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ABSTRACT

In a series of papers by Wen-Chi Kuo, Coenraad Labuschagne and Bruce

Watson results of martingale theory were generalised to the abstract setting

of Riesz spaces. This thesis presents a survey of those results proved and aims

to expand upon the work of these authors. In particular, independence results

will be considered and these will be used to generalise well known results in

the theory of Markov processes to Riesz spaces.

Mixingales and quasi-martingales will be translated to the Riesz space

setting.
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Chapter 1

Introduction

Studying stochastic processes in Riesz spaces gives us insight into the underlying

structure of the processes. In this thesis, we focus on Markov processes and martingale

generalisations. We continue the work of Kuo, Labuschagne and Watson on the

generalisation of stochastic process to the Riesz space setting, see [37, 38]. Other

generalisations and studies of martingales and stochastic processes in the setting of

Riesz spaces have been given by Boulabiar, Buskes and Triki [13], Dodds, Grobler,

Huijsmans and de Pagter [19, 27, 28], Luxemburg and de Pagter [40], Stoica [57, 58],

Troitsky [60].

Each chapter begins with an introduction and description of what is to follow, so here

we will briefly outline of the structure of the thesis.

In Chapter 2 we present a literature review of results and definitions pertinent to

the work that follows. We first define stochastic processes in the classical setting of

probability spaces and present a motivation for the definition of stochastic processes
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Introduction

in Riesz spaces. We then give a survey of the properties of Riesz spaces that are

needed to define stochastic processes in Riesz spaces. Linear operators in Riesz spaces

are then discussed and used to define conditional expectations in Riesz spaces. We

conclude Chaper 2 with a review of known results concerning martingales in Riesz

spaces.

In [63], Watson proved an Andô-Douglas-Nikodým-Radon type result for conditional

expectation operators in Riesz spaces. In Chapter 3 we build on this result and

define the notion of T -independent conditional expectation operators. The notion of

T -conditional independence is required in order to translate Markov process results

to Riesz spaces. The results of Chapter 3 were published by Vardy and Watson in

[61].

Markov processes are considered in Chapter 4. Results relevant to the thesis from

classical Markov process theory are given. Following this, the theory is generalised to

the Riesz space setting. Independent sums and their relationship to Markov processes

are also considered. Again, this work has been published by Vardy and Watson in

[61].

Generalisations of martingales are considered in Chapters 5 and 6. Mixingales (a

combination of the concepts of martingales and mixing processes) are considered

in Chapter 5. We define mixingales in a Riesz space and prove a weak law of large

numbers for mixingales in this setting. The content of this chapter has been submitted

for publication.

In Chapter 6 we generalise quasi-martingales to the Riesz space setting. We show that

quasi-martingales in a Riesz space can be decomposed into the sum of a martingale

and a quasi-potential (a Riesz decomposition). If, in addition, the quasi-martingale
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Introduction

is right continuous then the martingale and quasi-potential of this decomposition are

also right continuous. Further to this, we show that each right continuous quasi-

potential can be decomposed into the difference of two positive potentials. Again,

the material of this chapter has been submitted for publication.

Finally, we conclude the thesis with a discussion of further work in Chapter 7.
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Chapter 2

Preliminaries

2.1 Classical Stochastic Processes

This thesis is concerned with translating results from the classical setting of L1 prob-

ability spaces to the more abstract setting of Riesz spaces and, as such, it is necessary

that we first give a brief introduction to probability theory.

Recall that in a measure space, say (Ω,F , µ), a random variable is a measurable, real

valued map with domain Ω. That is, X is a random variable if

X : Ω→ R, X−1(B) ∈ F

for all Borel sets B ⊂ R.

In this setting, a filtration (Fn)n∈N is a collection of sub-σ-algebras of F such that

F1 ⊂ F2 ⊂ . . . . The random variables (Xn)n∈N are said to be adapted to the filtration

(Fn)n∈N if Xn is Fn measurable.
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2.1 Classical Stochastic Processes Preliminaries

2.1.1 Conditioning

Let (Ω,F , P ) be a probability space (that is, (Ω,F , P ) is a measure space with P (Ω) =

1). We start by considering independence.

(i) We say that measurable sets A and B (i.e A,B ∈ F) are independent if

P (A ∩B) = P (A)P (B).

(ii) If F1,F2, . . . , are sub-σ-algebras of F then F1,F2, . . . , are independent if for

all i1 < i2 < · · · < in, n ∈ N, and Aij ∈ Fj, j = 1, 2, . . . , n, we have

P (Ai1 ∩ · · · ∩ Ain) =
n∏
j=1

P (Aij).

(iii) The random variables Xt1 , Xt2 , . . . are said to be independent if the σ-algebras

generated by them are independent. That is, σ(Xt1), σ(Xt2), . . . are indepen-

dent.

Next we consider the concept of expectation. Let f ∈ L1(Ω,F , P ). We define the

expectation of f to be

E[f ] =

∫
Ω

f dP.

In order to define conditional expectations, we first need to consider conditional prob-

abilities. If A,B ∈ F then the probability that B occurs given that event A has

occurred is given by

P (B |A) =
P (A ∩B)

P (A)
.

We note, in this case, P (· |A) is a measure defined on F and the conditional expectation

can be easily built: Let f be a random variable and consider an event A ∈ F . The
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2.1 Classical Stochastic Processes Preliminaries

conditional expectation of f given A is

E[f |A] =

∫
A
f dP

P (A)
=

∫
Ω

f dP (· |A).

In particular, E[f |A] is the average value of f over A relative to the measure P . If

f = χB for some B ∈ F we see that

E[χB |A] = P (B |A).

We now consider conditioning on a random variable. If we are given a random vari-

able, ξ : Ω→ R, which takes on countably many distinct values (aj)j∈N, then setting

Aj = ξ−1({aj}), we have that Σ = {Aj}j∈N is a partition of Ω and

P (B | ξ = aj) = P (B |Aj).

The above statement can be more effectively expressed by defining the conditional

probability of B relative to the random variable ξ as a new random variable which

takes the value P (B|Aj) on the set Aj, i.e.

P (B | ξ)[x] = P (B | ξ−1({ξ(x)})).

Here it should be observed that the random variable P (B|ξ) is measurable with

respect to the σ-algebra generated by Σ, as it is constant on each Aj. Using this

interpretation of the conditional probability we obtain that E[f |ξ] is a random variable

that on each Aj takes on the average of f on Aj.

In particular, suppose X and Z are random variables taking the distinct, discrete

values x1, x2, . . . and z1, z2, . . . respectively. As seen above, the probability that

X = xi given Z = zj is

P (X = xi |Z = zj) =
P ({ω |X(ω) = xi} ∩ {ω |Z(ω) = zj})

P (Z = zj)
,

6



2.1 Classical Stochastic Processes Preliminaries

and the expected value of X given that Z = zj is

E[X |Z = zj] =
∑
i

xiP (X = xi |Z = zj).

Thus, E[X |Z] defines the random variable

Y (ω) = E[X |Z = Z(ω)]

that is constant on each of the sets Z−1(zj) and is thus measurable with respect to

the minimal σ-algebra under which Z is measurable, σ(Z). We also note that∫
{ω|Z(ω)=zj}

Y dP =
∑
i

xiP ({ω |X(ω) = xi} ∩ {ω |Z(ω) = zj})

=

∫
{ω |Z(ω)=zj}

X dP.

So, for each A ∈ σ(Z), ∫
A

Y dP =

∫
A

X dP

and Y is σ(Z) measurable. In particular, the only relevance of the random variable

Z in the above construction is that it generates σ(Z). That is, if Z ′ is a random

variable which also generates the σ-algebra σ(Z), then E[X |Z] = E[X|Z ′]. Hence, it

makes sense to denote Y = E[X|Z] by

Y = E[X |σ(Z)].

This leads us to the final definition of conditional expectation over a sub-σ-algebra

of F .

Definition 2.1.1. Let G be a sub-σ-algebra of F and X be a random variable with

respect to F . We define the conditional expectation of X with respect to G as the

G-measurable function Y with∫
A

Y dP =

∫
A

X dP, for all A ∈ G

and denote Y = E[X | G].
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2.1 Classical Stochastic Processes Preliminaries

We note that Y has the same expectation (average) over sets in G as X but is G-

measurable where, in general, X is not. In general, the existence of the conditional

expectation relies on the Radon-Nikodým Theorem.

2.1.2 Some Measure Theory

In order to make the above discussion rigorous, we need a few results from Measure

Theory.

Let F be a σ-algebra on Ω. By a signed measure λ on F we mean a real valued

countably additive set function on F . A set A ∈ F is said to be totally positive (resp.

totally negative) with respect to λ if λ(B) ≥ (resp. ≤) 0 for all B ⊂ A with B ∈ F .

We say that two measures, µ and ν, are mutually singular if there exist disjoint sets,

A and B, such that A∪B = Ω and µ is zero on all measurable subsets of A and ν is

zero on all measurable subsets of B. In this case, we say µ is concentrated on B and

ν is concentrated on A.

Theorem 2.1.2. (Hahn Decomposition Theorem)

If λ is a signed measure on F then there exist sets A,B ∈ F that are respectively

totally positive and totally negative with respect to λ such that A ∩B = ∅ and

A∪B = Ω. The pair (A,B) is called the Hahn decomposition of Ω with respect to λ.

Theorem 2.1.3. (Jordan decomposition theorem)

If λ is a signed measure on F and (A,B) is the Hahn decomposition of Ω with respect

to λ let

λ+(C) = λ(A ∩ C) and λ−(C) = −λ(B ∩ C)

for all C ∈ F . Then λ = λ+ − λ− and λ± are mutually singular measures with λ+

concentrated on A and λ− concentrated on B.
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2.1 Classical Stochastic Processes Preliminaries

Remark: The measures λ± can be characterised as the minimal measures with

λ = λ+ − λ− .

A signed measure λ is said to be absolutely continuous with respect to a measure µ,

denoted λ << µ, if

µ(A) = 0⇒ λ(A) = 0 for all A ∈ F .

Theorem 2.1.4. (Radon-Nikodým Theorem)

If µ is a σ-finite measure and λ is a signed measure with λ << µ then there exists

f ∈ L1(Ω,F , µ) such that

λ(A) =

∫
A

f dµ for all A ∈ F .

The function f is µ almost everywhere unique and is called the Radon-Nikodým deriva-

tive of λ with respect to µ and is denoted by

f =
dλ

dµ
.

The Radon-Nikodým theorem is needed to prove the existence of the conditional

expectation of an L1(Ω,F , P ) random variable, in general. Again a generalisation

of the Radon-Nikodým Theorem is needed when considering stochastic processes on

Riesz spaces, as will be demonstrated later. A Riesz space analogue of this result can

be found in Chapter 3.

2.1.3 Properties of Conditional Expectations

In this section we will give some important and useful results pertaining to conditional

expectations on probability spaces.
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2.1 Classical Stochastic Processes Preliminaries

Theorem 2.1.5. If (Ω,F , P ) is a probability space and X is a P -integrable random

variable, then E[X |Σ] exists and is P -almost everywhere unique.

Let Σ be a sub-σ-algebra of F . We may define the conditional probability of A given

Σ in terms of conditional expectations as follows

P (A |Σ) = E[χA |Σ] for all A ∈ F .

The following are well known properties of conditional expectations (see, [51, 53, 64]

to name a few) on probability spaces and are useful guides in the generalisation of

the theory of stochastic processes to a Riesz space setting:

1. If X, Y ∈ L1(Ω,F , P ), α, β ∈ R and Σ is a sub-σ-algebra of F , then

E[αX + βY |Σ] = αE[X |Σ] + βE[Y |Σ].

That is, E[· |Σ] is linear.

2. If X ∈ L1(Ω,Σ, P ) ⊂ L1(Ω,F , P ) then E[X |Σ] = X. i.e. For any

Y ∈ L1(Ω,F , P )

E [E[Y |Σ] | Σ] = E[Y |Σ]

making E[· |Σ] is idempotent.

3. From 1 and 2 above, we have that E[· |Σ] is a linear projection.

4. If f ≥ 0 then E[f |Σ] ≥ 0.

5. E[1 |Σ] = 1, where 1 is the function with value 1 almost everywhere.

6. If X ∈ L1(Ω,F , P ) and Y ∈ L1(Ω,Σ, P ) with XY ∈ L1(Ω,F , P ) then

E[XY |Σ] = Y E[X |Σ],

i.e. the conditional expectation operator is an averaging operator.

10



2.2 Riesz Spaces Preliminaries

7. If Σ1 ⊂ Σ2 ⊂ F are σ-algebras and X ∈ L1(Ω,F , P ) then

E [E[X |Σ1] | Σ2] = E[X |Σ1] = E [E[X |Σ2] | Σ1] .

8. If X ∈ L1(Ω,F , P ) and σ(X) and Σ are independent, then

E[X |Σ] = E[X].

2.2 Riesz Spaces

Riesz spaces were first defined by Frigyes Riesz in 1928, [54]. However, Riesz is not

solely responsible for the development of Riesz Space Theory. Independent work

done in the mid 1930’s by F. Riesz, H. Freudenthal and L. V. Kantorovitch, each

with their own methods, founded the theory of Riesz spaces. It is interesting to note

that even in the work done in Riesz spaces today, some 70 years later, the different

approaches are evident [41]. Riesz’s work dealt primarily with the order dual of

a given vector space, Freudenthal proved a spectral theorem for Riesz spaces from

which the Radon-Nikodým theorem (mentioned in Section 2.1.2 of this thesis) follows,

whilst Kantorovich sought insight into the algebraic and convergence properties of

Riesz spaces. The research of Freudenthal and Kantorovich has many applications in

Operator Theory.

Several other mathematicians, notably A. G. Pinsker, A. I. Judin and B. Z. Vulikh,

joined Kantorovich in his research of Riesz spaces. Further contributions to the theory

of Riesz spaces were made by H. Nakano, T. Ogasawara, K. Yoshida, S. Kakutani and

H. F. Bohnenblust from 1940 to 1944. However, much of the work done by the afore

mentioned authors was done independently of one another. It is however possible to
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2.2 Riesz Spaces Preliminaries

identify three main centres of research: Japan, Russia and the United States. Each

centre had its own terminology and it took sometime for the results and terminology

to grow together. A good illustration of this is the paper written by I. Amemiya in

1953 [3]. It is not immediately clear that this work is in fact an extension of earlier

work by H. Nakano. The reason for this ‘obscurity’ is the different terminologies used

by the different authors. Fortunately there has been an attempt to unify the different

results and terminologies in the literature. In particular, the book by Luxemburg and

Zaanen, [41] has achieved much in this regard.

A Riesz space is also referred to as a vector lattice or lattice-ordered vector space.

As the last name suggests, a Riesz space is an ordered vector space where the order

structure is a lattice. Here we shall present a survey of definitions and theorems on

lattices. These results form the foundations of Riesz Space Theory.

Many of the proofs in this chapter are of an elementary nature. As a result, proofs

are omitted. Details of the proofs can be found in [66, 41].

2.2.1 Partial Orderings

If X is a non-empty set, we shall denote by x, y, . . . the elements of X (also known

as the points of X). X × X is known as the Cartesian product of X and is the set

consisting of all ordered pairs (x, y) of points of X. A relation, R, in X is any non-

empty subset of X ×X. We write xRy whenever (x, y) ∈ R. A well known example

of a relation and one that is of importance to us is a partial ordering. A relation R

is said to be a partial ordering in X if, for all x, y ∈ X,

(i) xRx (the relation is reflexive);

12
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(ii) if xRy and yRx then x = y (the relation is anti-symmetric);

(iii) if xRy and yRz then xRz (the relation is transitive).

Note that the relation ‘less than or equal to’ obeys all the above properties. It is for

this reason that the partial ordering R in X is often denoted by ≤. Elements x, y of

X for which either x ≤ y or y ≤ x are called comparable. It is important to note

that not every element in a partially ordered set X need be comparable to another

element. That is, if x, y ∈ X it is not true, in general, that x ≤ y or y ≤ x.

If X is partially ordered and Y is a non-empty subset of X then Y inherits the partial

ordering of X. If x ∈ X is such that x ≥ y for all y ∈ Y , we say that x is an upper

bound of Y . If in addition x is such that x ≤ x′ for any other upper bound x′ of Y

then x is called the (unique) least upper bound or supremum of Y . We denote the

supremum, x, of Y by x = supY.

In a similar manner, we define the notions of lower bound and infimum. A lower

bound of a non-empty subset Y of a partially ordered set X is an element of X, say

x0, such that x0 ≤ y for all y ∈ Y . The infimum of Y , denoted inf Y , is the greatest

lower bound of Y . That is, a lower bound x0 of Y is the infimum of Y , i.e. x0 = inf Y ,

if x0 ≥ x′0 for any lower bound x′0 of Y .

A maximal element, say x0, of a partially ordered set X is an element that is not

smaller than any other element in X. That is, for any x ∈ X, if x0 ≤ x then x0 = x.

Since not every pair of elements of a partially ordered set X need be comparable, x0

being maximal does not imply that x0 ≥ x for all x ∈ X. We define the minimal

elements of X in a similar manner. Note that there may be many minimal and

maximal elements of X.

13



2.2 Riesz Spaces Preliminaries

If x0 is a maximal element of partially ordered set X with the property that x0 ≥ x

for all x ∈ X then x0 is called the largest element of X. In this case, x0 is the only

maximal element. However, even if x0 is the only maximal element of X it is not

necessarily true that x0 is the largest element of X. The definition of the smallest

element of X is similar.

Definition 2.2.1. Let X be a partially ordered set.

(i) The set X is said to be Dedekind complete if every non-empty subset of X which

is bounded from above has a supremum and every non-empty subset which is

bounded from below has an infimum.

(ii) The set X is called Dedekind σ-complete if every non-empty countable subset

which is bounded from above has a supremum and every non-empty countable

subset which is bounded from below has an infimum.

(iii) The set X is called a lattice if every subset consisting of only two elements has

an infimum and a supremum.

Remark: It is clear that every Dedekind complete space is σ-Dedekind complete.

However, the reverse implication is not true. We have the following one-sided char-

acterization of Dedekind completeness.

Theorem 2.2.2. The partially ordered set X is Dedekind complete if and only if

every non-empty subset which is bounded from above has a supremum.

14
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2.2.2 Lattices

A partially ordered set X is a lattice if for each pair of elements, a, b ∈ X, sup{x, y}

and inf{x, y} exist in X. Suppose X is a lattice. We denote the supremum of the set

consisting of the elements x, y by x ∨ y and the infimum as x ∧ y. It is easily seen

by induction that in a lattice every finite subset has a supremum and an infimum. If

the elements in the finite subset are x1, x2, . . . , xn, then the supremum and infimum

of the set are denoted by
n∨
i=1

xi and
n∧
i=1

xi.

Definition 2.2.3. The lattice, X, is called distributive if for all x1, x2, y in X,

y ∧ (x1 ∨ x2) = (y ∧ x1) ∨ (y ∧ x2).

A distributive lattice has the additional property that the operation of the infimum

is distributive over the operation of the supremum. The following theorem illustrates

this.

Theorem 2.2.4. The lattice, X, is distributive if and only if for all x1, x2, y in X

y ∨ (x1 ∧ x2) = (y ∨ x1) ∧ (y ∨ x2).

The smallest element of lattice X (if it exists) is called the null of X. We denote the

null of X by 0. If the lattice X has a largest element, we call this element the unit

of X and denote it by 1. If X is a distributive lattice with both null and unit and

the elements x, y ∈ X are such that x ∧ y = 0 and x ∨ y = 1 then x, y are called

complements of one another.
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2.2.3 Elementary properties of Riesz Spaces

We now give an outline of Riesz Space Theory. Much of the material appearing

in this section was introduced in the period 1935-1942 and is mainly due to Riesz,

Kantorovich, Freudenthal, Birkhoff, Yosida, Nakano and Ogasawara.

Definition 2.2.5. The real, linear space, L, is an ordered vector space if L is partially

ordered and for each f, g, h ∈ L,

(i) if f ≤ g then f + h ≤ g + h;

(ii) if f ≥ 0 then af ≥ 0, for each a ∈ R, a ≥ 0.

In other words, an ordered vector space, L, is a real, linear space with a partial

ordering compatible with the algebraic structure of L.

The ordered vector space, L, is a Riesz space if for every pair f, g ∈ L the supremum,

f ∨ g, with respect to the partial ordering is defined and exists in L.

Remark: The terminology in the above definition is taken from Bourbaki who used

the term espace de Riesz. A Riesz space is also referred to as a vector lattice. To

illustrate the point made earlier about different centres having different terminology,

Nakano and his school called a Riesz space a semi-ordered vector space and in Russian

literature a Riesz space is a K-lineal.

We now discuss Lp(Ω,F , P ), 1 ≤ p ≤ ∞, as a Riesz space. Clearly, Lp(Ω,F , P ) is a

vector space. We define the partial order on Lp(Ω,F , P ) almost everywhere pointwise

as follows. For f, g ∈ Lp(Ω,F , P ), then f ≤ g if and only if f(x) ≤ g(x) for almost

all x ∈ Ω. For f, g, h ∈ L1(Ω,F , P ) and α ∈ R+,
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(i) if f ≤ g then f(x) ≤ g(x) a.e in Ω. Thus, f(x) + h(x) ≤ g(x) + h(x) a.e in Ω.

Hence, f ≤ g implies f + h ≤ g + h.

(ii) If f ≥ 0 then it is evident that αf ≥ 0 for all α ≥ 0.

(iii) It is easy to check that sup{f, g}(x) = max{f(x), g(x)} is always defined and

sup{f, g} ∈ L1(Ω,F , P ).

Thus, Lp(Ω,F , P ) is a Riesz space.

2.2.4 Ordered Vector Space Properties

We define an important subset of an ordered vector space.

Definition 2.2.6. Let L be an ordered vector space. The positive cone of L, L+, is

the subset of L consisting of all positive elements of L. That is,

L+ = {f |f ∈ L, f ≥ 0}.

The following theorem gives some important properties of the positive cone.

Theorem 2.2.7. Let L be an ordered vector space and L+ its positive cone.

(i) If f, g ∈ L+ then f + g ∈ L+.

(ii) If a ≥ 0, a ∈ R and f ∈ L+ then af ∈ L+.

(iii) If f,−f ∈ L+ then f = 0.

Conversely, if L+ is a subset of the real, linear space L such that (i), (ii) and (iii)

above are satisfied, it is possible to make L into an ordered vector space through
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defining a partial order on L by

f ≤ g if and only if g − f ∈ L+.

Then L+ is the positive cone of L with respect to this partial ordering.

Theorem 2.2.8. Let L be an ordered vector space with positive cone L+ and let

f, g ∈ L. Then,

(i) f ≥ g if and only if f − g ∈ L+.

(ii) f ≥ g if and only if f = f ∨ g ( or g = f ∧ g).

(iii) f ≥ g if and only if af ≥ ag for a > 0 (or af ≤ ag if a < 0), a ∈ R.

(iv) if f ∨ g exists then (−f) ∧ (−g) exists and

(−f) ∧ (−g) = −(f ∨ g).

(v) f ∨ g exists in L if and only if f ∧ g exists in L. We then have, for any h ∈ L,

f + g − (f ∨ g) = f ∧ g,

(f + h) ∨ (g + h) = (f ∨ g) + h,

(f + h) ∧ (g + h) = (f ∧ g) + h.

In particular, if L is a Riesz space then both f ∨ g and f ∧ g exist in L. Fur-

thermore, if L is an ordered vector space such that f ∨ 0 exists for all f ∈ L

then L is a Riesz space.

(vi) If f ∨ g exists then, for all a > 0, a ∈ R,

af ∨ ag = a(f ∨ g)

af ∧ ag = a(f ∧ g).
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(vii) If L is a Riesz space then any finite set of elements in L has a supremum and

an infimum in L.

Note 2.2.9. Part (v) of the theorem above proves that a Riesz space is indeed a

lattice.

Definition 2.2.10. Let L be an ordered vector space and f ∈ L be such that f ∨ 0

exists in L. We define

f+ = f ∨ 0, f− = (−f) ∨ 0, |f | = f ∨ (−f).

Remark: By the previous theorem, if f ∨ 0 exists, then f ∧ 0 exists, so (−f) ∨ 0

exists. Furthermore, the element (2f) ∨ 0 exists. Adding −f to 2f ∨ 0 we have that

f ∨ (−f) exists.

Theorem 2.2.11. Let L be an ordered vector space and suppose f ∈ L is such that

f ∧ 0 exists. Then,

(i) f+, f− ∈ L+;

(ii) f = f+ − f− and |f | = f+ + f−;

(iii) for all a ∈ R with a > 0 we have (af)+ = af+, (af)− = af− and |af | = a|f |;

and for all a ∈ R with a < 0 we have (af)+ = −af−, (af)− = −af+ and

|af | = −a|f |;

(iv) if f, g ∈ L and f+, g+ exist in L, then f ≤ g if and only if f+ ≤ g+ and

g− ≤ f−.

Suppose L+ is the positive cone of an ordered space L. We say L+ is generating if

every element of L can be written as a difference of elements of L+. That is, L+ is
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generating if for all f ∈ L we can write f = u − v where u, v ∈ L+. The positive

cone of any Riesz space is always generating. Indeed, if f is an element of a Riesz

space then f = f+ − f−. Furthermore, if the ordered vector space L has positive

cone L+ such that L+ is generating and f ∨ g exists for all f, g ∈ L+, then we have

that L is a Riesz space. To see this, consider arbitrary elements f and g of L. By the

hypothesis, we can write f = u1 − v1, g = u2 − v2 where ui, vi ∈ L+, i = 1, 2. Now,

let f1 = f + (v1 + v2) and g1 = g+ (v1 + v2). Then f1, g1 ∈ L+ and f1 ∨ g1 exists. Let

h1 = f1 ∨ g1. Then,

f ∨ g = h1 − (v1 + v2),

so f ∨ g exists and L is a Riesz space.

The following theorem proves that the decomposition f = f+ − f− is the decom-

position of f as a difference, u − v, of elements u, v ∈ L+ for which u and v are

minimal.

Theorem 2.2.12. Let L be an ordered vector space. If f = u − v where u, v ∈ L+

then f+ ≤ u and f− ≤ v.

2.2.5 Riesz space inequalities and distributive laws

The following results concern inequalities and distributive laws of Riesz spaces. Let

E be a Riesz space.

Theorem 2.2.13. For all f, g ∈ E we have

(f + g)+ ≤ f+ + g+,

(f + g)− ≤ f− + g−,
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and

||f | − |g|| ≤ |f + g| ≤ |f |+ |g|.

Theorem 2.2.14. If D is a subset of E such that f0 =
∨
f∈D f exists in L, then, for

all g ∈ L,

f0 ∧ g =
∨
f∈D

(f ∧ g).

The result also remains true when ∨ and ∧ are interchanged.

The subsequent result shows that a Riesz space is in fact a distributive lattice with

respect to its partial ordering.

Corollary 2.2.15. For any f, g, h ∈ E,

(f ∨ g) ∧ h = (f ∧ h) ∨ (g ∧ h) and (f ∧ g) ∨ h = (f ∨ h) ∧ (g ∨ h).

In the previous section we gave a decomposition theorem for elements in an ordered

vector space with a generating positive cone. In a Riesz space we have another

decomposition property, known as the Riesz Decomposition Property.

Theorem 2.2.16. (Riesz Decomposition Property)

Let E be a Riesz space with positive cone E+. Suppose u, z1, z2 ∈ E+ are such that

u ≤ z1 + z2. Then there exist elements u1, u2 ∈ E+ such that ui ≤ zi for i = 1, 2, and

u = u1 + u2.

It will be shown that some stochastic processes admit a Riesz decomposition.
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2.2.6 Ideals, Bands and Disjointness

Ideals and Bands

Let E be a Riesz space. There are some particularly important linear subspaces of E

which will be the focus of this section. Before we define these spaces, recall that all

subsets of E inherit the ordering of E.

Definition 2.2.17. Let E be a Riesz space.

(i) The linear subspace V of E is called a Riesz subspace if for f, g ∈ V we have

that f ∨ g and f ∧ g, in E, belong to V .

(ii) A solid subset S of E is a subset of E such that if f ∈ S and g ∈ E with

|g| ≤ |f | then g ∈ S. That is, if f ∈ S it follows that set {g : −|f | ≤ g ≤ |f |}

in E, is a subset of S.

(iii) The subset A of E is an ideal if A is a solid linear subspace of E.

(iv) An ideal B in E is called a band if for each D ⊂ B with supD existing in E

we have that supD ∈ B.

We now present a theorem which shows consistency between the ordering in subspaces

and that of the space from which the ordering was inherited.

Theorem 2.2.18. Let E be a Riesz space.

(i) Every band in E is an ideal and every ideal in E is a Riesz subspace. The

trivial spaces - {0} consisting only of the null element, and the space E itself -

are bands.
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(ii) Every Riesz subspace (resp. ideal, band) of a Riesz subspace (resp. ideal, band)

of E is itself a Riesz subspace (resp. ideal, band) of E.

For any subset A of E, put A+ = E+∩A where E+ denotes the positive cone of E. If

D is a subset of E such that for any finite number of elements f1, f2, . . . , fn of D the

supremum,
n∨
i=1

fi exists in D, we shall say D contains finite suprema (equivalently, D

is closed under finite suprema). Similarly for finite infima. Note that if D is bounded

above and D1 is the set of all finite suprema of D then D1 contains D and both have

the same upper bounds.

Theorem 2.2.19. Let E be a Riesz space.

(i) Any intersection of Riesz subspaces of E (resp. ideals, bands) is again a Riesz

subspace (resp. ideals, bands).

(ii) Suppose that B is an ideal in E. If for each J ⊂ B with J containing finite

suprema we have that sup J ∈ B if sup J exists, then B is a band in E.

We now introduce a few conventions. For any non-empty subset D of E we define the

Riesz space generated by D as the intersection of all Riesz subspaces of E containing

D. In a similar manner, the ideal and band generated by D can be defined. For

ideals, we denote the ideal generated by D as AD. In the particular case that D

consists of only one element, say f , we have AD = Af and we call Af a principal

ideal. A principal band is a band generated by a single element.

Definition 2.2.20. Let E be a Riesz space and let f ∈ E, f > 0. We say that f is

an order unit if Af = E. We call f a weak order unit if the principal band generated

by f is E.
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In a Dedekind complete Riesz space with weak order unit, every band is a principal

band, see [41]. Also, if α is a real number then, since Af is an ideal, every element

g ∈ E such that

|g| ≤ |αf | (2.2.1)

is an element of Af . Conversely, the set of all g satisfying (2.2.1) for any α ∈ R is an

ideal in E that contains Af . Hence, we can write Af explicitly as follows.

Af = {g ∈ E | |g| ≤ |αf |, α ∈ R}.

If D is a finite subset of E with elements f1, f2, . . . , fn, we can generalize the explicit

formula above and have that

AD =

{
g ∈ E

∣∣∣∣∣ |g| ≤
n∑
i=1

|αifi|, αi ∈ R

}
.

Before we can give a decomposition theorem with respect to ideals, we need to intro-

duce some simple vector space theory. If V1 and V2 are subsets of a vector space V ,

the algebraic sum, V1 + V2 is given by

V1 + V2 = {f1 + f2 | f1 ∈ V1, f2 ∈ V2}.

If V1 and V2 are linear subspaces of V then their algebraic sum is also a linear subspace

of E. If, in addition to being linear subspaces, we have that V1∩V2 = {0}, then V1+V2

is the direct sum of V1 and V2 and denote this by V1⊕V2. Furthermore, any f ∈ V1⊕V2

can be written as a unique sum of elements from V1 and V2. That is,

f = f1 + f2 where f1 ∈ V1, f2 ∈ V2.

We now present a decomposition theorem which relies on the Riesz space structure

of the space.
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Theorem 2.2.21. If A1 and A2 are ideals in E, then A1 + A2 is an ideal in E.

Further, (A1 + A2)+ = A+
1 + A+

2 . Thus, for each f ∈ (A1 + A2)+, we have that

f = f1 + f2, for some f1 ∈ A+
1 , f2 ∈ A+

2 .

Note that in general f1 and f2 in the above theorem are not unique, but when A1 +

A2 = A1 ⊕A2, this decomposition is obviously unique. In this case, we also have the

following theorem.

Theorem 2.2.22. If f, g ∈ A1 ⊕ A2 where A1, A2 are ideals of E and f, g have

decompositions f = f1 + f2 and g = g1 + g2, where fi, gi ∈ Ai, i = 1, 2, then f ≤ g

implies f1 ≤ g1 and f2 ≤ g2.

Remark: A similar decomposition theorem with respect to bands does not exist since

the algebraic sum of bands is not always a band. To see this, consider the example

where E = C([−1, 1]) the space of all real, continuous functions on the interval [−1, 1].

Define the bands B1 and B2 by

B1 = {f ∈ E | f = 0 on [0, 1]} and B2 = {f ∈ E | f = 0 on [−1, 0]}.

Then B1 +B2 = B1 ⊕B2 = {f ∈ E | f(0) = 0} is an ideal E in but not a band. The

band generated by B1 ⊕B2 is the entire space E.

Disjointness

Here we give the foundational aspects of disjointness. There are many more results

on this topic, but these are not required for the purposes of this thesis. The interested

reader can find more details in either [41] or [66].
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Elements f, g of the Riesz space E are said to be disjoint if |f | ∧ |g| = 0. We write

f ⊥ g if f and g are disjoint. For any non-empty subset D of E we denote the disjoint

complement of D by Dd and define

Dd = {f ∈ E | f ⊥ g for all g ∈ D}.

The second disjoint complement of D is the disjoint complement of Dd and is denoted

Ddd = (Dd)d. If D1 and D2 are non-empty sets in E such that for every d1 ∈ D1 and

d2 ∈ D2, then d1 ⊥ d2 and we say that D1 and D2 are disjoint and write D1 ⊥ D2.

Theorem 2.2.23. Let E be a Riesz space with non-empty subsets D1 and D2. If

D1 ⊥ D2 then D1 ∩D2 = ∅ or D1 ∩D2 = {0}.

Theorem 2.2.24. Let D be a non-empty subset of E. We have the following results

concerning D:

(i) Dd is a band in E;

(ii) D ⊂ Ddd and Dd = Dddd;

(iii) Dd ∩ Ddd = {0} so Dd + Ddd = Dd ⊕ Ddd. In general, this direct sum is an

ideal, but not a band.

2.2.7 Order Convergence and Uniform Convergence

We now prove some basic results relating to the convergence of nets of elements of a

Riesz space. We start with sequences and then generalize the results to directed sets.

We say a sequence (fn)n∈N is increasing if f1 ≤ f2 ≤ . . . and, for convenience,

we denote an increasing sequence by fn ↑. Similarly, (fn)n∈N is decreasing if f1 ≥
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f2 ≥ . . . , denoted fn ↓. If fn is increasing and f = sup fn exists, then we write

fn ↑ f . If fn is decreasing and f = inf fn exists, then we write fn ↓ f . We call this

type of convergence monotone convergence. The following properties of monotone

convergence are well known and easily verified.

(i) If fn ↑ f then fn + g ↑ f + g. Similarly, if fn ↓ f then fn + g ↓ f + g.

(ii) fn ↑ f if and only if (−fn) ↓ (−f). fn ↓ f if and only if (−fn) ↑ (−f).

(iii) Finally, fn ↑ f if and only if (f − fn) ↓ 0. fn ↓ f if and only if (fn − f) ↓ 0.

Lemma 2.2.25. Consider the sequence (fn)n∈N and suppose (fnk)k∈N, n1 < n2 < . . . ,

is a subsequence of (fn).

(i) If fn ↑ f then fnk ↑ f .

(ii) If fn ↑ f then afn ↑ af for all a ≥ 0 ∈ R.

(iii) If pn ↓ 0 and rn ↓ 0 then pn + rn ↓ 0.

(iv) If 0 ≤ qn ≤ pn ↓ 0 then inf qn = 0. Thus, if qn is decreasing, qn ↓ 0. On the

other hand, if qn is increasing, then qn = 0 for all n.

Similar results hold for decreasing sequences.

We now define order convergence, a type of convergence that is more general than

monotone convergence.

Definition 2.2.26. A sequence (fn)n∈N is said to be order convergent to f if there

exists a sequence pn ↓ 0 such that for all n, |f − fn| ≤ pn. We use fn → f to denote

order convergence.
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The following properties are easily verified.

(i) If fn increases or decreases to f (that is, fn ↑ f or fn ↓ f) then fn → f . That

is, monotone convergence implies order convergence.

(ii) If fn → f , gn → g and α, β ∈ R then αfn+βgn → αf+βg. Also, fn∨gn → f∨g

and fn ∧ gn → f ∧ g.

(iii) If fn → f and fn ≥ g for all n then f ≥ g.

(iv) If (fn) is a monotone sequence and fn → f , then fn converges monotonically to

f (that is, fn ↑ f or fn ↓ f).

(v) If fn → f then fnk → f where (fnk) is a subsequence of (fn).

We now generalize from sequences to nets. In the following definition, the set Λ is,

in general, an infinite set. In the case where Λ is N, we are in the special case of

sequences. We now define the notion of a directed set.

Definition 2.2.27. Let Λ be a non-empty set. We denote the elements of Λ by α. Let

E be a Riesz space. Assume that for each element α ∈ Λ there is a mapping α 7→ fα

which maps from Λ to E. We say that Λ is the index set for the family (fα)α∈Λ. The

family (fα)α∈Λ is said to be an upwards directed set (denoted fα ↑α∈Λ) if for any two

elements α1, α2 ∈ Λ there exists α3 ∈ Λ such that fα3 ≥ fα1 ∨ fα2. Finally, if fα ↑α∈Λ

and f = sup
α∈Λ

(fα) we write fα ↑α∈Λ f . In this case, we say that (fα)α∈Λ is upwards

directed with supremum f . Downward directedness (denoted fα ↓α∈Λ) can be similarly

defined but now fα3 ≤ fα1 ∧ fα2. If fα ↓α∈Λ and f = inf
α∈Λ

(fα) we write fα ↓α∈Λ f . In

this case we say that (fα)α∈Λ is downwards directed with infimum f .
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The results for directed sets are analogous to those for sequences, as is shown in the

lemma below.

Lemma 2.2.28. Let Λ be a non-empty set.

(i) If fα ↑α∈Λ f then (fα | fα ≥ fα0) ↑α∈Λ f for any α0.

(ii) If fα ↑α∈Λ f and 0 ≤ a ∈ R then afα ↑α∈Λ af .

(iii) If fα ↑α∈Λ f then f+
α ↑α∈Λ f

+ and f−α ↓α∈Λ f
−.

We can also define upwards directedness and downward directedness for subsets D of

Riesz space E that are not indexed.

Definition 2.2.29. Let D be a non-empty subset of Riesz space E. We say that D

is upwards directed (denoted D ↑) if for any two elements p, q ∈ D there exists r ∈ D

such that r ≥ p∨ q. Downward directedness (denoted D ↓) is defined in an analogous

manner.

Finally, we are able to define order convergence for nets. Let (fα) be an order bounded

net in E, then uα := sup{fβ : α ≤ β} and `α := inf{fβ : α ≤ β} exist in E, for α in

the index set of the net. We denote lim sup fα := infα uα and lim inf fα := supα `α.

Now, (fα) is order convergent if and only if lim sup fα and lim inf fα both exist and

are equal. In this case the common value is denoted lim fα.

2.2.8 Projections and Dedekind Completeness

We have already seen that the algebraic sum of two ideals in a Riesz space is again

an ideal, but the algebraic sum (even the direct sum) of two bands is not necessarily

29



2.2 Riesz Spaces Preliminaries

a band. However, if the direct sum of two ideals, say A and B, in Riesz space E is

E, the following theorem applies.

Theorem 2.2.30. Let A and B be disjoint ideals in E. If A⊕ B = E then B = Ad

and A = Bd. Thus A = Add, B = Bdd and A and B are bands.

Before we state the next important result, we recall some well-known definitions from

linear algebra. A mapping between vector spaces, T : V → W , is called linear if for

all scalars α, β and f, g ∈ V, we have that

T (αf + βg) = αT (f) + βT (g).

Such a mapping is often known as an operator (or linear operator). For any two

operators, T1, T2 we define T1T2f = T1(T2f). An operator T : V → V is said to be

idempotent if T 2 = TT = T .

We now come to a theorem which plays an important role in the defining of stochastic

processes in Riesz spaces. We first define what is meant by a projection band.

Definition 2.2.31. Let E be a Riesz space. The band B ∈ E is a projection band if

for any u ∈ E+ we have

u1 =
∨

v∈B; 0≤v≤u

v

exists. We call u1 the component of u in B.

If

u2 =
∨

w∈Bd; 0≤w≤u

w

exists then u2 is the component of u in Bd and we have that u = u1 + u2.

Theorem 2.2.32. Let E be a Riesz space.
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(i) For any f ∈ E+ we denote the component of f in the projection band B by

PBf . PB is a mapping from E into itself and has the following properties.

(a) PB is linear and idempotent. (i.e. PB is a projection);

(b) for all u ∈ E+, 0 ≤ PBu ≤ u.

We call PB the band projection onto the projection band B.

(ii) We can extend PB to E by setting PBu = PBu
+ − PBu− for all u ∈ E.

(iii) If P is a projection from E to E such that for all u ∈ E+, 0 ≤ Pu ≤ u then

there exists a band B such that P is the band projection on B.

(iv) For all u, v ∈ E, if P is a band projection, then P (u ∧ v) = Pu ∧ Pv and

P (u ∨ v) = Pu ∨ Pv.

Remark: By the component of f in the projection band B we mean the following.

If f = f1 + f2 where f1 ∈ B and f2 ∈ Bd then f1 = PBf. Band projections can

be thought of as the ‘characteristic functions’ of Riesz spaces. In the particular case

where E is the Riesz space L1(X,Ω, P ) and A ∈ Ω, the map Pf = χA · f is a band

projection in E onto the band {f ∈ E | f |X\A = 0}.

We denote the set of all projection bands in E by B(E). Since B(E) ⊂ 2E we have

that B(E) has set ordering. Consider the mapping from the set of all projection bands

to the set of band projections given by A → PA. This mapping is one-to-one. We

define the partial ordering on the set of band projections by PA ≤ PB if and only if

A ⊂ B. Now the mapping A→ PA is bijective and the map and its inverse are order

preserving. Thus, B(E) and the set of band projections in E are order isomorphic.

We now give some properties of band projections.
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Before we give further properties of band projections, we require the notion of an

Archimedean space. These spaces play an important role in the study of Riesz spaces.

The interested reader can find more detailed results in [41, 66].

We say that a Riesz space is Archimedean if for all elements u in the positive cone of

E, ∧
n∈N

n−1u = 0.

The Archimedean property of Riesz spaces is important as it is this property that

gives the uniqueness of order limits in Riesz spaces. In an Archimedean Riesz space,

the intersection of projection bands is again a projection band, as stated below.

Theorem 2.2.33. If B1, B2 are projection bands in the Archimedean Riesz space E

then B3 = B1∩B2 is a projection band and the corresponding band projections satisfy

P1P2 = P3 = P2P1.

As a direct consequence of the previous theorem we have the following.

Theorem 2.2.34. If E is an Archimedean Riesz space with projection bands B1, B2,

and corresponding band projections P1, P2, then the following are equivalent:

(i) B1 ⊂ B2,

(ii) P1P2 = P1 = P2P1,

(iii) P1 ≤ P2.
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2.2.9 Dedekind Completeness

The notion of a Dedekind complete Riesz space is needed in the definition of stochastic

processes in Riesz spaces. This allows us to give a theory which is rich enough to be

interesting and agrees with the classical theory when the underlying Riesz space is

L1 over a probability measure. Recall that a Dedekind complete space, as defined in

Definition 2.2.1, is a partially ordered set for which every non-empty subset that is

bounded above has a supremum.

We now show that it is sufficient to consider only upwards directed sets of positive

elements in the definition of Dedekind completeness.

Theorem 2.2.35. Let E be a Riesz space.

(i) The space E is Dedekind complete if and only if every non-empty subset of E+

that is upwards directed and bounded above has a supremum.

(ii) The space E is σ-Dedekind complete if and only if every increasing sequence in

E+ that is bounded above has a supremum.

Theorem 2.2.36. Let E be a Dedekind complete Riesz space.

(i) If B1 and B2 are disjoint bands in E then B1 ⊕B2 is a band in E.

(ii) Every band in E is a projection band (i.e. each band B in E has B⊕Bd = E).

We now show that the Riesz space L1(Ω,F , P ) is Dedekind complete. To avoid

clumsy notation we will denote the positive cone of L1(Ω,F , P ) by L1
+(Ω,F , P ). Let

D be a non-empty subset of L1
+(Ω,F , P ) that is bounded above by v ∈ L1

+(Ω,F , P ).
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Without loss of generality we may assume that D contains finite suprema. Let

S =

{∫
Ω

u dP

∣∣∣∣ u ∈ D} .
It is obvious that S is bounded above by

∫
Ω
v dP . Thus, β = supS exists and

there exists a sequence (vn)n∈N in L1
+(Ω,F , P ) such that lim

n

∫
Ω

vn dP = β. Since

finite suprema exist in D we can define un = sup
i=1,...,n

vi. Then (un)n∈N is an increasing

sequence in D with 0 ≤ vn ≤ un ≤ v for all n ∈ N. Let lim
n→∞

un = u0. Then,

u0 ≤ v and u0 is an element of D, by the choice of D. That is, lim
n→∞

un exists

in D. Also,

∫
Ω

vn dP ≤
∫

Ω

un dP ≤ β giving β = lim
n→∞

∫
Ω

vn dP ≤ lim
n→∞

∫
Ω

un dP ≤ β.

By Lebesgue’s Dominated Convergence Theorem we have

β = lim
n→∞

∫
Ω

un dP =

∫
Ω

lim
n→∞

un dP =

∫
Ω

u0 dP.

We show u0 = supD. Consider u∗ ∈ D. Since D contains finite suprema, we have

that u∗ ∨ un ∈ D for all n ∈ N and u∗ ∨ un ↑n u∗ ∨ u0. Thus,∫
Ω

u∗ ∨ u0 dP = lim
n

∫
Ω

u∗ ∨ un dP

≥ lim
n

∫
Ω

un dP

= β.

But
∫

Ω
u∗ ∨ u0 dP ∈ S and (u∗ ∨ u0 − u0) ≥ 0. Thus,

∫
Ω
u∗ ∨ u0 dP ≤ β and hence,∫

Ω
(u∗ ∨ u0− u0) dP = 0 giving (u∗ ∨ u0− u0) = 0 almost everywhere. Thus, u∗ ≤ u0,

in the Riesz space sense, and we have that u0 = supD and L1(Ω,F , P ) is Dedekind

complete.

Note 2.2.37. Every Dedekind complete space is Archimedean.
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2.3 Linear Operators in Riesz Spaces

In this chapter we will consider various properties of linear operators on Riesz spaces

and also some spaces of linear operators. Linear operators, in particular positive

order continuous linear operators, play a vital role in the generalization of stochas-

tic processes to the Riesz space setting. It is important that we understand these

operators.

Let V and W be ordered vector spaces, not necessarily Riesz spaces. We denote by T

the mapping T : V → W and recall that T is a linear operator (operator for brevity)

if for all scalars α, β and for f, g ∈ V ,

T (αf + βg) = αTf + βTg.

Assume that T is an operator. We use L(V,W ) to denote the space of all operators

from V into W . L(V,W ) is a vector space. We now define some important classes of

operators.

Definition 2.3.1. Let V, W be ordered vector spaces and let T ∈ L(V,W ).

(i) T is a positive operator if T maps the positive cone of V into the positive cone

of W . We denote this T ≥ 0.

(ii) T is regular if T = T1 − T2 for some positive operators T1, T2. We denote the

set of all regular operators between V and W by Lr(V,W ).

(iii) The order interval [g, f ] is a subset of V of the form {h ∈ V | g ≤ h ≤ f}. We

say that T is order bounded if T maps order intervals of V into order intervals

of W . We denote the set of all order bounded operators from V into W by

Lb(V,W ).
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Remark: From part (i) of the above definition we have that L(V,W ) becomes an

ordered vector space by defining T1 ≤ T2 in L(V,W ) whenever T2 − T1 is positive.

It is easy to see that T is order bounded if and only if T maps the interval [0, f ]

into an order bounded subset of W . Thus, if T is a positive operator then T is order

bounded since T maps [0, f ] into [0, T f ]. Furthermore, by (ii) of Definition 2.3.1 it

is evident that T is regular if and only if there exists a positive operator T1 such that

T ≤ T1. We now have the following theorem.

Theorem 2.3.2. For ordered vector spaces V,W and operator T ∈ L(V,W ), if T is

regular then T is order bounded.

We now consider operators between two Riesz spaces which do more than preserve the

ordering, they preserve finite suprema and finite infima, i.e. Riesz homomorphisms.

Definition 2.3.3. The operator T between the Riesz spaces E and F , is said to be a

Riesz (or lattice) homomorphism if for all f, g ∈ E

T (f ∨ g) = Tf ∨ Tg.

From the above definition it is immediately clear that every Riesz homomorphism is

a positive operator.

Consider the band projection P onto projection band B in Riesz space E. Since

0 ≤ Pf ≤ f for every f ≥ 0 in E, we have that f ∧ g = 0 implies that Pf ∧ Pg = 0.

It is easily verified that this is a characterization of a Riesz homomorphisms, and thus

that every band projection is a Riesz homomorphism.
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Another important class of operators acting between Riesz spaces is that of order

continuous operators. Note that by |Tf | we mean the absolute value of Tf . That is

to say, |Tf | = (Tf)+ + (Tf)− where (Tf)± = sup(±Tf ∨ 0).

Definition 2.3.4. Let E and F be Riesz spaces and T be an operator between E and

F . We say that T is an order continuous operator if for any directed set D ⊂ E with

D ↓ 0 we have that
∧
f∈D

|Tf | = 0.

For the most part, we are interested in order continuous positive operators. However,

we note that if F is a Dedekind complete space and T : E → F is regular then |T |

is a well defined positive operator. Order continuous operators have the following

properties.

Theorem 2.3.5. Let E and F be Riesz spaces and consider operators T and S map-

ping from E into F .

(i) If T is order continuous then for all scalars, α, αT is order continuous.

(ii) If T ≥ 0 then T is order continuous if and only if D ↓ 0 in E implies Tf ↓f∈D 0

in F .

(iii) If T ≥ 0 is order continuous and 0 ≤ S ≤ T , then S is order continuous.

Note that there exist Riesz spaces for which every operator mapping between the

spaces is order continuous, see [66].
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2.4 Conditional Expectations in Riesz Spaces

Sufficient background has now been presented for us to be able to define the concept

of a conditional expectation in a Riesz space setting. In the classical setting, it is

through probability measure that stochastic processes are defined. This can be shown

to be equivalent to working via conditional expectations, see [52], and this will be

our approach in the Riesz space setting. The majority of the results and definitions

in this section can be found in [37].

We recall from Section 2.1, some properties of the conditional expectation on L1(Ω,F , P ),

conditioned by the sub-σ-algebra Σ of F :

(i) f 7→ E[f |Σ] is linear;

(ii) if f ≥ 0 then E[f |Σ] ≥ 0;

(iii) if 1 is the function that takes the value 1 almost everywhere, then E[1 |Σ] = 1;

(iv) E [E[f |Σ] | Σ] = E[f |Σ];

(v) if fn ↑n f in L1(Ω,F , P ) then E[fn |Σ] ↑n E[f |Σ] in L1(Ω,Σ, P ).

Properties (i), (ii), (iv) and (v) give that E[· |Σ] is a positive order continuous linear

projection.

To make use of (iii), the weak order units in the Dedekind complete Riesz space

L1(Ω,Σ, P ) need to be considered. We provide a sketch of this result, further details

can be found in [37]. We show that an element f in L1
+(Ω,Σ, P ) is a weak order unit

if f > 0 almost everywhere. Fix f ∈ L1
+(Ω,Σ, P ) with f > 0 almost everywhere and
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let

H = {g ∈ L1
+(Ω,Σ, P ) | g ≤ αf, α ∈ R+}.

To show that f is a weak order unit it is sufficient to prove that the order closure, H,

of H contains L1
+(Ω,Σ, P ). Let h ∈ L1

+(Ω,Σ, P ) and define hn = h∧nf, n ∈ N. Then

hn ∈ H and (hn) is an increasing sequence with hn(x) ↑n h(x) almost everywhere in

Ω. As h ∈ L1(Ω,Σ, P ), this gives that h is the order limit of (hn), thus giving h ∈ H.

Note that the function with constant value of 1, denoted 1, is a weak order unit of

L1(Ω,Σ, P ) and in addition is invariant under each conditional expectation operator

on L1(Ω,Σ, P ). We can show, moreover, that if f is a weak order unit of L1(Ω,F , P )

then E[f |Σ] is a weak order unit by making use of the order continuity of E[· |Σ]. In

summary, we take a conditional expectation operator in a Dedekind complete Riesz

space with weak order unit to be a positive order continuous projection that maps

weak order units to weak order units.

Before we are able to give a formal definition of Riesz space conditional expectation

operators, we need two further results.

The first of these is a result by Rao, relating contractive projections to conditional

expectations.

Proposition 2.4.1. ([52]) Let (Ω,Σ, µ) be a finite measure space and 1 ≤ p <∞. If

T : Lp(Ω,Σ, µ) → Lp(Ω,Σ, µ) is a positive contractive projection with T1 = 1, then

T = E[· | F ], for some (unique) σ-algebra F ⊂ Σ.

In the Riesz space L1(Ω,F , P ) we have that E[· |Σ] maps weak order units to weak

order units and that the 1 function remains invariant under E[· |Σ]. The following

theorem shows that if either of these conditions is satisfied then the other is too.
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Theorem 2.4.2. [38] Let E be a Riesz space with weak order unit and T be a positive

order continuous projection on E. There is a weak order unit e of E with Te = e if

and only if Tw is a weak order unit of E for each weak order unit w in E.

We are now able to define conditional expectations on Riesz spaces. The above two

theorems and the properties of conditional expectations motivate this definition.

Definition 2.4.3. [38] Let E be a Riesz space with weak order unit. A positive order

continuous projection T on E with range, R(T ), a Dedekind complete Riesz subspace

of E, is called a conditional expectation if Te is a weak order unit of E for each weak

order unit e in E.

We require that the range of T , R(T ), is Dedekind complete in order to most closely

resemble the classical setting. The motivation for this is the subject of [37] and the

interested reader can find more details here.

Remark: If T is a conditional expectation operator on E, then, since R(T ) is a

Dedekind complete Riesz subspace of E and as T is order continuous, we have imme-

diately that R(T ) is order closed in E.

In order to consider convergence properties of stochastic processes in Riesz spaces,

we will need the notion of a T − universally complete Riesz space. A Riesz space

E is said to be universally complete if E is Dedekind complete and every subset of

E which consists of mutually disjoint elements has a supremum in E. The universal

completion of Riesz space E, denoted Eu, is a Riesz space that is universally complete

and contains E as an order dense Riesz subspace.

Definition 2.4.4. Let E be a Dedekind complete Riesz space and T be a strictly

positive conditional expectation on E. The space E is universally complete with respect
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to T , i.e. T -universally complete, if for each increasing net (fα) in E+ with (Tfα)

order bounded, we have that (fα) is order convergent.

We give a brief outline of the construction here. For more details, the reader is

referred to [37]. If E is a Dedekind complete Riesz space and T is a strictly positive

conditional expectation operator on E, then E has a T -universal completion, see [37],

which is the natural domain of T , denoted dom(T ) in the universal completion, Eu,

of E, also see [19, 28, 48, 65]. Here dom(T ) = D − D and Tx := Tx+ − Tx− for

x ∈ dom(T ) where

D = {x ∈ Eu
+|∃(xα) ⊂ E+, xα ↑ x, (Txα) order bounded in Eu},

and Tx := supα Txα, for x ∈ D with xα ↑ x, (xα) ⊂ E+, (Txα) order bounded in Eu.

It is useful to have available the following Riesz space analogues of the Lp spaces as

introduced in [39], L1(T ) = dom(T ) and L2(T ) = {x ∈ L1(T )|x2 ∈ L1(T )}. Here we

note that for each x ∈ E, x2 exists and is defined in Eu.

2.4.1 Riesz space conditional expectation operators

In the previous section we considered various properties of classical L1 conditional

expectation operators and then used these properties as the defining properties of

conditional expectation operators in Riesz spaces. The Riesz space definition of a

condition expectation operator and the classical definition of a conditional expectation

coincide when the Riesz space in question is L1. We now consider whether there are

additional properties obeyed by classical conditional expectation operators that are

inherited by their Riesz space analogues.
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Unless noted otherwise, T will denote a Riesz space conditional expectation operator.

Commutation Properties

In L1(Ω,Σ, P ) we have that E[· | F ] is an averaging operator, i.e. E[gf | F ] = gE[f | F ]

for all g ∈ L1(Ω,F , P ) and f ∈ L1(Ω,Σ, P ) with gf ∈ L1(Ω,Σ, P ). Taking g = χA

where A ∈ F , the above averaging property gives that the band projection, Pf = gf ,

has P1 ∈ F and commutes with the conditional expectation E[· | F ]. This can be

generalised to the Riesz space setting, as shown in the following lemma.

Lemma 2.4.5. [37] Let E be a Riesz space with a weak order unit and T be a con-

ditional expectation on E. Let B be the band in E generated by 0 ≤ g ∈ R(T ) and P

be the band projection onto B. Then:

(i) Tf ∈ B for each f ∈ B;

(ii) Pf, (I − P )f ∈ R(T ) for each f ∈ R(T ), where I denotes the identity map;

(iii) Tf ∈ Bd for each f ∈ Bd.

We now have that the conditional expectation, T , and band projections generated

by an element in the range of T commute. The averaging properties of conditional

expectations follow from this important result.

Theorem 2.4.6. [37] Let E be a Dedekind complete Riesz space with weak order unit,

T a conditional expectation on E and B be the band in E generated by 0 ≤ g ∈ R(T ),

with associated band projection P . Then TP = PT .

If no other structure on our Riesz space is assumed, Theorem 2.4.6 is our Riesz space

analogue of the averaging properties of conditional expectations. However, if E is not
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just a Riesz space but is an f -algebra, i.e. has a multiplicative structure compatible

with the order and additive structures of the space, then the Riesz space averaging

property can be strengthened so as to more closely resemble the classic version of the

averaging property.

A Riesz space, E, is a Riesz algebra if E has a multiplicative structure that is both

associative and distributive over addition. If the Riesz algebra E has the further

property that for u, v ∈ E u ∧ v = 0 implies uw ∧ v = wu ∧ v = 0, for w ∈ E then E

is called an f -algebra.

On the Dedekind complete Riesz space Ee, where e is a weak order unit in E, there

is a natural f -algebra structure generated by setting (Pe)· (Qe) = PQe = (Qe)· (Pe)

for all band projections P and Q. In Ee, e is also the multiplicative unity.

We are now able to state a version of Freudenthal’s theorem in Riesz spaces which

highlights its compatibility with conditional expectation operators.

Theorem 2.4.7. [33](Freudenthal)

Let E be a Dedekind complete Riesz space with a weak order unit e and T be a

conditional expectation on E with Te = e. For each g ∈ R(T )+, there exists a

sequence (sn) such that sn ↑ g in order. Here, each sn is of the form
k∑
i=1

aiPie, where

ai ∈ R+ and Pi is a band projection which commutes with T .

Using Freudenthal’s theorem, the multiplication described above can be extended to

the whole Ee (that is, not just elements of Ee that are band projections) and in fact

to the universal completion Eu. The interested reader will find more detail on this in

[37].

For a general f -algebra, Freudenthal’s theorem gives the following averaging property
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for conditional expectation operators.

Corollary 2.4.8. Let E be a Dedekind complete Riesz space with a weak order unit

e and T be a conditional expectation on E with Te = e. If E is an f-algebra and e

is the multiplicative unit of the f-algebra, then T (gf) = gTf for each g ∈ R(T ) and

f ∈ E.

2.5 Martingales in Riesz Spaces

The contents of this chapter are taken from [33, 32] and are included here for complete-

ness. Further, these results, in particular those concerning martingale convergence,

will be used in subsequent chapters.

Recall that martingales are traditionally defined in terms of a parametrized family of

random variables and a filtration. In order to define a martingale in the Riesz space

setting, we first consider the Riesz space analogue of a filtration. A filtration (Fi)i∈N

in a probability space (Ω,F , P ) is an increasing family of sub-σ-algebras of F . In

terms of conditional expectations, we can write

E [E[f | Fi] | Fj] = E[f | Fi] = E [E[f | Fj] | Fi] ,

for all f ∈ L1(Ω,F , P ) and i ≤ j. Since to each sub-σ-algebra of F there corresponds

precisely one conditional expectation operator and vice versa, a filtration can also be

characterised as a sequence of conditional expectations with increasing range spaces.

In light of this, we define a filtration in a Riesz space as follows.

Definition 2.5.1. Let E be a Riesz space with weak order unit. A filtration on E is

a family of conditional expectations, (Ti)i∈N, on E with

TiTj = Ti = TjTi, for all i ≤ j.
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The Riesz space analogue of a martingale now follows immediately.

Definition 2.5.2. Let E be a Riesz space with weak order unit. The pair (fi, Ti)i∈N

is said to be a martingale on E if (Ti)i∈N is a filtration, fi ∈ R(Ti), i ∈ N, and

Tifj = fi, for all i ≤ j.

If Tifj ≤ (≥)fi for all i ≤ j then (fi, Ti)i∈N is a sub(super)-martingale.

We say that a sequence (fi)i∈N is predictable (or previsible) with respect to the fil-

tration (Ti)i∈N if fi+1 ∈ R(Ti), i ∈ N.

We will now state the Doob-Meyer Decomposition theorem in Riesz spaces.

Theorem 2.5.3. [38, Thm 3.3] (Doob-Meyer Decomposition)

Let (fi, Ti)i∈N be a submartingale on Riesz space E with weak order unit. Define, for

each j ∈ N,

Aj =

j−1∑
i=1

Ti(fi+1 − fi) and Mj = fj − Aj.

Then (Mj, Tj)j∈N is a martingale and (Aj)j∈N is an increasing, predictable sequence

with A1 = 0. The decomposition

fi = Mi + Ai

is the unique decomposition of (fi, Ti)i∈N into the sum of a martingale and a predictable

sequence with starting value zero.

2.5.1 Martingale Convergence

For later reference (cf. Theorem 4.3.8) we now give the main results concerning mar-

tingale convergence in Riesz spaces, as proved in [32]. According to Meyer [46], ‘It is
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natural that martingales should be applied to Markov processes.’ The implementation

of Meyer’s claim is not always obvious, as will be seen later.

The idea of local convergence is core to martingale convergence theorems. By a

strictly positive operator on a Riesz space E, we mean an operator that maps to

E+\{0}, where E+ denotes the positive cone of E.

Lemma 2.5.4. [36, Lemma 3.2] Let E be a Dedekind complete Riesz space with

weak order unit e. Consider the sub (super) martingale (fi, Ti)i∈N where the operators

(Ti)i∈N are strictly positive. If there exists g ∈ E+ such that T1|fi| ≤ g, for all i ∈ N,

then, for each n ∈ N, (ne ∧ fi ∨ (−ne))i∈N is order convergent and the order limit,

Fn ∈ E, is given by

lim sup
i

(ne ∧ fi ∨ (−ne)) = Fn = lim inf
i

(ne ∧ fi ∨ (−ne)).

From the above lemma a martingale convergence result for order bounded martingales

can be deduced.

Theorem 2.5.5. [36, Thm 3.3] Let E be a Dedekind complete Riesz space with weak

order unit. If there exists g ∈ E+ such that |fi| ≤ g, for all i ∈ N, then (fi) is order

convergent and the order limit, f∞ ∈ E, is given by

lim sup
i

fi = f∞ = lim inf
i

fi.

It has been noted in [32] that this result falls short of being a Riesz space analogue of

Doob’s classical martingale convergence result. However, if we make the additional

assumption that E is T -universally complete, we are able to generalize Doob’s theorem

to Riesz spaces.

Theorem 2.5.6. [36, Thm 3.5] Let E be a T -universally Riesz space in which T is

a strictly positive operator and with filtration (Ti)i∈N such that TiT = T = TTi. If
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(fi, Ti) is a sub (super) martingale on E and there exists g ∈ E+ with T |fi| ≤ g for

all i ∈ N then (fi) is order convergent and the order limit, f∞ ∈ E, is given by

lim sup
i

fi = f∞ = lim inf
i

fi.
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Chapter 3

Independence in Riesz Spaces

In probability theory the concept of independence relies on both the presence of

a probability measure and the multiplicative properties of R+. In the Riesz space

setting, the role of the probability measure has to be taken on by a conditional

expectation operator while the role of multiplication is mirrored at operator level

by composition. Recall that an f -algebra is a Riesz space that has a multiplicative

structure compatible with the order and additive structures of the space (cf. p.42).

For the remainder of this thesis, we will use wicket brackets, 〈·〉, to denote the closed

Riesz space generated by the elements within the wicket brackets. For example, 〈f, g〉

denotes the closed Riesz space generated by f and g.

Before we are able to state independence results in Riesz spaces, we first need an

Andô-Douglas-Nikodým-Radon Theorem for Riesz spaces.
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3.1 Andô-Douglas-Nikodým-Radon Theorem

The Radon-Nikodým theorem is widely known and used in Measure Theory. It is

from this theorem that we are able to deduce many results regarding independence

and Markov processes. It is important that an analogue of this result can be given in

Riesz spaces. In [63] B. A. Watson proves a Radon-Nikodým type theorem in Riesz

spaces. This result is fundamental to the work that follows in this thesis. It should be

noted that J. J. Grobler has presented a alternative variant of the Radon-Nikodým

theorem in Riesz spaces, [26].

Throughout this section T is a strictly positive conditional expectation operator acting

on the Dedekind complete Riesz space, E, with weak order unit e = Te.

By a Dedekind complete Riesz subspace, F , of E we mean that F is a Riesz subspace

of E and that F is Dedekind complete in its own right. Further, we require that if

(fα) is upwards directed and bounded above in F with supremum f ∈ F , then f is

also the supremum of F in E.

Let F ⊂ E. We will denote by B(F ) the class of all band projections on E with

Pe ∈ F . Before we are able to give the Radon-Nikodým theorem, we require a Hahn-

Jordan decomposition theorem in Riesz spaces. This result was also given by Watson

in [63]. The result gives a decomposition of the map B(F )→ E with P 7→ TPf .

Consider f ∈ E. We say that J ∈ B(F ) is positive (resp. negative) with respect to

(T, f) if TPf ≥ (resp. ≤) 0 for all P ∈ B(F ) such that P ≤ J . A band projection,

J , is strictly positive (resp. strictly negative) if J is positive (resp. negative) with

respect to (T, f) and TJf 6= 0.
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Theorem 3.1.1. [63, Thm 3.5] (Hahn-Jordan Decomposition)

Let E be a Dedekind complete Riesz space with strictly positive conditional expectation

operator, T , and weak order unit, e = Te. Let F be a Dedekind complete Riesz

subspace of E with R(T ) ⊂ F and let f ∈ E. There exist band projections Q+
f , Q

−
f ∈

B(F ) with I = Q+
f +Q−f having Q+

f positive with respect to (T, f) and Q−f = I −Q+
f

negative with respect to (T, f).

Note: The band projections Q+
f and Q−f of the above theorem can be chosen so that

Q+
f and Q−f are respectively monotonically increasing and decreasing with respect to

f . For details of the construction see [63, p.561]

Theorem 3.1.2. [63, Thm 4.1] (Radon-Nikodým)

Let E be a T -universally complete Riesz space with weak order unit, e = Te, where T

is a strictly positive conditional expectation operator on E. Let F be a closed Riesz

subspace of E with R(T ) ⊂ F . For each f ∈ E+ there exists a unique g ∈ F+ such

that

TPf = TPg, for all P ∈ B(F ).

If E is a T -universally complete Riesz space with weak order unit e = Te where T is a

strictly positive conditional expectation operator on E, F is a closed Riesz subspace

of E with R(T ) ⊂ F and f and g are as in Theorem 3.1.2, then we denote

TFf = g. (3.1.1)

Lemma 3.1.3. [63, Lemma 5.6] Let T be a strictly positive conditional expectation

operator on the T -universally complete Riesz space, E, with weak order unit e = Te.

Let F be a closed Riesz subspace of E with R(T ) ⊂ F . The map TF is additive on
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E+ and has

TPTF (f) = TPf, for all P ∈ B(F ), f ∈ E+.

Remark: The results can be extended to E by noting that each f ∈ E can be

decomposed as f = f+ − f− where f+, f− ∈ E+.

Corollary 3.1.4. [63, Cor. 5.9] (Douglas-Andô)

Let T be a strictly positive conditional expectation operator on the T -universally com-

plete Riesz space, E, with weak order unit, e = Te. The subset F of E is a closed

Riesz subspace of E with R(T ) ⊂ F if and only if there is a conditional expectation

TF on E with R(TF ) = F and TTF = T = TFT . In this case TFf for f ∈ E+ is

uniquely determined by the property that

TPf = TPTFf

for all band projections on E with Pe ∈ F .

Lemma 3.1.5. Let E be a Dedekind complete Riesz space with conditional expectation

operator, T , and weak order unit, e = Te, and E1 and E2 be two closed Riesz subspaces

of E both containing e. Let Ẽ be the closed Riesz subspace of E generated by E1 and

E2. For band projections P1, P2 with P1e ∈ E1 and P2e ∈ E2, we have

P1P2e ∈ Ẽ.

Proof. Consider P1e ∈ E1 and P2e ∈ E2. Then

P1e ∧ P2e = P1P2e

Certainly, P1e ∧ P2e ∈ Ẽ, giving that P1P2e ∈ Ẽ.
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3.2 T -Conditional Independence

Definition 3.2.1. Let E be a Dedekind complete Riesz space with conditional expec-

tation, T , and weak order unit, e = Te. Let P and Q be band projections on E. We

say that P and Q are T -conditionally independent (that is, conditionally independent

with respect to T ) if

TPTQe = TPQe = TQTPe. (3.2.2)

We say that two Riesz subspaces E1 and E2 of E, where R(T ) ⊂ Ei, i = 1, 2, are T -

conditionally independent if all band projections, Pi, i = 1, 2, in E with Pie ∈ Ei, i =

1, 2, are T -conditionally independent.

In the case of E = L1(Ω,A, µ) where µ is a probability measure, e = 1 and T is the

expectation operator

Tf =

∫
Ω

f dµ = E[f ]1,

we have that the band projections on E are maps of the form Pf = fχA and Qf =

fχB where A,B ∈ A. Here

TPTQe = E[χAE[χB]] = E[χAµ(B)] = µ(B)E[χA] = µ(B)µ(A)

and similarly

TQTPe = µ(A)µ(B).

Also

TPQe = E[χAχB] = E[χA∩B] = µ(A ∩B).

Thus, in this case, the Riesz space independence of P and Q corresponds to the clas-

sical independence of A and B.

52



3.2 T -Conditional Independence Independence in Riesz Spaces

This definition is independent of the choice of the weak order unit e with e = Te, as

is shown in the following lemma.

It should be noted that the remaining results in this chapter have been published by

Vardy and Watson in [61].

Theorem 3.2.2. Let E be a Dedekind complete Riesz space with conditional expec-

tation, T , and let e be a weak order unit which is invariant under T . The band

projections P and Q in E are T -conditionally independent if and only if

TPTQw = TPQw = TQTPw for all w ∈ R(T ). (3.2.3)

Proof. That (3.2.3) implies (3.2.2) is obvious. We now show that (3.2.2) implies

(3.2.3). From linearity it is sufficient to show that (3.2.3) holds for all 0 ≤ w ∈ R(T ).

Consider 0 ≤ w ∈ R(T ). By Freudenthal’s theorem, there exist anj ∈ R+ and band

projections Qn
j with Qn

j e ∈ R(T ), j = 0, . . . , n2n, such that

sn =
n2n∑
j=0

anjQ
n
j e

has

w = lim
n→∞

sn.

Here we can take

sn =
n2n∑
j=0

anjQ
n
j e,

anj =
j

2n
, j = 0, . . . , n2n,

Qn
n2n = P(w−ne)+ ,

Qn
j−1 = (I −Qn

j )P(w−anj−1e)
+ , j = 1, . . . , n2n.
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As e, w ∈ R(T ), Qn
j T = TQn

j . Thus

TPTQQn
j e = Qn

j TPQe (3.2.4)

since Qn
j commutes with all the factors in the product and therefore with the product

itself. Again using the commutation of band projections and the fact thatQn
j T = TQn

j

we obtain

TPQQn
j e = Qn

j TPQe. (3.2.5)

Combining (3.2.4), (3.2.5) and using the linearity of T, P and Q gives

TPTQ
n2n∑
j=0

anjQ
n
j e = TPQ

n2n∑
j=0

anjQ
n
j e. (3.2.6)

Since T, P,Q are order continuous, taking the limit as n→∞ of (3.2.6) we obtain

TPTQw = TPQw.

Interchanging the roles of P and Q gives

TQTPw = TQPw.

As band projections commute, we have thus shown that (3.2.3) holds.

The following corollary to the above theorem shows that T -conditional independence

of the band projections P and Q is equivalent to T -conditional independence of the

closed Riesz subspaces 〈Pe,R(T )〉 and 〈Qe,R(T )〉 generated by Pe and R(T ) and

by Qe and R(T ) respectively.

Corollary 3.2.3. Let E be a Dedekind complete Riesz space with conditional expec-

tation, T , and let e be a weak order unit which is invariant under T . Let Pi, i = 1, 2,

be band projections on E. The band projections, Pi, i = 1, 2, are T -conditionally in-

dependent if and only if the closed Riesz subspaces Ei = 〈Pie,R(T )〉 , i = 1, 2, are

T -conditionally independent.
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Proof. The reverse implication is obvious. Assume Pi, i = 1, 2, are T -conditionally

independent. We show that the closed Riesz subspaces Ei, i = 1, 2, are T -conditionally

independent. As each element ofR(T ) is the limit of a sequence of linear combinations

of band projections whose action on e is in R(T ) (see Theorem 2.4.7) it follows from

Lemma 3.1.5 that Ei is the closure of the linear span of

{PiRe, (I − Pi)Re |R band projection in E with Re ∈ R(T )}.

Consider band projections Ri, i = 1, 2, in E with Rie ∈ R(T ), i = 1, 2. From the

linearity and continuity of band projections and conditional expectations, it suffices

to prove that each of the band projections P1R1 and (I − P1)R1 are T -conditionally

independent of both P2R2 and (I − P2)R2. We will only prove that P1R1 is T -

conditionally independent of P2R2 as the other three cases follow by similar reasoning.

From Theorem 3.2.2,

TP1TP2R1R2e = TP1P2R1R2e = TP2TP1R1R2e.

As band projections commute and since RiT = TRi, i = 1, 2, we obtain

TP1R1TP2R2e = TP1R1P2R2e = TP2R2TP1R1e

giving the T -conditional independence of PiRi, i = 1, 2.

In the light of the above corollary, when discussing T -conditional independence of

Riesz subspaces of E with respect to T , we will assume that they are closed Riesz

subspaces containing R(T ).

Theorem 3.2.4. Let E1 and E2 be two closed Riesz subspaces of the T -universally

complete Riesz space E with strictly positive conditional expectation operator T and

weak order unit e = Te. Let S be a conditional expectation on E with ST = T . If

R(T ) ⊂ E1 ∩ E2 and T〈R(S),Ei〉 is the conditional expectation having as its range the
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closed Riesz subspace of E generated by R(S) and Ei, then the spaces E1 and E2 are

S-conditionally independent, if and only if

TiT〈R(S),E3−i〉 = TiST〈R(S),E3−i〉 i = 1, 2,

where Ti is the conditional expectation commuting with T and having range Ei.

Proof. Assume first that E1 and E2 be S-conditionally independent, i.e. for all band

projections Pi with Pie ∈ Ei for i = 1, 2, we have

SP1SP2e = SP1P2e = SP2SP1e.

Consider the equation

SP1SP2e = SP1P2e. (3.2.7)

Applying T to both sides of the equation gives

TP1P2e = TP1SP2e.

Thus, by the Riesz space Radon-Nikodým-Douglas-Andô theorem, Theorem 3.1.2,

T1P2e = T1SP2e.

Now, let PS be a band projection with PSe ∈ R(S). Applying PS and then T to

(3.2.7) gives

TPSSP1P2e = TPSSP1SP2e.

As PSe ∈ R(S), we have that SPS = PSS which, together with the commutation of

band projections, yields

TP1PSP2e = TP1SPSP2e.

Applying the Riesz space Radon-Nikodým-Douglas-Andô theorem now gives

T1PSP2e = T1SPSP2e.
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Each element of 〈R(S), E2〉 = R(T〈R(S),E2〉) can be expressed as a limit of a net

of linear combinations of elements of the form PSP2e where PS and P2 are band

projections with PSe ∈ R(S) and P2e ∈ E2 respectively. From the continuity of T1

T1T〈R(S),E2〉 = T1ST〈R(S),E2〉.

Similarly, if we consider the equation SP2P1e = SP2SP1e we have

T2T〈R(S),E1〉 = T2ST〈R(S),E1〉.

Conversely, suppose TiT〈R(S),E3−i〉 = TiST〈R(S),E3−i〉 for all i = 1, 2. Again we consider

only T1T〈R(S),E2〉 = T1ST〈R(S),E2〉. Then, for all P2e ∈ R(T2), PSe ∈ R(S),

T1PSP2e = T1SPSP2e.

Since PSe ∈ R(S) we have

T1PSP2e = T1PSSP2e.

If we apply P1, where P1e ∈ R(T1), and then T to both sides of the above equality

we obtain

TP1T1PSP2e = TP1T1PSSP2e.

Commutation of band projections, T1P1 = P1T1 and T = TT1, applied to the above

equation gives

TPSP1P2e = TPSP1SP2e.

Now from the Radon-Nikodým-Douglas-Andô theorem in Riesz spaces we have

SP1P2e = SP1SP2e.

By a similar argument using T2T〈R(S),E1〉 = T2ST〈R(S),E1〉, we have

SP2P1e = SP2SP2e.
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Since band projections commute we get

SP1SP2e = SP1P2e = SP2SP1e

which concludes the proof.

Taking S = T in the above theorem, we obtain the following corollary.

Corollary 3.2.5. Let E1 and E2 be two closed Riesz subspaces of the T -universally

complete Riesz space E with strictly positive conditional expectation operator T and

weak order unit e = Te. If R(T ) ⊂ E1 ∩ E2, then the spaces E1 and E2 are T -

conditionally independent, if and only if

T1T2 = T = T2T1,

where Ti is the conditional expectation commuting with T and having range Ei.

The following theorem is useful in the characterization of independent subspaces

through conditional expectations.

Corollary 3.2.6. Under the same conditions as in Corollary 3.2.5, E1 and E2 are

T -conditionally independent if and only if

Tif = Tf, for all f ∈ E3−i, i = 1, 2, (3.2.8)

where Ti is the conditional expectation commuting with T and having range Ei.

Proof. Observe that (3.2.8) is equivalent to

TiT3−i = TT3−i = T, i = 1, 2.

The corollary now follows directly from Corollary 3.2.5.
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Theorem 3.2.4 can be applied to self-independence to give that the only self-independent

band projections with respect to T are those onto bands generated by elements of the

range of T .

Corollary 3.2.7. Let E be a T -universally complete Riesz space E with strictly pos-

itive conditional expectation operator T and weak order unit e = Te. Let P be a

band projection on E which is self-independent with respect to T , then TP = PT and

TPe = Pe.

Proof. Let T1 = T〈R(T ),P e〉, then, by Theorem 3.2.4, T1 = T 2
1 = T and we obtain

TPe = T1Pe. But Pe ∈ R(T1) so TPe = Pe, thus Pe ∈ R(T ) from which it follows

that TP = PT .

In measure theoretic probability, we can define independence of a family of σ-sub-

algebras. In a similar manner, in the Riesz space setting, we can define the indepen-

dence with respect to T of a family of closed Dedekind complete Riesz subspaces of E.

For ease of notation, if (Eλ)λ∈Λ is a family of Riesz subspaces of E we put

EΛ =
〈⋃

λ∈ΛEλ
〉
, the Riesz space generated by all Eλ, λ ∈ Λ.

Definition 3.2.8. Let E be a Dedekind complete Riesz space with conditional expec-

tation T and weak order unit e = Te. Let Eλ, λ ∈ Λ, be a family of closed Dedekind

complete Riesz subspaces of E having R(T ) ⊂ Eλ for all λ ∈ Λ. We say that the

family is T -conditionally independent if, for each pair of disjoint sets Λ1,Λ2 ⊂ Λ, we

have that EΛ1 and EΛ2 are T -conditionally independent.

Definition 3.2.8 leads naturally to the definition of T -conditional independence for

sequences in E, given below.
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Definition 3.2.9. Let E be a Dedekind complete Riesz space with conditional ex-

pectation T and weak order unit e = Te. We say that the sequence (fn) in E is

T -conditionally independent if the family 〈{fn} ∪ R(T )〉 , n ∈ N of Dedekind com-

plete Riesz spaces is T -conditionally independent.
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Chapter 4

Markov Processes

4.1 Introduction

Markov chains were first studied in detail by A. A. Markov in the early part of the

20th century. The notion of Markov chains was born from Markov’s desire to show

that independence was not a necessary condition for the law of large numbers to hold.

That independence was required for the law of large numbers to hold was proposed by

P. A. Neskrasov, [8]. In correspondence between Markov and Chuprov [8], a colleague

of Markov’s, Markov writes: ‘The unique service of P. A. Nekrasov is namely this.

He brings out sharply his delusion, shared, I believe, by many, that independence is

a necessary condition for the law of large numbers. This circumstance has led me to

explain, in a series of articles, that the law of large number and Laplace’s formula

can apply also to dependent variables. In this way a construction of a highly general

character was actually arrived at, which P. A. Nekrasov cannot even dream about.’

It is interesting to note that Nekrasov was a theologist by training and later took
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up mathematics. As a member of the Russian Orthodox Church, Nekrasov was a

strong proponent of the religious doctrine of free will. In fact, Nekrasov’s belief that

independence was a necessary condition for the law of large numbers was used to

provide mathematical ‘proof’ of this belief. Markov, an atheist and excommunicate

of the Church, was outspoken in his refutation of this, [8].

Markov’s first paper containing the concept of chains was published in 1907 [43]. In

this paper he defined the simple chain as ‘ an infinite sequence x1, x2, . . . , xk, xk+1, . . .

of variables connected in such a way that xk+1 for any k is independent of x1, x2, . . . , xk−1

in case xk is known’. However, it was not until 20 years later that the term ‘Markov

chain’ was coined by Bernstein, [10].

Markov, however, was not the first to study such chains. Some of the urn problems

studied by Laplace, Bernoulli and Ehrenfests are special cases of Markov chains.

An example of such a process is the following. Consider a deck of cards being shuffled

and the order of the cards after each shuffling. To predict the order of the cards

after shuffling, all useful information is included in complete knowledge of the current

state of the deck. Knowledge of prior states does not make the prediction any more

accurate.

Markov processes can be applied to the long term behaviour of systems. For example,

the evolution of animal (including human) populations can be described using Marko-

vian models. These models predict only three types of limit behaviour: extinction,

equilibrium or explosion.

This chapter is set out in the following manner: we first define Markov processes in

the classical setting and state the relevant classical results. The remaining subsections
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are dedicated to defining Markov processes in Riesz spaces and providing analogues

of classical results in the Riesz space setting.

We will show that a Markov process is a process for which, given the present, the

past and future are independent and give a Chapman-Kolmogorov type equation.

We show that sums of independent variables form a Markov process and that, under

certain conditions, these sums are martingales too.

It should be noted that the material in section 4.3 has been published by Vardy and

Watson in [61, 62].

4.2 Classical Markov Processes

Here we present the classic definitions of Markov processes and some well-known

results. This section forms the base from which we will develop the theory of Markov

processes in Riesz spaces. The results given here will be generalized to the Riesz space

setting later in this chapter. We give here only the definitions and results pertinent

to the thesis. The interested reader can find further details on these results and many

more results in [51].

4.2.1 Classical foundations of Markov processes

We say the collection {Xt}t∈Λ, where Λ ⊂ R, is a stochastic process if, for each t ∈ Λ,

Xt is such that

Xt : Ω→ R, Xt ∈ L1(Ω,F , P ).

That is, for all t ∈ Λ we have that Xt is a random variable.
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Definition 4.2.1. [51]

A stochastic process {Xt}t∈Λ in L1(Ω,F , P ) is called a Markov process if for any set

of points t1 < t2 < · · · < tn+1, ti ∈ Λ, and x ∈ R, one has

P (Xtn+1 < x |Xt1 , Xt2 , . . . , Xtn) = P (Xtn+1 < x |Xtn) a.e. . (4.2.1)

It is important to note that the above definition defines the Markov Property in terms

of only one state in the future. However, if a stochastic process X is Markov, this

property holds for all states in the future. We are thus able to extend the Markov

property to all events in entire future, as is given in the following lemma.

Lemma 4.2.2. [51]

If a stochastic process {Xt}t∈Λ is a Markov process then

P (A |Xt1 , Xt2 , . . . , Xtn) = P (A |Xtn)

for any A ∈ σ(Xs; s ≥ tn), s ∈ Λ.

The Chapman-Kolmogorov equation is at the base of many aspects of the theory of

Markov processes.

Theorem 4.2.3. [51] (Chapman-Kolmogorov Equation)

Let {Xt}t∈N be a Markov process in L1(Ω,F , P ) and u < t < v be points from N.

Then for each x ∈ R we have

P (Xv < x |Xu) = E[P (Xv < x |Xt) |Xu] a.e. .

The definition of a Markov process is not uniform throughout the literature. However,

the more common of these definitions are equivalent, as shown in the result below.

Theorem 4.2.4. [51]

For a process {Xt}t∈J⊂Λ in L1(Ω,F , P ) the following are equivalent.
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(i) The process is a Markov process, as defined in Definition 4.2.1.

(ii) For each u < v in J and x ∈ R, one has

P (Xv < x |Xs, s ≤ u) = P (Xv < x |Xu) a.e. .

(iii) For s1 < s2 < · · · < sm < t < t1 < t2 < · · · < tn from J, and xi, yj ∈ R, almost

everywhere one has

P (Xsi < xi, Xtj < yj; 1 ≤ i ≤ m, 1 ≤ j ≤ n |Xt)

= P (Xsi < xi; 1 ≤ i ≤ m |Xt)P (Xtj < yj; 1 ≤ j ≤ n |Xt).

We note that all the above definitions and theorems concerning Markov processes are

stated largely in terms of conditional probabilities. In order to define Markov pro-

cesses in Riesz spaces we need to translate all these definitions to definitions in terms

of conditional expectation operators (as such operators have already been defined in

Riesz spaces, cf. [37]). Besides the usual translation (P (A|B) = E[χA|B]) we have

that if X is a Markov process, then for all bounded, Borel measurable functions g

and for t > tn > · · · > t1, we have

E[g(Xt) |Xt1 , Xt2 , . . . , Xtn ] = E[g(Xt) |Xtn ]. (4.2.2)

To see that (4.2.1) is equivalent to (4.2.2) translate the probability definition to one

involving conditional expectations in the usual manner (using indicator functions)

and generalise from there. To see (4.2.2) implies (4.2.1) simply let g = χB. This is

the case if g is continuous. For a general Borel measurable function, we make use of

Lebesgue’s Monotone convergence theorem

If the conditional measures are regular, part (iii) of Theorem 4.2.4 may be interpreted

as follows. A stochastic process is a Markov process if and only if, given the present
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state, the past and future states are independent. However, the condition of regu-

larity of the conditional measures is not a trivial one and requires restrictions on the

underlying measure space.

The interpretation of the Markov definition in terms of it’s past and present has an

interesting, and often useful, consequence. Since the ‘past’ and the ‘present’ depend

only on the ordering of Λ, we have that if {Xt}t∈J is a Markov process then {Xt}t∈J̃

is also a Markov process, where J, J̃ have opposite orderings but are the same set. In

particular, if {Xt}−a≤t≤a is a Markov process, then so is {X−t}−a≤t≤a.

Finally, we can relate the sums of independent random variables and Markov pro-

cesses.

Theorem 4.2.5. Let X1, X2, . . . be a sequence of independent random variables in

L1(Ω,F , P ), then the sequence of partial sums{
Sn =

n∑
i=1

Xi

}
n∈N

forms a Markov process.

Note 4.2.6. Let X1, X2, . . . be as above. If in addition, E(Xi) exists and E(Xi) = 0

for all i ∈ N, then (Sn,Bn)n∈N is a martingale, where Bn = σ(S1, S2, . . . , Sn).

4.3 Markov Processes in Riesz Spaces

4.3.1 Preliminaries

Based on the definition of a Markov process in L1 by M. M. Rao [51] we define a

Markov process in a Riesz space as follows.
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Definition 4.3.1. Let T be a strictly positive conditional expectation on the T -

universally complete Riesz space E with weak order unit e = Te. Let Λ be a totally

ordered index set. A net (Xλ)λ∈Λ is a Markov process in E if for any set of points

t1 < · · · < tn < t, ti, t ∈ Λ, we have

T(t1,...,tn)Pe = TtnPe for all Pe ∈ 〈R(T ), Xt〉 , (4.3.3)

with P a band projection. Here T(t1,t2,...,tn) is the conditional expectation with range

〈R(T ), Xt1 , Xt2 , . . . , Xtn〉.

Note 4.3.2. An application of Lemma 3.1.5 to (4.3.3) yields that (4.3.3) is equivalent

to

T(t1,...,tn)f = Ttnf, for all f ∈ R(Tt),

which in turn is equivalent to

T(t1,...,tn)Tt = TtnTt

where Tt is the conditional expectation with range 〈R(T ), Xt〉 .

We can extend the Markov property to include the entire future, as is shown below.

Lemma 4.3.3. Let T be a strictly positive conditional expectation on the T -universally

complete Riesz space E with weak order unit e = Te. Let Λ be a totally ordered index

set. Suppose (Xλ)λ∈Λ is a Markov process in E. If sm > · · · > s1 > t > tn > · · · > t1,

tj, sj, t ∈ Λ and for each i = 1, . . . ,m, Qi is a band projection with Qie ∈ 〈R(T ), Xsi〉,

then

T(t1,...,tn,t)Q1Q2 . . . Qme = TtQ1Q2 . . . Qme. (4.3.4)

Proof. Under the assumptions of the lemma, if we denote s0 = t, from Note 4.3.2

TsjQj+1Tsj+1
= TsjTsj+1

Qj+1 = T(t1,...,tn,s0,...,sj)Tsj+1
Qj+1 = T(t1,...,tn,s0,...,sj)Qj+1Tsj+1

,
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which, if we denote Ssj = T(t1,...,tn,s0,...,sj), gives

TsjQj+1Tsj+1
= SsjQj+1Tsj+1

. (4.3.5)

Similarly, if we denote Usj = T(s0,...,sj), then

TsjQj+1Tsj+1
= UsjQj+1Tsj+1

. (4.3.6)

Applying (4.3.5) recursively we obtain

Ts0Q1Ts1Q2Ts2 . . . Tsm−1Qme = Ss0Q1Ts1Q2Ts2 . . . Tsm−1Qme

= Ss0Q1Ss1Q2Ts2 . . . Tsm−1Qme

= . . .

= Ss0Q1Ss1Q2Ss2 . . . Ssm−1Qme.

Here we have also used that e = Tsme. But QiSsj = SsjQi and SsiSsj = Ssi for all

i ≤ j giving

Ss0Q1Ss1Q2Ss2 . . . Ssm−1Qme = Ss0Ss1 . . . Ssm−1Q1 . . . Qme = Ss0Q1 . . . Qme.

Combining the above two displayed equations gives

Ts0Q1Ts1Q2Ts2 . . . Tsm−1Qme = Ss0Q1 . . . Qme.

Similarly

Ts0Q1Ts1Q2Ts2 . . . Tsm−1Qme = Us0Q1 . . . Qme.

Thus Ss0Q1 . . . Qme = Us0Q1 . . . Qme which proves the lemma.

Note 4.3.4. From Lemma 3.1.5, we have that the linear span of

{Q1 . . . Qme | Qie ∈ 〈R(T ), Xsi〉 , Qi band projections, i = 1, . . . ,m}
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is dense in 〈R(T ), Xs1 , . . . , Xsm〉, giving

T(t1,...,tn)f = Ttnf for all f ∈ 〈R(T ), Xs1 , . . . , Xsm〉 , (4.3.7)

where s1 > s2 > · · · > sm > t > tn > · · · > t1.

Theorem 4.3.5. (Chapman-Kolmogorov)

Let T be a strictly positive conditional expectation on the T -universally complete Riesz

space E with weak order unit e = Te. Let Λ be a totally ordered index set. If (Xλ)λ∈Λ

is a Markov process and u < t < n, then

TuX = TuTtX, for all X ∈ R(Tn),

where R(Tu) = 〈R(T ), Xu〉.

Proof. We recall that (Xλ)λ∈Λ is a Markov process if for any set of points t1 < · · · <

tn < t, t, ti ∈ Λ one has

T(t1,...,tn)X = TtnX

where X ∈ 〈R(T ), Xt〉. Thus,

T(u,t)X = Ttf, for X ∈ R(Tn).

Applying Tu to the above equation gives

TuT(u,t)X = TuTtX,

and, thus

TuX = TuTtX

since R(Tu) ⊂ R(T(u,t)).
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Under the hypotheses of Theorem 4.3.5, it follows directly from the Chapman-Kolmogov

Theorem and Freudenthal’s Theorem, as in the proof of Theorem 3.2.2, that if (Xλ)λ∈Λ

is a Markov process and u < t < n, then

TuTn = TuTtTn.

It is often stated that a stochastic process is Markov if and only if the past and future

are independent given the present, see [51, p 351]. It is clear that such independence

implies, even in the Riesz space setting, that the process is a Markov process. How-

ever, the non-commutation of conditional expectations onto non-comparable closed

Riesz subspaces (or in the classical setting, the non-commutation of conditional ex-

pectations with respect to non-comparable σ-algebras), makes the converse of the

above claim more interesting. The proof of this equivalence (part (iii) of the follow-

ing theorem) relies on the fact that conditional expectation operators are averaging

operators and, in the Riesz space setting, that Ee is an f -algebra, and is as such

a commutative algebra. Classical versions of the following theorem can be found in

[6, 12, 51].

Theorem 4.3.6. Let T be a strictly positive conditional expectation on the T -universally

complete Riesz space E with weak order unit e = Te. Let Λ be a totally ordered index

set. For (Xt)t∈Λ ⊂ E the following are equivalent:

(i) The process, (Xt)t∈Λ is a Markov process.

(ii) For conditional expectations Tu and Tv with R(Tu) = 〈R(T ), Xn;n ≤ u〉 and

R(Tv) = 〈R(T ), Xv〉, u < v in Λ, we have

TuTv = TuTv.
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(iii) For any sm > · · · > s1 > t > tn > · · · > t1 from Λ, and P,Q band projections

with Qe ∈ 〈R(T ), Xs1 , . . . , Xsm〉 and Pe ∈ 〈R(T ), Xt1 , . . . , Xtn〉 we have

TtQTtPe = TtQPe = TtPQe = TtPTtQe.

Proof. (i) ⇒ (ii) Let u < v, u, v ∈ Λ, and P be a band projection with Pe ∈

〈R(T ), Xv〉. Let Pi be a band projection with Pie ∈ R(Tti), t1 < t2 < · · · < tn =

u, n ∈ N. From the definition of a Markov process, for all t1 < t2 < . . . tn = u < t = v

we have T(t1,...,tn)Pe = TtnPe and PiT(t1,...,tn) = T(t1,...,tn)Pi thus

T(t1,...,tn)P1P2 . . . PnPe = P1P2 . . . PnTtnPe.

Applying T to this equation gives

TP1P2 . . . PnPe = TP1P2 . . . PnTtnPe. (4.3.8)

Note, by Lemma 3.1.5, the set of (finite) linear combinations of elements of

D = {P1P2 . . . Pne | Pi a band projection, Pie ∈ R(Tti), t1 < t2 < · · · < tn = u, n ∈ N}

is dense in R(Tu). This, together with (4.3.8), gives

TQPe = TQTtnPe (4.3.9)

for band projections Q with Qe ∈ R(Tu). Applying the Riesz space Radon-Nikodým-

Douglas-Andô theorem to (4.3.9) gives

TuPe = TuTtnPe = TuPe. (4.3.10)

Now Freudenthal’s theorem, as in the proof of Theorem 3.2.2, gives

Tuf = Tuf
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for f ∈ R(Tv), or equivalently

TuTv = TuTv.

(ii) ⇒ (i) Assume that for u < v we have

TuTv = TuTv. (4.3.11)

Let t1 < · · · < tn < t. Taking v = t and u = tn, we have T(t1,...,tn)Tu = T(t1,...,tn) and

T(t1,...,tn)Tu = Tu = Ttn . Thus applying T(t1,...,tn) to (4.3.11) gives

T(t1,...,tn)Tt = T(t1,...,tn)TuTv = T(t1,...,tn)TuTv = TtnTt.

Applying this operator equation to Pe where P is a band projection with Pe ∈ R(Tt)

gives that (Xλ)λ∈Λ is a Markov process.

(i) ⇒ (iii) Let Q be a band projection with Qe ∈ 〈R(T ), Xs1 , . . . , Xsm〉 then, from

Lemma 4.3.3,

T(t1,...,tn,t)Qe = TtQe.

Applying a band projection P with Pe ∈ 〈R(T ), Xt1 , . . . , Xtn〉 followed by Tt to this

equation gives

TtPQe = TtT(t1,...,tn,t)PQe = TtPT(t1,...,tn,t)Qe = TtPTtQe.

To prove TtQTtPe = TtQPe, we prove TtQTtPe = TtPTtQe and use the result above.

Recall that in the f -algebra we have Qf = Qe· f . Using the commutativity of multi-

plication in the f -algebra Ee and the fact that Tt is an averaging operator in Ee, we
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have

TtQTtPe = Tt((Qe) · (TtPe))

= (TtPe) · (TtQe)

= (TtQe) · (TtPe)

= Tt((Pe · (TtQe))

= TtPTtQe.

Finally, by the commutation of band projections, TtPQe = TtQPe.

(iii) ⇒ (i) Suppose TtPQe = TtPTtQe for all band projections P and Q with Qe ∈

〈R(T ), Xs1 , . . . , Xsm〉 and Pe ∈ 〈R(T ), Xti , . . . , Xtn〉. Let R be a band projection

with Re ∈ 〈R(T ), Xt〉, then

TRPT(t1,...tn,t)Qe = TRT(t1,...,tn,t)PQe = TT(t1,...,tn,t)RPQe

as PT(t1,...tn,t) = T(t1,...,tn,t)P and RT(t1,...,tn,t) = T(t1,...,tn,t)R. But TT(t1,...,tn,t) = T =

TTt, so

TRPT(t1,...tn,t)Qe = TRPQe = TTtRPQe.

Since TtR = RTt we have TTtRPQe = TRTtPQe and the hypothesis gives that

TtPQe = TtPTtQe which combine to yield TTtRPQe = TRTtPTtQe. Again appeal-

ing to the commutation of R and Tt and that TTt = T we have

TRTtPTtQe = TTtRPTtQe = TRPTtQe,

giving

TRPT(t1,...tn,t)Qe = TRPTtQe

for all such R and P . As the linear combinations of elements of the form RPe are

dense in 〈R(T ), Xt1 , . . . , Xtn , Xt〉, we have, for all Se ∈ 〈R(T ), Xt1 , . . . , Xtn , Xt〉, that

TST(t1,...,tn,t)Qe = TSTtQe.
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By (3.1.2) and the unique determination of conditional expectation operators by their

range spaces, we have that T(t1,...,tn,t)Qe = TtQe, proving the result.

Note 4.3.7. Proceeding in a similar manner to the proof of (i) ⇒ (ii) in the above

proof it follows that (iii) in the above theorem is equivalent to

TtSt = Tt = TtSt

where St is the conditional expectation with range space R(Su) = 〈R(T ), Xn;n ≥ u〉.

This shows that a process is a Markov process in a Riesz space if and only if the past

and future are conditionally independent on the present.

4.3.2 Independent Sums

There is a natural connection between sums of independent random variables and

Markov processes. In the Riesz space case, this is illustrated by the following theorem.

Theorem 4.3.8. Let T be a strictly positive conditional expectation on the T -universally

complete Riesz space E with weak order unit e = Te. Let (fn) be a sequence in E

which is T -conditionally independent then(
n∑
k=1

fk

)
is a Markov process.

Proof. Let Sn =
n∑
k=1

fk. We note that 〈R(T ), S1, . . . , Sn〉 = 〈R(T ), f1, . . . , fn〉.

Let m > n and P and Q be band projections with Pe ∈ 〈R(T ), Sn〉 and Qe ∈

〈R(T ), fn+1, . . . , fm〉. Since 〈R(T ), Sn〉 ⊂ 〈R(T ), f1, . . . , fn〉 and (fn) is T -conditionally

independent we have that 〈R(T ), Sn〉 and 〈R(T ), fn+1, . . . , fm〉 are T -conditionally

independent. Thus P and Q are T -conditionally independent.
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Denote by Tn, Tn and S the conditional expectations with ranges 〈R(T ), f1, . . . , fn〉,

〈R(T ), Sn〉 and 〈R(T ), fn+1, . . . , fm〉 respectively. Now from the independence of (fn)

with respect to T we have, by Corollary 3.2.5,

TnS = T = STn. (4.3.12)

As Pe ∈ 〈R(T ), Sn〉 ⊂ 〈R(T ), S1, . . . , Sn〉 and SQe = Qe it follows that

TnPQe = PTnQe = PTnSQe. (4.3.13)

From (4.3.12)

PTnSQe = PTQe. (4.3.14)

As R(Tn) ⊂ R(Tn), which is T -conditionally independent of S,

TnS = T = STn. (4.3.15)

Combining (4.3.14) and (4.3.15) yields

PTQe = PTnSQe. (4.3.16)

As noted SQe = Qe, also TnP = PTn, so

PTnSQe = TnPQe. (4.3.17)

Combining (4.3.13), (4.3.14), (4.3.16) and (4.3.17) gives

TnPQe = PTnQe = PTnSQe = PTQe = PTnSQe = TnPQe. (4.3.18)

Again, using Lemma 3.1.5 the closure of the linear span of

{PQe |Pe ∈ 〈R(T ), Sn〉 , Qe ∈ 〈R(T ), fn+1, . . . , fm〉 , P,Q band projections}

contains R(Tm). Thus by the order continuity of Tn and Tn in (4.3.18),

Tnh = Tnh

for all h ∈ 〈R(T ), Sm〉, proving that (Sn) is a Markov process.
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Corollary 4.3.9. Let T be a strictly positive conditional expectation on the T -universally

complete Riesz space E with weak order unit e = Te. Let (fn) be a sequence in E

which is T -conditionally independent. If Tfi = 0 for all i ∈ N, then the sequence of

partial sums (Sn), where Sn =
n∑
k=1

fk, is a martingale with respect the filtration (Tn)

where Tn is the conditional expectation with range 〈f1, . . . , fn,R(T )〉 .

Proof. Since R(Ti) ⊂ R(Tj) for all i ≤ j we have that

TiTj = Ti = TjTi

and (Tn) is a filtration. Further, f1, . . . , fi ∈ R(Ti) for all i by construction of Ti

giving TiSi = Si.

If i < j, then from the independence of (fn) with respect to T we have TiTj = T =

TjTi which applied to fj gives

Tifj = TiTjfj = Tfj = 0, (4.3.19)

Thus

TiSj = TiSi +

j∑
k=i+1

Tifk = TiSi = Si,

proving (fi,Ti) a martingale.

From Corollary 4.3.9 and [36, Thm 3.5] we obtain the following result regarding the

convergence of sums of independent summands.

Theorem 4.3.10. Let T be a strictly positive conditional expectation on the T -

universally complete Riesz space E with weak order unit e = Te. Let (fn) be a

sequence in E which is T -conditionally independent. If Tfi = 0 for all i ∈ N, and

there exists g ∈ E such that T

∣∣∣∣∣
n∑
i=1

fi

∣∣∣∣∣ ≤ g for all n ∈ N then the sum
∞∑
k=1

fk is order

convergent in the sense that its sequence of partial sums is order convergent.
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It should be noted that the third last line of the proof of the upcrossing theorem ([36,

Thm 3.1]) by Kuo, Labuschagne and Watson should be replaced by

‘Now, as S ≥ Q, we have SnN ≤ Qn
N and so Qn

N − SnN ≥ 0, thus . . . ’.
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Chapter 5

Mixingales

Mixingales are a generalisation of martingales and mixing sequences and were first

introduced by D.L. McLeish in [45]. McLeish defines mixingales using the L2-norm

and proves invariance principles under strong mixing conditions, [45]. In [44] a strong

law for large numbers is given using mixingales with restrictions on the mixingale

numbers.

In 1988, Donald W. K. Andrews used an analogue of McLeish’s mixingale condition to

define L1-mixingales,[5]. The L1-mixingale condition is weaker than McLeish’s mixin-

gale condition and makes no restriction on the decay rate of the mixingale numbers, as

was assumed by McLeish. Andrews used L1-mixingales to present L1 and weak laws of

large numbers, [5]. The proofs presented in Andrews are remarkably simple and self-

contained. Mixingales have also been considered in general Lp spaces (1 ≤ p < ∞)

by, amongst others, de Jong, in [16, 17] and more recently by Hu, see [30].

Examples of L1-mixingales include martingale difference sequences, integrable M -
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dependent sequences and certain stationary Gaussian processes, [5].

In this chapter we define mixingales in a Riesz space and prove a weak law of large

numbers for mixingales in this setting. This generalises the results in the Lp setting

to a measure free setting. In our approach the proofs rely on the order structure of

the Riesz spaces.

We first present the results (in the classical setting) that we will generalise to Riesz

spaces.

5.1 Classical Mixingales

For the most part, the contents of this section are due to Andrews, [5]. We follow the

usual conventions and let (Ω,F , P ) be a probability space and consider the random

variables (Xi)i≥1. We deviate from convention by considering the family of non-

decreasing sub-σ-algebras of F indexed by {· · · − 2,−1, 0, 1, 2, . . . }. We will call this

family an integer indexed filtration. It is common to let Fi = σ(X1, X2, . . . , Xi) for

all i > 0 and Fi = {Ω, φ} for all i ≤ 0. We denote by ‖· ‖p the Lp-norm.

Definition 5.1.1. Consider the sequence of random variables (Xi)i≥1 adapted to the

integer filtration (Fi)i∈Z. Let (ci)i≥1 and (φm)m≥0 be sequences of non-negative con-

stants such that φm → 0 as m→∞. We say that (Xi,Fi)i≥1 is a mixingale if for all

i ≥ 1,m ≥ 0,

(i) E |E[Xi | Fi−m]| ≤ ciφm,

(ii) E |Xi − E[Xi | Fi+m]| ≤ ciφm+1.

79



5.1 Classical Mixingales Mixingales

We refer to the numbers φm as the L1-mixingale numbers. These numbers index

the temporal dependence of the mixingale. We choose the constants ci to index the

‘magnitude’ of the Xi’s. In applications of the theory it is common to set ci = E|Xi|.

Further, if the (Xi) are independent and σ(X1, X2, . . . , Xi) ⊂ Fi we can set φm = 0

for all m ≥ 0.

Recall that a sequence random variables X = (Xi)i∈N is uniformly integrable if

lim
C→∞

{
sup
i∈N

E[|Xi| | |Xi| ≥ C]

}
= 0.

We will now state a Law of Large numbers holds for mixingales.

Theorem 5.1.2. [5, Theorem 1] Consider the mixingale (Xi,Fi)i≥1 and let (Xi,Fi)

be uniformly integrable.

(a) If lim sup
n→∞

1

n

n∑
i=1

ci <∞ then,

lim
n→∞

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ = 0.

(b) If the mixingale has constants ci = E|Xi| for all i then

lim
n→∞

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ = 0.

We note that (b) is a particular case of (a).

In order to prove Theorem 5.1.2 we make use of an Lp Law of Large numbers for

martingale difference sequences. Andrews credits this result to Chow, [15].

Lemma 5.1.3. Let (Xi)i≥1 be adapted to the integer filtration (Fi)i∈Z. Define the

martingale difference sequence

Yi = Xi − E[Xi | Fi−1], i ≥ 1.
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If (|Yi|p)i≥1 is a uniformly integrable family for 1 ≤ p ≤ 2, then∥∥∥∥∥ 1

n

n∑
i=1

Yi

∥∥∥∥∥
p

→ 0 as t→∞.

5.2 Mixingales in Riesz Spaces

We now formulate a measure free abstract definition of a mixingale in the setting

of Riesz spaces with conditional expectation operator. This generalises the above

classical definitions.

Definition 5.2.1. Let E be a Dedekind complete Riesz space with conditional ex-

pectation operator, T , and weak order unit e = Te. Let (Ti)i∈Z be a filtration on E

compatible with T in that TiT = T = TTi for all i ∈ Z. Let (fi)i∈N be a sequence in E.

We say that (fi, Ti) is a mixingale in E compatible with T if there exist (ci)i∈N ⊂ E+

and (Φm)m∈N ⊂ R+ such that Φm → 0 as m→∞ and for all i,m ∈ N we have

(i) T |Ti−mfi| ≤ Φmci,

(ii) T |fi − Ti+mfi| ≤ Φm+1ci.

As in the classical setting, the numbers Φm,m ∈ N, are referred to as the mixingale

numbers. These numbers give a measure of the temporal dependence of the sequence

(fi). The constants (ci) are chosen to index the ‘magnitude’ of the the random

variables (fi).

In many applications the sequence (fi) is adapted to the filtration (Ti). The following

theorem sheds more light on the structure of mixingales for this special case.
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We recall that if T is a conditional expectation operator on a Riesz space E then

T |g| ≥ |Tg|.

Lemma 5.2.2. Let E be a Dedekind complete Riesz space with conditional expectation

operator, T , and weak order unit e = Te. Let (fi, Ti) be a mixingale in E compatible

with T .

(i) The sequence (fi) has T -mean zero, i.e. Tfi = 0 for all i ∈ N.

(ii) If in addition (fi)i∈N is T -conditionally independent andR(Ti) = 〈f1, . . . , fi−1,R(T )〉

then the mixingale numbers may be taken as zero, where 〈f1, . . . , fi−1,R(T )〉 is

the order closed Riesz subspace of E generated by f1, . . . , fi−1 and R(T ).

Proof. (i) Here we observe that the index set for the filtration (Ti) is Z, thus

|Tfi| = |TTi−mfi|

≤ T |Ti−mfi|

≤ ciΦm

→ 0 as m→∞

giving Tfi = 0 for all i ≥ 0.

(ii) As (fi) is adapted to the filtration (Ti), fi ∈ R(Ti) for all i ∈ N from which it

follows that

fi − Ti+mfi = 0, for all i,m ∈ N.

As (fi) is T -conditionally independent, from Corollary 3.2.6 and as (fi) has T -mean

zero (from (i)), we have that

Ti−mfi = Tfi = 0,

for i,m ∈ N. Thus we can choose Φm = 0 for all m ∈ N.
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5.2.1 The Weak Law of Large Numbers

We now show that the above generalisation of mixingales to the measure free Riesz

space setting admits a weak law of large numbers.

Lemma 5.2.3. Let E be a Dedekind complete Riesz space with conditional expectation

operator T , weak order unit e = Te and filtration (Ti)i∈N compatible with T . Let (fi)

be an e-uniformly bounded sequence adapted to the filtration (Ti), and gi := fi−Ti−1fi,

then (gi, Ti) is a martingale difference sequence with

T |gn| → 0 as n→∞,

where

gn :=
1

n

n∑
i=1

gi.

Proof. Clearly

Tigi+1 = Tifi+1 − T 2
i fi+1 = 0

and (gi) is adapted to (Ti) so indeed (gi, Ti) is a martingale difference sequence.

As (fi) is e-uniformly bounded, there exists B > 0 be such that |fi| ≤ Be, for all

i ∈ N. Let gi := fi − Ti−1fi. For j > i, as TjTi = Ti and Tifi = fi it follows that

Tigi = gi and

Tigj = Tifj − TiTj−1fj = Tifj − Tifj = 0.

In addition,

|gi| ≤ |fi|+ |Ti−1fi| ≤ |fi|+ Ti−1|fi| ≤ 2Be, for all i ∈ N.

Set

sn =
n∑
i=1

gi.
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As |gi| ≤ 2Be we have that gi is in the f -algebra Ee. Hence the product gigj is defined

in Ee. Now as Tj is an averaging operator, see Corollary 2.4.8, and gj ∈ R(Tj) we

have

Ti(gigj) = giTigj = 0, for j > i.

Combining these results gives

T (s2
n) =

n∑
i,j=1

T (gigj)

=
n∑
i=1

T (g2
i ) + 2

∑
i<j

T (gigj)

=
n∑
i=1

T (g2
i ) + 2

∑
i<j

TTi(gigj)

=
n∑
i=1

T (g2
i ) + 2

∑
i<j

T (giTigj)

=
n∑
i=1

T (g2
i ) + 0.

Thus

T (s2
n) =

n∑
i=1

T (g2
i ).

But

g2
i = |gi|2 ≤ 4B2e

as e is the algebraic identity of the f -algebra Ee and |gi| ≤ 2Be. Thus

T (s2
n) ≤ 4nB2e. (5.2.1)

Now let

Jn = Ps+n − (I − Ps+n )

where Ps+n is the band projection on the band in E generated by s+
n . From the

definition of the f -algebra structure on Ee, if P and Q are band projections then
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(Pe)(Qe) = PQe which together with Freudenthal’s Theorem (Theorem 2.4.7) en-

ables us to conclude

|sn| = Jnsn = (Jne)sn

and (Jne)
2 = e, as J2

n = I. But

0 ≤
(
Jne

n1/4
− sn
n3/4

)2

=

(
Jne

n1/4

)2

+
( sn
n3/4

)2

− 2
Jne

n1/4

sn
n3/4

=
e

n1/2
+

s2
n

n3/2
− 2
|sn|
n

giving

e

n1/2
+

s2
n

n3/2
≥ 2
|sn|
n
.

Applying T to this inequality gives

e

n1/2
+
T (s2

n)

n3/2
≥ 2

T |sn|
n

Combining the above inequality with (5.2.1) gives

2
T |sn|
n

≤ e

n1/2
+
T (s2

n)

n3/2

≤ e

n1/2
+

4nB2e

n3/2

=
1 + 4B2

n1/2
e,

and thus

T |gn| ≤
1 + 4B2

2n1/2
e. (5.2.2)

Since E is an Archimedean Riesz space letting n → ∞ in (5.2.2) gives T |gn| → 0 as

n→∞.

85



5.2 Mixingales in Riesz Spaces Mixingales

In order to prove an analogue to the weak law of large numbers for mixingales in

Riesz spaces, we first need to give a Riesz space equivalent of a ‘uniformly integrable

collection of random variables’.

Definition 5.2.4. Let E be a Dedekind complete Riesz space with conditional expec-

tation operator T and weak order unit e = Te. Let fα, α ∈ Λ, be a family in E, where

Λ is some index set. We say that fα, α ∈ Λ, is T -uniform if

sup
{
TP(|fα|−ce)+|fα| : α ∈ Λ

}
→ 0 as c→∞, (5.2.3)

in E.

Lemma 5.2.5. Let E be a Dedekind complete Riesz space with conditional expectation

T and let e be a weak order unit which is invariant under T . If fα ∈ E,α ∈ Λ, is a

T -uniform family, then the set {T |fα| : α ∈ Λ} is bounded in E.

Proof. As the family fα, α ∈ Λ, is T -uniform

Jc := sup
{
TP(|fα|−ce)+ |fi| : α ∈ Λ

}
→ 0 as c→∞.

In particular, this implies that Jc exists in E for c > 0 large and that, for sufficiently

large K > 0, the set {Jc : c ≥ K} is bounded in E. Hence there is g ∈ E+ so that

TP(|fα|−ce)+|fα| ≤ g, for all α ∈ Λ, c ≥ K,

By the definition of P(|fα|−ce)+ ,

(I − P(|fα|−ce)+)|fα| ≤ ce, for α ∈ Λ, c > 0.

Combining the above for c = K gives

T |fα| = TP(|fα|−Ke)+ |fα|+ T (I − P(|fα|−Ke)+)|fα| ≤ g +Ke,
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for all α ∈ Λ.

We are now able to give a Weak Law of Large Numbers for Riesz spaces.

Theorem 5.2.6. (Weak Law of Large Numbers) Let E be a Dedekind complete

Riesz space with conditional expectation operator T , weak order unit e = Te and

filtration (Ti)i∈Z. Let (fi, Ti)i≥1 be a T -uniform mixingale with ci and Φi as defined

in Definition 5.2.1.

(i) If

(
1

n

n∑
i=1

ci

)
n∈N

is bounded in E then

T |fn| = T

∣∣∣∣∣ 1n
n∑
i=1

fi

∣∣∣∣∣→ 0 as n→∞.

(ii) If ci = T |fi| for each i ≥ 1 then

T |fn| = T

∣∣∣∣∣ 1n
n∑
i=1

fi

∣∣∣∣∣→ 0 as n→∞.

Proof. (i) Let

ym,i = Ti+mfi − Ti+m−1fi, for i ≥ 1,m ∈ Z.

Let hi = (I − P(|fi|−Be)+)fi and di = P(|fi|−Be)+fi, i ∈ N, then fi = hi + di. Now

(Ti+mhi)i∈N is e-bounded and adapted to (Ti+m)i∈N, so from Lemma 5.2.3 (Ti+mhi −

Ti+m−1hi, Ti+m)i∈N is a martingale difference sequence with

T

∣∣∣∣∣ 1n
n∑
i=1

(Ti+mhi − Ti+m−1hi)

∣∣∣∣∣→ 0
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as n→∞. Thus,

T

∣∣∣∣∣ 1n
n∑
i=1

(Ti+mdi − Ti+m−1di)

∣∣∣∣∣ ≤ T
1

n

n∑
i=1

|Ti+mdi − Ti+m−1di|

≤ 1

n

n∑
i=1

(TTi+m|di|+ TTi+m−1|di|)

=
2

n

n∑
i=1

T |di|

≤ 2 sup {T |di| : i = 1, . . . , n} .

Using the T -uniformity of (fi) we can write

T

∣∣∣∣∣ 1n
n∑
i=1

(Ti+mdi − Ti+m−1di)

∣∣∣∣∣ ≤ 2 sup
{
T |P(|fi|−Be)+fi| : i ∈ N

}
.

Combining the above results gives

lim sup
n→∞

T

∣∣∣∣∣ 1n
n∑
i=1

(Ti+mfi − Ti+m−1fi)

∣∣∣∣∣ ≤ 2 sup
{
TP(|fi|−Be)+|fi| : i ∈ N

}
→ 0

as B →∞ by the T -uniformity of (fi). Thus T |ym,n| → 0 as n→∞.

We now make use of a telescoping series to expand fn,

fn =
1

n

n∑
i=1

fi

=
1

n

n∑
i=1

(
fi − Ti+Mfi +

M∑
m=−M+1

(Ti+mfi − Ti+m−1fi) + Ti−Mfi

)

=
1

n

n∑
i=1

(fi − Ti+Mfi) +
M∑

m=−M+1

1

n

n∑
i=1

(Ti+mfi − Ti+m−1fi) +
1

n

n∑
i=1

Ti−Mfi

=
1

n

n∑
i=1

(fi − Ti+Mfi) +
M∑

m=−M+1

ym,n +
1

n

n∑
i=1

Ti−Mfi
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Applying T to the above expression we can bound T |fn| by means of the defining

properties of a mixingales as follows

T |fn| ≤
1

n

n∑
i=1

T |fi − Ti+Mfi|+
M∑

m=−M+1

T |ym,n|+
1

n

n∑
i=1

T |Ti−Mfi|

≤ 1

n

n∑
i=1

ciΦM+1 +
M∑

m=−M+1

T |ym,n|+
1

n

n∑
i=1

ciΦM .

Since

(
1

n

n∑
i=1

ci

)
n∈N

bounded in E there is q ∈ E+ so that
1

n

n∑
i=1

ci ≤ q, for all n ∈ N,

which when combined with the above display yields

T |fn| ≤ (ΦM+1 + ΦM)q +
M∑

m=−M+1

T |ym,n|.

Letting n→∞ gives

lim sup
n→∞

T |fn| ≤ (ΦM+1 + ΦM)q.

Now taking M →∞ gives

lim sup
n→∞

T |fn| = 0,

completing the proof of (i).

(ii) By Lemma 5.2.5, (T |fi|) is bounded, say by q ∈ E+, so

lim sup
n→∞

1

n

n∑
i=1

ci = lim sup
n→∞

1

n

n∑
i=1

T |fi| ≤ q,

making (i) applicable.
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Chapter 6

Quasi-martingales

Quasi-martingales were first introduced by H. Rubin in an invited lecture at the In-

stitute of Mathematical Statistics in 1956. In [25], by Fisk, quasi-martingales were

formally introduced and defined. Fisk gave the necessary and sufficient conditions

under which a quasi-martingale with continuous sample paths could be decomposed

as the sum of a martingale and a process having almost every sample path of bounded

variation. Orey, in [49] was able to generalise Fisk’s results to right continuous pro-

cesses (or F -processes, in Orey’s terminology). Finally, in [50], Rao gave a greatly

simplified and elegant proof of Orey’s result. Rao was also able to prove that ev-

ery right-continuous martingale can be written as the sum of two positive super-

martingales.

In [23], L. Egghe gives an application of quasi-martingales to a real world model.

Egghe constructs a stochastic process that ‘describes the evolution of a set of source

journals’, for example the set of ISI (Institute for Scientific Information) journals.

Under certain conditions, the model is a quasi-martingale. Other examples of quasi-
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6.1 Classical Quasi-martingales Quasi-martingales

martingales include sub- and super-martingales.

We begin with a review of the classical results for quasi-martingales. Unless otherwise

stated, the results in the following section can be found in [50].

6.1 Classical Quasi-martingales

Throughout this section we will assume we are working in the probability space

(Ω,F , P ) with right continuous filtration (Ft)t≥0. We consider the stochastic process

(Xt)t≥0 = (X(t))t≥0 adapted to (Ft)t≥0. Unless otherwise stated E[Xt] <∞.

We aim to provide decompositions for quasi-martingales. One such decomposition is

the Riesz decomposition.

Definition 6.1.1. A process X = (Xt) admits a Riesz decomposition if there exists

a martingale Y = Yt and a process Z = Zt with E[|Zt|]→ 0 as t→∞ (that is, Zt is

a potential) such that for all t,

Xt = Yt + Zt.

We note that the Riesz decomposition is almost everywhere unique. To see this,

suppose

X(t) = Y1(t) + Z1(t) and X(t) = Y2(t) + Z2(t).

Now,

Y1(t) + Z1(t) = Y2(t) + Z2(t) and Y1(t)− Y2(t) = Z2(t)− Z1(t).

Thus,

lim
t→∞

E[|Y1(t)− Y2(t)|] = lim
t→∞

E[|Z2(t)− Z1(t)|],
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giving

lim
t→∞

E[|Y1(t)− Y2(t)|] = 0

from the assumption that Z1(t) and Z2(t) are potentials. Y1(t) and Y2(t) are mar-

tingales, so |Y1(t) − Y2(t)| is a sub-martingale. Thus, E[|Y1(t) − Y2(t)|] ≥ E[|Y1(s) −

Y2(s)|] ≥ 0 for all t ≥ s. Taking t→∞ gives E[|Y1(s)− Y2(s)|] ≡ 0 and Y1 = Y2.

Definition 6.1.2. A process X = Xt is said to be a quasi-martingale if there exists

a constant M such that

sup
{t1<t2<···<tn}∈R+

n∑
i=1

E
[∣∣Xti − E[Xti+1

| Fti ]
∣∣] ≤M.

A quasi-martingale X = Xt is said to be a quasi-potential if

lim
t→∞

E[|Xt|] = 0.

We shall call the number M that satisfies the defining inequality of quasi-martingales

a quasi-bound.

Note 6.1.3. In [25], Fisk defines a quasi-martingale as follows: ‘Let T ⊂ R. A

process (Xt)t∈T will be called a quasi-martingale if there exists a martingale (X1(t))t∈T

and a process (X2(t))t∈T with an almost everywhere sample function of bounded total

variation on T such that

P ([X(t) = X1(t) +X2(t) ; t ∈ T ]) = 1,

where [. . . ] denotes the subset of Ω where ‘. . . ’ is true.’

However in [25, Lemma 3.1.2] it is shown that the definitions of Fisk and Rao are

the same. Further, Fisk’s definition is essentially the same as assuming that every

quasi-martingale admits a Riesz decomposition.
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In [50] it is shown that every quasi-martingale admits a Riesz decomposition. We

now state the relevant theorem.

Theorem 6.1.4. [50, Theorem 1.1] Every quasi-martingale, (Xt)t≥0 can be written

in the form

Xt = Yt + Zt

where Yt is a martingale and Zt is a quasi-potential. This decomposition is unique up

to sets of measure zero.

In [49], Orey makes the statement that any super(sub)-martingale, (Y (t))t∈[0,a], is a

quasi-martingale. He continues ‘From the analogy of functions with bounded vari-

ation, one is prompted to ask whether every F -process (quasi-martingale) is the

difference of two super-martingales. We do not know the answer. ’ Rao provides an

answer to this question.

Theorem 6.1.5. [50, Theorem 1.2] If X(t) is a quasi-potential such that, for all t,

lim
h↓0

E[|X(t+ h)−X(t)|] = 0

then there exist two super-martingales X+(t), X−(t) such that lim
t→∞

E[X±(t)] = 0 and

E[|X(t)− (X+(t)−X−(t))|] = 0 for all t.

That is, X(t) = X+(t)−X−(t) almost surely.

Rao gives the following construction of super-martingales that satisfy Theorem 6.1.5.
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Let X(t) be a quasi-potential. For all k = 0, 1, 2, . . . , n = 0, 1, 2, . . . define

∆(k, n) = E[X(k2−n)−X
(
(k + 1)2−n

)
| Fk2−n ],

Xn
+(t) =

∑
k≥b2ntc+1

E[∆+(k, n) | Ft],

Xn
−(t) =

∑
k≥b2ntc+1

E[∆−(k, n) | Ft],

where b2ntc denotes the greatest integer less than or equal to 2nt and ∆+ = max(∆, 0),

∆− = max(−∆, 0). Here, Xn
±(t) are strictly increasing super-martingales with E[|Xn

±(t)|]→

0 as t→∞. Finally, we define

X+(t) = sup
n
Xn

+(t) and X−(t) = sup
n
Xn
−(t).

Theorem 6.1.5 suggests a link between quasi-martingales and super(sub)-martingales.

Further evidence to support this idea is given in the form of the following super(sub)-

martingale inequalities which have been generalised to quasi-martingales.

The first inequality is given by Orey in [49] and is a generalisation of Doob’s sub-

martingale inequality.

Lemma 6.1.6. [49, Lemma 2.1] Let (Xk)k=1,...,n be a quasi-martingale with quasi-

bound M . Then for λ ≥ 0,

λP (max
k
Xk ≥ λ) ≤ E|Xn|+M ; λP (min

k
Xk ≤ −λ) ≤ E|Xn|+M.

From the above discrete time result, one can deduce the Kolmogorov-Doob inequality,

a continuous time result. It is interesting to note that the proof follows from Lemma

6.1.6 as in the super-martingale case, see [49].
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Theorem 6.1.7. [49, Theorem 2.1] Let 0 < a < ∞ and let (Xt)t∈[0,a] be a quasi-

martingale with quasi-bound M . Then, for λ ≥ 0,

λP ( sup
0≤s≤a

Xs ≥ λ) ≤ E|Xa|+K; λP ( inf
0≤s≤a

Xs ≤ −λ) ≤ E|Xa|+K.

Rao also gives an inequality similar to the super-martingale inequalities. This in-

equality, under suitable conditions on the random variables, yields the Hajek-Renyi

inequality, see [50]. Before we state Rao’s result, we note that it is clear from the

quasi-martingale definition that every finite collection of random variables with finite

expectation is a quasi-martingale.

Lemma 6.1.8. Consider a set of random variables (Xi) adapted to the σ-algebras

Fi, 1 ≤ i ≤ n. Assume that the Xi’s have finite expectation. We define:

∆i = Xi − E[Xi+1 | Fi] for 1 ≤ i ≤ n− 1; ∆n = Xn,

A+
n =

n∑
i=1

∆+
i ; A−n =

n∑
i=1

∆−i ,

Then, for all λ > 0,

λP (maxXi ≥ λ) ≤
n−1∑
i=1

E[∆+
i ] + E[Xn | maxXi ≥ λ] ≤ E[A+

n ]

6.2 Quasi-martingales in Riesz spaces

In order to translate quasi-martingales to the setting of a Riesz space, we first need

to define continuous time martingales in Riesz spaces.

The following definition is from Grobler, [27], where a more in depth discussion of

the properties of continuous time martingales (under slightly different assumptions

to ours) can be found.
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Definition 6.2.1. Let E be a Dedekind complete Riesz space with weak order unit and

conditional expectation T . Let Tt, t ∈ [0,∞), be a family of conditional expectations

on E with TtT = T = TTt. Denote by Ts+ the conditional expectation with range⋂
t>s

R(Tt).

(i) The family (Tt)t∈[0,∞) of conditional expectations is said to be a filtration if

TtTs = Ts = TsTt for all s ≤ t.

(ii) We say that the filtration, (Tt)t∈[0,∞), is right continuous if Ts+ = Ts for all

s ∈ [0,∞).

Note 6.2.2. The existence of Ts+ is guaranteed by the Radon-Nikodým Theorem,

[63]. Here Ts+ commutes with T .

We now give a slightly stronger notion of right continuity than that mentioned above.

We call this ‘joint weak right continuity’.

Definition 6.2.3. Let E be a Dedekind complete Riesz space with weak order unit and

conditional expectation T . Let Tt, t ∈ [0,∞), be a family of conditional expectations

on E with TtT = T = TTt. Let (ft) be a family in E. We say that the filtration (Tt)

is a joint weak right continuous filtration if

lim
t↓s

Ttft = Tsfs.

It must be noted that joint weak right continuity certainly implies right continuity.

Furthermore, we believe that right continuity, as defined above, implies uniform weak

right continuity. However, in order to prove this, we need to generalise the convergence

of martingales from the discrete setting to the continuous time setting. This work is

currently being undertaken by J. J. Grobler.
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Definition 6.2.4. Let E be a Dedekind complete Riesz space with weak order unit.

We say that (fs, Ts)s∈[0,∞) is a martingale if (Ts) is a filtration, as defined in Definition

6.2.1, and Tsft = fs for all s ≤ t.

Definition 6.2.5. Let E be a Dedekind complete Riesz space with conditional expec-

tation operator T and weak order unit e = Te. Let (Tt)t∈[0,∞) be a filtration on E

with TTt = T = TtT . We say a process (ft)t∈[0,∞) is a T -quasi-martingale if (ft) is

adapted to (Tt) and there exists M ∈ E+ such that

sup
(t1,t2,...,tn+1)∈Π

n∑
i=1

T |fti − Ttifti+1
| ≤M,

where Π is the collection of all finite sequences of real numbers, (t1, t2, . . . , tn+1), n ∈

N, with 0 ≤ t1 < t2 < t3 < · · · < tn+1.

If (ft)t∈[0,∞) is a T -quasi-martingale, then we say (ft)t∈[0,∞) is a T -quasi-potential if

lim
t→∞

T |ft| = 0.

Theorem 6.2.6 (Riesz Decomposition Theorem). Let E be a T -universally complete

Riesz space where T is a conditional expectation operator and e is a weak order unit

such that e = Te. Every T -quasi-martingale can be written as the sum of a martingale

and a T -quasi-potential. If T is strictly positive, then the decomposition is unique.

If, in addition, the T -quasi-martingale is right continuous and we have joint weak right

continuity of the filtration, then the martingale and the T -quasi-potential resulting

from the decomposition are both right continuous.

Proof. Let (sn) be a strictly increasing sequence in [0,∞) with lim
i→∞

si =∞. Set

∆i = fsi − Tsifsi+1
, for i ∈ N.
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Let

Yt,i = Ttfsi , t ∈ [0,∞), i ∈ N.

For si ≥ t,

Tt∆i = Yt,i − Yt,i+1. (6.2.1)

Applying T to |Tt∆i| from (6.2.1) we get

T |∆i| = TTt|∆i| ≥ T |Tt∆i| = T |Yt,i − Yt,i+1|. (6.2.2)

Let M ∈ E+ be as in Definition 6.2.4, then

T

i≤n∑
si≥t

|Yt,i − Yt,i+1| ≤
i≤n∑
si≥t

T |∆i| ≤M,

for all n ∈ N. Thus, from the T -universal completeness of E,
∑

(Yt,i − Yt,i+1) is

absolutely convergent in E and, as this a telescoping series, (Yt,i) in convergent in E

as i→∞. Denote

qt = lim
i→∞

Yt,i. (6.2.3)

We show that qt is independent of the sequence (si) chosen above. Let (ui)i∈N and

(vi)i∈N be two increasing, unbounded sequences and

lim
i→∞

Ttfui = q̃t and lim
i→∞

Ttfvi = qt.

Construct the increasing, unbounded sequence (si)i∈N such that (ui)i∈N and (vi)i∈N

are subsequences. By the above construction, there exists qt such that

lim
i→∞

Ttfsi = qt. (6.2.4)

By the uniqueness of limits and the construction of (si)i∈N, we have that

lim
i→∞

Ttfui = lim
i→∞

Ttfsi = lim
i→∞

Ttfvi .
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That is,

q̃t = qt = qt.

We now show qt is a martingale. Let s ≤ t. From the definition of qt and as Ts is

order continuous, it follows that

Tsqt = Ts lim
i→∞

Yt,i = lim
i→∞

TsYt,i.

As TsTt = Ts and Yt,i = Ttfsi , from the above we have

TsYt,i = TsTtfsi

= Tsfsi

= Ys,i

→ qs, as i→∞.

So Tsqt = qs for s ≤ t.

We now show that (fsi−qsi) is a T -quasi-potential, that is T |fsi−qsi | → 0 as i→∞.

Note that
n∑
i=1

T |∆i| ≤M for all n ∈ N . Thus,

(∑
i≥k

T |∆i|

)
k

converges in order to 0

as k →∞. That is (xk) ↓ 0 where∑
i≥k

T |∆i| = xk, k ∈ N.

Consider si ≥ t. From (6.2.1) and (6.2.2) we have Tt∆i = Yt,i − Yt,i+1 and T |∆i| ≥

T |Yt,i − Yt,i+1|. Now∑
k≤i≤j

(Ysk,i − Ysk,i+1) = Ysk,k − Ysk,j+1 = fsk − Ysk,j+1,

as fsk ∈ R(Tsk). So

T |fsk − Ysk,j+1| ≤
∑
k≤i≤j

T |Ysk,i − Ysk,i+1| ≤
∑
k≤i≤j

T |∆i|,

99



6.2 Quasi-martingales in Riesz spaces Quasi-martingales

and thus,

T |fsk − Ysk,j+1| ≤
∑
i≥k

T |∆i| = xk, for all j ≥ k.

But Ysk,j+1 → qsk as j →∞, thus

T |fsk − qsk | ≤ xk,

and T |fsk − qsk | → 0, in order. Hence, (fsk − qsk) is a T -quasi-potential.

We have proved that for each sequence, s1 < s2 < · · · < sn < . . . , sn ↑ ∞, there

exists a martingale (qt)t∈[0,∞) such that

T |ft − qt| → 0, t→∞, t ∈ {s1, s2, . . . }.

We now extend the result to all t ∈ [0,∞). Consider the T -quasi-martingale (ft)t∈[0,∞)

and the martingale qt constructed as above. We suppose

T |ft − qt|9 0 as t→∞ in [0,∞).

As T |fs − Tsft| ≤M , we have

lim sup
t→∞

T |ft − qt| = h,

for some h > 0. Let Π denote the collection of all finite partitions (t1, t2, . . . , tn+1) of

[0,∞) with t1 < t2 · · · < tn+1. The definition of a T -quasi-martingale gives

sup
(t1,t2,...,tn+1)∈Π

n∑
i=1

T |fti − Ttifti+1
| ≤M.

Let (t1, . . . , t2n+1) ∈ Π, then
2n∑
i=1

T |fti − Ttifti+1
| ≤M . Thus,

M ≥
n∑
i=1

T |ft2i − Tt2ift2i+1
|. (6.2.5)
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By construction qt = limsi→∞ Ttfsi , for all t ∈ [0,∞), where (si)i∈N, si →∞ as i→∞.

We recall that this construction is independent of the sequence chosen and that the

limit is a sequential limit. Consider the net (tα) = [0,∞) with tα ↑ ∞. Then,

T |ft − qt| = lim
i→∞

T |Ttfsi − ft|

= lim sup
i→∞

T |Ttfsi − ft|

≤ lim sup
tα→∞

T |Ttftα − ft|, (6.2.6)

as (si) ⊂ (tα).

Taking the limit supremum as t2n+1 tends to infinity of (6.2.5) and using (6.2.6) above,

gives

M ≥
n−1∑
i=1

T |ft2i − Tt2ift2i+1
|+ lim sup

t2n+1→∞
T |ft2n − Tt2nft2n+1 |.

Thus,

M ≥
n−1∑
i=1

T |ft2i − Tt2ift2i+1
|+ T |ft2n − qt2n|. (6.2.7)

Taking the limit supremum as t2n tends to infinity in (6.2.7), gives

M ≥
n−1∑
i=1

T |ft2i − Tt2ift2i+1
|+ h.

Repeating this process inductively, we obtain M ≥ nh. But the choice of n ∈ N was

arbitrary and so M ≥ nh for all n ∈ N. As E is an Archimedean Riesz space, it now

follows that h = 0 and

T |ft − qt| → 0, as t→∞ with t ∈ [0,∞).

Setting Zt = ft − qt, for all t ∈ [0,∞), we have that Zt is a T -quasi-potential and

ft = qt + Zt for t ∈ [0,∞).
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To see the uniqueness of the Riesz decomposition, consider the quasi-martingale ft

with decompositions

qt + Zt = ft = qt + Zt.

Rearranging the equation gives

qt − qt = Zt − Zt,

taking absolute values and T on both sides of the equation and making use of the

fact that Zt, Zt are quasi-potentials we get

T |qt − qt| = T |Zt − Zt|

≤ T |Zt|+ T |Zt|

→ 0,

as t→∞. But (|qt−qt|) is a sub-martingale and, therefore, T |qt−qt| is non-decreasing

in t. Thus,

T |qt − qt| = 0.

Hence, qt = qt, Zt = Zt and the Riesz decomposition is unique.

If the T -quasi-martingale (ft)t∈[0,∞) is right continuous and the filtration (Tt)t∈[0,∞) is

a joint weak right continuous filtration, then, if t > τ > s,

qτ = Tτqt → Tsqt = qs,

as τ ↓ s. This gives that the T -quasi-potential, (ft − qt) is the difference of two right

continuous elements and so is right continuous.

Recall that a process Xt is a potential if Xt is an adapted super-martingale and

T |Xt| → 0 as t→∞.
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Theorem 6.2.7. Let E be a T -universally complete Riesz space where T is a strictly

positive conditional expectation operator and e is a weak order unit with e = Te. Let

(Tt)t∈[0,∞) be a joint weak right continuous filtration on E, where TtT = T = TTt,

t ∈ [0,∞). If (Xt)t∈[0,∞) ⊂ E is a T -quasi-potential such that

lim
h↓0

T |Xt+h −Xt| = 0, for all t ∈ [0,∞), (6.2.8)

then there exist two potentials Xp
t , X

m
t such that

Xt = Xp
t −Xm

t for all t ∈ [0,∞). (6.2.9)

Proof. We first construct Xp
t and Xm

t .

For k = 0, 1, 2, . . . and n = 0, 1, 2, . . . define

∆(k, n) = Tk2−n(Xk2−n −X(k+1)2−n) = Xk2−n − Tk2−nX(k+1)2−n .

By the definition of a T -quasi-potential there exists M ∈ E+ so that for all n ∈

{0, 1, . . . } and κ ∈ N we have

κ∑
k=0

T |∆(k, n)| ≤M.

Hence, by the T -universal completeness of E,
∞∑
k=i

|∆(k, n)| converges. Thus, the

following sums converge in E

∞∑
k=i

∆(k, n),
∞∑
k=i

∆±(k, n), (6.2.10)

where ∆+(−)(k, n) = sup{(−)∆(k, n), 0}. We can make the following definitions, for

all t ∈ R, n ∈ N ∪ {0},

X t,n := Tt
∑

k≥b2ntc+1

∆+(k, n)

Xt,n := Tt
∑

k≥b2ntc+1

∆−(k, n),
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where bxc is the greatest integer less than or equal to x.

We will now show that X t,n is a potential. The proof for X t,n is similar. Firstly, X t,n

is a super-martingale. To see this, let s ≤ t then,

TsX t,n = TsTt
∑

k≥b2ntc+1

∆+(k, n)

= Ts
∑

k≥b2ntc+1

∆+(k, n)

≤ Ts
∑

k≥b2nsc+1

∆+(k, n)

= Xs,n.

We now show that T |X t,n| → 0 as t→∞. As X t,n ≥ 0, T |X t,n| = TX t,n and

TX t,n = TTt
∑

k≥b2ntc+1

∆+(k, n)

= T
∑

k≥b2ntc+1

∆+(k, n)

→ 0 as t→∞,

by (6.2.10). Thus, we have shown that X t,n is a potential.

We now show X t,n is increasing in n. If i2−n ≤ t < (i+ 1)2−n (that is, i ≤ t2n < (i+

1)), then

X t,n = Tt
∑
k≥i+1

∆+(k, n). (6.2.11)
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Suppose 2i2−(n+1) ≤ t < (2i+ 1)2−(n+1) (that is, 2i ≤ t2n+1 < 2i+ 1). Then,

X t,n+1 = Tt
∑

k≥2i+1

∆+(k, n+ 1)

= Tt∆
+(2i+ 1, n+ 1) + Tt

∑
k≥2i+2

∆+(k, n+ 1)

≥ Tt
∑
k≥i+1

(
∆+(2k, n+ 1) + ∆+(2k + 1, n+ 1)

)
.

But, as ∆+(2k, n+ 1) + ∆+(2k + 1, n+ 1) ≥ (∆(2k, n+ 1) + ∆(2k + 1, n+ 1))+ and

t < 2k2−(n+1), for k ≥ i+ 1, so

X t,n+1 ≥
∑
k≥i+1

Tt (∆(2k, n+ 1) + ∆(2k + 1, n+ 1))+

=
∑
k≥i+1

TtT2k2−(n+1) (∆(2k, n+ 1) + ∆(2k + 1, n+ 1))+ .

From T2k2−(n+1)(f+) ≥ (T2k2−(n+1)f)+ it follows that

X t,n+1 ≥
∑
k≥i+1

Tt (T2k2−(n+1) {∆(2k, n+ 1) + ∆(2k + 1, n+ 1)})+

=
∑
k≥i+1

Tt∆
+(k, n)

= X t,n from (6.2.11).

So, for all i ≤ t2n < i+ 1
2
, X t,n+1 ≥ X t,n. The proof for the case where i+ 1

2
≤ t2n <

i+ 1 is similar with the exception that the term Tt∆
+(2i+ 1, n+ 1) does not occur.

We now define Xp
t , X

m
t by

Xp
t := sup

n
X t,n = lim

n→∞
X t,n,

Xm
t := sup

n
X t,n = lim

n→∞
X t,n.

Here we note that these suprema and limits exist in E since E is T -universally com-

plete, X t,n (X t,n) is increasing and TX t,n(X t,n) ≤ M . Also, Xp
t and Xm

t are right
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continuous in t, since
∑

k≥b2ntc+1 ∆±(k, n) are right continuous in t and Tt is jointly

weakly right continuous (by assumption).

In addition, Xp
t , X

m
t are super-martingales as they are the suprema of super-martingales.

We show that Xp
t , X

m
t obey (6.2.9). Let r = i2−k be a dyadic rational, then, using

(6.2.8) and as T |Xt| → 0 as t→∞ we have

T |Xr − (Xp
r −Xm

r )| = lim
n→∞

T

∣∣∣∣∣∣Xr − Tr
∑

j≥b2nrc+1

{∆+(j, n)−∆−(j, n)}

∣∣∣∣∣∣
= lim

n→∞
T

∣∣∣∣∣Xr − Tr
∑

j≥2nr+1

∆(j, n)

∣∣∣∣∣

Thus,

T |Xr − (Xp
r −Xm

r )| = lim
n→∞

T

∣∣∣∣∣Xr − Tr
∑

j≥2nr+1

Tj2−n
(
Xj2−n −X(j+1)2−n

)∣∣∣∣∣
= lim

n→∞
T

∣∣∣∣∣Xr − lim
N→∞

N∑
j=2nr+1

TrTj2−n
(
Xj2−n −X(j+1)2−n

)∣∣∣∣∣
= lim

n→∞
lim
N→∞

T |Xr − Tr
(
Xr+2−n −X(N+1)2−n

)
|

≤ lim
n→∞

lim
N→∞

{
T |Xr − TrXr+2−n|+ T |X(N+1)2−n|

}
= lim

n→∞
T |Xr − TrXr+2−n|

= lim
n→∞

T |Tr(Xr −Xr+2−n)|

≤ lim
n→∞

T |Xr −Xr+2−n|

= 0.

Thus, Xr = Xp
r − Xm

r . Again using (6.2.8) and the right continuity of Xm
t and Xp

t

we obtain Xt = Xp
t −Xm

t for all t ∈ [0,∞).
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Finally, we show that Xm
t and Xp

t are potentials. We prove T |Xm
t | → 0 as t → ∞.

The proof that Xp
t is a potential is similar.

Recall

X t,n =
∑

k≥b2ntc+1

Tt∆
−(k, n). (6.2.12)

If k < b2ntc+ 1 then k ≤ b2ntc. In particular, k ≤ 2nt giving that t ≥ 2−nk, and

Tt∆(k, n) = TtTk2−n
(
Xk2−n −X(k+1)2−n

)
= Tk2−n

(
Xk2−n −X(k+1)2−n

)
= ∆(k, n).

Also, ∆(k, n) = ∆+(k, n)−∆−(k, n), so, for t ≥ 2−nk,

Tt∆
±(k, n) = ∆±(k, n), (6.2.13)

as R(Tt) is a Riesz subspace of E. By (6.2.10), we have

∆−∞,n :=
∞∑
k=0

∆−(k, n) exists in E. (6.2.14)

Now, by (6.2.12), (6.2.13) and (6.2.14),

X t,n +

b2ntc∑
k=0

∆−(k, n) = Tt∆
−
∞,n.

We note that X t,n is increasing in n (proved prior), as is

b2ntc∑
k=0

∆−(k, n). Further, the

limit of

b2ntc∑
k=0

∆−(k, n), as n → ∞, exists in E. Now, ∆−∞,n is increasing in n and, as

T∆−n,∞ ≤ M , the T -universal completeness of E gives that the limit as n → ∞ of

∆−n,∞ exists in E. Let

lim
n→∞

∆−∞,n =: ∆−∞.
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Hence,

Xm
t = Tt∆

−
∞ − lim

n→∞

b2ntc∑
k=0

∆−(k, n),

so,

T |Xm
t | = TXm

t = T∆−∞ − T lim
n→∞

b2ntc∑
k=0

∆−(k, n).

Also,

b2ntc∑
k=0

∆−(k, n) is increasing in n and t and its limit as t→∞ exists in E, so

lim
t→∞

lim
n→∞

b2ntc∑
k=0

∆−(k, n) = sup
t,n

b2ntc∑
k=0

∆−(k, n)

= lim
n→∞

lim
t→∞

b2ntc∑
k=0

∆−(k, n)

= lim
n→∞

∆−∞,n

= ∆−∞

Hence,

lim
t→∞

T |Xm
t | = T∆−∞ − T∆−∞ = 0,

giving that Xm
t is a potential, as desired.

From Theorems 6.2.7 and 6.2.6 we have the following corollary.

Corollary 6.2.8. Let E be a T -universally complete Riesz space where T is a strictly

positive conditional expectation operator and e is a weak order unit with e = Te. Let

(Tt)t∈[0,∞) be a joint weak right continuous filtration on E, where TtT = T = TTt,

t ∈ [0,∞). If (Xt)t∈[0,∞) ⊂ E is a T -quasi-martingale such that

lim
h↓0

T |Xt+h −Xt| = 0 for all t ∈ [0,∞),

then (Xt)t∈[0,∞) can be decomposed as the sum of a right continuous martingale and

the difference of two right continuous positive potentials.
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In the particular case where the Riesz space E = L1(Ω,F , P ), where (Ω,F , P ) is a

probability space, Theorem 6.2.7 gives the following result. We believe this result

to be new in the classical setting. This result extends Rao’s in that his expectation

operator has been replaced by a conditional expectation operator.

Corollary 6.2.9. Consider the probability space (Ω,F , P ). Let (Ft)t∈[0,∞) be a right

continuous filtration in (Ω,F , P ), with F0 ⊂ Ft ⊂ F for all t ∈ [0,∞), and (Xt)t∈[0,∞)

an F0-quasi-martingale in L1(Ω,F , P ). If (Xt) is such that

lim
h↓0

E[|Xt+h −Xt| | F0] = 0 for all t ∈ [0,∞),

then there exist two right continuous positive super-martingales, Xp
t and Xm

t , and a

right continuous martingale, (Yt), such that Xt = Yt +Xp
t −Xm

t and

lim
t→∞

E[|(Xt − Yt)− (Xp
t −Xm

t )| | F0] = 0.

We now give an inequality for quasi-martingales. This equality is similar to that for

super-martingales.

Theorem 6.2.10. Let E be a Dedekind complete Riesz space with conditional expec-

tation operator T . Let E be T -universally complete with filtration (Ti). Consider a

sequence (fi) in E adapted to (Ti). Set

∆i = fi − Tifi+1, 1 ≤ i ≤ n− 1, ∆n = fn,

A+
n =

n∑
i=1

∆+
i , A−n =

n∑
i=1

∆−i ,

and let

P = I − P
(λe−

∨n
i=1 fi)

+ (6.2.15)

where P
(λe−

∨n
i=1 fi)

+ denotes band projection onto the band generated by (λe−
∨n
i=1 fi)

+
.

Then, for each λ > 0,

λTPe ≤
n−1∑
i=1

T∆+
i + TPfn ≤ TA+

n . (6.2.16)
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We note that since (−x)+ = x− it follows from (6.2.16) (changing fi to −fi) that

λTPe ≤
n−1∑
i=1

T∆−i − TPfn ≤ TA−n ,

where P = I − P(λe+
∧n
i=1 fi)

+ .

Proof. We note that for i ≤ j,

Ti(∆j) = Ti(fj − Tjfj+1)

= Tifj − Tifj+1.

This gives, for i ≤ j,

Ti

(
n∑
j=i

∆j

)
=

n−1∑
j=i

(Tifj − Tifj+1) + Ti∆n

= Tifi

= fi. (6.2.17)

Now,
i−1∑
j=1

∆+
j +

n∑
j=i

∆j ≤
n−1∑
j=1

∆+
j + fn.

So, making use of (6.2.17),

Ti

(
n−1∑
j=1

∆+
j + fn

)
≥ Ti

(
i−1∑
j=1

∆+
j +

n∑
j=i

∆j

)

=
i−1∑
j=1

∆+
j + fi

≥ fi (6.2.18)
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Let

Pi = I − P(λe−fi)+ i = 1, 2, . . .

P̃1 = P1

P̃2 = P2(I − P1)

P̃3 = P3(I − P2)(I − P1)

...

Then
∑n

i=1 P̃i = P , where P is as in (6.2.15). From (6.2.18) and the construction of

P̃i we have

T
n∑
i=1

P̃iTi

(
n−1∑
j=1

∆+
j + fn

)
≥ T

n∑
j=1

P̃ifi

≥ T
n∑
i=1

P̃iλe

= λTPe.

Now, as TTi = T and TiP̃i = P̃iTi, we have

λTPe ≤ T
n∑
i=1

P̃iTi

(
n−1∑
j=1

∆+
j + fn

)

= TP

n−1∑
j=1

(∆+
j + fn).

But P∆+
j ≤ ∆+

j , so

λTPe ≤ T
n−1∑
j=1

∆+
j + TPfn

= T

n∑
j=1

∆+
j − T∆+

n + TPfn

= TA+
n − T (Pf−n + (I − P )f+

n )

≤ TA+
n ,
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giving the desired inequality.

From Theorem 6.2.10 we are able to deduce the Hájek-Rényi inequality, [29]. Indeed,

let E be a Riesz space with strictly positive conditional expectation operator T and

weak-order unit e = Te. Consider the space L2(T ) = {x ∈ L1(T )|x2 ∈ L1(T )} (see

Section 2.4, p40). Let (ηi)i∈N be a sequence of independent random variables in L2(T )

with T -mean zero (that is, Tηi = 0 for all i ∈ N). Let C1, C2, . . . be a decreasing (not

necessarily strictly) sequence of positive real numbers. Fix N ∈ R. Let

fi = C2
N+i (η1 + η2 + · · ·+ ηN+i)

2

and define the filtration (Ti)i∈N such that Ti is the conditional expectation with range

the closed Riesz subspace of E generated by R(T ) and f1, f2, . . . , fi.

Making use of independence and the T -mean of the random variables, ηi, we have,

for all 1 ≤ i ≤ n− 1,

TiηN+i+1ηj = 0 for all 1 ≤ j ≤ N + i

and

∆i = fi − Tifi+1

= C2
N+i (η1 + η2 + · · ·+ ηN+i)

2 − TiC2
N+i+1 (η1 + η2 + · · ·+ ηN+i+1)2

= C2
N+i (η1 + η2 + · · ·+ ηN+i)

2 − TiC2
N+i+1

(
(η1 + η2 + · · ·+ ηN+i)

2
)

− TiC2
N+i+1 (2(η1 + η2 + · · ·+ ηN+i)ηN+i+1)− TiC2

N+i+1

(
η2
N+i+1

)
= (C2

N+i − C2
N+i+1)(η1 + η2 + · · ·+ ηN+i)

2 − Tiη2
N+i+1.

Thus,

∆+
i ≤ (C2

N+i − C2
N+i+1)(η1 + η2 + · · ·+ ηN+i)

2. (6.2.19)
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Let Q
(λe−

∨N+n
k=N Ck|η1+η2+···+ηk|)

+ be the band projection generated by(
λe−

∨N+n
k=N Ck|η1 + η2 + · · ·+ ηk|

)+

and P
(λ2e−

∨n
i=1 fi)

+ be the band projection gen-

erated by (λ2e−
∨n
i=1 fi)

+
. Consider Q = I − Q

(λe−
∨N+n
k=N Ck|η1+η2+···+ηk|)

+ and P =

I − P
(λ2e−

∨n
i=1 fi)

+ , then P = Q.

By Theorem 6.2.10, (6.2.19), independence and the T -mean property of the random

variables, we have

λ2TQe = λ2TPe

≤
n−1∑
i=0

T∆+
i + TPfn

≤
n−1∑
i=0

T
[
(C2

N+i − C2
N+i+1)(η1 + η2 + · · ·+ ηN+i)

2
]

+ T
[
C2
N+n(η1 + η2 + · · ·+ ηN+n)2

]
=

n−1∑
i=0

(C2
N+i − C2

N+i+1)T (η2
1 + η2

2 + · · ·+ η2
N+i) + C2

N+nT (η2
1 + η2

2 + · · ·+ η2
N+n)

= C2
NT (η2

1 + η2
2 + · · ·+ η2

N) +
N+n∑
k=N+1

C2
kTη

2
k,

which is the Hájek-Rényi inequality.
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Chapter 7

Further Work

This thesis, building on the work done by Kuo et. al. in [34, 35, 36, 37, 38], presents

the foundations of the theory of Markov processes, quasi-martingales and mixingales

in Riesz spaces and some of their fundamental properties. Much more remains to be

done.

7.1 Markov Processes

In the case of martingales, many of the classical resuts were shown to hold in Riesz

spaces by Kuo et.al., [34, 35, 36, 37, 38], for Markov processes deeper aspects of the

theory, such as convergence, generating functions and the uses of stopped Markov

processes still need attention. In [33, 32] stopping times in Riesz spaces were defined

and used these to analyse the convergence of Riesz space martingales. However, this

method of approach presents non-trivial hurdles for Markov processes in Riesz spaces.
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7.2 Quasi-Martingales Further Work

Another difficulty that arises is the absence of transition kernels for Markov processes

in Riesz spaces. This makes many of the classical approaches to Markov processes

unusable in the Riesz space setting.

As was mentioned earlier, it is often said that the convergence of Markov processes

can be studied via convergence results of martingales. Beside the statement itself, we

have yet to find evidence of the validity of the claim. It is hoped that future work

will shed some light on this.

7.2 Quasi-Martingales

We have shown that a quasi-martingale can be decomposed as the sum of a martin-

gale and two positive supermartingales. In the classical setting, Rao uses this result

to decompose a quasi-martingale into the sum of a local martingale and a process

with finite expected total variation, [50]. In order to translate this result to Riesz

spaces, we need the notion of local martingales on Riesz spaces. However, difficulties

arise in constructing local martingales in Riesz spaces. One such difficulty is that of

continuous stopping times. We have yet to successfully construct continuous stopping

times on Riesz spaces.

Egghe has shown in [24] that quasi-martingales are uniform amarts. It was noted

by Bellow, [9], that any L1-uniform amart converges. In [34], Kuo, Labuschagne

and Watson construct amarts in Riesz spaces. Thus, the structures of amarts and

quasi-martingales exist in Riesz spaces, but the link between the two remains to be

studied.
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expectation

classical, 5

filtration

joint weak right continuity, 96

right continuous

Riesz Space, 96

Freudenthal’s theorem

Riesz space, 43

Hahn decomposition theorem), 8

122



INDEX INDEX
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signed measure, 8

solid, 22
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band projection, 52

Riesz subspace, 54
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