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ABSTRACT

The synthesis of multi-walled carbon nanotubes (MWE) and carbon spheres
(CSs) was achieved using catalytic and non-catalgtiemical vapour deposition
processes (CVD) respectively. Fe-Co bimetallic lgata supported on CaGQvere
prepared by a wet impregnation (IMP), a deposipeeeipitation (DP) and a reverse
micelle method (RM). The sizes of the Fe and Cdtiglas were not affected by the Fe
and Co sources (nitrate, acetate) when the wet eigmation and deposition-
precipitation methods were used. High quality ‘olemulti-walled carbon nanotubes
(MWCNTSs) were obtained from all three Fe-Co synith@socedures under optimized
reaction conditions. The CNTs produced gave yiegddging from 623% - 1215% in 1
h under the optimum conditions, with similar oueameters (0.d.) of 20 - 30 nm and
inner diameters (i.d.) ~ 10 nm. The Fe-Co catdigened in the wet impregnation
method revealed that thgield, outer diameterand purity of the CNTs were
influenced byC,H./N, ratios, timeand temperature All the methods gave high
quality CNTs after short reaction times but the lqualeteriorated as the synthesis
time was increased from 5 - 360 min. Indeed, tlilential parameter in controlling

CNT purity, length and outer diameter was fountieédhe synthesis time.

In order to control the i.d. of the CNTSs, the threethods of catalyst preparation were
employed with the aim of controlling the Fe-Co &gt particle sizes. It was
observed that the IMP and DP methods were lesstefein controlling the size of
the metal particles. A reverse micelle process waed to synthesize Fe-Co
nanoparticles that were highly crystalline and amf in size. The reverse micelle
technique displayed the ability to prepare nandgas of controlled size (3, 6 and 13
nm) obtained by varying the concentrations of F& @o in the micelle. By using the
RM method, smaller diameter CNTs could be obtaic@wpared with the IMP and
DP methods. The CNT i.d. was found to correlatd the size of the catalyst particle

used.

The effect of synthesis time @NT widthswas investigated for the first time. In this
study the issue of carbon build up on the CNTs fametion of time was investigated.
It was observed that both the CNT yield and theeodiameters increased with time.

With increase in synthesis time, the tulleeke into smallfragments The use of



excess gH, resulted in the deposition of carbon on the alydadmed CNTs and it is

this deposited carbon that caused tube fragmentatio

MWCNTs with unusual rough surfaces (including pigre synthesized by the CVD
of acetylene using a novel £BO),-CaCQ support mixture. Mixtures of GEPOy),-
CaCQ (0/100 to 100/0) yielded tubes witlkery rough surfaceand the CNT yield
increased as the amount of Ca(® the support mixture was increased. The inner
walls of the CNTs possessed a regular orientatfarystalline graphite sheets (3 - 5
nm) while the outer surface of the CNTs had a thiokgh, compact layef 30 nm)

of carbon with a random orientation of graphiteethe

The production of pure carbon spheres (CSs) was\aah in the absence of a catalyst
through the direct pyrolysis of acetylene and ethglin a horizontal CVD reactor.
The detailed experiments conducted with acetylena precursor indicated that the
diameters of the CSs could be controlled by varyimg pyrolysis conditions (e.g.
temperature and synthesis time) and that the psoomsld readily be scaled up for
commercial production. This process thus providegadant of the carbon black
synthesis procedure. The effect of using oxygen@keshol C:O ratio dependence)

on the CS morphology was also investigated.

CSs were also synthesized in a vertical swirledtitg catalytic chemical vapour

deposition (SFCCVD) reactor for the first time. §hrocess allowed for continuous
and large scale production of these materials. 88 were obtained by the direct
pyrolysis of acetylene in an inert atmosphere withtbe use of a catalyst. The effect
of pyrolysis temperatures and the flow rate of argarrier gas on the size, quality
and quantity of the synthesized carbon spheres weestigated. TEM analysis of the
carbon materials revealed graphitic spheres witemmoth surface and uniform

diameter that could be controlled by varying reactttonditions (size: 50 - 250 nm).
The materials were spongy and very light. It wasl@shed that under controlled
experimental parameters, sphere size is also regulsy the structural and bonding
properties of a hydrocarbon source such casbon/hydrogen (C:H) content,

hybridizationandisomerism
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profile is similar for all the supported catalysts.

131

Fig.

5.9

Raman spectrum of MWCNTSs synthesized o€&#£aCQ

catalyst.

132

Fig.

5.10

A graph showing %C obtained by varying ¢fas flow ratiqg
of C;H, to Ny, The synthesis time was 1 h for all reactig

and the reaction temperature was °tQ0

133

NS

Fig.

5.11

Low magnification TEM images of the carbdeposit
produced with different dilution ratios of feed ctagases: a
CoHz: Np = 1:2.7 (100% CNTSs), b) £ N, = 1:1 (CNTs

and CSs), c¢) ¢H,: N, =1:0 (CSs and CFs); T = 700°C, t #

h.

135

Fig.

5.12

Graph showing the amount of CNTs produaféet different|
reaction times using IMPbBhatalysts (T = 70C).

135

Fig.

5.13

Low magnification TEM images of impure TNproduced
after a) 5min, b) 1 h, ¢) 2.5 h, d) 3 h, and e)rédction time
at 700C using IMPN catalysts.

136

Fig.

5.14

A plot of variation of the CNT diameteithvtime for CNTs
synthesized over (a) IMP Fe-Co/Cag¥atalysts.

137

Fig.

5.15

TGA profiles of (a) crude and purified TN synthesize
from IMPN catalysts and (b) corresponding derival

profiles.
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iv

Fig.

5.16

(a) A TEM image of purified CNTs and @XRD pattern of

140

the purified and as-synthesized (raw) CNTSs.
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Fig.

6.1

TGA profiles of CaC@and the RM catalyst heated under
(40 ml/min). The ~ 5 wt% difference after completeight

loss indicates the amount of Fe-Co on the support.

NL47

Fig.

6.2

A HRTEM image (dark spots are Fe-Co nartages) (a),
EDX spectrum (b) and particle size distributionpgrdgc) of

nanoparticles synthesized using the RM method.

150

Fig.

6.3

(a) A TEM image of RM nanopatrticles (saenfl) and (b) &
closer look of the nanoparticles at higher magatfan

(indicated by arrow) showing their high crystalyni

1151

Fig.

6.4

A PRXD pattern of calcined Fe-Co nanopt of sample
C showing their presence as a mixed oxide phase.

p 152

Fig.

6.4

A PRXD pattern of calcined Fe-Co nanopet of sample

C showing their presence as a mixed oxide phase.

» 152

Fig.

6.5

A plot of variation of CNT diameter for @GN synthesize(
over RM Fe-Co/CaC@ catalysts with different Fe-C

particle sizes as given in Table 1.

1153

0o

Fig.

6.6

TEM images of MWCNTs synthesized over Raflatyst (a)
sample B (6 nm), b) sample C (13 nm), (c) samp(89nm)

and sample E (70 nm).

155

Fig.

6.7

TGA profiles of raw MWCNTs synthesized firdMP, DP
and RM catalysts (sample C).

156

Fig.

6.8

TEM image of IMPCNTs and a correspondinRTHM
image (inset). Arrows show fullerene-like structi@n the
walls of the CNT.

157

Fig.

6.9

Raman spectra of unpurified and purifiedNTS: (a)
RMCNTSs, (b) DPCNTSs, and (c) IMPCNTSs.

159

Fig.

6.10

SEM image of unpurified RMCNTSs.

160

Fig.

7.1

A size distribution graph of the CNTs $wgized using
50/50 wiw Cg(POy)-CaCQ support mixture after 1

synthesis time.
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Fig. 7.2

A TEM image of MWCNTSs synthesized over €aCa) and
TEM images of MWCNTs synthesized oV
50wt%CaCQ/50wt%Ca(PQy), before (b) and afte
purification (c) with 30% HN@

169

er

Fig. 7.3

A TEM image of a CNT synthesized o
50wt%CaCQ/50wt%Ca(PQy),.: (a) shows a large CN
with a rough surface and (b) shows the same pichit

higher magnification.

ver70

e

Fig. 7.4

A TEM image of CNTs synthesized o
50wt%CaCQ/50wt%Ca(PQy), after 1 h showing the perfe
orientation of graphite sheets of the inner tulregion 1)
and the amorphous part of the CNTs (region 2). Arax

diffraction pattern of region 1 is shown (inset).

dr71

Fig. 7.5

TEM images CNTs synthesized 0
50wt%CaCQ@/50wt%Ca(PQy), for (a) 5 min (b) 60 min (c
3 h and (d) 6 h synthesis time.

V& 2

Fig. 7.6

Raman spectra of MWCNTs synthesized ¢

50wt%CaCQ/50wt%Ca(POy), for (a) 5 min and (b) 60 min.

DM&13

Fig. 7.7

DTG graphs of CNTs synthesized over CaCand
50wt%CaCQ@/50wt%Ca(POy), (under air).

174

Fig. 7.8

An XPS spectrum of as-synthesized CNTsiobt using
50wt%CaCQ@/50wt%Ca(POy),.

175

Fig. 7.9

Raman spectra of MWCNTs synthesized ¢
50wt%CaCQ/50wt%Ca(PQy), before (a) and afte
purification (b) with 30% HN@

NVIE](S)

-

Fig. 7.10

(a) TGA profiles and (b) PXRD patternGNITs synthesize
over 50wt%CaCgs0wt%Ca(P(y), before and afte
purification with 30% HNQ for 24 h.

1177

Fig. 7.11

TGA and DTG (inset) profiles of purifieMWCNTs
synthesized over 50wt%CaGB0wt%Ca(POy,), supported
Fe-Co catalyst with different amounts of acid (B, B0%
HNOs; t = 12 h).

178
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Fig.

8.1

(a) HRSTEM of two CNTs with catalyst inaing stations
(b) carbon signal shows presence of docking stsitim) Fe-
nanoparticles inside docking stations; (d) Ca-nanoges
lining docking stations; (e) relative oxygen sigmal CNT

surface [36].

187

Fig.

8.2

TGA profiles of carbon materials performedir.

189

Fig.

8.3

(a) Thermal stability graphs of variousboan materials irj
N, after heat treatment for different times and TEages
of the materials after heat treatment (b) raw CN{,
purified CNTs, (d) FcH CNTs, and (d) carbon nanespk.

190

Fig.

8.4

TEM images of substrate CVD synthesizedT€Nbefore
(left) and after (right) a &4,/N, mixture was passed ov
them for 3 h and 70C.

192

Fig.

8.5

TEM images of floating catalyst synthediZeNTs before
(left) and after (right) a €,/N, mixture was passed ov
them for 3 h and 70C.

193

Fig.

8.6

(@) A HRTEM image of CNTs synthesized ovee-
Co/CaCQ showing the defects on the outer walls of
CNT, (b) low resolution TEM image of the CNTs showy
CNT fragments and their points of rupture and (E)RFrEM

of the circled region in (b).

194
the

Fig.

9.1

TEM images of a discrete and a chain ohneated

(‘accreted’) carbon spheres.

299

Fig.

9.2

Hollow carbon spheres [4].

200

Fig.

9.3

Classification of nanometric texture inrbmn materials
based on the preferred orientation of the carbgertain
BSUs [23].

201

Fig.

9.4

A HRTEM image of a non catalytic CVD syasized CS
with a crystalline outer shell, leading to carb@mbon core-

shell structure [39c].

206
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Fig. 9.5

SEM images recorded for the pyrolysis (a): styrene, (b
toluene, (c) benzene, (d) hexane, (e) cyclohexdfe
ethylene; (g) typical TEM and (h) typical AFM imagg!2].

207

Fig. 9.6

(a) A typical TEM image of the carbon-gmealated ZnSe

nanoparticles. (b) The TEM image of the hollow cari

nanospheres obtained at 1200 for 30 min (some

unconverted carbon-encapsulated ZnSe nanopartetes
shown with arrows). (c) The TEM image of the holl
carbon nanospheres obtained at 220@r 60 min (inset is

the corresponding SAED pattern of the products).[43

DW

Fig. 9.7

Pyrolyzing unit to produce carbon nanolsedl is the gas
cylinder, B the flow meter, C the heating mantlethb flask
containing camphor and ferrocene mixture, E thetgquabe
inside the furnace, F the water bubbler and G asftinnace
[51].

5213

Fig. 9.8

The structure of carbon black showing sofmectional

groups on the surface of the sphere [76].

216

Fig. 9.9

Schematic illustration of the formation ahanism of HCSg
[93].

5218

Fig. 9.10

(a) A schematic representation of theppsed mechanisr
for the formation of the carbon nanopearls in treteps. Fol
the first step, there is no data regarding the prodiucts
formed between the various species present in ghetar,
particularly the hydrogen and nitrogen. (b) Wawk#s carn
be obtained by an insertion of pentagonal and kept

carbon rings within the planar hexagonal carbogsii94].

n220

Fig. 9.11

Fabrication of PPy nanoparticles (a-cii aMCNPs (c-d)
with uniform diameters [95].

221

Fig. 9.12

Schematic representation of graphitikeffa (a) hexagonal,222

(b) pentagonal, (c) heptagonal. Pentagonal andabepal
carbon rings introduce changes in the curvaturethef

graphitic flakes [55a,b].
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Fig. 9.13

(@) Nucleation of a pentagon, (b) growth a quasi-
icosahedral shell, (c) formation of a spiral shedirbon
particle proposed by Kroto and McKay [96], and gdpwth
of a large size carbon sphere.

223

Fig. 10.1

Experimental setup used for the catabftiylene pyrolysis
reaction [GHSV 2 = gas sampling valve, FCV = floantrol

valve].

241

Fig. 10.2

A graph showing the amount of CSs produe® a functior

of temperature (reaction time = 2 hiH; gas flow rate = 100

ml/min).

243

Fig. 10.3

TEM images of CSs synthesized at (a) 600°C, (by@=hd

244

(c) 1000C using GH; as a carbon source (100 ml/min) and

a deposition time of 2 h.

Fig. 10.4

Diameter distribution of CSs obtainedaatemperature @
900°C, GH, flow rate of 100 ml/min and deposition time
2 h.

f245

of

Fig. 10.5

Graph of yield of CSs against the pynglysne performeg
at 900°C using &, (100 ml/min).

246

Fig. 10.6

Schematic diagram of the furnace witle¢hquartz boats t
collect the CSs.

0246

Fig 10.7

TEM image of CSs in boat 2 (T = 900°GHE&flow rate =
100 ml/min, t = 2 h).

247

Fig 10.8

TEM image of agglomerated and chain-likks®©btained a
a pyrolysis time of 5 min (T = 900°C .8, flow rate = 100

ml/min).

t247

Fig. 10.9

TEM images of CSs synthesized from variaicohols, a
1000°C and an injection flow rate of 0.4 ml/min: (a) @tiol,
(b) 1-butanol, (c) 1-hexanol, (d) 1-octanol and ()

dodecanol.

[ 249

Fig. 10.10

The amount of CSs produced for eachhalcased (T =
100C°C, volume of alcohol = 10 ml, injection flow rate0=4

ml/min).

250
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Fig.

10.11

TEM images of (a) CSs synthesized usiAgexanol as
carbon source and (b) CSs synthesized in the absef
oxygenates (hexane) showing some amorphous materi

surface.

5 252

al

Fig.

10.12

TGA plots of CSs heated underadd CSs heated under
as well purified MWCNTSs.

aR54

Fig.

10.13

GH4 conversion using catalysts pre-reduced bhyaH400C
for 4 h; H/C,H, = 3.05, Catalyst = 0.05 g, GHSV = 710

cm’gth™.

255

Fig.

10.14

Time on stream over 10- and 20 wt %CadBChatalysts
(after pre-reduction by Hat 4006C for 4 h) in the
hydrogenation of ethylene pHC,H, = 3.05, catalyst used
0.05 g, GHSV = 71000 cig*h?], T = 100C.

256

Fig.

111

Schematic representation of the swirledting catalytic

chemical vapour deposition reactor.

262

Fig.

11.2

(&) TEM image of CSs produced by the S¥FO@echnique
at 900C with GH, gas flow rate of 118 mi/min, (b
Corresponding HRTEM image of the CSs and (c) HRT|
image of CSs synthesized in a horizontal furnact whe
diffraction pattern of the shell of the CS [Inset].
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EM

Fig.

11.3

TGA profile of CSs in an oxidizing (agjmosphere.

267

Fig.

11.4

HRTEM image of CSs after heating at 8G0under nitroger

flow.

1 268

Fig.

11.5

Rate of CS production at different terapares and flow rat
of acetylene.

2269

Fig.

11.6

Effects of carrier gas on rate of CS paiidhn at constan

flow rate of acetylene and temperature.

t271

Fig.

11.7

TEM images of CSs synthesized with Acasier gas at (a
487 ml/min, (b) 248 ml/min, and (c) 70 ml/min. Higtams
for the corresponding size distributions of the @8sshown

on the right of the TEM images.
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Fig. 11.8

PXRD patterns of CSs synthesized using $CCVD

technique.

273

Fig. 11.9

Raman spectra of CSs.

274

Fig. 11.10

TEM images of CSs synthesized from sdvgrdrocarbons|
at 1006C and flow rate 100 mi/min: (a) acetylene,
ethylene, (c) pentane, (d) hexane, (e) toluenes@®ctane
(g) benzene, and (f) heptane (amorphous material).

,276
b)

Fig. 11.11

Selected TGA profiles of CSs obtainenimfrthe various

hydrocarbon precursors used.

281

Fig. 11.12

(&) A Raman spectrum of as-synthesiz€8 @nd (b) an282

infrared spectrum of the carbon soot obtained ftolene

as the carbon precursor.

Scheme 3.1

Chemical cycles involved in the growth of carbomatabes
from an equimolar mixture of £, and CQ. WGS = watef

gas shift, CO disprop. = CO disproportionation [28]

65

Scheme 8.1

A summary of the procedure used in performing f

treatment experiments on various carbon materials.

ndB5

Scheme 9.1

Schematic illustration of the fabrication steps f@rious
carbon spheres (HCSs): (a) discrete carbon patidiewy as
the building blocks of HCSs, (b) incomplete HCSsaaese
of insufficient CVD time, (c) deformed HCSs prepghtesing
large silica spheres as templates with a short @xie, (d)
intact single shell HCSs prepared with a long Cubetor a
high CVD temperature, (e) N-doped HCSs preparedgu
acetonitrile as a carbon source, (f) double sheH&tiSs
prepared using a three-step CVD method: first, CvD
carbon on the surface of silica spheres; second) ©Y
silicon tetrachloride on the surface of the carbiica
spheres; third, CVD of carbon on the surface of diliea-
carbon-silica spheres [45].
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