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ABSTRACT

Little information is available on the corrosion behaviour of aluminium 

alloys in static and flowing mine water. To gain a basic understanding 

in this area, a flow loop was designed and constructed. This provided 

facilities for both electrochemical and total immersion testing, under 

controlled hydrodynamic conditions. Purpose designed ind built controlled 

temperature baths were used in similar tests in static water.

Aluminium alloys 1200, Alclad 3004, 3004, 5251, 6063TB, 6063TF and 7017 

were used in the tests, along with type 316L stainless steel. 3CR12 and 

mild steel for comparative purposes. Waters from ERPM and Freddies mines 

were used, with chloride levels of 111 and 16Q0ppm respectively. Other 

than 7017, the alloys exhibited some passivity in the two mine waters 

used. Flow increased corrosion rates in proportion to the square of the 

velocity and pitting was most severe under flow conditions. In the mor*> 

aggressive water (1600ppm Cl ), even type 316^ stainless steel showed 

fairly limited resistance to pitting under flow conditions. Limited tests 

showed that for alloy 5251 corrosion rates increased with the square of 

temperature.

Overall, aluminium alloys are susceptible to severe pitting in these mino 

waters, especially under flow conditions and some form of extra protectirn 

would be required for any long term use.
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1.0 INTROD UCTION

1.1 GENERAL

Corrosion hcs been, e» i still is a major problem in all sectors of in­

dustry worldwide. Those industries operating in especially aggressive 

environments such as mining, chemical and marine are the most adversely 

ef fei.'ed.

Many studies to evaluate the actual cost of corrosion to the economy as 

a whole have been made in various countries. Slabbert (.) summarise'1 their 

findings and found that in most industrial countries the direct and in­

direct costs of corrosion amounted to 3 to 4"» of the GNP. More impor­

tantly, estimates from Sweden, the USSR, the Geru.an Federal Republic and 

the USA claimed that between 15 and 35°; of these costs can bo regarded 

33 avoidable. In 1975 the "avoidable" corrosion costs in the USA were put 

at $10,5 Billion.

South Africa suffers similarly in the industrial and mining sectors. Re­

search is thus needed to determine the suitability of materials of con­

struction and protective methods under local conditions. The min ,.ig 

industry has severe corrosion problems especially in gold mines because 

of the corrosivity of the water. Many possible new materials for piping 

systems are being examined, and the possibility of using aluminium alloys 

has been considered.
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1.2 PROBLtM STATEMENT

Little information is available about the corrosion behaviour of 

aluminium a?loys under static m d  flow conditions in natural mine waters.

1.3 AIM

This project was initiated to provide data :n the corrosion beha our of 

a range of aluminium alloys under both stat.c and flow condition in two 

typical mine waters. This was to be ach .»ved by the design and con­

struction and subsequent use of a flow loop, complemented by static cor­

rosion testing.

1.4 JUSTIFICATION

Aluminium has an inherent corro: on resistance because of the protective 

oxide film that forms on its surace. Aluminium llloys hava the benefits 

of a high strength to mass ratio .inch allows easier and cheaper handling 

for aluminium alloy fabrications ompared with most other materials. The 

costs ot corrosion have already tn>en examined and for South Africa it was 

calculated that at 4 - 5% of the GNP, the corrosion costs in 1983 would 

be between R3 400 million and R4 200 million. Thus it is of great impor­

tance to f'.nd suitable corrosion resistant materials for local condi­

tions .
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1.5 SCOPE

There are many parameters that need to be investigated for a full under­

standing of the corrosion behaviour of aluminium alloys in mine water, 

these are:-

- Alloy composition and temper condition

- Water composition

- pH

- Water temperature

- Water velocity

- Microbial effects

- Abrasion / erosion

To fully investigate these variables would be far beyond the scope of this 

research project, also taking note that a large portion of the project 

was the design and construction of equipment required for the research.

Mictobial and abrasion/erosion effects were not considered. A biocide was 

used to try to eliminate microbial corrosion and the waters used were left 

to stand for a week before being placed in the test systems, to allow 

solids to settle out.

Two mine waters were used in the testing, both being typical of the areas 

they came from;-

a) the East Rand

INTRODUCTION 3



b) the Orange Free State

A water temperature of 40°C was used for most of the testing as this gives 

a good indication of corrosion rates at the extreme temperatures typical

i.i the mining industry and this temperature could be maintained in the 

flow loop without the addition of cooling equipment. Limited testing was 

also conducted at temperaturas in the range of 5-55°C.

The water velocity for testing under flow conditions was maintained at 

1,75ms 1 and limited testing was performed within the range 1,0 to 

3,25ms'1.

1.6 LIMITATIONS

Total time for testing was limited to six months so immersion testing was 

limited and thus extrapolation for long term behaviour would have to be 

made.

Some conflict always exists between academic and industrial research. In 

this instance the use of "mill finish" specimens for all tests would 

probably have given a better approximation to mining conditions. However, 

this approach affords no control of surface finish and hence no 

reproducibility of surface finish. A compromise was made with limited 

tests being performed with specimens in the "mill finish" surface condi­

tion
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1.7 PREVIEW OF THE REP RT

Chapter 2 gives an overview of available present knowledge on the aqueous 

corrosion of aluminium alloys, mining conditions in South Africa and 

hydrrdynamic fundamentals used in the design of the flow loop.

The following chapter summarises the desifcn specifications of the equip­

ment pro-iuced and the route taken in arriving at the final designs.

Apparatus specifications (Chapter 4) gives a brief summary of the spec­

ifications of major equipment usad.

The methods and procedures used in the experimental work are detailed in 

Chapter 5.

Chapter 6 is the most voluminous, and includes the results obtained to­

gether wit*.i an analysis and discussion of them.

In the final chapter, the important conclusions are laid out with emphasis 

on recommendations for further work based on the results of this research
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2 . 0  L ITERATURE REVIEW

2.1 INTRODUCTION

Estimates from d number of industrial countries put the cost of corrosion 

in the region of 4% of the Gross National Product (1). In the United 

States, the cost of corrosion and corrosion protection was estimated at

8 Billion Dollars in 1983 (3). Hence corrosion control and the selection 

of the correct materials of construction to prevent corrosion failures 

is of great importance, both in terms of human safety and overall costs.

Aluminium has only been commercially produced for just over 100 years (2), 

but has become one of the most important materials available to industry. 

It is used in almost all spheres of life, from household goods and ar­

chitectural finishes to the most demanding area of aerospace applica­

tions. Besides its properties of low density and relatively high strength 

in alloyed form, one of its most important properties is that of atmo­

spheric corrosion resistance, especially in the anodised condition. 

Aluminium forms an insoluble oxide layer on its surface which protects 

the underlying metal from corrosion.

2.2  PITTING CORROSION

Pitting has been described as "one of the most destructive and insidious 

forms of corrosion" (3), mainly bncnuse it can lead to failure of equip-
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ment through perforation even though only limited mass loss has occurred. 

Pitting is a highly localised attack that usually results in the formation 

of small holes, with the surface diameter often being equal to or less 

than the depth. The mechanism is very similar to that of crevice corro­

sion, but requires something to initiate the localised attack. This ini­

tiation may be due to surface damage or discontinuities such as an 

emerging dislocation, an inclusion or a precipitate. This would give rise 

to a higher rate of metal dissolution, causing a net positive charge and 

hence chloride ions would migrate to this point. The process is summarised 

in Figure 1. Flow of cortosive medium may effect pit growth as higher 

velocities tend to remove any local concentrations of ions and hence may 

prevent or decrease pitting. Gravity has an effect on pitting and pits 

tend to grow fastest in the direction of gravity. Alloys that depend on 

a passive surface film for corrosion resistance such as stainless steels 

and aluminium alloys are the most susceptible to pitting.

ulTEkATURF, RF.VIF.W 7



Figure 1. Generalised process occurring at a pit site.

Since the reduction of oxygen is taking place around the pit as the 

cathodic reaction, the surrounding area is protected, and so even with a 

large pit, it is often surrounded by an uncorroded area.

2.3 THE ELECTROCHEMISTRY OF CORROSION PROCESSES

All corrosion processes are electrochemical in nature and this may be 

illustrated by the corrosion of aluirinium by hydrochloric acid:

LITERATURE REVIEW
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2A1 + 6HC1 - 2A 1C 1  ̂+ 3H2 (2.1)

This takes place as 2 distinct reactions, anodic and cathodic. Oxidation 

(anodic reactif'n)

2A1 ■* 2A13+ + 6e (2.2)

Reduction (cathodic reaction)

6H+ + 6e ■» 3H0 (2.3)

2.3.1 POLARISATION

Polarisation has been defined (3) as the displacement of electrode po­

tential resulting from a net current. Electrochemical corrosion reaction 

rates are controlled by concentration and resistance polarisation. The 

magnitude of polarisation is referred to as overvoltage (n). This is the 

difference between the equilibrium potential i.e. at zero net current and 

the potential when a net current is flowing.

2 .3 .1 . i Activation polarisation

The overall rate of u sequence of chemical reactions is determined by the 

slowest step in that sequence. In a corrosion reaction there may be a 

number of steps involved at the metal - corrodent interface. If the 

overall reaction rate depends on a particular reaction, this is referred 

to as activation polarisation. The relationship between reaction rate and 

overvoltage in this case Is given by:
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2 .3 .1 .2  Concentration polarisation

This type of polarisation is due usually to the electrochemical reaction 

being controlled by the rate of diffusion of some ionic specie to or from 

the reacting surface. Changes in the environment, such as an increase in 

the velocity of the corrodent or its concentration will then affect the 

reaction, since there will be a change in the quantity of aggressive ions 

at the corroding surface and in the rate at which they reach the surface. 

The limiting rate can then be expressed as the limiting diffusion current 

density i^- This represents the maximum rate of reduction possible for a 

given system. This rate is then expressed as :*

The diffusion layer thickness is decreased by agitation i.«. flow velocity 

of the corrodent over the metal surface and/or a build up of the cations 

produced in the corrosion roaC’ions.

Both activation and concentration polarisation usually occur at an 

electrode surface, with activation polarisation dominating at low re­

action rates and concentration polarisation predominant at higher re­

action rates (3). The total polarisation of an electrode is thus the sum 

of the contributions made by both of the polarisation types.

i.e. t|T a n + fl (2.6)

1 (3 C
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This equation may then be applied to a process such as a reduction proc­

ess. During anodic dissolution, where concentration polarisation is NOT 
a factor the kinetics of anodic dissolution are given by (3):

' < « .  ' S , 0 , t  (2.7)

Then as a reduction reaction reaches its limiting rate, concentration 

polarisation becomes the important factor. The equation for concentration 

polarisation is (from the Nernst Equation):

"C ■ 2 -3 a? lo* (l - <2 -r>

Then combining the two for the complete reduction process.

nrtd ■ 0 l0« r  + 2 -3 5  lo* - b  (2-9)

o L

This equation describes any reduction reaction and applies to almost all 

anodic dissolution reactions, except where a metal exhibits active- 

passive behaviour.

2.4 PASSIVITY

Passivity refers to the loss of chemical reactivity of certain metals and 

alloys under particular environmental conditions. Figures 2 and 3 show 

corrosion rate versus oxidising power of the solution for an active metal 

and an active-passive metal respectively. For the active metal,'the cor­

rosion rate Increases with an increase in the oxidising power of the 

solution. On the other hand, the active-passive metal exhibits a totally 

different behaviour. The corrosion rate increases at first and Mien sud­

denly decreases and remains constant (the passive region) up to the same 

point, where It starts increasing again (the transpassive region). The 

potential at the active-passive transition Is referred to as the primary
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passivation potential (Epp). The current corresponding to the passive 

range is ipass * the passive current density. The potential at which the 

corrosion current starts increasing is known as E - the threshold po­

tential or more commonly E^ - pitting potential. In this transpassive 

rejt<>->n pitting takes place.

ll

■
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-
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Corrot«n rflt#

Figure 2. Corrosion rate vs oxidising power or potential: Active

metal.
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LOO C U B K E N T  O C N S I T Y - * -

Figure 3. Schematic polarisation curve: Current density or corro­

sion rate vs potential.

2.5 MEASUREMENT OF CORROSION RATES

Since the corrosion rate of a metal or alloy is directly related to the 

number of electrons and hence the current, leaving its surface, 

electrochemical techniques involving current measurements can be used to 

calculate corrosion rates.

Mixed potential theory forms tho basis of two electrochemical methods used 

in determining corrosion rctes, Tafel Extrapolation and Linear 

Polarisation.
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The corrosion current cannot be measured directly since it flows between 

the undifferentiated anodic and cathouic sites on the surface of a 

corroding metal. However it is possible to measure it indirectly. The 

technique involves using a potentiostat which applies a current to a 

specimen in such a way to enable the potential (measured against a ref­

erence electrode) to be '•.ontrol led.

The basic method is as follows. The specimen is polarised from the

cathodic into the anodic region through the rest potential and a plot of

applied potential versus the log of current density is obtained. There

are regions of linearity on this plot, on both the anodic and cathodic

curves, known as the Tafel regions. By extrapolating m e  Taffsl slopes back

to where they intersect the value of E , i may be obtained (see

corr corr 1

Figure 4), which may then be converted into a corrosion rate using the 

relationship:-

e (210)

R - 0,13 i i 

’ corr f
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2.5.1 LINEAR POLARISATION RESISTANCE

At potentials very cloie to E(,orr (i.e. ±10mV) the slope of the 

potential/current slope i& approximetely linear. This region is shown in 

Figure 5. The slope has units of resistance AE/Ai and it h.is been founn 

that, i, ofr is inversely related to this slope by the equ.it m :

LITERATURE REVIEW 15



_ r_____a__c___ 1 41

corr 2»3 I5a + 5c] J <il (2.11)

Where 3 and 0 are the anodic and cathodic Tafel slopes respectively, 

d c

F gure S. Linear polarisation resistance method.

2.6 THE CORROSION OF ALUMINIUM

Aluminium is low in the E.M.F. series (Table 2.1) and thus is an active 

metal. However, exposure to oxygen results in the formation of a coripact, 

adherent, protective film of aluminium oxide, that resists further 

oxidation (8). This oxide film being relativ* y Inert gives aluminium its 

corrosion resistance and reforms quickly on being dissolved or mechan­

ically damaged. If the tj.lm is however removed, che underlying metal 

undergoes uniform corrosion (8).

In air the film developed Is usually SO-IOOA0 thick (6).

LITERATURE REVIEW 16



Table . .1 tMF series for metals.

Metal-metal ion 

equilibrium 

(unit) activity

Electrode potential 

vs norma] hydrogen 

electrode at 25°C (V)

Au-Au+3 +1,498

Pt-Pt+2 +1.2

Noble or Pd-Pd+2 +0,987

cathodic Ag-Ag+ +0,799

Hg-Hg+2 +0,788

Cu-Cu+2 +0,337

h 2-h+ 0,000

Pb-Pb+2 -0,126

Sn-Sn+7 -0,136

Ni-Ni+2 -0,250

Co-Co+2 -0,277

Cd-Cd+2 -0,‘.o3

Fe-Fe+2 -0,440

Cr-Cr+3 -0,744

Zn-Zn+2 -0,763

Activ*» or A1-A1+3 -1,662

+2

anodic Mg-Mg -2,363

Na-Na-* -2,714

K-K+ •2,925

1
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2.6.1 THE OXIDE FILM ON ALUMINIUM

2.6.1.1 Chemical composition (8)

The naturally formed oxide film on aluminium comprises mainly amorphous 

alumina (Al^O^). It probably exists in various degrees of hydration de­

pending on humidity and temperature during its formation. Aluminium alloy 

oxide films will also contain the alloying elements.

In humid or water immersed condit ■ i this oxide film thickens, the growth 

rate increasing with temperature, aluminium corrosion products tend alsr 

to be mainly but are produced at a distance from the metal-

environment inttrface and are non-protective.

There are six common crystalline forms of aluminium oxide and the type 

depends on temperature and degree of hydration. The naturally occurring 

forms are:-

a) Gibbisite (a-Al^O^jH^O), which is the main constituent of manv 

bauxite ores; however it has not been identified in any oxide films 

( 8 ) .

b) Bayerite (&-A12033H20) which is the usual corrosion product film 

that forms on aluminium in water at temperatures below 85°C. It is 

also the major component of nodules of corrosion product that form 

on aluminium undergoing pitting.

c) Boehmite (a-A^O^H^O or A10.0H) which is found in many bauxites 

and also in oxide films formed on aluminium in water at temperatures 

above 85’C. Troutner (10) reports that films produced on aluminium 

in water at 300#C consisted of amorphous alumina and Boehmite. This 

temperature of 85°C for the corrosion products is independent of pH 

and alloying elements (9). The boehmite film is protective below 

200°C and above that temperature the boehmite crystals begin to grow
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rapidly and the film ceases to be protective and rapid oxidation takes 

place. Dillon (14) has shown that the oxides formed in flowing water 

are more porous, the reason being that the soluble constituents are 

leached out of the oxide film, which is thus less protective.

d) Diaspore (B-Al_0„Ho0) has been found in •some bauxites, but not ir.

L J L

surface films.

e) Gamma alumina (J-A^O^) may be performed at temperatures above 

400°C by dehydrating boehmite.

f) Corundum (a-Al^O^) occurs in naturo.

2 .6 .1 .2  Physical properties

Hunter and Fowle (13) have shown that the oxide film is a duplex corrosion 

product. This consists of a thin, protective non-porous barrier film ad­

jacent to the aluminium surface and a more permeable outer hulk film. The 

thickness of the barrier layer was found out by Troutner (10) to be de­

pendent only on temperature, and that the barrier film formed in water 

was the same thickness as that formed in air. The only difference between 

the films formed in water and air is that the bulk film grows much thicker 

in water than it does in air.

In dry air, the barrier film controls the rate of oxidation, however in 

water the rate of film growth appears to be controlled by the thickness 

of the bulk film (8). Different corrosion rates in aqueous mediq seem to 

be caused by differing solubilities of the bulk film.
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2.G.1.3 The oxide film in water

On immersion in water the oxide film thickens rapidly, at a rate dependent 

on temperature and time. The rate decreases with time until a limiting 

thickness is reached, depending on pH, oxygen content, ions present and 

temperature. Contaminants in water may reduce the thickness of the film 

e.g. even lppm silica reduces the film thickness by as much as 50%, and 

renders it more soluble in acid (8). Godard also suggests that thickened 

films developed in pure water give better corrosion resistance in other 

solutions than films formed in these other solutions.

Dillon (14) has put forward a corrosion mechanism in low temperature water 

(ambient) which requires diffusion of metal ions through the n-type (ex­

cess metal ions) oxide film. At higher temperatures, the rate determining 

process becomes the extent of the bulk film, even though per unit thick­

ness it is much more permeable that the barrier film.

2.6.2 GENERAL CORRUSION BEHAVIOUR

The corroaion behaviour of aluminium alloys is of greater practical in­

terest than that of pure aluminium. These alloys are used in numerous 

applications in atmospheric, fresh water, sea water, chemical and under­

ground environments. Aluminium alloys are being used on an increasing 

scale in the chemical industry especially for neutral or oxidising sub­

stances. Fabrications, from pipelines, to yachts, to space craft, have 

aluminium alloy components. The environment in which the alloy is used 

determines its behaviour, so that a knowledge of environmental etfects 

is important before any preliminary alloy selection for an application 

may 'je made.
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2 .6 .2 .1  Environmental effects

Water

Other than during high temperature oxidation or gas-metal reactions, wa­

ter together with oxygen must be present before the corrosion of aluminium 

will take place. In water aluminium corrodes mainly in three distinct 

ways: by pitting attack, uniform corrosion and intergranular attack. 

Pitting generally occurs, below 85°C, a temperature range in which uniform 

attar.K usually occurs in conjunction with it, but is usually of minor 

importance. Between 85 and 250°C, uniform corrosion often becomes the 

principal form of attack, and above 250°C intergranular corrosion pre­

dominates .

The pH of the water is of great importance and aluminium is often regarded 

as being passive within a pH range of 4 to 8,5 (15). General corrosion 

will occur outside this range in both acidic and basic solutions. The 

attack is often more severe in stagnant (deoxygenated) solutions at ele­

vated temperatures. Pitting can, and does occur at a neutral pH, espe-

2+
cially in the presence of certain ions, such as Cl and Cu 

Temperature

As previously mentioned there is usually an increasa in the corrosion rate 

with temperature and the form of the corrosion may also vary with tem­

perature. Mears and Brown (31) studied the influence of temperature on 

pitting probability in chloride solutions. They concluded that as the 

temperature rose, the density and probability cf pitting increased, but 

the pitting penetration rate decreased (between 5 and S0°C). Godard et 

al (8) studied pitting in a type 1100 aluminium alloy in a mild water up 

to a temperature of 70°C. They found that the pitting rate/temperature 

curve had « maximum at about 40°C. The rate of pitting was up to 5 times 

as great as that at 25°C. Above 40°C the pitting rate dropped and the 

pitting probability Increased.
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A temperature increase can affect pitting in two ways: a) by reducing 

the solubility of oxygen in the solution and, b) by stimulating the ini­

tiation of pitting.

Water velocity

An increase in velocity of i corrosive gas or liquid in contact with 

aluminium usually increases the corrosion rate. However, the higher water 

velocities (in excess of 0,04ms ') can decrease or even eliminate pitting 

in some waters. Perkins et al (17) produced results indicating that the 

erosive (mechanical) component is insignificant relative to the 

electrochemical (mass transport) effect of velocity up to 3ms *. Above 

7ms 1 cavitation and erosion begin to play a major role in removal of 

metal. These velocity values are highly dependent on the corrosive con­

stituents in the water, so that no critical velocities can be defined.

The increase in velocity of the water also has the effect of Improving 

the mass transfer between the liquid and the metal. It may be beneficial 

in that it brings fresh oxygen to rapidly repair any damaged areas of the 

protective film, i.e. increasing the supply of oxygen to the anode, ena­

bling passivation of local cells, or it may be detrimental in transporting 

away material from the bulk layer of the oxide film hence thinning it, 

i.e. reducing concentration polarisation. Movement probably also pre­

vents the accumulation of acid at the anodic areas and alkali at the 

cathodic areas. The presence of solids in the water may increase material 

loss through erosion and erosion-corros Ion. MansfeId and Henkel (18) 

found that corrosion rates tend to increase with the square root of ve­

locity, whilst the pitting potential becomes more noble. Two general rules 

on the effect of velocity (3) state that:

a)Solution velocity influences the corrosion rate of a diffusion- 

controlled system, but has no effect on activation-controlled sys­

tems .

b)The corrosion rate of a metal in a diffusion controlled system be­

comes independent of solution velocity at very high velocities.
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Rajagopaian et al (11) found a 5,5 times increase in the general corrosion 

rate of alloy 6061 at 40°C on increasing the flow velocity from 0,3ms 

to 1,5ms

2.6.3 PITTING BEHAVIOUR OF ALUMINIUM

The major problem with pitting corrosion damage is that even though neg­

ligible thinning of metal due to uniform corrosion may have occurred, 

perforation of a vessel may have taken place. It is thus of importance 

to ascertain whether pitting will occur under a certain set of conditions 

and establish the rate of penetration.

Pitting of aluminium alloys occurs in the pH range of 4,5 to 9,0. Outside 

this range, corrosion is usually uniform attack, since the protective 

surface oxide film starts to dissolve as shown in Figure 6.

Figure 6. Influence of pH on th'i solubility of the oxide film on 

aluminium.
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The shape of pits vary greatly, although the mouth of a pit tends to be 

roughly circular and the cross section to be roughly hemispherical. These 

are pits t.iat are well developed. "New" pits, tend to be in the form of 

tiny tunnels of square cross section Intergranular coirrosion is some­

times associated with pitting, especially if associated with microbial 

corrosion. In this case intergranular damage proceeds from the pit cavity.

Pitting takes place in two stages; initiation and growth.

2.6.3.1 Pit initiation

As was mentioned in the general discussion on pitting, the origin of pits 

is controlled by the existi oe of weak points in the surface oxide layer. 

At these positions corrosion proceeds at a higher rate than on the re­

mainder of t'.ie passive surface. The high corrosion current at these sites 

leads to a local increase in the surface salt concentration as a result 

of transport processes (migration and diffusion) and anion adsorption 

(14). This high surface concentration or anions displaces water molecules 

from the passive layer and suppresses the passivation reaction,

x M2 + yH20 ■* Mx0y + 2yH+ +2ye (2.12)

and promotes oxide film dissolution. Thus the film thickness decreases 

and the current density increases. Under the action of this high electric 

field, aggressive anions will penetrate the oxide film. Then as the den­

sity of the lattice defects increases along with the high electric field, 

the ionic conductivity of the oxide layer increases. Finally the oxide 

layer loses its passivating properties and is transformed to a non- 

passlvating oxide capable of sustaining high corrosion current densities.

LITERATURE REVIEW 24



The adsorption step

The adsorption of the anions that would promote pitting corrosion in a

competitive step, viz. the chloride or other aggressive ions compete with

hydroxyl or water ions, which if adsorbed, tend to promote passivation.

Viden reported by Foley (20), stated that no pickup of the radioactive

chlorine-36 isotope was detected on an aluminium surface before breakdown

of the passive film had taken place. Similar work by Berzins et al (21) 

36 ~

placed adsorbed Cl primarily at corroding pit sites. Various studies 

reported by Foley (20) are in agreement that the chloride was found i.i 

the outer 15-20°A of the barrier tilm.

2 .6 .3 .2  Pit propagation

This basically involves metal dissolution once the oxide film is suffi­

ciently thin and permeable. Because of the high activity of aluminium and 

the small area Involved In each pit attack is usually rapid. The growth 

of the pit proceeds with the direct interaction betreen aluminium and the 

environment, which varies as the reaction proceeds.

Some of the numerous reactions taking place In an aluminium pit are shown

In Figure 7. Included In this set of reactions is the effect of the 

2+
presence of Cu ions in the electrolyte. At the metal/electrolyte 

boundary oxidation of the aluminium takes place.

Al ■* Al3+ + 3e" (2.13)

The aluminium ions may then bo involved in numerous possible reactions. 

The compounds formed are. generally hydrated salts and aluminium 

hydroxide. The composition of the solution within the pit differs sub­

stantially from that of the bulk solution. Saturated metal salt solutions 

miy form, salt films may precipitate, the solution becone more ar.ld by
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hydrolysis of the metal salt, the potential become more active than out­

side, and hydrogen gas may be generated (20).

Figure 7. Multiple reactions that may occur in an aluminium pit.

Rosenfeld and Marshakov (23) measured corrosion currents and pH in arti­

ficially pioduced crevices in aluminium In KaCl solutions and found that 

the pH immediately became acid in the range 3,2 to 3,4. Similar results 

were obtained by Brown (24) who found a pH of 3,5 at the crack tip in 

aluminium in an NaCl solution. This results from the hydrolysis of the 

Al3+ ions to give A1(0H)^+

0,

SOLUTION OF 0 ? »N0 e f  *N 0  ''W SfERABLr Cy‘ * C o “ **N O  M COj

0.

’Z

i.e. 2A1C13 +3H20 -* Alo03 + 3HC1 (2.14)
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Sotouhdeh et al (25) in studying the hydrolysis of A1(0H)- showed that 

at a value of 1,4x10 , the resultant pll would be 3,5. What was of gri 

interest was their conclusion that the "autocatalytic" nature of 

aluminium pit propagation was due to the action of the highly basic 

A 1C 1 ̂ and not to any action from pH or Cl effects. Further work by the 

same authors supported this when they found, that in other solutions 

similar pH effects could be obtained, but aluminium sulphate solutions 

foi example, were actually non-corrosive. Davis reported by Foley (20), 

found that pH at a crack tip changed only slightly when the pH of the bulk 

solution was varied in the pH range of 2 to 10. He also found that the 

pH at the crack tip was most acidic and increased towards the bulk sol­

ution .

2+

2.6.3.3 Pitting rates

Pathak and Godard reported in the Corrosion Handbook (6) that the maximum 

pit depth of aluminium alloys exposed to various waters was found to vary 

as the cube route of time.

i.e. D - Kt1/3 (2.15)

Where K is a constant that is dependant on the composition of tha water 

and the alloy.

2.6 .3 .4  Summary of pitting

The localised corrosion process thus appears to take place in four stops:-
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a) Adsorption of tho reactive anion on the oxide-covered aluminium 

surface.

b) Reaction of the adsorped anion with the aluminium ion in the 

aluminium oxide lattice or the precipitated aluminium hydroxide.

c) Thinning of the oxide film by dissolution.

d) Direct attack of the exposed metal by the anion, under the influ­

ence of the influence of the anodic conditions set up.

2.G.4 EFFECTS OF ALLOYING ON CORROSION BEHAVIOUR

Generally speaking, pure aluminium has the highest corrosion resistance 

and this decreases with alloying as can be seen in Figure 8.
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It is not only the type and quantity of the alloying element that influ­

ences corrosion behaviour, but also the composition, location, quantity 

and continuity of inic 'istituents. These will be modified by processing

in the surrounding aluminium.

The aluminium-copper alloys have poor corrosion resistance and the amount 

of copper in the alloy has a strong influence on its electrode potential. 

The quantity of the alloying copper in solid solution is important, as 

this effects the electrode potential, rather than the total quantity of 

copper. In fact the amount of copper in solid solution can be determined 

by electrode potential measurements. Aluminium and manganese form inter- 

metallic compounds having almost the same electrode potential as the 

aluminium itself, and hence these alloys have good corrosion resistance.

Chromium has little effect when in solid solution on the electrode po­

tential of aluminium. Its main function is to increase resistance to 

stress corrosion cracking.

Likewise, silicon in solid solution hflfc a minor influence on che electrode 

potential of aluminium and Al-Si alloys have good corrosion resistance. 

Silicon particles within the alloy promote severe galvanic corrosion.

The "3" series wrought aluminium alloys have a high resistance to corro­

sion. Manganese is present in solid solution, as submicroscopic precip­

itates and in larger particles of Al,(Mn,Fe) or Al,„(Mn,Fe),Si phases,

o 12 J

both of wh Jv.h have solution potentials close to that of the solid solution 

matrix (6).

Magnesium is an important alloying element for aluminium and the solid 

solution formed is anodic to aluminium. Excess magnesium forms a con­

stituent thac is anodic to the aluminium-magnesium solid solution. Undor

methods and an/ hr 

potential of s 

of great impor 

constituents tiw. 

points over which the fi

ent applied to the alloy. The electrochemical 

ir precipitates relative to aluminium is 

ilicon in commercially pure aluminium foim 

to aluminium (6). Since they form cathodic 

aak, they may promote electrolytic action
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some conditions precipitation of this Al.Mg, phase as semi-continuous

O J

zones at grain boundaries or along slip planes caused by plastic defor­

mation may occur. In a corrosive environment this can result in highly 

selective attack on the anodic precipitate, and may cause exfoliation and 

SCC. Generally this is not problem since magnesium has a high solubilivy 

in aluminium and precipitation can e controlled to give a finely dis­

persed precipitate. Al-Mg alloys are as corrosion resistant as commer­

cially pure aluminium, and even more resistant in salt water and some 

alkaline solutions.

The "6 series" alloys (Al-Mg-Si) often have a very similar electrode po­

tential to pure aluminium as the silicon makes the so.id solution more 

cii-hodic and in the ratio 2Mg:lS this balances out the anodic effect of 

the n.agnesium.

In the "7 series" alloys (Al-Zn+others), the zinc substantially decreases 

the eiectrode potential of aluminium. These Al-Zn alloys are frequently 

used in Alclad coatings and as sacrificial anodes in cathodic protection. 

These alloys are the most susceptible to SCC.

Nickel and aluminium f rm a strongly cathodic constituent that has a 

detrimental effect on corrosion resistance.

Titanium forms TiAl^ which although cathodic, has little effect on cor­

rosion resistance due to the small quantities added to aluminium alloys.

Tin, bismuth and lead do not form intermet i compounds but are cathodic 

in aluminium alloys.

2.6.5 EFFECTS OF HEAT TREATMENT AND PROCESSING

Thermal treatment and cold working determine the quantity and distrib­

ution of constituents of aluminium alloys and the magnitude of residual

LITERATURE REVIEW 30



stresses. Thus they may hav* a significant effect ->n corrosion properties. 

Welding may result in the formation of inhomogeneities in a component 

which are anodic, providing selective corrosion. As was discussed in the 

previous section, if poorly dispersed or even continuous precipitates are 

allowed to form, these may lead to severe localised attack.

Although variations in grain size and orientation have little effect on 

resistance to corrosion, they do play a major effect on SCC in thick 

sections. In some processing methods, such as cle forging and extruding, 

components may be produced t,\at have large recrystallised grains on the 

surface. These grains are '-sually slightly cathodic - 5 to 20mV, (6) to 

the underlying unrecryst^ »ised grains. This can cause a preferential 

attack of the more anodic layer at machined surfaces or edges, resulting 

in exfoliation, with a Ices of all the material above the interface be­

tween the two layers.

Cold working operations, such is shearing may render the metal more prcne 

to corrosion. Edges of sh-.et or plate are often rat only cold worked, but 

are alsc rough, resulting in a high surface area to volume ratio.

Edge ’tack is likely on coupon specimens. This edge attack also tends 

to prote ct the other surfaces. Some work has shown that where edges of 

coupons are not masked, there is a lower pitting rate on the other sur­

faces as the higher rate of corrosion on the edges tends to protect the 

other surfaces.

2.7 HYDRODYNAMIC EFFECTS ON CORROSION

Fluid flow can influence both the rate and type of corrosion. In order 

to understand the effects of flow, the system in which corrosion meas­

urements are being made must be characterised in terms of flow conditions. 

Electrochemical measurements may be made in flowing conditions to give 

data on (26):
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