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ABSTRACT 

 

The synthesis of multi-walled carbon nanotubes (MWCNTs) and carbon spheres 

(CSs) was achieved using catalytic and non-catalytic chemical vapour deposition 

processes (CVD) respectively. Fe-Co bimetallic catalysts supported on CaCO3 were 

prepared by a wet impregnation (IMP), a deposition-precipitation (DP) and a reverse 

micelle method (RM). The sizes of the Fe and Co particles were not affected by the Fe 

and Co sources (nitrate, acetate) when the wet impregnation and deposition-

precipitation methods were used. High quality ‘clean’ multi-walled carbon nanotubes 

(MWCNTs) were obtained from all three Fe-Co synthesis procedures under optimized 

reaction conditions. The CNTs produced gave yields ranging from 623% - 1215% in 1 

h under the optimum conditions, with similar outer diameters (o.d.) of 20 - 30 nm and 

inner diameters (i.d.) ~ 10 nm. The Fe-Co catalyst formed in the wet impregnation 

method revealed that the yield, outer diameter and purity of the CNTs were 

influenced by C2H2/N2 ratios, time and temperature. All the methods gave high 

quality CNTs after short reaction times but the quality deteriorated as the synthesis 

time was increased from 5 - 360 min. Indeed, the influential parameter in controlling 

CNT purity, length and outer diameter was found to be the synthesis time. 

 

In order to control the i.d. of the CNTs, the three methods of catalyst preparation were 

employed with the aim of controlling the Fe-Co catalyst particle sizes. It was 

observed that the IMP and DP methods were less effective in controlling the size of 

the metal particles. A reverse micelle process was used to synthesize Fe-Co 

nanoparticles that were highly crystalline and uniform in size. The reverse micelle 

technique displayed the ability to prepare nanoparticles of controlled size (3, 6 and 13 

nm) obtained by varying the concentrations of Fe and Co in the micelle. By using the 

RM method, smaller diameter CNTs could be obtained compared with the IMP and 

DP methods. The CNT i.d. was found to correlate with the size of the catalyst particle 

used.  

 

The effect of synthesis time on CNT widths was investigated for the first time. In this 

study the issue of carbon build up on the CNTs as a function of time was investigated. 

It was observed that both the CNT yield and the outer diameters increased with time. 

With increase in synthesis time, the tubes broke into small fragments. The use of 



x

excess C2H2 resulted in the deposition of carbon on the already formed CNTs and it is 

this deposited carbon that caused tube fragmentation.   

 

MWCNTs with unusual rough surfaces (including pits) were synthesized by the CVD 

of acetylene using a novel Ca3(PO4)2-CaCO3 support mixture. Mixtures of Ca3(PO4)2-

CaCO3 (0/100 to 100/0) yielded tubes with very rough surfaces and the CNT yield 

increased as the amount of CaCO3 in the support mixture was increased. The inner 

walls of the CNTs possessed a regular orientation of crystalline graphite sheets (3 - 5 

nm) while the outer surface of the CNTs had a thick, rough, compact layer (∼ 30 nm) 

of carbon with a random orientation of graphite sheets.  

 

The production of pure carbon spheres (CSs) was achieved in the absence of a catalyst 

through the direct pyrolysis of acetylene and ethylene in a horizontal CVD reactor. 

The detailed experiments conducted with acetylene as a precursor indicated that the 

diameters of the CSs could be controlled by varying the pyrolysis conditions (e.g. 

temperature and synthesis time) and that the process could readily be scaled up for 

commercial production. This process thus provides a variant of the carbon black 

synthesis procedure. The effect of using oxygenates (alcohol C:O ratio dependence) 

on the CS morphology was also investigated. 

 

CSs were also synthesized in a vertical swirled floating catalytic chemical vapour 

deposition (SFCCVD) reactor for the first time. This process allowed for continuous 

and large scale production of these materials. The CSs were obtained by the direct 

pyrolysis of acetylene in an inert atmosphere without the use of a catalyst. The effect 

of pyrolysis temperatures and the flow rate of argon carrier gas on the size, quality 

and quantity of the synthesized carbon spheres were investigated. TEM analysis of the 

carbon materials revealed graphitic spheres with a smooth surface and uniform 

diameter that could be controlled by varying reaction conditions (size: 50 - 250 nm). 

The materials were spongy and very light. It was established that under controlled 

experimental parameters, sphere size is also regulated by the structural and bonding 

properties of a hydrocarbon source such as carbon/hydrogen (C:H) content, 

hybridization and isomerism. 
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by pyrolysis of (a) metallocenes and (b) Fe(CO)5 along with 

acetylene [37].  
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Fig. 4.7 Floating catalyst CVD reactor for the synthesis of CNTs 

[39]. 
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Fig. 4.8 Schematic representation of a CVD furnace with an atomizer 

[23]. 
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Fig. 4.9 SWCNT formation mechanism during aerosol synthesis with 

nickel acetylacetonate as the catalyst precursor [131]. 
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Fig. 4.10 A patchwork of aromatic rings that make up a carbon sphere 

synthesized in the absence of a catalyst [127]. 
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Fig. 5.1 The synthetic pathway for the preparation of Fe-Co 

nanoparticles using reverse micelles. 

121 

Fig. 5.2 The horizontal CVD setup used for the synthesis of CNTs. 122 

Fig. 5.3 Diameter distribution of the Fe-Co particles prepared by the 

IMP, DP and RM methods. 
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Fig. 5.4 (a) TEM image of IMPN. Arrows show some Fe-Co 

nanoparticles (∼ 30 nm) supported on CaCO3 after 

calcination and (b) An EDX spectrum of the IMPN 

indicating the presence  of Fe-Co nanoparticles.  
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Fig. 5.5 TEM images of CaCO3 heated at 700°C under C2H2 for (a) 1 

h and (b) 6 h.  
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Fig. 5.6 Amount of carbon deposit produced using 5 wt%  

Fe-Co/CaCO3 with different amounts of Fe and Co in the 

alloy. 
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Fig. 5.7 TEM images of MWCNTs prepared by the IMPN (a), DPN 

(b) and RM (c) and a general higher magnification TEM 

image (d) showing a much closer look at the ‘wavey-like’ 

structures of the CNTs. 
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Fig. 5.8 Graph showing the amount of CNTs produced and the % 

selectivity at different reaction temperatures in the CVD of 

C2H2 diluted with N2 (C2H2:N2 = 1:3, t = 1 h). The selectivity 

profile is similar for all the supported catalysts. 
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Fig. 5.9 Raman spectrum of MWCNTs synthesized on Fe-Co/CaCO3 

catalyst. 
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Fig. 5.10 A graph showing %C obtained by varying the gas flow ratio 

of C2H2 to N2. The synthesis time was 1 h for all reactions 

and the reaction temperature was 700oC. 
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Fig. 5.11 Low magnification TEM images of the carbon deposit 

produced with different dilution ratios of feed stock gases: a) 

C2H2: N2 = 1:2.7 (100% CNTs), b) C2H2: N2 = 1:1 (CNTs 

and CSs), c) C2H2: N2 = 1:0 (CSs and CFs); T = 700°C, t = 1 

h. 

135 

 

Fig. 5.12 Graph showing the amount of CNTs produced after different 

reaction times using IMPN catalysts (T = 700°C). 
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Fig. 5.13 Low magnification TEM images of impure CNTs produced 

after a) 5min, b) 1 h, c) 2.5 h, d) 3 h, and e) 6 h reaction time 

at 700°C using IMPN catalysts. 
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Fig. 5.14 A plot of variation of the CNT diameter with time for CNTs 

synthesized over (a) IMP Fe-Co/CaCO3 catalysts.  
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Fig. 5.15 TGA profiles of (a) crude and purified CNTs synthesized 

from IMPN catalysts and (b) corresponding derivative 

profiles.  
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Fig. 5.16 (a) A TEM image of purified CNTs and (b) PXRD pattern of 

the purified and as-synthesized (raw) CNTs. 
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Fig. 6.1 TGA profiles of CaCO3 and the RM catalyst heated under N2 

(40 ml/min). The ~ 5 wt% difference after complete weight 

loss indicates the amount of Fe-Co on the support.  
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Fig. 6.2 A HRTEM image (dark spots are Fe-Co nanoparticles) (a), 

EDX spectrum (b) and particle size distribution graph (c) of 

nanoparticles synthesized using the RM method. 
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Fig. 6.3 (a) A TEM image of RM nanoparticles (sample C) and (b) a 

closer look of the nanoparticles at higher magnification 

(indicated by arrow) showing their high crystallinity. 

151 

Fig. 6.4 A PRXD pattern of calcined Fe-Co nanoparticles of sample 

C showing their presence as a mixed oxide phase. 
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Fig. 6.4 A PRXD pattern of calcined Fe-Co nanoparticles of sample 

C showing their presence as a mixed oxide phase. 
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Fig. 6.5 A plot of variation of CNT diameter for CNTs synthesized 

over RM Fe-Co/CaCO3 catalysts with different Fe-Co 

particle sizes as given in Table 1. 
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Fig. 6.6 TEM images of MWCNTs synthesized over RM catalyst (a) 

sample B (6 nm), b) sample C (13 nm), (c) sample D (25 nm) 

and sample E (70 nm). 

155 

 

Fig. 6.7 TGA profiles of raw MWCNTs synthesized from IMP, DP 

and RM catalysts (sample C).  
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Fig. 6.8 TEM image of IMPCNTs and a corresponding HRTEM 

image (inset). Arrows show fullerene-like structures on the 

walls of the CNT. 
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Fig. 6.9 Raman spectra of unpurified and purified CNTs: (a) 

RMCNTs, (b) DPCNTs, and (c) IMPCNTs.  
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Fig. 6.10 SEM image of unpurified RMCNTs.  160 

Fig. 7.1 A size distribution graph of the CNTs synthesized using a 

50/50 w/w Ca3(PO4)2-CaCO3 support mixture after 1 h 

synthesis time.  
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Fig. 7.2 A TEM image of MWCNTs synthesized over CaCO3 (a) and 

TEM images of MWCNTs synthesized over 

50wt%CaCO3/50wt%Ca3(PO4)2 before (b) and after 

purification (c) with 30% HNO3. 

169 

Fig. 7.3 A TEM image of a CNT synthesized over 

50wt%CaCO3/50wt%Ca3(PO4)2: (a) shows a large CNT  

with a rough surface and (b) shows the same picture at 

higher magnification. 
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Fig. 7.4 A TEM image of CNTs synthesized over 

50wt%CaCO3/50wt%Ca3(PO4)2 after 1 h showing the perfect 

orientation of graphite sheets of the inner tubes (region 1) 

and the amorphous part of the CNTs (region 2). An X-ray 

diffraction pattern of region 1 is shown (inset). 
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Fig. 7.5 TEM images CNTs synthesized over 

50wt%CaCO3/50wt%Ca3(PO4)2  for (a) 5 min (b) 60 min (c) 

3 h and (d) 6 h synthesis time. 
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Fig. 7.6 Raman spectra of MWCNTs synthesized over 

50wt%CaCO3/50wt%Ca3(PO4)2 for (a) 5 min and (b) 60 min. 
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Fig. 7.7 DTG graphs of CNTs synthesized over CaCO3 and 

50wt%CaCO3/50wt%Ca3(PO4)2 (under air).  
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Fig. 7.8 An XPS spectrum of as-synthesized CNTs obtained using 

50wt%CaCO3/50wt%Ca3(PO4)2.  
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Fig. 7.9 Raman spectra of MWCNTs synthesized over 

50wt%CaCO3/50wt%Ca3(PO4)2 before (a) and after 

purification (b) with 30% HNO3.  

176 

Fig. 7.10 (a) TGA profiles and (b) PXRD pattern of CNTs synthesized 

over 50wt%CaCO3/50wt%Ca3(PO4)2 before and after 

purification with 30% HNO3 for 24 h. 
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Fig. 7.11 TGA and DTG (inset) profiles of purified MWCNTs 

synthesized over 50wt%CaCO3/50wt%Ca3(PO4)2 supported 

Fe-Co catalyst with different amounts of acid (5, 10, 30% 

HNO3; t = 12 h). 
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Fig. 8.1 (a) HRSTEM of two CNTs with catalyst in docking stations; 

(b) carbon signal shows presence of docking stations; (c) Fe-

nanoparticles inside docking stations; (d) Ca-nanoparticles 

lining docking stations; (e) relative oxygen signal on CNT 

surface [36]. 
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Fig. 8.2 TGA profiles of carbon materials performed in air. 189 

Fig. 8.3 (a) Thermal stability graphs of various carbon materials in 

N2 after heat treatment for different times and TEM images 

of the materials after heat treatment (b) raw CNTs, (c) 

purified CNTs, (d) FcH CNTs, and (d) carbon nanospheres.  
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Fig. 8.4 TEM images of substrate CVD synthesized CNTs before 

(left) and after (right) a C2H2/N2 mixture was passed over 

them for 3 h and 700°C.  
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Fig. 8.5 TEM images of floating catalyst synthesized CNTs before 

(left) and after (right) a C2H2/N2 mixture was passed over 

them for 3 h and 700°C.  
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Fig. 8.6 (a) A HRTEM image of CNTs synthesized over Fe-

Co/CaCO3 showing the defects on the outer walls of the 

CNT, (b) low resolution TEM image of the CNTs showing 

CNT fragments and their points of rupture and (c) a HRTEM 

of the circled region in (b). 
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Fig. 9.1 TEM images of a discrete and a chain of connected 

(‘accreted’) carbon spheres. 
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Fig. 9.2 Hollow carbon spheres [4].  200 

Fig. 9.3 Classification of nanometric texture in carbon materials 

based on the preferred orientation of the carbon layers in 

BSUs [23]. 
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Fig. 9.4 A HRTEM image of a non catalytic CVD synthesized CS 

with a crystalline outer shell, leading to carbon-carbon core-

shell structure [39c]. 
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Fig. 9.5 SEM images recorded for the pyrolysis of: (a) styrene, (b) 

toluene, (c) benzene, (d) hexane, (e) cyclohexane; (f) 

ethylene; (g) typical TEM and (h) typical AFM images [42]. 

207 

Fig. 9.6 (a) A typical TEM image of the carbon-encapsulated ZnSe 

nanoparticles. (b) The TEM image of the hollow carbon 

nanospheres obtained at 1200°C for 30 min (some 

unconverted carbon-encapsulated ZnSe nanoparticles are 

shown with arrows). (c) The TEM image of the hollow 

carbon nanospheres obtained at 1200°C for 60 min (inset is 

the corresponding SAED pattern of the products) [43].  

209 

Fig. 9.7 Pyrolyzing unit to produce carbon nanobeads. A is the gas 

cylinder, B the flow meter, C the heating mantle, D the flask 

containing camphor and ferrocene mixture, E the quartz tube 

inside the furnace, F the water bubbler and G is the furnace 

[51]. 
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Fig. 9.8 The structure of carbon black showing some functional 

groups on the surface of the sphere [76]. 

216 

Fig. 9.9 Schematic illustration of the formation mechanism of HCSs 

[93]. 

218 

Fig. 9.10 (a) A schematic representation of the proposed mechanism 

for the formation of the carbon nanopearls in three steps. For 

the first step, there is no data regarding the end products 

formed between the various species present in the reactor, 

particularly the hydrogen and nitrogen. (b) Wavy flakes can 

be obtained by an insertion of pentagonal and heptagonal 

carbon rings within the planar hexagonal carbon rings [94]. 
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Fig. 9.11 Fabrication of PPy nanoparticles (a-c) and MCNPs (c-d) 

with uniform diameters [95]. 
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Fig. 9.12 Schematic representation of graphitic flakes. (a) hexagonal, 

(b) pentagonal, (c) heptagonal. Pentagonal and heptagonal 

carbon rings introduce changes in the curvature of the 

graphitic flakes [55a,b]. 
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Fig. 9.13 (a) Nucleation of a pentagon, (b) growth of a quasi-

icosahedral shell, (c) formation of a spiral shell carbon 

particle proposed by Kroto and McKay [96], and (d) growth 

of a large size carbon sphere. 
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Fig. 10.1 Experimental setup used for the catalytic ethylene pyrolysis  

reaction [GHSV 2 = gas sampling valve, FCV = flow control  

valve].  
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Fig. 10.2 A graph showing the amount of CSs produced as a function 

of temperature (reaction time = 2 h; C2H2 gas flow rate = 100 

ml/min). 
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Fig. 10.3 TEM images of CSs synthesized at (a) 600°C, (b) 950°C and 

(c) 1000°C using C2H2 as a carbon source (100 ml/min) and 

a deposition time of 2 h. 
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Fig. 10.4 Diameter distribution of CSs obtained at a temperature of 

900°C, C2H2 flow rate of 100 ml/min and deposition time of 

2 h.  

245 

Fig. 10.5 Graph of yield of CSs against the pyrolysis time performed 

at 900°C using C2H2 (100 ml/min). 
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Fig. 10.6 Schematic diagram of the furnace with three quartz boats to 

collect the CSs. 

246 

Fig 10.7 TEM image of CSs in boat 2 (T = 900°C, C2H2 flow rate = 

100 ml/min, t = 2 h). 

247 

Fig 10.8 TEM image of agglomerated and chain-like CSs obtained at 

a pyrolysis time of 5 min (T = 900°C, C2H2 flow rate = 100 

ml/min). 

247 

Fig. 10.9 TEM images of CSs synthesized from various alcohols, at 

1000oC and an injection flow rate of 0.4 ml/min: (a) ethanol, 

(b) 1-butanol, (c) 1-hexanol, (d) 1-octanol and (e) 1-

dodecanol. 
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Fig. 10.10 The amount of CSs produced for each alcohol used (T = 

1000°C, volume of alcohol = 10 ml, injection flow rate = 0.4 

ml/min). 
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Fig. 10.11 TEM images of (a) CSs synthesized using 1-hexanol as 

carbon source and (b) CSs synthesized in the absence of 

oxygenates (hexane) showing some amorphous material on 

surface. 
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Fig. 10.12 TGA plots of CSs heated under N2 and CSs heated under air 

as well purified MWCNTs. 

254 

Fig. 10.13 C2H4 conversion using catalysts pre-reduced by H2 at 400oC 

for 4 h; H2/C2H4 = 3.05, Catalyst = 0.05 g, GHSV = 71000 

cm3g-1h-1. 
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Fig. 10.14 Time on stream over 10- and 20 wt %Co/CMS catalysts 

(after pre-reduction by H2 at 400oC for 4 h) in the 

hydrogenation of ethylene [H2/C2H4 = 3.05, catalyst used = 

0.05 g, GHSV = 71000 cm3g-1h-1], T = 100°C.  
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Fig. 11.1 Schematic representation of the swirled floating catalytic 

chemical vapour deposition reactor. 
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Fig. 11.2 (a) TEM image of CSs produced by the SFCCVD technique 

at 900°C with C2H2 gas flow rate of 118 ml/min, (b) 

Corresponding HRTEM image of the CSs and (c) HRTEM 

image of CSs synthesized in a horizontal furnace with the 

diffraction pattern of the shell of the CS [Inset].  

265 

Fig. 11.3 TGA profile of CSs in an oxidizing (air) atmosphere. 267 

Fig. 11.4 HRTEM image of CSs after heating at 800°C under nitrogen 

flow. 

268 

Fig. 11.5 Rate of CS production at different temperatures and flow rate 

of acetylene. 

269 

Fig. 11.6 Effects of carrier gas on rate of CS production at constant 

flow rate of acetylene and temperature. 

271 

Fig. 11.7 TEM images of CSs synthesized with Ar as carrier gas at (a) 

487 ml/min, (b) 248 ml/min, and (c) 70 ml/min. Histograms 

for the corresponding size distributions of the CSs are shown 

on the right of the TEM images. 
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Fig. 11.8 PXRD patterns of CSs synthesized using the SFCCVD 

technique. 
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Fig. 11.9 Raman spectra of CSs. 274 

Fig. 11.10 TEM images of CSs synthesized from several hydrocarbons, 

at 1000oC and flow rate 100 ml/min: (a) acetylene, (b) 

ethylene, (c) pentane, (d) hexane, (e) toluene (f) isooctane, 

(g) benzene, and (f) heptane (amorphous material).  

276 

Fig. 11.11 Selected TGA profiles of CSs obtained from the various 

hydrocarbon precursors used. 
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Fig. 11.12 (a) A Raman spectrum of as-synthesized CSs and (b) an 

infrared spectrum of the carbon soot obtained from toluene 

as the carbon precursor. 
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Scheme 3.1 Chemical cycles involved in the growth of carbon nanotubes 

from an equimolar mixture of C2H2 and CO2. WGS = water 

gas shift, CO disprop. = CO disproportionation [28]. 

65 

Scheme 8.1 A summary of the procedure used in performing heat 

treatment experiments on various carbon materials. 
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Scheme 9.1 Schematic illustration of the fabrication steps for various 

carbon spheres (HCSs): (a) discrete carbon patches acting as 

the building blocks of HCSs, (b) incomplete HCSs because 

of insufficient CVD time, (c) deformed HCSs prepared using 

large silica spheres as templates with a short CVD time, (d) 

intact single shell HCSs prepared with a long CVD time or a 

high CVD temperature, (e) N-doped HCSs prepared using 

acetonitrile as a carbon source, (f) double shelled HCSs 

prepared using a three-step CVD method: first, CVD of 

carbon on the surface of silica spheres; second, CVD of 

silicon tetrachloride on the surface of the carbon-silica 

spheres; third, CVD of carbon on the surface of the silica-

carbon-silica spheres [45]. 
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