([feqfi (h,u)]− I5)/τ,

are 0 and -
1

τ
.

Remark 4. If all the eigenvalues of a matrix A have real parts that are zero or negative

with at least one eigenvalue having zero real part, then there is insufficient information

available to conclude on the stability of the equilibrium solution. As a result, more analysis

must be done [12].
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Now take f∗ = feq(1,u) and e = 1 then

∂feqi (1,u)

∂fj
=


1− 2g

g

2
+
ξjξi

2
, i 6= 0.

(4.5)

We want to find A0 such that

A0

[
∂feqi (1,u)

∂fj

]
= X, (4.6)

where X is a symmetric matrix. The square matrix A0 must be symmetric and positive

definite. Choose

A0 = diag

[
1

1− 2g
,

2

g
I4

]
. (4.7)

Remark 5. Note the following properties of a positive definite matrix (PDM):

• A transpose of a PDM is non-singular.

• Transpose of a PDM is PDM.

• Eigenvalues of a PDM are positive.

• A product of any matrix with its transpose is PDM.

From the choice of A0 in Equation (4.7), we need to choose g such that A0 remains

positive definite. Therefore, we need to set

g <
1

2
and g 6= 0,

i.e g ∈ (0,
1

2
), see Appendix C. Substituting Equations (4.5) and (4.7) into (4.6) gives

X = γξT ξ +A0Ψij , (4.8)

where γ is a constant and Ψij is a square matrix (N ×N). Take g =
1

3
, for example, then

∂feqi (1,u)

∂fj
=


1

3

1

6
+
ξjξi

2
, i 6= 0

(4.9)
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and

A0 = 3 diag [1, 2I4] . (4.10)

From Equations (4.9) and (4.10), we see that

A0

[
∂feqi (1,u)

∂fj

]
= 3ξT ξ +A0Ψij (4.11)

is symmetric, where

Ψij =


1

3

1

6
, i 6= 0.

We deduce from Equation (4.9) that the rank of [feqfi (1,u)] is 3, see Appendix D. Since

[feqfi (ρ,u)] is a projection matrix and

τJf (f∗) = [feqfi (1,u)]− I5

then, the rank of Jf (f∗) is 2.

On the other hand, since A0[feqfi (1,u)] is symmetric and A0 is symmetric positive

definite, it is known that there is an invertible matrix P such that

A0 = P TP and A0τJf (f∗) = P TΛP

with Λ a diagonal matrix. Note that Λ is similar to τJf (f∗). We may as well assume that

Λ = −diag(0, 0, 0, 1, 1).

Thus we have proven,

Proposition 1. The 2-dimensional 5-velocity model admits the stability structure with

λi = 1/τ for i ≥ 2.

Remark 6. The lattice Boltzmann models that are stable can be used as a guideline to con-

struct consistent models which will automatically converge to the shallow water equations

in the diffusive limit.

Remark 7. We remark that the lattice Boltzmann model (4.2) used above models shallow

water equation. Its consistency is not yet proven and it is not within the scope of this

work.
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Note that the D2Q5 model cannot be used for the physics containing momentum ad-

vection, because its lower degree of isotropy leads to a completely incorrect representation

of the momentum flux tensor. It was proven that a sufficient symmetry lattice is needed for

correct representation of physics [15], (this is the dominant requirement for the recovery

of the correct flow equation).

Example 2

Next we consider D2Q7-velocity model, with

ξ0 = (0, 0),

{ξi : i 6= 0} =

{
e

[
cos

(
(i− 1)π

3

)
, sin

(
(i− 1)π

3

)]}
and

feqi =


h− gh2

e2
+
hu2

e2

gh2

6e2
+
hξiu

3e2
+

2h(ξi.u)2

3e4
− hu2

2e2
, i 6= 0.

(4.12)

Refer to Figure (3.2), with

h =
N∑
i=0

fi,

and

hu =

N∑
i=0

ξifi.

Similar to Example 1, the following can be verified directly

N∑
i=0

feqi = h =

N∑
i=0

fi,

N∑
i=0

ξif
eq
i = hu =

N∑
i=0

ξifi.

(4.13)

Computing Equation (4.12), gives

∂feqi (h,u)

∂fj
=


1− 2gh

e2
+

2ξju

e2
− u2

e2

gh

3e2
+
ξjξi
3e2

+
4ξjξi.u

3e4
− 2(ξi.u)2

3e4
− ξju

e2
+

u2

2e2
, i 6= 0.

(4.14)
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By using Equation (4.13), we deduce from Equation (4.14) that

[feqfi (h,u)]2 = [feqfi (h,u)],

that is, the Jacobian [feqfi (h,u)] is a projection matrix. Thus, the eigenvalues of

Jf (h,u) = ([feqfi (h,u)]− I7)/τ

are 0 and -
1

τ
. Take f∗ = feq(1, 0) and e = 1 then

∂feqi (1, 0)

∂fj
=


1− 2g

g

3
+
ξjξi

3
, i 6= 0.

(4.15)

We want to find B0 such that

B0

[
∂feqi (1, 0)

∂fj

]
= Y, (4.16)

where Y is a symmetric matrix. The square matrix B0 must be symmetric and positive

definite. Choose

B0 = diag

[
1

1− 2g
,

3

g
I4

]
. (4.17)

From the above choice of B0, we need to choose g such that, B0 remains positive definite.

Therefore, we set

g <
1

2
and g 6= 0.

Substituting Equations (4.15) and (4.17) into (4.16) gives

Y = γξT ξ +B0Ψij , (4.18)

where γ is a constant and Ψij is an (N ×N) matrix. Take g =
1

4
, for example, then

∂feqi (1, 0)

∂fj
=


1

2

1

8
+
ξjξi

2
, i 6= 0

(4.19)

and

B0 = 2 diag [1, 4I4] . (4.20)
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From Equations (4.19) and (4.20) we see that

B0

[
∂feqi (1, 0)

∂fj

]
= 4ξT ξ +B0Ψij (4.21)

is symmetric, where

Ψij =


1

2

1

8
, i 6= 0.

We deduce from Equation (4.19) that the rank of [feqfi (1, 0)] is 3. Since [feqfi (h,u)] is a

projection matrix and

τJf (f∗) = [feqfi (1, 0)]− I7

then, the rank of Jf (f∗) is 4.

On the other hand, since B0[feqfi (1, 0)] is symmetric and B0 is symmetric positive

definite, it is well known that there is an invertible matrix P such that

B0 = P TP and B0τJf (f∗) = P TΛP

with Λ a diagonal matrix. We may as well assume that

Λ = −diag(0, 0, 0, 1, 1, 1, 1).

Thus we have proven,

Proposition 2. The 2-dimensional 7-velocity model is stable.

Remark 8. The lattice Boltzmann model used above was developed by Zhou [51] using

the 7-speed hexagonal lattice shown in Figure (3.2). The model was developed in the same

manner to that on the 9-speed square lattice.

4.3 Determination of Parameters

In the following section, some parameters will be fixed for several LB models. By doing so

we will make the assumptions that the LB models are stable for those fixed parameters.

The models to be used are taken from [11, 34].
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4.3.1 Examples

The following examples are used:

Example 3

Now consider D2Q9-velocity model, with

ξ0 = (0, 0),

{ξi : i = 1, 2, 3, 4} = {(±1, 0)T , (0,±1)T },

{ξi : i = 5, 6, 7, 8} = {(±1,±1)T }

and

f
(eq)
i =ωi

(
h+

1

θ
(hu) · ξi +

1

2θ2
[(P (h)− θh)I + huu] : (ξiξi − θI)

)
+ ωigi

(
1

4
h− 3

8
gh2

)
.

(4.22)

Figure 4.1: The nine particle speeds ξi in the 2D square lattice.

Refer to Figure (4.1), where

• θ =
1

3
is a constant reference temperature,
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• g is gravity,

• P =
1

2
gh2 is pressure,

• I is the identity matrix,

• gi = (1,−2,−2,−2,−2, 4, 4, 4, 4)T , are parameters referred to as a ′′ghost vector′′ by

Dellar [11]

• and ωi are the weight functions given in the form

ωi =



α, i = 0

β, i = 1, 2, 3, 4

1− α− 4β

4
, i = 5, 6, 7, 8

(4.23)

where α and β are parameters,

with

h =
N∑
i=0

fi,

hu =
N∑
i=0

ξifi

and

Π =
N∑
i=0

ξiξifi.

The model was taken from Dellar [11]. To show its stability, it is noted that, the following

can be verified directly ∑N
i=0 f

eq
i = h =

∑N
i=0 fi,

∑N
i=0 ξif

eq
i = hu =

∑N
i=0 ξifi.

(4.24)

Note that

Π(eq) =
N∑
i=0

ξiξif
eq
i

= P (h)I + huu,
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see [11]. Equation (4.22) can be written as

feqi =


h+ ω0h

(
−15

8
gh− 3

2
u2

)

ωih

(
3

2
gh+ 3ξi.u +

9

2
(ξi.u)2 − 3

2
u2

)
, i 6= 0.

(4.25)

The above model (4.25) is known as Salmon’s equilibria [34]. By substituting the

parameters (α, β) = (4
9 ,

1
9) in Equation (4.23) above leads to

ωi =



4

9
, i = 0

1

9
, i = 1, 2, 3, 4

1

36
, i = 5, 6, 7, 8,

(4.26)

these values are usually used in most D2Q9 models. Using Equation (4.26), then Equation

(4.25) can be written as

feqi (h,u) =



h− 5

6
gh2 − 2

3
hu2 i = 0

1

6
gh2 +

1

3
hξi.u +

1

2
h(ξi.u)2 − 1

6
hu2, 1 ≤ i ≤ 4

1

24
gh2 +

1

12
hξi.u +

1

8
h(ξi.u)2 − 1

24
hu2, 5 ≤ i ≤ 8.

(4.27)

Computing

∂feqi (h,u)

∂fj
=



1− 5

3
gh− 4

3
ξj .u +

2

3
u2 i = 0

1

3
gh+

1

3
ξjξi + ξjξi.u−

1

2
(ξi.u)2 − 1

3
ξj .u +

1

6
u2, 1 ≤ i ≤ 4

1

12
gh+

1

12
ξjξi +

1

4
ξjξi.u−

1

8
(ξi.u)2 − 1

12
ξj .u +

1

24
u2, 5 ≤ i ≤ 8.

(4.28)
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By using Equation (4.24), we deduce from Equation (4.28) that

[feqfi (h,u)]2 = [feqfi (h,u)],

that is, the Jacobian [feqfi (h,u)] is a projection matrix. Thus, the eigenvalues of

Jf (h,u) = ([feqfi (h,u)]− I9)/τ

are 0 and -
1

τ
. Take f∗ = feq(1, 0), then

∂feqi (1, 0)

∂fj
=



1− 5

3
g i = 0

1

3
g +

1

3
ξjξi, 1 ≤ i ≤ 4

1

12
g +

1

12
ξjξi, 5 ≤ i ≤ 8.

(4.29)

We want to find C0 such that

C0

[
∂feqi (1, 0)

∂fj

]
= Z, (4.30)

where Z is a symmetric matrix. The square matrix C0 must be symmetric and positive

definite. For this to hold using Equation (4.29), we see that

1− 5

3
g > 0 and g 6= 0

i.e, g ∈ (0,
3

5
). Take g =

1

3
and substitute into Equation (4.29), then

∂feqi (1, 0)

∂fj
=



4

9
i = 0

1

9
+

1

3
ξjξi, 1 ≤ i ≤ 4

1

36
+

1

12
ξjξi, 5 ≤ i ≤ 8.

(4.31)

By setting

C0 = 9 diag [1/4, I4, 4I4] , (4.32)
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from Equations (4.31) and (4.32), we see that

C0

[
∂feqi (1, 0)

∂fj

]
= 3ξT ξ + C0Ψij (4.33)

is symmetric, where

Ψij =



4

9
, for i = 0

1

9
, for i = {1, . . . , 4}

1

36
, for i = {5, . . . , 8}.

The rank of [feqfi (1,u)]|u=0 is 3. Since [feqfi (h,u)] is a projection matrix and

τJf (f∗) = [feqfi (1,u)]|u=0 − I9

then, the rank of Jf (f∗) is 6.

On the other hand, since C0[feqfi (1,u)]|u=0 is symmetric and C0 is symmetric positive

definite, it is well known that there is an invertible matrix P such that

C0 = P TP and C0τJf (f∗) = P TΛP

with Λ a diagonal matrix. We may as well assume that

Λ = −diag(0, 0, 0, 1, 1, 1, 1, 1, 1).

Thus we have proven,

Proposition 3. The 2-dimensional 9-velocity model is stable when g ∈ (0,
3

5
).

Remark 9. We remark that the stability structure in definition (1) agrees with Salmon’s

stable equilibria.

Remark 10. The D2Q9 model above is stable if (α, β) = (4/9, 1/9) in Equation (4.23)

and g ∈ (0,
3

5
). It was shown in [36] that (α, β) = (2/7, 1/7) can also be used when

modeling N-S equations.
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Example 4

We consider another D2Q9-velocity model, with

f
(eq)
i =ωi

(
h+

1

θ
(hu) · ξi +

1

2θ2
[(P (h)− θh)I + huu] : (ξiξi − θI)

)
+ ωigiλ

(
1

4
h− 3

8
gh2

)
,

(4.34)

with constants and parameters defined the same as in the D2Q9 model in (4.22). Substi-

tuting for the values of θ, I and P (h) into Equation(4.34) gives

f
(eq)
i =ωi

[
2h+ 3hξi · u +

9

4
gh2ξiξi −

3

2
hξiξi +

9

2
h(ξi · u)2 − 3

2
gh2 − 3

2
u2

]
+ ωigiλ

(
1

4
h− 3

8
gh2

)
.

(4.35)

Using the parameters in Equation (4.26), then Equation (4.35) can be written as

feqi (h,u) =



(8 + λ)

9
h− (4 + λ)

6
gh2 − 2

3
hu2 i = 0

(1− λ)

18
h+

(1 + λ)

12
gh2 +

1

3
hξi.u +

1

2
h(ξi.u)2 − 1

6
hu2, 1 ≤ i ≤ 4

(λ− 1)

36
h+

(2− λ)

24
gh2 +

1

12
hξi.u +

1

8
h(ξi.u)2 − 1

24
hu2, 5 ≤ i ≤ 8.

(4.36)

Computing

∂feqi (h,u)

∂fj
=



(8 + λ)

9
− (4 + λ)

3
gh− 4

3
ξj .u +

2

3
u2 i = 0

(1− λ)

18
+

(1 + λ)

6
gh+

1

3
ξjξi + ξjξi.u−

1

2
(ξi.u)2 − 1

3
ξj .u +

1

6
u2, 1 ≤ i ≤ 4

(λ− 1)

36
+

(2− λ)

12
gh+

1

12
ξjξi +

1

4
ξjξi.u−

1

8
(ξi.u)2 − 1

12
ξj .u +

1

24
u2, 5 ≤ i ≤ 8.

(4.37)

By using (4.24), we deduce from (4.37) that

[feqfi (h,u)]2 = [feqfi (h,u)]
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that is, the Jacobian [feqfi (h,u)] is a projection matrix. Thus, the eigenvalues of Jf (h,u) =

([feqfi (h,u)]− I9)/τ are 0 and -
1

τ
. Take f∗ = feq(1, 0), then

∂feqi (1, 0)

∂fj
=



(8 + λ)

9
− (4 + λ)

3
g, i = 0

(1− λ)

18
+

(1 + λ)

6
g +

1

3
ξjξi, 1 ≤ i ≤ 4

(λ− 1)

36
+

(2− λ)

12
g +

1

12
ξjξi, 5 ≤ i ≤ 8.

(4.38)

We want to find D0 such that

D0

[
∂feqi (1, 0)

∂fj

]
= T (4.39)

where T is a symmetric matrix. The square matrix D0 must be symmetric and positive

definite. Choose

D0 = diag

[
(

9

8 + λ− 12g − 3λg
),

(
18

1− λ+ 3g + 3λg

)
I4,

(
36

λ− 1 + 6g − 3λg

)
I4

]
.

(4.40)

From the above choice of D0, we need to choose the parameters g and λ such that D0 is

positive definite. Substituting Equation (4.40) into (4.39) gives

T = γξT ξ +D0Ψij , (4.41)

where γ is a constant and Ψij is an (N ×N) matrix defined as follows

Ψij =



(8 + λ− 12g − 3λg)

9
, for i = 0

(1− λ+ 3g + 3λg)

18
, for i = {1, . . . , 4}

(λ− 1 + 6g − 3λg)

36
, for i = {5, . . . , 8}.

For T to be symmetric, the following relationship is found using the second term in the

above Equation (4.41)

6

1 + 3g − λ+ 3λg
=

3

−1 + 6g + λ− 3λg
, (4.42)
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giving the following

λ = 1.

We notice that the model in (4.35) behaves the same as the model in (4.22) when λ = 1.

Then, for the stability structure [1] to hold, g ∈ (0,
3

5
).

Now take g =
1

4
and λ = 1, for example, and substitute these parameters into (4.38)

giving

∂feqi (1, 0)

∂fj
=



7

12
, i = 0

1

12
+

1

3
ξjξi, 1 ≤ i ≤ 4

1

48
+

1

12
ξjξi, 5 ≤ i ≤ 8,

(4.43)

and the above Equation (4.40) becomes

D0 = 12 diag

[
1

7
, I4, 4I4

]
. (4.44)

From Equations (4.44) and (4.43) we see that

D0

[
∂feqi (1, 0)

∂fj

]
= 4ξT ξ +D0Ψij (4.45)

is symmetric, where

Ψij =



7

12
, for i = 0

1

12
, for i = {1, . . . , 4}

1

48
, for i = {5, . . . , 8}.

The rank of [feqfi (1,u)]|u=0 is 3. Since [feqfi (h,u)] is a projection matrix and

τJf (f∗) = [feqfi (1,u)]|u=0 − I9

then, the rank of Jf (f∗) is 6.

On the other hand, since D0[feqfi (1,u)]|u=0 is symmetric and D0 is symmetric positive

definite, it is well known that there is an invertible matrix P such that

D0 = P TP and D0τJf (f∗) = P TΛP
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with Λ a diagonal matrix. We may as well assume that

Λ = −diag(0, 0, 0, 1, 1, 1, 1, 1, 1).

We also observe that when g =
1

3
in Equation (4.38) the parameter λ is arbitrary. Then

the D2Q9 model in Equation (4.35) behavior does not change, i.e Equation (4.38) gives

∂feqi (1, 0)

∂fj
=



4

9
i = 0

1

9
+

1

3
ξjξi, 1 ≤ i ≤ 4

1

36
+

1

12
ξjξi, 5 ≤ i ≤ 8,

(4.46)

which is similar to Equation (4.31).

Thus we have proven,

Proposition 4. If λ = 1 with g ∈ (0, 3
5) or when λ is arbitrary with g = 1

3 , then the

D2Q9-velocity model is stable.

Remark 11. In [11], it was claimed that the parameter λ was adjustable to give a positive

equilibria in the state at rest, i.e, when u = 0. The stability structure (1) above gave only

two relationship, when λ = 1 and arbitrary, proving Dellar’s [11] claim.

From the above examples, it was shown that the stability requirement leads to a good

choice of the parameters. When choice of parameters were outside the range required by

the stability condition (1), unstable results were obtained, for example, refer to Appendix

E. Numerical tests will be done in the next chapter to verify our results.



Chapter 5

Numerical Results

5.1 Introduction

In this chapter we present and verify a number of stability criteria presented in Chapter

4 by Propositions 3 and 4. Different models will be used to test the results obtained from

the stability structure on selected Benchmark problems. The main goal is to show that

when reasonable ranges for the corresponding parameters are chosen, stable results are

obtained. Alternatively, when choices of parameters are outside the suggested range in

the propositions, then unstable results are found. The accuracy in our method (stability

structure [1]), is demonstrated by comparing the numerical predictions with analytical

solutions. The codes to simulate the numerical results of the present chapter were produced

using MATLAB 7.5.0 (R2007b). Standard LB Equation (3.7) will be used in the following

examples.

5.2 Test Examples

5.2.1 Example 1: Steady flow over a hump

In this example, we show the convergence in time towards the steady flow over the hump.

This example is widely used to test numerical schemes for shallow water equations for

transcritical and subcritical flows. For example, it was considered by the working group

on dam break modelling [17] and used by Vázquez-Cendón [44] to test their scheme with

59
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an upwind discretization for the bed slope source term.

A one-dimensional (1D) steady flow in a 25m long and 1m wide channel with a hump

is defined by

zb(x) =


0.2− 0.05(x− 10)2, if 8 ≤ x ≤ 12;

0, otherwise.

(5.1)

The initial conditions are given by

h(x, 0) = 2 m− zb(x) and u(x, 0) = 0 m/s

as illustrated in Figure 5.1.

When steady subcritical flow passes over the hump on a bed slope, there is surface

drop over the hump. The analytical solution is given by Coutal and Maurel [17]. We use

this example as our first test problem to verify that Propositions 3 and 4 hold, starting

with the former.
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Figure 5.1: Steady subcritical flow over a hump: Illustration of the free water surface and

the bottom profiles.
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Gravity (g) Lattice sizes Number of iterations

0.09

125× 50 —

250× 50 —

500× 50 —

0.07

125× 50 19513

250× 50 —

500× 50 —

0.03

125× 50 19873

250× 50 39170

500× 50 —

0.009

125× 50 21333

250× 50 40034

500× 50 59700

0.006

125× 50 24165

250× 50 40319

500× 50 60048

Table 5.1: The summary of gravity for different lattices, − shows that there was no

convergence.

The following conditions will be imposed on the channel boundaries, the water level

h = 2 m is used at the outflow boundary condition and the discharge q = 4.42 m2/s is

imposed at the inflow boundary condition. The slip or non-slip boundary conditions are

used at the solid walls. For the no-slip condition, the bounce-back scheme is used and

for slip conditions, a zero gradient of the distribution function normal to the solid wall is

used. The lattice speed e = 15 m/s and τ = 1.5 are also used.

We define the global relative error R by

R =

√√√√∑
i

(
hni − h

n−1
i

hni

)2

, (5.2)

as defined in [51]. The hni and hn−1
i represents the local water depth at the current and
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Parameter λ Lattice sizes Number of iterations

-6

125× 50 21333

250× 50 40034

500× 50 59700

0

125× 50 21333

250× 50 40034

500× 50 59700

3

125× 50 21333

250× 50 40034

500× 50 59700

6.7

125× 50 21333

250× 50 40034

500× 50 —

14

125× 50 —

250× 50 —

500× 50 —

Table 5.2: The summary of the value of λ for different lattices using g = 1
3e .

previous time levels, respectively. For the scheme to converge to a steady solution, the

convergence criterion is taken as R < 5× 10−6.

The three lattice sizes, 125× 50, 250× 50 and 500× 50 which correspond to ∆x = 0.2

m, ∆x = 0.1 m and ∆x = 0.05 m are used in the initial computations to test their effects

on lattice solutions. For numerical computation the gravitational acceleration g ranges

from 0.006 and 0.09, i.e g ∈ (0.006, 0.09). Our choice of g for numerical computation was

motivated by the fact that g ∈ (0, 3
5) and computed on the lattice speed e = 15 m/s,

giving g ∈ (0, 3
5e) (For dimensional purposes it was found useful to divide gravity with the

lattice speed). Steady state solutions were obtained from different values of g used in the

computation, refer to Table 5.1. When values of g outside the required range were used,

the method was unstable. For example, when g = 0.07 steady state solution is reached
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only at 125×50 lattice point and the solution does not convergence when the grid point is

refined. On the other hand when gravity (g) is reduced, better results are obtained (when

g = 0.03 and 0.006)

0 5 10 15 20 25

1.9

1.95

2

2.05

2.1

distance x(m)

fr
ee

 s
ur

fa
ce

 (
h 

+
 z

) 
(m

)

 

 
125 (dx = 0.2m)
250 (dx = 0.1m)
500 (dx = 0.05m)

Figure 5.2: Steady subcritical flow over a hump: Free water surface using different lattices.

The value of g = 0.009 was chosen when comparing numerical results between different

lattice sizes. There was little difference found, refer to Figure 5.2. The results further

indicate that, when lattice sizes become smaller better results are obtained, i.e the results

of ∆x = 0.1 m and ∆x = 0.05 m are almost the same, but there is a small difference

between ∆x = 0.2 m and ∆x = 0.1 m. Hence the results of ∆x = 0.05 m are preferred,

since results based on ∆x ≤ 0.1 m provide better and accurate solutions.

We have tested the accuracy of the approach by comparing the computed steady

water surface with the analytical solution as depicted in Figure 5.3, showing an excellent

agreement. The L2- error norm was used to verify our results, defined as

‖C‖L2 =

√√√√∑ij |Cn − C̃(xi, yj , tn)|2∑
ij |C̃(xi, yj , tn)|2

, (5.3)

where Cn is the computed LB solution and C̃(xi, yj , tn) is the computed analytical solution,
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Figure 5.3: Steady subcritical flow over a hump: Comparison of the free water surface.

respectively, at time tn and lattice point (xi, yj). It was found that, the comparison of

the computed LB solution with the analytical solution indicates that the relative error for

the water depth is 0.325 %. To test the consevative property of the model, the numerical

solution of the discharge was done and is depicted in Figure 5.4. The relative error was

about 0.18 %. This suggests that the model is conservative and accurate. Note that, the

above results were based on ∆x = 0.05 m lattice size.

To check if Proposition 4 holds, the parameter λ was varied from -6 to 14 using g = 1
3e

on different lattice sizes, refer to Table 5.2. It is interesting to note that when the value of

λ increases in magnitude, leads to unstable results. We are unable to offer the explanation

of why when varying the value of λ gave no advantage in the convergence of the solution.

It was shown in [11] that when distribution functions changes signs, leads to a stable

equilibrium distribution function for the SWEs.
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Figure 5.4: Steady subcritical flow over a hump: Comparison of discharge.

5.2.2 Example 2: Tidal wave flow

Consider a 1D problem of a tidal wave in a channel. It is a test problem used by Bermudez

and Vázquez [3] to verify an upwind discretization of the bed slope source. The bed

topography is defined by (refer to Figure 5.5)

H(x) = 50.5− 40x

L
+ 10sin

(
π

(
4x

L
− 1

2

))
, (5.4)

where L = 14 km is the length of the channel and H(x) is the partial depth between a

fixed reference level and the bed surface, giving zb = H(0)−H(x).

The initial conditions for the water height and velocity are

h(x, 0) = H(x) (5.5)

and

u(x, 0) = 0. (5.6)

At the inflow and outflow of the channel, respectively, we define

h(0, t) = H(0) + 4− 4sin

(
π

(
4t

86400
− 1

2

))
(5.7)
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Figure 5.5: Numerical and analytical free surface for the tidal wave flow at time t = 9117.5

s.

and

u(L, t) = 0. (5.8)

With reference to Bermudez and Vázquez [3], the asymptotic analytical solution for this

test example is given by

h(x, t) = H(x) + 4− 4sin

(
π

(
4t

86400
− 1

2

))
(5.9)

and

h(x, t) =
(x− 14000)π

5400h(x, t)
cos

(
π

(
4t

86400
− 1

2

))
. (5.10)

The D2Q9 velocity model is used with feq defined by Equation (4.36). The value of the

gravitational acceleration used is between 0 and 3
5 , i.e g ∈ (0, 3

5) and λ = 1. We choose to

use Proposition 4 since we have shown in Example 1 that, the two equilibrium distribution

functions in Equations (2.26) and (2.35) behave the same when modelling shallow water

flows. Similarly, we used a 2D code to produce the numerical results for a 1D problem.

Periodic boundary conditions were used in the upper and lower walls.
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First we need to discuss the time accuracy of the algorithm. For a time periodic flow

with period T , the time accuracy is of order k when the relation

ε =
1

T

∑
t

√∑
~r |~u(~r, t)− ~v(~r, t)|2

Nd
<

κ

Nk
, (5.11)

holds [26]. Here, ~u is the numerical solution, ~v the analytical solution, N is the spatial

resolution in each dimension, d the number of dimensions and κ is a constant. From

Equation (5.11), k is given by

logε < logκ− klogN. (5.12)

Note that k determines the order of accuracy of the algorithm. It has been shown that

if boundaries are neglected, the LB method is of second order accuracy, i.e k ≈ 2 [9]. If

the analytical solution of the flow is known, then we can compare it with the numerical

solution. The methodology used in Example 1 will be used in this example. The L2- error

norm is used as defined in Equation (5.3).
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Figure 5.6: Numerical and analytical free surface for the tidal wave flow at time t = 9117.5

s.
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Lattice size (m) L2- error norm

∆x = 7 5.27× 10−2

∆x = 14 6.39× 10−2

∆x = 28 6.68× 10−2

Table 5.3: Comparison of numerical and analytical solutions using L2- error norm.

Three uniform lattices with 500 × 50, 750 × 50 and 1000 × 50, which corresponds to

∆x = 28 m, ∆x = 14 m and ∆x = 7 m, respectively, were used. For the numerical

computation, we used τ = 0.6 and e = 200 m/s. Similar to Example 1, the value of λ was

varied between -4 and 7 with g = 1
3e . We observed that the algorithm converged when

t = 9117.5 s. To quantify the results obtained, we compared the asymptotic results in

Equations (5.9) and (5.10) with the computed solution. Figure 5.6 shows a comparison

of the numerical solutions with the analytical solution at t = 9117.5 s, where g = 0.0017

( 1
3e) was used. From Figure 5.6, it was not clear to make remarks on the advantage of

decreasing the lattice sizes. It was verified using relative error by comparing numerical

solutions with analytical solutions. It was found that when using ∆x = 7 m gave better

results, refer to Table 5.3. We can safely conclude that, when lattice size is decreased

then accurate results are obtained. Similar behavior has been observed in Example 1. For

the water depth it was found that the relative error was about 2 %. The numerical and

analytical solutions for the free surface is depicted in Figure 5.5.

5.2.3 Example 3: Flow over a sudden-expansion channel

In this example, we demonstrate that shallow water equations can be used to simulate

a recirculation in shallow water flows. Now consider a two-dimensional (2D) flow over a

channel with a symmetric sudden-expansion. The channel expansion ratio is 3:1 with a

channel expansion of 3 m wide and 4 m long. The entrance of the channel is 1m wide and

2m long, refer to Figure 5.7. Unlike in Example 1, there in no bed slope. Friction at the

bottom is neglected.

For numerical computations, the D2Q9 velocity model is used with feq defined by

Equation (4.36). The structure of the grid contains 120 × 60 lattice points with, ∆x =
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Figure 5.7: Sudden-expansion channel: velocity field, where g = 0.15.

∆y = 0.05 m, ∆t = 0.025 s and τ = 1. The speed of the lattice e is given by e = ∆x/∆t.

The following conditions are imposed on the channel boundaries, the water level h = 0.16

m is used at the out flow boundary, zero gradient depth is specified together with the

discharge q = 0.032 m3/s at the inflow boundary and velocity v = 0 is imposed at the

inflow.

Gravity (g) Number of iterations

0.001 21645

0.08 13432

0.15 11123

0.23 31373

0.3 —

0.5 —

Table 5.4: The summary of gravity values for λ = 1 on a 120× 60 grid.

Different values of g between 0.001 and 0.5 were used in the computation with the

parameter λ = 1 fixed. The steady state solution was reached using the convergence

criterion in Equation (5.2), refer to Table 5.4 for the number of iterations taken to reach the
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steady state. We observed that when the value of g was varied in the interval 0 < g < 3
5e ,

the algorithm converged. The value of g was fixed and the parameter λ was varied between

-2 and 12, which lead to similar observations experienced in Example 1, refer to Table 5.5.

The Figure 5.7, shows the velocity field with bit of circulating flows on both sides of the

channel. From this observation, we can conclude that SWEs are capable of simulating

circulations that occurs in shallow water flows.

Values of (λ) Number of iterations

-2 23039

4 23039

7 23039

12 —

Table 5.5: The summary of λ values using g = 0.1667 (g = 1
3e).

In conclusion, we have used three examples in this chapter to test the LB method. It

can be concluded that the LB method performs well for both steady and time-dependent

problems. In addition the theoretical results in Chapter 4 have also been tested. The

numerical results agree with the theory hence, one can conclude that the stability structure

is a good tool for designing the LB method. Further, on the time-dependent problems

on the unsteady problem, excellent and accurate results are obtained without requiring

special treatment on the source terms or complicated upwind discretization of the gradient

fluxes.



Chapter 6

Conclusion and Future Research

The objective of this dissertation is to investigate the stability of the lattice Boltzmann

(LB) method applied to shallow water equations (SWEs). To achieve this objective,

structural stability was adopted as the main study for the resolution of the studied models.

We used a stability structure defined in [1] to investigate the stability of the LB equa-

tions which are currently being applied to simulate SWEs. The models we have chosen to

work with were two-dimensional (2D) and had sufficient symmetry, which is a dominant

requirement for the recovery of SWEs [34]. The popular two-dimensional nine velocities

(D2Q9) lattice pattern was preferred since it is easier to use in numerical computations.

The most successful part of this dissertation was the analytical results. From the

analytical tests, we found out that when certain parameters of the models are adjusted,

lead to stable results. Numerous numerical tests were done to verify this.

The models used in this dissertation were found to be stable and their consistency has

not been proven as it was not within the scope of this work. Hence, an important aspect

that requires further research is to find the consistency of the models. In general, it is

known that a consistent and stable lattice Boltzmann model implies convergence.
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Appendix A

Computing Equilibrium

Distribution Function

The D2Q5 equilibrium distribution function for the SWEs is given by

feqi =


h− gh2

e2

gh2

4e2
+
hξiu

2e2
, i 6= 0

which contains no O(u2) terms. The equilibrium distribution functions satisfy

h =
4∑
i=0

feqi , hu =
4∑
i=0

ξif
eq
i (A.1.1)

Now computing, at i = 0

∂feqi
∂fj

=
∂

∂fj

(
h− gh2

e2

)
=

∂

∂fj
(h)− ∂

∂fj

(
gh2

e2

)
= 1− 2gh

e2
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and at i 6= 0

∂feqi
∂fj

=
∂

∂fj

(
gh2

4e2
+
hξiu

2e2

)
=

∂

∂fj

g

4e2

(
h2
)
− ∂

∂fj

ξi
2e2

(hu)

=
gh

2e2
+

1

2
ξjξi

Therefore

∂feqi
∂fj

=


1− 2gh

e2

gh

2e2
+

1

2
ξjξi, i 6= 0

(A.1.2)



Appendix B

Projection Matrix

To prove that a matrix A is a projection matrix, we need to show that

A = A2.

In linear Algebra, multiplication of matrices can be viewed as a binary operation that

takes a pair of matrices and produce another matrix. This is as follows; the product of

two matrices an m×n matrix A and n×p matrix B is an m×p matrix AB whose entries

are given by

[AB]ij =
N∑
k=0

Ai,kBk,j .

Now given

∂feqi (h,u)

∂fj
=


1− 2gh

e2

gh

2e2
+
ξjξi
2e2

, i 6= 0,

(B.0.1)

We need to show that

[feqfi (h,u)]2 = [feqfi (h,u)].

Note that
4∑

k=1

ξk = 0,
4∑

k=1

ξ2
k = 2.
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If

A2 =
4∑

k=0

Ai,kAk,j

=
0∑

k=0

Ai,kAk,j +
4∑

k=1

Ai,kAk,j

We need to show that

1− 2gh

e2
=

(
1− 2gh

e2

)(
1− 2gh

e2

)
+

(
1− 2gh

e2

) 4∑
k=1

(
gh

2e2
+

1

2
ξjξk

)
(B.0.2)

and

4∑
k=1

(
gh

2e2
+

1

2
ξjξk

)
=

4∑
k=1

(
gh

2e2
+

1

2
ξjξk

)(
1− 2gh

e2

)

+

4∑
k=1

(
gh

2e2
+

1

2
ξjξk

) 4∑
k=1

(
gh

2e2
+

1

2
ξjξk

) (B.0.3)

In Equation (B.0.1) if we take g = 1/2 and e = 1, using Equation (A.1.1) then

∂feqi
∂fj

=



−4 −4 −4 −4 −4

1.25 1.75 1.25 0.75 1.25

1.25 1.25 1.75 1.25 0.75

1.25 0.75 1.25 1.75 1.25

1.25 1.25 0.75 1.25 1.75


Therefore

[feqfi (h,u)]2 = [feqfi (h,u)]



Appendix C

Symmetric Positive Definite

Matrix

In mathematics, a symmetric positive definite matrix is defined as a matrix which is in

many ways comparable to a positive real number. For example, an n×n matrix A is said

to be symmetric positive definite if zTAz > 0 for all non-zero vectors z with real entries

z ∈ Rn where zT denotes the transpose of z.

Now take:

E0 = diag

[
1

1− 2g
,

2

g
I4

]
(C.0.1)

which can be written in the form

E0 =



1

1− 2g
0 0 0 0

0
2

g
0 0 0

0 0
2

g
0 0

0 0 0
2

g
0

0 0 0 0
2

g


.

For E0 to be symmetric positive definite matrix then

0 < g <
1

2
.
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Appendix D

Computing Rank

Consider the following equation:

∂feqi (1,u)

∂fj
=


1

3

1

6
+
ξjξi

2
, i 6= 0

. (D.1.1)

The above Equation (D.1.1), can be written in the form

∂feqi (1,u)

∂fj
=



1

3

1

3

1

3

1

3

1

3

1

6

2

3

1

6

−1

3

1

6

1

6

1

6

2

3

1

6

−1

3

1

6

−1

3

1

6

2

3

1

6

1

6

1

6

−1

3

1

6

2

3


The above matrix

∂feqi (1,u)

∂fj
can be reduced to the echelon form
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∂feqi (1,u)

∂fj
=



1 0 0 2 2

0 1 0 −1 0

0 0 1 0 2

0 0 0 0 0

0 0 0 0 0


Since there are 3 nonzero rows in the reduced form matrix, it indicates that the max-

imum number of linearly independent rows is 3; hence the rank is 3.



Appendix E

Using a parameter outside the

required range

Using the equation below, then

∂feqi (1, 0)

∂fj
=



(8 + λ)

9
− (4 + λ)

3
g, i = 0

(1− λ)

18
+

(1 + λ)

6
g +

1

3
ξjξi, 1 ≤ i ≤ 4

(λ− 1)

36
+

(2− λ)

12
g +

1

12
ξjξi, 5 ≤ i ≤ 8.

(E.0.1)

We want to find E0 such that

E0

[
∂feqi (1, 0)

∂fj

]
= R (E.0.2)

where R is a symmetric matrix. The square matrix E0 must be symmetric and positive

definite. Choose

E0 = diag

[
(

9

8 + λ− 12g − 3λg
),

(
18

1− λ+ 3g + 3λg

)
I4,

(
36

λ− 1 + 6g − 3λg

)
I4

]
.

(E.0.3)

From the above choice of E0, we need to choose the parameters g and λ such that E0 is

positive definite. Substituting equation (E.0.3) into (E.0.2) gives

R = γξT ξ + E0Ψij , (E.0.4)
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where γ is a constant and Ψij is an (N ×N) matrix defined as follows

Ψij =



(8 + λ− 12g − 3λg)

9
, for i = 0

(1− λ+ 3g + 3λg)

18
, for i = {1, . . . , 4}

(λ− 1 + 6g − 3λg)

36
, for i = {5, . . . , 8}.

For R to be symmetric, the following relationship is found using the second term in the

above equation (4.41)

6

1 + 3g − λ+ 3λg
=

3

−1 + 6g + λ− 3λg
, (E.0.5)

giving the following

λ = 1.

For the stability structure [1] to hold, g ∈ (0,
3

5
).

Now take g = 1 and λ = 1, for example, and substitute these parameters into (E.0.1)

giving

∂feqi (1, 0)

∂fj
=



−2
3 , i = 0

1
3 + 1

3ξjξi, 1 ≤ i ≤ 4

1
12 + 1

12ξjξi, 5 ≤ i ≤ 8,

(E.0.6)

(NB: the value of g is outside the required range.) The above equation (E.0.3) becomes

E0 = 3 diag

[
−1

2
, I4, 4I4

]
. (E.0.7)

Since we need E0 to be symmetric and positive definite, the above equation E.0.7 does not

meet the requirements. Therefore, the stability structure 1 in Chapter 4 does not hold.
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