
AJIC Issue 21, 2018 51

Perceptions of Scratch Programming among Secondary School
Students in KwaZulu-Natal, South Africa

Mudaray Marimuthu
Lecturer, School of Management, IT and Governance, University of KwaZulu-Natal,
Westville, Durban

Predhayen Govender
Honours Graduate, School of Management, IT and Governance, University of KwaZulu-
Natal, Westville, Durban

Abstract
Scratch programming was designed with the aim of helping students to develop their
logical thinking skills as well as enhancing their problem-solving capabilities, without
having the technical distractions associated with more advanced programming
languages such as Java. This study, guided by the technology acceptance model (TAM),
focused on exploring the associations between perceived usefulness, perceived ease of
use, attitude towards use, and behavioural intention to use the Scratch programming
language, with the aim of identifying how Scratch programming was perceived by a
group of South African students in Grades 10 and 11 at two high schools. Results
indicated, among other things, that Grade 10 students perceived Scratch to be easy
to use and useful, and Grade 11 students found it to be easy to use but useful only in
learning introductory programming concepts. These and other findings suggest that
while Scratch helps students understand logic and problem-solving, it does not assist
sufficiently in preparing them for using a higher-level programming language such
as Java. The article concludes with recommendations for South African education
policymakers, including proposals that a bridging programming language be
introduced between Scratch and Java, and that Scratch be introduced much earlier
than in Grade 10.

Keywords
Scratch, Java, secondary school students, technology acceptance model (TAM), programming
language adoption, visual programming, logical thinking, problem-solving, education,
education policy, curriculum, KwaZulu-Natal, South Africa

DOI: https://doi.org/10.23962/10539/26112

Recommended citation
Marimuthu, M. & Govender, P. (2018). Perceptions of Scratch programming among
secondary school students in KwaZulu-Natal, South Africa. The African Journal of
Information and Communication (AJIC), 21, 51–80.
https://doi.org/10.23962/10539/ 26112

This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence:
http://creativecommons.org/licenses/by/4.0

The African Journal of Information and Communication (AJIC) 52

 Marimuthu and Govender

1. Introduction
Computer programming is recognised as a vital competence for establishing problem-
solving abilities as well as logical and analytical reasoning. Its integration throughout
various educational levels is regarded as valuable, with many studies carried out
to further explore this phenomenon (see, for example, Annamalai & Salam, 2017;
Fessakis, Gouli, & Mavroudi, 2013; Isa & Derus, 2017; Meyerovich & Rabkin, 2013;
Ozmen & Alten, 2014; Tom, 2015).

Studies within the field of computer science have revealed a lack of problem-solving
and computational skills among students in introductory programming courses,
despite programming becoming so important in the 21st century (Papadopoulos &
Tegos, 2012; Tan, Ting & Ling, 2009; Robins, Rountree & Rountree, 2003).

The Scratch programming language was designed and developed at the Massachusetts
Institute of Technology (MIT) Media Lab with the intention of simplifying
the process of developing and programming animations, interactive stories, and
games. Lamb and Johnson (2011) state that, with respect to computer software,
the term "scratching" refers to reusable code segments that can be instrumentally
and functionally adapted to new scenarios and used for other purposes. The word
"scratch" is said to be derived from the turntablism method of scratching, with the
Scratch programming platform associating the technique of mixing sounds to the
mixing of software projects. Through Scratch programming, users can upload web-
based or downloaded software projects to the website for sharing purposes. Credit is
awarded to the participants who develop the initial programs.

Scratch is primarily focused on children and teenagers, with the intention of
conveying computational thinking using a simple but cogent building-block approach
in the software development process, focused less on programming detail than on
emphasising the problem-solving aspects (Maloney, Resnick, Rusk, Silverman,
& Eastmond, 2010). Scratch offers young individuals the freedom to “imagine,
program and share” (Housand & Housand, 2011, p. 22). Scratch does not require
any programming knowledge, and has an intuitive interface, noted as a necessity for
its young audience. With Scratch, users are able to build scripts by selecting blocks of
code that govern motion, color and sensors. These scripts define specific operations
with respect to the program’s objects. The building blocks of Scratch programming
make it easy for users to piece together the necessary programming elements without
programming knowledge (Watters, 2011).

Since the release of Scratch in 2007, more than 850,000 users have joined the Scratch
website and have shared almost two million projects, many of which are animations
or games. The ability for users to easily share information has become a fundamental
feature of the Scratch platform. Uploaded projects are licensed under the Creative
Commons Attribution Share Alike licence. This entails users freely downloading

AJIC Issue 21, 2018 53

 Perceptions of Scratch Programming among Secondary School Students in South Africa

graphics and source code from online projects and reusing components from them
with minimal constraint (Watters, 2011).

According to Meyerovich and Rabkin (2013), programming languages such as Java,
C and C# are widely popular. Understanding the factors of a successfully adopted
language can help inform efforts by advocates and language designers to influence
the languages’ comprehensive function and design. Educators often encounter
problems with the teaching processes associated with programming logic and skills,
which calls into question teaching methodologies. Studies have shown that many
students lack problem-solving and computational thinking abilities (Papadopoulos
& Tegos, 2012) and these skills have been identified as important competencies in
the 21st century (Marques & Marques, 2012).

Education authorities in South Africa want Grade 10 students to learn basic
programming principles and constructs with a fun and easy-to-learn tool. Therefore
Scratch has been implemented in schools to introduce students to “important
computational skills and concepts, algorithm development, problem solving and
programming” (Department of Basic Education, 2011, p. 12). Our study aimed
to measure the acceptance of Scratch programming by Grade 10 and 11 students
by analysing whether perceived usefulness, attitude to use and perceived ease of
use influence students’ behavioural intention to use Scratch, which in turn can be
expected to influence its acceptance. The framework for the study was grounded in
the technology acceptance model (TAM).

The research questions underpinning the study were:
1) To what extent does perceived usefulness influence a student’s behavioural

intention to use Scratch programming?
2) To what extent does perceived ease of use influence a student’s behavioural

intention to use Scratch programming?
3) To what extend does the attitude towards using Scratch influence a student’s

behavioural intention to use Scratch?
4) Are there differences in perceptions between Grade 10 and Grade 11

students in respect of perceived usefulness, perceived ease of use, attitude
towards using, and behavioural intention to use Scratch programming?

5) Does teaching Scratch in Grade 10 make it easier for learners in Grade 11
to learn Java?

2. Literature review and theoretical framework
Problems with learning programming
Factors that have been found to affect teaching programming to young individuals
include applying programming concepts to situations involving complex problems,
syntax complexity, and associating programming with tasks unrelated to the interests

The African Journal of Information and Communication (AJIC) 54

 Marimuthu and Govender

or thought processes of young individuals (Maloney et al., 2010). Papadopoulos
and Tegos (2012) similarly state that studies within the field of computer science
have shown that students lack problem-solving as well as logical thinking abilities.
Robins et al. (2003) identify the most crucial shortcomings with students learning
programming as being associated with problem-solving activities, developing and
designing solutions, and expressing the designed solutions as programs.

Many programming languages are difficult to comprehend to the untrained eye, due to
a mixture of English and unfathomable programming language syntax. Programming
syntax is the set of rules and symbols of a programming language, which enable a
programmer to create correctly-structured programs. The sheer magnitude of syntax
and keywords in a basic Java program would defy explanation on the first day of an
introductory programming class. Although the “mastery of precision” can be seen
as fundamental when learning programming (Malan & Leitner, 2007), in the early
stages of an introductory course it can often be found that semicolons, parentheses
and other syntactical elements delay and discourage students from understanding
significant programmatic constructs such as variables, conditionals, loops or even the
logic itself (Malan & Leitner, 2007). Many programming languages, Java included,
compel students to grasp the programmatic overheads before actually programming.

Several studies have found that students encounter difficulties with the initial steps
of programming. A study by McCracken et al. (2001) found that students in their
first one or two courses in computer science experienced difficulties with the reading,
writing and designing of code. Tan et al. (2009) conducted a survey to determine
the possible factors that lead to problems with learning programming. Taking into
consideration students’ computing experience and background, Tan et al. (2009)
concluded that the majority of students encountered problems with memory-related
concepts such as the storage and manipulation of variables in the computer’s main
memory. This finding concurs with that of Milne and Rowe (2002), who found that
many students were incapable of developing a simple “mental model of memory
movement” during the execution of the program. Beginner programmers lack clear
mental models and fail to apply the relevant knowledge. They focus more on little
problems rather than on the planning and testing of code (Milner & Rowe, 2002).

According to Rudder, Bernard and Mohammed (2007), an effective method for
students to learn programming is to translate real-world problems into code, and
solve them accordingly. However students have found this method to be difficult,
since daily real-world situations are in a single context while the task of learning
programming is considered a multilayered skill. Multilayered skills are abstract since
programming languages are designed for the unfamiliar realm of computers rather
than the natural world experienced by people when growing up (Moser, 1997).

AJIC Issue 21, 2018 55

 Perceptions of Scratch Programming among Secondary School Students in South Africa

Ozmen and Alten (2014), and Bosse and Gerosa (2017), indicate that many
problems with students learning computer programming stem from the complexity
of programmatic constructs such as programming syntax, variables, functions, and
loops. Complexities such as these may be seen as a barrier for students to learn
programming and may even hinder their motivation to learn.

Effectiveness of using programming and visual tools
Due to the rapid growth of digital technology “individuals are required to use a
growing variety of technical, cognitive, and sociological skills in order to perform tasks
and solve problems in digital environments” (Eshet-Alkalai, 2004, p. 93). To assist in
the attaining of these skills, teaching students to program has been introduced into
primary and secondary education curriculums.

Pendergast (2006) states that the significance of a well-constructed introduction
to programming course cannot be over-emphasised, as it was observed that
many students found difficulties with understanding the programming process as
well as familiarising themselves with the various programming constructs. Visual
programming tools like Alice, a programming language developed by Carnegie
Mellon University, and Scratch, are favoured with younger introductory students
(Lye, & Koh, 2014). Alice, which was developed before Scratch, is used to teach
students general programming concepts as well as object-oriented programming
(OOP) concepts. Much effort has gone into the development of visual programming
tools for young individuals (Meerbaum-Salant, Armoni, & Ben-Ari, 2013), with
these tools being used by young children and as a preliminary learning tool for
secondary schools and universities. Visual programming tools such as these create
a non-threatening, fun environment for students to develop software, in a way that
aims to reduce the anxiety and fear often associated with learning programming
(Meerbaum-Salant et al., 2013). It is believed that through these environments,
students will be more open to continuing their study of programming.

A study by Boyle, Bradley, Chalk, Jones and Pickard (2003) focused specifically on
a “visual approach”, making use of graphical shapes to teach abstract programming
concepts which were available to students in a virtual learning environment (VLE).
Boyle et al. (2003) implemented this approach with an introduction to programming
course, and found a 12% to 23% increase in the pass rate over the previous year's
students who did not have a VLE- and a graphics-based approach. The results of a
questionnaire handed to students during mid-semester showed that 95% of students
judged the graphics-based approach to learning programming to be “good” or “very
good” (Boyle et al., 2003).

Prior to the development of Scratch, there were many other programming
environments, such as Alice, Logo and Karel, all attempting to make learning
programming simpler for the beginner programmer. Alice, Karel and Scratch are

The African Journal of Information and Communication (AJIC) 56

 Marimuthu and Govender

all visual programming environments. If Alice, Logo and Karel have one weakness,
it is their steeper learning curve than that of Scratch (Malan & Leitner, 2007).
Programming tools such as Logo have been viewed as an opportunity for students
to expand their intellectual capabilities to take on challenging problems (Papert,
1980). However, it has been noted that programming languages such as Logo have
not flourished as expected (Mannila, Peltomaki, & Salakoski, 2006). According to
Lee (2011), many of the difficulties encountered by students when using Logo can
be attributed to the limitations of the programming tool. One particular example
stems from syntactic constraints. In Logo, every line of code must comply with the
syntactic constraints (the programming language rules) before the program can be
tested. A fragile environment such as this could see students paying more attention
to the syntax of the program, while less emphasis is placed on the semantic meaning.
Lee (2011) found that

One of the reasons for the low adoption of computer programming in
K–12 education is the time it takes for (especially young) students to learn
computer programming using a textbased programming language, which
requires an understanding of computer programming language syntaxes
and constructs and strong keyboarding skills. (Lee, 2011, p. 27)

Alice is a free interactive 3D-programming tool to help students gain exposure to
OOP concepts (Ebrahimi, Geranzeli, & Shokouhi, 2013). With Alice, students are
able to learn fundamental programming concepts in the form of creating video games
or animations in a visual programming environment, unlike Logo and Karel where
the environment in text-based, thereby creating a steeper learning curve.

In recent years, Scratch and Alice have both been used at university level in
introductory computer science courses. Lewis (2010) found that new languages like
Scratch are often developed and modeled from existing languages, to provide new
functionality while offering claimed pedagogical advantages. Scratch reduces the
syntax complexity of Alice, which has class-based OOP and emphasises Java or Java-
related concepts (Maloney et al., 2010). Lewis (2010) conducted a study which built
upon existing research, aimed at testing the pedagogical claims of new programming
environments. The study assessed Scratch’s pedagogical value in contrast with Logo.
Lewis (2010) hypothesised that students who learnt programming using Scratch, as
opposed to using Logo, would be more confident about their skills as programmers,
would be more capable of tracing the flow of control of conditions and loops, and
would report that learning programming concepts in general was easier. The study
found that when interpreting loops, students learning through Scratch and Logo
performed similarly, regardless of the fact that Logo was textual while Scratch
was visual. The Logo environment was thus able to support the development of
confidence in students when learning programming as well as spike their interest in
the field. However, students using Scratch performed better than the Logo students

AJIC Issue 21, 2018 57

 Perceptions of Scratch Programming among Secondary School Students in South Africa

when interpreting conditionals, and Scratch made general programming concepts
easier to interpret and learn.

Parsons and Haden (2007) conducted a study to test whether students currently
learning Java would find Alice useful for developing programming competencies
with flow-of-control constructs. It was concluded that students struggled to make
the connection between work in Alice and “real programming”. In an attempt to
reduce syntactic constraints, many visual programming languages, Alice included,
may be perceived as too “simple” and not related to “real programming” (Lewis, 2010).

Scratch programming
Maloney et al. (2010) define the Scratch programming language as a programming
domain allowing individuals, predominantly between the ages of 9 and 17, to learn
and understand fundamental programming concepts while also being able to develop
purposefully meaningful projects like games or animations. Certain experts in the
field are devoted to trying to find feasible and interesting ways of reviving the primary
objective of making programming accessible and interesting to young individuals.
It was on this basis that the Scratch programming platform was conceived and
developed.

Marques and Marques (2012) place emphasis on significant competencies such as
problem-solving and critical thinking skills, which are essential for the 21st century.
They further state that through the use of Scratch, users are able to positively develop
these competencies.

Kim, Choi, Han, and So (2011) designed a computer course for student educators
using Scratch, owing to the fact that student educators encountered difficulties
mastering programming language syntax. The course was developed with the
intention of encouraging computational skills as well as promoting creative thinking.
Kim et al. (2011) conclude that Scratch helped student educators grasp fundamental
programming concepts and focus implicitly on what they were able to do with
Scratch.

Theodorou and Kordaki (2010) used Scratch to design and develop a computer game
with the goal of providing high school learners with a learning habitat to promote
various programming concepts. It was concluded that Scratch was a very useful
environment because the programming is “done by constructing blocks of simple
commands and not by writing text commands” (Theodorou & Kordaki, 2010, p.
13). Topalli and Cagiltay (2018) augmented their course curriculum by including
game development projects using the Scratch environment. The findings show that
Scratch helped learners perform better in introductory programming courses.

The African Journal of Information and Communication (AJIC) 58

 Marimuthu and Govender

The capabilities of the Scratch learning environment are also emphasised by
Lee (2011), who suggests that teachers can benefit from the Scratch platform by
developing more entertaining and creative materials so that students can free their
imaginations in a consequential manner.

Lai and Yang (2011) conducted a study to assess the effect of visual programming,
using Scratch, on students’ logical and problem-solving abilities. Lai and Yang
(2011) posit that problem-solving abilities include “grasping the problem, analysing
the problem, finding out solutions and writing program, verifying the solution by
testing, and modifying the program according to the result of the test” (p. 6941). They
sampled Grade 6 students who had taken a Scratch programming course, and noted
a distinct improvement in the students' problem-solving abilities. Hence, it was
concluded that visual programming could enhance problem-solving. Similar studies
by Calao, Moreno-Leon, Correa and Robles (2015) and Calder (2010) also show
that Scratch increases the logical thinking and problem-solving abilities of young
students. Korkmaz (2016) found that an educational programme based on Scratch-
related game activities resulted in a significant positive contribution to the logical-
mathematical thinking skills of students, more so than educational programmes
using Lego Mindstorms Ev3 design activities or traditional teaching activities.

A study by Wilson and Moffat (2010) assessed student use of Scratch programming
in an Information Technology module for a period of eight weeks. This module
was taken by primary school pupils between the ages of 8 and 9. The researchers
concentrated on two distinct aspects: whether various programming concepts were
efficiently conveyed via Scratch programming (cognitive), and whether it was fun and
easy to use (affective). The results showed a moderate increase in student performance
and a more enjoyable experience for students, making learning to program a positive
experience. The researchers concluded that, for an ideal educational system to
implement successful teaching of programming and programming concepts, primary
focus should be not only on a student’s cognitive dimension but just as importantly
the student's emotional state. Kalelioğlu and Gülbahar (2014) claim that Grade 5
students in their study also found the Scratch platform easy to use. It was clear from
the study that Scratch does undoubtedly excite. Studies by Permatasari, Yuana and
Maryono (2018) and Sáez-López, Román-González and Vázquez-Cano (2016) also
demonstrated that students found Scratch to be easy and fun, made them enthusiastic
and motivated about learning programming, and even motivated them to continue
studies in programming.

A similar study conducted by Baytak and Land (2011) explored the development
process employed by Grade 5 students to design and build computer-based games
using the Scratch programming language utilising a “learning by doing” approach. It
was concluded that students were more likely to enhance their programming abilities
and create computer games when the visual-programming software they employed

AJIC Issue 21, 2018 59

 Perceptions of Scratch Programming among Secondary School Students in South Africa

was suited for their level of experience. Iskrenovic-Momcilovic (2017) demonstrated
that by not having syntax complexity, Scratch allowed beginner programmers to
solve complex problems quickly.

Scratch programming in the South African context
In 2011, the South African Department of Basic Education introduced its Curriculum
and Assessment Policy Statement (CAPS). In terms of CAPS, educators were
mandated to introduce Scratch to Grade 10 learners, as a gateway to learning other
programming languages such as Java. There is still only limited research (Beyers and
Van der Merwe, 2017; Van Zyl, Mentz & Havenga, 2016; Koorsse, Cilliers, Calitz,
2015; Chetty & Barlow-Jones, 2012) on Scratch programming in the South African
context and on South African students’ perceptions of Scratch and similar tools.

Scratch programming as a platform for introducing Java
According to Malan and Leitner (2007), Scratch can be seen as a viable gateway
to programming languages such as Java or Python. Research by Malan and Leitner
(2007) found that Scratch not only thrills and excites students in the early stages of
programming but also exposes inexperienced students to fundamental programmatic
concepts without the “distraction of syntax”. Basic fundamental programming
concepts are sequence (doing things in the correct order to solve a problem), decisions
(e.g., using “if ” conditions to execute instructions based on a true or false decision),
and repetition (using loops for execution of instructions more than once). Malan and
Leitner (2007) found that while Scratch does not support complex programming
constructs such as methods, data types, and parameters, many of which could be
considered crucial in an introductory course, its simplicity and power to allow
inexperienced students to learn fundamentals programming concepts are what keep
students engaged and excited. Students, justifying the time spent working on the
program, stated that “Scratch is fun to use and really easy to learn, almost addictive
in a way” (Malan & Leitner, 2007, p. 5).

However, in the same Malan and Leitner (2007) study, some students stated that they
found Scratch negatively influenced their preparation to take on Java. One respondent
stated that Scratch was easy and a lot of fun, but not good enough preparation for the
jump to the good preparation for Java. Another student comment was:

I think Scratch didn’t really help me with Java. I had fun with Scratch
and I see how it could serve as a didactic tool for some people but I would
have preferred to jump straight into Java. The elements of programming
that Scratch attempts to teach are not particularly difficult to understand
and I feel may be ‘safely’ introduced using Java itself, I feel we could have
progressed a lot more into Java had we jumped directly into it. (Malan &
Leitner, 2007, p. 6)

The African Journal of Information and Communication (AJIC) 60

 Marimuthu and Govender

Theoretical framework
The technology acceptance model (TAM) (Davis, Bagozzi & Warshaw, 1989)
has been employed, due to its predictive ability, in many studies involving learners
(Ibrahim, Leng, Yusoff, Samy, Masrom & Rizman, 2017; Sánchez-Mena, Martí-
Parreño & Aldás-Manzano, 2017; Mugo, Njagi, Chemwei & Motanya, 2017;
Olivier, 2016; Cakir & Solak, 2014). According to Davis et al. (1989), perceived
usefulness (U) is a cognitive evaluation of whether the adoption of a new technology
will impact an individual’s job performance. Perceived usefulness influences an
individual’s attitude towards use (A) of new technologies, due to the fact that people
tend to form favourable attitudes towards new technologies through the belief
that the technologies will impact their job performance in a constructive manner.
Perceived usefulness also directly affects the behavioural intention to use (BI) the
system. This is based on the idea that, regardless of their personal feelings for the
technology, individuals develop intentions to use a device with the belief that it will
positively affect job performance, because people are inspired to obtain performance-
contingent rewards such as raises or promotions (Davis et al., 1989; Davis, 1989).

Perceived ease of use (E) is found to impact both attitude towards using and perceived
usefulness. Self-efficacy of a user is likely to be impacted when a system is easier. An
individual with high self-efficacy for a system has strong belief in their ability to use
the system, resulting in a more enthusiastic attitude towards the system. Ease of use
also directly affects an individual’s performance, since the new technology is likely to
lead to completion of a task using less effort (Davis et al., 1989; Davis, 1989).

For our study, perceived usefulness was conceptualised as the extent to which a
student believes that utilising the Scratch programming language would enhance
their programming ability and overall performance in the course. We used perceived
ease of use to refer to the degree to which an individual believes that utilising the
Scratch programming platform will be free of cognitive effort. Viewed in terms of
the TAM framework, the actual usage of Scratch may be determined by the user’s
behavioural intention to use Scratch, which in turn is determined by the user’s overall
attitude towards Scratch as well as her or his perception of usefulness and ease of use,
i.e., according to Davis et al. (1989), perceived usefulness together with perceived
ease of use have a significant influence on attitude, which in turn impacts behavioural
intention to use.

AJIC Issue 21, 2018 61

 Perceptions of Scratch Programming among Secondary School Students in South Africa

Figure 1: TAM, as set out by Davis et al. (1989)

Source: Davis, Bagozzi, and Warshaw (1989, p. 985)

3. Methodology
Research approach
The study used a mixed-method approach, encompassing both qualitative and
quantitative data collection and analysis techniques. The mixed-method approach
was useful because it allowed the open-ended questions (qualitative) to provide
insight and understanding to the quantitative data collected.

Quantitative research focuses on the numbers behind a survey and uses statistics
to generalise findings. Quantitative data were used to analyse the associations
between the four constructs of TAM—i.e., perceived usefulness, perceived ease of
use, attitude towards use, and behavioural intention to use—in order to address the
research questions.

Target population and sampling
The target population for this study was 70 Grade 10 and Grade 11 Information
Technology students from two secondary schools in South Africa’s KwaZulu-Natal
Province. The Grade 10 students were learning programming using Scratch, while
the Grade 11 students had already made the transition from Scratch to Java. Due to
the small population size, all 70 students were targeted for this study.

The questionnaire
The questionnaire consisted of both open-ended and closed-ended questions.
Closed-ended questions utilised a 5-point Likert scale to obtain an understanding
about students’ opinions on the effectiveness of Scratch. The open-ended questions
were used to get a better understanding of Grade 11 students’ perception of Scratch
after programming in Java.

The African Journal of Information and Communication (AJIC) 62

 Marimuthu and Govender

Data collection
After receiving ethical approval from the University of KwaZulu-Natal, the
questionnaire, along with an accompanying letter of consent, was manually issued
to respondents. Letters of consent were also issued to parents/guardians, due to the
fact that all respondents were below the age of 18. Consent letters were signed by
research participants and also by participants’ parents. Respondents were also made
aware that the data received from them would be anonymous.

Data analysis
To ensure reliability of data, Cronbach’s alpha was calculated among the Likert scale
questions of the questionnaire. Cronbach’s alpha is a measure of internal consistency,
used to determine how closely related a collection of values are as a group. A Spearman
correlation coefficient was used to measure the strength and direction between the
four constructs of the technology acceptance model. Spearman correlation was
chosen since the quantitative data obtained were nominal (ranked on a Likert scale)
and not normally distributed (Chok, 2010). Also, the Mann-Whitney test was used
to determine if there were significant differences in perceptions between Grade 10
and Grade 11 students.

4. Findings and discussion
The quantitative data and qualitative data obtained from the questionnaire were
analysed to identify and explore the relationships between four variables in respect of
use of Scratch—perceived usefulness (U), perceived ease of use (E), attitude towards
using (A), and behavioral intention to use (BI)—as specified by TAM.

An initial target size of 70 was planned for the study. Ultimately 47 surveys were
returned, and 45 could be analysed. The 45 respondents consisted of 23 Grade 10
students and 22 Grade 11 students, which amounted to 64% of the total population.
(Two of the completed questionnaires were deemed unusable for the study as many
questions were unanswered.) Descriptive statistical analysis and correlation analysis
techniques were utilised to analyse percentages and frequencies of the Likert scale
questions in the questionnaire. Reliability analysis was used to measure reliability of
the data.

Reliability analysis
As stated above, to test reliability of the data, Cronbach’s alpha was calculated among
the Likert scale questions of the questionnaire. The questions were grouped into
four constructs of TAM, namely U, E, A and BI. A reliability coefficient of 0.7 or
higher is generally considered acceptable (Tavakol & Dennick, 2011). The results
for all four groups of questions showed values greater than 0.7, indicating that with
all four groups, the items within the group had acceptable levels of consistency.
The 10 questions within the U factor obtained an alpha coefficient of 0.751. The
five questions within the E factor obtained an alpha coefficient of 0.801. The four

AJIC Issue 21, 2018 63

 Perceptions of Scratch Programming among Secondary School Students in South Africa

questions within the A factor obtained an alpha coefficient of 0.864. The three
questions within the BI factor obtained an alpha coefficient of 0.867.

Descriptive statistical analysis

Perceived usefulness
Figures 2 and 3 illustrate the descriptive statistical findings for perceived usefulness
of Scratch.

Figure 2: Perceived usefulness of Scratch among Grade 10 respondents

The African Journal of Information and Communication (AJIC) 64

 Marimuthu and Govender

As shown in Figure 2, the statement “Scratch is effective when learning OOP con-
cepts/methods” had a nearly equal percentage of negative and positive responses
among the Grade 10 respondents. (OOP, alluded to earlier, is object-oriented pro-
gramming, in which objects have attributes that are assigned data and these attri-
butes can be manipulated.) For all the other factors, the majority of the Grade 10
respondents agreed or strongly agreed. Of these statements, “Scratch improves effi-
ciency and productivity in programming” received agreement or strong agreement
from 69% of the respondents, while the percentage of those who agreed or strongly
agreed ranged from 82% to 91% for the remaining statements.

As shown in Figure 3, Grade 11 students perceived the usefulness of Scratch
positively in terms of all statements except the statement “Scratch is effective when
learning OOP concepts/methods.” There was majority neutrality or disagreement
in response to this statement among Grade 11 students (27% were neutral, 54%
disagreed or strongly disagreed). This was presumably due to Grade 11 students
having being exposed to OOP concepts in the Java programming environment
and therefore seeing the Scratch programming environment as inferior in terms of
learning OOP.

The positive responses were sharply lower among Grade 11 students than
among Grade 10 students for the following factors: “Scratch is useful in learning
programming”, and “Scratch improves programming performance.” Thus, it became
apparent that after students had been exposed to the highly syntax-based environment
of Java, they tended to feel that Scratch was not useful in learning programming and
or improving their programming performance.

Both groups of students had similar percentages of positive responses for the factors
“Scratch improves my logical and analytical thinking skills” and “Scratch improves my
problem-solving abilities.” Thus, even after exposure to Java, the Grade 11 students
still positively perceived Scratch’s ability to improve their logical/analytical thinking
skills and problem-solving abilities.

AJIC Issue 21, 2018 65

 Perceptions of Scratch Programming among Secondary School Students in South Africa

Figure 3: Perceived usefulness of Scratch among Grade 11 respondents

The African Journal of Information and Communication (AJIC) 66

 Marimuthu and Govender

Perceived ease of use
Figures 4 and 5 illustrate the descriptive statistical findings for perceived ease of use
of Scratch.

Figure 4: Perceived ease of use of Scratch among Grade 10 respondents

AJIC Issue 21, 2018 67

 Perceptions of Scratch Programming among Secondary School Students in South Africa

Figure 5: Perceived ease of use of Scratch among Grade 11 respondents

As seen in Figures in 4 and 5, both the Grade 10 and Grade 11 students were found
to have mostly positive perceptions (strongly agree or agree) in respect of the ease of
use construct, thus indicating that most students found Scratch easy to use. When
the two groups of responses are compared, one sees a greater percentage of positive
responses from Grade 11 students than Grade 10 students in respect of ease of use.
This difference was not unexpected, as the Grade 10 students were being exposed
to programming for the first time, and thus it made sense that would find Scratch
difficult to use. Meanwhile, the Grade 11 students had now been exposed to the Java
programming environment, and could be expected to find the Scratch environment
comparatively easy, thus contributing to greater number of positive responses from
Grade 11 students compared to the Grade 10 learners.

The African Journal of Information and Communication (AJIC) 68

 Marimuthu and Govender

Attitude towards using
Figures 6 and 7 illustrate descriptive statistical findings for respondents’ attitude
towards using Scratch.

Figure 6: Attitude towards using Scratch among Grade 10 respondents

As Figure 6 shows, the majority of Grade 10 students were favourable in their attitude
towards using Scratch. Their total positive responses (either agree or strongly agree)
ranged from 61% to 65%.

Meanwhile, as seen in Figure 7, for Grade 11 students, favourable responses (strongly
agree or agree) were never in the majority, with the three statements receiving fewer
than 50% favourable responses, i.e., “Using Scratch is a good idea” (46%), “Scratch

AJIC Issue 21, 2018 69

 Perceptions of Scratch Programming among Secondary School Students in South Africa

has shown significant value” (45%), “Scratch has had a positive effect in my schooling
career” (45%).These findings were apparently a result of Grade 11 students’ exposure
to Java, which made them able to identify the limitations of Scratch.

Figure 7: Attitude towards using Scratch among Grade 11 respondents

The African Journal of Information and Communication (AJIC) 70

 Marimuthu and Govender

Behavioural intention to use
Figures 8 and 9 illustrate the descriptive statistical findings for respondents’
behavioural intention to use Scratch.

Figure 8: Behavioural intention to use Scratch among Grade 10 respondents

As seen in Figure 8, among the Grade 10 students, 69% of respondents either agreed
or strongly agreed that they would recommend Scratch to others. However, there
were much less favourable responses to the statements “I will use Scratch frequently
in the future” (only 34% agreed or strongly agreed) and “It is probable that I will
continue using Scratch” (only 34% agreed or strongly agreed).

AJIC Issue 21, 2018 71

 Perceptions of Scratch Programming among Secondary School Students in South Africa

Meanwhile, for Grade 11 respondents, as shown in Figure 9, 50% agreed or
strongly agreed that they would recommend Scratch to others. But for the other
two statements, the majority of respondents disagreed or strongly disagreed, i.e., the
statements “I will use Scratch frequently in the future” (73% disagreed or strongly
disagreed) and “It is probable that I will continue using Scratch” (68% disagreed
or strongly disagreed). Thus, this suggests that after exposure to Java, the Grade
11 students had become aware of the limitations in the capabilities of Scratch and,
accordingly, perceived that they did not intend to use it going forward.

Figure 9: Behavioural intention to use Scratch among Grade 11 respondents

The African Journal of Information and Communication (AJIC) 72

 Marimuthu and Govender

Mann-Whitney test
Since the data were not normally distributed, a Mann-Whitney test was performed
to determine if there were significant differences in perception between Grade 10
and Grade 11 students with regard to the TAM factors.

Table 1: Mean values for TAM constructs, Grades 10 and 11

TAM Factor Grade N Mean
Std.

Deviation
Std. Error

Mean

U Grade 10
Grade 11

23
22

1.9826
2.3455

.44889

.47180
.09360
.10059

E Grade 10
Grade 11

23
22

2.1478
1.6909

.74399

.61945
.15513
.13207

A Grade 10
Grade 11

23
22

2.2609
2.7159

1.09357
.87728

.22803

.18704

BI Grade 10
Grade 11

23
22

2.6667
3.5909

1.01504
.94243

.21165

.20093

As seen in Table 1, the mean values for constructs were calculated separately for
Grades 10 and 11. The results show that the mean value for all questions describing
the perceived usefulness of Scratch (U) was 1.98 and 2.34, respectively, for Grades 10
and 11. Both these values were below the midpoint (3), indicating a generally positive
response. There was a statistically significant difference of perceived usefulness
between the two grades (chi-square = 8.175, p = 0.004), with a mean rank of 17.56
for Grade 10 and 28.70 for Grade 11. Thus, Grade 10 students were more positive
than Grade 11 students, to a statistically significant extent, towards the perceived
usefulness of Scratch.

For perceived ease of use (E), the mean values for Grade 10 and 11 were 2.14 and 1.69
respectively. Both these values were below the midpoint (3), indicating a generally
positive response. But there was no statistically significant difference of perceived
ease of use between the two grades (chi-square = 3.679, p = 0.055), with a mean rank
of 26.65 for Grade 10 and 19.18 for Grade 11.

The mean value for questions related to students’ attitude towards using Scratch (A)
was 2.2 for Grade 10, indicating a generally positive response. Meanwhile, the mean
value for attitude for Grade 11 respondents was 2.71, indicating a generally positive
(but not strongly positive) response. There was no statistically significant difference
in attitude between the two grades (chi-square = 3.333, p = 0.068), with a mean rank
of 19.52 for Grade 10 and 26.64 for Grade 11.

AJIC Issue 21, 2018 73

 Perceptions of Scratch Programming among Secondary School Students in South Africa

The mean value for questions related to students’ behavioural intention to use Scratch
(BI) was 2.66 for Grade 10, indicating a generally positive (but not strongly positive)
response, while Grade 11 produced a mean value of 3.5, indicating a generally negative
(but not strongly negative) response. There was a statistically significant difference in
behavioural intention between the two grades (chi-square = 8.040, p = 0.005), with
a mean rank of 17.61 for Grade 10 and 28.64 for Grade 11. These results show that
the Grade 11 students, who had had experience with both Java and Scratch, had a
more negative response, compared to the Grade 10 students, to perceived usefulness
of Scratch and behavioural intention to use Scratch. Results from the open-ended
questions were analysed to assess these phenomena.

Seventeen of the 22 Grade 11 students reported that they would have rather studied
Java than Scratch in Grade 10. Respondent 5 from Grade 11 stated that “Java is a
better programming language in general as it is more accurate and meticulous. Scratch
is fairly simple and doesn’t really contribute to learning programming skills well.”
Respondents 6 indicated that with Scratch “you didn’t need to learn any coding”.
Respondents 7 said that “Scratch is more child-friendly”. Respondent 10 described
Scratch as “too junior”, stating that it did not provide them with the sufficient level
of programming knowledge they required for Java in Grade 11.

Correlation analysis
A Spearman rank correlation coefficient was used to measure the strength and
direction between the four TAM constructs. Scores from the Likert scale questions
ranged from 1 (strongly agree) to 5 (strongly disagree). The overall mean scores for
each construct were calculated and are presented in Table 2.

Table 2: Correlation coefficients: Grade 10 respondents

Construct Spearman correlation coefficients Significance (2-tailed)

U – BI
E – BI
A – BI

0.539**
0.291

0.701**

0.008
0.178
0.000

**Correlation is significant at the 0.01 level (2-tailed)

The results (Table 2) show there was a moderately positive association (0.539)
between Grade 10 students’ beliefs that they found Scratch to be useful (U) and their
intention to use it (BI). This statistically significant (p=0.008) association indicates
that perceived usefulness generally did influence students’ behavioural intention to
use the Scratch programming language.

There was a strongly positive association (0.701) between the Grade 10 students’
attitude towards using Scratch (A) and their behavioural intention to use it (BI).

The African Journal of Information and Communication (AJIC) 74

 Marimuthu and Govender

This statistically significant (p=0.000) association indicates that students’ attitudes
towards Scratch programming did significantly influence their behavioural intention
to use it. However, the Grade 10 respondents’ beliefs about Scratch’s ease of use
(E) did not correlate significantly (r=-0.058, p=0.703) with students’ behavioural
intention to use it (BI). This means that the there was almost no linear association
between how easy the Grade 10 students found Scratch to use and their behavioural
intention to use it, indicating that perceived ease of use did not appear to influence
behavioural intention.

Table 3: Correlation coefficients: Grade 11 respondents

Construct Spearman correlation coefficients Sigificance (2-tailed)

U – BI
E – BI
A – BI

-0.058
-0.225
0.743**

0.703
0.315
0.000

**Correlation is significant at the 0.01 level (2-tailed)

Table 3 presents the correlation coefficients for Grade 11 students. Unlike with Grade
10 students, perceived usefulness of Scratch (U) did not correlate significantly (r=-
0.058, p=0.703) with Grade 11 students’ behavioural intention to use it (BI). This
means that the there was almost no linear association between how useful Grade
11 students found Scratch and their intention to use it, indicating that perceived
usefulness did not appear to influence behavioural intention. This is presumably
attributable to the Grade 11 students' experience with more advanced programming
languages.

There was a strongly positive association (0.743) between Grade 11 respondents’
attitude towards using Scratch (A) and their behavioural intention to use it (BI).
This statistically significant (p=0.000) association indicates that Grade 11 students’
attitude towards Scratch programming appeared to significantly influence their
intention to use it.

Meanwhile, the Grade 11 students’ beliefs about Scratch’s ease of use (E) did not
correlate significantly (r=-0.225, p=0.315) with their behavioural intention to use it
(BI). This means that there was almost no linear association between how easy the
Grade 11 respondents found Scratch to use and their intention to use it, indicating
that perceived ease of use did not appear to influence Grade 11 students’ behavioural
intentions.

5. Conclusions and recommendations
This study aimed to identify how Scratch programming has been accepted by
South African students, by exploring the associations between perceived usefulness,

AJIC Issue 21, 2018 75

 Perceptions of Scratch Programming among Secondary School Students in South Africa

perceived ease of use, attitude towards using, and behavioural intention to use—the
four factors specified by TAM. This study thus seeks to make a contribution to the
literature on Scratch programming, and on its effects in South African schooling
since its introduction in 2011. Findings from the study suggest that perceived
usefulness and attitude towards using were both significant factors in influencing
student respondents’ (in both Grade 10 and 11) behavioural intention to use Scratch.
The findings also showed that perceived ease of use did not significantly influence,
among both Grade 10 and 11 respondents, behavioural intention to use Scratch.

When data from both the closed-ended (quantitative) and open-ended (qualitative)
survey questions were considered together, it became clear that Grade 11 students
showed a more negative response than Grade 10 students to Scratch’s usefulness. Data
derived from the survey questionnaire’s open-ended questions provided indications
that Grade 11 respondents’ unfavourable view of Scratch’s usefulness was attributable
to the fact that, unlike Grade 10 students who had only had experience with Scratch,
the Grade 11 students had also been exposed to Java and many had come to the
belief that Scratch did not provide the required knowledge, both syntactic and
computational, required for Java.

Thus, the overall findings suggest that while Scratch helps students understand
logic and problem-solving, it does not, according to the Grade 11 respondents, assist
sufficiently in preparing students for using a higher-level programming language
such as Java. The findings showed that although Grade 11 students perceived
Scratch to be useful, they found it did not prepare them for “real programming”,
with the majority of Grade 11 students stating that it would have been better to
study Java, instead of Scratch, in Grade 10. The transition from Scratch to Java
was found, therefore, to involve too large a gap, leading to students perhaps losing
interest in programming and perhaps leading to them eventually changing to another
subject. Koorsse et al. (2015) have found that due to South African students finding
programming difficult, many students change to an easier subject in Grade 12, or
remain attempting the subject while lacking motivation and interest.

Accordingly, our recommendation, based on the findings of this study, is that
another programming language, such as Visual Basic or Delphi, be introduced after
exposure to Scratch, before students move on to Java. This would serve as a sufficient
intermediary platform, to bridge the complexity gap between Scratch and Java. This
would also assist in the gradual development of programming skills, allowing for
greater understanding that would increase satisfaction in these subjects for students.
Another result would be increased readiness and throughput of students who want
to pursue subjects in the computing discipline at tertiary level, hence assisting in
addressing the skills shortage faced by the South African IT sector.

The African Journal of Information and Communication (AJIC) 76

 Marimuthu and Govender

Since Scratch has been found to develop both logical and problem-solving skills
in this and other studies (Calao et al., 2015; Kalelioğlu & Gülbahar, 2014; Lai &
Yang, 2011; Calder, 2010), it would also be beneficial to introduce this programming
language much earlier in the schooling careers of South African students than in
Grade 10, thus potentially implicitly assisting students to acquire better understanding
of subjects that require problem-solving and logical thinking.

It must be noted that this study had limitations, due to its small sample size. The
initial targeted sample size was 70, but it had to be reduced to 45 students because
respondent students switched to another subject during the course of the year or
did not appropriately complete the questionnaire. A more in-depth study could be
carried out, including more students and more schools, thereby resulting in a larger
sample size which would allow for better generalisability of findings.

In conclusion, this study provides insight into the perceptions of Scratch programming
by students in two South Africa high schools, by highlighting factors that promote
and inhibit its adoption by students. The results of this study could be considered
by South African education policymakers and curriculum developers, to help inform
policies and curriculum aimed at the following goals: increasing the retention rate of
students in programming subjects; and providing students with the necessary skills
to succeed in their tertiary education, and in industry. Successful realisation of these
goals can assist in building South African programming capacity and capabilities,
addressing the shortage of programming skills in the country, and decreasing the
country's reliance on offshore-outsourcing of these skills.

References
Annamalai, S., & Salam, S. N. A. (2017). Facilitating programming comprehension for novice

learners with multimedia approach: A preliminary investigation. In American
Institute of Physics (AIP) (Ed.), AIP conference proceedings 1891.

 https://doi.org/10.1063/1.5005362
Baytak, A., & Land, S. (2011). An investigation of the artifacts and process of constructing

computers games about environmental science in a fifth grade classroom. Educational
Technology Research and Development, 59(7), 765–782.

 https://doi.org/10.1007/s11423-010-9184-z
Beyers, R. N., & Van der Merwe, L. (2017). Initiating a pipeline for the computer industry:

Using Scratch and LEGO robotics. In IEEE (Ed.), 2017 Conference on Information
Communications Technology and Society (ICTAS): Proceedings. Umhlanga, Durban,
8–10 March. https://doi.org/10.1109/ictas.2017.7920646

Bosse, Y., & Gerosa, M. A. (2017). Why is programming so difficult to learn? Patterns of
difficulties related to programming learning. ACM SIGSOFT Software Engineering
Notes, 41(6), 1–6. https://doi.org/10.1145/3011286.3011301

AJIC Issue 21, 2018 77

 Perceptions of Scratch Programming among Secondary School Students in South Africa

Boyle, T., Bradley, C., Chalk, P., Jones, R., & Pickard, P. (2003). Using blended learning to
improve student success rates in learning to program. Journal of Educational Media
(Special Edition on Blended Learning), 28(2), 165–178.

 https://doi.org/10.1080/1358165032000153160
Cakir, R., & Solak, E. (2014). Exploring the factors influencing e-learning of Turkish EFL

learners through TAM. The Turkish Online Journal of Educational Technology, 13(3),
79–87. https://doi.org/10.1016/j.sbspro.2015.01.515

Calao, L. A., Moreno-León , J., Correa, H. E., & Robles, G. (2015). Developing mathematical
thinking with Scratch: An experiment with 6th Grade students. In G. Conole, T.
Klobučar, C. Rensing, J. Konert, & E. Lavoué (Eds.), Proceedings of 10th European
Conference on Technology Enhanced Learning (EC-TEL 2015), Toledo, Spain,
September 15-18 (pp. 17–25).

Calder, N. (2010). Using Scratch: An integrated problem-solving approach to mathematical
thinking. Australian Primary Mathematics Classroom, 15(4), 9–14.

Chetty, J., & Barlow-Jones., G. (2012). Integrating teaching-and-learning techniques
for novice computer programming students. In Advancement of Computing in
Education (AACE) (Ed.), Proceedings of Global Learn 2012: Global Conference on
Learning and Technology (pp. 142-146). Retrieved from https://www.learntechlib.
org/primary/p/42056

Chok, N. S. (2010). Pearson’s versus Spearman’s and Kendall’s coefficients for continuous
data. Retrieved from http://d-scholarship.pitt.edu/8056/1/Chokns_etd2010.pdf

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 13(3), 319–340.

 https://doi.org/10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology:

A comparison of two theoretical models. Management Science, 35(8), 982–1003.
https://doi.org/10.1287/mnsc.35.8.982

Department of Basic Education. (2011). Curriculum and Assessment Policy Statement
(CAPS). Pretoria: Government of South Africa.

Ebrahimi, A., Geranzeli, S., & Shokouhi, T. (2013). Programming for children: “Alice and
Scratch analysis”. Paper presented to the 3rd International Conference on Emerging
Trends of Computer and Information Technology (ICETCIT), Singapore, 6–7
November.

Eshet-Alkalai, Y. (2004). Digital literacy: A conceptual framework for survival skills in the
digital era. Journal of Educational Multimedia and Hypermedia, 13(1), 93–106.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten
children in a computer programming environment: A case study. Computers &
Education, 63, 87–97. https://doi.org/10.1016/j.compedu.2012.11.016

Housand, B. C., & Housand, A. M. (2011). Plugging into creative outlets. Gifted Education
Communicator, 42(1), 20–23.

Ibrahim, R., Leng, N. S., Yusoff, R. C. M., Samy, G. N., Masrom, S., & Rizman, Z. I. (2017).
E-learning acceptance based on technology acceptance model (TAM). Journal of
Fundamental and Applied Sciences, 9(4S), 871–889.

The African Journal of Information and Communication (AJIC) 78

 Marimuthu and Govender

Isa, N. A. M., & Derus, S. R. M. (2017). Students experience in learning fundamental
programming: An analysis by gender perception. Advanced Journal of Technical and
Vocational Education, 1(1), 240–248.

Iskrenovic-Momcilovic, O. (2017). Choice of visual programming language for learning
programming. International Journal of Computers, 2, 250–254.

Kalelioglu, F., & Gulbahar, Y. (2014). The effects of teaching programming via Scratch
on problem solving skills: A discussion from learners’ perspective. Informatics in
Education, 13(1), 33–50.

Kim, H., Choi, H., Han, J., & So, H. (2011). Enhancing teachers’ ICT capacity for the
21st century learning environment: Three cases of teacher education in Korea.
Australasian Journal of Educational Technology (AJET), 28, 965–982.

 https://doi.org/10.14742/ajet.805
Koorsse, M., Cilliers, C., & Calitz, A. (2015). Programming assistance tools to support the

learning of IT programming in South African secondary schools. Computers and
Education, 82, 162–178. https://doi.org/10.1016/j.compedu.2014.11.020

Lai, A.-F., & Yang, S.-M. (2011). The learning effect of visualized programming learning
on 6th graders’ problem solving and logical reasoning abilities. In IEEE (Ed.), 2011
International Conference on Electrical and Control Engineering (ICECE), Yichang,
China, 16-18 September (pp. 6940–6944).

 https://doi.org/10.1109/iceceng.2011.6056908
Lamb, A., & Johnson, L. (2011). Scratch: Computer programming for 21st century learners.

Teacher Librarian, 38(4), 64–68.
Lee, Y. J. (2011). Scratch: Multimedia programming environment for young gifted learners.

Gifted Child Today, 34(2), 26–31. https://doi.org/10.1177/107621751103400208
Lewis, C. M. (2010). How programming environment shapes perception, learning and goals:

Logo vs. Scratch. SIGCSE’10 Retrieved from http://ims.mii.lt/ims/konferenciju_
medziaga/SIGCSE’10/docs/p346.pdf

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41,
51–61. https://doi.org/10.1016/j.chb.2014.09.012

Korkmaz, Ö. (2016). The effect of Scratch- and Lego Mindstorms Ev3-based programming
activities on academic achievement, problem-solving skills and logical-mathematical
thinking skills of students. MOJES:Malaysian Online Journal of Educational Sciences,
4(3), 73–88.

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. Paper
presented to SIGCSE’07, 7-10 March, Covington, KY. Retrieved from https://
cs.harvard.edu/malan/publications/fp079-malan.pdf

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch
programming environment. ACM Transactions on Computing Education, 10(4), 1–15.
https://doi.org/10.1145/1868358.1868363

Mannila, L., Peltomäki, M., & Salakoski, T. (2006). What about a simple language? Analyzing
the difficulties in learning to program. Computer Science Education, 16(3), 211–227.
https://doi.org/10.1080/08993400600912384

AJIC Issue 21, 2018 79

 Perceptions of Scratch Programming among Secondary School Students in South Africa

Marques, O. F., & Marques, M. T. (2012). No problem? No research, little learning ... big
problem! Systemics, Cybernetics and Informatics, 10(3), 60–62.

McCracken, M., Almstrum, V., Daiz, D., Guzdail, M., Hagan, D., Kolikant, Y. B., Laxer, C.,
Thomas, L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-institutional
study of assessment of programming skills of first-year CS students. Paper presented
at the Working group reports from ITiCSE on Innovation and technology in
computer science education, Canterbury, UK.

 https://doi.org/10.1145/572134.572137
Meerbaum-Salant, O., Armoni, M. & Ben-Ari, M. (2013). Learning computer science

concepts with Scratch. Computer Science Education, 23(3), 239–264.
 https://doi.org/10.1080/08993408.2013.832022
Meyerovich, L., & Rabkin, A. (2013). Empirical analysis of programming language adoption.

Retrieved from http://sns.cs.princeton.edu/docs/asr-oopsla13.pdf
Milne, I., & Rowe, G. (2002). Difficulties in learning and teaching programming—Views of

students and tutors. Education and Information Technologies, 7(1), 55–66.
Moser, R. (1997). A fantasy adventure game as a learning environment: Why learning to

program is so difficult and what can be done about it. In Special Interest Group on
Computer Science Education (SIGCSE) (Ed.), ITiCSE ’97:Proceedings of the 2nd
Conference on Integrating Technology into Computer Science Education (pp. 114-116),
Uppsala, Sweden, 1–5 June. https://doi.org/10.1145/268809.268853

Mugo, D. G., Njagi, K., Chemwei, B., & Motanya, J. O. (2017). The technology acceptance
model (TAM) and its application to the utilization of mobile learning technologies.
British Journal of Mathematics & Computer Science, 20(4), 1–8.

 https://doi.org/10.9734/bjmcs/2017/29015
Olivier, J. (2016). Blended learning in a first-year language class: Evaluating the acceptance

of an interactive learning environment. Journal of Literary Criticism, Comparative
Linguistics and Literary Studies, 32(2), 1–12. https://doi.org/10.4102/lit.v37i2.1288

Ozmen, B., & Altun, A. (2014). Undergraduate students’ experiences in programming:
Difficulties and obstacles. Turkish Online Journal of Qualitative Inquiry, 5(3), 9–27.

Papadopoulos, Y., & Tegos, S. (2012). Using microworlds to introduce programming
to novices. In IEEE (Ed.), Proceedings of the 2012 16th Panhellenic Conference on
Informatics, Piraeus, Greece, 5–7 October. https://doi.org/10.1109/pci.2012.18

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York: Basic Books.
Parsons, D., & Haden, P. (2007). Programming osmosis: Knowledge transfer from imperative

to visual programming environments. In S. Mann, & N. Bridgeman (Eds.),
Proceedings of the Twentieth Annual NACCQ Conference, Hamilton, New Zealand
(pp. 209–215).

Pendergast, M. O. (2006). Teaching introductory programming to IS students: Java problems
and pitfalls Journal of Information Technology Education, 5(1), 491–515.

 https://doi.org/10.28945/261
Permatasari, L., Yuana, R. A., & Maryono, D. (2018). Implementation of Scratch application

to improve learning outcomes and student motivation on basic programming
subjects. Indonesian Journal of Informatics Education, 2(2), 95–102.

The African Journal of Information and Communication (AJIC) 80

 Marimuthu and Govender

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13(2), 137–172.

 https://doi.org/10.1076/csed.13.2.137.14200
Rudder, A., Bernard, M., & Mohammed, S. (2007). Teaching programming using visualization.

In ACTA (Ed.), Proceedings of the Sixth Conference on IASTED International
Conference Web-Based Education - Volume 2 (pp. 487–492), Chamonix, France, 14-16
March.

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming
languages integrated across the curriculum in elementary school: A two year case
study using “Scratch” in five schools. Computers & Education, 97, 129–141.

 https://doi.org/10.1016/j.compedu.2016.03.003
Sanchez-Mena, A., Marti-Parreno, J., & Aldas-Manzano, J. (2017). The effect of age on

teachers’ intention to use educational video games: A TAM approach. The Electronic
Journal of e-Learning, 15(4), 355–366.

Tan, P.-H., Ting, C.-Y., & Ling, S.-W. (2009). Learning difficulties in programming courses:
Undergraduates’ perspective and perception. In IEEE (Ed.), ICCTD 2009: 2009
International Conference on Computer Technology and Development, Volume 2 (pp. 42–
46). https://doi.org/10.1109/icctd.2009.188

Tavakol, M., & R. Dennick, R. (2011). Making sense of Cronbach’s alpha. International
Journal of Medical Education, 2, 53–55. https://doi.org/10.5116/ijme.4dfb.8dfd

Theodorou, C., & Kordaki, M. (2010). Super Mario: A collaborative game for the learning of
variables in programming. International Journal of Academic Research, 2(4), 111–118.

Tom, M. (2015). Five Cs Framework: A student-centered approach for teaching programming
courses to students with diverse disciplinary background. Journal of Learning Design,
8(1), 21–37. https://doi.org/10.5204/jld.v8i1.193

Topalli, D., & Cagiltay, N. E. (2018). Improving programming skills in engineering education
through problem-based game projects with Scratch. Computers & Education, 120,
64–74. https://doi.org/10.1016/j.compedu.2018.01.011

Van Zyl, S., Mentz, E., & Havenga, M. (2016). Lessons learned from teaching Scratch as an
introduction to object-oriented programming in Delphi. African Journal of Research
in Mathematics, Science and Technology Education, 20(2), 131–141.

 https://doi.org/10.1080/18117295.2016.1189215
Watters, A. (2011). Scratch: Teaching the difference between creating and remixing. Mind/

Shift. Retrieved from http://ww2.kqed.org/mindshift/2011/08/11/scratch-
teaching-kids-about-programming-teaching-kids-about-remixing/

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to introduce younger
schoolchildren to programming. School of Engineering and Computing, Glasgow
Caledonian University, Glasgow. Retrieved from http://scratched.gse.harvard.edu/
sites/default/files/wilson-moffat-ppig2010-final.pdf

