Von Berg, George Botha

ACCURACY OF POLYETHER VS PLASTER IMPRESSIONS FOR LONG-SPAN IMPLANT SUPPORTED PROSTHESES

MSc (Dent)

Wits

2007

ACCURACY OF POLYETHER VS PLASTER IMPRESSIONS FOR LONG-SPAN IMPLANT SUPPORTED PROSTHESES

George Botha von Berg

A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of MSc (Dent)

Johannesburg 2007

DECLARATION

I, George Botha von Berg, hereby declare that this dissertation is my own work. It is being submitted for the degree of MSc (Dent) at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.

Signed by:

.....

George Botha von Berg

On this...... day of...... 2007

To my father, Dudley Albert von Berg, who completed his BSc at the University of the Witwatersrand during the difficult post-war years, and an MSc at the same institution during the 1960s.

ABSTRACT

Two different implant impression materials viz. a polyether (Impregum [®]) and a plaster (Plastogum [®]) impression material were used and compared with respect to the accuracy with which abutment positions were reproduced from a stainless steel master model containing five implant analogues. Ten polyether impressions and ten plaster impressions were taken and cast in stone. The positions of the precision impression copings on the twenty impressions were measured using a Reflex Microscope. The positions of the implant analogues on the twenty casts were also measured and compared to the positions on the stainless steel master model. Statistical analysis indicated significant differences between the polyether impression and the plaster impression for full arch implant supported prostheses. The use of plaster resulted in smaller interabutment error but with less predictable variance in dimensions.

ACKNOWLEDGEMENTS

Sincere thanks to the following persons and institutions for their contributions to and guidance with this project,

Prof Dale Howes Adjunct Professor, Department of Prosthodontics, School of Oral Health Sciences, University of the Witwatersrand, Johannesburg, supervisor of this project for his time and guidance and sincere interest in the project.

Prof Hemant Dullabh previously from the University of the Witwatersrand and cosupervisor, for his advice and support. Currently head of Department of Prosthodontics at the University of Pretoria.

Prof Fanie Botha, head of the Centre of Stomatological Research at the University of Pretoria, for his programming and guidance with the use of the Reflex Microscope.

Dr Steve Olorunju from the Medical Research Institute for processing the data statistically.

Mr Riaan Fourie from Kara Dental Laboratory, for making impression trays and casting models.

Mr. Graham Blackbeard, MD of Southern Implants, for donating implant components and making staff available for assistance.

Dr Louis Potgieter, a friend, for giving valuable advice on writing the dissertation. **Mrs Ria Potgieter** for proofreading the dissertation.

Mrs Lee Hofer from 3M/ESPE for donating Impregum Penta with the Pentamix machine.

Mr Douglas Patrick from H&P Dental for donating Bosworth Plastogum impression material.

Mr Sarel van Staden from SVS Photography for taking photographs.

Mrs Loretta Steyn for scanning images.

My wife, Lizanda, and my children for their love and support during difficult times.

TABLE OF CONTENTS

Declaration Dedication Abstract Acknowledgements Table of Contents	ii iii iv v vi
List of Figures	VII
 Introduction Literature Review 	1 2
3. Purpose of the study	11
4. Materials and methods	11
Photographs	16
5. Results	20
Charts: Comparison of Impressions and S-Steel	31
Charts: Comparison of Casts and S-Steel	35
Combined Box Plots with Significance Indication	39
6. Discussion	44
7. Conclusion	49
8. Appendix A	51
9. Appendix B	61
10. References	72

Page

LIST OF FIGURES AND TABLES

Figure

4.1 Ten Measuring Positions	15
4.2 Stainless Steel Master Model	16
4.3 View of stainless steel model with implant analogues numbered	16
4.4 Stainless steel model with precision impression copings in place	16
4.5 Acrylic Impression Tray	16
4.6 Inside of Impression Tray	16
4.7 Polyether Impression	16
4.8 Analogue Clamping Device	17
4.9 Southern Torque Wrench	17
4.10 Torquing Impression Coping onto Implant Analogue	17
4.11 Polyether Impression with Implant Analogue in Place	17
4.12 The Reflex Microscope	17
4.13 The Floating 10 µm Light Spot	17
4.14 Numbering of Copings on Impression	18
4.15 Numbering of Analogues on Cast from polyether	18
4.16 Detail of Plaster Impression	18
4.17 Detail of Cast from Plaster	18
4.18 Position of Light Spot at Tangent to Inner Sides of Coping in Impression	19
4.19 Light Spot at Tangent to Outside of Analogue in Cast	19
5.1 No significant difference for casts and S-S master model	20
5.2 No Significant diff: Impressions	21
5.3 Significant diff. Pl/SS	21
5.4 Significant diff. Imp/SS	22
5.5 Significant diff. Pl/Imp	22
5.6 Discrepancy of Median Measurements of Impressions	23
5.7 Magnitude of Discrepancy for Impressions	24
5.8 No Significant diff: Casts	24
5.9 Significant diff: Pl/SS	25
5.10 Significant diff: Imp/SS	25
5.11 Significant diff: Pl/Imp	25
5.12 Discrepancy of Median Measurements of Casts	27
5.13 Magnitude of Discrepancy for Casts	27
5.14 Total of Mean Inter-Implant Distances	30
•	
5.15 Charts: Comparison of Impressions and S-Steel Distance 1-2	31
5.16Charts: Comparison of Impressions and S-Steel Distance 1-3	31

5.17 Charts: Comparison of Impressions and S-Steel Distance 1-4	31
5.18 Charts: Comparison of Impressions and S-Steel Distance 1-5	32
5.19 Charts: Comparison of Impressions and S-Steel Distance 2-3	32
5.20 Charts: Comparison of Impressions and S-Steel Distance 2-4	32
5.21 Charts: Comparison of Impressions and S-Steel Distance 2-5	33
5.22 Charts: Comparison of Impressions and S-Steel Distance 3-4	33
5.23 Charts: Comparison of Impressions and S-Steel Distance 3-5	33
5.24 Charts: Comparison of Impressions and S-Steel Distance 4-5	34
5.25 Charts: Comparison of Casts and S-Steel Distance 1-2	35
5.26 Charts: Comparison of Casts and S-Steel Distance 1-3	35
5.27 Charts: Comparison of Casts and S-Steel Distance 1-4	35
5.28 Charts: Comparison of Casts and S-Steel Distance 1-5	36
5.29 Charts: Comparison of Casts and S-Steel Distance 2-3	36
5.30 Charts: Comparison of Casts and S-Steel Distance 2-4	36
5.31 Charts: Comparison of Casts and S-Steel Distance 2-5	37
5.32 Charts: Comparison of Casts and S-Steel Distance 3-4	37
5.33 Charts: Comparison of Casts and S-Steel Distance 3-5	37
5.34 Charts: Comparison of Casts and S-Steel Distance 4-5	38
5.35 Combined Box Plots with Significance Indication 1-2	39
5.36 Combined Box Plots with Significance Indication 1-3	39
5.37 Combined Box Plots with Significance Indication 1-4	40
5.38 Combined Box Plots with Significance Indication 1-5	40
5.39 Combined Box Plots with Significance Indication 2-3	41
5.40 Combined Box Plots with Significance Indication 2-4	41
5.41 Combined Box Plots with Significance Indication 2-5	42
5.42 Combined Box Plots with Significance Indication 3-4	42
5.43 Combined Box Plots with Significance Indication 3-5	43
5.44 Combined Box Plots with Significance Indication 4-5	43
6.1 Casts vs. S-Steel	44
6.2 The Passive Abutment (courtesy of Southern Implants)	47
6.3 Passive abutment illustration (courtesy of Southern Implants)	48

Table

5.1 Total of Mean Distances (mm)	29
5.2 Expansion relative to Stainless-steel	29

1. INTRODUCTION

Osseointegrated implants are a successful way of replacing missing teeth with longterm reliable restorations, whether for single teeth, partial or full arch prostheses. During the trial fitting of a long span prosthesis, the framework often does not fit passively. This may transfer detrimental or even harmful forces onto the implant-bone interface, resulting in complications, including loss of marginal bone and integration, framework fracture and gold screw loosening. It is thus imperative to find the most accurate way of transferring the information from a patient's mouth to a master model on which the prosthesis will be manufactured. Techniques for perfecting the precision of fit of the prosthesis have not been fully mastered in dentistry and therefore various impression and manufacturing techniques have been employed by various authors. The passive fit of the implant-borne metal framework is a prerequisite to minimise the above-mentioned complications.

Authors have made use of various impression techniques to accomplish a passive-fit. ²⁰⁻²² Some studies find no difference between various impression techniques while other studies indicate a significant difference.^{21-28, 30, 31} The use of plaster as an impression material has been recommended in some studies in order to eliminate the potential for error in contrast to using elastomeric impression materials.

2. LITERATURE REVIEW

It has been shown that dental implants have a very good prognosis over a long period of time, with predictable results especially for full arch prostheses in edentulous jaws. ¹⁻¹⁴ The first edentulous patients were treated in 1965. ¹ Since then, a number of clinical complications have been described. ² Gold screw fracturing and screw loosening were more frequent in prostheses which were supported by only two implants in partially edentulous restored cases. Even though implants can be used in short-span bridges, ³ fewer complications occurred with the use of more implants supporting a prosthesis.⁴

Iglesia and Moreno¹⁵ describe passive fit as the "circumferential and simultaneous contact of all the abutments on their respective implants, and of all the gold cylinders of the prosthesis on their respective abutments. " The authors made a plaster key that splinted the abutments, and when tightened in the absence of passive fit, the plaster fractured. Factors affecting the accuracy of fit begin with the impression techniques and materials. Comparing the accuracy of polyether impression material with plaster for long span implant supported prostheses is one of many factors that have been considered to make the metal framework of such prostheses more passive fitting in order to eliminate stress on the components.^{28, 38} Elastomeric materials have been used traditionally, while plaster is a stable and accurate material, and therefore a possible choice for accurate reproduction of implant position.

2

1. Importance of a passive fit:

i) Mechanical response

It is important to achieve a passive fit between components in order to eliminate mechanical failures which may include screw and abutment loosening or fracture, or fracturing of either the prosthesis or implants.^{12, 16} There may be reasons for failure other than the non-passive fit of components. Lekholm et al.⁹ found that most failing implants were related to implant length and poor maxillary bone quality. Zarb and Schmitt ¹⁰ suggest that clinical stress loading, for example parafunction, may lead to loosening or fracturing of screws. Screw fracture normally follows screw loosening, the cause of which was difficult to establish.¹³

During the try-in stage of the metal framework it was found that the level of static stresses caused by fit discrepancies is dependent on the shape and location of the gap(s), interabutment distance, and the shape, dimensions, and the rigidity of the metal of the superstructure. ¹⁷ There is a positive relationship between the size of the fit discrepancy and the magnitude of stress on the superstructure. The preload (tension due to tightening) in the gold screw is used to bring the mating surfaces closer together, which makes the screw vulnerable to fatigue fractures and loosening. Kan et al. ¹⁸ described various clinical methods to evaluate implant framework fit.

ii) Biological response

Bone response may lead to non-integration or crestal bone loss around the implant. A study by Jemt and Book⁵ shows that none of the prostheses presented had a completely passive fit to the implant, with a maximum three-dimensional distortion of $275 \,\mu\text{m}$, and a mean marginal bone loss of 0.5 and 0.2 mm for the 1-year and 5-year groups respectively. They concluded that there had to be a certain biological tolerance for misfit. Another finding was that no orthodontic bone remodelling took place around the implants due to these forces induced by the misfit, although Jemt and Lekholm⁸ found bone deformation resulted between implants that were subjected to an ill-fitting framework. Therefore stress introduced into the implant system may still be present years after prosthesis placement. Strain gauges attached to an abutment indicated that a significant force was introduced on the implant when a fixed prosthesis was connected.⁶ The authors found that a greater tension/compression load on the implant was introduced by a fixed prosthesis compared to that of an overdenture. A poor fit could hence introduce tremendous stresses in the system which may lead to implant failure or metal fatigue fractures. Generally, more problems were found in maxillae compared to mandibles.⁷

Jemt and Lekholm⁸ refer to dynamic and static loading: dynamic forces arise due to chewing, and static loading is the result of tension in the tightened gold screws of an ill-fitting framework.

2. Factors influencing passive fit:

a). General

Regardless of some problems like improper implant placement ¹¹ and bending overload, ¹² the predictability of Brånemark implants has been confirmed.¹³ Jemt and Lie ¹⁹ suggest that distortion is significantly higher in the maxillary arches due to the curvature of the implant arch and larger number of implants usually placed in the maxilla. It may also be related to increased alloy content in the castings and poor alignment of implants.

b). Impressions

i) Impression technique

The next factor that contributes towards the precision of the prosthesis is the impression procedure. The procedure may be affected by the technique (open tray or closed tray) to be used. The impression technique comprises using square direct or tapered indirect transfer copings.²⁰ Numerous studies were done where the square impression copings were either splinted or left unsplinted. ²⁰⁻³¹ Some square transfer copings were splinted with Duralay or another acrylic resin, with ²¹ or without reinforcement with dental floss, or reinforced with carbon steel pins, ²² steel burs ²³ or orthodontic wire. ²⁴ Vigolo at al. ^{25,26} used square impression copings sandblasted and coated with the adhesive recommended by the manufacturer of the impression material. They found this technique highly successful, providing greater accuracy. Goll ²³ used gold cylinders as transfer copings, splinted with Duralay, reinforced with steel burs and covered with impression plaster. He recommends machined componentry because they are more accurately manufactured. Assif, Marshak and Schmidt ²⁷ splinted the transfer

copings directly to an acrylic resin custom tray. Copings splinted to each other with resin proved to be more accurate than the custom tray method. Assif et al. ²⁸ also found that using autopolymerizing acrylic resin proved to be significantly more accurate than dual-cure acrylic resin as a splinting material. It was found by Philips et al. ²⁹ that tapered copings may distort the impression material upon removal. Carr ²⁰ also found the direct transfer method to be the most accurate due to the deformation of impression material with the indirect method. The results of the above-mentioned studies were not conclusive on whether the impression copings should be splinted ^{22, 23, 25 - 28} or not ^{21, 24, 30, 31}.

ii) Impression materials.

The selection of the most accurate impression material is the objective of this study. Traditionally there are six different types of impression materials in dentistry: agar hydrocolloid (reversible), alginate hydrocolloid (irreversible), polysulphide rubber, condensation-cured silicone rubber, addition-cured silicone rubber, and polyether rubber. ³² This study, will however, concentrate on a seventh material, i.e. impression plaster. A study done by Linke, Nicholls and Faucher ³² shows that all materials tested produced casts with an arch perimeter larger than the standard reference model. The reversible hydrocolloid showed the least interabutment distortion and the irreversible hydrocolloid should be used, but they are seldom used today due to the technique's sensitivity and equipment requirements.

It has been proved by Finger and Ohsawa ³³ that different impression materials have different setting contraction values. A study was done by Wee ³⁴ to determine the amount of torque required to rotate a square impression coping in an impression. He also compared dimensional accuracy among various groups of impression materials with a travelling microscope. Polyether was found to produce the highest overall torque values and was significantly more accurate. This was followed by addition cured silicone and polysulphide materials. The casts made from polyethers and addition cured silicones were significantly more accurate than casts made from polysulphide impression material. The use of either polyether or addition cured silicone impression material is therefore recommended for direct implant impressions. The high dimensional stability and coping torque of polyether has made it the impression material of choice for taking impressions for full arch implant supported prostheses. ³⁴

Comparing addition cured silicone (AS), condensation cured silicone (CS), polysulphide (PS), and polyether (PE), Johnson and Craig ³⁵ found that AS showed the smallest change in vertical dimension, AS and CS had the best recovery from undercuts, and AS and PE were the least affected by delays in pouring time. Akça and Çehreli ³⁶ found no difference between the results of Impregum, (a polyether), and Panasil, (a polyvinylsiloxane). A combination of silicone impression material and impression plaster was described by Eid ³⁷, and a combination of polyether and plaster was described by Inturregui et al. ³⁸, where the polyether alone resulted in the closest duplication of the master cast. Impression plaster and irreversible hydrocolloid were also combined by Nissen et al. ³⁹ in partially edentulous patients. Plaster was used to splint the transfer copings. Assif et al. ²⁸ also found plaster to be the impression material of choice in completely edentulous patients, since, in their opinion, it is less time-consuming and cheaper.

iii) Impression Trays

Tautin ⁴⁰ used a rigid thermoplastic impression tray which was manufactured in the patient's mouth from softened modelling compound. According to Johnson and Craig ⁴¹ a custom tray is the impression tray of choice. Moseley and co-workers ⁴² predicted the maximum stress that the impression tray encountered during removal of a complete impression from the oral cavity. For autopolymerizing polymethyl methacrylate resin trays the yield strength is sufficiently high to safely assume that the tray will not distort under removal forces. In their study, Eames and co-workers ⁴³ constructed trays with 2, 4, and 6 mm space for impression material and found that the 2 mm spacing provided greater overall accuracy for polyether.

iv) Casting of impressions.

Casting of the impressions may be influenced by humidity and temperature, water/powder ratio, amount of vibration and spatulation used. ⁴⁴

v) Component tolerances.

Machining tolerances between implant components should also be considered. Ma et al. ⁴⁵ conclude that machining tolerance determines the degree of movement that is

possible between paired components. Tolerances exist between abutment, impression coping, stainless steel abutment replicas, and gold cylinder. To ensure an intimate fit, there is always an inherent machining tolerance between the connecting surfaces. The two factors that contribute to machining tolerances are dimensional variation and surface roughness. The tolerances measured between the abutment and gold cylinder were 23.1 μ m, and those between the stainless steel abutment replica and gold cylinder were $37.1 \,\mu\text{m}$. These values were found to be significantly different (P<0.05) which indicates that a passive fit obtained in the laboratory may not guarantee a passive fit invivo, as the passive fit in the laboratory may be outside the tolerance range of the invivo components. Hecker and Eckert ⁴⁶ found that the machining tolerance of the stainless steel analogue and gold cylinder was significantly larger compared with that of the abutment and gold cylinder. This may cause a prosthesis that appears to fit in the laboratory to have a misfit of greater proportion in the clinical setting. Southern Implants, which were used in this study, have a component tolerance of 0.01mm for critical implant components like the hex of an implant. The 2.7 mm wide hex could be 2.69 to 2.71 mm. It has a tolerance of 0.05 for non critical components like the length of an impression coping for instance.

c). Framework manufacturing

As far as manufacturing of the metal framework is concerned, the computer assisted design/computer assisted manufacturing (CAD/CAM) procedure uses machined and laser-welded titanium frameworks which are manufactured by copy milling sections of an acrylic resin framework pattern in grade 2 titanium and then laser welding the

9

sections together.⁴⁷ Jemt et al. ^{48, 49} found that the welded titanium frameworks are as accurate as gold alloy castings in a fixed prosthesis. Takahashi and Gunne ⁵⁰ found the fit of the Procera system, produced by the CAD/ CAM technique, to be significantly better than that of frameworks made with a cast gold alloy. After studying six implant systems, Lang and co-workers ⁵¹ found that the CAD/CAM produced Procera abutment should be considered for universal application.

When frameworks don't fit passively they need to be sectioned and indexed with selfcuring acrylic. Of the index materials available, Cho and Chee ⁵³ found that G.C. Pattern resin has a comparable accuracy to Duralay acrylic resin, but has a setting time of only three minutes compared to Duralay's seven minutes, which saves operating time. Mojon et al. ⁵⁴ also compared two index materials: Duralay resin had a volumetric shrinkage of 7.9% and Palavit G. resin 6.5%, compared to the 21 % shrinkage of pure methylmethacrylate. The authors also analyzed the influence of powder-to-liquid ratio on dimensional change of the index material and found that adding more liquid to the mix increased shrinkage.

d). Mandibular flexure

Hobkirk and Schwab⁵² found that mandibular deformation of up to 420 μ m can be encountered upon jaw opening, which should be considered both when taking an impression and during placement of a mandibular fixed prosthesis.

3. PURPOSE OF THE STUDY

The purpose of this study was to compare the dimensional accuracy of polyether and plaster impressions, and their resultant casts when compared to a stainless steel master model. The null hypothesis is that there is no difference between polyether and plaster impression materials relative to the master model.

4. MATERIALS AND METHODS

Testing Device

A stainless steel plate containing 5 stainless steel implant analogues (LS12, 3.75 mm, Southern Implants, Irene, South Africa) was used as a master model for impression taking (Fig. 4.2). The model represented an occlusal arch with five implants for a full arch implant supported prosthesis. The analogues were fixed by machine pressing into the baseplate and retained in the model by small locknuts preventing any rotation. The analogues were numbered 1 through 5 from left to right (Fig. 4.3). Implant analogues numbers 2 and 4 were placed at an 8° lingual inclination to represent the clinical situation. Precision impression copings (CB12P, Southern Implants) were used which were torqued down onto the model to 10 Ncm (Fig. 4.4) before impression taking.

Impression taking

Standard acrylic impression trays (Fig. 4.5, 4.6) were manufactured (Excel Special Tray Material, Wright Health Group Ltd) on a template over the baseplate to ensure standardization of size and shape and a 2 mm spacing under the trays. ⁴⁰⁻⁴³ Windows were cut into each tray to expose the transfer copings and guide pins. The windows were covered by a single layer of pink baseplate wax. (Kemdent no 4, Associated Dental Products, Swindon, UK)

The trays were left to cure for 24 hours before impression taking. Ten polyether impressions (Impregum ®, Pentamix Lot 202589, exp 2007-03, 3M ESPE, AG Seefeld, Germany) and ten plaster impressions (Plastogum ®, Harry J. Bosworth, Lot 0309-492, exp 2006-09, Skokie, Illinois) were taken of the master model complying with the manufacturers' instructions for use. ESPE polyether adhesive (Lot 126976, exp2005-02) was used for the Impregum impressions. Two coats were put on the trays, separated by 15 minute's drying time.

The ten polyether impressions were first taken with the 50 available precision impression copings (Fig. 4.7). Measurements of the polyether impressions (Fig. 4.14) were done on the Reflex Microscope before their stone casts were poured and measured. Once the casts had been made, the same 50 impression copings were used to take the ten plaster impressions (Fig. 4.16). First the plaster impressions were measured under the Reflex Microscope, and then their respective stone casts were poured and measured. Impressions were taken in a controlled environment with temperature ranging from 19.5 °C to 20.3 ° C for the polyether impressions, measured with a Supco THC 200 hygrometer. The values during plaster impression taking were 20.5 °C to 22.2 °C. The temperature ranges differed between the two impression materials as polyether and plaster impressions were taken on different dates. The reason for this was that the stone casts of the polyether impressions had to be made first. Only then could the same 50 impression copings be used for the plaster impressions. It is unknown to what degree the measurements were affected by this small difference in temperature.

The impression materials were mixed according to the manufacturers' recommendations and left for at least 15 minutes before removal from the master model. After removal of the impressions, stainless steel implant analogues (LS12, Southern Implants) were attached to the precision impression copings. This was done without disturbing the impression copings in the impression by holding the analogue in a clamping device (Fig. 4.8), and torquing the two components to 10 Ncm with a Southern Implant torque wrench (Figs. 4.9, 4.10 and 4.11). Casts were poured in stone, namely Pemaco-CD Peach (Pemaco Incorporated, St Louis, MO, USA) according to manufacturer specifications under normal laboratory conditions (Figs. 4.15 and 4.17).

Measurements

Measurements of the polyether and plaster impressions, and the respective casts were taken on the Reflex Microscope (Reflex Measurement Ltd., Greenways, Ditcheat, Somerset, UK) (Fig. 4.12). The Reflex Microscope is an optical plotter which measures to an accuracy of 1 μ m. It is linked directly to a microcomputer and allows direct three-dimensional measurement (x, y, and z-plane) of irregularly shaped objects up to 100 mm maximum dimensions. A small diameter light spot which can be set at 20 μ m, 10 μ m or 5 μ m size appears in the field of view (Fig. 4.13). It is mainly used to calculate linear dimensions between two points. It gives an operator measurement error of less than 0.2 mm for linear distances, and a mean undermeasurement of 0.28%, which compares favourably with other measuring devices (Speculand, Butcher, Stephens⁵⁵).

The x and y planes are determined by moving the object table to the left and right, or forwards and backwards. The z-plane is determined by moving the ocular piece up or down, which brings the object into focus in the same plane as the light spot. During measurement temperature ranged from 21.8 ° C to 26.2°C. The temperature range has no significant effect on the master model as the thermal expansion coefficient of stainless steel is equal to 10^{-5} /°C.

Measurements of the master and stone models were made on the top corners of the hex of the analogues. The $10 \,\mu\text{m}$ light spot was placed at a tangent to the outermost edge. (See Fig. 4.19). Similarly, when measuring the impressions, the light spot was placed

14

at a tangent to the innermost corner of the precision impression coping which coincides with the position of the analogue's outermost corner (Fig. 4.18). Each impression and each cast was measured three times, from which a mean value was calculated. The stainless-steel master model was measured 30 times to ensure consistency during the experiment. Distances were compared between the polyether impression, plaster impression and the master model for specific positions, and also between the different casts and the master model.

These are the 10 measurements of the inter-implant distances (taken 3 times each) that have been taken for polyether and plaster for both impressions and casts:

Fig. 4.1 Ten Measuring Positions

PHOTOGRAPHS

Figure 4.2 Stainless Steel Master Model Figure 4.3 View of Stainless Steel Model with Implant Analogues Numbered

Figure 4.4 Stainless Steel Model with Precision Impression Copings in Place

Figure 4.5 Acrylic Impression Tray

Figure 4.6 Inside of Impression Tray

Figure 4.7 Polyether Impression

Figure 4.8 Analogue Clamping Device

Figure 4.9 Southern Torque Wrench

Figure 4.10 Torquing Impression Coping onto Implant Analogue

Figure 4.11 Polyether Impression with Implant analogue in Place

Figure 4.12 The Reflex Microscope

Figure 4.13 The Floating 10 μ m Light Spot

Figure 4.14 Numbering of Copings on Impression

Figure 4.15 Numbering of Analogues on Cast from Polyether

Figure 4.16 Detail of Plaster Impression

Figure 4.17 Detail of Cast from Plaster

Measuring Positions:

Figure 4.18 Position of Light Spot at TangentFigure 4.19 Light Spot at Tangent to
Outside of Analogue in Cast

5. RESULTS

Methodology

The data was analyzed using descriptive statistics and the use of ANOVA (Analysis of Variance) to compare polyether, plaster and the stainless steel (SS) model, for both the impressions and their resultant casts.

Results

General

A two-way ANOVA was used to compare the casts from polyether impression material and the casts from plaster impression material with respect to the distances between the five implant analogues. The results indicate that there is a significant difference among the two impression materials and the SS model. Significant differences also exist among their resultant casts and the SS model for all but one of the interimplant distances. The only exception is the result for the casts of group 46 which relates to the distance between implants 2-4 (p = 0.4836) (Fig. 5.1). This is the only group where there is no significant difference among all three measured models, i.e. the two different casts and the stainless steel master. This group do, however, show a significant difference.

Fig 5.1 No significant difference for casts and SS

master model

Variability

The results show considerable variability within and between the samples. The polyether impressions and casts show a greater consistency than the plaster impressions and casts, although significantly different from the stainless steel model. Even though the measurements for plaster are more inconsistent than for polyether, generally the mean plaster values approximate the stainless steel values more closely than the polyether values do.

A. Impressions:

a) No significant difference (p>0.05) between:

Plaster/SS
Polyether/SS
Plaster/Polyether

Fig. 5.2 No Significant diff: Impressions

b) Significant difference (p<0.05)

Significant differences were found in the

following areas:

Plaster/SS

Fig. 5.3 Significant diff. Pl/SS

Fig. 5.4 Significant diff. Imp/SS

Fig. 5.5 Significant diff. Pl/Imp

i) Plaster/SS

Plaster and stainless steel differ significantly (p<0.05) in all but one area: i.e. group 45 (2-3). (Figs. 5.1, 5.2 & 5.3).

ii) Polyether/SS

Polyether and stainless steel differ significantly (p<0.05) in all cases. (Figs.5.2 & 5.4).

iii) Plaster/Polyether

Plaster and polyether differ significantly (p<0.05) in all but three areas: i.e. groups 41

(1-2), 43 (1-4) and 50 (4-5). (Figs. 5.2 & 5.5).

The largest P-value (0.972) is found in group 43 (1-4) between plaster and polyether. This indicates the least significant difference as can also be seen in the line graph in Figure 5.17 where the two lines are closely spaced.

In Figure 5.18 (group 44; 1-5) the plaster and polyether lines can be seen on either side of the stainless-steel line. Over this longest distance on the model it seems that the plaster impression has contracted and the polyether expanded relative to the SS model. Though there is still evidence of statistical significance observed in group 43, the one for Group 44 gives a more serious evidence of difference. Relatively therefore, observed difference in Group 43 is less than that for Group 44.

The chart below (Fig. 5.6) Discrepancy of Median Measurements of Impressions, indicates the discrepancy between the two impression materials compared to the stainless steel model.

Fig. 5.6 Discrepancy of Median Measurements of Impressions

The width of the lines in Figure 5 .7 reflects the magnitude of the discrepancy in relation to its position on the model.

b) Significant difference (p<0.05)

Significant differences were found in

the following areas:

Plaster/SS

Fig. 5.9 Significant diff: Pl/SS

Fig. 5.10 Significant diff: Polyether/SS

Fig. 5.11 Significant diff: Plaster/Polyether

i) Plaster/SS

Plaster and stainless steel differ significantly (p<0.05) in all but three areas:

i.e. group 44 (1-5), 45 (2-3) and 46 (2-4). (Figs. 5.8 & 5.9).

ii) Polyether/SS

Polyether and stainless steel differ significantly (p<0.05) in all but one area: i.e. group 46 (2-4). (Figs. 5.8 & 5.10).

iii) Plaster/Polyether

Plaster and polyether differ significantly (p<0.05) in all but two areas: i.e. group 46 (2-4) and 48 (3-4). (Figs. 5.8 & 5.11.)

The line graphs for group 46 (2-4) (Fig. 5.30) and group 48 (3-4) (Fig. 5.32) are the only graphs where the values for the polyether casts are smaller than the stainless steel model (contractive distortion). In all the other graphs both the polyether and plaster lines lie above the stainless steel line, depicting expansive distortion, with polyether casts having a larger degree of expansive distortion than plaster casts. This contraction for (2-4) and (3-4) is also depicted in Fig. 5.12 Discrepancy of Median Measurements of Casts. The discrepancy between the casts of the two impression materials compared to the stainless steel model is illustrated in the graph below (Fig. 5.12).

Fig. 5.12 Discrepancy of Median Measurements of Casts

The weight of the lines in Fig 5.13 reflect the magnitude of the discrepancy in relation to its position on the model.

Polyether-SS	expansion	-	Plaster-S	expansion
	contraction	_		contraction
F-value

The F-value it is another statistical test to determine significance.

Definition of F value: The ANOVA procedure employs the statistic (F) to test the statistical significance of the differences among the obtained means of two or more random samples from a given population. Using the Central Limit Theorem, one calculates two estimates of a population variance.

(1). An estimate in which the s square of the obtained means of the several samples is multiplied by n (the size of the samples).

(2). An estimate that is calculated as the average (mean) of the obtained s squares of the several samples.

The statistic value (F) is formed as the ratio of (1) over (2). If this ratio is sufficiently larger than 1.0, the observed differences among the obtained means are described as being statistically significant.

For the casts, all 10 groups have fairly high F values (ranging from 9.69 to 1282.07) except for group 46 which has a value of less than 1 (0.51). The large F values indicate that the plaster and polyether impression materials do provide significant differences in the casts that they produce. The exception is group 46. (Implant 2-4)

Total Inter-Implant Distances

The following table (5.1) depicts the Total Distances when the 10 various distances (mean values) are added together.

Table 5.1Total of Mean Distances (mm)

	Polyether	Plaster	S-Steel
Impressions	282.90	282.10	278.74
Casts	284.04	281.31	278.74

From these values were calculated the differences and the percentage of expansion compared to the stainless-steel model as shown in table 5.2. It is noticeable that for the resultant casts the percentage expansion for polyether is double that of plaster.

Table 5.2	Expa	nsion	relative	to	Stain	less-	steel	

	Polyether: mm	% exp Polyether	Plaster: mm	% exp Plaster	
Impressions	4.17	1.49	3.37	1.21	
Casts	5.30	1.90	2.57	0.92	

The chart below of Total of Mean Inter-implant Distances (Fig. 5.14) reflects the sum of all the mean individual inter-implant measurements.

This shows over the total distances that casts from polyether showed more expansive distortion than casts from plaster. In fact, the casts from plaster underwent contraction in relation to their impressions.

Fig 5.14 Total of Mean Inter-Implant Distances

CHARTS: COMPARISON OF IMPRESSIONS AND S-STEEL

31

CHARTS: COMPARISON OF CASTS AND S-STEEL

Fig.5.25

Group 43 Fig.5.27

Fig.5.33 Group 49

COMBINED BOX PLOTS WITH SIGNIFICANCE INDICATION

Fig. 5.36 Group 42 (1-3) in mm

Fig. 5.38 Group 44 (1-5) in mm

Fig. 5.40 Group 46 (2-4) in mm

Fig. 5.41 Group 47 (2-5) in mm

Fig. 5.42 Group 48 (3-4) in mm

Fig. 5.43 Group 49 (3-5) in mm

Fig. 5.44 Group 50 (4-5) in mm

6. DISCUSSION

The three-dimensional accuracy of two impression materials was investigated with the use of a Reflex Microscope. By studying the results a few observations were made.

It is not possible to make an undistorted impression or cast. These measurements and the review of the literature shows that it is almost impossible to duplicate the three dimensions from the jaw onto a cast on which a precisely fitting and passive superstructure can be manufactured. It appears from this set of results that horizontal dimensions between implant analogues tend to increase with both impression materials. This supports the findings of Linke et al. ³². The rationale for using plaster impression material is the limitation of expansive distortion that takes place compared to polyether impressions. The general conclusion from these findings is that plaster creates less distortion, but that the reproduction of consistent dimensions is less predictable. The polyether measurements produced a straighter line graph, showing a better consistency over the ten models, but greater distortion.

Fig. 6.1 Casts vs S-Steel

No significant difference between:

Distance 2-4 is the only distance where there is no significant difference for both casts and the master model (Fig. 6.1).

It is essential to have meticulous inspection of laboratory and clinical components during their connection, to prevent avoidable errors in fit which are not inherent to the impression, or laboratory techniques. When looking at the impressions under the Reflex Microscope, the author noticed several fibre or dust-like particles on the impression copings in the plaster impressions. These had to be removed with high pressure air spray before the implant analogues could be connected to the copings. These particles might have flaked off from the plaster and could make a meaningful difference in the vertical position of the analogue when secured over the debris. Distortion is unpredictable and is determined by the site (Figs 5.12 & 5.13). It is likely to be expansive and more so in the anterior-posterior dimension than in a lateral dimension. From Fig. 5.12 it is noticeable that the differences in measurements across the model are negligible. The differences in measurements anterior-posteriorly are much bigger; almost 1.2 mm for polyether casts from distance 1-2. This may possibly result in a framework that is wide enough but too long in the anteriorposterior dimension. Contraction distortion during the process was found to be less than the expansive distortion resulting in net expansion.

The least distortion appears generally to be across the cast. In this case it included the tilted implants. Group 46 (2-4) recorded a P-value of 0.955 which indicates a non-significant difference between the casts from plaster and the S-Steel model. This was the second highest P-value recorded for casts. The highest was 0.996 also for

45

casts from plaster vs. S-S for group 44 (1-5), indicating the least significance of all measurements. Both measurements were across the cast.

The casts from polyether were generally bigger than their impressions (Fig 5.15) by a magnitude of 1.14mm over the total distance measured (284.04mm for the casts vs. 282.90mm for their impressions)(Table 5.1). That is an expansion of 0.4%. Over the same distance measured the casts from polyether were 5.3mm bigger than the stainless steel model. That is a 1.9% expansion (Table5.2).

The casts from plaster, however, were smaller than their impressions by 0.79mm over the total distance (281.31mm for the casts vs. 282.10mm for their impressions). That is shrinkage of 0.28%. The casts from plaster were still larger than the stainless steel model by 2.57mm which is expansion of 0.92%. From this it appears that the amount of expansion for polyether casts is double that of plaster casts which may be significant in the passive fit of the framework.

As a result of the discrepancies that occur using stone casts, current research and development is being directed towards techniques that eliminated them from the fabrication of the prosthesis. The importance of that is to eliminate the sectioning and luting of the metal framework and thereby having to alter the working model. Sectioning and reassembling the framework is time-consuming and results in a weaker and metallurgically more complex prosthetic framework. The CAD/CAM technique may full-fill this requirement. Images are scanned intraorally or extra orally and frameworks are manufactured from this information. The Procera implant bridge works on this technique. The problem here is that a distorted model is scanned which

defeats the object. Ideally the implants should be scanned intraorally, but currently that is a technique which is not yet available.

Passive abutments are components which may be used in cases where a passive fit cannot be established (Fig. 6.2). With an ill-fitting framework passive abutments can be secured over the implants with a small screw. The framework is subsequently cemented onto the passive abutments. Due to the tolerances that exist, the leeway is taken up by cement. Once the cement has set the small screws are removed and the passive abutments will be picked up by the framework. The whole framework can now be secured onto the implants with the bigger screws. This allows the framework to be screw-retained while discrepancies are absorbed in the cement (Fig.6.3).

Fig. 6.2 the Passive abutment

Fig. 6.3 Diagram of passive abutment illustrating its capacity to allow ill-fitting frameworks to be adapted to the implants.

Gallucci et al. ⁵⁶ immediately loaded implants with a provisional restoration in order to minimise "micromotion". In this way, fibrous encapsulation is prevented, and osseointegration results. When the provisional restoration was removed on a fortnightly basis, screw loosening was found in all patients after the first removal of the prosthesis, but no screw loosening was found 15 days later. It appears that, if the implants are splinted with no tension on them, the normal complications with illfitting prostheses are prevented. However, Jemt and Book ⁵ disagree, and state that no orthodontic adjustment takes place around osseointegrated implants with stress introduced on them. Hoshaw, Brunski and Cochran ⁵⁷ concluded that there was an increased bone modelling response at the periosteal surface near loaded implants.

Further study in this field is necessary.

7. CONCLUSION

Under the conditions of this study the following conclusions can be drawn with respect to distortion of implant analogue positions on the master cast:

1. The null hypothesis is rejected as there is a significant difference between models made using polyether impression material compared to those made with plaster impression material.

2. Plaster impression material results in less expansion of the cast, but in more variance with less predictability.

3. As a result of this finding, plaster impression material should be considered for full arch implant supported prostheses.

4. Digital intraoral scanning of the implants may be the future solution for more accurate reproduction of implant positions.

5. A plaster free technique may be considered where a passive cementation matrix is used. The cementation matrix is screwed onto the implants, luted together and taken off. Implant analogues are connected to the cementation matrix and attached to each other without using plaster. Theoretically no distortion takes place.

8. APPENDIX A TABLE OF MEANS IMPRESSIONS

. anova distance type model type* model if group==41

	Number of obs	=	90	R-squared	=	0.9938
	ROOL MSE	= .0	40197	Adj k-squared	=	0.9908
Source	Partial SS	df	MS	F	P	rob > F
Model	20.5522996	29	.70869998	36 332.08		0.0000
type	20.104063	2	10.052031	4710.10		0.0000
model	.145838885	9	.01620432	21 7.59		0.0000
type*model	.302397676	18	.01679987	71 7.87		0.0000
Residual	.128048584	60	.00213414	13		
Total	20.6803482	89	.23236346	53		

. table type model if group==41, c(mean distance n distance sd distance) format(%7.2f)

					mod	lel				
typelbl	1	2	3	4	5	6	7	8	9	10
Impregum	15.12	15.16	15.00	14.96	15.04	15.03	15.00	15.05	15.05	15.04
	3	3	3	3	3	3	3	3	3	3
	0.01	0.00	0.02	0.08	0.02	0.02	0.02	0.01	0.05	0.01
Plaster	15.10	14.90	15.04	14.99	14.77	15.12	15.11	15.12	15.10	15.07
	3	3	3	3	3	3	3	3	3	3
	0.01	0.14	0.09	0.14	0.05	0.00	0.01	0.01	0.00	0.00
S-Steel	14.07	14.04	14.05	14.03	14.02	14.03	14.03	14.03	14.03	14.03
	3	3	3	3	3	3	3	3	3	3
	0.01	0.02	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.01

. anova distance type model type* model if group==42

	Number of obs Root MSE	= = .0	90 R-s 46811 Ad	squared j R-squared	= 0.9903 = 0.9856
Source	Partial SS	df	MS	F	Prob > F
Model	13.4156254	29	.462607771	211.11	0.0000
type model type*model	12.9399282 .185396713 .29030049	2 9 18	6.46996408 .020599635 .016127805	2952.61 9.40 7.36	0.0000 0.0000 0.0000
Residual + Total	.131475971 	60 89	.002191266 		

. table type model if group==42, c(mean distance n distance sd distance) format(%7.2f)

					mod	el				
typelbl	1	2	3	4	5	6	7	8	9	10
Impregum	31.29	31.33	31.19	31.18	31.23	31.21	31.19	31.23	31.21	31.23
	3	3	3	3	3	3	3	3	3	3
	0.01	0.01	0.02	0.06	0.02	0.01	0.02	0.01	0.03	0.01
Plaster	31.25	31.08	31.07	31.16	31.00	31.00	30.96	31.29	31.07	30.90
	3	3	3	3	3	3	3	3	3	3
	0.01	0.12	0.07	0.11	0.04	0.02	0.12	0.07	0.07	0.03
S-Steel	30.37	30.34	30.37	30.36	30.35	30.35	30.36	30.37	30.36	30.36
	3	3	3	3	3	3	3	3	3	3
	0.01	0.02	0.03	0.01	0.02	0.01	0.02	0.00	0.01	0.01

. anova distance type model type* model if group==43

	Number of obs Root MSE	= = .0	90 R-s 27246 Ad	quared R-squared	= 0.9851 = 0.9779
Source	Partial SS	df	MS	F	Prob > F
Model	2.94475649	29	.101543327	136.79	0.0000
type model type*model	2.75075177 .061889896 .132114826	2 9 18	1.37537588 .006876655 .007339713	1852.74 9.26 9.89	0.0000 0.0000 0.0000
Residual	.044540725	60	.000742345		
Total	2.98929722	89	.033587609		

. table type model if group==43, c(mean distance n distance sd distance) format(%7.2f)

	 	model										
typelbl	1	2	3	4	5	б	7	8	9	10		
Impregum	40.66	40.72	40.65	40.64	40.64	40.65	40.61	40.66	40.65	40.65		
	3	3	3	3	3	3	3	3	3	3		
	0.01	0.00	0.01	0.03	0.01	0.01	0.01	0.00	0.01	0.01		
Plaster	40.65	40.55	40.75	40.59	40.55	40.79	40.65	40.70	40.68	40.67		
	3	3	3	3	3	3	3	3	3	3		
	0.01	0.05	0.02	0.05	0.02	0.04	0.08	0.04	0.01	0.01		
S-Steel	40.28	40.25	40.30	40.30	40.28	40.29	40.27	40.30	40.31	40.31		
	3	3	3	3	3	3	3	3	3	3		
	0.02	0.01	0.05	0.01	0.02	0.01	0.03	0.01	0.01	0.02		

. anova distance type model type* model if group==44 $\,$

	Number of obs Root MSE	= = .0	90 1 15648 2	R-squared Adj R-squared	= =	0.9548 0.9330
Source	Partial SS	df	MS	F	P	rob > F
Model	.310683858	29	.01071323	6 43.75		0.0000
type model type*model	.263743248 .010595793 .036344817	2 9 18	.13187162 .0011773 .00201915	4 538.57 1 4.81 6 8.25		0.0000 0.0001 0.0000
Residual	.014691357	60	.00024485	6		
Total	.325375215	89	.00365590	1		

. table type model if group==44, c(mean distance n distance sd distance) format(%7.2f)

					mod	.el				
typelbl	1	2	3	4	5	6	7	8	9	10
Impregum	47.23	47.27	47.22	47.23	47.25	47.22	47.21	47.24	47.22	47.21
	3	3	3	3	3	3	3	3	3	3
	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00
Plaster	47.14	47.09	47.10	47.10	47.08	47.15	47.08	47.14	47.05	47.06
	3	3	3	3	3	3	3	3	3	3
	0.02	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.00
S-Steel	47.13	47.12	47.16	47.17	47.15	47.16	47.17	47.16	47.17	47.16
	3	3	3	3	3	3	3	3	3	3
	0.02	0.01	0.05	0.01	0.04	0.01	0.05	0.00	0.00	0.00

. anova distance type model type* model if group==45

	Number of obs Root MSE	= = .0	90 R- 20263 Ad	squared j R-squared	= 0.9395 = 0.9103
Source	Partial SS	df	MS	F	Prob > F
Model	.382535143	29	.013190867	32.13	0.0000
type model type*model	.16015753 .065652762 .156724851	2 9 18	.080078765 .007294751 .008706936	195.03 17.77 21.21	0.0000 0.0000 0.0000
Residual	.024635493	60	.000410592		
Total	.407170636	89	.004574951		

. table type model if group==45, c(mean distance n distance sd distance) format(%7.2f)

					mod	el				
typelbl	1	2	3	4	5	б	7	8	9	10
	+									
Impregum	17.21	17.21	17.20	17.22	17.21	17.20	17.21	17.18	17.19	17.22
	3	3	3	3	3	3	3	3	3	3
	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01
Plaster	17.19	17.20	17.12	17.23	17.21	17.05	17.02	17.24	17.11	16.99
	3	3	3	3	3	3	3	3	3	3
	0.02	0.00	0.01	0.01	0.00	0.01	0.07	0.04	0.05	0.02
S-Steel	17.09	17.08	17.10	17.11	17.11	17.10	17.11	17.11	17.11	17.11
	3	3	3	3	3	3	3	3	3	3
	0.02	0.00	0.02	0.00	0.01	0.00	0.01	0.00	0.00	0.00

. anova distance type model type* model if group==46

	Number of obs Root MSE	= = .0	90 R- 12059 Ad	-squared lj R-squared	= 0.8669 = 0.8025
Source	Partial SS	df	MS	F	Prob > F
Model	.056806257	29	.001958836	13.47	0.0000
type model type*model	.030587536 .008526503 .017692218	2 9 18	.015293768 .000947389 .000982901	105.18 6.52 6.76	0.0000 0.0000 0.0000
Residual	.008724747	60	.000145412		
Total	.065531004	89	.000736303		

. table type model if group==46, c(mean distance n distance sd distance) format(%7.2f)

					mod	el				
typelbl	1	2	3	4	5	6	7	8	9	10
Impregum	30.13	30.14	30.16	30.16	30.11	30.13	30.12	30.13	30.14	30.15
	3	3	3	3	3	3	3	3	3	3
	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01
Plaster	30.17	30.18	30.15	30.20	30.20	30.22	30.16	30.20	30.18	30.16
	3	3	3	3	3	3	3	3	3	3
	0.02	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.00
S-Steel	30.14	30.12	30.16	30.15	30.15	30.15	30.14	30.16	30.17	30.17
	3	3	3	3	3	3	3	3	3	3
	0.01	0.00	0.04	0.00	0.01	0.01	0.02	0.00	0.01	0.00

. anova distance type model type* model if group==47

	Number of obs Root MSE	= = .0	90 R- 26877 Ad	-squared dj R-squared	= 0.9820 = 0.9734
Source	Partial SS	df	MS	F	Prob > F
Model	2.36953211	29	.081708004	113.11	0.0000
type model type*model	2.09572743 .103635824 .170168861	2 9 18	1.04786371 .011515092 .009453826	1450.54 15.94 13.09	0.0000 0.0000 0.0000
Residual	.043343738	60	.000722396		
Total	2.41287585	89	.027110965		

. table type model if group==47, c(mean distance n distance sd distance) format(%7.2f)

		model											
typelbl	1	2	3	4	5	6	7	8	9	10			
Impregum	40.42	40.41	40.30	40.32	40.33	40.33	40.32	40.31	40.31	40.32			
	3	3	3	3	3	3	3	3	3	3			
	0.01	0.01	0.00	0.03	0.01	0.03	0.00	0.04	0.01	0.03			
Plaster	40.39	40.19	40.21	40.22	40.09	40.32	40.33	40.36	40.28	40.26			
	3	3	3	3	3	3	3	3	3	3			
	0.03	0.03	0.03	0.02	0.01	0.03	0.08	0.04	0.02	0.01			
S-Steel	39.99	39.97	39.99	39.99	39.98	39.99	40.00	39.98	39.98	39.98			
	3	3	3	3	3	3	3	3	3	3			
	0.01	0.01	0.03	0.00	0.03	0.00	0.04	0.00	0.02	0.01			

. anova distance type model type* model if group==48

	Number of obs	=	90 R-s	quared	=	0.9809
	Root MSE	=	.02456 Adj	R-squared	=	0.9717
Source	Partial SS	df	MS	F	P	rob > F
Model	1.85772709	29	.064059555	106.20		0.0000
type	1.04091444	2	.520457222	862.86		0.0000
model	.272464132	9	.030273792	50.19		0.0000
type*model	.544348516	18	.030241584	50.14		0.0000
Residual	.03619075	60	.000603179			
Total	1.89391784	89	.021279976			

. table type model if group==48, c(mean distance n distance sd distance) format(%7.2f)

					mod	lel				
typelbl	1	2	3	4	5	6	7	8	9	10
Impregum	16.54	16.54	16.56	16.58	16.52	16.53	16.53	16.56	16.56	16.54
	3	3	3	3	3	3	3	3	3	3
	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01
Plaster	16.63	16.60	16.25	16.57	16.61	16.23	16.29	16.58	16.34	16.26
	3	3	3	3	3	3	3	3	3	3
	0.04	0.01	0.04	0.01	0.01	0.04	0.04	0.01	0.09	0.03
S-Steel	16.71	16.70	16.71	16.69	16.69	16.70	16.68	16.69	16.71	16.69
	3	3	3	3	3	3	3	3	3	3
	0.00	0.01	0.02	0.00	0.01	0.01	0.02	0.01	0.01	0.01

. anova distance type model type* model if group==49 $\,$

	Number of obs Root MSE	= = .	90 R-so 04232 Adj	quared R-squared	= 0.9846 = 0.9772
Source	Partial SS	df	MS	F	Prob > F
Model	6.8733753	29	.237012942	132.33	0.0000
type model type*model	5.5081407 .651615976 .713618633	2 9 18	2.75407035 .072401775 .03964548	1537.72 40.43 22.14	0.0000 0.0000 0.0000
Residual	.107460864	60	.001791014		
Total	6.98083617	89	.078436361		

. table type model if group==49, c(mean distance n distance sd distance) format(%7.2f)

	model											
typelbl	1	2	3	4	5	6	7	8	9	10		
Impregum	30.27	30.25	30.03	30.10	30.09	30.11	30.07	30.09	30.08	30.08		
	3	3	3	3	3	3	3	3	3	3		
	0.01	0.01	0.02	0.06	0.02	0.06	0.02	0.08	0.01	0.04		
Plaster	30.31	29.83	29.79	29.83	29.67	29.72	29.84	30.20	29.85	29.72		
	3	3	3	3	3	3	3	3	3	3		
	0.08	0.04	0.05	0.04	0.02	0.06	0.04	0.01	0.12	0.04		
S-Steel	29.55	29.53	29.53	29.51	29.51	29.52	29.51	29.50	29.50	29.49		
	3	3	3	3	3	3	3	3	3	3		
	0.01	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.03	0.03		

. anova distance type model type* model if group==50

	Number of obs Root MSE	=	90 R-: .03498 Ad	squared j R-squared	= =	0.9961 0.9942
Source	Partial SS	df	MS	F	P	rob > F
Model	18.5597263	29	.639990561	523.04		0.0000
type model type*model	16.1627583 .717910126 1.67905788	2 9 18	8.08137914 .079767792 .093280993	6604.55 65.19 76.23		0.0000 0.0000 0.0000
Residual	.073416491	60	.001223608			
Total	18.6331428	89	.209361155			

. table type model if group==50, c(mean distance n distance sd distance) format(%7.2f)

	 				mod	 .el				
typelbl	1	2	3	4	5	6	7	8	9	10
Impregum	14.59	14.58	14.28	14.33	14.39	14.42	14.36	14.35	14.34	14.36
	3	3	3	3	3	3	3	3	3	3
	0.01	0.01	0.02	0.07	0.03	0.08	0.03	0.09	0.01	0.05
Plaster	14.56	14.01	14.55	14.04	13.82	14.53	14.54	14.50	14.48	14.46
	3	3	3	3	3	3	3	3	3	3
	0.05	0.05	0.01	0.04	0.03	0.00	0.01	0.01	0.01	0.00
S-Steel	13.51	13.50	13.48	13.48	13.47	13.47	13.48	13.46	13.45	13.45
	3	3	3	3	3	3	3	3	3	3
	0.01	0.03	0.01	0.01	0.02	0.01	0.02	0.01	0.02	0.01

. log off

log: C:\Dudu\Von Berg\Data2m23.log log type: text

Comparison of the means

log log type resumed on	g: C:\Dudu e: text h: 22 Mar	ı\Von B 2006,	erg\Da 07:53:	ta2m23 15	.log		
. oneway	distance	type	if g	roup==4	41,tabulate s	cheffe	
typelb)))	Summ Mean	ary of Std.	distan Dev.	nce Freq.		
Impregu Plaster S-Stee	um > 21	15.04 15.03 14.03		0.06 0.12 0.02	30 30 30		
Tota	1	14.70		0.48	90		
Source		An SS	alysis	of Va df	riance MS	F	Prob > F
Between gr Within gr	roups	20.10 .57628	4063 5145	2 87	10.0520315 .006623967	1517.52	0.0000
Total		20.680	3482	89	.232363463		
Bartlett's	test for	equal	varian	ces: d	chi2(2) = 81	.8621 Pro	b>chi2 = 0.000
		Comp	arison	of dis (Sche	stance by typ effe)	elbl	
Row Mean- Col Mean	Impregu	um Pl	aster				
Plaster	-0.(0.78)1 32					
S-Steel 	-1.0)1)0	-1.00 0.000				

. oneway distance type if group==42,tabulate scheffe

typelbl	Summary of Mean Std.	dista Dev.	nce Freq.		
Impregum Plaster S-Steel	31.23 31.08 30.36	0.05 0.14 0.01	30 30 30 30		
Total	30.89	0.39	90		
Source	Analysis SS	of Va: df	riance MS	F	Prob > F
Between groups Within groups	12.9399282 .607173174	2 87	6.46996408 .006979002	927.06	0.0000
Total	13.5471013	89	.152214622		

Bartlett's test for equal variances: chi2(2) = 101.1718 Prob>chi2 = 0.000

Row Mean-			(
Col Mean	Impregum	Plaster	
Plaster	-0.15 0.000		
S-Steel	-0.87 0.000	-0.72 0.000	

. oneway distance type if group==43,tabulate scheffe

typelbl	Summary o Mean Std	f distance . Dev.	Freq.
Impregum Plaster S-Steel	40.66 40.66 40.29	0.03 0.08 0.03	30 30 30
+ Total	40.53	0.18	90

	Analysis	of Var	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	2.75075177 .238545447	2 87	1.37537588 .002741902	501.61	0.0000
Total	2.98929722		.033587609		

Bartlett's test for equal variances: chi2(2) = 49.1541 Prob>chi2 = 0.000

Comparison of distance by typelbl (Scheffe)

Row Mean- Col Mean	Impregum	Plaster
Plaster	0.00 0.972	
S-Steel	-0.37 0.000	-0.37 0.000

. oneway distance type if group==44,tabulate scheffe

typelbl	Summary of Mean Std.	distance Dev.	Freq.
Impregum Plaster S-Steel	47.23 47.10 47.15	0.02 0.03 0.03	30 30 30
Total	47.16	0.06	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	.263743248 .061631967	2 87	.131871624 .000708413	186.15	0.0000
Total	.325375215	89	.003655901		

Bartlett's test for equal variances: chi2(2) = 10.2315 Prob>chi2 = 0.006

Row Mean- Col Mean	Impregum	Plaster
Plaster	-0.13 0.000	
S-Steel	-0.08 0.000	0.05

. oneway distance type if group==45,tabulate scheffe

typelbl	Summary of Mean Std.	distance Dev.	Freq.
Impregum Plaster S-Steel	17.21 17.14 17.10	0.01 0.09 0.01	30 30 30
 Total	17.15	0.07	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups	.16015753	2	.080078765	28.20	0.0000
Within groups	.247013106	87	.002839231		
Total	.407170636	89	.004574951		

Bartlett's test for equal variances: chi2(2) = 136.3753 Prob>chi2 = 0.000

Comparison of distance by typelbl (Scheffe)

Row Mean- Col Mean	Impregum	Plaster
Plaster	-0.07 0.000	
S-Steel	-0.10 0.000	-0.03 0.068

. oneway distance type if group==46,tabulate scheffe

typelbl	Summary of Mean Std.	distance Dev.	Freq.
Impregum Plaster S-Steel	30.14 30.18 30.15	0.02 0.02 0.02	30 30 30
Total	30.16	0.03	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	.030587536 .034943468	2 87	.015293768 .000401649	38.08	0.0000
Total	.065531004	89	.000736303		

Bartlett's test for equal variances: chi2(2) = 5.6806 Prob>chi2 = 0.058

Row Mean- Col Mean	Impregum	Plaster
Plaster	0.04 0.000	
S-Steel	0.01 0.023	-0.03 0.000

. oneway distance type if group==47,tabulate scheffe

typelbl	Summary Mean St	of distance d. Dev.	Freq.
Impregum Plaster S-Steel	40.34 40.26 39.98	0.05 0.09 0.02	30 30 30
Total	40.20	0.16	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups	2.09572743	2	1.04786371	287.45	0.0000
Within groups	.317148423	87	.003645384		
Total	2.41287585	89	.027110965		

Bartlett's test for equal variances: chi2(2) = 58.5537 Prob>chi2 = 0.000

Comparison of distance by typelbl (Scheffe)

Row Mean- Col Mean	Impregum	Plaster
Plaster	-0.07 0.000	
S-Steel	-0.35 0.000	-0.28 0.000

. oneway distance type if group==48,tabulate scheffe

	Summary of	distance	
typelbl	Mean Std.	Dev.	Freq.
Impregum Plaster S-Steel	16.55 16.43 16.70	0.02 0.17 0.01	30 30 30
Total	16.56	0.15	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	1.04091444 .853003399	2 87	.520457222 .009804637	53.08	0.0000
Total	1.89391784	 89	.021279976		

Bartlett's test for equal variances: chi2(2) = 168.2924 Prob>chi2 = 0.000

Row Mean- Col Mean	Impregum	Plaster
Plaster	-0.11 0.000	
S-Steel	0.15 0.000	0.26 0.000

. oneway distance type if group==49,tabulate scheffe

typelbl	Summary of Mean Std.	distance Dev. F	req.
Impregum Plaster S-Steel	30.12 29.88 29.51	0.08 0.21 0.03	30 30 30 30
Total	29.84	0.28	90

	Analysis	of Var	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	5.5081407 1.47269547	2 87	2.75407035 .016927534	162.70	0.0000
Total	6.98083617	89	.078436361		

Bartlett's test for equal variances: chi2(2) = 92.3283 Prob>chi2 = 0.000

Comparison of distance by typelbl (Scheffe)

Row Mean- Col Mean	Impregum	Plaster
Plaster	-0.24 0.000	
S-Steel	-0.60 0.000	-0.36 0.000

. oneway distance type if group==50,tabulate scheffe

trmalbl	Summary of	distance	Emog
	Mean Std.	Dev.	Freq.
Impregum	14.40	0.11	30
Plaster	14.35	0.27	30
S-Steel	13.47	0.02	30
Total	14.07	0.46	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	16.1627583 2.4703845	2 87	8.08137914 .028395224	284.60	0.0000
Total	18.6331428	89	.209361155		

Bartlett's test for equal variances: chi2(2) = 109.0900 Prob>chi2 = 0.000

Row Mean-			(SC
Col Mean	Impregum	Plaster	
Plaster	-0.05 0.492		
S-Steel	-0.92 0.000	-0.87 0.000	
. log off log:	C:\Dudu\Vo	n Berg\Dat	a2m2

. IOG OIL	
log:	C:\Dudu\Von Berg\Data2m23.log
log type:	text
paused on:	22 Mar 2006, 07:54:36

9. APPENDIX B CAST DATA ANALYSIS OF VARIANCE AND TABLE OF MEANS

log: C:\Dudu\Von Berg\Casts output.log log type: text opened on: 28 Apr 2006, 09:18:37

. anova distance type model if group==41

	Number of obs Root MSE	= = .1	90 R-so 54756 Adj	quared R-squared	= 0.9170 = 0.9053
Source	Partial SS	df	MS	F	Prob > F
Model	20.6326876	11	1.87569887	78.32	0.0000
type model	20.0656184 .567069167	2 9	10.0328092 .063007685	418.92 2.63	0.0000 0.0103
Residual	1.86805093	78	.023949371		
Total	22.5007385	89	.252817287		

. table type model if group==41, c(mean distance sd distance n distance) col row f(%7.2f)

type	1	2	3	4	5	model 6	7	8	9	10	Total
Plaster	14.84	14.75	15.16	15.19	15.15	14.58	14.53	14.53	14.72	15.15	14.86
	0.05	0.06	0.01	0.00	0.00	0.01	0.03	0.03	0.07	0.02	0.27
	3	3	3	3	3	3	3	3	3	3	30
Impregum	15.19	15.20	15.18	15.17	15.16	15.20	15.19	15.19	15.17	14.84	15.15
	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.11
	3	3	3	3	3	3	3	3	3	3	30
S-Steel	14.07	14.04	14.05	14.03	14.02	14.03	14.03	14.03	14.03	14.03	14.03
	0.01	0.02	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.01	0.02
	3	3	3	3	3	3	3	3	3	3	30
Total	14.70	14.66	14.80	14.80	14.78	14.60	14.59	14.58	14.64	14.67	14.68
	0.50	0.51	0.56	0.58	0.57	0.51	0.50	0.50	0.50	0.50	0.50
	9	9	9	9	9	9	9	9	9	9	90

. anova distance type model if group==42

	Number of obs Root MSE	= = .00	90 R 65483 A	l-squared dj R-squared	= 0.9772 = 0.9740	
Source	Partial SS	df	MS	F	Prob > F	
Model	14.3542234	11	1.3049294	304.32	0.0000	
type model	14.2066691 .147554322	2 9	7.10333454 .016394925	1656.53 3.82	0.0000 0.0005	
Residual	.334470244	78	.00428808	3		
Total	14.6886937	89	.165041502			
type model if gro	oup==42, c(mean	dist	tance sd di	stance n dist.	ance) col	row f(%7.2f)

. table

model

type	1	2	3	4	5	6	7	8	9	10	Total
Plaster	30.99	30.93	30.98	30.97	30.86	30.82	30.78	30.79	30.94	31.21	30.93
	0.04	0.05	0.03	0.02	0.01	0.01	0.02	0.02	0.06	0.02	0.13
	3	3	3	3	3	3	3	3	3	3	30
Impregum	31.30	31.34	31.30	31.33	31.32	31.34	31.36	31.32	31.32	31.34	31.33
	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.02
	3	3	3	3	3	3	3	3	3	3	30
S-Steel	30.37	30.34	30.37	30.36	30.35	30.35	30.36	30.37	30.36	30.36	30.36
	0.01	0.02	0.03	0.01	0.02	0.01	0.02	0.00	0.01	0.01	0.01
	3	3	3	3	3	3	3	3	3	3	30
Total	30.89	30.87	30.89	30.89	30.84	30.84	30.83	30.83	30.87	30.97	30.87
	0.41	0.44	0.41	0.43	0.42	0.43	0.43	0.41	0.42	0.46	0.41
	9	9	9	9	9	9	9	9	9	9	90

. anova distance type model if group==43

	Number of obs Root MSE	= = .0	90 R-s 72848 Adj	quared R-squared	= 0.8701 = 0.8518
Source	Partial SS	df	MS	F	Prob > F
Model	2.77257971	11	.252052701	47.50	0.0000
type model	2.57531727 .197262444	2 9	1.28765863 .021918049	242.64 4.13	0.0000 0.0002
Residual	.413930289	78	.005306799		
Total	3.18651	89	.035803483		

. table type model if group==43, c(mean distance sd distance n distance) col row f(%7.2f)

type	1	2	3	4	5	model 6	7	8	9	10	Total
Plaster	40.51 0.01 3	40.52 0.03 3	40.80 0.02 3	40.77 0.03 3	40.73 0.01 3	40.47 0.01 3	40.38 0.01 3	40.46 0.01 3	40.51 0.02 3	40.62 0.00 3	40.58 0.14 30
Impregum	40.65 0.00	40.72 0.00 3	40.66 0.01 3	40.68 0.00 3	40.68 0.01 3	40.71 0.00 3	40.68 0.00 3	40.71 0.01 3	40.69 0.00 3	40.69 0.01 3	40.69 0.02 30
S-Steel	40.28 0.02	40.25 0.01 3	40.30 0.05 3	40.30 0.01 3	40.28 0.02 3	40.29 0.01 3	40.27 0.03 3	40.30 0.01 3	40.31 0.01 3	40.31 0.02 3	40.29 0.03 30
Total	40.48 0.16 9	40.50 0.21 9	40.59 0.23 9	40.58 0.22 9	40.57 0.22 9	40.49 0.18 9	40.44 0.18 9	40.49 0.18 9	40.50 0.17 9	40.54 0.18 9	40.52 0.19 90

. anova distance type model if group==44

Number of	obs	=	90	R-squared	=	0.5611
Root MSE		=	.135611	Adj R-squared	=	0.4992

Source	Partial SS	df	MS	F	Prob > F
Model	1.83406097	11	.166732815	9.07	0.0000
type model	1.21725869 .616802278	2 9	.608629344 .068533586	33.10 3.73	0.0000 0.0006
Residual	1.43444042	78	.018390262		
Total	3.26850139	89	.036724735		

. table type model if group==44, c(mean distance sd distance n distance) col row f(\$7.2f)

						model					
type	1	2	3	4	5	6	7	8	9	10	Total
Plaster	47.13	47.13	47.21	47.22	47.12	47.17	47.09	47.16	47.15	47.12	47.15
	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.04
	3	3	3	3	3	3	3	3	3	3	30
Impregum	47.24	47.99	47.25	47.27	47.29	47.29	47.28	47.29	47.83	47.28	47.40
	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.26
	3	3	3	3	3	3	3	3	3	3	30
S-Steel	47.13	47.12	47.16	47.17	47.15	47.16	47.17	47.16	47.17	47.16	47.15
	0.02	0.01	0.05	0.01	0.04	0.01	0.05	0.00	0.00	0.00	0.03
	3	3	3	3	3	3	3	3	3	3	30
Total	 47.17	47.41	47.20	47.22	47.19	47.21	47.18	47.20	47.38	47.19	47.23
	0.06	0.43	0.04	0.04	0.08	0.06	0.08	0.06	0.33	0.07	0.19
	9	9	9	9	9	9	9	9	9	9	90

. anova distance type model if group==45

	Number of obs Root MSE	= = .0	90 R-so 98545 Adj	quared R-squared	= 0.4835 = 0.4106
Source	Partial SS	df	MS	F	Prob > F
Model	.708999156	11	.064454469	6.64	0.0000
type model	.267121422 .441877733	2 9	.133560711 .049097526	13.75 5.06	0.0000 0.0000
Residual	.757473467	78	.009711198		
Total	1.46647262	89	.01647722		

. table type model if group==45, c(mean distance sd distance n distance) col row f(\$7.2f)

type	1	2	3	4	5	model 6	7	8	9	10	Total
Plaster	17.11	17.11	16.97	16.93	16.89	17.15	17.18	17.16	17.19	17.11	17.08
	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.11
	3	3	3	3	3	3	3	3	3	3	30
Impregum	17.11	17.13	17.13	17.17	17.16	17.16	17.18	17.14	17.16	17.71	17.21
	0.01	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.17
	3	3	3	3	3	3	3	3	3	3	30
S-Steel	17.09	17.08	17.10	17.11	17.11	17.10	17.11	17.11	17.11	17.11	17.10
	0.02	0.00	0.02	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01
	3	3	3	3	3	3	3	3	3	3	30
Total	17.11	17.11	17.07	17.07	17.06	17.14	17.16	17.14	17.15	17.31	17.13
	0.02	0.02	0.08	0.11	0.13	0.03	0.03	0.02	0.04	0.30	0.13
	9	9	9	9	9	9	9	9	9	9	90

. anova distance type model if group==46

Number of obs = 90 R-squared = 0.3329
	Root MSE	= .0	91087 Adj	R-squared	= 0.2389
Source	Partial SS	df	MS	F	Prob > F
Model	.323017089	11	.02936519	3.54	0.0005
type model	.011156822	2 9	.005578411 .034651141	0.67 4.18	0.5134 0.0002
Residual	.647156067	78	.008296873		
Total	.970173156	 89	.010900822		

. table type model if group==46, c(mean distance sd distance n distance) col row f(7.2f)

type	1	2	3	4	5	model 6	7	8	9	10	Total
Plaster	30.09	30.11	30.19	30.14	30.16	30.16	30.12	30.15	30.19	30.11	30.14
	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.03
	3	3	3	3	3	3	3	3	3	3	30
Impregum	30.02	30.05	30.05	30.09	30.08	30.07	30.06	30.08	30.08	30.65	30.12
	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.18
	3	3	3	3	3	3	3	3	3	3	30
S-Steel	30.14	30.12	30.16	30.15	30.15	30.15	30.14	30.16	30.17	30.17	30.15
	0.01	0.00	0.04	0.00	0.01	0.01	0.02	0.00	0.01	0.00	0.02
	3	3	3	3	3	3	3	3	3	3	30
Total	30.08	30.10	30.13	30.13	30.13	30.13	30.11	30.13	30.15	30.31	30.14
	0.05	0.03	0.06	0.03	0.04	0.04	0.04	0.04	0.05	0.25	0.10
	9	9	9	9	9	9	9	9	9	9	90

. anova distance type model if group==47

	Number of obs Root MSE	= = .1	90 R-s 48426 Adj	quared R-squared	= 0.7625 = 0.7291
Source	Partial SS	df	MS	F	Prob > F
Model	5.51804239	11	.501640217	22.77	0.0000
type model	4.67168096 .846361433	2 9	2.33584048 .094040159	106.03 4.27	0.0000 0.0002
Residual	1.71835193	78	.022030153		
Total	7.23639432	89	.081307801		

. table type model if group==47, c(mean distance sd distance n distance) col row f(7.2f)

	 					model					
type	1	2	3	4	5	6	7	8	9	10	Total
Plaster	40.17	40.08	40.31	40.31	40.25	40.07	40.06	40.04	40.20	40.31	40.18
	0.03	0.01	0.00	0.02	0.01	0.01	0.01	0.01	0.04	0.01	0.11
	3	3	3	3	3	3	3	3	3	3	30
Impregum	40.33	41.03	40.34	40.37	40.38	40.35	40.36	40.37	40.92	40.88	40.53
	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.28
	3	3	3	3	3	3	3	3	3	3	30
S-Steel	39.99	39.97	39.99	39.99	39.98	39.99	40.00	39.98	39.98	39.98	39.98
	0.01	0.01	0.03	0.00	0.03	0.00	0.04	0.00	0.02	0.01	0.02
	3	3	3	3	3	3	3	3	3	3	30
Total	40.16	40.36	40.21	40.22	40.20	40.14	40.14	40.13	40.37	40.39	40.23
	0.15	0.51	0.17	0.18	0.18	0.17	0.17	0.18	0.42	0.40	0.29
	9	9	9	9	9	9	9	9	9	9	90

. anova distance type model if group==48

	Number of obs Root MSE	= = .0	90 R- 81434 Ad	squared j R-squared	= 0.5501 = 0.4867
Source	Partial SS	df	MS	F	Prob > F
Model	.632477278	11	.057497934	8.67	0.0000
type model	.390016289 .242460989	2 9	.195008144 .02694011	29.41 4.06	0.0000 0.0003
Residual	.517253711	78	.006631458		
Total	1.14973099	89	.012918326		

. table type model if group==48, c(mean distance sd distance n distance) col row f(%7.2f)

type	1	2	3	4	5	model 6	7	8	9	10	Total
Plaster	16.64	16.66	16.33	16.32	16.26	16.66	16.59	16.64	16.65	16.63	16.54
	0.00	0.00	0.02	0.05	0.01	0.00	0.00	0.00	0.01	0.01	0.16
	3	3	3	3	3	3	3	3	3	3	30
Impregum	16.60	16.60	16.60	16.61	16.59	16.58	16.57	16.61	16.60	16.55	16.59
	0.01	0.01	0.00	0.00	0.02	0.00	0.01	0.01	0.00	0.01	0.02
	3	3	3	3	3	3	3	3	3	3	30
S-Steel	16.71	16.70	16.71	16.69	16.69	16.70	16.68	16.69	16.71	16.69	16.70
	0.00	0.01	0.02	0.00	0.01	0.01	0.02	0.01	0.01	0.01	0.01
	3	3	3	3	3	3	3	3	3	3	30
Total	16.65	16.66	16.55	16.54	16.51	16.65	16.61	16.65	16.65	16.62	16.61
	0.04	0.04	0.17	0.17	0.20	0.05	0.05	0.03	0.05	0.06	0.11
	9	9	9	9	9	9	9	9	9	9	90

. anova distance type model if group==49

	Number of obs Root MSE	= = .1	90 R-s 48125 Adj	quared R-squared	= 0.8850 = 0.8688
Source	Partial SS	df	MS	F	Prob > F
Model	13.167992	11	1.19709018	54.56	0.0000
type model	12.285059 .882933067	2 9	6.14252948 .098103674	279.96 4.47	0.0000 0.0001
Residual	1.7113886	78	.021940879		
Total	14.8793806	89	.167184052		

. table type model if group==49, c(mean distance sd distance n distance) col row f(%7.2f)

type	 1	2	З	4	5	model 6	7	8	9	10	Total
0150	-	-	0	-	5	0	•	0	-	10	10041
Plaster	29.96	29.80	29.81	29.81	29.65	29.64	29.61	29.58	29.83	30.21	29.79
	0.07	0.02	0.03	0.07	0.03	0.02	0.02	0.02	0.09	0.01	0.19
	3	3	3	3	3	3	3	3	3	3	30
Impregum	30.31	30.92	30.29	30.30	30.30	30.27	30.27	30.31	30.77	30.24	30.40
	0.01	0.01	0.00	0.01	0.02	0.00	0.00	0.01	0.00	0.00	0.23
	3	3	3	3	3	3	3	3	3	3	30
S-Steel	29.55	29.53	29.53	29.51	29.51	29.52	29.51	29.50	29.50	29.49	29.51
	0.01	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.03
	3	3	3	3	3	3	3	3	3	3	30
Total	29.94	30.09	29.88	29.88	29.82	29.81	29.80	29.79	30.03	29.98	29.90
	0.33	0.64	0.33	0.35	0.37	0.35	0.36	0.39	0.57	0.37	0.41
	9	9	9	9	9	9	9	9	9	9	90

. anova distance type model if group==50

			Numbe Root	r of ob MSE	s = = .20	90 08728	R-squ Adi R	ared -square	= 0. d = 0.	8607 8410	
		_	1			_		1			
		Source	Part +	ial SS	df 	MS	; 	F 	Prob) > F	
		Model	20.9	891267	11	1.90810	242	43.80	0.	0000	
		type	19.7	671652	2	9.88358	258	226.86	0.	0000	
		model	1.22	196151	9	.135773	501	3.12	0.	0030	
	Re	sidual	3.39	825596	78	.043567	384				
		Total	24.3	873826	89	.274015	535				
. table ty	npe mode	el if gr	oup==50	, c(mea	n dist	cance sd	l distan	.ce n di	stance)	col ro	ow f(%7.2f)
						model					
type	1	2	3	4	5	б	7	8	9	10	Total
Plaster	14.07	13.88	14.48	14.48	14.42	13.66	13.71	13.63	13.92	14.43	14.07
	0.09	0.02	0.00	0.01	0.01	0.03	0.02	0.02	0.13	0.01	0.35
	3	3	3	3	3	3	3	3	3	3	30
Impregum	14.53	15.08	14.52	14.52	14.54	14.52	14.52	14.53	14.94	14.52	14.62
	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.20
	3	3	3	3	3	3	3	3	3	3	30
S-Steel	13.51	13.50	13.48	13.48	13.47	13.47	13.48	13.46	13.45	13.45	13.47
	0.01	0.03	0.01	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02
	3	3	3	3	3	3	3	3	3	3	30
Total	14.04	14.15	14.16	14.16	14.15	13.88	13.90	13.87	14.10	14.13	14.06
	0.45	0.71	0.51	0.51	0.51	0.48	0.47	0.50	0.66	0.51	0.52
	9	9	9	9	9	9	9	9	9	9	90

COMPARISON OF THE TYPES

. oneway dis	tance type if	group==4	1,tabulate sch	leffe	
Í	Summa	ry of dista	nce		
type	Mean	Std. Dev.	Freq.		
Plaster	14.860633	.26884177	30		
Impregum	15.149033	.10691004	30		
S-Steel	14.034833	.01624825	30		
Total	14.6815	.50280939	90		
	Ana	lysis of Va	riance		
Source	SS	df	MS	F	Prob > F
Between group	s 20.0656	5184 2	10.0328092	358.44	0.0000
Within group	s 2.4351	.201 87	.027989886		

Total 22.5007385 89 .252817287

Bartlett's test for equal variances: chi2(2) = 131.6893 Prob>chi2 = 0.000

Comparison of distance by type (Scheffe)

Row Mean- Col Mean	Plaster	Impregum
Impregum	.2884 0.000	
S-Steel	8258 0.000	-1.1142 0.000

. oneway distance type if group==42,tabulate scheffe

type	Summ Mean	ary of distance Std. Dev.	Freq.
Plaster Impregum S-Steel	30.9274 31.328333 30.3599	.12665827 .01891238 .01488427	30 30 30
Total	30.871878	.406253	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	14.2066691 .482024567	2 87	7.10333454	1282.07	0.0000
Total	14.6886937	89	.165041502		

Bartlett's test for equal variances: chi2(2) = 139.8494 Prob>chi2 = 0.000

Row Mean- Col Mean	Plaster	Impregum
Impregum	.400933 0.000	
S-Steel	5675 0.000	968433 0.000

	oneway	distance	type if	group==43,tabulate	scheffe
--	--------	----------	---------	--------------------	---------

type	Summa Mean	ary of distance Std. Dev.	Freq.
Plaster Impregum S-Steel	40.5775 40.687767 40.286733	.14124148 .02217436 .02519433	30 30 30
+ Total	40.517333	.18921808	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	2.57531727 .611192733	2 87	1.28765863 .007025204	183.29	0.0000
Total	3.18651	89	.035803483		

Bartlett's test for equal variances: chi2(2) = 114.8125 Prob>chi2 = 0.000

Comparison of distance by type (Scheffe)

Row Mean-			
Col Mean	Plaster	Impregum	
+	+		
Impregum	.110267		
1 5	0.000		
	0.000		
	000767	401022	
S-Steel	290/6/	401033	
	0.000	0.000	

. oneway distance type if group==44,tabulate scheffe

type	Summary of distance Mean Std. Dev.	Freq.
Plaster Impregum S-Steel	47.150533 .03985468 47.399067 .26154395 47.154233 .02718225	30 30 30
Total	+ 47.234611 .19163699	90

	Analysis	of Va	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	1.21725869 2.0512427	2 87	.608629344 .023577502	25.81	0.0000
Total	3.26850139	89	.036724735		

Bartlett's test for equal variances: chi2(2) = 145.5342 Prob>chi2 = 0.000

Row Mean- Col Mean	Plaster	Impregum
Impregum 	.248533 0.000	
S-Steel	.0037 0.996	244833 0.000

. oneway distance type if $\verb"group==45,tabulate"$ scheffe

	Summary of distance	
type	Mean Std. Dev.	Freq.
4		
Plaster	17.079933 .10544289	30
Impregum	17.205933 .17346925	30
S-Steel	17.104867 .01213071	30
Total	17.130244 .12836363	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	.267121422 1.1993512	2 87	.133560711 .013785646	9.69	0.0002
Total	1,46647262	89	.01647722		

Bartlett's test for equal variances: chi2(2) = 113.5159 Prob>chi2 = 0.000

Comparison of distance by type (Scheffe)

Row Mean- Col Mean	Plaster	Impregum
Impregum	.126 0.000	
S-Steel	.024933 0.714	101067 0.005

. oneway distance type if group==46,tabulate scheffe

type	Summ Mean	mary of distance Std. Dev.	Freq.
Plaster Impregum S-Steel	30.142767 30.124367 30.151	.03245122 .17803728 .0178654	30 30 30
Total	30.139378	.104407	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	.011156822 .959016333	2 87	.005578411 .011023176	0.51	0.6046
Total	.970173156	89	.010900822		

Bartlett's test for equal variances: chi2(2) = 138.0721 Prob>chi2 = 0.000

Row Mean- Col Mean	Plaster	Impregum
Impregum	0184 0.795	
S-Steel	.008233 0.955	.026633 0.619

. oneway distance type if group==47,tabulate scheffe

	Summa	ary of distance	
type	Mean	Std. Dev.	Freq.
Plaster Impregum S-Steel	40.178867 40.5344 39.9841	.10848637 .27624459 .01892153	30 30 30
Total	40.232456	.28514523	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	4.67168096 2.56471337	2 87	2.33584048 .029479464	79.24	0.0000
Total	7.23639432	89	.081307801		

Bartlett's test for equal variances: chi2(2) = 125.0434 Prob>chi2 = 0.000

Comparison of distance by type (Scheffe)

Row Mean- Col Mean	Plaster	Impregum	(-
Impregum	.355533 0.000		
S-Steel	194767 0.000	5503 0.000	

. oneway distance type if group==48,tabulate scheffe

type	Summa	ary of distand	ce
	Mean	Std. Dev.	Freq.
Plaster	16.538567	.15983713	30
Impregum	16.591467	.02066437	30
S-Steel	16.696933	.01490414	30
Total	16.608989	.11365881	90
	Ana	alysis of Vari	lance

Source	SS	df	MS	F	Prob > F
Between groups Within groups	.390016289 .7597147	2 87	.195008144 .008732353	22.33	0.0000
Total	1.14973099	89	.012918326		

Bartlett's test for equal variances: chi2(2) = 160.4045 Prob>chi2 = 0.000

Row Mean- Col Mean	Plaster	Impregum
Impregum	.0529 0.096	
S-Steel	.158367 0.000	.105467 0.000

. oneway distance type if group==49,tabulate scheffe

	Summ	ary of distance	
type	Mean +	Std. Dev.	Freq.
Plaster	29.789033	.18768471	30
Impregum	30.3985	.23151491	30
S-Steel	29.5144	.0251925	30
Total	29.900644	.40888146	90

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	12.285059 2.59432167	2 87	6.14252948 .029819789	205.99	0.0000
Total	14.8793806	89	.167184052		

Bartlett's test for equal variances: chi2(2) = 88.4537 Prob>chi2 = 0.000

	Co	omparison	of	distance by (Scheffe)	type
Row Mean-					
Col Mean	Plaster	Impregu	ım		
Impregum	.609467 0.000				
S-Steel	274633 0.000	884 0.00	1 00		

Row Mean-

. oneway distance type if group==50,tabulate scheffe

type	Summa Mean	ary of distance Std. Dev.	Freq.
Plaster Impregum S-Steel	14.0684 14.622533 13.4748	.34530552 .19874429 .02413811	30 30 30
Total	14.055244	.52346493	90

	Analysis	of Va	riance		
Source	SS	df	MS	F	Prob > F
Between groups Within groups	19.7671652 4.62021747	2 87	9.88358258 .053105948	186.11	0.0000
Total	24.3873826	89	.274015535		

Bartlett's test for equal variances: chi2(2) = 114.2391 Prob>chi2 = 0.000

Comparison of distance by type (Scheffe)

Col Mean	Plaster	Impregum
Impregum	.554133 0.000	
S-Steel 	5936 0.000	-1.14773 0.000
. log close log: log type: closed on:	C:\Dudu\Vo text 28 Apr 200	n Berg\Casts output.log 6, 09:33:43

12. REFERENCES

- 1. Brånemark P-I. Osseointegration and its experimental background. J Prosthet Dent 1983; 50: 399-409
- 2. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JYK. Clinical Complications with Implants and Implant Prostheses. J Prosthet Dent 2003; 90: 121-32.
- 3. Jemt T. Modified single and short-span restorations supported by osseointegrated fixtures in the partially edentulous jaw. J Prosthet Dent 1986; 55: 243-247.
- 4. Gunne J, Jemt T, Linden B. Implant Treatment in Partially Edentulous Patients: a Report on Prostheses after 3 Years. Int J Prosthodont 1994; 7: 143-148.
- 5. Jemt T, Book K. Prosthesis Misfit and Marginal Bone Loss in Edentulous Implant Patients. Int J Oral Maxollofac Implants 1996; 11:620-625.
- Jemt T, Carlsson L, Boss A, Jörnéus L. In Vivo Load Measurements on Osseointegrated Implants Supporting Fixed or Removable Prostheses: a Comparative Pilot Study. Int J Oral Maxillofac Implants 1991; 6:413-417.
- Jemt T. Failures and Complications in 391 Consecutively Inserted Fixed Prostheses Supported by Brånemark Implants in Edentulous Jaws: a Study of Treatment from the Time of Prostheses Placement to the First Annual Checkup. Int J Oral Maxillofac Implants 1991; 6:270-276.
- 8. Jemt T, Lekholm U. Measurements of bone and frame-work deformations induced by misfit of implant superstructures. A pilot study in rabbits. Clin Oral Implants Res 1998; 9: 272-280.
- Lekholm U, van Steenberghe D, Herrmann I, Bolender C, Folmer T, Gunne J, Henry P, Higuchi K, Laney WR., Linden U. Osseointegrated Implants in the Treatment of Partially Edentulous Jaws: a Prospective Five-Year Multicentre Study. Int J Oral Maxillofac Implants 1994; 9: 627-635.
- Zarb GA, Schmitt A. The Longitudinal Clinical Effectiveness of Osseointegrated Dental Implants: the Toronto Study. Part III: Problems and Complications Encountered. J Prosthet Dent, 1990; 64: 185-194.
- Sones AD. Complications with osseointegrated implants. J Prosthet Dent 1989; 62: 581-5.
- Rangert B, Krogh HJ, Langer B, van Roekel N. Bending Overload and Implant Fracture: a Retrospective Clinical Analysis Int J Oral Maxillofac Implants 1995; 10:326-334
- Naert I, Quirynen M, van Steenberghe D, Darius P. A study of 589 consecutive implants supporting complete fixed prosthesis. Part II: Prosthetic Aspects. J Prosthet Dent, 1992; 68:949-56.
- 14. Setz J, Kramer A, Benzing U, Weber H. Complete Dentures Fixed on Dental Implants: Chewing Patterns and Implants Stress. Int J Oral Maxillofacial Implants of 1989; 4:107-111
- 15. Iglesia MA, Moreno J. A Method Aimed at Achieving Passive Fit in Implant Prostheses: Case Report Int J Prosthodont 2001; 14: 570-574.
- 16. Wee AG, Aquilino SA, Schneider RL. Strategies to Achieve Fit in Implant Prosthodontics: a Review of the Literature. Int J Prosthodont 1999; 12: 167-178.
- 17. Millington ND, Leung T. Inaccurate Fit of Implant Superstructures. Part 1: Stresses Generated on the Superstructure Relative to the Size of Fit Discrepancy. Int J Prosthodont 1995; 8:511-516.
- 18. Kan JYK, Rungcharassaeng K, Bohsali K, Goodacre CJ, Lang BR. Clinical methods for evaluating implant framework fit. J Prosthet Dent 1999; 81:7-13

- 19. Jemt T, Lie A. (1995). Accuracy of implant supported prostheses in the edentulous jaw. Clin Oral Implants Res 6:172-180.
- 20. Carr, AB. (1991). Comparison of impression techniques for a five-implant mandibular model. Int J Oral and Maxillofac Implants. 1991; 6: 448-455.
- 21. Spector MR., Donovan T, Nicholls J. An Evaluation of Impression Techniques for Osseointegrated Implants. Journal of Prosthetic Dentistry; 1990; 63: 444-447.
- 22. Naconecy MM, Teixeira ER, Shinkai RSA, Frasca LCF, Cervieri A. Evaluation of the Accuracy of Three Transfer Techniques For Implant-Supported Prosthesis with Multiple Abutments. Int J Oral Maxillofacial Implants 2004; 19:192-198.
- 23. Goll GE. Production of accurately fitting full-arch implant frameworks: Part I-Clinical procedures. J Prosthet Dent 1991; 66:377-84.
- 24. Hsu C-C, Millstein PL, Stein RS. A comparative analysis of the accuracy of implant transfer techniques. J Prosth Dent, 1993; 69; 588-593.
- 25. Vigolo P, Majzoub Z, Cordioli G. Evaluation of the accuracy of three techniques used for multiple implant abutment impressions. J Prosthet Dent 2003; 89:186-92.
- 26. Vigolo P, Fonzi F, Majzoub Z, Cordioli G. Master Cast Accuracy in Single-Tooth Implant Replacement Cases: an In Vitro Comparison. A Technical Note. Int J Oral Maxillofac Implants 2002; 20:455-460.
- 27. Assif D, Marshak B, Schmidt A. Accuracy of implant impression techniques. Int J Oral Maxillofac Implants.1996, 11:216-222.
- Assif D, Nissan J, Varsano I, Singer A. Accuracy of Implant Impression Splinted Techniques: Effect of Splinting Material. Int J Oral Maxillofac Implants 1999; 14:885-888.
- 29. Phillips KM, Nicholls JI, Ma T, Rubinstein J. The Accuracy of Three Implant Impression Techniques: a Three-Dimensional Analysis. Int J Oral Maxillofac Implants 1994; 9:533-540.
- 30. Herbst D, Nel JC, Driessen CH, Becker PJ. Evaluation of Impression Accuracy for Osseointegrated Implant Supported Superstructures. J Prosthet Dent 2000; 83:555-61.
- Humphries RM, Yaman P, Bloem T J. The Accuracy of Implant Master Casts Constructed from Transfer Impressions. Int J Oral Maxillofac Implants, 1990; 5:331-336.
- 32. Linke BA, Nicholls JI, Faucher RR. Distortion analysis of stone casts made from impression materials. J Prosthet Dent 1985; 54: 794-802.
- Finger W, Ohsawa M. Accuracy of Stone-Casts Produced from Selected Addition-Type Silicone Impressions. Scand J Dent Res 1983; 91:61-5.
- 34. Wee AG. Comparison of impression materials for direct multi-implant impressions. J Prosthet Dent 2000; 83: 323-31.
- 35. Johnson GH, Craig RG. Accuracy of four types of rubber impression materials compared with time of pour and a repeat pour of models. J Prosthet Dent 1985; 53: 484-490.
- Akça K, Çehreli MC. Accuracy of 2 Impression Techniques for ITI Implants. Int J Oral Maxillofacial Implants 2004; 19:517-523.
- 37. Eid N. An implant impression technique using a plaster splinting index combined with a silicon impression. J Prosthet Dent 2004, 92: 575-7.
- 38. Inturregui JA, Aquilino SA, Ryther JS, Lund PS. Evaluation of three impression techniques for osseointegrated oral implants. J Prosthet Dent 1993; 69 (5): 503-509.
- 39. Nissan J, Barnea E, Krauze E, Assif D. Impression Technique for Partially Edentulous Patients. J Prosthet Dent 2002; 88:103-4.

- 40. Tautin FS., Impression Making for Osseointegrated Dentures. J Prosthet Dent, 1985, 54: 250-251.
- 41. Johnson GH, Craig RG. Accuracy of addition silicones as a function of technique. J Prosthet Dent; February 1986, 55, 197-203.
- Moseley JP, Dixon DL, Breeding LC. Custom Impression Trays. Part III: A Stress Distribution Model. J Prosthet Dent, 1994; 71:532-8.
- 43. Eames WB, Sieweke JC, Wallace SW, Rogers LB. Elastomeric impression materials: effect of bulk on accuracy. J Prosthet Dent 1979; 41: 304-307
- 44. RW Phillips. Skinner's Science of Dental Materials. Eighth Edition. WB Saunders Co.
- 45. Ma T, Nicholls JI, Rubinstein J E. Tolerance Measurements of Various Implant Components. Int J Oral Maxillofac Implants 1997; 12:371-375.
- 46. Hecker DM, Eckert SE. Cyclic loading of implant-supported prostheses: changes in complement fit over time. J Prosthet Dent 2003; 89: 346-51.
- 47. Riedy SJ, Lang BR, Lang BE. Fit of implant frameworks fabricated by different techniques. J Prosthet Dent 1997; 78: 596-604.
- 48. Jemt T, Bergendal B, Arvidson K, Bergendal T, Karlsson U, Linden B, Rundcrantz T, Wendelhag I. Implant-Supported Welded Titanium Frameworks in the Edentulous Maxilla: a 5-Year Prospective Multicentre Study. Int J Prosthodont 2002; 15:544-548.
- 49. Jemt T, Henry P, Lindén B, Naert I, Weber H, Wendelhag I. Implant-Supported Laser-Welded Titanium and Conventional Cast Frameworks in the Partially Edentulous Jaw: a 5-Year Prospective Multicentre Study. Int J Prosthodont 2003; 16:415-421.
- 50. Takahashi T, Gunne J. Fit of implant frameworks: an in vitro comparison between two fabrication techniques. J Prosthet Dent 2003; 89:256-60.
- Lang LA, Sierraalta M, Hoffensperger M, Wang R-F. Evaluation of the Precision of Fit between the Procera Custom Abutment and Various Implant Systems. Int J Oral Maxillofac Implants 2003; 18: 652-658.
- 52. Hobkirk JA, Schwab J. Mandibular Deformation in Subjects with Osseointegrated Implants. Int J Oral Maxillofac Implants, 1991; 6: 319-328.
- 53. Cho GC, Chee WW. Efficient soldering index materials for fixed partial dentures and implant substructures. J Prosthet Dent 1995; 73: 424-7.
- 54. Mojon P, Oberholzer J-P, Meyer J-M, Belser UC. Polymerisation shrinkage of index and pattern acrylic resins. J Prosthet Dent, 1990; 64: 684-8.
- Speculand B, Butcher GW, Stephens CD. Three-dimensional Measurement: the Accuracy and Precision of the Reflex Microscope. Br J Oral Maxillofac Surg, 1988; 26: 276-283.
- 56. Gallucci GO, Bernard J-P, Bertosa M, Belser UC. Immediate Loading with Fixed Screw-Retained Provisional Restorations in Edentulous Jaws: the Pickup Technique Int J Oral Maxillofacial Implants 2004; 19:524-533.
- 57. Hoshaw SJ, Brunski JB, Cochran GV. Mechanical Loading of Brånemark Implants Affects Interfacial Bone Modelling and Remodeling. Int J Oral and Maxillofac Implants 1994; 9: 345-360.