SYNTHESIS AND STUDY OF CARBON NANOTUBES AND CARBON SPHERES

Sabelo Dalton Mhlanga (Student number: 0405600Y)

Degree of Doctor of Philosophy in Chemistry

A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the Degree of Doctor of Philosophy.

February 2009

DECLARATION

I declare that the work presented in this thesis was carried out by myself under the supervision of Professor Neil. J. Coville. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg, and has not been submitted before for any degree or examination at any other university.

Sabelo Dalton Mhlanga

On this _____ day of _____ 2009

Dedicated to

My beautiful wife Phindile Thembelihle Zwane,

my mother Margaret Makoti Masuku,

my grandmother Mirriam Estel Masuku,

my sisters and brothers

and

to the memory of my father Daniel July Mhlanga.

"The love that I have for you cannot be measured. May God bless you all."

ACKNOWLEDGEMENT

I cannot adequately thank everyone who has contributed to my successes (of any kind). Indeed "*i*'*m* in need of a thousand tongues" to express my sincere gratitude to the following people:

- My supervisor and mentor Professor Neil. John Coville for being such an inspiration to my life. Prof. has not only been a supervisor but a true father and a role model to me. I could write a whole book about my encounters with him in the past three years that I spent with him. He has impacted positively in my life academically and personally. He has instilled confidence in me and for that I have achieved many honours and awards during my stay at wits.
- My friends and colleagues in our research group, the catalysis-materialsorganometallics (CATOMAT) group in the school of chemistry, headed by Prof. Neil Coville and Prof. Mike Scurrell. "You guys were awesome to hang around with. I would like to acknowledge all of you for honouring my wedding ceremony on the 13th December 2008, and for being such a friendly and sociable group. Keep up the good work in the group and leave a good mark. *I will miss all the moments of laughter and sharing of jokes.*"
- The electron microscopy and microanalysis unit personel: Professor Michael Witcomb, Abe Seema and Caroline Lalkhan. Thank you for your assistance and patience with me. "Those TEM images were put to good use".
- The Molecular Sciences Institute, School of Chemistry for giving me the grounds to conduct my research. I appreciate all those members of staff, chemical stores, and cleaning departments who became friends to me.

- The various postdoctoral fellows who helped me at the beginning to my studies, especially Dr Kartick Mondal and Dr Robin Carter. I also thank Dr Vincent Nyamori and Dr Amit Deshmukh for inviting me to write reviews with them.
- The various honours students: Nerona, Ahmed and Itumeleng whom I co-supervised in their honours' projects. The work done with them contributed a small part of this thesis.
- Mr Edward Nxumalo, Ketulo Salipira and Ahmed Shaikjee for proof reading this thesis. Ed and Ketulo have been a part of my life since our studies at M-Tech level. "I leave you guys to inspire other students within the research group."
- Mr Basil Chassoulas for all the technical assistance he rendered in the laboratory, such as the installation of gas lines and fixing the furnaces and reactors. Without him I may have taken longer to achieve some of my goals.
- Mr Rudolf M. Erasmus for doing the Raman analysis of my carbon nanotube and carbon sphere samples.
- The glassblowers, Steve and Barry for providing me with the quartz boats and reactors that were required by me to conduct experiments in the laboratory.
- Funding from the Wits Postgraduate Merit Award, the Mellon Postgraduate Mentoring Programme and the Council for Scientific and Industrial Research (CSIR) for funding my studies at Wits. I truly acknowledge and appreciated all the financial support.
- My internal and external examiners for taking their valuable time to examine this 'long' thesis.
- My wife, family and friends for believing in me and giving me support throughout the duration of my studies.
- Above all and everyone I thank God for directing my footstep. With God nothing could be impossible for me. He's my father. To Him be all glory and honour.

LIST OF PUBLICATIONS

The following publications emanated from different parts the work presented in this thesis.

- Sabelo D. Mhlanga and Neil J. Coville, Iron-cobalt catalysts synthesized by a reverse micelle impregnation method for controlled growth of carbon nanotubes, *Diam. Rel. Mater.* 17 (2008) 1489.
- Vincent O. Nyamori, Sabelo D. Mhlanga, Neil J. Coville. The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials, J. Organometal. Chem. 693 (2008) 2205.
- 3. Sabelo D. Mhlanga, Kartick C. Mondal, Nerona Naidoo, Nikiwe Kunjuzwa, Mike J. Witcomb, Neil J. Coville, Carbon microsphere supported cobalt catalysts, *S. Afr. J. Scie*, accepted, 2008.
- Sabelo D. Mhlanga, Kartick C. Mondal, Robin Carter, Michael J. Witcomb and Neil J. Coville, The effect of synthesis parameters on the catalytic synthesis of multiwalled carbon nanotubes using Fe-Co/CaCO₃ catalysts, , *S. Afr. J. Chem.* 62 (2009) 67.
- Kartick C Mondal, André Strydom, Zikhona Tetana, Sabelo D. Mhlanga, Mike J. Witcomb, Josef Havel, Rudolph Erasmus, Neil J. Coville, Boron Doped Carbon Microspheres: A New Generation Electronic Material, *Mater. Chem. Phys.* 114 (2009) 973.
- Sabelo D. Mhlanga, Michael J. Witcomb, Rudolf M. Erasmus, Neil J. Coville, A novel Ca₃(PO₄)₂-CaCO₃ support mixture for the CVD synthesis of roughened multiwalled carbon nanotubes, *Mater. Chem. Phys.*, submitted, 2009.
- 7. Sabelo D. Mhlanga, Neil J. Coville, The effect of reagent residues on the stability and structure of CVD carbon nanotubes, *J. Nanoscie. Nanotechnol*, submitted revision, 2009.
- Sabelo D. Mhlanga, Neil J. Coville, Sunny E. Iyuke, Ayo S. Afolabi, Saka A. Abdulkareem, Nikiwe Kunjuzwa, Controlled syntheses of carbon spheres in a swirled floating catalytic chemical vapour deposition (SFCCVD) vertical reactor, *to be submitted*.
- U.M. Graham, A. Dozier, R.A. Khatri, M.C. Bahome, L.L. Jewel, S.D. Mhlanga, N.J. Coville, B.H. Davies, *Catal. Lett.* **129** (2009) 39.

Date	Name and Place	Type of presentation
October 2006	CATOMAT seminar, Room C509 Humphrey Raikes Building, Wits University.	Oral
December 2006	SACI conference, UKZN, Durban	Poster
February 2007	DST/NRF Centre of Excellence in Strong Materials' Seminar, Room C6 Humphrey Raikes Building, Wits University.	Oral
July 2007	ICMR Conference at University of	Poster
September 2007	Zululand, Richards Bay, KwaZulu Natal. CATOMAT seminar, Room C509 Humphrey Raikes Building, Wits	Oral
September 2007	University.	
September 2007	18 th Diamond and Related Materials Conference, Berlin, Germany.	Poster
January 2008	South African Nanotechnology Initiative (SANi) stakeholder meeting, Physics Department, UCT.	Poster
February 2008	Centre of Excellence in Strong Materials' Seminar, Room C312 Humphrey Raikes Building, Wits University.	Oral
March 2008	DST/NRF Centre of Excellence in Strong Materials Research Showcase, Richard Ward Building, School of Chemical Engineering, Wits University.	Oral
July 2008	CATOMAT seminar, Room C509 Humphrey Raikes Building, Wits University.	Oral
October 2008	SACI Young Chemists Symposium – Gauteng Region, Room C6 Humphrey Raikes Building, Wits University	Oral
February 2009	3 rd Nanoafrica 2009 conference, CSIR convention centre, Pretoria.	Oral
February 2009	School of Chemistry departmental seminar, PhD thesis - final, Room C6 Humphrey Raikes Building, Wits University.	Oral

<u>Note</u>: CATOMAT = catalysis-organometallics-materials research group

HONOURS AND AWARDS

- November 2007: Obtained 3rd position in the Wits Enterprise-National Innovation Competition with a business plan based on the making and selling of carbon nanotubes at a commercial scale. This business plan competition was open to all students of the University of the Witwatersrand and its emphasis was to promote entrepreneurship through innovation.
- 2. January 2008: Member of the *South African Nanotechnology Initiative (SANi)* executive committee as a student representative.
- 3. January 2008: Awarded *best (1st place) student poster* presentation at the SANi stakeholder workshop held at the University of Cape Town.
- October 2008: Awarded *1st place PhD oral presentation* at the SACI Young Chemists' Symposium by the SACI and the Royal Society of Chemistry at Wits University.
- 5. October 2008: Awarded the distinguished *Sasol Post-graduate Medal* of the South African Chemical Institute. This medal is awarded to students engaged in research towards a MSc or PhD degree at a University, or a M-Tech or D-Tech degree at a University or Institute of Technology. The award of the medal is limited to one per institution.
- 6. November 2008: Awarded for *outstanding research* by the DST/NRF Centre of Excellence in Strong Materials at the University of the Witwatersrand in 2008.
- 7. November 2008: Interim chairperson of the SANi student chapter.
- 8. December 2008: Announced *winner of the Penny Huddle Memorial Award* for 2nd and 3rd year chemistry in 2008. This award is given to a postgraduate student who has shown exceptional ability as a tutor and demonstrator. Candidates are nominated by their peers or members of staff and selected by a selection committee of representatives of the academic staff, the technical staff and the postgraduate students.
- January 2009: Awarded *best (1st place) student oral presentation* at the International Conference on Nanoscience and Nanotechnology (Nanoafrica 2009) by the SANi.

ABSTRACT

The synthesis of multi-walled carbon nanotubes (MWCNTs) and carbon spheres (CSs) was achieved using catalytic and non-catalytic chemical vapour deposition processes (CVD) respectively. Fe-Co bimetallic catalysts supported on CaCO₃ were prepared by a wet impregnation (IMP), a deposition-precipitation (DP) and a reverse micelle method (RM). The sizes of the Fe and Co particles were not affected by the Fe and Co sources (nitrate, acetate) when the wet impregnation and depositionprecipitation methods were used. High quality 'clean' multi-walled carbon nanotubes (MWCNTs) were obtained from all three Fe-Co synthesis procedures under optimized reaction conditions. The CNTs produced gave yields ranging from 623% - 1215% in 1 h under the optimum conditions, with similar outer diameters (o.d.) of 20 - 30 nm and inner diameters (i.d.) ~ 10 nm. The Fe-Co catalyst formed in the wet impregnation method revealed that the yield, outer diameter and purity of the CNTs were influenced by C_2H_2/N_2 ratios, time and temperature. All the methods gave high quality CNTs after short reaction times but the quality deteriorated as the synthesis time was increased from 5 - 360 min. Indeed, the influential parameter in controlling CNT purity, length and outer diameter was found to be the synthesis time.

In order to control the i.d. of the CNTs, the three methods of catalyst preparation were employed with the aim of controlling the Fe-Co catalyst particle sizes. It was observed that the IMP and DP methods were less effective in controlling the size of the metal particles. A reverse micelle process was used to synthesize Fe-Co nanoparticles that were highly crystalline and uniform in size. The reverse micelle technique displayed the ability to prepare nanoparticles of controlled size (3, 6 and 13 nm) obtained by varying the concentrations of Fe and Co in the micelle. By using the RM method, smaller diameter CNTs could be obtained compared with the IMP and DP methods. The CNT i.d. was found to correlate with the size of the catalyst particle used.

The effect of synthesis time on *CNT widths* was investigated for the first time. In this study the issue of carbon build up on the CNTs as a function of time was investigated. It was observed that both the CNT yield and the outer diameters increased with time. With increase in synthesis time, the tubes *broke* into small *fragments*. The use of

excess C_2H_2 resulted in the deposition of carbon on the already formed CNTs and it is this deposited carbon that caused tube fragmentation.

MWCNTs with unusual rough surfaces (including pits) were synthesized by the CVD of acetylene using a novel Ca₃(PO₄)₂-CaCO₃ support mixture. Mixtures of Ca₃(PO₄)₂-CaCO₃ (0/100 to 100/0) yielded tubes with *very rough surfaces* and the CNT yield increased as the amount of CaCO₃ in the support mixture was increased. The inner walls of the CNTs possessed a regular orientation of crystalline graphite sheets (3 - 5 nm) while the outer surface of the CNTs had a thick, rough, compact layer (~ 30 nm) of carbon with a random orientation of graphite sheets.

The production of pure carbon spheres (CSs) was achieved in the absence of a catalyst through the direct pyrolysis of acetylene and ethylene in a horizontal CVD reactor. The detailed experiments conducted with acetylene as a precursor indicated that the diameters of the CSs could be controlled by varying the pyrolysis conditions (e.g. temperature and synthesis time) and that the process could readily be scaled up for commercial production. This process thus provides a variant of the carbon black synthesis procedure. The effect of using oxygenates (alcohol C:O ratio dependence) on the CS morphology was also investigated.

CSs were also synthesized in a vertical swirled floating catalytic chemical vapour deposition (SFCCVD) reactor for the first time. This process allowed for continuous and large scale production of these materials. The CSs were obtained by the direct pyrolysis of acetylene in an inert atmosphere without the use of a catalyst. The effect of pyrolysis temperatures and the flow rate of argon carrier gas on the size, quality and quantity of the synthesized carbon spheres were investigated. TEM analysis of the carbon materials revealed graphitic spheres with a smooth surface and uniform diameter that could be controlled by varying reaction conditions (size: 50 - 250 nm). The materials were spongy and very light. It was established that under controlled experimental parameters, sphere size is also regulated by the structural and bonding properties of a hydrocarbon source such as *carbon/hydrogen (C:H) content*, *hybridization* and *isomerism*.

CONTENTS

Section	Page
Declaration	(ii)
Dedication	(iii)
Acknowledgement	(iv)
List of Publications	(vi)
Presentations in conferences and seminars	(vii)
Honours and awards	(viii)
Abstract	(ix)
Table of contents	(xi)
List of abbreviations	(xvii)
List of tables	(xix)
List of figures and schemes	(xxi)

Chapter 1: Introduction

1.1 Background and rationale	1
1.2 Objectives	5
1.3 Thesis outline	6
1.4 References	8

Chapter 2: General literature review

2.1 Nanotechnology	15
2.2 Carbon nanotechnology	16
2.3 CNT synthesis methods	18
2.4 CNT characterization	20
2.5 Properties of CNTs and applications	23
2.6 The nanotube market and commercial availability	26
2.7 References	27

Chapter 3: Carbon nanotubes from supported catalysts: a literature review

3.1 Introduction	31
3.2 Catalyst preparation methods	34
3.3 CNT growth mechanism on supported catalysts	35
3.4 Transition metal elements as catalysts for the CVD synthesis of CNTs	37
3.5 Summary of factors impacting CNT growth	61
3.5.1 Carbon source	61
3.5.2 Metal particle (monometallic vs bimetallic)	61
3.5.3 Advantages of using $CaCO_3$ over other supports	62
3.5.4 Temperature and synthesis time	65
3.6 Purification of the CNTs	66
3.7 References	

Chapter 4: The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials: a review

4.1 Introduction	72
4.2 The organometallic catalysts	76
4.3 Bimetallic catalysts	84
4.4 The carbon source	85
4.5 Other elements	86
4.5.1 Hydrogen	87
4.5.2 Oxygen	87
4.5.3 Sulfur	88
4.5.4 Nitrogen	90
4.5.5 Boron	92
4.5.6 Phosphorous	92
4.5.7 Halides	92
4.5.8 Other elements	93
4.6 Physical parameters	93
4.7 Reactor design	95

4.8 Growth mechanism	98
4.8.1 The role of the metal-floating catalyst	100
4.8.2 The carbon growth species	100
4.8.3 The role of the heteroatoms	102
4.9 A case study - ferrocene and SCNMs	102
4.10 Conclusions	105
4.11 References	106

Chapter 5: Catalytic CVD synthesis of multiwalled carbon nanotubes using Fe, Co, and Fe-Co/CaCO₃ catalysts

5.1 Introduction	116
5.2 Preparation of catalysts	119
5.2.1 Wet impregnation	119
5.2.2 Deposition-precipitation	119
5.2.3 Reverse micelles	120
5.3 Carbon nanotube synthesis	122
5.4 Characterization of catalysts and CNTs	122
5.5 Results and discussion	124
5.5.1 Analysis of the catalyst	124
5.5.2 Catalytic reactions	126
5.5.3 Effect of time on stream (TOS)	135
5.6 Purification of CNTs	138
5.7 Conclusions	140
5.7 References	141

Chapter 6: Iron-Cobalt catalysts synthesized by a reverse micelle impregnation method for controlled growth of carbon nanotubes

6.1 Introduction	144
6.2 Experimental	145
6.2.1 Preparation of catalysts	145

6.2.2 Carbon nanotube synthesis	147
6.2.3 Characterization techniques	148
6.3 Results and discussion	148
6.3.1 Catalyst characterization	148
6.3.2 CNT analyses	152
6.4 Conclusions	160
6.5 References	161

Chapter 7: A novel $Ca_3(PO_4)_2$ -CaCO₃ support mixture for the CVD synthesis of roughened multiwalled carbon nanotubes

7.1 Introduction	163
7.2 Experimental	165
7.3 Results and discussion	166
7.3.1 BET surface area analysis	166
7.3.2 TEM analysis	167
7.3.3 Thermogravimetric analysis	173
7.3.4 Elemental composition and purification	174
7.4 Conclusion	178
7.5 References	179

Chapter 8: The effect of reagent residues on the stability and structure of CVD carbon nanotubes

8.1 Introduction	182
8.2 Experimental	183
8.2.1 Carbon nanotubes synthesis	183
8.2.2 Heat treatment studies	184
8.2.3 Use of excess carbon	185
8.2.4 Characterization of CNTs	186
8.3 Results and discussion	186
8.3.1 Effect of synthesis time	186

8.3.2 Effect of impurities on the fragmentation of the CNTs	188
8.3.3 Effect of excess carbon deposition	190
8.4 Conclusion	194
8.5 References	195

Chapter 9: Carbon spheres: a literature review

9.1 Introduction	198
9.2 Synthesis of carbon spheres	
9.3 Chemical vapour deposition	
9.3.1. Non-catalytic chemical vapour deposition	205
9.3.2. Catalytic chemical vapour deposition	210
9.4 Mesoporous carbon microbeads	213
9.5 Substituted carbon spheres	
9.6 Chemistry of carbon spheres	215
9.7 Mechanism of carbon sphere formation	217
9.8 Characterization carbon spheres	
9.9 Applications of carbon spheres	227
9.10 Summary	229
9.11 References	

Chapter 10: Synthesis and study of carbon microspheres for use as catalyst support for cobalt

10.1 Introduction	236
10.2 Experimental	238
10.2.1 Synthesis of carbon spheres by non-catalytic CVD	238
10.2.2 Synthesis of carbon spheres using alcohols	239
10.2.3 Characterization of the CSs	240
10.2.4 Preparation of carbon microsphere supported cobalt catalysts	
(Co/CS)	240
10.2.5 Catalytic hydrogenation reaction	240

10.3 Results and Discussion	241
10.3.1 Effect of carbon source	241
10.3.2 Effect of temperature	242
10.3.3 Effect of reaction time	245
10.3.4 Effect of oxygenates (alcohol C:O ratio dependence) on	
the CS morphology	248
10.3.5 Characterization of CSs	252
10.3.6 The effect of temperature on performance of Co/CS catalyst	254
10.3.7 Time on stream (TOS) studies using pre-reduced catalyst	255
10.4 Conclusions	257
10.5 References	257

Chapter 11: Controlled syntheses of carbon spheres in a swirled floating catalytic chemical vapour deposition (SFCCVD) vertical reactor

11.1 Introduction	260
11.2 Experimental	261
11.3 Results and discussion	263
11.3.1 Characterization of carbon spheres	263
11.3.2 Effect of C_2H_2 flow rate and temperature	268
11.3.3 Effect of hydrocarbon structure on CS morphology	274
11.4 Conclusions	282
11.5 References	283

Chapter 12: General Conclusions

286

LIST OF ABBREVIATIONS

Al_2O_3	aluminium oxide
Ar	argon
BET	Brunauer-Emmett-Teller
С %	carbon deposit percentage
C_2H_2	acetylene
C_2H_4	ethylene
$Ca_3(PO_4)_2$	calcium pyrophosphate
CaCO ₃	calcium carbonate
CaO	calcium oxide
CCVD	catalytic chemical vapour deposition
CNT(s)	carbon nanotube(s)
Co	cobalt
CO ₂	carbon dioxide
CS(s)	carbon sphere(s)
CVD	chemical vapour deposition
DP	deposition-precipitation
DWCNT(s)	double walled carbon nanotube(s)
EDS	energy dispersive X-ray spectroscopy
EM	electron micscopy
FcH	ferrocene
Fe	iron
FID	flame ionization detector
GHSV	gas hourly space velocity
h	hour
HNO ₃	nitric acid
HRSTEM	high resolution scanning tunnelling electron microscopy
HRTEM	high resolution transmission electron microscopy
i.d.	inner diameter
ICP-AES	Inductively coupled plasma-atomic emission spectroscopy
IMP	wet impregnation
IR	infrared spectroscopy
MCMBs	mesoporous carbon microbeads

ml/min	millilitre per minute
MVOCC	mixed valence oxide catalysts
MWCNT(s)	multi walled carbon nanotubes(s)
N_2	nitrogen
nm	nanometre
μm	micrometre
o.d.	outer diameter
PXRD	powder X-ray diffraction spectroscopy
RM	reverse micelle
sccm	standard cubic centimetres per minute
SCNM(s)	shaped carbon nanomaterial(s)
SEM	scanning electron microscopy
SFCCVD	swirled floating catalytic chemical vapour deposition
SiO ₂	silicon dioxide
SWCNT(s)	single walled carbon nanotubes(s)
t	time
Т	temperature
TEM	transmission electron microscopy
TGA	thermogravimetric analysis
TiO ₂	titanium dioxide
VLS	vapour-liquid-solid
wt%	weight percentage
XPS	X-ray photoelectron spectroscopy

LIST OF TABLES

Table	Description	Page
Table 1.1	A comparison of CNT synthesis methods	2
Table 2.1	An estimate of the carbon nanotube market world-wide.	26
Table 3.1	Some important properties (general) of commonly used	33
	commercial substrates for CNT synthesis.	
Table 3.2	Unit operations in catalyst preparation.	35
Table 3.3	The use of supported transition metal elements as catalysts	39
	for the CVD synthesis of MWCNTs .	
Table 3.4	The use of supported transition metal elements as catalysts	50
	for the CVD synthesis of SWCNTs .	
Table 3.5	The use of supported transition metal elements as catalysts	54
	for the CVD synthesis of DWCNTs .	
Table 3.6	The use of $CaCO_3$ supported transition metal elements as	57
	catalysts for the CVD synthesis of CNTs.	
Table 4.1	Ferrocene as a catalyst for the synthesis of CNTs and other	77
	SCNMs.	
Table 4.2	Fe(CO) ₅ as a catalyst for the synthesis of CNTs and other	79
	SCNMs.	
Table 4.3	Cobaltocene, nickelocene and ruthenocene as catalysts for	81
	the synthesis of CNTs and other SCNMs.	
Table 4.4	Fe, Co and Ni phthalocyanines as catalysts for the	82
	synthesis of CNTs and other SCNMs.	
Table 4.5	Ferrocenyl derivatives as a catalyst for the synthesis of	83
	CNTs and other SCNMs.	
Table 5.1	Surface areas of CaCO ₃ and supported catalysts before and	124
	after heating at 700° C under N ₂ (300 ml/min).	
Table 6.1	Average particle diameters and reaction mixture	149
	composition of the Fe-Co nanoparticles.	
Table 7.1	Chemical composition of the catalysts used (200 mg) for	167
	the synthesis of carbon nanotubes (synthesis time = 1 h) at	
	700°C.	

Table 10.1	The size and distribution of spheres formed from different	248
	alcohols.	
Table 10.2	Carbon/oxygen ratios of the alcohols used and the	251
	corresponding yield for every 10 ml of alcohol injected at	
	1000°C.	
Table 11.1	Diameters of CSs produced at different temperatures and	270
	C_2H_2 gas flow rates.	
Table 11.2	Size and distribution of CSs formed from different	277
	hydrocarbon sources at 1000°C.	
Table 11.3	Comparative studies on C:H dependence for various	278
	sources under same experimental conditions i.e. T =	
	1000° C and flow rate = 100 ml/min .	
Table 11.4	The effect of hybridization on the size of the CSs.	279

LIST OF FIGURES AND SCHEMES

Figure	Description	Page
Fig. 2.1	Carbon allotropes.	17
Fig. 2.2	(a) Types of CNTs as defined by the rolling of graphite	18
	sheets; (b) A picture of CNT powder.	
Fig. 2.3	Advances in science and technology over centuries.	27
Fig. 3.1	Iron-molybdenum nanoparticles synthesized with different	32
	protective agents. A: 1 mmol of octanoic acid. B: 2.5 mmol	
	of octanoic acid. C: 1 mmol of octanoic acid and 1 mmol of	
	bis(2-ethylhexyl)amine. D: 1 mmol of bis(2-	
	ethylhexyl)amine. E: 2.5 mmol of bis(2-ethylhexyl)amine.	
	The scalebars in all figures are 100 nm [1].	
Fig. 3.2	The two types of CNT growth mechanisms [27].	36
Fig. 3.3	Major pathways to consumption of C_2H_4 and production /	37
	consumption of C at different residence time [24].	
Fig. 3.4	The triple-point junction (grey area) where the reaction	64
	described by Scheme 1 takes place corresponds to the area	
	around the metal-support interface (dashed line). The border	
	of this area on the metallic side is considered to be the root	
	of the CNTs and on the support side it is the carbon diffusion	
	length. Insert: the diffusion of the carbon-containing species.	
	In particular, carbon atoms can diffuse on the surface or in	
	the bulk of the metallic particles from the triple-point	
	junction towards the CNTs [28].	
Fig. 4.1	Types of SCNMs: (a) SWCNTs [125]; (b) MWCNTs [30];	74
	(c) DWCNTs [125]; (d) hollow carbon spheres [126]; (e)	
	carbon spheres [127]; (f) nanofibre [128]; (g) nanohorns	
	[11]; and (h) nanocages [129].	
Fig. 4.2	Catalyst used for CNTs synthesis; (a) ferrocene and (b)	76
	Fe(CO) ₅ .	

Fig. 4.3	TEM images of Y-junction nanotubes obtained by the	89
	pyrolysis of cobaltocene-thiophene mixtures: (a) image with	
	several Y-junction nanotubes and (b) image showing a single	
	multiple junction nanotube [75].	
Fig. 4.4	SEM image showing a significant yield of carbon nanotube	90
	junctions, in the samples grown at 875°C, 60 ml/h active	
	solution flow rate and 0.06 g/ml solution of ferrocene in	
	thiophene [76].	
Fig. 4.5	TEM image of a MWCNT with 'bell shaped' structures	91
	synthesized using pyridine [130].	
Fig. 4.6	Pyrolysis apparatus employed for the synthesis of SWCNTs	96
	by pyrolysis of (a) metallocenes and (b) $Fe(CO)_5$ along with	
	acetylene [37].	
Fig. 4.7	Floating catalyst CVD reactor for the synthesis of CNTs	97
	[39].	
Fig. 4.8	Schematic representation of a CVD furnace with an atomizer	97
	[23].	
Fig. 4.9	SWCNT formation mechanism during aerosol synthesis with	99
	nickel acetylacetonate as the catalyst precursor [131].	
Fig. 4.10	A patchwork of aromatic rings that make up a carbon sphere	101
	synthesized in the absence of a catalyst [127].	
Fig. 5.1	The synthetic pathway for the preparation of Fe-Co	121
	nanoparticles using reverse micelles.	
Fig. 5.2	The horizontal CVD setup used for the synthesis of CNTs.	122
Fig. 5.3	Diameter distribution of the Fe-Co particles prepared by the	125
	IMP, DP and RM methods.	
Fig. 5.4	(a) TEM image of IMPN. Arrows show some Fe-Co	126
	nanoparticles (~ 30 nm) supported on CaCO3 after	
	calcination and (b) An EDX spectrum of the IMPN	
	indicating the presence of Fe-Co nanoparticles.	
Fig. 5.5	TEM images of CaCO ₃ heated at 700°C under C_2H_2 for (a) 1	127
	h and (b) 6 h.	

Fig. 5.6	Amount of carbon deposit produced using 5 wt%	128
	Fe-Co/CaCO ₃ with different amounts of Fe and Co in the	
	alloy.	
Fig. 5.7	TEM images of MWCNTs prepared by the IMPN (a), DPN	129
	(b) and RM (c) and a general higher magnification TEM	
	image (d) showing a much closer look at the 'wavey-like'	
	structures of the CNTs.	
Fig. 5.8	Graph showing the amount of CNTs produced and the %	131
	selectivity at different reaction temperatures in the CVD of	
	C_2H_2 diluted with N_2 (C_2H_2 : $N_2 = 1:3$, t = 1 h). The selectivity	
	profile is similar for all the supported catalysts.	
Fig. 5.9	Raman spectrum of MWCNTs synthesized on Fe-Co/CaCO ₃	132
	catalyst.	
Fig. 5.10	A graph showing %C obtained by varying the gas flow ratio	133
	of C_2H_2 to N_2 . The synthesis time was 1 h for all reactions	
	and the reaction temperature was 700°C.	
Fig. 5.11	Low magnification TEM images of the carbon deposit	135
	produced with different dilution ratios of feed stock gases: a)	
	C_2H_2 : $N_2 = 1:2.7$ (100% CNTs), b) C_2H_2 : $N_2 = 1:1$ (CNTs	
	and CSs), c) C ₂ H ₂ : N ₂ = 1:0 (CSs and CFs); T = 700°C, t = 1	
	h.	
Fig. 5.12	Graph showing the amount of CNTs produced after different	135
	reaction times using IMPN catalysts (T = 700° C).	
Fig. 5.13	Low magnification TEM images of impure CNTs produced	136
	after a) 5min, b) 1 h, c) 2.5 h, d) 3 h, and e) 6 h reaction time	
	at 700°C using IMPN catalysts.	
Fig. 5.14	A plot of variation of the CNT diameter with time for CNTs	137
	synthesized over (a) IMP Fe-Co/CaCO ₃ catalysts.	
Fig. 5.15	TGA profiles of (a) crude and purified CNTs synthesized	139
	from IMPN catalysts and (b) corresponding derivative	
	profiles.	
Fig. 5.16	(a) A TEM image of purified CNTs and (b) PXRD pattern of	140
	the purified and as-synthesized (raw) CNTs.	

Fig. 6.1	TGA profiles of CaCO ₃ and the RM catalyst heated under $N_{\rm 2}$	147
	(40 ml/min). The ~ 5 wt% difference after complete weight	
	loss indicates the amount of Fe-Co on the support.	
Fig. 6.2	A HRTEM image (dark spots are Fe-Co nanoparticles) (a),	150
	EDX spectrum (b) and particle size distribution graph (c) of	
	nanoparticles synthesized using the RM method.	
Fig. 6.3	(a) A TEM image of RM nanoparticles (sample C) and (b) a	151
	closer look of the nanoparticles at higher magnification	
	(indicated by arrow) showing their high crystallinity.	
Fig. 6.4	A PRXD pattern of calcined Fe-Co nanoparticles of sample	152
	C showing their presence as a mixed oxide phase.	
Fig. 6.4	A PRXD pattern of calcined Fe-Co nanoparticles of sample	152
	C showing their presence as a mixed oxide phase.	
Fig. 6.5	A plot of variation of CNT diameter for CNTs synthesized	153
	over RM Fe-Co/CaCO3 catalysts with different Fe-Co	
	particle sizes as given in Table 1.	
Fig. 6.6	TEM images of MWCNTs synthesized over RM catalyst (a)	155
	sample B (6 nm), b) sample C (13 nm), (c) sample D (25 nm)	
	and sample E (70 nm).	
Fig. 6.7	TGA profiles of raw MWCNTs synthesized from IMP, DP	156
	and RM catalysts (sample C).	
Fig. 6.8	TEM image of IMPCNTs and a corresponding HRTEM	157
	image (inset). Arrows show fullerene-like structures on the	
	walls of the CNT.	
Fig. 6.9	Raman spectra of unpurified and purified CNTs: (a)	159
	RMCNTs, (b) DPCNTs, and (c) IMPCNTs.	
Fig. 6.10	SEM image of unpurified RMCNTs.	160
Fig. 7.1	A size distribution graph of the CNTs synthesized using a	168
	50/50 w/w Ca ₃ (PO ₄) ₂ -CaCO ₃ support mixture after 1 h	
	synthesis time.	

Fig. 7.2	A TEM image of MWCNTs synthesized over $CaCO_3$ (a) and	169
	TEM images of MWCNTs synthesized over	
	$50wt\%CaCO_3/50wt\%Ca_3(PO_4)_2$ before (b) and after	
	purification (c) with 30% HNO ₃ .	
Fig. 7.3	A TEM image of a CNT synthesized over	170
	$50wt\%CaCO_3/50wt\%Ca_3(PO_4)_2$: (a) shows a large CNT	
	with a rough surface and (b) shows the same picture at	
	higher magnification.	
Fig. 7.4	A TEM image of CNTs synthesized over	171
	50wt%CaCO ₃ /50wt%Ca ₃ (PO ₄) ₂ after 1 h showing the perfect	
	orientation of graphite sheets of the inner tubes (region 1)	
	and the amorphous part of the CNTs (region 2). An X-ray	
	diffraction pattern of region 1 is shown (inset).	
Fig. 7.5	TEM images CNTs synthesized over	172
	50wt%CaCO ₃ /50wt%Ca ₃ (PO ₄) ₂ for (a) 5 min (b) 60 min (c)	
	3 h and (d) 6 h synthesis time.	
Fig. 7.6	Raman spectra of MWCNTs synthesized over	173
	$50wt\%CaCO_3/50wt\%Ca_3(PO_4)_2$ for (a) 5 min and (b) 60 min.	
Fig. 7.7	DTG graphs of CNTs synthesized over CaCO ₃ and	174
	$50wt\%CaCO_3/50wt\%Ca_3(PO_4)_2$ (under air).	
Fig. 7.8	An XPS spectrum of as-synthesized CNTs obtained using	175
	$50wt\%CaCO_3/50wt\%Ca_3(PO_4)_2.$	
Fig. 7.9	Raman spectra of MWCNTs synthesized over	176
	$50wt\%CaCO_3/50wt\%Ca_3(PO_4)_2$ before (a) and after	
	purification (b) with 30% HNO ₃ .	
Fig. 7.10	(a) TGA profiles and (b) PXRD pattern of CNTs synthesized	177
	over $50wt\%CaCO_3/50wt\%Ca_3(PO_4)_2$ before and after	
	purification with 30% HNO ₃ for 24 h.	
Fig. 7.11	TGA and DTG (inset) profiles of purified MWCNTs	178
	synthesized over 50wt%CaCO3/50wt%Ca3(PO4)2 supported	
	Fe-Co catalyst with different amounts of acid (5, 10, 30%	
	HNO ₃ ; $t = 12 h$).	

Fig. 8.1	(a) HRSTEM of two CNTs with catalyst in docking stations;	187
	(b) carbon signal shows presence of docking stations; (c) Fe-	
	nanoparticles inside docking stations; (d) Ca-nanoparticles	
	lining docking stations; (e) relative oxygen signal on CNT	
	surface [36].	
Fig. 8.2	TGA profiles of carbon materials performed in air.	189
Fig. 8.3	(a) Thermal stability graphs of various carbon materials in	190
	N ₂ after heat treatment for different times and TEM images	
	of the materials after heat treatment (b) raw CNTs, (c)	
	purified CNTs, (d) FcH CNTs, and (d) carbon nanospheres.	
Fig. 8.4	TEM images of substrate CVD synthesized CNTs before	192
	(left) and after (right) a C_2H_2/N_2 mixture was passed over	
	them for 3 h and 700°C.	
Fig. 8.5	TEM images of floating catalyst synthesized CNTs before	193
	(left) and after (right) a C_2H_2/N_2 mixture was passed over	
	them for 3 h and 700°C.	
Fig. 8.6	(a) A HRTEM image of CNTs synthesized over Fe-	194
	Co/CaCO ₃ showing the defects on the outer walls of the	
	CNT, (b) low resolution TEM image of the CNTs showing	
	CNT fragments and their points of rupture and (c) a HRTEM	
	of the circled region in (b).	
Fig. 9.1	TEM images of a discrete and a chain of connected	299
	('accreted') carbon spheres.	
Fig. 9.2	Hollow carbon spheres [4].	200
Fig. 9.3	Classification of nanometric texture in carbon materials	201
	based on the preferred orientation of the carbon layers in	
	BSUs [23].	
Fig. 9.4	A HRTEM image of a non catalytic CVD synthesized CS	206
	with a crystalline outer shell, leading to carbon-carbon core-	
	shell structure [39c].	

Fig. 9.5	SEM images recorded for the pyrolysis of: (a) styrene, (b)	207
	toluene, (c) benzene, (d) hexane, (e) cyclohexane; (f)	
	ethylene; (g) typical TEM and (h) typical AFM images [42].	
Fig. 9.6	(a) A typical TEM image of the carbon-encapsulated ZnSe	209
	nanoparticles. (b) The TEM image of the hollow carbon	
	nanospheres obtained at 1200°C for 30 min (some	
	unconverted carbon-encapsulated ZnSe nanoparticles are	
	shown with arrows). (c) The TEM image of the hollow	
	carbon nanospheres obtained at 1200°C for 60 min (inset is	
	the corresponding SAED pattern of the products) [43].	
Fig. 9.7	Pyrolyzing unit to produce carbon nanobeads. A is the gas	213
	cylinder, B the flow meter, C the heating mantle, D the flask	
	containing camphor and ferrocene mixture, E the quartz tube	
	inside the furnace, F the water bubbler and G is the furnace	
	[51].	
Fig. 9.8	The structure of carbon black showing some functional	216
	groups on the surface of the sphere [76].	
Fig. 9.9	Schematic illustration of the formation mechanism of HCSs	218
	[93].	
Fig. 9.10	(a) A schematic representation of the proposed mechanism	220
	for the formation of the carbon nanopearls in three steps. For	
	the first step, there is no data regarding the end products	
	formed between the various species present in the reactor,	
	particularly the hydrogen and nitrogen. (b) Wavy flakes can	
	be obtained by an insertion of pentagonal and heptagonal	
	carbon rings within the planar hexagonal carbon rings [94].	
Fig. 9.11	Fabrication of PPy nanoparticles (a-c) and MCNPs (c-d)	221
	with uniform diameters [95].	
Fig. 9.12	Schematic representation of graphitic flakes. (a) hexagonal,	222
	(b) pentagonal, (c) heptagonal. Pentagonal and heptagonal	
	carbon rings introduce changes in the curvature of the	
	graphitic flakes [55a,b].	

Fig. 9.13	(a) Nucleation of a pentagon, (b) growth of a quasi-	223
	icosahedral shell, (c) formation of a spiral shell carbon	
	particle proposed by Kroto and McKay [96], and (d) growth	
	of a large size carbon sphere.	
Fig. 10.1	Experimental setup used for the catalytic ethylene pyrolysis	241
	reaction [GHSV 2 = gas sampling valve, FCV = flow control	
	valve].	
Fig. 10.2	A graph showing the amount of CSs produced as a function	243
	of temperature (reaction time = 2 h; C_2H_2 gas flow rate = 100	
	ml/min).	
Fig. 10.3	TEM images of CSs synthesized at (a) 600°C, (b) 950°C and	244
	(c) 1000°C using C_2H_2 as a carbon source (100 ml/min) and	
	a deposition time of 2 h.	
Fig. 10.4	Diameter distribution of CSs obtained at a temperature of	245
	900°C, C ₂ H ₂ flow rate of 100 ml/min and deposition time of	
	2 h.	
Fig. 10.5	Graph of yield of CSs against the pyrolysis time performed	246
	at 900°C using C_2H_2 (100 ml/min).	
Fig. 10.6	Schematic diagram of the furnace with three quartz boats to	246
	collect the CSs.	
Fig 10.7	TEM image of CSs in boat 2 (T = 900°C, C_2H_2 flow rate =	247
	100 ml/min, t = 2 h).	
Fig 10.8	TEM image of agglomerated and chain-like CSs obtained at	247
	a pyrolysis time of 5 min (T = 900°C, C_2H_2 flow rate = 100	
	ml/min).	
Fig. 10.9	TEM images of CSs synthesized from various alcohols, at	249
	1000°C and an injection flow rate of 0.4 ml/min: (a) ethanol,	
	(b) 1-butanol, (c) 1-hexanol, (d) 1-octanol and (e) 1-	
	dodecanol.	
Fig. 10.10	The amount of CSs produced for each alcohol used (T =	250
	1000° C, volume of alcohol = 10 ml, injection flow rate = 0.4	
	ml/min).	

Fig. 10.11	TEM images of (a) CSs synthesized using 1-hexanol as	252
	carbon source and (b) CSs synthesized in the absence of	
	oxygenates (hexane) showing some amorphous material on	
	surface.	
Fig. 10.12	TGA plots of CSs heated under N2 and CSs heated under air	254
	as well purified MWCNTs.	
Fig. 10.13	C_2H_4 conversion using catalysts pre-reduced by H_2 at 400°C	255
	for 4 h; $H_2/C_2H_4 = 3.05$, Catalyst = 0.05 g, GHSV = 71000	
	$cm^{3}g^{-1}h^{-1}$.	
Fig. 10.14	Time on stream over 10- and 20 wt %Co/CMS catalysts	256
	(after pre-reduction by H_2 at 400°C for 4 h) in the	
	hydrogenation of ethylene $[H_2/C_2H_4 = 3.05, \text{ catalyst used} =$	
	0.05 g, GHSV = 71000 cm ³ g ⁻¹ h ⁻¹], T = 100°C.	
Fig. 11.1	Schematic representation of the swirled floating catalytic	262
	chemical vapour deposition reactor.	
Fig. 11.2	(a) TEM image of CSs produced by the SFCCVD technique	265
	at 900°C with C_2H_2 gas flow rate of 118 ml/min, (b)	
	Corresponding HRTEM image of the CSs and (c) HRTEM	
	image of CSs synthesized in a horizontal furnace with the	
	diffraction pattern of the shell of the CS [Inset].	
Fig. 11.3	TGA profile of CSs in an oxidizing (air) atmosphere.	267
Fig. 11.4	HRTEM image of CSs after heating at 800°C under nitrogen	268
	flow.	
Fig. 11.5	Rate of CS production at different temperatures and flow rate	269
	of acetylene.	
Fig. 11.6	Effects of carrier gas on rate of CS production at constant	271
	flow rate of acetylene and temperature.	
Fig. 11.7	TEM images of CSs synthesized with Ar as carrier gas at (a)	272
	487 ml/min, (b) 248 ml/min, and (c) 70 ml/min. Histograms	
	for the corresponding size distributions of the CSs are shown	
	on the right of the TEM images.	

Fig. 11.8	PXRD patterns of CSs synthesized using the SFCCVD	273
	technique.	
Fig. 11.9	Raman spectra of CSs.	274
Fig. 11.10	TEM images of CSs synthesized from several hydrocarbons,	276
	at 1000°C and flow rate 100 ml/min: (a) acetylene, (b)	
	ethylene, (c) pentane, (d) hexane, (e) toluene (f) isooctane,	
	(g) benzene, and (f) heptane (amorphous material).	
Fig. 11.11	Selected TGA profiles of CSs obtained from the various	281
	hydrocarbon precursors used.	
Fig. 11.12	(a) A Raman spectrum of as-synthesized CSs and (b) an	282
	infrared spectrum of the carbon soot obtained from toluene	
	as the carbon precursor.	
Scheme 3.1	Chemical cycles involved in the growth of carbon nanotubes	65
	from an equimolar mixture of C_2H_2 and CO_2 . WGS = water	
	gas shift, CO disprop. = CO disproportionation [28].	
Scheme 8.1	A summary of the procedure used in performing heat	185
	treatment experiments on various carbon materials.	
Scheme 9.1	Schematic illustration of the fabrication steps for various	210
	carbon spheres (HCSs): (a) discrete carbon patches acting as	
	the building blocks of HCSs, (b) incomplete HCSs because	
	of insufficient CVD time, (c) deformed HCSs prepared using	
	large silica spheres as templates with a short CVD time, (d)	
	intact single shell HCSs prepared with a long CVD time or a	
	high CVD temperature, (e) N-doped HCSs prepared using	
	acetonitrile as a carbon source, (f) double shelled HCSs	
	prepared using a three-step CVD method: first, CVD of	
	carbon on the surface of silica spheres; second, CVD of	
	silicon tetrachloride on the surface of the carbon-silica	
	spheres; third, CVD of carbon on the surface of the silica-	
	carbon-silica spheres [45].	