Accelerating Decision Making Under
Partial Observability Using Learned
Action Priors

Ntokozo Mabena
494350

Supervisor: Benjamin Rosman

Co-supervisor: Pravesh Ranchod

Master of Science

School of Computer Science and Applied Mathematics

University of Witwatersrand

2017




Abstract

Partially Observable Markov Decision Processes (POMDPs) provide a principled math-
ematical framework allowing a robot to reason about the consequences of actions and
observations with respect to the agent’s limited perception of its environment. They
allow an agent to plan and act optimally in uncertain environments. Although they
have been successfully applied to various robotic tasks, they are infamous for their high
computational cost. This thesis demonstrates the use of knowledge transfer, learned
from previous experiences, to accelerate the learning of POMDP tasks. We propose
that in order for an agent to learn to solve these tasks quicker, it must be able to gener-
alise from past behaviours and transfer knowledge, learned from solving multiple tasks,
between different circumstances. We present a method for accelerating this learning
process by learning the statistics of action choices over the lifetime of an agent, known
as action priors. Action priors specify the usefulness of actions in situations and allow
us to bias exploration, which in turn improves the performance of the learning pro-
cess. Using navigation domains, we study the degree to which transferring knowledge
between tasks in this way results in a considerable speed up in solution times.

This thesis therefore makes the following contributions. We provide an algorithm
for learning action priors from a set of approximately optimal value functions and two
approaches with which a prior knowledge over actions can be used in a POMDP context.
As such, we show that considerable gains in speed can be achieved in learning subse-
quent tasks using prior knowledge rather than learning from scratch. Learning with
action priors can particularly be useful in reducing the cost of exploration in the early
stages of the learning process as the priors can act as mechanism that allows the agent
to select more useful actions given particular circumstances. Thus, we demonstrate how
the initial losses associated with unguided exploration can be alleviated through the
use of action priors which allow for safer exploration. Additionally, we illustrate that
action priors can also improve the computation speeds of learning feasible policies in a
shorter period of time.



Acknowledgements

This research has taken place at the University of Witwatersrand within the de-
partment of Computer Science and Applied Mathematics. This work was funded by
the National Research Foundation (NRF) and the Council for Scientific and Industrial
Research (CSIR) along side the Department of Science and Technology (DST). The
financial assistance of the NRF and DST towards this research is hereby acknowledged.
Opinions expressed and conclusions arrived at, are those of the author and are not
necessarily to be attributed to the NRF nor the DST.

I would like to express my sincere gratitude to Benjamin Rosman and Pravesh Ran-
chod for their supervision on my M.Sc thesis. Their advice and suggestions throughout
my studies have been nothing short of valuable. I appreciate their continued support
and helpful comments which have largely improved my work. Above all, I am grateful
for their time and patience throughout the course of my research as they have always
been willing to take time out of their days to ensure I deliver a thesis that is worth
while.



Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

(Ntokozo Mabena)



Contents

1 Introduction 11
2 Background 15
2.1 Introduction . . . . . . ... 15
2.2 Markov Decision Process . . . . . .. ... L0 L 15
2.2.1 Markov Implication in an MDP . . . . . .. ... ... ... .. 15
2.2.2 MDP Formalism . . ... ... ... .. ... .......... 16
2.2.3 Discounting . . . . . . . ..o 16
224 Policies . . ... 16
2.2.5 Value Iteration . . . .. .. .. ... .o 19
2.2.6 Reinforcement Learning . . . . . ... ... ... ... ... 20
2.2.7 Q-Learning . . . . . . . .. 23
2.3 Partially Observable Markov Decision Process . . . . .. ... ... .. 24
2.3.1 POMDP Formalism . . . .. .. ... .. ... ... ...... 24
2.3.2 History Tracking . . . . .. .. ... . .. ... ... 25
2.3.3 Policies . . . . . . ... 27
2.3.4  Value Iteration . . . .. ... ... .. ... .. ... ..., 31
2.4 Point-Based Partially Observable Markov Decision Process Algorithms 33
2.4.1 Limiting the Size of the Value Function . . . . . .. ... .. .. 33
2.4.2 Value Function Updates . . . . ... .. ... .. .. ...... 34
2.4.3 Policy Execution . . . . .. ... . 0o 35
2.4.4 Value Iteration . . . .. ... ... ... .. .. ... ..., 36
2.4.5 Initialising the Value Function . . . . . . .. .. ... ... ... 36
24.6 Core Parameters . . . . .. .. .. ... ..o . 37

2.5 Successive Approximations of the Reachable Space under Optimal Poli-
cies (SARSOP) . . . . . . 38
2.5.1 Algorithm Overview . . . . . .. .. ... ... ... ..... 39
2.5.2 Sampling . . . ... 42
253 Pruning . . ... 45
2.6 Action Priors . . . . ... 46
2.6.1 State-based Action Priors . . . . .. ... ... L. 47
2.6.2 Perception-based Action Priors . . . .. ... ... .. ..... 48
2.7 Conclusion . . . . . . . .. e 50
3 Research Method 52
3.1 Introduction . . . . . . . . . .. 52
3.2 Research Motivation and Hypothesis . . . . .. .. .. ... ... ... 52
3.3 Overview of the Research Method . . . . . . .. .. .. .. ... .... 55
3.3.1 Learning Action Priors . . . . . . .. ... ... ... ... o6
3.3.2 SARSOP with Action Priors . . . . . .. ... ... .. ..... 62
3.3.3  Experiment Design . . . . . .. ... ... oo 69



3.3.4 Experiment Performance Metrics . . . . ... .. ... ..... 70

3.4 Conclusion . . . . . . . e, 71
4 Results and Analysis 72
4.1 Introduction . . . . . . . . . . 72
4.2 Experiments . . . . . . . . . ... 72
4.2.1 Maze Domain . . . . . . . . . . .. 73

4.2.2 Lattice Domain . . . . . . . . . . .. 82

4.2.3 Light-Dark Domain . . . . . . . ... .. ... .. 91

4.2.4 Hallway Domain . . . . . . ... .. ... o0 95

4.3 Conclusion . . . . . . . . . 99

5 Related Work 101
5.1 Action Transfer . . . . . . . . . . 101
5.2 Shaping Rewards . . . . . . . . .. .. 103
5.3 Options . . . . . . 105
5.4 Policy-Contingent Abstraction (PolCA+) . . . . .. ... ... ... .. 106
5.5 HQ-Learning . . . . . . . . . .. 108

6 Future Work 110
7 Conclusion 112
References 114



List of Figures

= O 00 -1 O U i Wi =

12

13
14
15
16
17

18

19
20

21
22

23
24

25
26

27
28

Policy changes with respect to living reward. . . . . . .. .. ... ...
MDP state transitions. . . . . . . . . ... ...
Value Iteration. . . . . . . . .. ... ... ...
Synchronous interaction between agent and world. . . . . . . .. .. ..
POMDP belief state transitions. . . . ... .. .. ... ... .....
The difference between a true state and belief over states. . . . . . . ..
Value function for a two-state problem. . . . . . . ... ... ... ...
Belief space and value function for a three-state problem. . . . . . . . .
A value function with dominated a-vectors. . . . . . . ... .. .. ..
A Graphical representation of the Belief Space B, Reachable Belief Space
R(bp) and Optimally Reachable Belief Space R*(by). . . . . . . .. ..
The Formation of Belief Tree Tz Rooted at bg. . . . . . . . . .. ...
An example of a lower bound and upper bound on an optimal value
function V*(b). . . . . ..o
Clustering of beliefs based on their initial upper bound and entropy. . .
0-Dominance. . . . . . . ... e
The maze domain. . . . . . . . . . . .. ...
Agent’s perception capability in maze domain. . . . . . . ... .. ..
Action prior learning technique results in maze domain. The results are
averaged over 16 tasks. . . . . . .. ..o Lo
Threshold experiment for SARSOP with Action Priors for Pruning. The
results are averaged over 16 tasks. . . . . . .. ..o

Action prior use approach results. The results are averaged over 16 tasks.

Correct vs incorrect action priors. The correct action priors are learned
from solving multiple tasks, while the incorrect priors are established by
inverting the knowledge learned from learning the correct priors. The
results are averaged over 16 tasks. . . . . . .. ..o
Maze domain with goal region colour change. . . . .. ... ... ...
Incorrect usage of action priors. This involves taking the action priors
learned from the domain presented in Figure 15a and using them to solve
tasks in the domain presented in Figure 21. The results are averaged over
16 tasks. . . . .o
The lattice domain. . . . . . .. .. ... L o
Action prior learning technique results in lattice domain. The results are
averaged over 48 tasks. . . . . . ...
Performance results in lattice domain. The results are averaged over 48
tasks. ...
Lattice domain location comparison. . . . . . . .. ... .. ... ...
Agent’s improved perception capability in lattice domain. . . . . . . . .
Action prior learning technique results for precise observations vs am-
biguous observations. The results are averaged over 48 tasks. . . . ..

39
40

41
44
46
74
5

75

7
79

80
81

82
83

84
86
87
87

88



29
30
31
32
33
34

35
36

37

38

Performance results in lattice domain using an improved observation
sensor. The results are averaged over 48 tasks. . . . . . . . ... .. ..
Convergence speed results in lattice domain. The results are averaged
over 48 tasks. . . . ...
Light-Dark domain. . . . . . . . .. .. ... ... ... ... .. ...,
Stochasticity of action to move North in light-dark domain. . . . . . .
Examples of trajectories when using action priors. . . . . . .. .. ..
Performance results in light-dark domain. The results are averaged over
16 tasks. . . . . . .o
The hallway domain. . . . . . . . . .. ... ... .. ... .......
Action prior learning technique results in hallway domain. The results
are averaged over 50 tasks. . . . .. ..o oo
Performance results in hallway domain. The results are averaged over 50

An auxiliary and primary task, together with their optimal policies and
value functions. . . . . . . ..o

89
91
92
92
93

94
96

97

98



List of Algorithms

1 Generalised Point-Based Value Iteration. . . . . .. .. .. ... .. .. 36
2 SARSOP. . . . . e 40
3 a-Vector Backup at a Node b. . . . . . . .. .. ... .. ... ..... 41
4 Sampling. . . . .. 42
5  e-greedy Q-learning with State-based Action Priors (e-QSAP). . ... 48
6  e-greedy Q-learning with Perception-based Action Priors (e-QPAP). . . 50
7 Learning Perception-based Action Priors in a MDP. . . . . . .. .. .. 58
8 Learning Perception-based Action Priors in a POMDP. . . . . . .. .. 61
9  SARSOP with Action Priors for Sampling. . . . . . .. ... ... ... 65
10 SARSOP with Action Priors for Pruning. . . . . . . . ... ... .. .. 67
11 SARSOP with Action Priors for Simulations. . . . . . . .. ... .. .. 68



Abbreviations

MDP...ooiiiiiiiins Markov Decision Process

COMDP............... Completely Observable Markov Decision Process

POMDP.....cccccuvvenann. Partially Observable Markov Decision Process

SARSOP................... Successive Approximations of the Reachable Space under
Optimal Policies

e-QSAP.....oo e-greedy Q-learning with State-based Action Priors

e-QPAP.......c.oo, e-greedy Q-learning with Perception-based Action Priors

PBVI..o Point-Based Value Iteration

ROS..... Robot Operating System

10



Chapter 1

1 Introduction

Autonomous robots that operate in real and complex environments are required to
be able to sense the state of the environment to some extent and must be able to
take actions that affect the state. However, autonomous robots that operate in these
environments are rarely, if ever, able to access the true state of the world or system.
Therefore, an essential capability for autonomous robots having to operate reliably in
uncertain environments is their ability to handle uncertainty for efficient task planning
with imperfect state information. Task planning with imperfect state information refers
to how a robot plans to act in order to execute a task without being able to accurately
determine the state of the world in which it operates.

Take for example a robot having to navigate from a tunnel entrance to a goal position
inside the tunnel. In this case, its task is to navigate from the tunnel entrance to the goal
position and its state can refer to its position in space. In order to complete this task,
the robot needs to decide on which way to travel so that it reaches its goal as quickly
as possible. The process of determining this optimal strategy is known as planning.
However, as a result of limited sensing ability and lack of GPS underground, the robot
may not be able to confidently determine its location. As a result of the information it
is able to gather in this situation, the robot never knows its exact position in space and
is therefore forced to perform approximations in order to localise itself. Thus, despite
the imperfect information about its state (or position), the robot must determine an
exploration strategy that allows it to find the goal. This is a typical example of task
planning with imperfect state information.

Subterranean spaces such as mines, tunnels, caves and sewers are abound with
factors that foster uncertainty. In such environments, robot performance may be af-
fected by factors including rugged terrain, unanticipated collapses and maze-like tun-
nels. These factors can be detrimental to robot autonomy. However, it is not only the
physicality of these factors that hinders robot capability, but additionally the problem
is handling uncertainty.

The likelihood that an autonomous robot will encounter some unforeseen system
state during operation is high, as a number of uncertainties may arise from factors, such
as sensor noise, missing information, occlusions, imprecise actuators and the absence
of GPS in underground environments. All these factors can reduce a robot’s ability to
correctly interpret its state during task execution.

Partially Observable Markov Decision Processes (POMDPs) provide a principled
mathematical framework for planning under uncertainty and allow an agent to reason
about the consequences of actions and observations with respect to the agent’s limited
perception of the environment (Cassandra, Kaelbling, and Littman 1994).

11



In a POMDP, we maintain a probability distribution over states, known as a belief,
and systematically reason over the set of all beliefs, referred to as the belief space.
POMDPs consider uncertainty in robot control, sensory information and environment
changes, when planning which action is best to take. They attempt to find a feasible
policy and to achieve robust performance under such conditions.

Using POMDPs has led to improved performances in various robotic tasks, as a
result of incorporating uncertainty into planning. However, due to the complexity as-
sociated with planning in the belief space and reasoning over a wide branching factor
of different action sequences, POMDPs can be very computationally demanding |Cas-
sandra 1998||Kaelbling et al. 1998]|Guy et al. 2013].

The complexity of planning with robots that solve decision problems under uncer-
tainty is compounded as the number of actions available to the robot grows. This is
because the complexity of this planning grows exponentially with the number of possible
actions. This potentially overshadows the benefits of an agent having a large repertoire
of skills, as the added complexity resulting from having a broad skill set may undermine
the benefits.

Humans face a similar problem. When a person with access to a rich palette of
skills is faced with a task, only a few of these actions could be seen to make sense at
that particular moment. Thus, by only considering the useful actions in a situation,
it seems likely that humans can successively control the computational explosion of
reasoning through chains of actions. By examining ones own thoughts over what has
been previously learned in the same or similar circumstance, the useful actions in a
particular setting can be determined. This could be a gradual lifelong process, allowing
the person to become an expert in situations where he or she is faced with that particular
scenario.

The benefits of a developmental and life-long approach can be observed through this
example and supports the belief that this is an important component in the develop-
ment of skills. Therefore, if we allow an agent to be equipped with a mechanism that
allows it to determine which actions are most appropriate under particular conditions,
perhaps we can improve the computational efficiency of learning new tasks in uncertain
environments.

Deciding which actions are useful in a situation can be determined by using past
experiences of optimal behaviours from multiple previously solved tasks [Rosman and
Ramamoorthy 2012]. Because there is some underlying structure common to all these
learned tasks as they exist in the same or similar environment, it is this structure we
hope to take advantage of to facilitate faster learning. Hence, we are concerned with
allowing agents to be able to learn domain invariances which act as a common sense
knowledge of the domain in which it operates. By forming better abstractions of the
domain and in turn learning domain invariances that provide insights to elements that
are common to a large class of behaviours, this knowledge can offer an understanding in
learning which behaviours should be avoided in particular situations. As such, instead
of taking into account a form of model learning that considers the reward structure for
any individual task, we are interested in a form of model learning that considers the

12



commonalities between a set of tasks.

We propose that for an agent to be generally capable when it is required to perform
a range of unknown tasks in which it experiences uncertainty, the agent must have the
ability to continually learn from a lifetime of experience. This is largely dependent on
its ability to generalise from past experiences and form representations which facilitate
faster learning and transfer of knowledge between different situations. By exploiting
the commonalities between large families of tasks, the agent may potentially minimise
situations where it has to relearn from scratch, as well as build better models of the
domain. Therefore, we hope to facilitate faster learning by learning such regularities
from the domain and extracting the common elements between tasks.

We propose a method that extends existing POMDP formalisms by taking into
account the statistics of action choices over a lifetime of the agent. This is an effort
to allow the agent to be able to quickly cut down options when deciding which actions
to select, in a manner which may not have been obvious if each task was solved in
isolation. We thus show how the agent can reuse behavioural knowledge learned from
previously solved tasks to accelerate the learning of new tasks.

In this work, our goal is to show how an agent acting in a setting where it is uncertain
about the current state of the world or system can benefit through the use of having a
prior knowledge over actions indicating the preference of the agent in taking particular
actions in certain situations. We demonstrate these advantages in navigation domain
experiments, where we show that using an agent’s experience of past behaviours can
lead to convergence speed improvements.

The rest of this thesis is structured as follows. In Chapter 2, we begin with a
thorough background on Markov Decision Processes (MDPs), in Section 2.2. The re-
inforcement learning paradigm is also explained in this section in order to give an
understanding of the techniques that will be used to gather and conceptualise action
priors in a case where the state space is fully observable. Thereafter, we move on to
give a detailed background on POMDPs, the belief space MDP, in Section 2.3. We then
give a general discussion on point-based POMDP algorithms, in Section 2.4, as an intro-
duction to the detailed description of the Successive Approximations of the Reachable
Space under Optimal Policies (SARSOP) algorithm presented in Section 2.5. Following
Section 2.5, we present the idea of action priors and discuss the theory behind how
they can be learned in Section 2.6. Then, in Chapter 3, we discuss the methods and
techniques of how we aim to achieve the goals of this research by, firstly, presenting the
motivation behind the research and, secondly, defining our research hypothesis, which
can both be seen in Section 3.2. We then follow to give an overview of our research
methodology, in Section 3.3, describing how we intend to validate our hypothesis, and
explain our experimental procedure with regards to learning action priors and discuss
three proposed algorithms that we believe will display the benefits of using action prior
knowledge in solving POMDP tasks. In chapter 4, we present the details of our ex-
periments and illustrate the results obtained from carrying out these experiments by
presenting a summary of the experiments’ results. We also provide a detailed analysis of
the produced experiment results along with each experiment, to give an understanding

13



of the obtained and presented data. Finally, we end off by giving related research work
produced by other authors in Chapter 5, the relative directions that future research,
related to our research work, may take (see Chapter 6) and present our concluding
remarks in Chapter 7.

14



Chapter 2

2 Background

2.1 Introduction

In this chapter, we introduce the background material for understanding the SARSOP
algorithm and the concept of action priors. Firstly, we present a detailed description of
the MDP framework, in Section 2.2, so as to give an understanding behind reinforcement
learning practices, which form an essential underpinning for how action priors will
be gathered in a case where the state space is fully observable. Following the MDP
framework, we present the framework of POMDPs, in Section 2.3, as these are two
useful frameworks in the realm of decision-making. We then describe the transition from
MDPs to POMDPs, along with a discussion of the algorithms that are entailed under
each paradigm. In Section 2.4, we discuss the details of point-based POMDP methods
and how these algorithms are structured in order to compute a policy. We then move
on to explain the workings of the SARSOP algorithm in Section 2.5. Thereafter, we
give an overview of the ideas behind action priors and the gathering of prior knowledge
over actions in Section 2.6.

2.2 Markov Decision Process
2.2.1 Markov Implication in an MDP

“Markov” refers to the Markov assumption which implies that given a particular state,
the history and future from that state are independent from each other. For an MDP,
“Markov” means the action outcomes of a state depend only on that current state and
the selected action [Sutton and Barto 1998]. This implies that given a sequence of
occurrences and their associated time indices, if the agent is able to determine the
current state in which it lies, then what may have occurred in the past is not required
to determine what may occur in future. In general:

/ /
P (St+1 =S5,Tt41 = T|St7 Ay Ty St—1y Qg—15 -+ -, T'1, S0, CLO) - P(SH—I =S5,Tt+1 = T’SN at)
(1)
where s;, ag, ri, S¢—1,a¢-1, - .., T1, So, g are all possible values of past events [Sutton and

Barto 1998|. This implies a policy search process where the successor function only
depends on the current state.

15



2.2.2 MDP Formalism

Markov Decision Processes (MDPs) provide a mathematical framework for modeling
decision making problems. They are the basis for solving probabilistic task problems in
decision making and can be used to model stochastic or deterministic search problems
[Puterman 1994||Mitchell 1997]. When we consider MDPs for planning, the underlying
idea refers to how an agent can optimally plan in order to discover the best action-
selection strategy defining how the agent should behave. |[Klein and Abbeel 2013|.
Therefore, the goal of the MDP is to model a task and find the best policy, or action
sequence that enables an agent to solve its tasks.

An MDP is defined as a tuple (S, A, T, R, ), where S is a finite set of states, A is
a finite set of actions that the agent can take, T : S x A x S — [0,1] is a transition
function which gives the probability of transitioning from one state to another when
taking a particular action, R : S x A x § — R is a reward function that indicates the
immediate payoff of taking a particular action at a given state and 0 < v < 1 is the
discount factor. In particular 7'(s, a, s’) gives the probability of transitioning from state
s to state s’ after taking action a (i.e. P(s'|s,a)) and R(s,a,s’) is the reward received
by the agent when transitioning from state s to state s’ as a result of taking a. Because
T'(s,a,s') is a probability function, >, s T(s,a,s") =1,Va € A,Vs € S.

2.2.3 Discounting

Because we consider sequences of rewards rather than a single utility at the end of an
episode, an agent - through some manner - should be able to optimise the sequence of
rewards that it discovers. The idea is that when there is a level of uncertainty, an agent’s
preference is to receive cumulative rewards as it moves from one state to another rather
than receiving a single large reward equal to the sum of the rewards received during step-
wise reward accumulation [Klein and Abbeel 2013]. The consequence where an agent
prefers to receive rewards earlier rather than later, as a result of earlier rewards yielding
a higher utility, introduces the concept of discounting [Mitchell 1997|. Discounting is
also useful in ensuring convergence. It allows rewards received earlier to yield a higher
utility than those received later. Without discounting, the agent could potentially find
a way to keep receiving rewards indefinitely.

2.2.4 Policies

The action-selection strategy found in MDP planning is called a policy = : S — A
where 7(s) gives an action for each state. Put simply, a policy is a mapping from states
to actions. In the case of deterministic single-agent search problems, the objective is to
find an optimal plan (or sequence of actions) from a start state to a goal state [Sutton
and Barto 1998|. In MDPs, an agent attempts to find an optimal policy 7 : argmaz, U™
where U™ is the utility or return. The utility U™ is the accumulated discounted reward

16



received from following the policy 7 and is defined to be
Uﬂ- = Zf)/trh (2)
t

where r; is the reward at time ¢ [Mitchell 1997]. This is known as the value of a policy.
An optimal policy 7* is a policy that maximizes expected utility when followed [Klein
and Abbeel 2013]. Thus, the goal of a learning agent is to find such a policy.

We can also define the value of a policy 7 that starts at state s by computing the
expected rewards for starting in state s and following that policy . The value V7 (s) of
starting in state s and executing policy 7 can be defined to be

VT(s) =) T(s,m(s),s') [R(s,m(s),8") +7V7(s)]. (3)

s'es

Note that where there exists a terminal state, its value will always be zero.

The value function V™ : S — R gives the expected discounted sum of rewards for
executing 7 starting at state s (i.e. V7™ is value function for an arbitrary policy 7).
Thus, given a value function V7™ (s), we may define a policy 7 to be

7(s) = arg max Z T(s,a,s')[R(s,a,s) +~V7(s)]. (4)

s'es

Similarly, given a policy 7, we define an action-value function Q™(s,a) as

Q"(s,a) = 3 T(s,a,8') [R(s,a, ') + V() (5)
s'eS
which gives the expected utility of taking action a in state s and thereafter acting
according to m. We refer to Q™ as the action-value function for policy .

By maintaining an average, for each state encountered, of the actual returns that
have followed from that state when an agent follows a policy m, the average will converge
to the state’s value V™ (s) as the number of times that state is encountered approaches
infinity. Similarly, if separate averages are kept for each action taken in a state, then
these averages will converge to the action values Q™(s,a) as the number of times that
state is encountered approaches infinity. Therefore, the value functions V™ and Q™ can
be estimated from experience.

Because the agent’s action outcomes are potentially non-deterministic, we cannot
restrict it to computing a particular sequence of actions without taking into account
every probable state. The complication is that many relevant state-action pairs may
never be visited. This is a detrimental issue because the purpose of learning action
values is primarily to help in selecting the best action to take among all the possible
actions in each state. In order for an agent to efficiently compare alternatives between
actions, it must be able to compare the value of all the actions from each state, not
just the one it just so happened to experience or one we currently favour. The agent
should precisely know the best action to take for every possible state.

17



.
L
00
-

-
100

T | & @& t | &= | @&
Living reward= —0.01 Living reward= —0.03

= | = | = @& » == &

e [H-o
T | =» |t | = - | = | = | ¢4
Living reward= —0.04 Living reward= —2

Figure 1: Policy changes with respect to living reward.

In a setting such as an MDP, it is possible to have more than one optimal policy. This
is possible because an agent may have a number of different policies which maximize
its expected sum of rewards [Klein and Abbeel 2013].

We can also observe that different policies may be considered to be optimal de-
pending on the manner in which the reward function is specified. Because the reward
function defines what the good and bad events are for the agent, it may serve as a basis
for altering the policy. Given the same domain, an optimal policy may change as a
result of changes in the reward function. This idea is depicted in Figure 1.

Figure 1 illustrates the policy changes as a result of reward function changes for an
agent having to navigate to its goal location. The green oval in the figure represents
a goal location, while the red oval represents a danger state. The reward function is
as follows. The reward for reaching the goal state is 1, the reward for reaching the
danger state is -1, while the reward for transitioning from one state to every other state
other than the goal and danger state is specified by the living reward. The arrows
in the figure show the optimal action for an agent to take in a particular state given
the relative reward function. The green arrows represent actions that lead to the goal
state (useful actions), the red arrows represent actions that lead to the danger zone
(dangerous actions), while the black arrows represent actions that do not lead the
agent anywhere (useless actions).

There are three quantities that are of interest in obtaining a solution to an MDP,
namely a policy 7, a value function V and the action-value function Q(s, a) (See Figure
2 for an intuition of an action-value). When we consider two policies , policy 7 and 7’
, we define 7 to be better than or equal to 7" if its expected return is greater or equal
to that of 7’ for all states. More formally, 7 > 7’ if and only if V7(s) > V™ (s),Vs € S

18



where s is a state and S is the set of all states. An optimal policy 7* defined as
*(s) = argmax U” (6)

is a policy that is better than or equal to all other policies. There exists at least one
such policy in any MDP problem. In cases where there exists more than one optimal
policy 7*, they share the same optimal value function V* defined as

V*(s) = max V™ (s) = Z T(s,7*(s),s") [R(s,7"(s),s") +yV*(s)] (7)
s'eS
where V*(s) is the expected utility of starting in state s and following an optimal policy

7 [Mitchell 1997]. Optimal policies also share the same optimal action-value function
(Q*defined as

Q*(s,a) = max Q" (s,a) = Z T(s,a,s') [R(s,a,s) +~V*(s)] (8)

s'eS

where Q*(s, a) gives the expected utility of having taken action a in state s and there-
after acting optimally |[Klein and Abbeel 2013].
We can rewrite the optimal policy 7* in terms of V* as

7*(s) = arg max Z T(s,a,s) [R(s,a,s) +~V*(s)] (9)

s'eS

which is essentially just a greedy policy with respect to VV*. On the other hand, V* can
be written in a special form without reference to any specific policy as

V*(s) = max Z T(s,a,s) [R(s,a,s) +~V*(s)]. (10)

s'es

This is known as the Bellman equation for V*. The Bellman optimality equation for
Q" is
Q*(s,a) = Z T(s,a,s)[R(s,a,s) +~V*(s)]. (11)
s'eS
The optimal sought after quantities in an MDP are therefore the optimal value (utility)
of a state V*(s) , the optimal value (utility) of a Q-state Q*(s, a) and the optimal policy

T*(s).

2.2.5 Value Iteration

One way of understanding value iteration is by reference to the Bellman optimality
equation (see Equation 10). Although the Bellman equation gives us a way of getting at
V, it is recursive, and so one approach to solving this is through iteration. By turning
the Bellman optimality equation into an update rule, we obtain the value iteration
method for solving V.

19



/,//// \“\_x (5, a) is a Q-state
~ L ..
&« s = (s, @, 5’) is a Transition
4 (sas)
¢
-y >~
‘,(/ 7 \\ \“‘:k
s )
¥ y

Figure 2: MDP state transitions.

The value of a state at time ¢ is computed to be

Viii(s) « max Z T(s,a,s")[R(s,a,s") + V()] (12)

s'eS

where V5(s) = 0,Vs € S [Sutton and Barto 1998]. Equation 12 is iterated until conver-
gence is reached. In practice, convergence is reached when the value function changes
by only a small amount between iterations. However, for value iteration to converge
exactly to V*, it needs an infinite number of iterations. Thus, tli>r£10‘/;+1(s) =V

With value iteration, every iteration updates the current values by a very small
amount. Therefore, convergence is guaranteed because for value iteration that iterates
sufficiently often, the difference between the updated and previous values will ultimately
be equal to 0. This result is due to the fact that tlirgovt = 0 [Mitchell 1997].

Value iteration converges to unique optimal values as at each time step the value ap-
proximations are recomputed to values closer to those of the optimal quantities [Mitchell
1997]. It updates both, the values and the policy. Although we do not track the pol-
icy as the algorithm iterates, taking the maximum over executable actions implicitly
recomputes it.

2.2.6 Reinforcement Learning

When we think about the nature of behaviour learning, the idea that an agent learns
through its interaction with its environment is most likely the first to occur us . Take
new born babies for example. As they learn how to perform tasks such as crawling,
walking or playing, they have no explicit teacher, but they do have a direct connection
with their environment as a result of their sensory and motor functions (see Figure 4).
Continuously exercising this connection results in a rich source of information over the
consequences of actions and how to go about achieving particular goals. Throughout our
lives, it is these interactions that play a primary role in gaining the accrued knowledge
about ourselves and the environment in which we live. With everything we do, whether

20



- - I
/// // ~ (s, a) is a Q-state
& y, T (5, a, 5') is a Transition

Figure 3: Value Iteration.

ENVIRONMENT

Actions States

AGENT

Figure 4: Synchronous interaction between agent and world.

we are learning how to play an instrument or how to behave in a classroom, we are
constantly alert of how our environment responds to our actions.

Reinforcement learning is a computational approach to learning from interaction.
It is a formalism for finding a solution to the problem of not knowing how to act in an
unknown system or environment and is concerned with learning how to map situations
to actions [Sutton and Barto 1998|.

Under the reinforcement learning paradigm, it typically requires that the problem
is modeled as an MDP. Thus, the reinforcement learning problem involves solving the
MDP. However, the transition model T'(s,a,s’) and the reward function R(s,a,s’),
discussed in Section 2.2.1 and 2.2.3, in this case is typically unknown [Klein and Abbeel
2013]. Here, an agent is encouraged to act in its environment and through its actions,
the agent can then learn about the system which will, in turn, allow the agent to
perform planning. The idea is that in reality, the transition model and reward function
are not known before these are learned through experience.

The key ideas in reinforcement learning are exploration, exploitation, regret and
sampling. Exploration refers to taking actions that are not recommended by the current
estimate of the model so as to acquire more information (or experience). This allows

21



the learning agent to explore the environment, receive feedback for taking different
actions and consequently learn new knowledge from the environment in which it acts.
Exploitation refers to taking the best action according to the current estimate of the
model in order to maximise the expected reward. Exploration and exploitation are
complementary, but opposite. Exploration leads to the maximisation of the expected
reward in the long run at the risk of losing short term reward, while exploitation
maximises the short term expected reward at the price of losing the gain in the long
run.

For example, suppose the value of the greedy action is known with certainty, in
comparison to several other actions that are estimated to be nearly as close to that of
the greedy action with substantial uncertainty. As a result of the uncertainty, it could
be that one of the other actions actually has a higher value than that of the greedy
action. However, this action would not be able to be determined. Thus, it may be more
fruitful to explore the other actions and discover which one of them have a higher value
than taking the greedy action. Although the reward is lower in the short run, during
exploration, the reward may be higher in the long run because after discovering the
better actions you would then be able to exploit them rather than taking the greedy
action. Therefore, there exists a conflict between exploration and exploitation since it is
not possible both to explore and exploit, simultaneously, using a single action selection.

Sampling refers to probabilistically selecting (possibly suboptimal) actions from
some distribution during the course of exploration. Regret on the other hand refers
to the expected decrease in reward when an agent’s performance is compared to that
of an agent which acts optimally from the very beginning. In other words, regret is a
measure of how much worse the agent performed than if it had known the best strategy
before hand. In order for an agent to act optimally, it must be able to reason about
the long term consequences of its actions.

Reinforcement learning refers to learning how to behave from interaction in order to
achieve a goal. The underlying structure of reinforcement learning is as follows. If the
environment satisfies the Markov property (see Section 2.2.1), then the environment is
therefore an MDP and the model consists of the one step transition probabilities given
by T'(s,a, s') and expected rewards for all states and their possible actions. All learning
is based on observed samples of outcomes and the agent must learn to act so as to
maximise expected rewards. Therefore, the goal of the agent is to learn the optimal
policy 7*(s) so as to maximise the return of future rewards. The agent receives feedback
from interacting with the environment in the form of rewards which are specified by
the reward function R(s,a,s’).

Reinforcement learning is a computational approach that allows us to understand
and automate goal directed learning and decision making. Its methods/algorithms are
typically divided into two classes: model-based and model-free approaches.

22



Model-Based Learning

The goal in model-based learning is to learn the transition model T'(s, a, s') and reward
function R(s,a,s’). An agent must learn an approximate model based on its experiences
in order for it to be able to learn a policy which it can compute if the transition model
and reward function are known [Klein and Abbeel 2013|. In other words, the agent must
accumulate experiences, build a transition and reward model based on those experiences
and then solve for the policy with the assumption that the model is correct. This is
achieved by

1. Learning the empirical model: Taking actions, either randomly or using a more
efficient strategy, to observe the rewards received by transitioning from one state
to another and then building an estimate of the transition model T'(s,a,s’) and
reward model R(s,a,s’).

2. Solving the learned MDP: Using the empirical model to do planning so as to find
a policy 7.

Thus, there are two notable phases under model-based learning. These correspond to
collecting experience in order to build a transition model and using that model to do
planning in the hope that the action selection strategy from planning is more effective
than blindly attempting actions.

Model-Free Learning

Model-free learning involves the direct finding of a policy without any explicit knowl-
edge of the dynamics of the environment or the consequences of actions. The only
information it requires is of the states that exist and the possible actions that may be
executed in each state. It differs from model-based learning in that an agent is able
to solve for values V(s) and Q(s,a) by simply gathering experience in the MDP envi-
ronment, rather than first learning the transition model T'(s, a, s") and reward function
R(s,a,s") |[Klein and Abbeel 2013|. The goal is to directly estimate the values of V*
Q* and 7* without establishing a model.

2.2.7 Q-Learning

One commonly used iterative method for computing Q-values is Q-learning |Sutton
and Barto 1998|. It is a model-free reinforcement learning method whereby the learned
action-value function ) directly approximates the optimal action-value function QQ*. A
Q-value at time ¢ is updated using

Qir1(s,a) + (1 —a) Qi(s,a) + « (R(s, a,s’) + 7 max Qq(s, a')) (13)

known as the Q-value update where a € (0, 1] is the learning rate [Klein and Abbeel
2013]. The core of the algorithm is a value iteration update with the Q-function Q(s, a)
iteratively converging to the optimal Q-function Q)*.

23



This approach is referred to as off-policy learning |Sutton and Barto 1998]. Off-
policy learning allows an agent to be able to learn about the optimal policy 7* without
ever having to follow the optimal policy, by gathering information from random action
selections.

2.3 Partially Observable Markov Decision Process
2.3.1 POMDP Formalism

With MDPs we assume that the agent has full observability of the environment. This
means after executing a particular action whose outcome is not known in advance, the
agent is able to determine without any ambiguity the resulting state after that action
is taken. However, many real world problems do not fit the assumptions of the MDP
framework. This is because an agent acting in a real world environment may not be
able to directly observe the state of the environment at every time step.

Consider a robot having to navigate through an environment using an array of
sensors. In this case, robotic sensors such as cameras and lasers can only provide
limited /partial information about the environment because the sensors are unable to
give full knowledge of the domain. For example, the robot sensors cannot provide
information beyond the range of the sensors and cannot directly observe the contents
of the opposite side of a wall/obstacle. For this reason, these environments are referred
to as partially observable domains.

POMDPs provide a principled mathematical framework for planning in uncertain
and dynamic environments and allow us to model sequential decision making problems
under uncertainty [Sondik 1971|[Kaelbling 1998|[Png 2011]. They allow an agent to
be able to compute a policy in cases where it is not able to directly determine the
state in which it currently lies [Kaelbling 1998]. A POMDP is thus an extension and
generalisation of an MDP to circumstances in which states are not fully observable. In
order for an agent to act optimally in an MDP setting, it only needs to consider the
current state in which it lies, while in a POMDP setting an agent may need to take
into account the previous history of all observations and actions [Braziunas 2003].

A POMDP is defined by a tuple (S, A, O, T, Z, R,~) where S is a finite set of states,
A is a finite set of actions that the agent can take, O is a finite set of observations,
T:SxAxS —[0,1]is a transition function which gives the probability of transitioning
from one state to another when taking a particular action, Z : S x A x O — [0,1] is
an observation function which gives the probability of observing an observation in a
some state after taking a particular action, R : S x A x S — R is a reward function
that indicates the immediate payoff of taking a particular action at a given state and
0 < v < 1 is the discount factor. In particular T'(s,a,s’) gives the probability of
transitioning from state s to state s’ after taking action a (i.e. P(s'|s,a)), Z(s,a,o0)
gives the probability of observing observation o after taking action a in state s (i.e.
P(o|s,a)) and R(s,a,s’) is the reward received by the agent when transitioning from
state s to state s’ as a result of taking action a. Because T'(s,a,s’) and Z(s,a,0) are

24



a probability functions, >, ¢T(s,a,s") = 1,Ya € AVs € S and ) _,Z(s,a,0) =
1,Va € A,Vs € S. We note that a POMDP is an extension of the MDP paradigm with
the addition of an observation space O and observation function Z(s, a, o).

The goal of a learning agent in this paradigm is to maximise the total expected
reward when taking a sequence of actions in a domain with state uncertainty.

2.3.2 History Tracking

Because an agent’s immediate observations do not provide it with sufficient information
in allowing it to disambiguate its position in space and perform the optimal action,
there is a necessity for some form of memory that summarises its previous experiences
on which it can correctly base its decisions. This is particularly useful because an agent
may not be able to localise itself by making observations of its surroundings, but if it
can combine these observations with its staring point along with the actions that it
took subsequently, it is likely to have a much better idea of its location.

This memory is referred to as the agent’s history. A history refers to everything that
occurred while a task was being executed. It is comprised of all the agent’s interactions
with the environment as it performs its relative tasks. In a POMDP setting, a system
history starting at time 0 and ending at time ¢ is a sequence of state, action and
observation triples [Braziunas 2003|. A history is typically denoted as

<807 ap, 00> ) <817 ai, 01> PRI <8t7 Ay, 0t> .

Since the system is only partially observable, the agent does not have access to
the true state of the world. Therefore, an agent can only make decisions based on its
observable history. Assume that the agent has prior beliefs about the world that are
summarised by the probability distribution by from the beginning. If the agent takes
some action ay based only on by, the observable history starting at time (0 and ending
at time ¢ will therefore be a sequence of action and observation pairs and is denoted as

<a0, 01> ) <a1> 02> Yo <at—17 Ot> .

However, maintaining and working with extensive histories can quickly become cumber-
some and intractable. Instead, a probability distribution over states, known as a belief,
is maintained to summarise an agent’s past experience. This is a sufficient statistic
for representing the agent’s past history. By basing POMDP policies on beliefs we are
able to maintain the Markovian property for the policy as the next belief state depends
only on the current belief state and the immediate transition taken (i.e. the action and
observation received). As a result, this belief process is a Markov process.

A belief state b € B gives the probability of being at each state (See Figure 6),
while a belief space B refers to the set of all possible beliefs. We consider a belief state
b as a vector of probabilities and the sum of all these probabilities must sum to 1 i.e.
Y osesb(s) =1,b(s) €[0,1],Vs € S..

When an agent takes action a at belief state b and observes an observation o, the
belief can be updated using

25



V' =b"(s") = P(s'|b,a,o0) (14)

P(ols’,b,a)P(s'|b,a)P(b,a)
P(o|b,a)P(b,a) (16)

P(ol¢, a)ZSGSP(s’|b, a, s)P(s|b,a)P(b,a)

= P(ofb,a)P(b,a) (17)
Z(s',a,0) P(s'|b, a, s)P(s|b, a)

- ZSGPS(OV), a) (18)
Z(s,a,0) T(s,a,s)b(s)

- %(Soe]z, a) (19)

known as the belief update, where

P(olb,a) = ZZS aoZb (s,a,s") (20)

s'eS seSs

can be treated as a normalising factor, independent of s" allowing > b*° to sum to

1. In this case we can represent the belief update formula as

v (s =nZ(s,a, O)ZT(S, a,s)b(s) (21)

seS

s'es

where n = m is the normalising constant and P(o|b, a) is from obtained Equation
20. This shows that a POMDP can be seen as a belief MDP, with the MDP defined
on a continuous state space, since there are infinite beliefs for any given POMDP.
Figure 5 displays a graphical representation of how transitions between belief states are
completed.

In Figure 6 we show the difference between the true states and the belief over states
of an agent following a sequence of actions in a domain in which it is allowed to navigate.
In Figure 6a, the agent is fully capable of precisely determining its state and position.
Therefore, because it is certain of the state in which it lies, the probability of being in
that state will always be equal to 1.

The sequence of actions in Figure 6 are as follows. If the agent’s initial position is
that given by 6a)i) and takes an action to move east, it will know with certainty that
it lies in the state depicted by 6a)ii). If from 6a)ii) the agent takes an action to move
east again, it will know with certainty that it lies in the state depicted by 6a)iii). On
the other hand, to illustrate an agent’s belief over states we assume that the agent is
initially equally likely to be in any of the three states other than its goal location (See
Figure 6b)i) ). If the agent takes an action to move east from its initial belief and does

26



Figure 5: POMDP belief state transitions.

Move East Move East

1.00 | 0.00 0.00 | 0.00 a 0.00 | 1.00 | 000 | 0.00 a 0.00 | 000 | 1.00 0.00

Move East Move East

0.25 0.25 0.25 0.25 a 0.00 0.33 0.33 0.33 ) 0.00 0.00 0.50 0.50

b) Belief over states.

Figure 6: The difference between a true state and belief over states.

not collide with a wall obstacle, then its new belief over states will be that portrayed
by 6b)ii). If the agent takes an action to again move east and does not collide with a
wall obstacle, then its new belief over states will be that depicted by 6b)iii).

2.3.3 Policies

As in a standard MDP, the goal of a learning agent in a POMDP is to find an optimal
policy 7* : B — A where 7*(b) maps a belief b to a prescribed action a. The major
difference between a POMDP policy and an MDP policy is that a POMDP policy maps
belief states (which is a probability distribution over states) to actions, while an MDP
policy maps states to actions. In a POMDP, an agent is required to determine the value
of executing a particular action a from some belief state b in order to learn how to act
optimally. Tt achieves this by maintaining a value function V' : B — R which gives an
expected value over world states for executing each action. The expected reward for

27



following policy 7 starting at an initial belief state by is defined as

Z vtn|b0] (22)

where 7, is the reward received at time ¢ [Png 2011].

In POMDPs, an agent attempts to find an optimal policy 7* that maximises the
expected total reward. By optimizing the long-term reward an agent is able to compute
an optimal policy using

V(b)) = E7

7" = argmax V7" (b) (23)

which yields the policy which returns the highest expected reward for a belief state.
The optimal policy 7* can be represented by the optimal value function V* and as with
the MDP model, we can define the Bellman update operator for the belief space MDP
as

V*(b) = max > b(s)R(s,a) +v Y Plolb,a)V*(7(b,a,0)) (24)
ses 0cO
where 7(b,a,0) = V' is the resulting belief state after taking action a and observing o
from belief b. By extracting the policy from the computed optimal value function, an
agent is therefore able to discover the optimal policy i.e. 7* = argmax, V7 (b).

Using a finite set of linear functions, known as a-vectors, the value function for a
POMDP can be modeled arbitrarily closely as the upper surface of the a-vectors. Hence
we can define the value function over the full belief space as V' = {ajy,a9,...,a,}.
Each a-vector is associated with an action and denotes the immediate reward following
a given action. Formally, an a-vector has |S| components and can be denoted as
a = (V(s1),V(s2),...,V(sn)) [Kaelbling 1998|. Thus, using this representation, the
optimal value function V*(b) can be computed by a piecewise-linear, convex function

V*(b) = max(c - b) (25)
ael’
where I is a finite set of vectors called a-vectors, b is a vector representing a belief and
« - b is the dot product of the a-vector and belief vector bie. a-b= " _ob(s)- a(s)
[Sondik 1971].

To illustrate the latter, suppose we consider an agent acting in a world with only
two states. The belief state vector representation of this world will consist of only two
non-negative numbers that sum to 1 i.e. (P(s1|b), P(s2]b)) or (b(s1),b(sz2)). As a result,
a single value between 0 and 1 is sufficient to describe a belief state because with a two
state POMDP, if the probability for being in one of the states is known to be p, then it
is known that the probability of being in the other state must be 1 — p. The values of
taking particular actions over this belief space can be represented using linear segments
and can be seen in Figure 7a. Therefore, the optimal value function over the belief
space can be extracted from Figure 7a by taking the maximum of all the line segments
at each point in the belief space as illustrated with Figure 7b. The result is the upper

28



Vib) V(b
|- as (k) o Lo
3
- Gy o, /

™~ g

bls,) b(s,)

a) The value function for a sample two-state problem. b) The optimal value function for the sample two-state

problem.

Figure 7: Value function for a two-state problem.

51

0, 0)

/ ©, 1

$2

a) Belief space for a three-state problem [Roy et al. 2005]. b) A sample value function of a three-state problem
[Kaelbling et al. 1998|].

Figure 8: Belief space and value function for a three-state problem.

surface of the graph presented in Figure 7a, which gives us the optimal value function
over the belief space. We note that a POMDP value function has a piecewise linear
and convex property [Sondik 1971|[Smallwood and Sondik 1973|[Cassandra 1998].

When we consider an agent acting in a world with only three states, then a belief
can be determined using only two values. The belief space can be seen to be a two-
dimension triangle, while the value function associated with taking particular actions
over this belief space is a plane in the three-dimensional space. The optimal value
function is a bowl shape that is composed of planar facets [Kaelbling 1998|. These
value function characteristics can be observed in Figure 8. In general, a belief state can
be represented by |S| — 1 values [Cassandra 1998|.

An interpretation of Figure 8b may be as follows. The convexity of the optimal
value function tells us that if an agent’s belief is equal to those beliefs that lie towards

29



V(b) V(b)

0 1 0

bis,) 1

b(s,)

a) Value function with useless a-vectors. b) Parsimonious representation of the value function.

Figure 9: A value function with dominated a-vectors.

the centre of the belief space, then the agent is very uncertain about the true state of
the world. In this case, the agent may want to take an action that is optimal given its
uncertainty (which may mean the action that is suitable in the widest range of cases).
On the contrary, the belief states that lie towards the corners of the belief space suggest
that the agent is more certain over the state in which it lies and is therefore able to act
more appropriately to a specific situation.

Any value function can be represented as a finite set VT of a-vectors. Because many
a-vectors in VT may be dominated by other a-vectors, as seen in Figure 9, we can use
a parsimonious set V, which is a unique minimal subset i.e. ¥V C V7, to represent the
same value function. This process of establishing V from V7 is called pruning. We refer
to an a-vector as not dominated if it is included in this set V. If we consider a set of
not dominated a-vectors V and a particular a-vector, oy, in V, we define the region of
belief space over which «; dominates to be

R(ar, V)= {bla, - b>a-b¥Vbe BVYaecV—a}. (26)

The simplest pruning strategy is to test R(«, V") for every a-vector in V* and remove
those a-vectors that are completely dominated by others [Sondik 1971||[Monahan 1982].

Because each a-vector is associated with some action, the policy can be executed by
taking the action relative to the best a-vector at the current belief state b. Equation
25 can give us a policy for all belief states, by taking the argmax over the a-vectors
and finding out to which action the vector corresponds. Thus, a set I' of a-vectors can
represent a value function from which an agent can extract a policy 7.

In a POMDP, calculating the optimal policy is not easy and the belief space, which
helps the agent to reason over it’s uncertainty, is actually the cause of this difficulty.
The primary concern is the continuous nature of this belief space. Although a number
of algorithms that successfully produce optimal policy solutions in this space have
been developed over the years, these techniques are too complex and computationally
inefficient [Papadimitriou and Tsitsiklis 1987]. This is due to the fact that the set of

30



a-vectors grows exponentially with every algorithm iteration. This exponential growth
factor is a result of the computational cost of each iteration depending on the number
of vectors that are in I". This causes the various algorithms to become expensive.

Another difficulty is the curse of dimensionality [Smith 2005]. This refers to the
issue that the dimension of the belief space is equal to the number of states in the
POMDP problem. This causes the size of this space to grow exponentially with the
number of states. For example, if a POMDP problem is characterised with a 100
states, then the resulting belief space will have 100 dimensions. Because we maintain
continuous distributions over this high dimensional space, solving POMDPs exactly is
computationally intractable.

Lastly, the curse of history can also cause the computation of an optimal policy
to be difficult [Png 2011]. This is a result of long planning horizons. The number of
created beliefs increases exponentially with respect to the planning horizon [Pineau,
Gordon, and Thrun 2006][Silver and Veness 2010|[Lim, Hsu, and Lee 2011]. Therefore,
the complexity of planning grows exponentially with the time horizon and can be par-
ticularly detrimental to computation times as the majority of planning tasks require an
agent to take many actions before it eventually reaches its goal.

2.3.4 Value Iteration

Because a POMDP can be treated as a continuous space MDP, where the continu-
ous space is the belief space (see Section 2.3.2), value iteration can therefore also be
used to compute the value function in this paradigm. The value iteration algorithm
for a POMDP problem has the same basic structure as the algorithm used for com-
pletely observable discrete MDP problems presented in Section 2.2.5. Value iteration
computes V1 (the parsimonious representation of Vi 1(b)) from V; (the parsimonious
representation of V;(b)).
The value function at time ¢ can be computed by solving the equation

Vi1 (b) = max R'(b,a) + waB T(b, a, b )V, (V) (27)
e

= b(s)R(s,a), (28)

ses
Tb(b,a, V) = ZZSCLOZTS(ZS (29)
s’'eS s€eS

and the value function at time ¢ = 0 is initialised to Vp(b) = 0,Vb € B. Rewriting
Equation 27 in terms of the original POMDP formulation equates to

where

Vir1(b) = max Zb (s,a)+ ZP(0|b, a)Vi(7(b, a,0)) (30)

a€A
seS ocO

31



where 7(b, a,0) = b*°(s") =V and P(olb, a) is given in Equation 20.

The most naive way to construct V;7, is by enumerating all the possible actions
and observation mappings from V;', which results in a set that is |A||V;"[! in size.
However, many vectors in V;" may be dominated by others. So, to compute V,; we
actually only need to consider V,. A full Bellman backup is used to compute V| from
V; which involves finding the solution to

VtJfH = U 1z (31)
acA
where
V=, (32)
0e0
a,o 1 a,o
2% z{@ra—koe’ :aGVt}, (33)
a®(s) = Z Z(s',a,0)T(s,a,s)a(s), (34)
s'eS
ViaVa = {ag+as | Vi €ay, Vs €}, 7, is a vector representation of the reward

function, V; is the vector set prior to the backup and V;fH is the the new vector set
after the backup [Sondik 1978][Cassandra et al. 1997||Guy et al. 2013].

Because Equation 34 generates |V|x |A| x |O| vectors which requires |S|* operations
and Equation 32 generates |V||O‘ vectors for each action, with each new vector requiring
|S| operations, the overall complexity of a single iteration is therefore

O (I x 141 x 0] x |S]* + V]! x |4] x |8]) .

This shows that the set of a-vectors grows exponentially with every iteration, result-
ing in a prohibitively expensive algorithm as the computational cost of each iteration
depends on the number of vectors in V.

Some methods compute V,41 by first constructing V;"; and then performing pruning
to remove the dominated a-vectors from V;", [Monahan 1982|[Cassandra 1997]. Other
algorithms compute V;y; directly from V;, omitting the consideration of useless a-
vectors [Sondik 1971][Smallwood and Sondik 1973][Cheng 1988|[Kaelbling et. al. 1998|.
Although these methods result in more manageable value functions [Cassandra et al.
1997||Littman 1996], they are still not sufficient for scaling to domains with more than
a few dozen states. Because these methods are feasible only for problems with a small
number of states, they are often disregarded.

Using existing exact POMDP algorithms to compute a continuous and high dimen-
sional value function defined over the belief space for problems with a large number
of states is considered to be intractable. However, approaches which compute approx-
imate value functions have been formulated in an effort to develop algorithms which
can solve many real-world problems [Murphy 2000].

32



2.4 Point-Based Partially Observable Markov Decision Process
Algorithms

Over the past years, POMDP solving algorithms have seen significant advancement as
modern solvers can now solve POMDP problems with high complexity and an extensive
number of states. This breakthrough largely stemmed from computing value functions
over a finite subset of the belief space. Algorithms which compute a value function in
this way are referred to as point-based POMDP algorithms.

These algorithms use value iteration as other POMDP algorithms do, using the
same style of value iteration, but the details are different, as will be discussed in subse-
quent sections. However, because they only consider a subset of the belief space, their
value iteration techniques can be seen to exhibit slight changes when compared to the
traditional approach (see Section 2.4.4).

The value iteration algorithm for point-based POMDP solvers is known as point-
based value iteration (PBVI) and allows us to solve larger POMDP tasks significantly
faster [Pineau et al. 2003|. PBVI algorithms explore the belief space, focusing on reach-
able belief states from some initial belief, and apply the point-based backup operator
(see Equation 42) in order to maintain a value function. One point-based algorithm
differs from another due mainly to their differences in the manner in which they select
their core subset of beliefs and the order by which the value at those belief states are
updated.

The PBVTI algorithm allows us to approximately compute a solution to large POMDPs
rapidly. We introduce this approach and give a discussion about its details in this sec-
tion. Firstly, we present the basic insight that point-based POMDP algorithms take
advantage of and follow to give a thorough description of the workings of the approach.

2.4.1 Limiting the Size of the Value Function

As mentioned earlier in Section 2.3.3 and 2.3.4, it is fundamentally important to limit
the number of vectors that represent the value function when performing value iteration
using POMDPs. However, there is a trade-off between the accuracy of the value function
and the number of vectors that are used to represent the value function. By avoiding
exponential growths with regards to computation times by decreasing the number of
vectors that represent a value function, we may potentially compromise its accuracy.
Therefore, establishing a means of efficiently choosing which vectors to remove from
the complete set of vectors is vital.

We can alleviate this issue by collecting a set of reachable beliefs from an initial belief
state by € B, where B is the entire belief space, and maintaining the value function only
over these beliefs [Hauskrecht 2000][Pineau et al. 2003|. The set of reachable beliefs
R(bo) can be obtained by applying the belief update procedure, given in Equation 14-19,
starting from the initial belief state by. These points can be attained by performing the
belief update procedure starting at by and in turn deciding which sequence of actions
and observations should be picked in order to gather a set of belief points that will

33



allow us to find an approximately optimal solution. The following section, Section 2.5,
describes a variant of the point-based approach, kown as the SARSOP algorithm, as
this is the point-based POMDP algorithm instantiation that we use in this work.

2.4.2 Value Function Updates

When we update the value function V' at a finite set of belief points B, we do not
need to use a full Bellman backup (see Equations 31-34). By manipulating the value
function update procedure, we can use a less expensive solution to update the set of
vectors representing the value function. We refer to the set of vectors representing V' as
V. With Equations 35-41, we show how the value at a belief point b € B after a Bellman
backup over a given value function V' is computed and show how the calculation of this
value can be used to calculate the new a-vector that would have been optimal for b, if
we had ran the complete Bellman backup.

! o a,0
V/(b) = maxR(b,a) + V;JD(OUD, a)V (b*°) (35)
= %?}R(b’ a) + 7;9 P(o|b, a)rgeagc a-b® (36)
= maxR(b,a +72P olb,a maxZoz - b™(s (37)
acAd ocO acy s'eS
Z(s’, a,o) ,
= maXR(b a) + fyZP olb, a maXZa —Zb(s)T(s,a, s)  (38)
0€0 P(olb, a) seS
— /
ICIlleaXR (b,a —i—fyZIgeabe Za Z(s',a,0)T(s,a,s") (39)
ocO ses s'eS
= réleaj(R(b, a) + 721&1&3{21)(3)& “(s) (40)
ocO ses
= Ianeach(b, a) + 70620%12‘3( b-a® (41)

where R(b,a) = > s b(s)R(s,a) and a®® =, ca(s')Z(s',a,0)T(s,a,s") [Guy et
al. 2013|. Writing a more compact backup operation that generates a new a-vector for
a particular belief point b is

backup(V,b) = arg max b - ol (42)
where
o’ = R(s,a) + Z argmax b-a™’. (43)
ocO “

The backup operation, given in Equation 42, is very similar to temporal difference
methods in reinforcement learning [Mitchell 1997|. By expanding the belief state b up
to a depth of one, the backup operation will backtrack the best a-vector at b for each

34



child. Then for each action a, it combines them using a Bellman equation so as to form
one single hyperplane a’. Thereafter, considering all the formed a’-hyperplanes, the
best hyperplane is added to V.

Equation 42 implicitly prunes dominated vectors twice (as suggested by the two
argmax expressions) which eliminates costly operations that generate an abundance of
a-vectors. An important factor to note is that a®° is independent of b and can be
stored and reused in the backup processes over other belief points.

Since the complexity of computing a®° (Equation 34) is O (\S |2), which is computed
for every a-vector in V), therefore the computation of all a®° has a complexity of

O (5" x |A] x |O] x V).
Considering the summation and inner product operation of Equation 43 which has a
complexity of O (|S| x |O|) and the complexity of adding the reward vector which is
O (|S]), the complexity of computing o’ for every a-vector in V is therefore

O (JA] x |S] x 1O]).
Thus, the complexity of the point-based backup (Equation 42) is
O (ISI” x |A] x |O] x [V +|A] x |S] x O]) .

Because the a®° are independent of the current belief b, a full point-based backup over
the belief subset B, equating to | B| multiplied by the complexity of a single point-based
backup, will not be necessary. Thus, the complexity of a full backup for the subset B,
where every a®? is computed only once and cached, is

O (ISI* x [A] x |O] x [V + |B| x |A] x |S] x |0]).
Comparing the O (|S|2 x [A] x |O] x [V| +|B]| x |A] x |S| x |O]) complexity of the full
point-based backup (Equation 42) with the O (|V| x |A] x |0] x |S)? + V] x 4] x |S|>
complexity of a single iteration of the exact backup (Equation 31), we can observe the

advantages of using point-based backups. They decrease the costs of backup operations
and ultimately improve the performance of POMDP algorithms.

2.4.3 Policy Execution

A policy obtained from a value function defined over a finite subset of the belief space
can be determined by solving

7V (b) = arg max R(b,a) + ’yz P(olb,a)V (b*°). (44)
0O

In order to efficiently determine the action to take with regards to a policy, we use the
a-vector representation and label the resulting vectors from the point-based backup
(Equation 42) using the action that generated it. In other words, we label the vectors
according to the action that was used to construct the a-vector. We can then use
max,cy @ - b to find the best a-vector for the current belief point b and execute the
action corresponding to that vector.

35



2.4.4 Value Iteration

Point-based algorithms generally use the ideas of bounding the size of the value func-
tion discussed in Section 2.4.1 and optimising the value function using the point-based
procedure described in Section 2.4.2. In essence, they all follow the PBVI framework
presented in Algorithm 1.

The algorithm is composed of two primary components. The first is the collection of
the belief space subset B, and the second is the update of the value function V. Point-
based approaches differ in the manner in which they achieve these two components,
while the stopping criterion typically depends on the choice of these two components.
A time-dependent stopping criterion only exists among algorithm variants which con-
tinually improves their value function with time, allowing them to have an anytime
nature.

Algorithm 1 Generalised Point-Based Value Iteration.

1: while stopping criterion is not reached do

2: Collect finite belief subset B from the belief space (see Section 2.4.1)
3: Update V over B (see Equation 42)

2.4.5 Initialising the Value Function

As with every value iteration method, we require an initial value function on which to
base value function updates. When choosing an initial value function for PBVI, it is
important to begin with some initial function that is as close as possible to the optimal
value function V*. By achieving this, we decrease the number of iterations that will
be performed before convergence is reached. Some point-based algorithms require the
initial value function to be a lower bound on V*. An example of a lower bound value
function V can be seen to be

K - {amm} (45)

where

min, , R(s,a)
|

which is equivalent to collecting the minimum reward at each time step. Other methods

do exist for calculating a lower bound value function that is closer to V* [Hauskrecht

1997|[Smith et al. 2005].

Some point-based approaches also require an upper bound on the value function and
the same considerations can be used when initialising this function. However, when
initialising the upper bound, the belief-value representation is used over the vector
representation. A belief-value representation maintains a value for every belief that is
encountered. It is a mapping of belief states to values and are points on the convex
envelope of the current estimate of the value function. For the belief states whose

(46)

Qmin(S) =

36



mapping is not currently maintained over the over the convex value function, we are
required to interpolate the value of those beliefs.

This representation is preferred mainly because when implementing value iteration
using the vector represented upper bound, new vectors will typically have a lower value
than currently existing vectors and so adding these vectors will have no effect on the
existing value function. Different initialisation strategies have been developed over past
years [Hauskrecht 1997|[Hauskrecht 2000]. The simplest strategy to initialise the upper
bound on the value function V is by assuming full observability and solving the MDP
version of the problem. Using the underlying MDP optimal value function as an upper
bound initialisation is a well known idea |[Littman 1996]. Its suggests using the optimal
Q)-values (see Sections 2.2.4) of the underlying MDP to form the Qypp value function
for POMDPs which is defined to be

Qupp(b) = max Q(s,a)b(s). (47)

If we want to use a tighter upper bound on the value function, we can consider the fast
informed bound initialisation technique [Hauskrecht, 2000]. The fast informed bound
initialiser updates the value function for each state s using

V(b) = max | R(b,a) + v Z max P(olb,a)a(s')| . (48)

a€A
oeO

2.4.6 Core Parameters

There are a number of parameters that influence the resulting value function of point-
based algorithms and ultimately affect their performance. Typically, these parameters
result in trade-offs between approximation accuracy and computational effort.

One parameter of concern is the number of belief points in B (the subset of the
belief space B) because the value update time largely depends on the size of B, while
the accuracy of the value function also depends on the number of sampled belief points.
The sampled belief points are the belief states that are chosen from the belief space
and used to approximate the value function (see Section 2.4.1). Thus, we can observe a
trade-off between satisfactory approximation and time taken to perform value function
updates. As a result, point-based approaches control the number of belief points that
comprise B.

Another parameter is the number of times the point-based backup operation (Equa-
tion 42) is performed in each value function update. In most cases, the value function
can be updated without using all the belief points in B, but in some cases numerous
backups over a single belief in an iteration can be profitable. Decreasing the number
of backups reduces the computational effort, while increasing the number of backups
yields a better approximation of V*.

Pruning dominated vectors, in an attempt to maintain a compact representation
of a value function, is also a vital aspect of point-based algorithms. Its importance is

37



evident in that the complexity of the point-based backup depends on the number of
a-vectors that are used to represent the value function. Because of the inability of exact
POMDP solvers to maintain a small number of vectors to represent the value function,
it is possibly the main reason for their failures when they are required to solve problems
in larger domains.

2.5 Successive Approximations of the Reachable Space under
Optimal Policies (SARSOP)

As explained in Section 2.3.4, exact POMDP solvers are computationally intractable
when they are implemented for solving tasks in real environments. This is because
some tasks can contain up to or even more than 10° states which can cause their
computational complexity to be expensive. The SARSOP algorithm is an approximate
POMDP algorithm that improves computational efficiency and is practical for many
applications in robotics [Kurniawati et. al 2008]. SARSOP exploits the idea of optimally
reachable belief spaces to bring about these computational improvements and has been
successfully applied to various robotics tasks such as coastal navigation, mobile robot
exploration and grasping [Kurniawati et al. 2008].

Recent point-based POMDP approaches sample belief points only from the subset
of reachable belief points from an initial belief by € B under an arbitrary sequence
of actions, referred to as R(by) [Pineau et al. 2003|[Smith and Simmons 2004|[Spaan
and Vlassis 2004]|[Smith and Simmons 2005[Hsu et al. 2008]. SARSOP pushes further
in this direction by sampling beliefs near the subset of belief points reachable from b
under an optimal sequence of actions, known as R*(by). However the optimal sequences
of actions are not known in advance as this makes up the POMDP solution. Generally,
it is believed that R(by) is much smaller than the size of B, and R*(by) is usually much
smaller than R(by) i.e. R*(by) C R(by) C B as seen in Figure 10.

Instead of directly approximating V* or searching for 7* as other common ap-
proaches do, the SARSOP algorithm (Algorithm 2) focuses on finding an approximate
cover of the space reachable under an optimal policy R« (by) through sampling. Because
multiple optimal policies may exist, SARSOP aims to sample R*(by) = U, . Rx=(bo)
which is the union of all optimally reachable spaces. Therefore, having knowledge of
R*(bo) is in some sense equivalent to knowing the POMDP solution (see Section 2.5.2).
Thus the goal, here, is to approximate R*(bg).

SARSOP successively computes approximations of R*(by) and converges to it iter-
atively. To achieve this, it relies on heuristic exploration to sample R(by) and improves
samples over time using a basic online learning method (see Section 2.5.2). It then
avoids sampling in regions that are unlikely to be optimal by implementing a bounding
technique. By focusing sampling on the region near R*(by), SARSOP is able to greatly
reduce the computational effort and ultimately results in a more efficient approach.

The value function is represented using a set I' of a-vectors, where each a-vector
in I' must dominate all other vectors in ' at some sampled belief. Pruning sampled
beliefs that are not part of R*(by) reduces the size of I' and in turn further improves

38



computational efficiency. We discuss this aspect in more detail in Section 2.5.3.
In order to simplify the notation of R(by) and R*(by), we note that R and R* refer
to R(bo) and R*(by) respectively.

Figure 10: A Graphical representation of the Belief Space B, Reachable Belief Space
R(bo) and Optimally Reachable Belief Space R*(bo).

2.5.1 Algorithm Overview

The SARSOP algorithm (Algorithm 2) uses three main functions over which it iterates.
These functions are SAMPLE (Algorithm 4), BACKUP (Algorithm 3) and PRUNE
(see Section 2.5.3).

As with all point-based approaches, SARSOP collects a finite subset of belief points
from the belief space B. The sampled belief points form a tree Tx, with each node in
Tr representing a point that has been sampled (see Figure 11). The initial belief point
by is the root of Tk. The same symbol b is used to refer to both a sampled point and
its corresponding node in Tk so as to avoid confusion. In order to sample a new belief
point, we use suitable probability distributions or heuristics to choose a node b from
the tree Tk from which to sample, along with an action a € A and observation o € O
(see Section 2.5.2). We then compute the new sampled belief point ¥ using Equation
14-19 and insert it into Tz as a child of b.

39



0y 0y

Figure 11: The Formation of Belief Tree Tr Rooted at by.

The algorithm maintains both a lower bound V and an upper bound V on the
optimal value function V* to focus sampling near R*. In this way SARSOP is able to
bias sampling towards R*(see Section 2.5.2). The lower bound V is represented using
a set I' of a-vectors and can be initialised in various ways, for example using a fixed-
action policy or a blind policy [Hauskrecht 2000]. On the other hand, the MDP, the
Fast Informed Bound technique or the sawtooth approximation can be used to initialise
V' [Hauskrecht 2000].

Suppose we consider an agent acting in a world with only two states as we did
in Section 2.3.3. As discussed in Section 2.3.3, the value functions can therefore be
represented using linear segments. Figure 12 gives a graphical representation of a lower
bound V and an upper bound V on an optimal value function V*(b) over the belief
space. The arrows in Figure 12 point to the upper bound value V (b) and lower bound
value V (b) at belief b, while the black circle refers to the actual optimal value at b.

Algorithm 2 SARSOP.
1: Initialise the lower bound V on the optimal value function V* and the upper bound
V on V*.
Insert the initial belief point by as the root of the tree Tx.
while termination condition is not reached do
SampPLE(TR, ') (see Algorithm 4).
Select a subset of nodes from Tk and perform Backur (7%, I, b) on each selected
node b (see Algorithm 3).
Prune(Tg, I') (see Section 2.5.3).
7. return I,

Backup operations are performed on selected nodes in 7. A backup operation at a
node b collects and combines the information in the children of a node b and propagates

40



Upper Bound V

Optimal V*

Lower Bound V

Figure 12: An example of a lower bound and upper bound on an optimal value function
V*(b).

it back to b. The standard a-vector backup (Algorithm 3) is performed on the lower
bound of the value function, while the Bellman backup (Equation 42) is performed on
the upper bound. The a-vector backup produces the same value function approximation
at b as the Bellman backup, but while the a-vector backup propagates the gradient of
the value function approximation as well as the value, the Bellman backup propagates
only the value. The a-vector backup propagates this gradient and value so that it can
obtain a global approximation over the entire belief rather than a local approximation
at b.

Algorithm 3 a-Vector Backup at a Node b.
Backur(Tg, T, b)
1: YVa € A Vo€ O, a,, < argmaxger o - U
2: Va€ A Vs €S, ag(s) < R(5,a) + 7D co Dowes 2(5,a,0)T (s, a, 8 )go(s')
3: o +—argmax, oy - b
3: Insert o into I

When SAMPLE and BACKUP are invoked, new sampled points and a-vectors are
generated. However, not all of the a-vectors may be useful for constructing an optimal
policy and so those a-vectors that are dominated by other a-vectors are pruned to
improve computational efficiency.

SARSOP is an anytime approach that returns the best policy given a pre-specified
amount of time. Because the algorithm gradually reduces the gap ® between the lower
and upper bound on the value function at by, it can either use a target gap size or time
limit as its termination condition.

41



2.5.2 Sampling

When sampling new belief points (see Algorithm 4), a target gap size ® between the
lower and upper bound is set at the root by of tree Tr. SARSOP traverses down a
single path of Tk by selecting at each node the action a with the highest upper bound
and observation o that makes the biggest contribution to decreasing the gap at the
root of Tr. However, the sampling path may be terminated under suitable conditions.
Thus, the techniques for selecting actions and observations, together with the choice of
termination conditions control the resulting sampling distribution.

Algorithm 4 Sampling.
SaMpPLE(TR, T')
1: Set L to the current lower bound on the value function at the root by of tree Tx
and set U to L + ®, where ® is the target gap size at the root.
2: SamprLePomNts(TRr, I, by, L, U, @, 1)

SampLePoiNTs(Tr, T', b, L, U, @, h)

3. if V < L and V(b) < max {U,V(b) + ®y~"}, where V is the prediction of V*(b)
then

return
else

Q + max, Q(b,a)

L' + max {L,Q}

U' < max {U,Q + ®y~"}

a' < arg max, Q(b, a)
10 o +— argmax, P(o|b,a’) [V(7(b,d,0)) — V(7(b,d’, 0))]

L' — Zses R(Sv a/)b(‘S) - Zo;«éo’ P(0|b7 a/)K(T(b, a/’ 0))

11: L
e VPfb, )
U/ - ZSGS R<S7 a/)b(8> -7 Zo;éo’ P(0|b7 CL’)V(T(b, al7 0))
12: Un <+
yP(0']b, a’)
13: b < 7(b,d,0)
14: Insert b’ into T as a child of b

15: SampLeEPoiNTs(Tr, T, b', Ly, Uy, @, h+ 1)

One criterion to stop sampling is to terminate a sampling path when it reaches a
node whose gap between the lower and upper bound is smaller than v~"®, where h is
the depth of the node in T (the height of the node in T%) [Smith and Simmons 2005.
This seems advantageous because if each leaf of Tk has a gap smaller than y~"®, then
we are guaranteed that the gap at the root will be smaller than ®. However, as the
target gap ® at the root decreases, the sampling path must traverse deeper down the

42



tree. But, the size of the set of points in R increase much faster than those in R* as the
sampling path traverses deeper down the tree. As a result, sampling beliefs near R*
becomes increasingly difficult as they are sparse in R . Therefore, we hope to achieve
a shallow sampling path while still being able to reach the target gap ® at the root of
Tr. Keeping the sampling path as shallow as possible brings about a potential dilemma
in that some nodes with high expected rewards lie deep in the tree. Thus, although
we ideally hope to keep a shallow sampling path, we must allow the sampling path to
traverse deep enough in order to reach them.

Selective Deep Sampling

SARSOP implements a technique known as selective deep sampling to ensure that nodes
with high expected rewards that may lie deep in the tree are reached [Kurniawati et al.
2008|]. Because each backup operation selects the action that maximises the expected
reward, lower bound improvements are rapidly propagated to the root of the tree when
nodes with high expected rewards are reached. This quickly provides the necessary
information to stop sampling in regions that are likely to be outside of ‘R* and also
directly improves the policy. SARSOP gives preference to lower bound improvements
and continues down a sampling path beyond a node with a gap of y™"® only if a
prediction is made that doing so will lead to lower bound improvements at the root.

Conceptually a prediction is achieved by predicting an optimal value V*(b) at a node
b and propagating the predicted value 1% upwards towards the root of T. We expand
bif vV improves the lower bound at the root and repeat the process at the next chosen
node down the sampling path. Otherwise, if the prediction shows no improvement to
the lower bound at the root, we proceed to check the target gap size ® at the root to
decide whether or not to terminate the sampling.

In order to compute V, the predicted value of the optimal value V*(b), SARSOP
uses a basic learning method which clusters collected belief points according to suitable
features and uses previously computed values of beliefs in the same cluster as b to predict
the value of b. The features used to cluster the beliefs are the initial upper bound and
the entropy of b. These features discretise the belief space into a finite number of groups
and allow us to learn which parts of the belief space are worth exploring. Any new belief
belonging to a particular group will have a predicted value equal to the average value
of the beliefs in that group. On the contrary, if a new belief forms a new group, the
initial upper bound of the new belief is used as the predicted value.

Figure 13 gives a graphical representation of how these groups of beliefs are formed
based on their initial upperbound value and entropy. Say, for example, belief D in Figure
13 is a new belief entered into group 9. Therefore, the predicted value V of belief D will
be its initial upper bound value. However, if belief C is a new belief entered into group
17, the predicted value V of belief C will then be equal to the average value between
belief A and belief B.

For increased efficiency, SARSOP does not propagate the predicted value to the root
in a literal sense, but instead passes a lower bound target level L down the sampling

43



2 fE] 4 g
11
]

initialupper bound

16 17 18 13 20

Og ]
]

entropy of b

Figure 13: Clustering of beliefs based on their initial upper bound and entropy.

path where the predicted value V is checked against L. If V fails to meet L at a node
b, the lower bound at node b will not be propagated further up towards the root of the
tree.

There is a need to compute an intermediate target level L’ for action a because the
value function information is propagated from &' to b only when the action that takes b
to b’ has a greater value than all other actions at b. An intermediate target level L’ for
action a is calculated and set to be the maximum over L and the values of all actions
at node b (see line 6 and 7 of Algorithm 4). The lower bound on the value of action a
is computed using

Q(b,a) = R(s,a)b(s) +~ > _ Plolb,a)V (V) (49)

ses 0e0

while the target level for b’ is the value required for Q(b, a) to achieve its target L’ (see
line 11 of Algorithm 4). In order for the algorithm to protect itself against misleading
predictions that are caused by unnecessarily deep sampling paths, SARSOP continues
down a sampling path until the gap between the upper and lower bounds is ky~"® for
some k < 1.

Gap Termination Criterion

As we’ve mentioned, it is insufficient for SARSOP to require a gap size v~ "® for all
leaves of Tr. However, we can observe that it is sufficient to ensure that the condition
is satisfied somewhere along all the paths from the root to the leaves, instead of at the
leaves themselves. This allows the algorithm to terminate a sampling path as early as
possible. This not only leverages information globally, but also improves computational
efficiency.

To ensure that the condition is satisfied somewhere along the paths from root to
leaves, SARSOP also passes an upper bound target level U down the sampling path.
For a node b at depth h, a sampling path may be terminated if its upper bound is lower
than V (b) + v "® or the upper bound target level U passed down from the parent of b

44



(see line 3 of Algorithm 4). This has the same effect as requiring all leaves to have a
gap of no more than v~"® and will therefore ensure that the target gap size of ® at the
root by is achieved. The upper bound target level U is passed down a sampling path in
a similar fashion to that of the lower bound target level L as seen in lines 8§ and 12 of
Algorithm 4.

The combination of deep sampling and gap termination criterion produce an effective
sampling scheme that travels deep into Ty if needed, giving a better approximation
towards R* and avoiding unnecessary samples in R\R*.

2.5.3 Pruning

Some existing point-based algorithms prune a-vectors from the set I' of a-vectors if a
vector is dominated by others over the entire belief space B [Pineau et al. 2003]|[Smith
and Simmons 2004|[Spaan and Vlassis 2004||Smith and Simmons 2005|Hsu et al. 2008|.
However, the idea of an optimally reachable belief space suggests an alternative and
more aggressive pruning method. This is achieved by pruning a-vectors that are dom-
inated by others over R*, instead of B.

Because R* is not known in advance, SARSOP requires a basis on which to compute
its value function approximation. Therefore, by considering the set B of all sampled
belief points, it is able to overcome this difficulty by using the tree T as an approx-
imation of R*. Tt improves this approximation and ensures that the size of B is kept
small by pruning away the points in B that are provably suboptimal and do not lie in
R*. If Q(b,a1) < Q(b, ay) for a node b in Tk and two actions a; and as, all the sampled
points collected from the subtree formed by taking action a; at b are pruned because an
optimal policy would never take that action at b and traverse the subtree beneath it.
Although there may be other paths in Tk that could possibly lead to those pruned belief
points under some optimal policy, the advantages of keeping the size of B small usually
outweigh the loss in approximation quality brought about by over-pruning. However,
these belief points can be recovered with time from other paths in T%.

The pruning of belief points in turn enables a more aggressive a-vector pruning
strategy. The SARSOP algorithm prunes an a-vector if it is dominated by others over
B using an idea called d-dominance [Kurniawati et al. 2008|. ¢-Dominance imposes
a requirement for dominance over a d-neighbourhood (see Figure 14). Thus, when
considering two a-vectors, a;; and s, p dominates s at a belief point b if oy -0 > -V
at every belief point ' whose distance to b is less than §, where § is some fixed constant.
0-Dominance can be checked very quickly by calculating the distance d from b to the
intersection of the hyperplanes represented by a; and «s and ensuring that d > 6.
Figure 14 illustrates d-dominance at a belief b. As a result of §-dominance, we can
observe that a3 dominates aw, but not «; in the d-neighbourhood of b.

The simple dominance condition, which states that for two a-vectors, a; and s,
a1 dominates «g at a belief point b if ay - b > ay - b, is not used because the set B
is a finitely sampled approximation of R* and so a computed policy might choose an
action that causes the algorithm to slightly veer away from R*. This could potentially

45



V(b)

Figure 14: 9-Dominance.

occur as a result of SARSOP computing an approximately optimal policy over B only.
If the algorithm veers away from R*, then it may end up in a region which causes it to
generate poor approximations of the value function.

In general, computing the optimal policy for a POMDP model is computationally
intractable. Approaches to dealing with this include computing an approximately op-
timal value function and extracting the policy from this approximation |Pineau et al.
2003][Smith and Simmons 2004|[Kurniawati et al. 2008], as SARSOP does, or to de-
velop algorithms that can exploit problem characteristics [Littman et al. 1995][Parr
and Russell 1995][Zhang and Liu 1997|. Although POMDP planning algorithms have
become more scalable and efficient over the years, using such methods in real-world
domains can still be challenging [Smith 2005][Guy et al. 2013]. As a result, we leverage
the transfer of knowledge from previous tasks to improve the learning rates and expen-
siveness of solving POMDP tasks. In order to achieve this, we consider action priors,
which we discuss further in the following section (Section 2.6).

2.6 Action Priors

Choosing the best action to take in situations where agents have an array of actions can
be a difficult task. However, the selection of actions may be guided by action priors as
they provide information about the usefulness of actions under particular circumstances.
Their purpose is to provide knowledge and give an intuition over the actions that
make sense in particular scenarios. This knowledge is established by considering the
statistics of action choices over the lifetime of an agent [Rosman and Ramamoorthy
2012][Rosman and Ramamoorthy 2015]. By considering MDPs and the reinforcement
learning paradigm, we observe two methods for learning action prior knowledge. These
are namely, state-based action priors and perception-based action priors.

Consider a domain defined by D = (5, A,T,v) where the state set S, action set
A and transition function 7T is fixed for the entire domain. We define a task to be

46



M = (D, R), aset of tasks to be M = { M} and the set of optimal policies corresponding
to those tasks as II = {m},}. Note that the tasks in M vary only with the reward
function. The goal is to discover a distribution over the action set for each state. This
distribution is Dirichlet and is the probability of each action being used in a particular
state by an optimal policy for any task in that domain. We say that an action a; € A
is more useful than action ay € A in a state s, if a; is used by more optimal policies in
s [Rosman and Ramamoorthy 2012].

2.6.1 State-based Action Priors

For each state, a count as(a) Ya € A, representing the number of times an action is used
by an optimal policy in that state, is maintained for each action. If a(a;) = as(az)
for some state, then a; and ay are equally favourable in that state. The initial value
associated with this count is denoted as a?(a) and can be initialised to any value so as
to portray prior knowledge. The a; counts are updated using

(50)

ae0(0) {as(a) +1 if a = argmax, Q™" (s, a)

® as(a) otherwise

where Q" (s, a) is a new Q-function obtained from solving a new task |[Rosman and
Ramamoorthy 2012]. In this way, as(a) tells us how many times action a was considered
the best action to take (i.e. the action that lead to the highest return) in state s in any
Q-function.

The state-based action priors 64(a) are a state dependent probability distribution
over the action set of an agent and are acquired by sampling from the Dirichlet distri-
bution: €,(a) ~ Dir(ay). A Dirichlet distribution is a multivariate generalization of the
beta distribution and is a conjugate prior of the categorical distribution and multinomial
distribution |Galleguillos and Belongie 2010]. Since 6(a) is sampled as a probability
distribution over the action set A, this means ) _6,(a) =1, Vs € S. This procedure of
obtaining 65(a) from Dir(c;) can be seen as a form of averaging Q-functions. However,
it is not to be mistaken with naive averaging as this can cause problems often resulting
in detrimental results.

Take for example an agent having to navigate to its goal, but is faced with a wall
obstacle in front of its current state s. One Q-function could suggest that the agent
should take the action that results in the agent moving around the wall to the right,
while another Q-function could suggest that the agent should take action that results in
the agent moving around the wall to the left. However, taking the average of these two
Q-functions suggests that the agent should move forward into the wall. Thus, instead
of using naive averaging, we infer that moving around the wall obstacle to the right
and to the left are both feasible actions to choose, whereas moving forward is never
considered to be the correct action to take. As a result, the action priors should put
more weight on the actions that allow the agent to move around the wall than moving
into it, reflecting the preferences elicited from the two Q-functions. The action priors
learn this from experience by solving multiple tasks.

47



Action priors are particularly useful for providing an agent with knowledge (learned
from experience) about which actions make sense in circumstances where the agent has
an array of actions to choose from. Therefore, their use can be beneficial in seeding
search in a policy learning process. Algorithm 5, known as e-greedy Q-learning with
State-based Action Priors (e-QSAP), presents an algorithm that illustrates how these
state-based action priors can be used with Q-learning |[Rosman and Ramamoorthy
2012]. We note that when we have a uniform action prior, e-QSAP is equivalent to the
Q-learning baseline. In Algorithm 5, a? € [0, 1] denotes the learning rate and € € [0, 1]
denotes the parameter that controls the trade off between exploration and exploitation.
Note that the learning rate a® should not be confused with the o, counts ay(a). As
Algorithm 5 iterates, both a® and ¢ are annealed after each episode.

The action selection step (Algorithm 5 line 5) consists of two cases and differentiates
e-QSAP from traditional Q-learning. The first case deals with exploiting the current
policy stored in Q(s,a) with probability 1 — e and the second case deals with exploring
other actions a € A with probability €. In Q-learning, actions are typically chosen uni-
formly from the set of actions A during exploration. However, e-QSAP chooses actions
with probability based on the action prior 6(a) so as to base action selections during
exploration on what were sensible action choices in previously solved tasks. Construct-
ing the algorithm in this manner allows the agent to exploit its current estimate of
the optimal policy with high probability and explores each action proportional to the
number of times that action was considered to be a sensible choice in previous tasks.

Algorithm 5 e-greedy Q-learning with State-based Action Priors (e-QSAP).
Require: action prior 6,(a)
Initialise Q(s,a) arbitrarily
for every episode k=1... K do
Choose initial state s
repeat

argmax, Q(s,a) w.p.1—¢
ac A w.p. €65(a)
6: Take action a, observe r, s’
7: Q(s,a) < Q(s,a) + a®[r(s,a,s') + ymaxy Q(s',a') — Q(s, a)]
8:
9

(28

a <—

s s
until s is terminal
10: end for
11: return Q(s,a)

2.6.2 Perception-based Action Priors

Because there is a loss of generality with the use of state-based action priors in the
sense that the re-use of this prior knowledge is state specific, an alternative approach is
therefore required to generalise their use. This gives rise to the idea of perception-based

48



action priors. Primarily, there are two reasons to use perception-based action priors
over those that are state-based. Firstly, by using perception-based action priors the
domain need not be fixed and secondly, more data can be collected in cases where some
states appear to be similar. So, in an effort to generalise action prior usage, we associate
them with the perceptual information at a state rather than the state itself. Defining
an observation space to be O, we model perception-based action priors as 6,(a), Vo € O
where observations are a function of a state, i.e. 0 = o(s), and depend on the agent’s
sensory features.

Similarly to the state-based case, we have a, counts. However they differ only in
that they are observation dependent rather than depending on a particular state. These
a, counts are updated using

05 a) + {%(s)(@ e e ) 651)
Qo(s)(a) otherwise

where Q™" (s, a) is a new Q-function obtained from solving a new task [Rosman and
Ramamoorthy 2012]. In this way, the rate at which learning occurs will increase because
the action priors from multiple states will map to the same perception-based action
priors. This is the result when the same observation is observed at different states and
the increase in learning speeds is largely due to the fact that action prior information is
updated better as more data is obtained for a particular observation during a training
episode.

The perception-based action priors 6,(a) are a context dependent probability distri-
bution over the action set of an agent and are acquired by sampling from the Dirichlet
distribution: 6,(a) ~ Dir(ay(s)). Since 0,(a) is sampled as a probability distribution
over the action set A, this means ) 6,(a) =1, Vo € O.

Similarly to state-based action priors, the perception-based priors can be used with
an adaptation of traditional Q-learning [Sutton and Barto 1998]. Algorithm 6, known
as e-greedy Q-learning with Perception-based Action Priors (e-QPAP), presents an
algorithm that illustrates how these perception-based action priors can be used with
Q-learning [Rosman and Ramamoorthy 2012|. The difference between e-QSAP and
e-QPAP is that with e-QPAP, the perceptual action priors 6,(a) are used instead of
the state action priors 0s(a). Line 5 of Algorithm 6 refers to acquiring perceptual
information from the current state s. Note that the state information is global and
unique, but the observations can seen to repeat throughout the domain. The perceptual
action priors allow us to use different state spaces S and transition functions 1" to those
used in the training process, as long as the observation space O remains consistent.

Although the actions are defined over the observation space, learning still occurs
over the state space. In fact, because the action priors are defined over the observation
space, they do not require the domain to be fully observable. Therefore, because only
the perceptual information available to the agent is used, perception-based action priors
can be applied to partially observable domains. As a result we can use action priors
with the SARSOP algorithm presented in Section 2.5. In Section 3.3, we present three

49



variants of the SARSOP algorithm that use action priors which we believe will accelerate
the learning of tasks in a POMDP context.

Algorithm 6 e-greedy Q-learning with Perception-based Action Priors (e-QPAP).
Require: action prior 6,(a)

1: Initialise Q(s,a) arbitrarily

2: for every episode k =1... K do

3: Choose initial state s
4: repeat
5: 0 < observations(s)

argmax, Q(s,a) w.p.1—¢
a€ A w.p. e6,(a)
Take action a, observe r, s’
Q(s,a) < Q(s,a) + a?[r(s,a,s') + ymaxy Q(s',a') — Q(s, a)]
9: s+ &
10: until s is terminal
11: end for
12: return Q(s,a)

6:

2.7 Conclusion

This chapter provides background on all the relevant material required to not only un-
derstand the research topic at hand, but also to give an idea of how we plan to tackle
the research problem. It begins with a discussion of the details of Markov Decision
Processes (MDPs). We introduce the framework of MDPs and the reinforcement learn-
ing paradigm as they are the building blocks of the concepts that are presented in this
thesis. Reinforcement learning is the basis of what it means to compute an optimal
policy in an MDP or POMDP and is presented to give an understanding of how action
priors may be learned in a MDP setting.

Action priors are learned from experience and allow an agent to determine the
actions that are sensible in situations. Although we illustrate an alternative approach
for learning action priors in the POMDP setting later (see Section 3.3.1), it is essential
for us to provide a description of how these are formulated using reinforcement learning
as the priors learned from this approach will also be used in our experiments.

Following MDPs, we present a description of the Partially Observable Markov De-
cision Process (POMDP) framework. POMDPs are a powerful framework for planning
under uncertainty, however their main disadvantage is their high computational com-
plexity. As a result, many researchers have disregarded exact POMDP solvers for
solving real robot tasks.

Considering a more suitable approach for solving real robot task, we discuss point-
based POMDP algorithms. These algorithms are capable of solving large POMDP
problems by computing an approximate solution and have been applied to several com-

20



plex robotics tasks including localisation, grasping, navigation, target tracking and
exploration. These algorithms have made impressive progress in the field and in some
cases, have allowed POMDP problems with hundreds of states to be solved. However,
although POMDP planning algorithms have become more scalable and efficient over
the years, using such methods in real-world domains can still be challenging.

Pushing further in this direction, we discuss the SARSOP algorithm, an algorithm
belonging to the class of point-based POMDP approaches. By focusing on optimally
reachable belief spaces, it is able to greatly improve computational efficiency which in
turn accelerates computing speeds. SARSOP is an anytime algorithm meaning that
the algorithm an be stopped at any time and will always return a solution. However,
the quality of the solution improves as more computation time is given to SARSOP.
SARSOP computes a good solution much faster than exact POMDP solvers.

However, SARSOP heuristically grows its belief set as it iterates and is difficult
to know whether one should not expect any further improvements with regards to its
approximation of the optimal value function. The issue is that SARSOP could suddenly
discover a new reachable belief with a high expected reward which would then radically
change the value function approximation. Because SARSOP maintains both an upper
bound and lower bound on the optimal value function, it can stop computations once
the bounds converge to within a given gap size of each other. The concern is that for
larger domains, the gap size between the upper and lower bound closes very gradually
and remains considerable even after the lower bounds seems to have converged [Poupart
et al. 2011]. As a result, we leverage the transfer of knowledge from previous tasks,
in the form of action priors, to improve the learning rates and expensiveness of solving
POMDP tasks with SARSOP.

The SARSOP algorithm is the focus of our study and it is through this algorithm
that we hope to show the advantages of the use of action priors. Appropriately so, we
then conceptualise the idea of action priors and present the methods of how they can
be learned. However, this chapter only illustrates how they can be learned in the MDP
case. The methods we use to learn action priors in a POMDP setting can be seen in
Section 3.3.1.

o1



Chapter 3

3 Research Method

3.1 Introduction

In conducting this research, we hope to serve two primary functions in the context of
reasoning under perceptual uncertainty. The first is to extend previous work on action
priors by incorporating them into the machinery of a POMDP solver to demonstrate
their benefits in a setting where an agent is unable to directly determine the state of
the world in which it lies. Secondly, we aim to improve the performance of a POMDP
solver (SARSOP) by drawing on the idea of action regularity. Therefore, this chapter
is concerned with the methods and techniques of how we aim to achieve these goals.

We begin by discussing the motivation behind this work in Section 3.2. In the
same section, we then present our research hypothesis along with the details that led
to our hypothesis. Following our research motivation and hypothesis, Section 3.3 gives
an overview of how we plan to tackle the proposed research and plan to validate the
accuracy of our presented hypothesis.

3.2 Research Motivation and Hypothesis

Autonomous robots that navigate in real and complex environments are overwhelmed
with contingencies and are rarely, if ever, able to access the true state of the world or sys-
tem [Lankenau and Meyer 1999||Thorpe and Durrant-Whyte 2001|[Verma 2005|[Kelly
et al. 2006]. This causes the robot to become uncertain about its system state. As a
result, this uncertainty creates ambiguity in the robot’s self-perceived state during the
execution of a task.

It is due to this uncertainty that a robot would consider a spot of mud on one
of its sensors for an obstacle in the environment in which it is required to navigate.
Consequently, its misinterpretation can lead it to make inappropriate decisions such as
trying to avoid the obstacle when really such an obstacle does not exist.

Take subterranean spaces such as mines, tunnels, caves and sewers for example. In
these environments, a robot may for example have its sensing capabilities impaired due
to poor lighting or the presence of dust and/or smoke. Therefore, a major concern
for autonomous robots is how to handle situations that are unknown or unanticipated.
This phenomenon is known as operational uncertainty and can cause unsafe or risky
behaviour.

There are two major causes from which uncertainty in terms of system operation
may originate. These two sources are namely, the understanding and representation

22



of the robot’s own state and state of the external world, and the limitation of system
resources and hence on the representation of the world [Raol and Gopal 2012]. Because
the sensors of an agent cannot perceive all the parameters of the external world in
which it lies to the highest degree of reliability and because uncertainty may arise as
a result of insufficient understandable interpretation of the sensory data it receives,
these factors can cause the agent to be uncertain about its current state of the world
or system. Thus, from a robot’s perspective the uncertainty that we are imperatively
required to manage is the uncertainty over the current state of the world and system.

POMDPs provide a principled mathematical framework for planning in uncertain
and dynamic environments [Sondik, 1971|[Kaelbling, 1998|[Png, 2011]. However, in a
POMDP, calculating the optimal policy is not easy. This is largely due to fact that
POMDPs are characterised with the curse of dimensionality and curse of history (see
Section 2.3.3). Although a number of algorithms have been developed over the years
that successfully produce optimal policy solutions in a POMDP context, the downside
is that these techniques are too complex and computationally inefficient [Papadimitriou
and Tsitsiklis 1987].

Exact POMDP solvers are computationally intractable when they are implemented
for solving tasks in real environments. This is because some tasks can contain up to
or even more than 10° states which can cause their computational complexity to be
expensive.

The SARSOP algorithm is an approximate POMDP algorithm that improves com-
putational efficiency and is practical for many applications in robotics [Kurniawati et
al. 2008]. SARSOP exploits the idea of optimally reachable beliefs to bring about these
computational improvements [Kurniawati et al. 2008]. SARSOP does a great job for
reasoning under uncertainty, but it quickly becomes intractable as the number of ac-
tions grows because the performance of the algorithm primarily depends on the number
of available actions and the number of a-vectors that define the value function. Because
the complexity of planning with robots that solve decision problems under uncertainty
is compounded as the number of actions available to the agent grows, we look at action
priors as a way of controlling this growth.

Action prior knowledge has the ability to improve the performance of learning tasks
as they are able to specify action usefulness and guide exploration towards behaviours
that have been useful in previously solved tasks. When a robot is faced with a very dif-
ficult task, the sensible thing to do would be to allow it to reuse behavioural knowledge
acquired from previously solved tasks, rather than allowing it solve the task without
any idea over which of its actions are more suitable for particular situations. Allowing
it to reuse behavioural knowledge would essentially reduce the amount of time required
for it to learn.

Deciding which actions are useful in a situation can be determined by using past
experiences of optimal behaviours from multiple previously solved tasks [Rosman and
Ramamoorthy 2012]. Because there is some underlying structure common to all these
learned tasks as they exist in the same or similar environment, it is this structure we
hope to take advantage of to facilitate faster learning. Hence, we are concerned with

33



allowing agents to be able to learn domain invariances which act as a common sense
knowledge of the domain in which it operates. By forming better abstractions of the
domain and in turn learning domain invariances that provide insights to elements that
are common to a large class of behaviours, this knowledge can offer an understanding
in learning which behaviours should be avoided in particular situations.

Consider some learning agent, such as a robot, operating in a maze like-tunnel for a
prolonged period of time. In this setting, it may be required to learn to perform various
tasks such as, having to navigate from one end of the tunnel to another or from one part
of the tunnel to another. In order to accelerate this learning via knowledge transfer,
it is clear that the agent would need to be capable of reusing knowledge from other
experienced tasks when faced with a new task. However, a key challenge here is how to
manage this acquired experience so as to form a mechanism of generalisation, organising
it in a manner in which the robot’s past behaviours are not specific to previously learned
tasks. Because there is some underlying structure common to all these learned tasks as
they exist in the same environment, it is this structure we hope to take advantage of
to facilitate faster learning.

This research aims to address the problem of operating under uncertainty and keep-
ing this computationally efficient through the use of action priors. Because reliable
performance is key to the operational success of a robot, we want to show how action
priors can accelerate the learning of policies so that an agent experiencing uncertainty
can solve tasks more quickly.

As a solution to a robot having to operate under uncertainty, SARSOP alleviates
this issue and may be implemented to help a robot choose actions appropriately. Be-
cause we know that action priors are a product of experience and give prior knowledge
over the usefulness of actions, we hypothesise that using action priors on a mobile au-
tonomous robot, coupled with the underlying implemented algorithm (SARSOP), will
yield greater performance benefits with respect to solving tasks more rapidly. Conse-
quently, our hypothesis is as follows:

e An agent can solve repeated (or multiple) navigation tasks in a setting where it
is uncertain about the current state of the world or system faster through the
acquisition and use of local domain specific behaviour models. We hypothesise
that action priors can be advantageous in a POMDP context (SARSOP) and
their use can lead to the computation of good policies in a shorter period of
time. In other words, we suggest that an agent acting in a setting where it is
uncertain about the current state of the world or system can benefit through the
use of having a prior knowledge over actions indicating the preference of the agent
in taking particular actions in certain situations. As a result, using an agent’s
experience of past behaviours can lead to convergence speed improvements.

To help validate our research hypothesis we have formulated six research questions.
These are:

1. Can action priors learned from previously solved tasks accelerate the learning of
new tasks?

o4



2. Can action prior knowledge learned in one domain be used to accelerate the
learning of new tasks in a different domain?

3. Can action priors guide the exploration process in POMDPs away from risky or
unsafe behaviours?

4. Does an improved sensing capability improve an agent’s ability to leverage action
prior knowledge in learning to solve new tasks?

5. Is there a trade-off between the generality of the observations and the usefulness
of the perception-based action priors?

6. Can action priors improve the convergence speeds of POMDP algorithms?

However, the primary over-arching question we address in this thesis is thus can the
reuse of behavioural knowledge learned from previously solved tasks accelerate the learn-
ing of new tasks?

In Section 3.3 we propose a method that takes into account the statistics of action
choices over a lifetime of an agent, in an effort to allow an agent to be able to quickly
cut down options when deciding which actions to select, in a manner which may not
have been obvious if each task was solved in isolation. In Section 3.3.1 we present the
methods of how we learn action priors, while in Section 3.3.2 we show how action priors
can be incorporated into the SARSOP algorithm with the goal of showing how an agent
can reuse behavioural knowledge learned from previously solved tasks to accelerate the
learning of new tasks.

3.3 Overview of the Research Method

By considering perception-based action priors, an agent is equipped with a mechanism
that allows it to be able to perform fast look-ups from any known or unknown location,
to determine its preference in choosing actions and can therefore help in controlling
the computational explosion of reasoning through chains of actions. Consequently, the
information gathered from these priors has the effect of greatly increasing the speed of
solving new tasks [Rosman and Ramamoorthy 2012][Rosman and Ramamoorthy 2015].
As a result of their ability to address the limitation of SARSOP in handling situations
with a high branching factor (large number of actions) and speed up the learning of
new tasks, we incorporate the use of perception-based action priors into the SARSOP
algorithm to accelerate SARSOPs learning process.

We present three approaches to learning with action priors in a POMDP context,
called SARSOP with Action Priors for Sampling, SARSOP with Action Priors for
Pruning and SARSOP with Action Priors for Simulations. During sampling, action
priors will be used to guide the search process towards solutions that are most likely to
be useful. Hence, they are used to help make action selections so as to bias and efficiently
constrain the search for good actions. With regards to pruning, action priors will be
used to prune away certain actions using the past experience of optimal behaviours

35



from many different tasks. During simulations, the action priors will be used to guide
the action selection process because in early stages of the learning process, SARSOP
can be seen to make bad choices in choosing actions as the learning time has not been
sufficient in allowing it to learn the best actions to take in certain situations. By
considering the statistics of action choices over an agent’s lifetime, the agent will be
able to prune less useful actions which will be beneficial to SARSOP’s complexity as
the computational cost of each iteration depends on the number of available actions.
Essentially, this corresponds to pruning away a-vectors based on what were sensible
action choices in the past. This is ideal because the set of a-vectors grows exponentially
with every algorithm iteration and so keeping this set smaller in size can improve the
computational cost of each iteration.

With our evaluation techniques (see Section 3.3.4), we aim to characterise the per-
formance of learning to solve tasks with and without action priors. Our goal is to
comparatively illustrate the benefits of learning with action priors to prune certain ac-
tions or provide preference in selecting actions as reasoning over a wide branching factor
of different action sequences can be very computationally demanding. We are interested
in understanding which of these approaches is more rewarding than the others, while
also evaluating which of these ideas is more computationally efficient.

This section describes how we conducted the evaluation of the performance of the
algorithms we have set out to consider. These algorithms are namely, SARSOP, SAR-
SOP with Action Priors for Sampling, SARSOP with Action Priors for Pruning and
SARSOP with Action Priors for Simulations. In Section 3.3.1, we first review the two
algorithmic methods for acquiring perception-based action priors, which we will refer
to as MDP Action Priors and POMDP Action Priors. Second, we present the three
SARSOP approaches for learning with action priors in Section 3.3.2. Section 3.3.3
then discusses the design of the experiments, and lastly, in Section 3.3.4, we outline

the performance measure used to compare the various algorithms presented in Section
3.3.2.

3.3.1 Learning Action Priors

In this section, we present the algorithms we will use to obtain context dependent
prior knowledge over an agent’s actions. These action priors are conditioned on the
observations of the agent. We consider the MDP as well as the POMDP case for the
learning of action priors. The approaches to how an agent will learn this prior knowledge
over actions will vary depending on the paradigm that is being considered.

Learning Action Priors for Markov Decision Processes

When an agent learns action priors in a MDP, we refer to these priors as MDP Action
Priors. In order to learn these, an agent is required to solve various tasks in an envi-
ronment with fully observable state information. By solving multiple tasks in the same
domain and studying the optimal policies that arise from those tasks, we hope to learn

26



about the structure of the underlying domain. In other words, we use the set of optimal
Q-functions to extract the action priors as a form of structural information about the
domain (see Section 2.6.2).

Consider a learning agent operating in a domain D = (S, A, T, ) that is required to
perform multiple tasks in this domain. We define a task by the tuple M = (D, R) as the
MDP where the state set, action set, observation set, transition function and observation
function are fixed for the entire domain. Considering the set of tasks M = {M} the
agent is required to perform and the set of optimal policies [[ = {mp} corresponding to
those tasks in M, learning the action prior involves learning a distribution 8(a) over
the action set for each observation o € O .

The prior 2(a) represents the action prior learned in a MDP context and is a bias
over the action set of the agent. The prior §(a) gives the probability of each action
a € A being used by an optimal policy when observation o is observed, averaged over
tasks. We assume here that different tasks differ only in the reward function and 6(a)
symbolises the preference of the agent in taking some action given an observation.

Consider two actions, a; and as. We say action aq is more useful than action as when
observation o is observed, if 6(a;) > 0 (ay) . This implies that a; is used by more
optimal policies than as; when the observation is 0. As a result, this information can
provide the agent with knowledge about which actions are useful in situations (which
are differentiated by its observation) where the agent has several choices to explore.
This is particularly useful for seeding search in a policy learning process. Thus, Action
priors can help the agent avoid harmful actions during the execution of task.

To learn the action priors, we allow an agent to solve a set of tasks and use the
computed Q-functions Q(s,a) of those tasks to acquire knowledge of the structural
information of the domain. Note that Q(s,a) is computed using Q-learning. The
approach we use to learn the action priors from a set of tasks in a MDP context is
shown in Algorithm 7.

In order to model the action priors 62 (a), for each observation o, we maintain a
count o™ (a) for each action. The count o’ (a) represents the a, counts obtained in
a MDP context. The «, counts can be initialised to any value so as to portray some
prior knowledge. However, after a new Q-function Q(s,a) for some task is learned,
the a, counts are updated according to Q(s,a) (see Algorithm 7 line 15). In this
way, a(a) tells us how many times action a was considered the best action to take
(i.e. the action that lead to the highest return) when observation o was observed in
any Q-function. Essentially, o’ (a) corresponds to the number of times action a was
considered the optimal action when the agent’s observation was o. Note that the learning
rate a? € [0, 1] in Algorithm 7 should not be confused with the a, counts a(a).

The action priors #(a) are modeled using a Dirichlet distribution. We obtain 6!(a)
by sampling from the Dirichlet distribution 62(a) ~ Dir(aM) where > 0M(a) =
1,Yo € O. If aM(a) is equivalent for each action given an agent’s observation i.e.
aM(a) = ¢,Va € A, the resulting prior #(a) can be seen to be uniform, implying that
each action is equally favourable given that observation.

One of the strengths of learning MDP action priors, using the method presented

a7



in Algorithm 7, is that when a new Q-functions is learned and used to update !,
more than one action could be used to update o™ for a given observation. This is
because the Q-function can have other actions which have a value equal to that of
the optimal action at a given state and will consider all these actions when updating
oM. This has the effect of learning a prior that can generalise well to new tasks.
However, learning action priors using Q-functions can be time consuming as each new
Q-function can take a considerable amount of time to converge. This is because during
the learning process, Q-learning explores actions uniformly and converges only when
every state in the domain is visited sufficiently often and Q(s, a) value updates between
trials are small. Exploration functions ensure that unfamiliar state-action pairs are
recognised and are a fix for situations where one part of the state space has been
sufficiently explored and other parts have not [Klein and Abbeel 2013]. However, we
do not consider exploration functions in this thesis.

Algorithm 7 uses e-greedy Q-learning as the underlying algorithm and is designed
to output a distribution §(a) over the action set, representing the probability of each
action being used by an optimal policy relative to a particular observation. In Section
3.3.2 we give a discussion of how the learned priors §(a) can be used in practice and
present an algorithm that achieves this (see Algorithm 9, 10, 11).

Algorithm 7 Learning Perception-based Action Priors in a MDP.
M

1. Initialise o)"(a) arbitrarily

2: Initialise Q(s, a) arbitrarily

3: for every taskt=1...n do

4: for every episode k =1... K do

5: Choose initial state s

6: repeat

7: Randomly choose action a

8: Take action a, observe r, s’

9: Q(s,a) < Q(s,a) + a?[r(s,a,s') + ymaxy Q(s',a') — Q(s, a)]

10: s+ ¢

11: until s is terminal

12: end for

13: for every state s = s1...s, do

14: 0 < observations(s)

5. oM(a) ai(a) +1 ifa= %rg max, (s, a)
ar(a) otherwise

16: end for

17: end for

18: 0M(a) ~ Dir(aM)

19: return 6 (a)

28



Learning Action Priors for Partially Observable Markov Decision Processes

Contrary to learning action priors in the MDP paradigm, we also present an approach
to learning action priors in an environment with partially observable state informa-
tion. Learning these priors involves solving multiple POMDP tasks. We refer to these
as POMDP Action Priors. We learn these by computing approximately optimal value
functions for various tasks using SARSOP and then use those value functions in simula-
tions to track the actions that are considered to be useful. This complies with studying
the optimal policies that arise from solving tasks in order to acquire prior knowledge
over actions.

Consider a learning agent operating in a domain D = (S, A, O,T,Z,~) that is
required to perform multiple tasks in this domain. We define a task by the tuple
P = (D, R) as the POMDP where the state set, action set, observation set, transition
function and observation function are fixed for the entire domain. Considering the set
of tasks P = {P} the agent is required to perform and the set of approximately optimal
policies [[ = {mp} corresponding to those tasks in P, learning the action prior involves
learning a distribution 67 (a) over the action set for each observation o € O .

The prior 67'(a) represents the action prior learned in a POMDP context and is
a bias over the action set of the agent. The prior 67 (a) gives the probability of each
action a € A being used by an approximately optimal policy when observation o is
observed, averaged over tasks. We assume here that different tasks differ only in the
reward function and 67 (a) symbolises the preference of the agent in taking some action
given an observation.

Consider two actions, a; and as. We say action a; is more useful than action as
when observation o is observed, if 6”(a;) > 67 (ay) . This implies that a; is used by
more approximately optimal policies than as when the observation is o. Similarly to
the MDP case, this information can provide the agent with knowledge about which
actions are useful in situations (which are differentiated by its observation) where the
agent has several choices to explore. This is particularly useful for seeding search in a
policy learning process. Thus, the use of action priors can help the agent avoid harmful
actions during the execution of a task.

To learn the action priors, we allow an agent to solve a set of tasks and use the
computed approximately optimal value functions V'(b) of those tasks to acquire knowl-
edge of the structural information of the domain. Note that to compute V() in this
thesis, we use the SARSOP algorithm. However, the ideas presented in this thesis are
not specific to SARSOP. Our approach to learning the action priors from a set of tasks
is shown in Algorithm 8.

In order to model the action priors 67 (a), for each observation o, we maintain a
count o’ (a) for each action. The count o’ '(a) represents the «, counts obtained in
a POMDP context. As in the MDP case, the «, counts can be initialised to any
value so as to portray some prior knowledge. However, after an approximately optimal
value function V(b) for some task is learned, the «, counts are updated according to
V(b) during the simulation of that task (see Algorithm 8 lines 9). Essentially, o’ (a)

o

29



corresponds to the number of times action a was considered the optimal action when
the agent’s observation was o.

The action priors 67 (a) are modeled using a Dirichlet distribution. We obtain
67 (a) by sampling from the Dirichlet distribution 67’ (a) ~ Dir(al’) where > 67 (a) =
1,Yo € O. If af(a) is equivalent for each action given an agent’s observation i.e.
al(a) = ¢,Va € A, the resulting prior 67 (a) can be seen to be uniform, implying that
each action is equally favourable given that observation.

The difference between learning the POMDP action priors 67’ (a) and MDP action
priors #(a) is that when we learn 67 (a) a POMDP framework is used and when we
learn 6(a) an MDP framework is used. This means learning 67 (a) occurs over the
belief space B, while learning 6 (a) occurs over the state space S. The effect is that
when we update the a, counts, we use an approximately optimal value function V' (b)
computed by SARSOP in the POMDP context and use a computed optimal Q-function
Q)(s,a) in the MDP context. These differences can be seen by referring to Algorithm
8 line 9 and Algorithm 7 line 15. In both instances, we have assumed that the world,
which is potentially infinite in states and infinite in beliefs, is composed of a finite
number of observational patterns.

An advantage of learning POMDP action priors, using the method presented in
Algorithm 8, is that once an approximately optimal value function is computed, a large
number of updates to o/ can be made with the value function from one task. This
is because we use a simulation step (Algorithm 8 line 4-16) to update o’ and a large
number of simulations can be used. The number of simulations chosen to be used is
up to the user, but we note that if more simulations are used, more knowledge can
be obtained producing a more informative action prior. As a result, the amount of
knowledge that can be obtained from one task is far greater than that of the method of
learning MDP action priors using Q(s, a) (see Algorithm 7). However, the disadvantage
is that only one action can be considered when updating o for a given observation.
This is a result of SARSOP’s d-dominance pruning technique (see Section 2.5.3) as it
only considers one a-vector to be optimal at a given belief. Therefore only one action
will be considered when updating o’ for a given observation each time an update is
made.

Algorithm 8 uses SARSOP as the underlying algorithm and is designed to output
a distribution 67 (a) over the action set, representing the probability of each action
being used by an approximately optimal policy. We omit the details of the SARSOP
algorithm in Algorithm 8. However, we encourage the reader to refer to Section 2.5 for
the workings and background of this algorithm if required. In Section 3.3.2, we give
a discussion of how the learned priors 67 (a) can be used in practice and present an
algorithm that achieves this (see Algorithm 9, 10, 11).

Quality of the Action Priors

Learning action priors requires extensive exploration of the space of possibilities to find
invariances in the domain, across policies. These invariances refer to the aspects of the

60



Algorithm 8 Learning Perception-based Action Priors in a POMDP.

1: Initialise o (a) arbitrarily

2: for every task i =1...n do

3:  Compute V(b) for task i using SARSOP
4:  for every simulation K =1... K do
: Set belief b to by
6: Choose initial state s, observe o
T repeat
8: a < argmaxge4 V(b)
N o) {ag(a) +1 ifais (.:hosen using V(D)
a, (a) otherwise
10: Take action a, observe s, o’
Z(s’,a,o’)z T(s,a,s)b(s)
11: Vo s€5
P(d|b,a)
12: s ¢
13: 0« o
14: bV
15: until s is terminal
16: end for
17: end for

18: 67 (a) ~ Dir(a?)
19: return 67 (a)

61



domain whereby regardless of the task that is being executed, the agent’s interaction
with the domain will remain the same. For example, whether a person is partici-
pating/running in a 100 metre sprint or 200 metre sprint race, the rules of the race,
running technique used and interaction protocols with other runners remain unchanged
regardless of the type of race. Domain invariances are useful in a lifelong sense because
they have the ability to factor out the elements which remain unchanged across specific
tasks. As a result, learning these domain invariances simplify the problem of having to
perform a new task. Because different behaviours have commonalities at a local level,
we consider these invariances to be the aspects of the domain which an agent would
treat the same way, regardless of the task it is required to execute. Thus, by taking
action priors into account, we are able to inject prior knowledge learned from previously
solved tasks which represents the sensible behaviours in the domain.

The key assumption in this thesis is that in a domain in which and agent is required
to perform multiple tasks over a long period of time, there is certain structure in the
domain, which is in the form of local contexts, that can result in certain actions to be
commonly selected or always avoided as they are either harmful or do not contribute
towards completing any task. By learning this structure, local sparsity in the action
selection process is induced. Therefore, we regard this as a form of transfer learning
[Thrun1996|[Caruana 1997|, where an agent is required to solve some tasks and learn
to generalise the knowledge learned from solving those tasks so that it can be applied
to others.

By learning from more tasks, an agent may be able to acquire more information
resulting in a more informative prior knowledge. This is because an agent is able to
more accurately determine the actions that may be commonly selected in situations by
having more information from previously learned tasks at its disposal. Therefore, by
learning from multiple tasks, an agent may be able to acquire a better quality prior over
its actions possibly allowing it to better bias its exploratory behaviours. As a result,
we gauge the quality of the learned action priors based on the number of tasks it has
learned to solve.

In Section 4.2, we show how the quality of the action prior knowledge increases with
the number of learning tasks. These results can be observed in Figure 17, 24 and 36.
Now that we have discussed how action priors can be learned, we need to see how they
can be used in practice.

3.3.2 SARSOP with Action Priors

We propose that for an agent to be generally capable when it is required to perform a
range of unknown tasks in which it experiences uncertainty, the agent must have the
ability to continually learn from a lifetime of experience which is largely dependent on
two abilities. Firstly, is its ability to generalise from past experiences and secondly is
its ability to form representations which facilitate faster learning and the transfer of
knowledge between different situations. By exploiting the commonalities between large
families of tasks, the agent may potentially minimise situations where it has to relearn

62



from scratch. This also has the effect of allowing an agent to build better models of the
domain. Therefore, we hope to facilitate faster learning by learning such regularities
from the domain and extracting the common elements between tasks.

Consider some learning agent that has prolonged experience in a domain. This
means the agent has learned to solve multiple tasks in the domain. However, with each
task it learned to solve in the domain, it would have had to relearn everything about the
domain for every new task. This results in a slow learning process. The main problem
we address in this section is how we can accelerate the learning of new tasks through
the use of transferring knowledge learned from previously solved tasks.

Using action priors, we can provide an agent with knowledge over which actions
may be sensible to take in particular circumstances. By incorporating action priors in
the learning process of an agent, the agent can bias its exploratory behaviour based
on actions that have been useful in the past in similar situations, but different tasks.
Essentially, they provide information over the usefulness of each action in situations
where the agent has a variety of action choices to explore. For this reason, they can be
useful for seeding search as well as pruning and prioritising actions in a policy learning
process This has the effect of improving the performance of learning tasks in a domain.

By considering action priors, an agent is equipped with a mechanism that allows it
to be able to perform fast look-ups from any known or unknown situation, to determine
its preference in choosing actions. Therefore action priors can help in controlling the
computational explosion of reasoning through large chains of actions. The knowledge
gathered from these priors may have the effect of greatly increasing the speed of solving
new tasks. As a result of their ability to address the limitation of SARSOP in handling
situations with a high branching factor (large number of actions) and their ability to
speed up the learning of new tasks, we show how we can incorporate the use of action
priors into the SARSOP algorithm to accelerate SARSOP’s learning process.

We demonstrate the advantages of using action priors in a POMDP context with
an adaptation of the traditional SARSOP algorithm. We present three algorithms for
policy learning with action priors, called SARSOP with Action Priors for Sampling
(Algorithm 9), SARSOP with Action Priors for Pruning (Algorithm 10) and SARSOP
with Action Priors for Simulations (Algorithm 11). Note that the methods we use to use
action priors in SARSOP is not specific to SARSOP and are more broadly applicable
to other similar decision making approaches.

SARSOP with Action Priors for Sampling

In order to make good action choices there is a need to evaluate the future effects of
taking those actions, so as to approximate the value of each choice. However, this is an
expensive search process. This is because the number of possible future outcomes are
exponential in the number of action choices to be made.

Alternatively, by implementing action priors we are able to prune and prioritise the
available actions based on past experiences. Effectively, action priors allow us to prune
poor action choices based on previously solved tasks, thus reducing the complexity of

63



lookahead search.

Using action priors in the sampling stage of SARSOP (see Section 2.5.2) is the most
intuitive and is based on the original way in which action priors were used in (Q-learning
(see Section 2.6). By using action priors in the action selection step (Algorithm 9 line
18), we bias the exploration of actions away from less useful actions. By taking into
account the statistics of action choices over a lifetime of the agent, we can quickly cut
down options when deciding which actions to select, in a manner which may not have
been obvious when each task is solved in isolation. Thus, by taking the actions that
were considered to be useful in past situations, we can potentially ensure that beliefs
with high expected rewards are reached by the SARSOP algorithm. This could have
the effect of ensuring that sampling is focused on the optimally reachable belief space
R*. Therefore, in this way SARSOP may be able to form better approximations of the
optimal value function in a shorter period of time.

The difference between the SARSOP with Action Priors for Sampling algorithm
and the traditional SARSOP algorithm can be seen on line 18 of Algorithm 9. The
action selection step consists of two cases. The first case deals with exploring actions
by choosing the action with the highest upper bound with probability 1 — ¢, while the
second case deals with exploring actions by choosing actions based on the prior 6,(a)
with probability . Choosing actions based on the prior 6,(a) allows us to shape the
action selection based on what were sensible actions in the past. In essence, we want
the agent to be able to also explore the actions that were favoured in previously learned
tasks.

The downside of using action priors in this manner is owed to the fact that we select
actions based on the prior 0,(a). If sufficient learning time is not given to learning the
action priors or the priors do not generalise well, there may be instances where the
action priors may lead SARSOP down a sampling path outside of R*. As a result, the
computed optimal value function approximation could potentially cause the agent to
learn suboptimal policies. However, on the upside, using action priors allows the agent
to make fast lookups when selecting which action to take during sampling. In contrast,
SARSOP has to search through the entire set of a-vectors, that define the current
approximation of the value function, to find the a-vector with the highest upperbound
value and then select the action with which the a-vector is associated.

Because action priors prune and prioritise action selection in a context dependent
manner, this method of using action priors can be easily applicable to other point-based
POMDP solvers. This is possible because all such approaches sample beliefs by taking
an action and making an observation from the belief space using the belief update
(Equation 14-19) in a similar fashion to SARSOP.

In Algorithm 8, we do not present the details of the backup and pruning strategies
as they are the same as those of the traditional SARSOP approach. However, for
additional details refer to Section 2.5.1.

64



Algorithm 9 SARSOP with Action Priors for Sampling.
1: Initialise the lower bound V on the optimal value function V* and the upper bound
V on V*.
Insert the initial belief point by as the root of the tree Tx.
Initialise action priors 6,(a)
Initialise observation o
while termination condition is not reached do
SampLe(Tg, I').
Select a subset of nodes from T and perform Backup(Tx, I, b) on each selected
node b.
Prune(Tg, T).
9: return I'.

*®

SampLe(Tg, I')

10: Set L to the current lower bound on the value function at the root by of tree
Tr and set U to L + @, where ® is the target gap size at the root.

11: SampLePoiNTs (TR, T, by, L, U, @, 1)

SamprePoints(Tg, I', b, L, U, @, h) )
12: if V < Land V(b) < max {U,V(b) + ®y~"}, where V is the prediction of V*(b)

then
13: return
14: else
15: Q < max, Q(b,a)
16: L' < max {L,Q}
17: U’%maX{U,Q—l—(I)V_h}
- o argmax, Q(b,a) w.p. 1 —¢
ac A w.p. €6,(a)
19: o + argmax, P(o|b,a’) [V(7(b,d,0)) — V(7(b,d', 0))]
L' =3 es R(s,a)b(s) =73 . Plo|b,a")V(7(b,a',0))
20: Ly <+
~P(o'|b, ')
U' =3 s R(s,a)b(s) =732, Plo]b, a\V(7(b,d,0))
21: Un +
yP(0'|b, a’)
22: b < 7(b,d,0)
23: Insert o’ into T as a child of b
24: SampLePoiNts(Tr, T, b', Ly, Uy, ®, h+ 1)

65



SARSOP with Action Priors for Pruning

Through the use of action priors and their ability to prune and prioritise action choices in
a context dependent manner, they can provide substantial benefits to learning and deci-
sion making [Rosman and Ramamoorthy 2012|[Rosman 2014|[Rosman and Ramamoor-
thy 2015]. Thus, we incorporate action priors into the SARSOP algorithm to create a
more aggressive pruning approach. The performance of the SARSOP algorithm largely
depends on the number of a-vectors in the set I' representing the value function (see
Section 2.3.4). Therefore, by implementing action priors so as to further prune the
actions that are seemingly suboptimal, we decrease the set I' and ultimately improve
the performance of the overall algorithm.

Algorithm 10 lines 10-12, presents an additional pruning strategy designed to prune
alpha vectors based on action priors. Given an observation o, we choose the action to
be pruned using 1 —0,(a). However, we only prune that action only if the prior 0,(a) is
smaller than some threshold ¢ € [0, 1]. By using £, we are able to control the a-vectors
that are pruned so as to ensure that useful a-vectors are kept in the set I' while less
useful a-vectors are pruned away (see Figure 18). This will allow SARSOP to take
advantage of both pruning using J-dominance as well as pruning using action priors.

An area of concern for using action priors in this manner is that it adds an aggressive
pruning strategy. This is riskier as pruning occurs over the observational space O which
has a finite number of observational patterns rather than over a subset of the belief
space B which can be considerably larger than the observational space. This additional
pruning could possibly cause the value function approximation to degrade. However, if
we have action priors that accurately model the entire action distribution over all tasks,
then the priors should be able to prune a-vectors appropriately and in turn result in
faster learning times.

An important property of point-based algorithms is the ability to prune a-vectors
that are dominated by others in B. However, these pruning methods are generally
computationally intensive, and there is currently no fast method for pruning a-vectors
[Cassandra et al. 1997||Guy et al. 2013]. As such our method of pruning can be used
as an additional pruning technique in other point-based POMDP solvers as an attempt
to accelerate the learning process. Thus, using action priors for pruning may generalise
to other point-based algorithms that are not SARSOP.

The sample, backup and prune methods in Algorithm 10 are those of the SARSOP
algorithm and for this reason, we are not concerned with their workings in this section.
However, these methods are discussed in detail in Section 2.5.

SARSOP with Action Priors for Simulations

SARSOP consists of two phases, namely the learning phase and the simulation phase.
The learning phase consists of computing an approximately optimal value function,
while the simulation phase consists of using the computed value function from the
learning phase to execute a task. Action priors can be used during the action selection
step of the simulation phase of SARSOP (see Algorithm 11 line 8). There are two cases

66



Algorithm 10 SARSOP with Action Priors for Pruning.
1: Initialise the lower bound V on the optimal value function V* and the upper bound
V on V*.
Insert, the initial belief point by as the root of the tree T%.
Initialise action priors 6,(a)
while termination condition is not reached do
SampLE(TR, I').
Select a subset of nodes from Tk and perform Backup(Tx, T', b) on each selected
node b.
Prune(Tg, I').
PruneWriTHAcTionPriors(I, 0).
9: return I

PruneWiTHA CTIONPRIORS(T', 0).

10: choose action a w.p. 1—6,(a)
11: if 6,(a) < £ then
12: prune all a-vectors of observation o in I' relative to a

in deciding which action to take during this action selection step. The action selected
in this step is determined by either exploiting the current policy given by V' (b) or by
choosing the action based on the prior 6,(a). The case involving action prior usage is
handled by selecting the action from A with probability based on 6,(a), with each action
chosen proportional to the number of times that action was considered a sensible choice
in the past. Traditional SARSOP chooses actions based only on the current estimate
of V(b), so in the early stages of the learning process, where the estimate of V' (b) is
poor, SARSOP can be seen to select less useful actions. Therefore, we show that using
action priors in this way can bias exploration away from less useful actions by restricting
search over the action space.

The parameter ¢ € [0, 1] controls the trade-off between exploiting the current policy
and using the action priors to select the action to be taken. Note that the parameter
¢ is annealed after each sampling iteration. This means the agent is able to exploit its
current estimate of the optimal policy, while also incorporating a prior knowledge over
actions allowing it to choose actions based on previously successful behaviours.

During simulations, in early stages of the learning process, SARSOP can be seen to
make bad choices in choosing actions as it has not been given sufficient learning time
so that it is able to learn the best actions to take at certain beliefs. Therefore, we
use action priors to guide and prioritise the action selection process away from actions
that are less useful based on previously solved tasks. As a result the action priors
may be able to accelerate the learning of tasks. Primarily, the difference between our
approach of selecting actions during the simulation phase and that of SARSOP is that
we choose actions based on the prior 6,(a), while SARSOP selects the action associated
with the a-vector that has the highest value V' (b) at belief b. Thus, although SARSOP

67



Algorithm 11 SARSOP with Action Priors for Simulations.

1: Initialise a,(a) arbitrarily

2: Compute V(b) for task P using SARSOP
3: for every simulation k =1... K do

4:  Set belief b to b

5. Choose initial state s, observe o

6

repeat

. 4 0= AgMaXaeq V() wp. l—c¢
acA w.p. €b,(a)

8: Take action a, observe s, o

N b Z(s, a,o’)ZseST(s,a,s’)b(s)

P(d|b,a)

10: s+ 8

11: 0+ 0

12: b+t

13:  until s is terminal

14: end for

may choose the action associated with the a-vector that has the highest value at the
current belief, it may not be the best action to take as the learning time may have
been inadequate in enabling it to be able to differentiate between useful, detrimental
or useless actions. Therefore, we use action priors to improve the decision making in
this context.

A particular issue that may arise from using action priors in this manner is that,
although the action priors may guide the action selection process towards useful actions,
the agent may struggle to ultimately solve its task by reaching its goal. This issue may
be caused by the fact that we choose actions based on the prior 6,(a). For example,
consider an agent having to navigate in a building from one location in a room to a
location in another room. The action priors may be able to safely and successfully
guide the agent to the destination room, but finding the exact location to which it
should navigate to in that room may be difficult. However, if we have action priors
that accurately model the entire action distribution over all tasks, instances where this
issue may arise should be minimised.

Point-based algorithms generally include a learning phase and a simulation phase
which involves taking a sequence of actions until a goal state is reached. Therefore, we
can use the methods we developed for using action priors during the simulation phase
of SARSOP on other point-based algorithms to guide their action selection process.

68



3.3.3 Experiment Design

The structure of the experiments are as follows. We consider four spatial navigation
domains to demonstrate the benefits of using action priors as we believe that spatial
navigation is a setting in which action priors stand to make significant gains. We
consider a maze domain (see Section 4.2.1), a lattice domain (see Section 4.2.2) which
is a variant of the maze domain, a light-dark domain (see Section 4.2.3), and a hallway
domain (see Section 4.2.4). Each domain environment is modeled using grid cells and
the agent’s task is to travel from some initial location to a goal location while attempting
to avoid obstacles. The agent can travel in four possible directions, namely North,
South, West and East. These directions make up the agent’s action set and taking each
action involves moving one cell in the intended direction. The agent’s actions in the
maze domain, lattice domain, and hallway domain are deterministic, while those in the
light-dark domain are non-deterministic. The reward structure is defined as follows:
the agent’s arrival at the goal state will yield the agent a reward of 100, a wall collision
a reward of -10, while each action taken will result in a reward of -1.

An agent is given a navigation objective in which it is required to navigate from some
initial position to a goal location. The agent has 8 sensors, which allow it to perceive
the occupancy of the 8 cells surrounding its current location. The agent operates under
a set of assumptions which state that sensors do not fail and are errorless, all objects
observed by the agent are obstacles, all actions taken by the agent will either cause it
to move to a new state or remain in its current state (depending on if the target cell is
empty) and any prior knowledge the agent is given is true.

Prior to task execution, the agent will have a prior knowledge over actions in the
form of action priors (see Section 2.6). The agent will be uncertain about the state
in which it lies during task execution, therefore the agent will be required to make
observations to gather information in an attempt to determine its current state. We
note that the agent’s prior knowledge will be acquired in a smaller, but similar world to
the world in which algorithm performance comparisons will be made. Hence, the goal
of the experiments is to observe whether an agent having some form of experience will
be able to obtain richer policies in a shorter period of time.

In learning action priors, a smaller world domain is used in comparison to the
domain that is used for testing purposes. However, the domain that is used for learning
action priors will share similar characteristics with its larger successor. This similarity
is achieved by ensuring that the same observational patterns that the larger domain is
composed of make up the smaller domain as well. The tasks the agent will be required
to complete in the smaller domain will therefore be similar to those used for testing.
We want the agent to be able to form better abstractions of the domain through which
it will be required to navigate during testing by solving tasks in the smaller domain
and using the knowledge it learns from solving those tasks.

We use 20 random tasks, with each task consisting of 100000 episodes, to train the
action priors. Note that each algorithm will use the same tasks and simulations will
consist of 1000 episodes. In an episode, an agent is initialised to a random starting

69



state and required to travel to its goal state. Episodes are terminated when the agent
reaches its goal location or after a 1000 simulation steps have been taken.

In each episode run of a simulation, the discounted reward is collected. We accu-
mulate these discounted rewards for all episodes and average over the total number of
episodes. This gives an approximation of the total expected discounted score that the
agent would receive for following a particular value function approximation. The total
expected discounted reward will be calculated for all the tasks given for the agent to
solve and averaged over these tasks. In each experiment, we use this as our basis on
which to compare the performance results of each algorithm.

3.3.4 Experiment Performance Metrics

When we consider planning for POMDP tasks, the goal is typically to maximise the
expected accumulation of discounted rewards. Computing this expectation exactly,
requires us to examine all possible action-observation trajectories with a length equal
to the planning horizon. However, because there are as many possible observations
after taking each action as there are observations, the number of such trajectories grows
exponentially with the horizon. Therefore, because computing the exact expectation in
this manner is not feasible, this method is not used in general.

Instead, by simulating sampled trials in the environment, we can alternatively ap-
proximate the computation of the exact expectation. In each trial, the agent begins at
an initial belief point and executes actions by following the value function computed by
SARSOP. By averaging over multiple executions, we compute the average discounted
reward which is essentially an unbiased estimator of the expectation. The average
discounted reward is computed to be

RIS
Ave. Reward = — Ir; 52
n ; jz:; VT (52)
where n is the number of trials and k is the trial length.

As a display of our results, we present the policy qualities with respect to learning
times given a range of SARSOP sampling iterations. The average discounted reward
is reported after a particular number of sampling iterations have elapsed, while also
recording the time in which it took to run through the specific number of iterations.
This allows us to evaluate the rate at which the different algorithms converge so that
we can observe which approach gives good solutions more quickly.

To compare the performance and efficiency of the algorithms, we use four perfor-
mance measures. We consider the average discounted reward versus the number of
sampling iterations, time versus the number of sampling iterations, percentage of tasks
completed versus number of sampling iterations and the average number of steps taken
to complete tasks versus the number of sampling iterations. Note that in SARSOP a
sampling iteration refers to sampling a belief point which is obtained by taking an action
at a belief and making an observation. Although comparing the reward received with

70



respect to time may be problematic when comparing results over different computers,
we note that it is required to assess the extent to which action priors improve computing
times. Thus, we believe that comparing the reward received versus the learning time is
a reasonable approach for the purposes of this analysis.

3.4 Conclusion

We hypothesise that an agent can solve repeated (or multiple) navigation tasks in a set-
ting where it is uncertain about the current state of the world or system faster through
the acquisition and use of local domain specific behaviour models. In particular, we
hope to show that action priors can be advantageous in a POMDP context (SARSOP)
and their use can lead to the computation of good policies in a shorter period of time.

As such, we consider the SARSOP algorithm, a point-based POMDP approach, as
the basis of our research work. By identifying the complexity of solving POMDPs as a
major issue, our goal is to illustrate the benefits of incorporating prior knowledge over
actions in an uncertain environment. We consider uncertainty in robot control and
sensor measurements to show the advantages of using action priors in this setting.

We develop three new algorithms called SARSOP with Action Priors for Sampling,
SARSOP with Action Priors for Pruning and SARSOP with Action Priors for Sim-
ulations to show the advantages of using action priors in a setting where an agent
experiences uncertainty. However, to acquire the prior knowledge over actions to be
used in these algorithms, an agent learns action priors using two different approaches.
We allow an agent to learn action priors in an MDP and POMDP setting. Note that
each action prior learning technique has advantages and disadvantages associated with
its use (see Section 3.3.1).

We also present the design of our experiments (see Section 3.3.3) as well as the
performance metrics which we use with the experiments presented in Section 4.2. Using
these performance metrics, we aim to characterise the performance of learning to solve
tasks with and without action priors. Our goal is to comparatively illustrate the benefits
of learning with action priors to prune certain actions or provide preference in selecting
actions as reasoning over a wide branching factor of different action sequences can be
very computationally demanding.

71



Chapter 4

4 Results and Analysis

4.1 Introduction

This section presents a set of simulated experiments designed to evaluate the computed
policies resulting from the traditional SARSOP algorithm and the SARSOP with action
priors algorithms. In particular, the aim of these experiments is to observe whether
incorporating action priors in the SARSOP algorithm will accelerate the computation
of an approximately optimal value function, while also increasing the expected reward
when solving particular tasks.

In this section, we also present the results to the experiments described herein
and give an in-depth analysis of those results. We begin by presenting the results
that illustrate the varying performances of the traditional SARSOP approach to the
SARSOP with Action Priors approaches, coupled with an analysis of the results. Our
focus is to understand the usefulness of action priors in a POMDP context and to
evaluate whether action priors indeed reduce computation times and improve solution
quality so as to improve algorithm performance.

We hypothesise that action priors can be advantageous in a POMDP context (SAR-
SOP) and their use can lead to the computation of good policies in a shorter period
of time. Therefore, with these experiments we hope to show that an agent acting in a
setting where it is uncertain about the current state of the world or system can benefit
through the use of having a prior knowledge over actions, which indicates the prefer-
ence of the agent in taking particular actions in certain situations. As a result, using an
agent’s experience of past behaviours should lead to convergence speed improvements.

4.2 Experiments

The experimental procedure involves two phases. The first phase is concerned with
generating a set of tasks in a domain in order for the agent to learn the corresponding
estimates of the optimal value functions, so that the action priors #(a) and 67 (a) can
be learned from them, using the methods presented in Algorithm 7 and 8. The second
phase is concerned with generating a new set of tasks for the agent to complete and
using the learned action priors to do so, using the methods presented in Algorithm 9, 10
and 11. Note that the results in this section do not include the time required to learn
action priors. This is because the learning of action priors is a once-off requirement
which can be incorporated into the learning process of any future task.

72



For each experiment, we applied each SARSOP with Action Priors algorithm to a
number of different tasks. For each task, we ran a sufficiently large number of simulation
runs to approximately determine the expected total reward of the resulting policy (see
Section 3.3.3 details of the experiment design). For comparison purposes, we also
ran the traditional SARSOP algorithm on the same set of tasks. For each algorithm,
the expected total reward for each task was used to produce an average reward. All
considered algorithms were implemented using C++. The experiments were performed
on a PC with a 3.40GHz Intel Processor and 8GB RAM.

4.2.1 Maze Domain

In Figure 15, we present a simple maze domain designed to evaluate our proposed
methods. Primarily the experiments run in this domain are to show which SARSOP
with action prior algorithm(s) potentially has the ability to improve the performance
of learning to solve POMDP tasks.

The maze domain simulates an environment where an agent has limited sensing
capabilities. The various grid cells of colour represent wall obstacles of different classes,
while the white cells represent passable space. All white grid cells not marked with a
“G” represent possible initial positions, uniformly selected at random. All cells marked
with a “G” represent possible goal states and each task can be differentiated by the
position of the goal. The agent’s actions are deterministic and a task involves starting
at an initial position and taking a sequence of actions until the goal is reached. Note
that with each episode of a task, the agent is initialised to some random location.

The maze domain that is used for our experiments is presented in Figure 15. The
domain in Figure 15a is a smaller, similar domain to the domain presented in Figure
15b. The domain in Figure 15a is used to learn the action priors, while the domain
in Figure 15b is used to test the learning of tasks with action priors. Note the set of
observational patterns in both domains are the same. We learn action priors in a smaller
domain not only to show that action prior knowledge learned for a set of observations
is transferable to domains with different state spaces, but also because we can learn
action priors more rapidly in a less complex domain. This is necessary because the
computations of the approximately optimal value V' (b) and Q-function Q(s,a) used to
learn the priors can take a considerable amount of time to reach convergence.

We structure this domain in this manner so that an agent operating in such an
environment will not be able to determine its state accurately at any instance. The
wall colour configuration of the domain is designed in a manner to bring about sufficient
ambiguity with regards to the agent’s ability to perceive and predict the state in which
it lies. The maze domain has been carefully structured, ensuring that it is not overly
ambiguous so that navigation tasks can in fact be completed by the agent. The goal
was to create a domain that is ambiguous enough to cause the agent to experience
sufficient uncertainty while performing the tasks, and still making it possible for the
agent to complete those tasks within that domain.

73



o]olololalalalol | [ [ | | [ [ ]|

olofolol | ] [ |

a) Maze domain used to learn action priors. b) Maze domain used for testing action prior use.

Figure 15: The maze domain.

We simulate a scaled down sonar by allowing the agent to be able to perceive only
the colour information of the eight grid cells that surround its current cell location (see
Figure 16). Using these eight grid cells, the agent will be able to gather information over
its current position in space and where it may lie in its world. Note that because the
agent is operating under uncertainty, its current position is never completely known
to the agent. To ensure that this sensory information is ambiguous when the agent
interprets the surrounding grid cells, it will not be capable of determining the wall to
which a particular colour belongs. All that it is able to conclude is the colour, but
will not be able to determine which sensor detected it. In addition, the agent is also
not capable of determining the number of times a particular wall colour occurs when
perceiving its surrounding grid cells. For example, if the agent perceives two blue wall
obstacles, a green wall obstacle and a red wall obstacle surrounding its current grid
cell location, it will only register that it observed a blue, green and red wall obstacle,
ignoring the number of times a particular wall colour appeared in its observation. The
only information the agent has at its disposal with certainty are the wall colours that
surround it. This example is portrayed in Figure 16.

74



a) Agent’s observation. b) List of possible types of observations.

Figure 16: Agent’s perception capability in maze domain.

Because we have two methods with which to learn action priors, one using the MDP
paradigm and another using the POMDP paradigm (see Algorithm 7 and 8), we are
also concerned with determining the approach that works best with point-based solvers.
Figure 17 shows that the action priors learned from using the POMDP paradigm ap-
proach (Algorithm 8) produce better results than the priors learned from using the MDP
paradigm approach (Algorithm 7). We can also observe that the POMDP paradigm
approach reaches convergence far more quickly as well. This is because when we learn
POMDP action priors 67 (a), more information can be learned from a policy learned
from one task. This is a result of the simulation step of Algorithm 8 (see Algorithm 8
line 4 -16). Because a large number of simulations is used, 100000 to be exact, there
is a large number of updates to the a,-counts o (see Algorithm 8 line 9) resulting
in more knowledge being learned and ultimately resulting in a more informative prior
using a smaller number of training tasks.

100

50 -

. /TI}//* . %

£ 6 8 10 12 14 16 18

Reward

50

——MDP Action Priors
-100 - b
—=—POMDP Action Priors

-150 -

-200 -

Number of Tasks

Figure 17: Action prior learning technique results in maze domain. The results are
averaged over 16 tasks.

75



We are also concerned with determining which action prior use approach yields the
best results. The algorithm that yields the best results will therefore then be used in
subsequent experiments. However, before we can run this comparison experiment, we
must first discover the optimal threshold value £ € [0, 1] (see Algorithm 10 line 11) for
the SARSOP with Action Priors for Pruning algorithm (Algorithm 10). Note that &
is the only free parameter of the proposed methods. Once we discover this optimal &
value, we are then able to produce the optimal form of the SARSOP with Action Priors
for Pruning algorithm for this domain.

Figure 18 shows the results of using various £ values and we can observe that using
values from a range of 0.1 to 0.9 yield very similar results. Note the action priors
used in this experiment were POMDP action priors 67 (a) as they achieved the best
results in our previous experiment (see Figure 17). Similar results illustrated by Figure
18 are owed to the fact the probability distributions of 67 (a) for each action at a
given observation is so heavily weighted towards one particular action that changing
the threshold value £ does not produce a major difference between the performance
curves presented in Figure 18. By studying Figure 15a, we are able to notice that every
other observation pattern, except the observation used for a possible goal state (black
observation), has one useful action associated with it. A useful action in this context
implies an action preference that will lead the agent to reaching a particular goal. As
a result, 67 (a) produces a heavy weighting towards one particular action at a given
observation. As a result, we choose the value of £ to be 0.1 in our following experiment.

We note that these results presented in Figure 18 are domain specific and changing
¢ when considering a different domain may yield different results. However, we do not
consider this approach in other experiments due to the results presented in Figure 19
which tell us that SARSOP with Action Priors for Pruning (Algorithm 10), is not the
best of the three approaches we consider in this thesis.

76



100

80

60

20

Reward
(=]
]

-20

—s—Pruning 0.1
-60 1 +—Pruning 0.2
2 : Pruning 0.5

80 {u " - e

¥ Pruning 0.9

-100

-120
Sampling Iterations

Figure 18: Threshold experiment for SARSOP with Action Priors for Pruning. The
results are averaged over 16 tasks.

Figure 19 shows the performance curves of the three different approaches to using
action priors along with the traditional SARSOP algorithm. These three different
approaches are presented in Algorithm 9, 10 and 11. Note that in Algorithm 9 and 11,
the use of action priors is annealed after each sampling iteration. This has the effect
of ensuring that the agent is able to exploit its current estimate of the optimal policy,
while also incorporating a prior knowledge over actions allowing it to choose actions
based on previously successful behaviours. Essentially, this allows action priors to be
used more often at early stages of the learning process and less later in the learning
process. This means even at early stages of the learning process, the agent is able to
avoid detrimental actions such as colliding into walls and results in higher returns even
after a few sampling iterations during learning.

Observing the results illustrated in Figure 19, we can conclude that the best of the
three methods of using action priors with SARSOP is by incorporating action priors
in the simulation phase. SARSOP with Action Priors for Pruning (Algorithm 10)
produces similar results to the traditional SARSOP because it can only do as well as
the traditional SARSOP as the optimal a-vectors in I" of the traditional SARSOP will be
the same as those in SARSOP with Action Priors for Pruning. However, because the set
I'in SARSOP with Action Priors for Pruning will be smaller than that of the traditional
SARSOP as a result of the additional pruning, this suggests that SARSOP with Action
Priors for Pruning may yield improvements in terms of algorithm convergence speeds
(see Section 2.3.4 and 2.4.2). This is an experiment we carry out later in this section
(see Figure 30). SARSOP with Action Priors for Sampling performs worse than the
traditional SARSOP because it turns out that we can only guarantee convergence by
choosing the action with the highest upper bound value. By choosing a suboptimal
action, we eventually discover its suboptimality when the upper-bound of that action
drops below the upper bound of another action.

7



Each algorithm has an issue that may affect its performance. Because we base the
selection of actions on the prior 0,(a) during sampling, there are instances where SAR-
SOP with Action Priors for Sampling samples beliefs outside the optimally reachable
belief space R*. Traditional SARSOP ensures that we sample beliefs near R* by taking
the action with the highest upper bound value and so when this is not consistently
maintained, we may sample beliefs outside of R*. On the other hand, because we in-
corporate an additional pruning strategy into SARSOP when we use SARSOP with
Action Priors for Pruning, in some instances, this additional pruning strategy could
possibly cause the value function approximation to degrade as a result of over pruning.
Lastly, one particular issue that may arise from using SARSOP with Action Priors for
Simulations is that although the action priors successfully guide the agent to areas of
interest in the domain, the agent may struggle to find the goal once it arrives at these
areas i.e. it may successfully reach the area of the maze where it is surrounded by black
walls but struggle to find the exact location of the goal (see Figure 15b).

Figure 19 shows the policy improvements that are associated with using action
priors in the simulation phase of SARSOP. SARSOP with Action Priors for Simulations
illustrates that even from the onset of the learning process using action priors result in
policies that yield a positive return, solve tasks quicker and allow an agent to solve a
large percentage of tasks that it is given. Because SARSOP is not able to differentiate
between useful, detrimental or useless actions at early stages of the learning process as
a result of inadequate learning time, using action priors at these stages allows SARSOP
to be equipped with a mechanism that allows it to determine the actions that are
useful when perceiving a given observation. Thus, action priors provide the agent with
knowledge over which actions to avoid as they may either be harmful or useless i.e. may
cause the agent to collide with wall obstacles or may lead the agent astray causing it
to land up in locations further away from the goal.

78



80 - 1
60 -
40 -
20
T,
© 0 |
H
? 60
oc 220 4
40 -
-60 - ——SARSOP with Action Priors for Simulations
7 —e—Traditional SARSOP
-80 - -
/ ~+~SARSOP with Action Priors for Pruning
-100 SARSOP with Action Priors for Sampling
-120 -
Sampling Iterations
a)
100
—e—SARSOP with Action Priors for Simulations
920 —e—Traditional SARSOP
—e— SARSOP with Action Priors for Pruning
80
SARSOP with Action Priors for Sampling
70
60
)
o
9 s
w
40
30
20
" i
10
0
0 10 20 30 40 50 60
Sampling Iterations
b)
120 4
100 -
e
80
@
o
£
[e]
o 60 -
v
X
il
=
W
o 40
xR
——SARSOP with Action Priors for Simulations
—e—Traditional SARSOP
20 4 —s— SARSOP with Action Priors for Pruning
Iz SARSOP with Action Priors for Sampling
0
0 10 20 30 40 50 60

Sampling Iterations
¢)

Figure 19: Action prior use approach results. The results are averaged over 16 tasks.

79



The results in Figure 20 compare the performance per sampling iteration of a learn-
ing agent using a set of correct action priors and incorrect action priors. Using correct
action priors with SARSOP illustrates that the priors allow SARSOP to reduce the
cost of the early stages of the learning process.

The correct action priors are learned from solving multiple tasks, and guide the
agent towards areas where the agent would be surrounded by black walls. From the
onset of learning, the correct action priors allow the agent to have some “common sense”
knowledge including not moving into walls, moving to areas close to the goal location
etc. On the other hand, the incorrect priors are established by inverting the knowledge
learned from learning the correct priors. This means where the correct action prior
would suggest to take the action to move South, the incorrect prior would indicate a
preference to take the action to move North and where the correct prior would suggest
to move East, the incorrect prior would indicate a preference to take the action to move
West and vice versa.

The results in Figure 20 reinforce the idea that the incorrect priors are a bad knowl-
edge base as well as an example of negative transfer and can be observed with the
terrible performance in comparison to the traditional SARSOP algorithm. This makes
the additional point that using a different distribution for selecting actions can have a
massive effect on policy performance - this itself is a new contribution and something
that has not been explored before in this setting. It is clear you can do far more harm
with this than good, and that seems to make it a dangerous approach. However, it is
clear that learning the action priors in this way from previously learned tasks actually
helps performance.

200

-200

Reward
g

-600 |

—e—SARSOP with (Correct) Action Priors for Simulations

-800 +—Traditional SARSOP

—e—SARSOP with (Incorrect) Action Priors for Simulations

-1000 -

Sampling Iterations

Figure 20: Correct vs incorrect action priors. The correct action priors are learned
from solving multiple tasks, while the incorrect priors are established by inverting the
knowledge learned from learning the correct priors. The results are averaged over 16
tasks.

80



As another example of negative transfer, we show how learning action priors using
the domain given in Figure 15a and used in Figure 21 can be detrimental to the learning
of tasks. Note that the colour of the goal region in Figure 21 is blue and not black as it
was in the domain used to learn the action priors (Figure 15a). As a result, the action
priors have a negative effect on the performance of SARSOP with Action Priors for
Simulations (see Figure 22). This is the case because when the priors are learned in the
domain given in Figure 15a, the agent will learn that when a blue colour is observed
the most useful action is to move North. However, observing Figure 21 we can observe
that taking the action to move North when the agent is surrounded by blue walls is
not the only useful action in solving most tasks. Another issue is that the observations
the agent makes at location A and B in Figure 21 are never experienced when learning
action priors in the domain given in Figure 15a. Therefore the action priors do not
provide the agent with knowledge on how to treat these situations (i.e. do not allow
the agent to be able to determine the most useful action under that observation) and
chooses the action to move North, South, West and East uniformly which can result
in taking useless or detrimental actions as the priors can lead the agent in the wrong
direction or colliding into walls. This also emphasises the importance of learning action
priors in a domain that allows the agent to learn sufficient domain knowledge that can
generalise to other similar domains.

o]alalololalalol 1 ] [ [ [ | | ||

Figure 21: Maze domain with goal region colour change.

81



Reward
18]
Q
o

—e—SARSOP with Action Priors for Simulations

=—Tradlitional SARSOP

Sampling Iterations

Figure 22: Incorrect usage of action priors. This involves taking the action priors
learned from the domain presented in Figure 15a and using them to solve tasks in the
domain presented in Figure 21. The results are averaged over 16 tasks.

4.2.2 Lattice Domain

The lattice domain, presented in Figure 23, is a variant of the maze domain presented
in Figure 15. Again, we use a smaller, similar domain to learn action priors to that used
for testing the action priors to reinforce the idea that action prior knowledge can be
transferred to domains with different state spaces and transition functions provided that
the perceptual contexts of the agent remain the same across trials. We also note that
the value function V(b) and Q-function Q(s,a) used to obtain action prior knowledge
are computed faster in a smaller domain. Here, the lattice domain is introduced so that
we can explore cases where our approach may induce negative transfer.

The agent’s navigational space is enclosed with walls with every second row and
column of the grid representing passable space. The remaining cells are used to represent
pillar like wall obstacles which result in a lattice like domain (see Figure 23). Once again,
all white grid cells not marked with a “G” represent possible initial positions, uniformly
selected at random, while all cells marked with a “G” represent possible goal states
with tasks differing from one another based on the position of the goal. Completing a
particular task includes navigating from the initial position and reaching the specified
goal location. Here, a similar sensing capability to that presented in Figure 16 is
employed to represent the agent’s observations.

82



EHEEHEEHII=IIIIII

HHEEHHHHII=IIIIII

HHHHHHHHII=IIIIII

||
olololalalalolol | [ | [ | [ | ||

||
||
||
||
o]
B
B
B

|
||
||
||
o]
o]
o]
o]

[ |
||
||
||
B
[©]
B
B

||
| |
| |
| |
B
B
B
B

a) Lattice domain used to learn action priors. b) Lattice domain used for testing action prior use.

Figure 23: The lattice domain.

As in the previous experiment, we start off by testing which action prior learning
technique, between Algorithm 7 and 8, yields the best results when incorporated into
SARSOP. Figure 24, displays the results of the action prior learning techniques and as in
the previous experiment (see Figure 17), the POMDP paradigm approach (Algorithm
8) produces a higher return with each learned task and ultimately represents better
knowledge to be used to accelerate the learning of future tasks. As a result, these will
be the priors that will be used in subsequent experiments relating to this lattice domain.

Note that the gap between the performance curves, in Figure 24, of the two methods
of learning action priors in this experiment is much smaller than that of the previous
experiment (see Figure 17). This is due to a combination of two factors. Firstly, the
observation signals are too sparse and do not provide the agent with sufficient knowledge
so that it can make safer action selections (we discuss this in more detail later in this
section). Therefore, even though the POMDP action priors can obtain more knowledge
from tasks as a result of the large number of simulations during learning (see Section
3.3.1), the knowledge it obtains does not produce the best priors. Secondly, when a new
Q-function is learned and used to update the a,-counts a to learn the MDP action
priors, more than one action can be used to update o for a given observation. This
is because the Q-function can have two actions which have a value equal to that of the
optimal action at a given state and will consider both these actions when updating oM.
A combination of these two factors helps close the gap between the performance curves
of the two action prior learning methods.

To help describe this more clearly, consider location C in Figure 26 for example.
After learning the POMDP action priors you can observe that when the agent is in the
red area of the maze, it has a higher preference to taking the action to move South
and a lower preference to taking the action to move East. This means there is a higher
probability that the agent will collide with the wall obstacles in locations similar to C.
However, after learning the MDP action priors you can observe that when the agent
is in the red area of the maze, it has equal preference to taking the action to move

83



South and East. Therefore, the probability of colliding into the wall at locations like
C is lower when using MDP action priors as a result of considering two actions when
updating a™. On the contrary though, because the POMDP action priors are able to
gain more knowledge from a smaller number of tasks, they are still able to outperform
MDP action priors.

-20

-60 P

Reward
/

-80

——MDP Action Priors

-100 —s—POMDP Action Priors

-120

-140
Number of Tasks

Figure 24: Action prior learning technique results in lattice domain. The results are
averaged over 48 tasks.

The results of Figure 25 show that the priors learned and used in this experiment
negatively affect the performance of SARSOP as the traditional SARSOP algorithm
outperforms SARSOP with Action Priors for Simulations. This is because the observa-
tion signals of the agent are too sparse. In other words, the observations of the agent
are too ambiguous and do not provide the agent with sufficient information about its
surroundings. Thus, in some cases the action priors will lead the agent to taking harm-
ful or useless actions as the priors are learned over the observation space of an agent.
Note that this is called negative transfer |[Taylor and Stone 2009].

Take for example position A and B in Figure 26. Although the agent’s observation
will be the same in both locations, as the agent will only be able to determine that it
is in the red part of the lattice domain, the best actions to take at these 2 locations
are different. The action priors suggest that taking the action to move South or East
are considered to be optimal in this area, and either choice is a feasible action to take.
However, while either action is a reasonable choice at location A, this is not the case at
location B. Taking the action to move East at location B or at a similar location will
result in the agent colliding with the wall. This phenomenon occurs in many areas of
the lattice domain which causes SARSOP with Action Priors for Simulations to per-
form poorly in comparison to SARSOP. This result suggests that improving the agent’s
observation capabilities and learning action priors over these new observation capabil-
ities will improve the performance of the SARSOP with Action Priors for Simulations

84



algorithm. This idea makes up the work of our next experiment and the results can be
seen in Figure 28 and Figure 29.

Despite the negative impact the action priors have on the SARSOP algorithm when
observations are ambiguous as seen in Figure 25a and 25b, interestingly enough the
priors are still able to increase the percentage of tasks that are completed in the early
stages of the learning process (see Figure 25¢). Thus, although the action priors result
in longer and unsafe or risky task executions, they still manage to encourage more
tasks to be completed by guiding the agent to areas of interest. This means the action
priors will provide a preference to actions that will cause the agent to reach areas of
the domain where a goal state is likely to be encountered. In this case, these areas of
interest are those that are marked with a “G” (referencing possible goal locations) in
Figure 23b.

85



100 -
50
e I - @
30 40 50 60
T 50
©
2
L -100 -
o
150 ——SARSOP with Action Priors for Simulations
—eo—Traditional SARSOP
200
250
-300
-350 -
Sampling Iterations
a)
120 4
100 -
80
&
T e ——SARSOP with Action Priors for Simulations
I J
2 —Traditional SARSOP
a0 |
20 : % :ﬁ ;
0 . . . . . |
0 10 20 30 40 50 60
Sampling Iterations
b)
120
100 L ~ o °
— — T
T =
2
)
a
£
S e
v —e—SARSOP with Action Priors for Simulations
3
|_N —e—Traditional SARSOP
5 40
ES
20
0 |
10 20 30 40 50 60
20

Sampling Iterations
©)

Figure 25: Performance results in lattice domain. The results are averaged over 48
tasks.

86



el L]
EEEOEENENR
ENNEEEEEEEEENEEEN
E BB EENENERN

EnSnSnSnSnSnEnEnE
G G G G
EREEERENNEEEEEREE
H HE BB B
ENEEERENNEEEEEEEE
G G G G
EREEERENNGEEEEEEEE
EcEC
EREREREREGEEEEEEE

Figure 26: Lattice domain location comparison.

The results in Figure 28 show the performance gains that are associated with an
improved sensing capability when using action priors. The improved observations allow
the agent to determine not only the colours of the walls that surround it, but also the
exact position of walls. We allow the agent to perceive the occupancy of the 8 grid cells
that surround the current location of the agent (see Figure 27). Thus, the action priors
learned over this improved observation capability allows the agent to prevent wall col-
lisions completely, giving the results of Figure 28. The improved observation capability
allows both action prior learning techniques to improve their performance. Once again,
since the POMDP action prior learning technique of Algorithm 8 outperforms its MDP
counterpart of Algorithm 7, these will be the priors that we use in the rest of the lattice
domain experiments that follow.

Figure 27: Agent’s improved perception capability in lattice domain.

87



100 4

50 4

10 12 14

Reward

-

—e—MDP Action Priors (Ambiguous Observations)

-100 -
+—MDP Action Priors (Improved Observations)

—s—POMDP Action Priors (Ambiguous Observations)

POMDP Action Priors (Improved Observations)

-150 -
Sampling Iterations

Figure 28: Action prior learning technique results for precise observations vs ambiguous
observations. The results are averaged over 48 tasks.

Figure 29 demonstrates the performance of the action priors over the improved
sensing capability of the agent. In this case, the agent is able to correctly exploit the
number of invariances that arise in the lattice domain. Because the agent is able to
precisely locate the position of walls, it alleviates the issue of classifying harmful actions
as optimal actions as a result of an ambiguous observation space. This means given
location A and B in Figure 26, the improved observation allows the agent to be able to
differentiate between the two locations and no longer considers them to be treated in a
similar fashion.

The benefits of action priors rely heavily on the observational features it uses to
define an observation when learning the priors. This is because the amount of action
information that can be learned depends largely on the observation features it uses
when defining an observation. There is clearly a trade-off between the generality of
the observations and the usefulness of the action priors. As we have seen with the
results in Figure 25 and Figure 29, the more general an observation is defined to be,
the usefulness of using the action priors will be lower. In other words, the more general
the observation features, the less informative the action priors will be. However, the
more specific the observational features are, the less portable the action priors are to
new states. Note that the observational features the agent is able to use depend on
properties of the task and domain. Generally, action priors are particularly useful in
rich environments that are characterised with repeating structure.

88



150 4

100 -
50
0 T
2 / o 1 20 30 40 50 60
E
@ 50 -
o
-100
-150 -
—e—SARSOP with Action Priors for Simulations (Improved Observations)
-200 -
—e—Traditional SARSOP
-250
Sampling Iterations
a)
140
—e—SARSOP with Action Priors for Simulations (Improved Observations)
120 4 ——Traditional SARSOP
100 -
80 -
)
o
0]
2
%]
60 -
a0
20 - \\m_‘
0 |
0 10 20 30 40 50 60
Sampling Iterations
120
100 _{;}—‘—0—.
/
-
Z s
<@
a
£
Q
© 60
7
2
5 ]
=
o
=) 40
ES
20 —e—SARSOP with Action Priors for Simulations (Improved Observations)
—o—Traditional SARSOP
0 . |
10 20 30 40 50 60
-20

Sampling Iterations
<)

Figure 29: Performance results in lattice domain using an improved observation sensor.
The results are averaged over 48 tasks.

89



Figure 30a illustrates how the SARSOP with Action Priors for Pruning (Algorithm
10) can successfully be used to speed up algorithm convergence. Note that SARSOP
performs slightly better than SARSOP with Action Priors for Pruning (see Figure
30b). The red circles in Figure 30b highlight areas where traditional SARSOP’s reward
is higher than SARSOP with Action Priors for Pruning. Therefore, there is a trade-off
between the accuracy of the value function and algorithm computation times. However,
the difference in solution quality here is negligible in comparison to the amount of
computational time that could potentially be saved. This reinforces the theory and
conclusions mentioned in Section 2.4.1.

By considering Figure 30a, we can observe how this additional pruning helps with
accelerating algorithm computations as the number of sampling iterations increase.
Note how the SARSOP with Action Priors for Pruning and SARSOP start off with
similar computation times with no time difference between the two performance curves,
but as the sampling iterations increase, we can see this time difference increase showing
that the additional pruning is speeding up SARSOP as a result of reasoning over fewer
a-vectors. These results can be expected to improve further by considering a greater
number of sampling iterations.

90



150 - — SARSOP with Action Priors for Pruning

Traditional SARSOP

100

50

Time (s)

2000 4000 6000 8000 10000 12000

50 -

-100 -
Sampling Iterations

a)

100 4

2000 4000 6000 8000 10000 12000

Reward

——SARSOP with Action Priors for Pruning
-150 <+ Traditional SARSOP

Sampling Iteration
b)

Figure 30: Convergence speed results in lattice domain. The results are averaged over
48 tasks.

4.2.3 Light-Dark Domain

The light-dark domain aims to simulate a robot in a simple mine or cave, with poor
sensing capabilities. With this domain we want to show that even with stochastic
actions, using action priors can still display performance gains with regards to learning
to solve tasks faster. Ultimately, our goal is to show that action priors can still be
beneficial in guiding an agent’s action selection process in a setting where it has poor
sensing capabilities and stochastic actions.

The grid cells marked with an “S” represent the possible initial positions for the
agent, while the cells marked with a “G” represent possible goal locations (see Figure
31). The grid cells that are red in colour represent wall obstacles, while the black, gray
and white cells represent passable space. The varying shades of black, gray and white
represent varying intensities of light, with the white cells resembling areas where the
light is at its brightest. In this domain, the agent’s ability to localise itself depends

91



on the amount light at its current location. In other words, the darker the cell colour
in which the agent resides, the more uncertain the agent is about its current state.
Completing a particular task includes navigating from an initial position and reaching
the specified goal location.

The action priors we use in the experiments in this section are those learned using
Algorithm 8 (POMDP action priors). We use POMDP action priors because based
on our previous two experiments (see Section 4.2.1 and 4.2.2) they produced the best
action prior knowledge when compared to that of the MDP action priors (Algorithm
7). The action priors are learned in the same domain as the domain used for testing.
However, the tasks that are used to learn action priors are different to those that are
used to test the usefulness of the priors.

The agent’s actions also become more accurate depending on the magnitude of light
over the cell in which it lies. For example, there is a higher probability of landing in the
left or right cell of the agent’s current position when taking the action to move North
in a darker area, than when the agent is in an area with more light (see Figure 32). An
observation is taken to be the grid cell colour of the agent’s current position. Note the
agent operates under uncertainty in this domain and the true location is not known.
Therefore, the agent is required to make observations to approximate its location in
space.

Figure 31: Light-Dark domain.

0.5 0.65 0.8 1.0
o.zs‘/-ztf\o.zs 0,175t 0175 0.1‘/-2';\0.1 0.0 ,-th\n.o
a) Transitions in black b) Transitions in dark gray c) Transitions in light gray  d) Transitions in white
area. area. area. area.

Figure 32: Stochasticity of action to move North in light-dark domain.

We note that the benefits afforded by the action priors are less than in the maze
domain experiment, but still significant. This is due to the fact that the agent’s actions

92



are highly stochastic in the darker regions of the domain, which means there is a high
chance that despite taking the most useful action, the agent could possibly collide with
a wall obstacle. However despite these dynamics we are able to observe an improvement
as the action priors encourage movements towards regions where the agent experiences
more light, to help solve tasks quicker as task execution is significantly easier when
traveling in those regions (See Figure 33). This is evident as we can observe that the
trajectories from the policies when using action priors are shorter and also allow an
agent to complete a higher percentage of the tasks it is presented with (see Figure 34).

B

Figure 33: Examples of trajectories when using action priors.

a) b)

93



100

50
0 L !
/,/1( 1 ) 60 80 100 120
el
<
g -50
()
o
—e—S5ARSOP with Action Priors for Simulations
-100 —e—Traditional SARSOP
-150
200
Sampling Iterations
a)
120
100 1
—e—SARSOP with Action Priors for Simulations
—e—Traditional SARSOP
80 4
@«
o
Q0
(%]
a0 4
20
o |
0 20 40 60 80 100 120
Sampling Iterations
120
100
3 80 L
@ "\/
o
£ 60
8 —e—SARSOP with Action Priors for Simulations
ﬁ —e—Traditional SARSOP
o 40
o
.
o
o
ES 20
L“\
0 |
20 40 60 80 100 120
-20

Sampling Iterations
c)

Figure 34: Performance results in light-dark domain. The results are averaged over 16
tasks.

94



4.2.4 Hallway Domain

We simulate a simple hallway problem where an agent is required to navigate from any
area of the floor, other than that of the room to which the goal location resides, to
the goal. Figure 35 shows a representation of the hallway domain which we used for
the experiments that follow. The idea is to mimic a hallway which consists of 4 rooms
where each enclosed colour symbolises a different room. The black grid cells represent
walls, while every other colour represents passable space. The white grid cells represent
the passage of the hallway, while the red, green, blue and yellow cells represent states
belonging to a particular room. Each room has an entry or exit point through which
the agent can travel to reach other areas of the domain. The grid cells marked with
a “G” represent possible goal locations which means in all instances the agent will be
required to travel to some randomly selected goal state in the room represented by the
yellow grid cells. Figure 35a is the domain we used to learn action priors and Figure
35b is the domain we used to test whether or not the action priors will accelerate the
learning of tasks. Note that the agent’s perceptual contexts are consistent across the
two domains.

With each episode of a task, the agent is initialised to some random location outside
of the goal room. Each task will consist of the agent having to navigate from its initial
position to some goal location in the goal room (room represented by the yellow colour
in Figure 35) by taking a sequence of actions.

With regards to the agent’s observation capability, we once again simulate a scaled
down sonar by allowing the agent to be able to perceive only the eight grid cells that
surround its current cell location (refer to Figure 27). However, the agent will addition-
ally be able to precisely determine the room in which it is currently located or whether
it is in the hallway space of the domain. Therefore, through the agent’s observations,
it will be able to determine the exact position of wall obstacles and whether or not it
is in a particular room or the hallway. In other words, the observation space can be
enumerated as 8 boolean flags, and one colour value.

95



a) Hallway domain used to learn action priors. b) Hallway domain used for testing action priors use.

Figure 35: The hallway domain.

As before, we first determine the action prior learning technique which produces the
best results when incorporating action priors into SARSOP (see Figure 36). As in all
prior domains, the POMDP method of learning action priors (Algorithm 8) outperforms
the technique of learning action priors in an MDP (Algorithm 7). What is surprising at
first glance is the extent to which the POMDP action priors outperform those learned
from an MDP.

The combination of a good sensing capability and ability to gather a lot of action
information from one task results in POMDP action priors that are far more superior
than MDP action priors. By allowing the agent to be able to determine the exact
location of walls and area of the maze in which it lies (i.e. the room in which it is
located or whether it is in the hallway) these observation features allow us to establish
informative action priors. Also, when we learn POMDP action priors we can run a
large number of simulations to update the a,-counts o which allows us to obtain a
lot of action information from just one task. Thus, a combination of using observation
features that are capable of capturing a large amount of action information along with
the ability to learn a lot of action information from just one task produces a very
informative prior knowledge over actions.

96



80

60 -
0
20

| L
K3l SESRIRIE

——MDP Action Priors
-40 - —s—POMDP Action Priors

-60 -

Reward
|

80 |
Number of Tasks

Figure 36: Action prior learning technique results in hallway domain. The results are
averaged over 50 tasks.

Figure 37 shows the improvement in decision making at early phases of the learning
process through the addition of action priors. One important observation is that SAR-
SOP with Action Priors for Simulations immediately receives close to a positive return,
unlike traditional SARSOP, as it has effectively learned to avoid harmful behaviours
and only takes useful actions. Although in some instances, at early stages of learning,
the agent may explore the domain and struggle to find the goal location within the goal
room as suggested by Figure 37c, the action priors always enable the agent to avoid
wall collisions and reach the goal room successfully.

Another advantage that can be observed from these results is the ability of action
priors to transfer knowledge to tasks with different state spaces and transition functions.
This ability stems from the fact that the perceptual contexts of the agent are consistent
across the two domains presented in Figure 35, even though the domains are different.
This emphasises that the action prior knowledge learned for a set of observations is
transferable to domains that are similar. This is possible because the action priors are
defined over the observation space rather than the state space. Whether or not the
observations are an absolute and complete description of the state of the environment,
the action priors can still be successfully used to improve decision making. Similar
conclusions can be made with regards to the experiments in Section 4.2.1 and 4.2.2 (see
Figure 15 and 23).

97



100

s

Reward
° 3 [

50 100 150 200 250
-20
—e—SARSOP with Action Priors for Simulations
“© —e—Traditional SARSOP
-60
-80
Sampling Iterations
a)
90 -
80 -
70 -
60 |
© | —SARSOP with Action Priors for Simulations
8 —Traditional SARSOP
&
a0
30
20 -
10 -
0 . . . . |
o] 50 100 150 200 250
Sampling Iterations
120

100 7.—.—.—.—.
——

——SARSOP with Action Priors for Simulaions|
40 —o—Traditional SARSOP

% of Tasks Completed
3

0 50 100 150 200 250

Sampling Iterations
¢)

Figure 37: Performance results in hallway domain. The results are averaged over 50
tasks.

98



4.3 Conclusion

Planning with imperfect state information is a crucial capability for all autonomous
robot agents operating in uncertain environments. However, considering imperfect state
information during planning results in a much higher computational complexity when
deciding which actions are best to take. This is because an agent can not choose the
best action to take on the basis of a single known state, but rather depends on the set
of all possible states consistent with the available information.

As a result of incorporating uncertainty into planning, the POMDP framework has
led to improved performance in various robotic tasks. However, because of the compu-
tational challenges POMDPs face, a number of algorithms have surfaced in an attempt
to improve the efficiency of using POMDPs. In particular, point-based POMDP solvers
have made impressive progress in overcoming these challenges by computing approxi-
mately optimal solutions.

We consider the SARSOP algorithm, a point-based POMDP approach, as the basis
of our research work. By identifying the complexity of solving POMDPs as a major
issue, our goal is to illustrate the benefits of incorporating prior knowledge over actions
in an uncertain environment. We consider uncertainty in robot control and sensor
measurements to show the advantages of using action priors in this setting.

We develop three new algorithms called SARSOP with Action Priors for Sampling,
SARSOP with Action Priors for Pruning and SARSOP with Action Priors for Sim-
ulations. However, to acquire the prior knowledge over actions to be used in these
algorithms, an agent learns action priors using two different approaches. We allow an
agent to learn action priors in an MDP and POMDP setting.

Through the use of experiments, we compare the performance of solving tasks using
the traditional SARSOP with the SARSOP with action priors approaches. We also
compare the quality of those solutions to assess which SARSOP approach gives better
solutions. By using MDP action priors in one case and POMDP action priors in another,
these comparisons also allow us to observe which action prior learning approach leads
to better results.

After running various experiments, a number of conclusions can be made with re-
gards to using action priors in a POMDP setting. Action priors indeed have the ability
to improve the performance of learning tasks through the use of optimal behaviours
from previously solved tasks (see Figure 19, 29, 30, 34 and 37). The action priors allow
an agent to be equipped with a mechanism that allows the agent to accumulate general
knowledge about a domain in the form of local behavioural invariances. The benefits of
action priors symbolise an important form of knowledge transfer as they facilitate accel-
erated learning by biasing a decision making agent’s search process towards previously
useful choices. This was demonstrated through the use of the SARSOP with Action
Priors for Simulations algorithm as it displayed the best results when incorporating
action priors into SARSOP.

Throughout all the experiment domains used in in this chapter, the POMDP action
prior learning technique of Algorithm 8 outperforms the MDP action prior learning

99



technique (Algorithm 7). This suggests that this is the better approach approach to
use, between the two proposed methods, to learn priors when considering a POMDP
problem. The POMDP method can also converge faster, using fewer learning tasks, than
the MDP approach (see Figure 17 and 36 for an example of this). The MDP technique
is disadvantaged as it requires more learning tasks to achieve the same results that the
POMDP technique achieves using a smaller set of tasks.

We have also shown that the benefits of action priors can increase with an improved
sensing capability (see Figure 28 and 29). By using an observation space that allows
the agent to be able to precisely determine its surroundings, the action priors can be
leveraged further. A more precise sensing capability allows an agent to gather more
information about its current position in space which in turn improves the action priors’
ability to classify the actions that are useful in certain situations.

The benefits of action priors rely heavily on the observational features it uses to
define an observation when learning the priors. Therefore, the amount of action infor-
mation that can be learned depends largely on the observation features it uses to define
an observation.

There is a trade-off between the generality of the observations and the usefulness of
the action priors. The more general the observation features, the less informative the
action priors will be. However, the more specific the observational features are, the less
portable the action priors are to new states. Note that the observational features the
agent is able to use depend on properties of the task and domain.

Generally, action priors are particularly useful in rich environments that are charac-
terised with repeating structure. Deciding which features should be used to define the
set of observational features is an open question and depends on the capabilities of the
agent. Feature learning in general has been considered in many contexts and is indeed
an open and difficult question [Jong and Stone 2005][Lang and Toussaint 2009].

Perception-based action priors also have the ability to transfer knowledge to tasks
with different state spaces and transition functions. This is possible because the per-
ceptual contexts of the agent remain the same across trials, and therefore any action
priors learned for these percepts can be transferred between trials.

The addition of action priors also have the ability to improve convergence speeds.
This is achieved through the use of the SARSOP with Action Priors for Pruning algo-
rithm. By formulating an additional pruning technique with respect to the action priors
(see Algorithm 10, lines 10-12), we can observe a speed up in computational speeds.
Using this action prior related pruning technique, the priors prune certain actions and
provide a preference to actions based on the actions that were considered to be useful
in previously solved tasks. This method of pruning allows the current observables to
dictate useful actions.

100



Chapter 5

5 Related Work

Ultimately, the core theme of this thesis is abstraction, as appropriate abstractions
enable knowledge and behaviours to be learnt in a generalised manner which in turn
can be reused in new unexperienced scenarios. This research has focused on transferring
knowledge learned from previously solved tasks to improve and accelerate the learning
of subsequent tasks.

In this thesis, we use action priors to demostrate these ideas. However, there exists
other research on learning policy priors and methods for transferring information from
previous tasks to act as priors for a new task that have similar aspirations to our own.
In this chapter we discuss some of these approaches and explain how they are similar
to our work.

5.1 Action Transfer

Consider an MDP defined as a tuple (S, A, T, R,~y) (see Section 2.2.2). However, its use
can be difficult for analysing knowledge transfer as it is not expressive enough to capture
similarities across different task problems [Sherstov and Stone 2005]. Establishing a new
MDP formalism that uses outcomes and classes can be used to overcome this difficulty.
This is possible because the outcomes and classes can be used to remove the dependence
of the model description (7" and R) on the state set [Sherstov and Stone 2005].

Rather than specifying the effects of taking a particular action as a probability
distribution P(S) over next states, the effects of an action are specified as a probability
distribution P(O) over outcomes O [Boutilier et al. 2001]. Every action a € A has a
probability distribution over O. Therefore, the new transition function 7" is defined to
be T : S x A — P(O) where the range P(O) is common to all tasks unlike P(S). The
effect of an outcome differs from state to state and the mapping of an outcome in a
state to the actual next state is defined as part of the task description, rather than the
domain definition.

Classes C are common to all task and specify an action’s reward and transition
dynamics in a state. Each state s € S in a task belongs to a class ¢ € C. A group of
states belong to the same class if an action’s reward and transition dynamics are the
same in those states i.e. c(s1) = c(s2) = R(s1,a) = R(sq,a),T(s1,a) = T(s2,a) where
¢(s1) denotes the class of state s;. The use of classes allows T" and R to be defined over
C x A, which is a set common to all tasks, rather than S x A, which is a task-specific set.
Thus, as a result of a combination of classes and outcomes the transition and reward

function can be defined tobe T': C x A — P(O) and R:C x A — R.

101



Using classes and outcomes, a domain can be defined to D = (A,C, O, T, R) where
A is a finite set of actions that the agent can take, C is a finite set of state classes, O is
a finite set of action outcomes, T : C x A — P(QO) is a transition function which gives
the probability of an outcome when taking an action at a state belonging to a particular
class and R : C x A — R is a reward function that indicates the immediate payoff of
taking an action at a state belonging to a particular class. A task M within domain
D is defined by the tuple M = (S,¢,n) where S is a finite set of states, ¢ : S — C is
state classification function and n: S x O — S'is a next-state function. This formalism
allows us to distinguish related tasks to those that are not.

With regards to the related-task formalism, the maximum number of resulting next
states from taking an action at a given state s is |O] states (sq,s2,..., 50| where s;
represents the state that results if the ith outcome occurs). Considering the optimal
values of these successor states, the resulting vector v = (V*(s1), V*(s2),..., V*(sj0/))
is the outcomes value vector (OVV) of state s. The optimal action of an OVV of state
s can be determined by

*(s) = arg max {R(c,a) +7T(c,a)-v}. (53)

By grouping all OVVs of a task according to the class of each state, the set U =
{Ucl, Ueyy oo, UCM} denotes the set of OVVs of states from class ¢; and determine the

task’s optimal action set.

Let A* = {a € A: 7*(s) = a for some s € S} be the optimal action set of an auwil-
iary task, and let A* = {a € A: 7*(s) = a for some s € S} be the optimal action set of
the primary task. In action transfer, A* is learned in the auxiliary task which is then
used to learn the primary task with the hope that A* is simialr to A*. Using transferred
actions is feasible if every OVV in the primary task has in its vicinity an OVV of the
same class in the auxiliary task [Sherstov and Stone 2005]. However, two dissimilar
tasks can have very different OVV characteristics and thus different action sets.

Figure 38 shows an example of an auxiliary task that is dissimilar to the primary
task. The target in Figure 38 represents the goal location, while the arrows represent
the actions to be taken. Note that the optimal policy of the auxiliary task only includes
South and East actions, while the optimal policy of the primary task includes North,
East, South and West actions. Because the optimal policy of the primary task includes
all four directions of travel, learning the primary task with actions transferred from the
auxiliary task is therefore not feasible as the goal will be practically unreachable from
most cells.

As such, through the use of transferring knowledge between related tasks, the learn-
ing process of MDP problems with large action sets can be accelerated [Sherstov and
Stone 2005|. This is achieved by pruning the action set of an agent by using a technique
that replaces its full action set with the optimal actions learned from an initial task.
Subsequent tasks are learned using the reduced action set which reduces the complexity
of the problem and facilitates faster learning. The overall idea of this technique is that
if some action is relevant to some optimal policy of a particular task, then it is likely

102



I | = |33 3 /4 |5]|6 1|3 |&= @=||7 |9 |7]|6
$|=| 8| ¥4 |5]|6 |7 = | @ | | &= |[l9 | 10|97
2 | = | =] 5|6 | 7|9 Tt |+t | &= 719|176
= | = | = @|| 6|7 ]|9]|10 t |t |t |t 6 | 7|6|5
Auxiliary task. Primary task.

Figure 38: An auxiliary and primary task, together with their optimal policies and
value functions.

to be relevant in other tasks of that domain. This has very similar aspirations to the
work in this thesis as it tries to cut down the action set or bias exploration in learning.
However, the methods differ in that rather than using optimal policies to determine
the relevance of an action or the reduced action set for each observation, the optimal
policies are used as training data to determine the relevance of an action for the entire
domain.

5.2 Shaping Rewards

Consider an MDP defined as a tuple (S, A, T, R,~y) (see Section 2.2.2). Intuitively,
shaping refers to adding “shaping” rewards to the learning algorithm in an effort to
guide it towards learning a feasible (or optimal) policy faster. Rather than running a
reinforcement learning algorithm on (S, A, T, R, ), it is run on some transformed MDP
defined by the tuple (S, A, T, R',v) where " = R+ F' is the reward function in the
transformed MDP and F' = S5 x A x S — R is known as the shaping reward function.
Therefore, instead of receiving a reward R(s, a, s') for transitioning from state s to state
s’ after taking action a, the agent would receive R(s, a,s")+F (s, a, s") for the same event
in the transformed MDP.

R = R(s,a,s')+ F(s,a,s) is the most general form of shaping rewards as it covers a
fairly large range of possible shaping rewards one might come up with [Ng et al. 1999].
For example, consider a task where an agent is required to travel to a goal from its
starting position by taking a sequence of actions. A shaping reward function that may
be useful for this task is

r  whenever s’ is closer to the goal than s

F(s,a,s) = { (54)

0 otherwise

where r is some positive reward. Another example of a shaping reward function would
perhaps be to encourage the selecting of an action a; in a particular state s. To
accomplish this, one might set

r whenever ¢ = q; in state s
. ! (55)
0 otherwise

F(s,a,s") —{

103



Note that in many reinforcement learning applications, an agent is allowed to learn
the system dynamics through experience (i.e. through taking actions in the MDP and
observing the resulting state transitions and rewards). In this case, the agent is not
explicitly given the MDP as a tuple (S, A, T, R,~). Given such access to the MDP, the
transformed MDP can be simulated to have the same type of access by simply taking
actions and acting as if the agent has observed reward R(s,a,s’) + F(s,a,s’) whenever
the reward R(s,a,s’) is actually observed in the original MDP. This is possible because
the original MDP and the transformed MDP use the same states, actions and transition
probailities. Thus, the online/offline model-based /model-free algorithms that may be
applied to the original MDP may in general be readily applied to the transformed MDP
in a similar fashion.

With regards to accelerating reinforcement learning in general and particularly in
goal-directed exploration, shaping can be found to be a popular method [Dorigo and
Colombetti 1998]. Shaping allows the agent’s reward function to be augmented through
the use of intermediate shaping rewards or “progress indicators” that provide a more
informative reinforcement signal to the agent [Matari¢ 1997|. However, an externally
specified shaping reward function to be included in a reinforcement learning system can
require significant engineering effort [Sutton and Barto 1998]. Thus, an easier approach
may be to allow an agent to learn its own shaping function from experience across
several tasks without having to have it specified in advance.

By learning which sensory patterns predict reward across tasks, this information
can be used as a shaping function that provides a first estimate for the value of newly
discovered states when learning a value function for an unexperienced task. In this
case, an agent would initially have some precified, possibly random or uniform, shaping
function and then refine it as it experiences several related but distinct task instances
over its lifetime. Distinct related task instances refer to variations of the same type of
task which have some commonality between them so that as the agent solves each task
it is able to retain learned knowledge usefully across them.

Reward linked related tasks are defined as follows. When considering a variation of
tasks, the agent creates two representations namely a problem-space and an agent-space.
The problem-space refers to the state-space along with its accompanying transition
probabilities and reward function which is different for each task. The agent-space
refers to the sensations that are consistently present and retain the same semantics
across all variations of a task. Thus, the variations of a task are called related if the
tasks consist of environments that share an agent-space. The task variations are called
reward-linked if the reward function in each environment allocates the same rewards for
the same type of events (e.g. regardless of which environment the agent is in, the reward
is always r; for bumping into a wall and ry for reaching a light source). The purpose
this serves is to ensure that there is some useful relationship and potential correlation
between the sensations in the agent-space and reward across task variations, which the
agent can learn to exploit to accelerate learning in other tasks.

Ultimately, shaping rewards present another use of knowledge transfer to acceler-
ate learning in subsequent related tasks. Reward shaping includes learning a reward

104



predictor learned from using prior experience on a sequence of tasks [Konidaris and
Barto 2006]. The idea is to learn a measure that provides more information over the
reward that will accelerate the learning of more difficult tasks. This is accomplished
by maintaining a problem-space and an agent-space. The problem space refers to a
Markov representation that differs for each task, while the action space is where value
predictions are formed. Similarly, learning action priors is related to the idea of main-
taining a problem space and an agent space. In this case, the agent space refers to the
common elements between tasks, while the problem space is specific to each task.

5.3 Options

An option is a learned abstract action in a semi-MDP model [Precup et al. 1998|.
Options are used in semi-MDP models because they violate the Markov assumption
(see Section 2.2.1). This violation stems from the fact that the options take arbitrarily
long to execute preventing the probability of the next time step’s state to depend only
on the action and the current state.

An option is an already learned policy for performing a subtask that could be
transferred and used in solving other tasks as an additional action in the MDP model.
For example, consider a robot that has learned to drive a car from one point to another.
Thus, it could use that as one of its skills or actions when learning to plan for another
task such as having to deliver goods from the factory to a store.

Because each option is a regular policy that utilises lower-level actions to execute,
the learning of the optimal policy for MDPs that implement options is therefore very
similar to the original case. After each option is learned, some statistics such as the
expected reward and transition probabilities are computed and preserved. The expected
reward function R(s,0) is defined to be the sum of the discounted rewards that could be
obtained by executing option o in state s, while the transition function T'(s, 0, s’) gives
the probability of option o terminating in state s" if o is executed in state s. The reward
and transition functions for options behave similarly to those of regular actions and can
be incorporated into the model’s set of actions. They can be implemented into the
learning of subsequent tasks by simply making slight modifications to the algorithms
and the model |Precup et al. 1998||Janzadeh and Huber 2013.

Similar to regular POMDP policies (see Section 2.3.3), POMDP options can be
defined by a finite set of linear functions represented by vectors. These are known as
B-vectors and denote the immediate reward for following a given option at a particular
belief state.

However, an option requires a method which will allow it to terminate as its execu-
tion time can be infinite after being selected. One way to achieve this is by incorporating
a terminating action to the option’s action set that can act as a deterministic termina-
tion function. Careful consideration needs to be taken into account to achieve this as
the reward function has to be manipulated so as to ensure that the termination action
is selected when the subtask is completed. A similar process for initialisation has to be
followed as initialisation has to ensure that an option is not selected in a belief state

105



outside its initiation set. An initiation set is a set consisting of all states in which the
option can be initiated.

Although there has been a great deal of research in the use of abstraction and
its benefit with regards to transferring knowledge learned from previous tasks to new
tasks, very little has been studied in a POMDP context. However, options can be
successfully used to transfer skills learned from previous experiences to improve the
learning speeds of other POMDPs [Janzadeh and Huber 2013]. Options are high level
actions and involve learning a policy for executing a subtask that can be transferred
and used as an added action in the POMDP model to solve other tasks. Learning
actions priors can be seen to share similar characteristics to learning the initiation sets
of options. However, they can be differentiated in that action priors describe areas
where the option is sensible/useful, while the initiation sets of options define where the
option can physically be instantiated /used.

5.4 Policy-Contingent Abstraction (PolCA+)

By leveraging domain knowledge and setting intermediate goals to solve a complex task,
hierarchical MDP approaches accelerate the planning of complex planning tasks. There
exists a number of hierarchical MDP approaches namely, Hierarchical Abstract Machine
(HAM) [Parr and Russell 1998], ALisp [Andre and Russell 2002] and MAXQ [Dietterich
2000]. These approaches include defining seperate subtasks, which are handcrafted, and
constrain the solution search space. Subtasks are defined by a set of initial states, a
set of goal states, reduced action sets, fixed/partial policies and local reward functions
(i.e. reward functions defined for each subtask).

Generally, in hierarchical MDP problem solving, it is not necessary for each subtask
planner to consider every state. This is because a collection of states can be grouped into
one by appropriately igonring irrelevant features. By doing so, subtask optimisation
can be accelerated without affecting the quality of the policy. For example, consider
a robot that has to travel from one point to another, but learns which direction to
travel in order to complete the task by conversing with pedestrians. In this case, it is
not necessary to consider the robot’s precise (z,y) location coordinates when selecting
what to say to a pedestrian.

Applying subtask-specific abstraction is well known [Dietterich 2000|[Andre and
Russell 2002|, and most hierarchical approaches require a handcrafted state abstraction
for each subtask. However, designing subtask-specific abstraction requires significant
engineering effort and can be difficult to correctly formulate. Additionaly, it is also
unable to leverage policy-specific abstraction opportunies. For example, to which extent
can the robot’s (x,y) location coordinates be abstracted for conversation tasks as the
robot’s distance from a pedestrian can make conversing very difficult. Therefore, the
exact amount or form of abstraction can be hard to quantify.

Fortunately, there exists research that focuses on automatically learning state ab-
straction functions for non-hierarchical MDP problems [Dean and Givan 1997|, which
can be adopted by hierarcical MDPs. Automatically discovering a state abstraction

106



function includes learning a function that maps states to clusters of states so that an
agent can learn a policy over clusters of states. However, the challenge lies in dis-
covering a grouping that significantly reduces planning time and allows planning over
clusters with minimal loss of performance when compared to planning over the entire
state space.

Policy Contingent Abstraction (PolCA) relies on a set of basic structural assump-
tions and builds on concepts found in both hierarchical MDP algorithms and automated
state abstraction techniques. These structural assumptions are similar to other hier-
archical MDP approaches and are composed of a task graph. Formally, a task graph
G includes leaf nodes, where each leaf node represents a primitive action a from the
original action set A, and internal nodes, where each internal node has the role of repre-
senting both a distinct subtask g as well as an abstract action a. Each distinct subtask
g has an action set defined by its children in the hierarchy, while the abstraction action
a is defined in the context of the above-level subtask.

Formally, subtask g is defined by A, = {@j,...,a,,...} the set of actions which
are allowed in subtask g and R,(s,a) the local reward function [Pineau et al. 2003].
As a result of the hierarchy, there is one action for each immediate child of g. Each
subtask in the hierarchy must have local (non-uniform) reward in order to optimize a
local policy, which in general is equal to the true reward R(s,a). However, an addition
of a pseudo-reward that specifies the desirability of achieving the subgoal is required in
subtasks where all available actions have equal reward (over all states).

Note that we also require a model of the domain D = (S, A, T, R,~). Given an MDP
(S, A, T, R,v) and a task hierarchy G = {gq, - . ., gn}, planning with PolCA requires four
steps to learn a policy. In order, these are: structure the state space [Parr and Russell
1998]; for each subtask g € G in bottom-up order, parameterise the subtask; cluster
the subtask; and solve the subtask [Pineau et al. 2003].

By leveraging the structural assumptions of PolCA and extending it to POMDPs,
the result is a scalable hierarchical POMDP algorithm called PolCA+. PolCA+ can
not guarantee recursive optimality as a result of the properties of belief space planning
[Pineau et al. 2003|. However, because of its ability to handle partial observability, it
is therefore much better suited for real-world robotic tasks over its MDP counterpart
PolCA.

The Policy-Contingent Abstraction algorithm (PolCA+) is another approach to re-
using experience in an effort to accelerate the learning of policies in a POMDP context
[Pineau et al. 2003]. It achieves this by learning task-specific abstractions. This involves
using a task hierarchy to learn an abstraction function and a recursively-optimal policy
for each subtask as it traverses from the bottom to the top of the hierarchy. Through its
use of task partitioning and task-specific state abstraction, PolCA—+ is able to find good
policies for large POMDP problems in a shorter period of time. On the contrary, action
priors focus on learning domain invariances to facilitate faster learning through forming
better abstractions of the domain, rather than learning task-specific abstraction and
policies to accelerate the learning of policies.

107



5.5 HQ-Learning

HQ-learning makes use of the notion that only a few memories corresponding to im-
portant previously achieved subgoals can be sufficient to select the next optimal action.
For example, consider an agent that was given instructions to travel from one point
to another. If its instructions were “head north until a beacon is reached, then turn
east and travel in that direction until another beacon is reached and then travel in a
northerly direction until the target destination is reached.” During the agent’s travel
from its start position to the destination, only a few memories are significant or rele-
vant to succesfully complete the task. An example of such a relevant memory is “the
first beacon has already been passed”. This memory gives sufficient information to the
agent that it should continue travelling in an easterly direction until another beacon is
reached. Therefore, between two subgoals a memory-independent reactive policy will
successfully guide the agent to completing its task.

HQ-learning decomposes a given POMDP into a sequence of reactive policy problems
using a divide and conquer strategy. Reactive policy problems are solved by reactive
policies. Any deterministic finite POMDP optimal POMDP policy with a fixed start-
ing state and goal state can be decomposed into a finite sequence of optimal reactive
memoryless policies. Each subgoal determines the transition from one reactive policy to
another. Reactive policies allow all states causing identical inputs to require the same
optimal action. Thus, the only points that are of importance are those that correspond
to transitions from one reactive policy to the next.

HQ-learning uses a number of reactive policy problem solving subagents to handle
the transitions from one reactive policy to another. Only one subagent can be active at
a given time and each subagent’s reactive policy consists of an adaptive mapping from
observations to actions. HQ-learning’s only type of memory is embodied by a pointer
that indicates which subagent is currently active. This means, the internal system state
of HQ-learning is just a pointer to which subagent is active.

The reactive policies of different subagents are comdined in a manner in which is
learned by the subagents themselves. Initially, the first active subagent generates a
subgoal for itself using its HQ-table, which is a subgoal table [Wiering 1999|. There-
after, it follows the policy embodied by its Q-function until it successfully completes its
subtask. As soon as it achieves its subgoal, control is passed to the next subagent and
the procedure repeats itself until the overall goal is achieved or a time limit is reached.
When this procedure terminates, each agent adjusts both its reactive policy and its
subgoal using two learning rules that interact without explicit communication. The
first states that Q-table adaptation is based on slight modifications of Q-learning and
the second states that HQ-table adaptation is based on tracing successful subgoal se-
quences by Q-learning on the higher (subgoal) level [Wiering 1999|. This allows subgoal
(or reactive policy) combinations that lead to higher rewards to become more likely to
be chosen.

Formally, there is an ordered sequence of n subagents P, Ps,...,P,, where P;
corresponds to the subagent that will solve subtask 1, and P, will solve subtask 2

108



and so fourth. FEach subagent P; is equipped with a Q-table, an HQ-table and a
control transfer unit that transfers control from one subagent to another, with the
exception of P, which only has a Q-table. A subagent’s Q-table (given by a matrix
of size |A| x |O|, where |A| is the number of possible actions and |O| is the number
of different observations) represents its local policy for executing an action given an
input. Q;(or, a;) denotes P;’s utility (Q-value) of selecting action a; when observation
o; is observed. Here, t represents time steps ¢t = 1,2,...,k. Its HQ-table is a vector
with |O] elements which generates the subagent’s current subgoal. This means, each
HQ-table entry represents the estimated value of a possible observation being a subgoal.
Therefore, HQ;(0;) denotes P;’s HQ-value (utility) of selecting o; as its subgoal. Using
a function Active(t) = i, the system is able to determine if subagent P, is active at
time step ¢t which, as stated before, is HQ-learning’s only type of memory.

When selecting a subgoal at the beginning, P; is made active. When P; is made
active, its HQ-table is utilised to choose a subgoal for P;. A Max-random rule is used
to explore different subgoal sequences and states that the subgoal with maximal HQ);
value is selected with probability P,,., and a random subgoal is selected with probability
1 — Ppq [Wiering 1999|. In situations where there are multiple subgoals with maximal
H(Q;-values, subgoals are randomly selected among that group of subgoals.

When selecting an action, the subagent’s action choice depends purely on the cur-
rent observation o;. The Max-Boltzmann distribution is used to select actions during
the learning process [Wiering 1999]. Primarily, this is used to adjust the degree of
randomness involved in the subagent’s action selection procedure.

In order to transfer control from one active subagent to another, the following pro-
cess is used. After each action execution by a subagent, the subagent uses its control
transfer unit to assess whether P; has reached the goal. If it hasn’t, its control transfer
unit assesses whether P; has achieved its subgoal to decide whether control should be
passed on to P;iq.

HQ-learning can be used for inductive transfer. Inductive knowledge transfer in
POMDPs may also facilitate generalisation and knowledge transfer to accelerate the
learning of subsequent tasks, as long as different world states leading to similar outcomes
require similar treatment [Wiering 1999].

Incremental learning can be used to transfer the experience from a relatively simpler
domain’s solution to a more complex one that has similar characteristics. In this case,
an agent is trained to solve a task in a simpler domain and then without resetting its
Q-tables and HQ-tables, the agent is then required to solve a task in a more complex
domain. Q-tables are used to select the next action and are stored estimates of actual
observation/action values, while HQ-tables are used to generate a subgoal once the
agent is made active and are stored estimated subgoal values. This is similar to our work
as we learn action priors in a smaller, but similar domain and transfer the knowledge
learned from solving the tasks in that domain to new tasks in a more complex domain
that has similar charateristics to accelerate the learning of these new tasks. However,
using action priors differs in that the priors are learned from multiple tasks as opposed
to solving one task and transferring that knowledge to a new task.

109



Chapter 6

6 Future Work

The same ideas demonstrated here with SARSOP can be applied to other point-based
POMDP approaches, where the incorporation of action priors would be able to prune
actions or prioritise action selection in different learning instances. However, the do-
mains used with these approaches must support multiple tasks, with related structure.

It would be particularly interesting to use these principles of action prior use in
online POMDP paradigms, such as the Determinized Sparse Partially Observable Tree
(DESPOT) algorithm [Somani et al. 2013], with a larger action space. We believe
an agent stands to make significant gains in this context as reasoning over a wide
branching factor of different action sequences can be very computationally demanding.
However, the action priors should be able to guide the search process towards previously
experienced solutions with less computational effort.

In most cases, existing point-based POMDP approaches assume a discrete state
space, while in reality the natural state space for a robot agent is often continuous.
The curse of dimensionality is a common difficulty when the state space is continuous
as there are infinitely many states in a continuous state space and you still need to keep
a continuous belief over them. However, a powerful technique for handling this issue
is through the use of probabilistic sampling [Traub and Werschulz 1998|. Using action
priors to guide this sampling process would possibly have the advantage of improving
this method by basing its sampling on behaviours that were considered to be optimal
in previously solved tasks.

Another possible avenue that could be worth investigating in POMDPs and could
possibly demonstrate further advantages is by learning action priors over the belief
space. In our work we learned action priors based on observations, but an alternative
for POMDPs would be to base the priors on belief states. Such a basis might also yield
some interesting insights given the continuous and structured nature of belief states. An
investigation into whether there were advantages to either direction (observation-based
or belief-based) and under which situations would be useful.

In the same way as we can define preferences over actions based on states or obser-
vations, we could possibly do this over beliefs. In this case, we would possibly need to
work with some approximation (possibly leveraging the SARSOP framework). What
makes this more interesting is that the action priors are then defined over a continuous
space. Using the ideas of SARSOP, perhaps there could be pruned regions or vectors
in the belief space.

We developed three algorithms, namely SARSOP with Action Priors for Sampling,
SARSOP with Action Priors for Pruning and SARSOP with Action Priors for Simula-
tions (see Section 3.3.2). Perhaps considering a combination of these approaches may

110



yield benefits. For example, developing a new algorithm that combines SARSOP with
Action Priors for Sampling with SARSOP with Action Priors for Pruning. In this case,
we would essentially use action priors for selecting actions during the sampling method
of SARSOP as well as to prune a-vectors on top of SARSOP’s d-dominance pruning
technique.

Action priors build a model of “common sense” behaviour of a domain through the
combination of domain invariances and the common elements of policies used to solve a
variety of different tasks in the same domain. In this thesis, we only used this approach
to address the idea of accelerating the learning of new tasks in the same agent. However,
an interesting idea to address is to demonstrate how the same methodology can be used
in a multi-agent setting. In this case, the action prior knowledge learned from one agent
is transferred to another, based on the knowledge it has learned from the behaviour of
numerous other agents.

Another interesting study that could be carried out is the use of function approx-
imation to formulate the MDP action priors. Linear function approximation involves
establishing the value function as a linear combination of a set of basis functions, which
are refered to as features [Gordon 1995||Busoniu et al. 2010]. The suspicion is that the
feature choices in these maze environments will have an impact on performance.

Perhaps a comparative analysis with the existing literature presented in Chapter
5 could help in consolidating the performance of our model. This would entail run-
ning experiments using the various approaches on the same domain environments and
comparing the effectiveness of these algorithms in improving the learning process using
knowledge transfer. This would allow us to determine the most fruitful approach for
using knowledge transfer to accelerate the learning of future tasks.

In this thesis we are not concerned with the time in which it takes to learn the
action priors as we consider it to be a once-off overhead. However, the exclusion of this
work leaves the reader without information on how much prior work would have to be
completed to appreciate the faster convergence time. A key point to consider here would
be to emphasise the tradeoff between the effort used to learn the action priors versus the
appreciation for the faster convergence time. Less computational effort would reflect a
greater appreciation for the faster convergence time, while an increased computational
effort may result in a decreased appreciation.

Lastly, these ideas could be carried out on a real robot to demonstrate that these
ideas work effectively not only in theory but practically as well. This would include
carrying out simulations using simulation environments, such as ROS, and then carrying
that work over to a real life implementation using a real robot and domain. Additionally,
perhaps simulations could be used to learn action priors which, in turn, would be
transferred to physical domains where they are used on a real robot.

111



Chapter 7

7 Conclusion

This research was largely concerned with learning general domain knowledge, particu-
larly in the context of partial observability, and transferring this knowledge to foreign
tasks to be solved in future. The purpose of transferring this knowledge is to accel-
erate the completion of unfamiliar tasks by reusing both this learned knowledge and
previously learned behaviours. The goal is to enable an agent to be capable of making
competent decisions even in the early phases of a learning process.

We propose that for an agent to be generally capable when it is required to perform
a range of unknown tasks in which it experiences uncertainty, the agent must have the
ability to continually learn from a lifetime of experience which is largely dependent on its
ability to generalise from past experiences and its ability to form representations which
facilitate faster learning and the transfer of knowledge between different situations. By
exploiting the commonalities between large families of tasks, the agent may potentially
minimise situations where it has to relearn from scratch. This also has the effect of
allowing an agent to build better models of the domain.

We propose a method that extends existing POMDP formalisms by taking into
account the statistics of action choices over a lifetime of the agent, in an effort to allow
the agent to be able to quickly cut down options when deciding which actions to select,
in a manner which may not have been obvious if each task was solved in isolation. We
show how the agent can reuse behavioural knowledge learned from previously solved
tasks to accelerate the learning of new tasks.

We have demonstrated the advantages of abstraction and its strengths in allowing
an agent to learn and make feasible decisions quickly in unforeseen situations. To a
large extent, this thesis focused on how a learning agent can acquire a form of “com-
mon sense” knowledge learned from multiple instances of different tasks in the same
domain. This knowledge provides a set of behavioural guidelines allowing an agent to
be able to appropriately handle both familiar and unfamiliar tasks. By allowing an
agent to perform multiple tasks in an environment, it can learn domain invariances by
forming better abstractions of the environment as a result of considering the underlying
behavioural commonalities among these experienced tasks.

Choosing the best action to take in situations where agents have a wide variety of
actions can be a difficult task. However, by learning the task-independent behavioural
commonalities of an environment, an agent can focus its exploratory behaviour away
from actions that are detrimental or useless. By transferring the knowledge learned
from previously solved tasks to solve new tasks, an agent can be able to determine the
behaviours that are more suitable in particular situations. This is essentially the idea
behind the use of action priors.

112



Action prior knowledge has the ability to improve the performance of learning tasks
as they are able to specify action usefulness and guide exploration towards behaviours
that have been useful in previously solved tasks. In this thesis, we have demonstrated
how these priors can be advantageous in a POMDP context and how their use can lead
to the computation of good policies in a shorter period of time.

The knowledge given by the action priors is based on previous experiences of the
agent in an environment and can be learned by taking into account the behaviours that
were considered to be optimal when learning previously experienced tasks. They are
learned from solving multiple tasks, and by studying the optimal policies that arise
from solving those tasks, we are able to learn about the underlying structure of the
domain the agent is acting in.

By learning the invariances of an environment, an agent is able to gain insights
into learning what not to do in particular situations. This has the ability of guiding
the exploration process away from risky or unsafe behaviours as the priors bias search
towards previously useful choices.

Not only do action priors allow an agent to be able to transfer knowledge between
different tasks in the same domain, but enables cross domain transfer as the priors
may also be used in different state spaces. This is because the priors are associated
with observations, allowing an agent to determine the useful actions based on its cur-
rent observables. However, this is particularly fruitful if the domains have the same
observation space.

This thesis presents a step towards autonomous robots that can operate reliably in
uncertain environments. We hope that future work can build on the ideas presented in
this thesis because an essential capability for robots as such is their ability to handle
uncertainty for efficient task planning with imperfect state information.

113



References

[Andre and Russell 2002] D. Andre and S. Russell. State Abstraction for Pro-
grammable Reinforcement Learning Agents. Proceedings of the AAAIL 2002.

[Bishop 2006] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[Bonet 2009] B. Bonet. Deterministic POMDPs Revisited. Proceedings of the 25th Con-
ference on Uncertainty in Artificial Intelligence, pages 59-66, 2009.

[Busoniu et al. 2010] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst. Rein-
forcement Learning and Dynamic Programming Using Function Approximators,
39, CRC press, 2010.

[Boutilier et al. 2001] C. Boutilier, R. Reiter, and B. Price. Symbolic Dynamic Pro-
gramming for First-Order MDPs. Proceedings of the 17th International Joint Con-
ference on Artificial Intelligence (IJCAI-01), pages 690-697, 2001.

[Braziunas 2003| D. Braziunas. POMDP Solution Methods. Technical Report, Depart-
ment of Computer Science, University of Toronto, 2003.

[Cassandra et al. 1996] A.R. Cassandra, L.P. Kaelbling, and J.A. Kurien. Acting under
Uncertainty: Discrete Bayesian Models for Mobile-Robot Navigation. Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2,
pages 963-972, 1996.

[Cassandra et al. 1997] A.R. Cassandra, M.L. Littman, and N.L. Zhang. Incremental
Pruning: A Simple, Fast, Exact Method for Partially Observable Markov Decision
Processes. Proceedings of the Thirteenth Conference on Uncertainty in Artificial
Intelligence, pages 54-61, 1997.

[Cassandra 1998| A.R. Cassandra. Fzact and Approzimate Algorithms for Partially Ob-
servable Markov Decision Processes. Ph.D. Thesis, Brown University, 1998.

[Cassandra et al. 1994] A.R. Cassandra, L.P. Kaelbling, and M.L. Littman. Acting Op-
timally in Partially Observable Stochastic Domains. Proceedings of the AAAIL 94,
pages 1023-1028, 1994.

[Dean and Givan 1997] T. Dean and R. Givan. Model Minimization in Markov Decision
Processes. Proceedings of the AAAI 1997.

[Dietterich 2000] T.G. Dietterich. Hierarchical Reinforcement Learning with the
MAXQ Value Function Decomposition. Journal of Artificial Intelligence Research,
13, pages 227-303, 2000.

[Dorigo and Colombetti 1998] M. Dorigo and M. Colombetti. Robot shaping: An Ex-
periment in Behavior Engineering. MIT Press/Bradford Books, 1998.

114



[Galleguillos and Belongie 2010| C. Galleguillos and S. Belongie. Context Based Object,
Categorization: A Critical Survey. Computer Vision and Image Understanding,
114.6, pages 712-722, 2010.

[Gordon 1995 G.J. Gordon. Stable Function Approximation in Dynamic Program-
ming. Proceedings of the 12th International Conference on Machine Learning, 1995.

[Guestrin et al. 2001] C. Guestrin, D. Koller, and R. Parr. Solving Factored POMDPs
with Linear Value Functions. Seventeenth International Joint Conference on Arti-
ficial Intelligence workshop on Planning under Uncertainty and Incomplete Infor-
mation, pages 67-75, 2001.

[Guy et al. 2013| S. Guy, J. Pineau, and R. Kaplow. A Survey of Point-Based POMDP
Solvers. Autonomous Agents and Multi-Agent Systems, 27.1, pages 1-51, 2013.

[Hauskrecht 2000] M. Hauskrecht. Value-function Approximations for Partially Observ-
able Markov Decision Processes. Journal of Artificial Intelligence Research, 13,
pages 33-94, 2000.

[Hsiao et al. 2007] K. Hsiao, L.P. Kaelbling, and T. Lozano-Perez. Grasping POMDPs.
Proceedings of the IEEE International Conference on Robotics € Automation,
pages 4685-4692, 2007.

[Hsu et al. 2008] D. Hsu, W.S. Lee, and N. Rong. A Point-Based POMDP Planner for
Target Tracking. Proceedings of the IEEE International Conference on Robotics &
Automation, pages 26442650, 2008.

[Hu et al. 2003] X. Hu, D.F. Alarcon, and T. Gustavi. Sensor-Based Navigation Coor-
dination for Mobile Robots. Proceedings of the 42nd IEEE Conferenee on Decision
and Control, pages 6375-6380, 2003.

[Janzadeh and Huber 2013| H. Janzadeh and M. Huber. Learning Policies in Partially
Observable MDP with Abstract Actions Using Value Iteration. FLAIRS Confer-
ence, 2013.

[Jong and Stone 2005] N.K. Jong and P. Stone. State Abstraction Discovery from Ir-
relevant State Variables. International Joint Conference on Artificial Intelligence,
pages 752-757, 2005.

[Kaelbling et al. 1998] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning
and Acting in Partially Observable Stochastic Domains. Artificial intelligence,
101.1, pages 99-134, 1998.

[Kelly et al. 2006] A. Kelly, A. Stentz, O. Amidi, M. Bode, D. Bradley, A. Diaz-
Calderon, M. Happold, H. Herman, R. Mandelaum, T. Pilarski, P. Rander, S.

115



Thayer, and R. Warner. Toward Reliable off Road Autonomous Vehicles Operat-
ing in Challenging Environments. Journal of Field Robotics, 25, pages 449-483,
2006.

[Klein and Abbeel 2013] D. Klein and P. Abbeel. CS188: Artificial Intelligence. Lecture
Slides, Department of Computer Science, U.C. Berkeley, 2013.

[Koenig and Simmons 1998| S. Koenig and R.G. Simmons. Xavier: A Robot Naviga-
tion Architecture Based on Partially Observable Markov Decision Process Models.
Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot
Systems, pages 91-122, 1998.

[Konidaris and Barto 2006] G.D. Konidaris and A.G. Barto. Autonomous Shaping:
Knowledge Transfer in Reinforcement Learning. Proceedings of the 23rd Interna-
tional Conference on Machine Learning, pages 489-496, 2006.

[Kurniawati et al. 2008] H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP: Efficient
Point-Based POMDP Planning by Approximating Optimally Reachable Belief
Spaces. Proceedings of Robotics: Science and Systems, 2008.

[Kurniawati et al. 2010| H. Kurniawati, Y. Du, D. Hsu, and W.S. Lee. Motion Planning
under Uncertainty for Robotic Tasks with Long Time Horizons. The International
Journal of Robotics Research, 2010.

|[Lankenau and Meyer 1999] A. Lankenau and O. Meyer. Formal Methods in Robotics:
Fault Tree Based Verification. Proceedings of Quality Week, 1999.

[Lim et al. 2011] Z.W. Lim, D. Hsu, and W.S. Lee. Monte-Carlo Planning in Large
POMDPs. Proceedings of Advances in Neural Information Processing Systems
(NIPS-2011), 2011.

[Littman et al. 1995] M.L. Littman, A.R. Cassandra, and L.P. Kaelbling. Learning
Policies for Partially Observable Environments: Scaling Up. Proceedings of the
Twelfth International Conference on Machine Learning, pages 362-370, 1995.

[Littman 1996] M.L. Littman. Algorithms for Sequential Decision Making. Ph.D. The-
sis, Department of Computer Science, Brown University, 1996.

|[Maaref and Barret 2002] H. Maaref and C. Barret. Sensor-Based Navigation of a Mo-
bile Robot in an Indoor Environment. Robotics and Autonomous Systems, 38, pages
1-18, 2002.

[Matari¢ 1997] M. Matari¢. Reinforcement Learning in the Multi-Robot Domain. Au-
tonomous Robots, 4, pages 73-83, 1997.

[Mitchell 1997] T.M. Mitchell. Machine Learning. Burr Ridge, 11.: McGraw Hill, 45,
1997.

116



[Morris 2007] A.C. Morris. Robotic Introspection for Ezploration and Mapping of Sub-
terranean Environments. Ph.D. Thesis, Carnegie Mellon University, 2007.

[Murphy 2000| K.P. Murphy. A Survey of POMDP Solution Techniques. Technical Re-
port, Department of Computer Science, U.C. Berkeley, 2000.

[Ng et al. 1999] A. Ng, D. Harada, and S. Russell. Policy Invariance Under Reward
Transformations: Theory and Application to Reward Shaping. Proceedings of the
16th International Conference on Machine Learning, pages 278-287, 1999.

[Ong et al. 2009] S. Ong, S. Png, D. Hsu, and W. Lee. POMDPs for Robotic Tasks
with Mixed Observability. Proceedings of Robotics: Science and Systems, 29.8,
pages 1053-1068, 2009.

[Papadimitriou and Tsitsiklis 1987] C.H. Papadimitriou and J.N. Tsitsiklis. The Com-
plexity of Markov Decision Processes. Mathematics of Operations Research, 12.3,
pages 441-450, 1987.

[Parr and Russell 1998] R. Parr and S. Russell. Reinforcement Learning with Hierar-
chies of Machines. Advances in Neural Information Processing Systems, 10, pages
1043-1049, 1998.

[Parr and Russell 1995] R. Parr and S. Russell. Approximating Optimal Policies for
Partially Observable Stochastic Domains. Proceedings of the International Joint
Conference on Articial Intelligence, pages 1088-1094, 1995.

[Pineau et al. 2003] J. Pineau, G. Gordon, and S. Thrun. Point-Based Value Iteration:
An Anytime Algorithm for POMDPs. Proceedings of the International Joint Con-
ference on Artificial Intelligence, 2003.

[Pineau et al. 2003] J. Pineau, G. Gordon, and S. Thrun. Policy-Contingent Abstrac-
tion for Robust Robot Control. Proceedings of Uncertainty in Artificial Intelligence,
19, pages 477-484, 2003.

[Pineau 2004| J. Pineau. Tractable Planning Under Uncertainty: Exploiting Structure.
Ph.D. Thesis, Rutgers University, 2004.

[Pineau et al. 2006] J. Pineau, G. Gordon, and S. Thrun. Anytime Pointbased Approx-
imations for Large POMDPs. Journal of Artificial Intelligence Research, 27, pages
335-380, 2006

[Png and Pineau 2011] S. Png and J. Pineau. Bayesian Reinforcement Learning for
POMDP-Based Dialogue Systems. Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, pages 2156-2159, 2011.

[Poupart et al. 2011] P. Poupart, K.E. Kim, and D. Kim. Closing the Gap: Improved
Bounds on Optimal POMDP Solutions. International Conference on Planning and
Scheduling, 2011.

117



[Precup et al. 1998] D. Precup, R. Sutton, and S. Singh. Theoretical Results on Rein-
forcement Learning with Temporally Abstract Options. Machine Learning: ECML-
98, pages 382-393, 1998.

[Puterman 1994] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, Inc., 1994.

[Raol and Gopal 2012| J.R. Raol and A.K. Gopal. Mobile Intelligent Autonomous Sys-
tems. CRC Press, 2012.

|Rosman and Ramamoorthy 2012| B. Rosman and S. Ramamoorthy. What Good are
Actions? Accelerating Learning using Learned Action Priors. Proceedings of the
IEEE International Conference on Development and Learning and FEpigenetic
Robotics, 2012.

[Rosman and Ramamoorthy 2012| B. Rosman and S. Ramamoorthy. A Multitask Rep-
resentation using Reusable Local Policy Templates. Proceedings of the AAAI Spring
Symposium Series on Designing Intelligent Robots: Reintegrating Al 2012.

[Rosman and Ramamoorthy 2015 B. Rosman and S. Ramamoorthy. Action Priors for
Learning Domain Invariances. IEEE Transactions on Autonomous Mental Devel-
opment, 2015.

[Rosman 2014] B. Rosman. Learning Domain Abstractions for Long Lived Robots.
Ph.D. Thesis, University of Edinburgh, 2014.

[Roy et al. 1999] N. Roy, W. Burgard, D. Fox, and S. Thrun. Coastal Navigation -
Mobile Robot Navigation with Uncertainty in Dynamic Environments. Proceedings
of the IEEFE International Conference on Robotics and Automation, 1, pages 35-40,
1999.

[Roy et al. 2005] N. Roy, G. Gordon, and S. Thrun. Finding Approximate POMDP
Solutions Through Belief Compression. Journal of Artificial Intelligence Research,
23, pages 1-40, 2005.

[Schmill et al. 2000] M.D. Schmill, T. Oates, and P.R. Cohen. Learning Planning Op-
erators in Real-World, Partially Observable Environments. Proceedings of the 5th

Interantional Conference on Artificial Intelligence Planning System, pages 246-253,
2000.

[Sherstov and Stone 2005] A.A. Sherstov and P. Stone. Improving Action Selection in
MDP’s via Knowledge Transfer. Proceedings of the AAAIL 5, pages 1024-1029, 2005.

[Silver and Veness 2010| D. Silver and J. Veness. Monte-Carlo Planning in Large
POMDPs. Proceedings of Advances in Neural Information Processing Systems
(NIPS-2010), pages 2164-2172, 2010

118



[Smallwood and Sondik 1973] R.D. Smallwood and E.J. Sondik. The Optimal Control
of Partially Observable Markov Processes Over a Finite Horizon. Operations Re-
search, 21.5, pages 1071-1088, 1973.

[Smith and Simmons 2004] T. Smith and R. Simmons. Heuristic Search Value Iteration
for POMDPs. Proceedings of Uncertainty in Artificial Intelligence, 2004.

[Smith and Simmons 2005] T. Smith and R. Simmons. Point-Based POMDP algo-
rithms: Improved Analysis and Implementation. Proceedings of the 21st Conference
on Uncertainty in Artificial Intelligence, pages 542-547, 2005.

[Somani et al. 2013] A. Somani, N. Ye, D. Hsu, and W.S. Lee. DESPOT: online
POMDP Planning with Regularization. Advances in Neural Information Process-
ing Systems, 2013.

[Sondik 1971] E.J. Sondik. The Optimal Control of Partially Observable Markov Deci-
sion Processes. Ph.D.Tthesis, Stanford University, 1971.

[Sondik 1978] E.J. Sondik. The Optimal Control of Partially Observable Markov Pro-
cesses Over the Infinite Horizon: Discounted Costs. Operations Research, 26, pages
282-304, 1978.

[Spaan and Vlassis 2004] M.T.J. Spaan and N. Vlassis. A Point-Based POMDP Algo-
rithm for Robot Planning. Proceedings of the IEEE International Conference on
Robotics and Automation, 3, pages 2399-2404, 2004.

[Stolle and Atkeson 2010] M. Stolle and C. Atkeson. Finding and Transferring Policies
Using Stored Behaviours. Autonomous Robots, 29, pages 169-200, 2010.

[Sutton and Barto 1998] R.S. Sutton, and A.G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, 1998.

[Taylor and Stone 2009] M.E. Taylor and P. Stone. Transfer Learning for Reinforce-
ment Learning Domains: A Survey. Journal of Machine Learning Research, 10,
pages 1633-1685, 2009.

[Thorpe and Durrant-Whyte 2001] C. Thorpe and H. Durrant-Whyte. Field Robots.
Proceedings of the 10th International Symposium of Robotics Research, Springer-
Verlag, 2001.

[Verma 2005| V. Verma. Tractable Particle Filters for Robot Fault Diagnosis. Ph.D.
Thesis, Robotics Institute, Carnegie Mellon University, 2005.

[Wiering 1999] M. A. Wiering. Explorations in Efficient Reinforcement Learning. Ph.D.
Thesis, University of Amsterdam, 1999.

119



[Wingate et al. 2011] D. Wingate, N.D. Goodman, D.M. Roy, L.P. Kaelbling, and J.B.
Tenenbaum. Bayesian Policy Search with Policy Priors. Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 2011.

[Zhang and Liu 1997] N.L. Zhang and W. Liu. Region-based Approximations for Plan-
ning in Stochastic Domains. Proceedings of the Thirteenth Annual Conference on
Uncertainty in Articial Intelligence, pages 472-480, 1997.

120



