
 

 

THE EFFECT OF ALCOHOL ON CRANIAL NEURAL CREST CELLS: IMPLICATIONS 

FOR CRANIOFACIAL DEVELOPMENT 

 

 

 

 

Olusegun Olufemi Oyedele 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A thesis submitted to the Faculty of Health Sciences, University of the Witwatersrand, 

Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. 

 

 

 

Johannesburg, 2010 

 

 

 



ii 

 

18th June 

DECLARATION 

 

I, Olusegun Olufemi Oyedele declare that this thesis is my own work. It is being submitted 

for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. 

It has not been submitted before for any degree or examination at this or any other 

University. 

 

 

 

 

………………………………………………………… (Signature of Candidate) 

 

 

 

…………………………..day of………………………..2010…. 

 

 

  



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my dad 

James Oladiti Oyedele 

1927-1992 

 

You thirsted, and knowledge 

She nourished you 

You opened this door 

Wide-eyed, I walked through 

I, too keep the faith, I light the way 

Wish you were here….. 

  



iv 

 

PUBLICATION ARISING FROM THIS STUDY 

 

Oyedele OO, Kramer B (2008) Acute ethanol administration causes malformations but does 

not affect cranial morphometry in neonatal mice. Alcohol 42:21-27. 

 

PRESENTATIONS ARISING FROM THIS STUDY 

 

O Oyedele and B Kramer. 36
th

 Can the effects of ethanol on developing embryos be 

explained by abnormal migration of cranial neural crest cells? Annual Congress of the 

Anatomical Society for Southern Africa, Golden Gate, South Africa, 23-26 April 2006.  

 

O Oyedele and B Kramer. Acute ethanol administration causes craniofacial malformations 

and affects cranial neural crest cells. Faculty of Health Sciences Research Day, University of 

the Witwatersrand, August 2006.  

O Oyedele and B Kramer. Effects of acute administration of ethanol on mouse embryos. 1
st
 

Conjoint Conference on Anatomy, Morphological Sciences and Fertility, Lagos, Nigeria. 

September 18-22, 2007.   

O Oyedele and B Kramer. The Effect of Ethanol Exposure on Developing Embryos May Not 

Depend on Cranial Neural Crest Cell Migration: Evidence from Avian Morphologic and 

Morphometric Observations. XVII Congress of the International Federation of Associations 

of Anatomists (IFAA), Cape Town South Africa, August 16-19, 2009.  

 

  



v 

 

ABSTRACT 

 

While ethanol is recognised beyond doubt as a teratogen to the unborn fetus, research 

nevertheless continues in order to understand its mode of action and its effects at the cellular 

level. The present study aimed to investigate the effect of an acute dose of ethanol on cranial 

morphology and morphometry in mouse fetuses, as well as on the morphology, migration and 

the expression of cell migration related genes in cultured chick cranial neural crest cells 

(cNCCs). Thirteen pregnant C57/BL mice were orally administered with 0.03ml/g of 25% 

(v/v) ethanol daily on gestational days (GD) 6, 7 and 8. Ten control animals received an 

identical dose of saline. On GD 18, all mice dams were killed and their fetuses were 

removed. Fetal morphological observations and crown-rump lengths were evaluated as were 

mean litter size, survival rate, birth weight and cranial dimensions.  Cranial neural crest cells 

(cNCCs) were cultured from Potchefstroom koek koek stages 8-10 (HH) chick embryo neural 

tubes either in culture medium (DMEM) to which 0.2%, 0.3% and 0.4% ethanol (v/v) 

respectively, was added (treated) or in DMEM only (controls). Whole-mount HNK-1 

immunocytochemistry was performed on treated and control chick embryos, as was an assay 

for caspase-dependent apoptosis. Photographs were taken of the cultures and the distance 

which the neural crest cells migrated from the neural tube at 24 and 48 hrs post-culture was 

measured. 24-hr time-lapse video microscopy recordings were also made to analyse the 

migration of the neural crest cells. Rhodamine-phalloidin immunocytochemistry for the actin 

cytoskeleton and scanning electron microscopy of surface ultrastructure were performed on 

migrating treated and non-treated cNCCs, as were proliferation assays and quantitative PCR 

of cNCCs‟ β-actin, Rac 1, Rho B and slug genes. There was a statistically significant increase 

in fetal reabsorption as well as a significantly reduced fetal survival rate observed in newborn 

mice fetuses that had been exposed to ethanol in utero compared to control fetuses. Ethanol-

exposed mice showed a number of abnormalities, which were not significantly increased over 
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controls (p>0.5). Birth weight, crown-rump length and mandibular length were also not 

significantly different in treated fetuses compared to controls (p>0.5). Treated (0.3%) chick 

cNCCs migrated over a significantly increased distance at both 24hrs and 48hrs compared to 

controls (p<0.05) in the axes of migration that were studied. The migratory distances of 

cNCCs derived from embryonic stage 9 (HH) were markedly affected by treatment with 

alcohol. The actin cytoskeleton of treated cNCCs showed disorganisation and loss of focal 

adhesion contacts while Rac 1, Rho B and slug genes were either up-regulated or down-

regulated depending on the ethanol dose and duration of treatment. Ethanol promotes 

significant proliferation in cNCCs and may affect their migration by altering the expression 

of migration-linked genes and the arrangement of the actin cytoskeleton. 
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1.0 INTRODUCTION 

 

1.1 History and epidemiology of the teratogenicity of alcohol 

 

Ethanol has been recognized as a teratogen from medieval times. As Calhoun and Warren 

(2007) point out, references to the association between the ill-effects of ethanol and the 

unborn fetus are to be found in ancient Greek and Roman belief systems. Although, some 

authors have postulated that the interpretation of these early observations was somewhat 

misplaced and premature, since paternal rather than maternal drinking was often castigated, 

they nevertheless acknowledge that observers in classical times recognized the link between 

alcohol consumption and reproduction (Warner and Rosett, 1975; Sanders, 2009).  The 

modern era of the systematic identification of the harmful effects of prenatal ethanol 

exposure on unborn fetuses arrived with the works of Lemoine et al. (2003) and Jones and 

Smith (1973). Following these landmark publications, there has been a flurry of scientific 

activity aimed at fully characterizing the social, clinical, epidemiological and molecular 

aspects of the fetal alcohol syndrome (FAS)  (Jones et al., 1976; Sulik et al., 1981; Colangelo 

and Jones, 1982; Wynter et al., 1983; Streissguth et al., 1985; Webster and Ritchie, 1991; 

Werler et al., 1991; Blader and Strahle, 1998; Goodlett et al., 2005; Sulik, 2005; Yamada et 

al., 2005; Yoshinaga et al., 2007; Agrawal and Lynskey, 2008; Tanguay and Reimers, 2008; 

Loucks and Ahlgren, 2009).  

It is now recognized that clinical FAS represents only one extreme of what has been termed 

the fetal alcohol spectrum disorders (FASD). This is because researchers realized early that 

the neurological and morphological effects of ethanol on unborn babies whose mothers were 

alcohol abusers were by no means homogenous. Hence terminologies such as fetal alcohol 

effects (FAE) (Clarren and Smith, 1978), partial FAS, alcohol-related birth defects (ARBD) 

and alcohol-related neurodevelopmental disorders (ARND) have been used to describe 

variations in the phenotypic outcome of alcohol-exposed children (Calhoun and Warren, 



2 

 

2007). Phenotypically, fully-developed FAS is said to be characterized by prenatal and 

postnatal growth retardation, mental retardation, motor incoordination, altered craniofacial 

features including microcephaly, micrognathia, maxillary hypoplasia, depressed nasal bridge, 

narrow palpebral fissure and epicanthal folds among others (Jones and Smith, 1973; Jones, 

1986; Jones and Bass, 2003; May et al., 2007; Jones et al., 2009). However, not all affected 

patients exhibit these features. Indeed, there may not be any visible effects of the effect of 

ethanol on babies born to alcoholic mothers (Mattson et al., 1997; Mattson et al., 1998). 

Because the data on the prevalence of the various forms of FASD have been gathered from 

several sources, including population, prospective, retrospective and clinical studies, the 

numbers of affected individuals quoted in the literature vary. However in 1996, the Institute 

of Medicine in the United States of America estimated the occurrence of FAS to range from 

0.6 to 3 births per 1000 in most populations (The Institute of Medicine, 1996). Abel (1995) 

estimated an overall international prevalence of FAS as 0.97 per 1000 live births. The 

prevalence of FAS in a South African cohort was found by (May et al., 2000) to be 18 to 141 

times greater than these international rates. These high rates of FAS occurrence in South 

Africa, judged to be the highest in the world, coupled with the high amount of alcohol 

consumption by pregnant women in affected communities render the scientific understanding 

of the factors which influence the teratogenicity of ethanol a priority, among other 

interventions aimed at containing the devastating effects of FAS on the population (Croxford 

and Viljoen, 1999; Viljoen et al., 2002; May et al., 2005).  

One confounding factor in the search for the biological triggers that render ethanol 

consumption in pregnancy fetotoxic is the fact that full blown FAS does not occur in all cases 

of prenatal ethanol abuse. Even in affected offspring, the severity of dysmorphic features or 

neurological deficit is highly variable (The Institute of Medicine, 1996; Goodlett et al., 

2005). Sulik (2005) observed that “as with other teratogenic agents, the amount and 
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frequency of alcohol consumed by the pregnant mother, as well as the stage(s) of pregnancy 

during which an unborn child is exposed to alcohol, are critical in determining the pattern of 

abnormal development”. These complexities of ethanol‟s teratogenicity require a careful and 

multi-level approach in the search for candidate mechanisms that underlie how ethanol 

damages the unborn fetus (Goodlett et al., 2005).  

1.2 The role of neural crest cells in ethanol’s teratogenicity 

The study of neural crest cells (NCCs) represents one such effort to discover the mode of 

action by which ethanol produces its toxic effects on fetuses in utero. NCCs are the principal 

source of the majority of the embryonic head in vertebrates, forming cranial skeletal and soft 

tissues (Horstadius, 1950; Gans and Northcutt, 1983; Couly et al., 1993; Le Douarin and 

Kalchiem, 1999). These cells are formed at the crests of the developing neural folds. In 

amphibian and avian embryos, NCCs emerge from the neural tube at the time of neural tube 

closure, while in mammals, emigration takes place, particularly in the cranial region, while 

the neural folds are still widely open (Morris-Kay and Tan, 1987; Le Douarin and Kalchiem, 

1999). In particular, a distinct population of NCCs termed cranial neural crest cells (cNCCs), 

which originate from the level of the mid-diencephalic, mesencephalic and rhombencephalic 

segments of the neural folds up to the level of the 5
th

 somite, migrate into the developing 

nasofrontal and periocular masses as well as pharyngeal arches 1 – 4 (Graham et al., 1996; Le 

Douarin and Kalchiem, 1999; Smith and Debelak-Kragtorp, 2005). An origin in the 

prosencephalon for cNCCs has been proposed in avian (Le Douarin and Kalchiem, 1999), 

murine (Serbedzija et al., 1992) and rat (Matsuo et al., 1993) embryos.  

The mechanisms by which NCCs segregate from the neuroepithelium have been extensively 

studied, especially in the amphibian and avian models (Dickinson et al., 1995; Liem et al., 

1995; Mancilla and Mayor, 1996a; Baker and Bronner-Fraser, 1997; LaBonne and Bronner-

Fraser, 1998; Mayor and Aybar, 2001a; Garcia-Castro et al., 2002; Luo et al., 2003; Basch 
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and Bronner-Fraser, 2006; Bronner-Fraser and Sauka-Spengler, 2009). These mechanisms, 

described by Le Douarin and Kalchiem (1999) include the temporal and spatial molecular 

interactions between the mesoderm and competent non-neural ectoderm, the stimulation of 

crest cell epithelial-to-mesenchymal transformation, modification of cell-to-cell interactions, 

permissive breakdown of the basement membrane adjacent to NCC exit regions, dissolution 

of N-cadherin junctions, and the promotion of cell motility. The latter mechanism is 

dependent on a host of molecular factors including members of the transforming growth 

factor β family of factors, hepatocyte growth factor/scatter factor (SF/HGF) and the 

transcription factor PAX-3 (Le Douarin and Kalchiem, 1999). After delaminating from the 

neural ectoderm, NCCs undergo a transformation from epithelial to mesenchymal 

morphology and migrate over long distances in the vertebrate embryo to contribute to a wide 

variety of definitive structures (described further in section 1.4) ranging from the skeleton of 

the head to ganglion cells of the peripheral nervous system (Le Douarin and Kalchiem, 1999) 

1.3 Actin cytoskeleton and cell migration 

The role of the actin cytoskeleton in cell migration continues to enjoy intellectual scrutiny 

(Sun et al., 1995; Evangelista et al., 1997; Tapon and Hall, 1997; Welch et al., 1997; Hall, 

1998; Edwards et al., 1999; Maekawa et al., 1999; Gurniak et al., 2005; Maloney et al., 

2008). Two forms of actin exist in eukaryotic cells: the globular monomeric G-actin and the 

polymeric F-actin. G-actin is nucleotide-binding and is either coupled to ATP (ATP-G actin) 

or ADP (ADP-G-actin) (Maloney et al., 2008). Under physiologic ionic conditions, G-actin 

spontaneously assembles into F-actin in vitro. This spontaneous polymerization is prevented 

in vivo by G-actin sequestering proteins (Sun et al., 1995; Maloney et al., 2008), which 

however present G-actin to intracellular sites where it is needed to form F-actin. Examples of 

such sites include the cortical regions in yeast cells, neuronal growth cones, and the leading 

edge and ruffling membranes of motile cells (Palmgren et al., 2002; Vartiainen et al., 2002). 
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These leading edges or cell protrusions (e.g. filopodia, lamellipodia and stress fibres) in 

migrating cells consist of a core of actin cytoskeleton filaments that are continuously being 

polymerised, while their proximal ends are being depolymerised (Welch et al., 1997; 

Maloney et al., 2008). This energy-dependent “treadmilling”, coupled with the activity of the 

actin-binding proteins, is central to the motility of migrating cells, including neural crest cells 

(Carlier et al., 1997; Gurniak et al., 2005; Maloney et al., 2008). The expression of 

intracellular actin is encoded by the actin genes. The number of actin genes in higher 

organisms varies widely, with humans having between 20-30, the mouse more than 20 and 

the chick between four and seven actin genes (Kost et al., 1983). There are at least six known 

isoforms of actin in vertebrates, namely four different types of α-actin, β- and γ-actin. These 

are encoded by the genes ACTA1, ACTA2, ACTC, ACTG2, ACTB and ACTG1 respectively 

(Sparrow and Laing, 2008). While ACTC, ACTG2, ACTA1, ACTA2 are expressed in 

different forms of muscle (cardiac, enteric, skeletal and smooth), ACTB and ACTG1 are 

cytoplasmic actin genes and are expressed almost uniformly in non-muscle cells of several 

species (Kost et al., 1983; Nakajima-Iijima et al., 1985; Sparrow and Laing, 2008). Since it is 

known that actin gene expression is tissue-specific and developmentally regulated 

(Vandekerckhove and Weber, 1978; Kost et al., 1983) and that abnormalities in actin gene 

expression have been associated with abnormalities of fibroblast cell division and motility 

(Nakajima-Iijima et al., 1985), it would appear to be of some value to examine how ethanol 

may affect actin gene expression in the highly motile and dividing cNCCs.  

1.4 Cranial neural crest cell migration and fate 

For decades, the migration of neural crest cells has been observed by scientists in search of 

clues that may explain the behaviour of these cells in vivo. NCC migratory pathways have 

been previously mapped using immunocytochemistry methods that identify a 140 kD surface 

antigen expressed by migrating NCCs in several vertebrate species. This antigen is 
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recognised by the monoclonal antibody, HNK-1. The ability of workers to thus track neural 

crest cell migration has contributed a great deal to our current knowledge about the origin, 

migration and fate of these cells (Tucker et al., 1984; Bronner-Fraser, 1985; Rickmann et al., 

1985; Bronner-Fraser, 1986; Bronner-Fraser, 1987; Erickson et al., 1989; Sadaghiani and 

Vielkind, 1990; Lee and Lwigale, 2008).   

In the avian head, the pathways through which cNCCs migrate are related to their eventual 

fate. Thus, maxillary and mandibular arch-yielding mesencephalic cNCCs migrate rostrally 

towards the nose, then laterally into the first and second pharyngeal arches (Le Douarin and 

Kalchiem, 1999). On the other hand, migration of rhombencephalic crest cells occurs in 

segmental “waves” to ultimately yield pharyngeal arch components and cranial ganglia 

(Lumsden et al., 1991; Bronner-Fraser, 1994; Graham et al., 1996; Le Douarin and 

Kalchiem, 1999). More specifically, the structures derived from NCCs include the skeleton 

and dermis of the head, melanocytes, Schwann cells, ganglion cells of certain cranial nerves 

and those of the peripheral and enteric nervous systems, chromaffin cells of the suprarenal 

medulla as well as components of the outflow tract of the heart (Bolande, 1974; Dupin et al., 

1993; Le Douarin and Kalchiem, 1999; Trentin et al., 2004; Smith and Debelak-Kragtorp, 

2005). It is noteworthy that cNCCs give rise to the entire skeleton of the face 

(viscerocranium), including the loose connective tissue thereof (Trainor and Tam, 1995; Le 

Douarin and Kalchiem, 1999). The foregoing observation is of critical importance, given that 

ethanol appears to target the structures of the face leading to abnormalities such as absent 

philtrum, depressed nasal bridge, narrow palpebral fissure, hypognathia, agnathia, 

microcephaly and midline clefts to the lip, palate or cranium ( Jones and Smith, 1973; Cook 

et al., 1987; Sulik et al., 1988; Jones and Bass, 2003; Jones et al., 2009). Sulik (2005) 

restated the pertinent fact that modern tools that are being developed to assist clinicians to 



7 

 

accurately diagnose FAS rely on the facial phenotype as a key component of their toolkit 

(Sulik, 2005; Hoyme et al., 2005).   

1.5 Proposed mechanisms by which ethanol exerts its teratogenic effects 

In general, research scientists have relied on animal models in their effort to elucidate the 

underlying cellular and molecular factors, which determine fetal outcome after prenatal 

alcohol exposure, using mouse and rat animal models. To a lesser extent, pig, sheep and non-

human primates have also been employed for this purpose (Becker et al., 1996; McBride and 

Li, 1998; Astley et al., 1999; Cudd, 2005). However, specifically regarding cNCCs and their 

role in ethanol‟s effect on craniofacial appearance, amphibian (Nakatsuji, 1983; Peng et al., 

2004a; Peng et al., 2004b; Yelin et al., 2007), avian (Cartwright and Smith, 1995b; Debelak 

and Smith, 2000; Su et al., 2001; Giles et al., 2008; Smith, 2008) and murine (Sulik et al., 

1981; Van Maele-Fabry et al., 1995; Dunty et al., 2002) models have been found most 

suitable. Each model has its own distinct advantages and disadvantages in terms of how well 

it replicates the FAS phenotype, permits access to developmental pathways and simulates 

human FAS (Becker et al., 1996; McBride and Li, 1998; Cudd, 2005). It is accepted that no 

single animal model will resolve the many questions of ethanol‟s teratogenicity. The 

optimum approach will utilise multiple animal models to engage different questions about the 

effects of ethanol on developing fetuses (Driscoll et al., 1990; Cudd, 2005).  

Several molecular mechanisms have been proposed to explain how ethanol exerts its effects 

on the developing embryo. (Goodlett et al., 2005) categorised these mechanisms into seven 

broad groups as follows: 

1. Disrupted cellular events (e.g. altered glucose utilization/transport; suppression of 

protein and DNA synthesis and oxidative stress).    

2. Impaired cell acquisition or altered developmental timing (e.g. altered cell cycle, 

mistimed events of cell generation, migration or neurite outgrowth). 
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3. Altered regulation of gene expression (e.g. reduced retinoid acid signalling or effects 

on other transcription factors). 

4. Disrupted cell-cell interactions (e.g. inhibition of L1 cell adhesion molecule 

function). 

5. Interference with growth-factor signalling or other cell-signaling pathways. 

6. Cell damage/cell death (e.g. apoptosis or oxidative stress). 

7. “Secondary” sources of damage (e.g. altered placental function, hypoxia/ischemia or 

acetaldehyde formation). 

 

1.6 A possible role for cranial measurements in the study of the aetiology of FAS 

Sulik (2005) in her review enumerated the most likely mechanistic routes by which ethanol 

damages fetuses, including excessive death of sensitive cells, particularly those of the 

telencephalic midline structures that constitute the “anterior neural ridge”, and neural crest 

cells. Other mechanisms explored by the latter author also included free radical damage, 

perturbations to calcium ion signalling cascades and alterations to the expression of genes 

such as sonic hedgehog (Shh), Fgf-8, Pax6, and the genes that code for bone morphogenetic 

proteins, (BMP) (Sulik, 2005). Virtually all authors who have reviewed the wide-ranging 

mechanisms by which ethanol exerts its effects have agreed however that more work needs to 

be done to define these effects more accurately (Goodlett et al., 2005; Smith and Debelak-

Kragtorp, 2005; Sulik, 2005). One such area of enquiry is the detailed definition of how 

ethanol affects both hard and soft tissues of the face. Earlier workers have tended to quantify 

fetal craniofacial changes attributed to ethanol by examining either skulls denuded of soft 

tissue (Edwards and Dow-Edwards, 1991; Su et al., 2001) or radiographs (Giglio et al., 1987; 

Hernandez-Guerrero et al., 1998). Although it has been postulated that the underlying neural 

crest cell-derived visceral skeleton eventually determines the shape of the facial soft tissues 
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(Smith and Debelak-Kragtorp, 2005), it is still important to determine to what extent the soft 

tissues themselves are altered by in utero alcohol exposure. Hence, by measuring both the 

craniofacial skeletal elements and soft tissues following prenatal ethanol exposure, new 

information about the role played by alcohol in the generation of facial dysmorphologies may 

come to light. Another area where direct measurement could be beneficial is the assessment 

of actual distances that alcohol-treated cNCCs travel in vitro. Apart from the work of Rovasio 

and Battiato (2002), published work that details the distances over which these cells migrate 

in situ or under culture conditions after exposure to ethanol is limited.  Measurement of such 

distances may elucidate the effect of ethanol on cNCCs migration.  

 

1.7 The rationale for extending some previous studies of the effect of ethanol on cNCC 

cytoskeleton 

There have been some attempts to visualize the morphology and actin cytoskeleton of cNCCs 

after exposure to ethanol. Work by authors such as Hassler and Moran (1986a; 1986b), Davis 

et al. (1990) and Rovasio and Battiato (2002), where a combination of light and scanning 

electron microscopic methods were used, were pioneering in this regard. There could be 

some value in reproducing the results of these earlier efforts and fine-tuning them by 

accurately determining the amount of ethanol to which cultures are exposed rather than 

approximating final concentrations (Davis et al., 1990) in systems where the ethanol 

concentrations were “estimates” (Rovasio and Battiato, 2002). Moreover since in humans, the 

mildest clinical effects of ethanol commence at blood alcohol concentrations (BAC) as low as 

0.05% (v/v) or 110 mM, while marked uncoordination and stupor occur at BAC of just under 

10% ethanol (v/v) or 870 mM (Bryson, 1996), it is conceivable that ethanol abusers will have 

blood ethanol concentrations that lie in the intoxicating, but sub-lethal range of these values. 

In contrast to the aforementioned authors, who exposed neural crest cell cultures to ethanol 
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concentrations in the range of 7mM – 150mM  it is proposed in the present study that the 

simulation of human BAC require that in vitro cultures of cNCCs be exposed to ethanol 

concentrations nearer the range of 430 mM – 860 mM (0.2% - 0.4%, v/v). 

 

1.8 Ethanol-induced changes to neural crest cell gene expression 

Regarding investigations into the possible roles of altered cNCCs gene expression in the FAS 

phenotype, while current work has focused on assessing ethanol-induced changes in the 

expression of genes and signalling molecules that are implicated in establishing rostro-caudal 

identity or patterning in the embryo (e.g. BMP, Fgf8, msx-2, Pax6, Shh, slug and retinoic 

acid) (Duester, 1991; Graham et al., 1993; Deltour et al., 1996; Graham et al., 1996; Duester, 

1998; Peng et al., 2004b; Yelin et al., 2005; Yelin et al., 2007), genes that code for the 

structure of cell cytoskeleton (e.g. β-actin) and those implicated in the function of the 

cytoskeleton (e.g. Rac 1 or Rho B) are yet to be examined.  

β-actin is the actin isoform, which, upon polymerization and subsequent assembly, forms the 

principal component of the cytoskeleton in non-muscle cells. It is encoded by the ACTB 

gene. (Chhabra and dos Remedios, 2008). Due to the central role played by actin in the 

cytoskeleton of migrating cells (pages 4 and 5), it is important to investigate how ethanol 

exposure to migrating cNCCs may modulate the expression of the ACTB gene. 

Closely related to actin and its function in cytoskeleton assembly cell migration are the 

members of the Ras and Rho family of GTPases, including Rac1 and Rho B. Other Rho 

family members include Rac 2 and 3, Rho D and Rho G as well as Cdc42Hs and G25K. All 

these members share 50-55% identity to each other (Hall and Nobes, 2000). These molecules 

are of special interest because they “couple intracellular signal transduction pathways to 

changes in the external environment” of Eukaryotic cells (Bar-Sagi and Hall, 2000). In 

animal cells, Ras and Rho GTPases regulate an overlapping set of cellular responses, 
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including gene expression, cellular proliferation and actin-based cell motility (Bar-Sagi and 

Hall, 2000). For the latter function, Rho GTPases are thought to be pivotal. Specifically, 

while Rac is required at the front of the cell where it regulates actin polymerization and 

membrane protusion, Rho is thought to regulate the contraction and retraction of forces that 

occur in the cell body and at the rear (Raftopoulou and Hall, 2004). As the disruption of these 

cellular forces form one mechanism of ethanol‟s teratogenicity (Goodlett et al., 2005), an 

area of enquiry would be valuable to explore whether the genes that code for Rho GTPases 

are perturbed by in vivo ethanol exposure of cNCCs. 

Another gene of interest with regard to cNCC function is slug.  Slug is a member of the Snail 

zinc-finger transcription factors. The only other known member of this family in vertebrates 

is zinc (Sefton et al., 1998). In chick and amphibian animal models, slug is expressed in the 

primitive streak, ingressing mesodermal cells and premigratory neural crest cells (Mayor et 

al., 1995; Mancilla and Mayor, 1996b; Sefton et al., 1998; Mayor and Aybar, 2001b). When 

the expression of slug either NCC precursors are not formed at earlier stages or formed NCCs 

fail to migrate (LaBonne and Bronner-Fraser, 2000). Furthermore, when either slug or snail 

mRNA was used to reverse the downregulation of slug, NCC migration recovered 

dramatically (Carl et al., 1999). With such a strong link between gene expression of slug and 

NCC formation and migration, a formidable tool is provided to investigate whether ethanol 

regulates the induction of cNCCs at the level of gene expression.  

The roles of β-actin, the Rho family of GTPases and the slug transcription factors delineated 

above provided the rationale for our efforts in the present study to investigate whether or not 

the expression of these genes in cultured cNCCs is perturbed by their exposure to ethanol 

concentrations similar to those that have been implicated in human FASD.  
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1.9 Aims of this study 

Specifically, we set forth to accomplish the following aims: 

1. To investigate the effect of acute administration of oral ethanol on some maternal and 

fetal growth indices in the mouse. 

2. To describe the effect of in vitro ethanol exposure on the morphology, migration and 

cell death of cultured chick cNCCs. 

3. To investigate the effect of in vitro ethanol exposure on the expression of the β-actin, 

RhoB and slug genes derived from chick cNCCs.  

4. To determine whether ethanol exerts dose-dependent and embryonic stage-dependent 

effects on cultured cNCCs in vitro.  
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2.0 MATERIALS AND METHODS 

Animal ethics clearance was obtained from the Animal Ethics Screening Committee of the 

University of the Witwatersrand for all aspects of this project that involved the use of mice 

(number 2001/65/3; 2004/89/1) and chick eggs (number 2005/55/1; 2007/2/1). 

 

2.1 Mice fetuses and ethanol exposure 

Twenty-three adult time-mated C57BL/6J female mice were sourced from the Central 

Animal Services of the University of the Witwatersrand, Johannesburg. The gestation period 

of the animals at the time at which they were acquired ranged between gestation days (GD) 0 

and 3, GD 0 being recorded as the date that a vaginal plug was observed in an animal. The 

pregnant mice were maintained under standard laboratory conditions and fed on lab chow and 

water ad libitum. The animals were weighed daily to assess weight gain. They were then 

separated into two groups: Group 1 mice (n=13) were given 0.03 ml/g of an aqueous solution 

of 25% (vol/vol) ethanol (Spong et al., 2001) via an orogastric tube at 0900 h on GD 6, 7, and 

8, coinciding with the period of primitive groove formation and neural-fold elevation and 

closure in the mice (Waterman, 1976; Kaufman, 1990). Group 2 mice (controls, n=10) 

received the same amount of water by the same route at the same times. In mammalian 

species, neural crest cells exit the neural tube before closure of the neural folds (Lumsden et 

al., 1991; Bronner-Fraser, 1994; Le Douarin and Kalchiem, 1999). The timing of the ethanol 

insult in this study was therefore aimed at neural crest cells at the time which they acquire 

migratory potential and start to migrate. Group 1 mice, due to the effects of alcohol 

intoxication were unable to eat for periods of time. Hence, Group 2 mice were kept without 

food and water for the duration that Group 1 mice were unable to feed. All the pregnant mice 

were kept without further treatment until GD 18 when they were killed by an intraperitoneal 

injection of 0.01 ml/g of Euthanase® (Kyron Laboratories, Johannesburg). 
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Fetuses were removed from the mice and the number of live, dead, or reabsorbed fetuses was 

noted. Mean litter size was determined and the percent reabsorptions calculated using the 

total number of fetuses (live, dead, and reabsorbed) as the denominator. Fetal survival rate 

was calculated as the percentage live fetuses divided by the total. The live fetuses were 

weighed and their crown-rump lengths were measured with a standard vernier caliper. The 

detailed morphological appearance of the mice fetuses was studied under a stereomicroscope. 

In particular, the fetuses were checked for the presence or absence of craniofacial 

abnormalities such as cleft lip or palate, hypognathia or agnathia, anophthalmia, absent 

philtrum, and other previously reported anomalies said to occur in the head of children 

suffering from FAS (Chernoff, 1977; Sulik et al., 1981). All animals were photographed in 

the left lateral position using a stereomicroscope with an attached image analyzer (Nikon 

SMZ 1500 Nikon, Japan). All photographs were taken at the same vertical height from the 

microscope objective using the same magnification. 

From the digital photographs, the following measurements were taken after Giglio et al., 

(1987); Ward (1989); Brown (1990); Hernandez-Guerrero et al. (1998):  

 Vertico-mental length (VML) - defined as the perpendicular distance between two 

parallel lines, each at 45° to the horizontal, with one line at the vertex of the fetus and 

the other at the mental protuberance (Fig. 1A). 

 Maxillary length was defined as the horizontal distance between two vertical lines, 

with one line at the most anterior part of the maxilla and the other at the maxillary 

skin crease (Fig. 1B).  

 Mandibular length (MANL) was defined as the horizontal distance between the most 

anterior part of the mandible and the junction between the mandible and the neck 

(Fig. 1B).  
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Fig. 1 A & B. A. Measurement of vertico-mental length (VML). B. Measurement of 

maxillary length (MAXL) and mandibular length (MANL). 

 

 

Animals with gross head and face deformities, or those where the maxillary or cervical 

landmarks could not be ascertained with confidence, were not measured. Measurements were 

carried out using the Corel Draw
®
 software program. This program has vector analysis 

capability and is designed to convert the measured digital distance into actual distances using 

the appropriate scale. All measurements were taken at two different times, 24 h apart and the 

obtained data verified using Lin‟s coefficient of concordance (Lin, 1989) to ensure 

repeatability (Appendix A). The measurements were then analyzed for statistical significance 

using the Microsoft Excel
®
 computer program, where P<0.05 was considered as significant. 

 

2.1.1 Determination of blood ethanol concentration 

To address concerns about blood ethanol concentrations and the possible effect of this on 

feeding patterns and nutrition in maternal mice, an additional group of 11 pregnant 
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C57BL/J dams consisting of six ethanol-fed and five control animals were similarly treated in 

all respects to the initial 23 dams in the main study. Daily food intake was monitored in these 

11 dams by subtracting the weight of the lab chow remaining in the feeding trough at 08h00 

each morning from the weight of the food given the previous morning. Furthermore, blood 

samples were withdrawn from the tail veins of all mice at 30, 60, 90, and 120 min after an 

orogastric feed of either ethanol or water. The samples were collected in Modulohm Vitrex© 

plain micro hematocrit capillary tubes and immediately placed on ice. All samples were then 

frozen at -70 ºC until analyzed for ethanol concentration. 

Blood ethanol concentration (BEC) was determined as follows: To 10-40µl of whole blood 

obtained from mice, 40-70 µl of distilled water in 0.5 ml Ultrafree-MC
©

 Millipore centrifuge 

tubes (Amicon bioseparations) were added. This achieved an initial volume of 80 ml to which 

an additional 80 ml of 0.1% propanol solution in water was added, yielding a final volume of 

160 ml. This was centrifuged for 30 min at 13,000 rotations per minute at a temperature of 10
 

ºC in Mikro 22R
©

 centrifuge machines (Hettich/Zentrifugen). Five microlitres of the ultra-

filtrate were then analyzed in a 5890A gas chromatograph (Hewlett Packard), which was 

attached to an SP4290 integrator (Spectra-Physics). BECs were determined from the areas 

that each sample produced in comparison to standard curves previously obtained by 

analyzing solutions of known ethanol/propanol mixtures. Samples were analysed in 

duplicates and mean values were recorded after correction for dilution. 

 

2.1.2 Skeletal staining 

A total of 14 fetuses from dams to which ethanol had been administered and 14 fetuses from 

control mice were used for skeletal staining by the Alizarin red S and Alcian Blue method 

modified from the method described by Menegola et al. (2001). Immediately after extraction 

from maternal deciduas, fetuses were left immersed in tap water overnight to macerate the 
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skin. They were then skinned, eviscerated, and placed in an acid staining solution for 24hrs at 

room temperature, after which they were dehydrated in 96% ethanol for at least 6hrs. The 

fetuses were then placed in a basic staining solution for 48hrs at room temperature to allow 

muscle maceration. Following this, the fetuses were cleared and hardened by placing them in 

a cleaning solution for 8hrs. Finally, they were preserved in a 1:1 mixture of glycerin and 

70% ethanol solution. All the solutions used were prepared as described by Menegola et al. 

(2001) (Appendix C). Representative fetal samples were photographed as described earlier. 

Results from the work undertaken in section 2.1 have been published in the journal Alcohol 

(Appendix B). 

 

 

2.2 Chick embryos and ethanol exposure 

The avian embryo is widely recognized as a good model for developmental studies, 

particularly for the experimental visualization and manipulation of neural crest cells (Le 

Douarin and Kalchiem, 1999; Le Douarin, 2004; Stern, 2005). This animal model has proved 

to be more accessible to in vitro culture of neural crest cells (NCCs) in our laboratory, and 

there exists a significant amount of experience in the successful use of the chick as a model 

animal for experimental manipulations. Furthermore, considerably more work in the vast area 

of neural crest biology has been published using avian rather than murine models. Therefore, 

since the neural crest is the focus of this study and for the foregoing reasons, the chick 

embryo was chosen as the animal model for the in vitro section of this work. Embryos aged 

between stages 8-10 Hamburger and Hamilton (Hamburger and Hamilton, 1992) (HH) were 

used throughout this study because at those embryonic stages, the chick neural folds begin to 

fuse and cranial neural crest cells emigrate from the neural tube (Lumsden et al., 1991; Le 

Douarin and Kalchiem, 1999). 
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2.2.1 Whole mount HNK-1 antibody labeling of chick embryos for visualizing neural 

crest cells 

Fertile chick eggs of a South African strain (Potchefstroom koekoek) were obtained from the 

National Health Laboratory Service. They were incubated at 37ºC and 80% humidity for 36 

hours. The eggs were then swabbed with 70% alcohol and broken into egg dishes containing 

previously sterilized chick Ringer solution (Appendix D), under aseptic conditions. The chick 

blastoderm was visualized, the embryo was staged and the blastoderm excised off the yolk 

and transferred into a 35mm Nunc culture dish (Nunclon, Denmark) containing either chick 

Ringer solution (control, n=6) or chick ringer containing 0.2% or 0.4% v/v ethanol (n=6 

each) (Davis et al., 1990; Deltour et al., 1996; Peng et al., 2004b). The intact blastoderm of 

each embryo was incubated at 37°C and 5% CO2 in air in a humidified incubator (Labcon, 

South Africa) for three hours, after which they were fixed overnight in 3% paraformaldehyde 

solution in PBS. Three hours was chosen as the duration of ethanol exposure in order to 

simulate the conditions in which embryos are exposed to maternal binge alcohol consumption 

(Bonthius and West, 1990).  

Following fixation, the embryos were washed twice in PBS containing 0.5% bovine serum 

albumin (BSA), and then permeabilized with 0.1% Triton
®
 X-100 in PBS for 20 minutes 

while rocking gently. Permeabilization was followed by incubation with the primary antibody 

HNK-1 (monoclonal antibody, Sigma), diluted 1:50 with 0.5% BSA and 0.5% Triton
®
 X-100 

in PBS. The primary antibody was substituted with PBS in the embryos which served as 

negative controls. Incubation took place overnight at 4°C. The following day, the embryos 

were washed in 0.5% BSA in PBS twice for 20 minutes each, after which they were 

incubated in secondary (goat-anti-mouse) antibody diluted 1:200 in 0.5% BSA at room 

temperature in a humidified chamber for one hour, while rocking the containers gently. The 
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antigen-antibody reaction was then visualized by incubation of the intact embryos in 3, 3‟-

diaminobenzidine solution (DAB, Sigma) for exactly 5 minutes each, timed exactly. All 

embryos were washed twice in 0.5% BSA in PBS for the duration of 20 minutes each, after 

which they were placed in PBS and observed with a Zeiss IM 35 phase contrast microscope 

using the X4 phase contrast objective. Representative embryos were digitally photographed 

(Olympus) and the photographs stored electronically.  

 

2.2.2 Chick neural crest cell in vitro culture 

Fertile Potchefstroom koekoek chick eggs were obtained, incubated and prepared as described 

previously (Section 2.2.1). From these embryos the neural tubes were excised from mid-

diencephalon to the level of the fifth somite. These levels yield cranial neural crest cells that 

contribute to the facial skeleton and soft tissues of the head of vertebrates (Le Douarin and 

Kalchiem, 1999). The neural tubes were placed in a glass container to which a 0.04% 

collagenase (Sigma) solution was added. The explants were incubated for at least 30 minutes 

at 21ºC. After this, the collagenase was removed and the neural tube explants were placed in 

chick Ringer and dissected free of any somites, notochord, epithelium and other membranes 

that remained, to yield only neural tube explants. These explants were then placed either on 

to coverslips or within four-well Nunc culture dishes (Nunclon, Denmark) which had been 

previously coated with 2.5% fibronectin (Sigma) (Appendix D) and incubated at 37°C for 

one hour. 

The neural tube explants were divided into four groups comprising three groups of ethanol-

treated (experimental) explants and one group of control (untreated) explants. The ethanol-

treated explants were cultured in Nunc culture dishes (Nunclon, Denmark) containing 0.2%, 

0.3% or 0.4% v/v ethanol respectively (n=25 each) made up in Dulbecco‟s minimal essential 

medium (DMEM) (Gibco, South Africa), while the control group (n=25) was cultured in 
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Nunc dishes with DMEM only. The cultures were maintained at 37°C in a 5% Co2 in air 

humidified incubator for six days of continuous culture, with medium changes (and fresh 

ethanol treatment for the treatment group) taking place at intervals of 48hrs. All cultures were 

observed on a phase contrast inverted microscope (Olympus) and digitally photographed 

daily (Olympus). Photographs were stored electronically for further analysis.  

 

2.2.3 Determination of the ethanol concentration of the culture medium 

To ensure that the ethanol concentration in the ethanol-treated groups remained constant, 

ethanol contents were determined at 24 hrs and at 48-hour intervals on selected cultures, 

using the K-620 Ethanol Assay Kit
®
 (Biovision California, USA). Prior to the ethanol assay, 

a Reaction Mix
®
 was prepared from reagents supplied in the Assay Kit as follows:  

46 μl Ethanol Assay Buffer
®

 

2 μl Ethanol Probe
®
 (to which 220µl DMSO* was previously added) 

2 μl Ethanol Enzyme Mix
®
 (to which 220µl DMSO was previously added) 

Total = 50µl Reaction Mix
®
 

 

*DMSO = Dimethylsulphoxide 

The Reaction Mix was prepared in multiples of the number of samples required, including 

those used to prepare the standard curve. All samples and standard curve preparations were 

made up to a volume of 50μl, bringing the total assay unit to 100 μl. 

The standard curve was prepared by mixing 11.7μl (9.2 mg) of pure ethanol standard with 

988.3μl of the Ethanol Assay Buffer
®
 and mixed well. 10μl of the diluent was then added to 

990μl of the Ethanol Assay Buffer
®
 to generate 2 nmol/μl of ethanol standard. Known 

volumes of this diluted ethanol standard (0, 4, 8, 12, 16, and 20μl) were then placed into 

individual wells of a Falcon
®

 90-well micro plate and the volume adjusted to 50μl per well 

with Assay Buffer to generate the amount of 0, 8, 16, 24, 32, 40 nmol per well of ethanol 

standard . Samples of the medium from 0.2%, 0.3% and 0.4% ethanol-treated neural crest 

cultures were pipetted into designated wells in the 90-well micro plate in known dilutions, up 
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to a maximum of 50μl, to each of which was added 50 μl of the Reaction Mix. The reaction 

was then incubated in the dark for 60 minutes, after which the optical density (OD) was read 

at 570nm in a spectrophotometer. After correcting for the background reading by subtracting 

the OD of the zero ethanol standard preparation from all the readings, the ethanol 

concentration of the samples was calculated from their value on the standard curve, 

multiplied by the dilution factors in the following equation: 

C = Sa/Sv nmol/ul (or mM) 

 

Where  

Sa = sample amount from the standard Curve (nmol). 

Sv = sample volume added into the sample well (ul). 

 

Ethanol determination of the samples was done in triplicates. 

 

2.3. Measurement of chick cranial neural crest cell migratory distances 

The distance migrated by chick cNCCs from the neural tube in both the control and treated 

cultures was measured using the Corel Draw
®
 software programme. The method of 

measurement used was adapted from that previously described by Rovasio and Battiato 

(2002). While these aforementioned authors used advanced computer software to measure the 

area, perimeter, “compactness”, “curvilinear distance” and velocity of neural crest cells, only 

the linear distance was measured in the present work. Furthermore, while Rovasio and 

Battiato (2002) used the centre of the neural tube as their reference to determine the linear 

distance migrated by cNCCs, the lateral edge of the neural tube was employed in this study, 

as we found that this edge was well-defined, clearly visualized and was a more reliable 

reference point than the centre of the neural tube. After accurately calibrating the software, 
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photographs of control and ethanol-treated cultures were subjected to image analysis as 

follows (Fig. 2): Two axes were defined, parallel (x) and perpendicular (y) to the long axis of  

 

 

 

 

 

  

Fig. 2 A & B. Measurement of migratory distance in the y axis (A) and x axis 

(B). NT, neural tube; NC, neural crest cells (Olympus stereomicroscope X40).  
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an explanted neural tube. Cells that were farthest from a line drawn to coincide with the edge 

of the neural tube in these two axes were identified as being at the migratory front of 

migrating crest cells. An arc was drawn to mark this migratory front (Rovasio and Battiato, 

2002). A line was then drawn from the edge of the neural tube to meet the centre of this arc. 

This was taken as the distance of migration in that particular axis. While the distance 

migrated by cells emerging from both sides of the neural tube was measured in this way, the 

greater value of the two sides was chosen as the distance of migration. In strict mathematical 

terms, the value obtained for „distance‟ of migration as defined above is in fact rightly termed 

„displacement‟, having both magnitude and direction in space. It is a vector quantity (Horan 

and Lavelle, 2004). A mathematical operation was therefore carried out to obtain a value, 

whose magnitude would be a sum of the displacements in the x- and y- axes and whose 

direction would be 45° to either axis (Spiegel, 1959; Matthews, 1998; Horan and Lavelle, 

2004). This new value, which was defined as the “vector distance (vDistance)”, gave an 

indication of the outer limit at 45° from the x and y axes of the explanted neural tube, at 

which migrating cNCCs could be located.  

Two categories of measurements were made. First, the distance migrated by control and 

ethanol-treated neural crest cells was measured without regard to the Hamburger and 

Hamilton (1992) (HH) embryonic stage of the embryos from which they were derived. For 

this category, only the broad groups of control and the different concentrations of ethanol-

treated cultures were taken into account. A second set of measurements was made by further 

separating control and ethanol-treated cNCCs cultures into the HH stage at which their source 

embryo (and neural tube) was obtained. This was done so as to take into account any possible 

effect on cNCCs migration, of developmental cues programmed into the cells at specific HH 

stages (Lumsden et al., 1991). The numbers of cultures measured for the first category are as 

follows: 24hr control cultures: n=26; ethanol-treated cultures: (0.2%, n=13, 0.3%, n=10 and 
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0.4%, n=24 respectively); 48hr control cultures: n=15; ethanol-treated cultures: (0.2%, n=9; 

0.3%, n=6 and 0.4%, n=10 respectively). For the stage-specific cultures, the numbers were as 

follows: HH stage 8, 24hr cultures control: n=6; ethanol-treated cultures: (0.2%, n=6, 0.3%, 

n=6 and 0.4%, n=6 respectively). HH stage 9, 24hr cultures control: n=6; ethanol-treated 

cultures: (0.2%, n=6, 0.3%, n=6 and 0.4%, n=6 respectively). HH stage 10, 24hr cultures 

control: n=6; ethanol-treated cultures: (0.2%, n=6, 0.3%, n=6 and 0.4%, n=6 respectively). 

HH stage 8, 48hr control cultures: n=6; ethanol-treated cultures: (0.2%, n=6, 0.3%, n=6 and 

0.4%, n=6 respectively). HH stage 9, 48hr cultures control: n=6; ethanol-treated cultures: 

(0.2%, n=6, 0.3%, n=6 and 0.4%, n=6 respectively). HH stage 10, 48hr cultures control: n=6; 

ethanol-treated cultures: (0.2%, n=6, 0.3%, n=6 and 0.4%, n=6 respectively).The 

measurements were repeated and validated using the Lin coefficient of concordance (Lin, 

1989) as described earlier. 

 

2.4 Cranial neural crest cell (cNCC) Proliferation Assay 

Primary cultures of control and ethanol-treated cNCCs which had been cultured on cover 

slips were harvested at 24hrs (control n=4 cultures; ethanol-treated 0.2%, 0.3% and 0.4% v/v 

n= 4 cultures each) and at 48hrs (control n=4 cultures; ethanol-treated 0.2%, 0.3% and 0.4% 

v/v n= 4 cultures each) respectively.  Following fixation in 70% ethanol, all cultures of 

cNCCs were immunostained using the protocol for the Proliferating Cell Nuclear Antigen 

(PCNA) BioAssay™ Kit (US Biologicals, Massachusetts) (Appendix E). The PCNA is a 

nuclear antigen that is widely used to identify replicating cells (Connolly and Bogdanffy, 

1993; Dietrich, 1993; Kubben et al., 1994; Kurki et al., 1988; Leung et al., 2005; Ahlgren, 

2008). After immunostaining, all cultures (on cover slips) were covered with Histomount® 

(US Biologicals, Massachusetts) and inverted on to slides, preparatory to microscopy. 

Control and ethanol-treated cultures were visualized at high-power magnification using the 
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Zeiss Axioscope® microscope (Zeiss, Germany) attached to a Nikon image analysis system 

(Nikon, Japan). Six representative images were captured for each culture by advancing the 

mounting stage of the microscope systematically (vertically or horizontally) through six 

consecutive fields of view. The images were then analysed using the Image J software 

(National Institutes of Health, USA). For each (control or ethanol-treated) sample, the 

number of PCNA-positive cells was counted as was the number of PCNA-negative cells.  

The number of PCNA-positive cNCCs was then expressed as a percentage of the total 

number of cells. This was regarded as the mitotic index (MI). The average MI was then 

calculated for control and 0.2%, 0.3% and 0.4% v/v ethanol-treated cells respectively. Cell 

counts were validated using the Lin‟s coefficient of correlation (Lin, 1989) as described 

earlier. Statistical analysis was performed using the MS Excel® software, with statistical 

significance being set at p<0.05.  

 

 

2.5 Time-lapse video microscopy of migrating chick cranial neural crest cells 

Time-lapse video microscopic recordings of the migration of control and ethanol-treated 

cranial neural crest cells were made using the Zeiss Axiovision® 4.5, 2005 software, to 

visualize dynamic aspects of cNCC migration, not available from still photographs (Rovasio 

and Battiato, 2002). Three control and six ethanol-treated cultures of HH stage 8-10 cNCCs 

(0.2% v/v ethanol-treated, n=3; 0.4% v/v ethanol-treated, n=3) were recorded. After culturing 

the chick neural crest cells as described previously, selected cultures were placed in an 

incubator mounted over a Zeiss Axioscope
®
 inverted phase contrast microscope. The 

humidified incubator is constructed in such a way that temperature was maintained at 37°C 

and CO2 concentration was maintained at 5% in air. Digital images of cultures were captured 

continuously at 30 minute intervals, and recordings were made over 24 hours using the 



26 

 

multichannel camera settings of the video microscope. The images were fed to a computer 

connected to the video microscope and stored for further analysis (See Appendix H). 

 

2.6 Observation of the actin cytoskeleton of chick cranial neural crest cells 

Morphology of the actin cytoskeleton of the control (n=10) and ethanol-treated (n=10 each 

for 0.2%, 0.3% and 0.4% v/v concentration) cNCCs of stages 8 – 10 HH was studied by 

Rhodamine-Phalloidin
®

 immunofluorescence (Molecular Probes). Control and ethanol-

treated cells were fixed in 3.7% formaldehyde solution made up in phosphate buffered saline, 

pH 7.4 (PBS) (Appendix D) for 30 minutes at room temperature. The fixed cells were then 

washed twice for 20 minutes each with PBS, and then permeabilized with 0.1% Triton
®
 X-

100 in PBS for 20 minutes while rocking the cultures gently. Permeabilization was followed 

by incubation with primary antibody (HNK-1 monoclonal antibody, Sigma), diluted 1:50 

with 0.5% BSA and 0.5% Triton
®
 X-100 in PBS for one hour at room temperature in a 

humidified chamber. The cultures were then washed in 0.5% BSA in PBS twice for 20 

minutes each. After this, the cultures were incubated in secondary (goat-anti-mouse) antibody 

diluted 1:200 in 0.5% BSA at room temperature in a humidified chamber for one hour, while 

rocking the cultures gently. This was immediately followed by incubation of individual 

cultures with 3, 3‟-diaminobenzidine solution (DAB, Sigma) for 5 minutes each. Following 

incubation with DAB, the cultures were washed twice in 0.5% BSA, diluted in PBS for 20 

minutes each. They were then incubated in 5µl Rhodamine -Phalloidin
®
 antibody (Molecular 

Probes) diluted 1:200 in PBS for 20 minutes at room temperature in a damp chamber. Finally, 

the cultures were washed twice in PBS for five minutes and preserved in PBS for subsequent 

observation on a Zeiss Axioscope
®
 fluorescence microscope. Representative cultures were 

photographed. 
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2.7 Scanning electron microscopy of chick cranial neural crest cells   

High-resolution ultrastructure of the surface features of migrating cells or cells in culture 

have been shown to illuminate functional changes occurring within those cells (Gray and 

Whittaker, 1962; Bowman et al., 1983; Rovasio and Battiato, 2002; Thapa et al., 2003). To 

investigate the ultrastructural features of cNCCs which have been exposed to ethanol in vitro, 

cranial neural crest cells from chick embryos at stages 8 – 10 (HH) were cultured as 

described in Section 2.2.2. After removing the culture medium, the cultured neural crest cells 

were fixed for four hours in 2.5% glutaraldehyde made up in phosphate buffer. Cultures were 

then rinsed in PBS for 10 minutes, after which they were post-fixed in 1% osmium tetroxide 

in PBS for 1 hour. Cultures were rinsed in two changes of PBS for 10 minutes each. This was 

followed by dehydration in a graded alcohol series, for 15 minutes each after which the cells 

were critical-point dried with liquid CO2 in an HPC-2 critical point dryer (Hitachi, Japan). 

Samples were mounted on to stubs, then sputter coated with gold and palladium, and 

examined at 20 kV in a JSM 840 scanning electron microscope (JEOL, Tokyo, Japan). The 

surface ultrastructure of ethanol-treated and untreated neural crest cells were then observed 

under a scanning electron microscope (JEOL 840, Japan). The numbers of control and 

ethanol-treated neural crest cell cultures processed for scanning electron microscopy are 

summarized in Table 1. 
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Table 1. Neural crest cultures utilised for scanning electron microscopy 

 

 

 

 

*HH number refers to the Hamburger and Hamilton (1992) stage of the embryo from which 

the neural tube (and neural crest cells) was derived. 

 

 

2.8 Determination of apoptosis 

Apoptosis was determined in cultured neural crest cells using the K-180 CaspGLOW
TM

 

Fluorescein Caspase Staining Kit (Biovision California, USA). The assay utilizes the caspase 

family inhibitor VAD-FMK
®
 conjugated to FITC (FITC-VAD-FMK

®
) as a marker. FITC-

VAD-FMK
®

 is cell permeable, non-toxic, and irreversibly binds to activated caspases in 

apoptotic cells. The FITC label allows for direct detection of the activated caspases in 

apoptotic cells by fluorescence microscopy. 

Insect pins were used to remove neural tubes from control (n=6) and experimental (n= 6 for 

each of 0.2%, 0.3% and 0.4% v/v ethanol-treated) cultures, following which the remaining 

neural crest cells were trypsinised in 300µl of 0.25% trypsin per culture well for 5 minutes. 

The trypsin was then neutralised with an equal volume of 5% horse serum. The contents of 

each well were aliquoted into 1.5ml eppendorf tubes and 1µl of FITC-VAD-FMK
®
 was 

added into each tube. A negative control was instituted by adding 1µl of horse serum to a 

tube containing untreated cells to allow for determination of background fluorescence. All the 

eppendorf tubes containing treated, untreated and negative control cells were then incubated 

at 37°C for 1 hour in a 5% CO2 in air incubator. After incubation, the tubes were centrifuged 

at 3000rpm for 5 minutes. The supernatant was carefully pipetted off and the cells were 

Cultures* 8 HH  (n) 9 HH  (n) 10 HH (n) Total (n) 

Control 18 18 18 54 

0.2% 18 18 18 54 

0.3% 18 18 18 54 

0.4% 18 18 18 54 

Total 72 72 72 216 
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resuspended in 500µl of wash buffer and again centrifuged for 5 minutes at 3000rpm. After 

removing the supernatant, each sample was resuspended in 100µl of wash buffer. One drop 

(≈20µl) of this sample was placed on to a glass slide and covered with a coverslip.  The 

samples were then observed for fluorescence using a Zeiss Axioscope
®

 epi-fluorescence 

microscope using an FITC filter. Caspase positive cells were expected to have brighter green 

signals, whereas caspase negative control cells should show much weaker signals. 

Photographs of control and treated samples were digitally captured. These photographs were 

then used to quantify and compare apoptosis between control and ethanol-exposed samples. 

Phase-contrast and fluorescent images of the same microscopic fields were compared with 

each other and the number of cNCCs that were fluorescent (apoptotic) was expressed as a 

percentage of the total number of cNCCs for control cells (n = 6 fields of view) and cells 

exposed to 0.2% ethanol (v/v) (n = 6 fields of view) and 0.4% ethanol (v/v) (n = 6 fields of 

view).  

 

2.9 RNA extraction 

RNA was extracted from 48 control and experimental cultures of neural crest cells, using the 

RNeasy® Micro kit (Qiagen, South Africa), as follows: Control (n=6) and ethanol-treated 

(n=6 for each of 0.2%, 0.3% and 0.4% v/v ethanol solution) cultures were harvested at 24hrs 

(Total n=24) and 48hrs (Total n=24). The ethanol-treated samples had been cultured in 0.2%, 

0.3% and 0.4% v/v ethanol solutions in DMEM, while the controls were cultured in DMEM 

alone. Each culture was trypsinized with 200µl of 0.25% trypsin solution in PBS for 20 

minutes at 37°C. The trypsinization was stopped with an equal volume of DMEM. The cell 

suspension was pipetted into a 1.5µl Nunc
®
 tube and centrifuged at 2000 rpm for 10 minutes 

in Mikro 22R
©

 centrifuge machines (Hettich/Zentrifugen). The supernatant was decanted and 

the cell pellet re-suspended in 750 µl of RNA extraction buffer. 
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Total RNA was extracted from the harvested and washed neural crest cells (described above) 

using the RNeasy® Micro kit (Qiagen, South Africa), as follows: 

The neural crest suspension (above) was centrifuged at 2000rpm for 10 minutes in a Mikro 

22R
©

 centrifuge machine (Hettich/Zentrifugen), and then resuspended in 750µl of buffer 

RLT® (Qiagen, South Africa) to which 2µl β-mercaptaethanol had been added. Lysis and 

homogenization of the suspended cells was accomplished by transferring each sample into a 

QIA shredder Spin Column™ (Qiagen, South Africa), which was micro-centrifuged at 

maximum speed (Hermle Z 229, Zeiss West Germany) for 2 minutes. The homogenate was 

then transferred into a new 2ml collection tube, to which 750µl of 70% ethanol was added to 

precipitate any remaining DNA or proteins. The homogenate was now placed into an 

RNeasy
®
 MiniElute Spin Column (Qiagen, South Africa) and centrifuged at maximum speed 

(Hermle Z 229, Zeiss West Germany) for 15 seconds. The flow-through was discarded and 

700 µl of buffer RW1
®

 (Qiagen, South Africa) was added. The lysate was micro-centrifuged 

(Hermle Z 229, Zeiss West Germany) for 15 seconds, poured into a new 2ml collection tube 

and 500 µl of buffer RPE
®
 (Qiagen, South Africa) was added to the spin column for washing. 

The spin column was micro-centrifuged for 15 seconds at maximal speed (Hermle Z 229, 

Zeiss West Germany) and 500 µl of 80% ethanol was added. This was centrifuged for 2 

minutes to dry the column, following which both the outflow and 2ml collection tube were 

discarded. Finally, the RNEasy
®

 MiniElute Spin Column (Qiagen, South Africa) was 

transferred into a new 1.5ml previously autoclaved eppendorf tube, and the RNA eluted from 

the Spin Column by adding 50µl of RNAse-free water to the column and micro-centrifuging 

for 2 minutes. The yield and purity of the total RNA was determined using the Nano-Drop
®

 

spectrophotometer, Series ND-100 (Appendix F). The RNA samples were then stored at -

70°C, preparatory to reverse transcription. 
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2.10 Reverse Transcription 

 

RNA was reverse-transcribed using the Transcriptor High Fidelity cDNA Synthesis Kit 

(Roche, Germany). Standard sterile and RNAse-free protocols, according to the Minimum 

Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) (Bustin, 

2002; Fleige and Pfaffl, 2006; Bustin et al., 2009), were maintained at all times and all 

reagents were thawed before use and kept on ice during the procedure. Previously autoclaved, 

thin-walled PCR tubes were used to mix the reagents. 

 

Reactions were set up as follows (Table 2): 

 

Table 2. Set-up of template-primer mixture for reverse transcription 

Component Volume Final Concentration 

Total RNA variable 50ng 

Random Hexamer 2ul 60uM 

Water variable To make up volume=11.4ul 

Total  11.4ul  

 

The resulting template-primer mixture was denatured by heating at 65°C for 10min in a block 

cycler with a heated lid (to minimize evaporation). This step ensures denaturation of RNA 

secondary structures. After denaturation, the mixture was immediately cooled on ice, 

followed by the addition of the following reagents in the order listed below (Table 3): 

 

 

 

Table 3. Reagents used to synthesize cDNA (Reverse Transcription) 

Component Volume Final Concentration 

Reverse transcriptase 

reaction buffer, 5X 

4ul 1X 

RNase Inhibitor 0.5ul 20U 

Deoxynucleotide (dNTP) 

mix 

2ul 1mM each 

DTT 1ul 5mM 

Reverse Transcriptase 1.1ul 10U 

Final Volume 20ul  

 

The reagents were mixed carefully in the PCR tube and placed in a block cycler with a heated 

lid. The reaction was then incubated at 55°C for 40min, following which the Reverse 
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Transcriptase was inactivated at 85°C for 5min. The cDNA was stored at 4°C until required 

for quantitative PCR. 

 

2.11 Quantitative PCR (qPCR) 

 

2.11.1 Primer design 

Sequences of avian genes of interest were obtained online (www.pubmed.com). Specifically, 

the β-actin mRNA sequence was found at the following National Centre for Biotechnology 

Information (NCBI) web address: 

http://www.ncbi.nlm.nih.gov/nuccore/45382926?ordinalpos=1&itool=EntrezSystem2.PEntre

z.Sequence.Sequence_ResultsPanel.Sequence_RVDocSum#sequence_45382926  

Similarly, the mRNA sequences for RhoB, Rac 1 and Slug were found at these addresses 

respectively:  

RhoB: http://www.ncbi.nlm.nih.gov/nuccore/118090145?log$=seqview_refseq_mRNA 

Rac 1: http://www.ncbi.nlm.nih.gov/nuccore/NM_205017.1 

Slug: 

http://www.ncbi.nlm.nih.gov/nuccore/XM_001236568.1?ordinalpos=2&itool=EntrezSystem

2.PEntrez.Sequence.Sequence_ResultsPanel.Sequence_RVDocSum 

 

Forward and reverse primers were then designed using the Integrated DNA technologies 

(IDT) SciTools Oligo Analyzer 3.1™ primer design software. Care was taken to find primers 

with optimum annealing temperatures and a G:C ratio of about 50%. The primers and the 

sequences are listed in Table 4. (See also Appendix G). All primers were synthesized by IDT 

(Whitehead Scientific, South Africa) and all primer pairs were used at an annealing 

temperature of 60
0
C. 

 

 

http://www.pubmed.com/
http://www.ncbi.nlm.nih.gov/nuccore/45382926?ordinalpos=1&itool=EntrezSystem2.PEntrez.Sequence.Sequence_ResultsPanel.Sequence_RVDocSum#sequence_45382926
http://www.ncbi.nlm.nih.gov/nuccore/45382926?ordinalpos=1&itool=EntrezSystem2.PEntrez.Sequence.Sequence_ResultsPanel.Sequence_RVDocSum#sequence_45382926
http://www.ncbi.nlm.nih.gov/nuccore/118090145?log$=seqview_refseq_mRNA
http://www.ncbi.nlm.nih.gov/nuccore/NM_205017.1
http://www.ncbi.nlm.nih.gov/nuccore/XM_001236568.1?ordinalpos=2&itool=EntrezSystem2.PEntrez.Sequence.Sequence_ResultsPanel.Sequence_RVDocSum
http://www.ncbi.nlm.nih.gov/nuccore/XM_001236568.1?ordinalpos=2&itool=EntrezSystem2.PEntrez.Sequence.Sequence_ResultsPanel.Sequence_RVDocSum
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Table 4. Oligonucleotide primers and sequences used for qPCR 
Primer name and direction Primer sequence 

Gallus β-Actin Forward 5‟- ACCCCAAAGCCAACAGA- 3‟ 

Gallus β-Actin Reverse 5‟- CCAGAGTCCATCACAATACC- 3‟ 

Gallus GAPDH Forward 5‟-GTTCTGTTCCCTTCTGTCTC- 3‟ 

Gallus GAPDH Reverse 5‟-GTTTCTATCAGCCTCTCCCA-3‟ 

Gallus Rac 1Forward 5‟- ACGAAGCTATCCGAGCAGTTCTGT-3‟ 

Gallus Rac 1Reverse 5‟- TTCTGAGCAAAGCACAGGGTTTGG-3‟ 

Gallus Rho B Forward 5‟-TCTTTGAGAACTACGTGGCCGACA-3‟ 

Gallus Rho B Reverse 5-„TGTCCACTGAGAAGCACATGAGGA-3‟ 

Gallus slug Forward 5‟-TCCTCCAAAGATCACAGCGGTTCA-3‟ 

Gallus slug Reverse 5‟-TGTGTTTGGCCAACCCAGAGAAAG-3‟ 

 

 

 

2.11.2 qPCR protocol 

 

The Brilliant II SYBR Green
® 

QPCR protocol (Stratagene, California USA) was followed for 

the quantitative PCR procedure. The PCR reaction was set up in strip tubes (Applied 

Biosystems) as follows (Table 5): 

 

 

Table 5. PCR reaction set-up (Applied Biosystems) 

Reagent Volume Final Concentration 

Brilliant II SYBR Green
®

 

qPCR Master Mix with ROX 

12.5µl 30 nM 

cDNA 2 µl  

Forward primer  1 µl 200 nM 

Reverse primer 1 µl 200 nM 

Nuclease-free PCR grade 

water 

variable, adjusted to total 

volume = 25 µl  

 

 

 

 

The reaction was mixed gently, taking care not to create bubbles, as these interfere with 

fluorescence detection. The reaction was centrifuged and then placed in the PCR machine 

(Applied Biosystems, South Africa). The Three-Step Cycling qPCR program (as 

recommended by Stratagene, California USA) was adopted as shown in Table 6 (below): 
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Table 6: The Three-Step Cycling qPCR protocol (Stratagene, California USA) 

Cycles Duration of cycle Temperature 

1 10 minutes 95°C 

40 30 seconds 95°C 

60 seconds 60°C 

30 seconds 72°C 

 

The threshold amplifications were determined using the AB7500 real time PCR machine 

(Fig. 3). The glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene was used for 

normalization. This was because when GAPDH, Actin and 18S ribosomal RNA genes were 

run as controls, GAPDH had the most stable expression between the different samples. As a 

negative control, in order to check for reagent contamination, cDNA was excluded from the 

reactions and replaced with water. All reactions were carried out in duplicate.
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Fig. 3. See Legend on the next page. 
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Legend for Fig. 3 

 

Fig. 3 A, B, C, D, E & F. Melt curve analysis of oligonucleotide primers showing the 

temperatures at which maximum amplification of GAPDH, β-Actin, Rac 1, Rho B and Slug 

genes occurred using the AB7500 real time PCR machine (Applied Biosystems, South 

Africa). A. GAPDH; B. β-Actin ; C. Rac 1; D. Rho B; E. Slug  

 

 

 

2.11.3 qPCR data analysis 

 

Data from the qPCR was stored electronically and analysed with the Applied Biosystems 

Software 7500 version 1.2.3. The relative quantity of the gene of interest was determined 

from the threshold cycle (Ct) using the formula: 

1. ΔCt = Ct(sample) - Ct(endogenous control) 

2. ΔΔCt = ΔCt - Ct (calibrator) 

3. 2
-ΔΔCt

 = relative quantity 

Where 

Endogenous control = GAPDH 

Calibrator = Control (untreated) sample 

To determine whether the expression of the genes of interest from untreated neural crest 

samples differed significantly from those from ethanol-treated samples, a paired Student‟s 

“t”-test was performed using the MS Excel
®

 software (Office 2007, Microsoft Corp, 

USA) and the Strata11 software (1984-2009, Strata Corp, USA). Significance was set at 

p<0.05.
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3.0 RESULTS 

The part of this study which was based on the murine model (Section 2.1) has been published 

in the journal Alcohol (Oyedele and Kramer, 2008) (see Appendix B). 

3.1 Blood ethanol concentration 

Mean blood alcohol concentration (BAC) peaked after 60 minutes, after which it gradually 

declined toward the zero mark (Fig. 4). The maximum BAC recorded in the treated animals 

was in the region of 260 mg/dl. 

 

 

 

 

 

 

 

 

 

Fig. 4. Mean blood alcohol concentration (BAC) profiles of maternal mice (n=6) after 

ingestion of 25% v/v ethanol at time 0 minutes (mins).  
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3.2 Food consumption and weight gain in maternal mice 

Weight gain in ethanol-treated and control maternal mice was comparable (p=0.12), (Fig. 

5A). While the amount of food consumed by treated mice decreased on GD 11 and increased 

again on GD 15, food consumed by control and ethanol-fed animals increased steadily until 

they were killed on day 18. The differences in food consumption between control and 

experimental animals were not significant (p=0.21) (Fig. 5B).   

 

3.3 Fetal survival following ethanol exposure in utero 

The 13 ethanol-fed mice yielded a total of 82 live fetuses, 15 absorbed fetuses, and 1 fetal 

death in utero. The average litter size among this group was 7.5 and the reabsorption rate was 

15.3% of all conceptions that took place (Table 7). The average litter size among the 10 

control mice was also 7.5. There was no fetal death or reabsorbed fetuses in this group of 

mice. When the average litter sizes, number of live and dead fetuses were compared between 

the two groups, the results were statistically significant (p<0.05) (Table 7). A total of seven 

birth defects were observed in the entire series, including controls. 86% of defects occurred in 

the ethanol-fed group (Table 8). Only one case of anophthalmia was observed in the control 

group compared with four cases in the ethanol group, one of which occurred bilaterally. Both 

cases of agnathia that were observed occurred in the ethanol-fed group. When compared to 

the control group, these differences were however not significant (p=0.5) (Table 8). 
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Fig.5 A & B. A. Pattern of weight gain of ethanol-fed (n=13) and control (n=10) pregnant 

mice. Differences in weight gain were not statistically significant. (p=0.12; Student‟s t-test). 

B.  Food consumption pattern in ethanol-fed and control pregnant mice. No statistical 

significance was observed in food consumption between the two groups. (p=0.21; Student‟s 

t-test). 
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Table 7. Comparison of fetuses between ethanol-fed and control mice 

 Ethanol (n) Control (n) 

Maternal mice 13 10 

Live fetuses 82 75 

Dead fetuses 1 0 

Reabsorptions (% of total conceptions) 15 (15.3) 0 (0) 

Total conceptions/gravid deciduas 98 75 

Average litter size 7.5 7.5 

Fetal survival rate (%) 83.7 100* 

*p = 0.004 (χ
2
, 3 degrees of freedom). 

 

Table 8. Anomalies observed in ethanol-fed and control mice* 

Type of anomaly Ethanol n (%) Control n (%) Total n (%) 

Anopthalmia 4
a
 (80) 1 (20) 5 (100) 

Agnathia 2 (100) 0 (0) 2 (100) 

Total 6 (85.7) 1 (14.3)  7 (100) 

*p = 0.494 (χ
2
, 1 degree of freedom). 

a
One case had bilateral anophthalmia. 

 

3.4 Fetal body measurements and cephalometry 

Birth weight, crown-rump length (Table 9), and head measurements (Table 10) all showed no 

statistically significant difference between the two groups. The mean VML was not 

significantly greater in control animals (p=0.13) (Table 10). As for the maxillary and 

mandibular lengths, the mean values hardly differed between treated and untreated groups 

and the maximum values for these two parameters were found among the ethanol-fed fetuses 
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(Table 9). Although the shortest maxilla occurred among the control animals, the shortest 

mandible was found in the ethanol-treated group. 

 

 

Table 9. Birth weights and crown-rump lengths of 25% ethanol (v/v)-treated and untreated 

fetuses 

 Birth weight (g) Crown-rump length (cm) 

 Ethanol Control Ethanol Control 

n 70 39 17 13 

Mean 

(±SD) 

1.05 

(±0.20) 

1.07(±0.16) 2.3(±0.199) 2.3(±0.175) 

Min 1.45 1.39 2.6 2.6 

Max 0.72 0.63 1.8 2.0 

p 0.51 0.75 

 

 

3.5 Skeletal staining 

Skeletal staining revealed no significant differences in bone or skeletal morphology between 

ethanol administered and control fetuses, apart from some absent segments of cranial bones 

in the premaxilla and mandible of some treated animals. Also, some ethanol-exposed fetuses 

possessed only cartilage in their ribs where clearly ossified bone was already demonstrable in 

control fetuses of the same age (Fig. 6). These differences were not significant (p=0.14; Table 

11). 
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Table 10. Cranial measurements in treated and untreated fetuses 

 VML (cm) MAXL (cm) MANL (cm) 

 Ethanol Control Ethanol Control Ethanol Control 

n 67 43 66 43 64 43 

Mean 

(±SD) 

5.78(±0.31) 5.87(±0.31) 2.24(±0.39) 2.22(±0.34) 2.48(±0.57) 2.49(±0.46) 

Max 6.43 6.70 2.89 2.75 3.82 3.27 

Min 5.42 5.08 2.09 1.65 2.07 2.36 

p 0.13 0.69 0.94 

VML, Vertico-mental length; MAXL, Maxillary length; MANL, Mandibular length. 

 

 

Table 11. Number of skeletal defects in treated and untreated fetuses following skeletal 

staining 

Observation Ethanol (n) Control (n) 

With defects 
a
 2 0 

No defects 12 14 

Total 14 14 

p=0.14 (χ
2
, 1 degree of freedom). 

a 
Defects included absent segments of cranial bones and delayed rib ossification in ethanol-

fed fetuses as compared to controls. 
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Fig. 6 A, B & C. Comparison of the skeletal preparation of day 18 mouse fetuses untreated (A) and treated with ethanol in utero (B and C). 

There are defects in the cranial bones (arrowheads). The ribs of ethanol-treated animals show a lag in the state of ossification relative to the 

control (arrows). The animal depicted in Fig. C shows anophthalmia, agnathia, and defects in the premaxilla (asterisks). Abbreviations: at, atlas; 

f, frontal bone; m, mandible; n, nasal bone; p, parietal bone; pm, premaxilla; r, ribs; sc, scapula; so, supraoccipital bone. 40X magnification. 
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Summary of the results of murine experiments 

 Ethanol significantly increased fetal reabsorptions and reduced fetal survival rate of 

newborn mice fetuses, which had been exposed in utero to a peak blood ethanol 

concentration of about 200mg/dl, administered orally in binge-doses to their dams 

over a period of three days. 

 Fetal birth weight and litter size were not affected by a daily oral administration of 

25% ethanol (v/v) to maternal mice on days 6, 7 and 8 of pregnancy. 

 Cranial birth defects such as agnathia and anophthalmia, as well as defects in the 

cranial skeleton, while exclusively observed among ethanol-exposed fetuses, were not 

significantly increased in them, compared to controls. 

 There appeared to be delayed ossification in the thoracic skeleton in ethanol-exposed 

embryos, compared to controls. 

 Cranial measurements (cephalometry) did not differ significantly between ethanol-

treated and control embryos. 

 

3.6 Whole mount HNK-1 antibody labelling of chick embryos for neural crest cells 

HNK-1 antibody immunoreactivity was found in a cranio-caudal sequence relative to time in 

all chick embryos, such that crest cells appeared at progressively more caudal regions of the 

neural tube as the embryo advanced in age (Fig. 7). At higher magnification (100X) the 

column of HNK-1 positive neural crest was observed to be relatively thicker in treated chick 

embryos as ethanol concentration increased, and appeared maximal in the embryos treated 

with 0.3% ethanol (v/v) (Fig. 8C). The pattern of HNK-1 immunoreactivity in the embryos 

treated with 0.4% ethanol (v/v) resembled that of control embryos and the 0.2% ethanol-

treated embryos (Fig. 8 A, B and D). Furthermore, HNK-1-positive cells were located within 

the surface ectoderm covering the neural tube of ethanol-treated and untreated samples, 
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particularly in stages 9 and 10 HH embryos (Figs. 7E and 7F). These presumptive neural 

crest cells were present in both control and ethanol-treated embryos at all developmental 

stages (Fig. 8). In addition, a column of HNK-1 immunoreactivity appeared between the 

surface ectoderm and the neural tube in stage 10- HH embryos that were treated with 0.4% 

ethanol (v/v) (Fig. 8F).  This was neither observed in non-treated embryos nor in embryos 

treated with lower ethanol concentrations. Finally, closure of the anterior neuropore occurred 

in the 0.4% (v/v) ethanol-treated stage 8+ (HH) embryos while it was still open in same-stage 

control embryos (Fig. 8 A and D). 

 

Summary of the results of whole-mount immunocytochemistry 

  

 The cranio-caudal presence of cNCCs relative to time was observed in all chick 

embryos. Neural crest cells were found at progressively more caudal embryonic levels 

as the embryos progressed in age. This was the observation regardless of whether or 

not the embryo was exposed to ethanol. 

 The column of cNCCs appeared to be thicker in embryos treated with 0.3% (v/v) 

ethanol than in either control embryos or embryos in other ethanol treatment groups. 

 HNK-1 immunoreactive cells were present within the surface ectoderm of all control 

and ethanol-treated embryos, but more so in embryos at stages 9 and 10 HH. 

 Treatment with 0.4% ethanol (v/v) appeared to accelerate closure of the anterior 

neuropore when same stage ethanol-treated and control embryos were compared.  

 A column of cNCCs, not seen either in control embryos or in embryos in other 

ethanol treatment groups was observed between the dorsal neural tube and surface 

ectoderm of embryos treated with 0.4% ethanol (v/v). 
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Fig. 7. See legend on the next page 
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Fig. 7 A – F. Phase-contrast micrographs of whole mount chick embryos immunostained with HNK-1 monoclonal antibody specific for neural 

crest cells. A. Non-treated stage 8 HH embryo. HNK-1 immunoreactivity is visible at the edges of the closing diencephalon (open arrowheads) 

and mesencephalon (solid arrowheads), but not in the lower mesencephalon and spinal cord regions (dashed line on the left represents the 

position of the neural tube. Only one side highlighted for clarity). B. Non-treated stage 8+ HH embryo. HNK-1 positive putative neural crest 

cells now visible in the caudal rhombencephalic and spinal cord regions of the neural tube (arrows). C - D. Stage 8- HH embryos treated with 

0.2% (C) and 0.3% (D) (v/v) ethanol; the embryos show near-identical HNK-1 immunoreactivity. E. Stage 8 HH embryo treated with 0.4% (v/v) 

ethanol, showing a pattern of HNK-1 immunoreactivity, similar to that at lower ethanol concentrations (C and D). F. Untreated Stage 9 HH 

embryo. HNK-1 immunoreactivity is present at all levels of the neuraxis. In B and F, the neural tube is outlined for clarity. Intensely-stained 

lower lateral regions of images represent non-specific staining of membranes (open arrows). Olympus inverted phase-contrast microscope. 40X. 

 

 

Fig. 8 A-F. Phase-contrast micrographs of cranial regions of whole mount chick embryos immunostained with HNK-1 monoclonal antibody 

specific for neural crest cells. A. Non-treated stage 8+ HH embryo. HNK-1 immunoreactive cells can be seen at the crest of the neural folds 

(open arrowheads). B, C. Stage 8- HH embryo treated with 0.2%  and 0.3% ethanol (v/v) respectively, with a similar pattern of HNK-1 

immunoreactivity as control embryos. The band of immunoreactive cells (between arrowheads) appears to be thicker in the 0.3% (v/v) ethanol-

treated embryo (C). D. Stage 8+ HH embryo treated with 0.4% ethanol (v/v). The pattern of HNK-1 immunoreactivity is similar to that in the 

untreated embryo (open arrowheads). However, compared to the control embryo, midline fusion of the neural tube is complete cranially (arrow). 

E. Non-treated stage 9 HH embryo. The neural tube is still outlined by HNK-1 positive reaction, but less so than in earlier stage (treated and 

untreated) embryos. The surface ectoderm contains bands of HNK-1 positive cells (arrows). F. Stage 10- HH embryo, treated with 0.4% ethanol 

(v/v).  Bands of HNK-1 positive cells similar to those in E can be seen within the surface ectoderm (arrows). In addition a stream of HNK-1 

positive cells appears between the neural tube and surface ectoderm (open arrowheads). Neural tube has been highlighted for clarity. Olympus 

phase-contrast microscope. 100X. 
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3.7 Chick cranial neural crest cell morphology following ethanol exposure 

3.7.1 Ethanol concentration of medium used to culture treated neural crest cells 

Ethanol concentration in the ethanol-treated medium was determined from the 

absorbance values in the standard curve (Fig. 9). The mean ethanol values obtained came 

to within ± 0.05% (v/v) of the expected values (Table 12). 

 

 

Fig. 9. Plot of ethanol concentration in vitro against absorbance (Abs) 

 

Table 12. Determination of ethanol concentration in ethanol-treated cultures of chick cNCCs* 

Sample 
Sa 

(nmol) 
Sv (ul) Sa/Sv 

Observed 

concentration, O 

(mM) 

Expected 

concentration, 

E (mM) 

Difference 

(O-E) 

(mM) 

O-E 

(% 

v/v) 

Control 99 25 3.96 7.92 0.0 +7.9 +0.046 

0.2% 

ethanol 
 

402 25 16.08 32.2 34.0 -1.8 -0.011 

0.3% 

ethanol 
 

59 7.3 8.08 48.5 51.0 -2.5 -0.015 

0.4% 

ethanol 
 

27 4.4 6.16 61.6 68.0 -6.4 -0.038 

*Samples tested in triplicates. Mean values represented. (Sa = sample amount, Sv = sample 

volume) 
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3.7.2 Microscopic appearance of ethanol-exposed chick neural crest cells. 

A notable observation with ethanol-treated, compared to untreated neural crest cells was 

their apparent change in morphology from typical spindle-shaped cells to a more 

flattened and cuboidal appearance (Fig. 10). This was most noticeable with increasing 

ethanol concentration and duration of culture (Fig. 10). There was also a striking apparent 

increase in proliferation of ethanol-treated cells (reported further in section 3.8). 
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C B 

Fig. 10 A & B. Comparison of the morphology of neural crest cells on day 4 of continuous culture. 

Control cells are largely spindle shaped (A), while cells cultured in 0.2% (B) and 0.4% ethanol (v/v) 

appear epithelial in a dose-dependent manner. Note also the „crowding‟ of treated cells, presumably 

due to increased proliferation (see section 3.8). (Inverted phase contrast microscope. 200X). 
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3.8 Proliferation of ethanol-treated chick cranial neural crest cells (Mitotic Index) 

After 24hrs of ethanol exposure, a dose-dependent statistically significant increase in 

mitotic index (MI) was observed in ethanol-treated cells, compared to controls (Fig. 11). 

This ethanol-induced increase in proliferation of exposed cells relative to controls 

persisted at 48hrs (Fig. 11). However, when mitotic indices at 24hrs of culture were 

compared with values at 48hrs for the same cells, only control cNCCs and cells cultured 

in 0.2% ethanol showed a significant increase in proliferation at 48hrs, compared to 24hrs 

(Fig. 11). The increased MI at 24hrs compared to 48hrs, observed in cNCCs treated with 

0.3% ethanol was not significant (p=0.058). Cranial NCCs cultured in 0.4% ethanol 

showed a decreased MI at 48hrs of culture compared to the index at 24hrs (Fig. 11). This 

decrease in MI was not significant (p=0.359). 
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Fig. 11. Mean mitotic index (MI) of control and ethanol-treated cNCCs observed at 

24- and 48hrs. An ethanol-induced dose-dependent increase in MI can be observed, 

particularly at 24hrs. The legend of symbols used in the graph to show differences 

that were significant is explained as follows 
 
Samples p-value 

24hrs 
p-value 48hrs 

Control vs. 0.2% EtOH 
*
5.34x10

-8
 

#
0.012 

Control vs. 0.3% EtOH 
**

3.6x10
-7

 
##

0.021 

Control vs. 0.4%  EtOH 
***

7.26x10
-7

 
###

5x10
-5

 

Control 24hrs vs. 48hrs 
§
1.7x10

-10
 

0.2%  EtOH 24hrs vs. 48hrs 
§§

7.4x10
-5

 

 

* 

## 

*** 

# ** 

### 

§ 

§§ 



53 

 

3.9.1 Distances migrated by chick neural crest cells after 24hrs of culture. 

After 24hrs of culture, when the direction in which cNCCs migrated was considered, 

there was an increase in mean distance migrated along the x axis from 1.00 mm in control 

cells to 1.09 mm, 1.20 mm and 1.04 mm in 0.2%,  0.3% and 0.4% (v/v) ethanol-treated 

crest cells respectively. The increase at 0.3% ethanol-treatment was statistically 

significant (Table 13). In the y-axis, the mean distance migrated increased from 1.14 mm 

in control cNCCs to 1.18 mm and 1.28 mm in 0.2% and 0.3% (v/v) ethanol-treated cells 

respectively, but it decreased to 1.12 mm in 0.4% (v/v) ethanol-treated cNCCs. Neither 

the increased nor decreased mean distance of migration by ethanol-treated cNCCs along 

the y axis was significant (Table 13). The mean “vector distance” (vDistance), the vector 

sum of distance of migration along the x and y axes, increased from 1.53 mm in control 

cNCCs to 1.64 mm, 1.77 mm and 1.57 mm in 0.2%, 0.3% and 0.4% (v/v) ethanol-treated 

neural crest cells respectively (Fig. 12). However only the increase in vDistance of the 

cells cultured in 0.3% ethanol (v/v) was significant (p=0.039; Table 13). 
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Table 13. Mean distances migrated by alcohol-treated and untreated neural crest cells after 24 hours of culture* 

 Control n=26 0.2% ethanol n=13 0.3% ethanol n=10 0.4% ethanol n=24 

 x-axis y-axis x-axis y-axis x-axis y-axis x-axis y-axis 

Dist dir (mm) 1.00 1.14 1.09 1.18 1.2 1.28 1.04 1.12 

SD 0.356 0.301 0.416 0.336 0.219 0.324 0.373 0.404 

p (x-axis vs y-axis)  0.057 0.255 0.25 0.229 

vDist ±SD (mm) 1.53±0.426 1.64±0.388 1.77±0.319 1.57±0.478 

p  (control vs 

ethanol) dir 

 0.255 0.352 0.025 0.126 0.35 0.412 

p  (control vs 

ethanol) vDist 

 0.197 0.039 0.378 

 

*Significant differences are highlighted in bold type. Abbreviations: Dist dir, directional distance (along the x or y axis); vDist, sum 

of directional distance (as a vector quantity); p(control vs ethanol) dir, p value for difference in directional distance, comparing control 

versus ethanol-treated samples; p(control vs ethanol) vDist, p value for difference summative distance, comparing control versus 

ethanol-treated samples. 
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3.9.2 Distances migrated by chick neural crest cells after 48hrs of culture 

Only the cells cultured in 0.4% ethanol showed a significant difference in the distance 

migrated along the x- compared to the y axis (Table 14). Furthermore, in the x axis, 

control cells migrated over a mean distance of 1.51 mm, compared to a distance of 0.98 

mm, 1.10 mm and 1.42 mm for cells cultured in 0.2%, 0.3% and 0.4% ethanol (v/v) 

respectively. This decrease in migrated distance by ethanol-treated cells was significant 

in 0.2% and 0.3% but not 0.4% (v/v) ethanol (Table 14). The mean distance through 

which cNCCs migrated along the y axis showed a decrease from 1.38 mm in control cells 

to 1.20 mm and 1.35 mm in 0.2% and 0.3% (v/v) ethanol-treated cells respectively. The 

mean migrated distance was however increased to 1.72 mm with 0.4% (v/v) ethanol 

treatment. This increase was significant when compared to the controls (p=0.04l; Table 

14). Vector summation of distances migrated by cNCCs at 48 hours revealed that 

vDistance was decreased non-significantly compared to controls, by treatment with 0.2% 

and 0.3% (v/v) ethanol, but increased by treatment with 0.4% ethanol (v/v), compared to 

the control cells. This increase was not statistically significant (Table 14).  

3.9.3 Comparison between 24- and 48-hr distances migrated by chick neural crest 

cells 

The mean distance migrated by control cells increased from 1.00 mm and 1.14 mm in the 

x and y axes respectively at 24hrs to 1.51 mm and 1.38mm in the x and y axes 

respectively at 48 hrs. This increase was significant in the x axis as well as when vector-

summated (Table 14 and Fig. 12A).  In the ethanol treatment groups, for both 0.2% and 

0.3% ethanol-treated cNCCs, migrated distance decreased in the x axis but increased in  
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Table 14. Mean distances migrated by alcohol-treated and untreated neural crest cells after 48 hours of culture* 

 Control n=15 0.2% ethanol n=9 0.3% ethanol n=6 0.4% ethanol n=10 

 x-axis y-axis x-axis y-axis x-axis y-axis x-axis y-axis 

Dist dir (mm) 1.51 1.378 0.982 1.202 1.103 1.351 1.428 1.716 

SD 0.467 0.476 0.655 0.635 0.317 0.187 0.203 0.439 

p (x-axis versus y-axis)  0.228 0.238 0.068 0.041 

vDist ±SD  (mm) 2.07 ±0.574 1.56 ±0.887 1.50 ±0.725 2.25 ±0.379 

p (control vs ethanol) dir   0.026 0.242 0.019 0.427 0.282 0.041 

p (control vs ethanol) vDist  0.075 0.050 0.175 

p (24hrs vs. 48hrs) (x-axis 

versus y-axis) 

0.001 0.049 0.338 0.470 0.269 0.300 0.000 0.001 

p (24hrs vs. 48hrs) vDist 0.002 0.398 0.195 0.0001 

 

*Significant differences are highlighted in bold type. Abbreviations: Dist dir, directional distance (along the x or y axis); vDist, sum 

of directional distance (as a vector quantity); p(control vs ethanol) dir, p value for difference in directional distance, comparing control 

versus ethanol-treated samples; p(control vs ethanol) vDist, p value for difference summative distance, comparing control versus 

ethanol-treated samples. 
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Fig. 12 A & B. Mean distance migrated by control and ethanol-treated cultured cNCCs at 24- and 48hrs. A. Mean distance measured in the 

direction parallel (x) or perpendicular (y) to the neural tube. B. Mean directional distance added as vector quantities (vDistance); Significant 

differences in the distance migrated by ethanol-treated compared to control cells are indicated by asterisk (*). Significant differences in the 

distance migrated by the same cells at 24hrs compared to 48hrs are marked by an open circle (○). 
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the y axis between 24- and 48hrs. These differences were not significant (Table 14). At 

0.4% (v/v) ethanol concentration, a statistically significant increase occurred in the 

distance of migration at 48hrs compared to 24hrs in both axes of migration as well as 

when the axes were summated as vectors (Fig. 12B).    

 

Summary of distance migrated by cNCCs at 24- and 48 hours 

 With just one exception (y axis, 0.4% v/v ethanol-treated cells), after 24 hours of 

ethanol exposure, cNCCs tended to increase their migratory distance compared to 

control cells. When the distances migrated along the axes were added, ethanol 

treatment appeared to increase the distance of migration at all concentrations of 

treatment. However, only the increase observed in the 0.3% (v/v) ethanol-treated, 

x-axis-directed cNCCs was statistically significant compared to controls.  

 By 48 hours of ethanol treatment, a reverse had occurred, with the majority of 

ethanol-treated cNCCs now showing a decrease in distance migrated compared to 

controls. However, this decrease was statistically significant only for cNCCs 

migrating along the x axis in 0.2% and 0.3% (v/v) ethanol cultures. Vector 

distance (vDistance) migrated by ethanol-treated cNCCs was similarly reduced in 

all but the cells cultured in 0.4% ethanol (v/v), although neither reduced nor 

increased vDistance at 48hrs was statistically significant compared to controls.  

 At 48hours of migration cNCCs exposed to 0.4% (v/v) ethanol, migrating in the y 

axis showed a statistically significantly increased distance migrated, compared to 

controls.  
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 A comparison of migrated distance at 24- compared to 48 hours by the same 

cNCCs showed that: 

o Non-treated cNCCs had migrated further along the x axis and along the vector 

summation of both axes. This increased distance on the second compared to 

the first day of culture was statistically significant. 

o Similarly, cNCCs cultured in 0.4% (v/v) ethanol migrated over a statistical 

significantly greater distance at 48hrs than they did at 24hrs in both the x and 

y axes, as well as when both axes were vector summated.  

o Neural crest cells cultured in 0.2% (v/v) and 0.3% (v/v) ethanol both showed a 

decreased vDistance at 48- compared to 24hrs, although this decrease was not 

statistically significant. 
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3.9.4 The distance migrated by chick cranial neural crest cells in relation to the 

embryonic stage of development.   

When the distances migrated by cranial neural crest cells were examined based on the 

Hamburger and Hamilton (1992) stage of development of the embryo (neural tube) from 

which the emigrant neural crest cells were derived, the following observations were made 

(Fig. 13 A-C and Fig. 14 A-C):  

 

Stage 8 (HH) embryo-derived chick neural crest cells 

Control stage 8 (HH) cNCCs showed a significant increase in mean distance migrated at 

48hrs as compared to 24hrs in both x (p=0.04) and y (p=0.000) axes, as well as in the 

summation of the axes (p=0.005) (Fig. 13 A and Fig. 14A). Furthermore, after 24 hours 

of cell culture, cNCCs at stage 8 (HH), which had been exposed to 0.2% ethanol (v/v) 

manifested a slight (but statistically non-significant) mean increase in migrated distance 

along both x and y axes, compared to controls. At 48hrs, while the increase in migrated 

distance along the x axis persisted, cNCCs migrating in the y-axis showed a significant 

decrease in mean migrated distance, when compared to control cells (p=0.04; Fig. 13A). 

The mean “vector distance” (vDistance) of the 0.2% (v/v) ethanol-exposed cells at 24hrs 

increased (with no statistical significance) compared to controls, but decreased at 48hrs 

compared to control cells, also with no statistical significance (Fig. 14A).  

With 0.4% (v/v) ethanol-exposure, cNCCs showed a very slight decrease in migrated 

distance along both axes at 24hrs compared to control cells, and both an increase (x axis) 

and a decrease (y axis) in migrated distance at 48hrs compared to control cNCCs. These 

differences were not statistically significant (Fig. 13A). Vectorial addition of the  
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Fig. 13 A, B & C. Mean directional distance (mm) (along x and y axes) migrated by control and ethanol-treated cranial neural crest cells that were cultured 
from neural tubes removed from embryos at stages 8 (A), 9 (B) and 10 (C) (HH). Significant differences indicated by open circles (o) relate to comparisons 
between distance migrated by ethanol-treated cNCCs and control cells at 24hrs; significant differences indicated by solid circles (●) relate to comparisons 
between distance migrated by ethanol-treated cNCCs and control cells at 48hrs, and significant differences indicated by asterisks (*) relate to 
comparisons between the distance migrated at 24hrs versus that at 48 hrs. 
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Fig. 14 A, B & C. Mean vDistance migrated by control and ethanol-treated cranial neural crest cells, cultured from neural tubes that were removed from 
embryos at stages 8 (A), 9 (B) and 10 (C) HH. Significant differences indicated by open circles (o) relate to comparisons between distance migrated by 
ethanol-treated cNCCs and control cells at 24hrs; significant differences indicated by solid circles (●) relate to comparisons between distance migrated by 
ethanol-treated cNCCs and control cells at 48hrs, and significant differences indicated by asterisks (*) relate to comparisons between the distance migrated 
at 24hrs versus that at 48 hrs. 
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displacement over the x and y axes for 0.4% (v/v) ethanol-treated cells showed that at 

both 24- and 48 hrs, cNCCs migrated over similar vDistances to those of control cNCCs 

without any statistically significant difference (Fig. 14A).  

 

Stage 9 (HH) embryo-derived chick neural crest cells  

Control cNCCs from stage 9 (HH) embryos migrated over significantly greater mean 

distances in the x axis (p=0.031), y axis (p=0.004) and combined axes (p=0.012) at 48hrs 

compared to 24hrs (Fig. 13B and Fig. 14B). With 0.2% (v/v) ethanol treatment, stage 9 

(HH) cNCCs increased their mean distance of migration at 24hrs, along both x and y axes 

when compared to controls (with no statistical significance) (Fig 12B). At 48hrs, there 

was a significantly reduced distance migrated by 0.2% (v/v) ethanol-treated cNCCs in 

both x (p=0.010) and y (p=0.011) axes, as compared to controls. Summation of the axes 

showed that with 0.2% (v/v) ethanol exposure, vDistance increased at 24 hrs (with no 

statistical significance), but decreased significantly at 48hrs (p=0.010) (Fig. 14B). 

Stage 9 (HH) cNCCs that were exposed to 0.3% (v/v) ethanol showed a significant 

increase in distance migrated in both x- (p=0.035) and y (p=0.023) axes after 24hrs of 

culture, compared to controls (Fig. 13B). The vDistance migrated by this treatment group 

of cNCCs was also significant compared to the vDistance migrated by control cells 

(p=0.016; Fig. 14B). After 48hrs of culture, 0.3% (v/v) ethanol-treated cells showed a 

non-statistically significant increase in the mean distance migrated compared to control 

cNCCs, along the y axis (Fig 12B). There was a non-statistically significant decrease in 

distance migrated along the x axis compared to control cells. The summated mean 
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vDistance migrated by 0.3% (v/v) ethanol-exposed cells at 48hrs of exposure was 

increased compared to control values, but with no statistical significance (Fig 13B).  

Treatment of Stage 9 (HH) cNCCs with 0.4% (v/v) ethanol resulted in a slight decrease in 

migrated distance along the x-, but an increase along the y axis at 24hrs, neither of which 

was statistically significant compared to controls. The increase in mean vDistance 

observed for this treatment group at 24hrs was also not significant (p=0.446) (Fig. 14B). 

However after 48 hours of migration, 0.4% (v/v) ethanol-treated stage 9 (HH) cNCCs 

increased their distance of migration compared to controls, in both axes, with the y axis 

increase being significant (p=0.006; Fig. 13B). Furthermore, the mean vDistance 

migrated by 0.4% (v/v) ethanol-treated cNCCs at 48 hours of culture increased 

significantly compared to control values (p=0.027; Fig. 14B). 

 

Stage 10 (HH) embryo-derived chick neural crest cells  

There was a non-statistically significant increase in the distance migrated by control stage 

10 (HH) cNCCs in the x and y axes and in both axes combined (vDistance) at 48hrs 

compared to 24hrs (Fig. 13C and Fig 13C). The treatment of stage 10 (HH) cNCCs with 

0.2% (v/v) ethanol resulted in a reduction in migrated distance in the x axis, but an 

increase in distance migrated in the y axis after 24 hours, neither of which was significant 

(p, x axis = 0.41; p, y axis = 0.33; Fig. 13C). After 48 hrs of culture in 0.2% (v/v) 

ethanol, stage 10 (HH) cNCCs, showed a non-statistically significant increase in migrated 

distance in both axes, compared to control cells (Fig. 13C). The summated mean 

vDistance values migrated by 0.2% (v/v) ethanol-exposed cNCCs at 24- and at 48 hours 
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of observation were increased compared to controls but with no statistical significance 

(Fig. 14C). 

With exposure to 0.3% (v/v) ethanol concentration, the mean distance migrated by stage 

10 (HH) cNCCs was non-significantly reduced along both axes of migration (p, x 

axis=0.108; p, y axis=0.463) at 24hrs compared to control values (Fig. 13C). The mean 

vDistance migrated by the 0.3% (v/v) ethanol-treated cNCCs along the combined axes 

was also decreased at 24hrs, with no statistically significant difference (Fig. 14C). After 

48hrs of culture, there was a non-statistically significant decrease in the distance migrated 

by 0.3% (v/v) ethanol-treated cNCCs along both the x and y axes, when compared to 

control cNCCs, as well as along the combined axes (vDistance) (Fig. 13C and Fig. 14C).  

At an ethanol concentration of 0.4% (v/v), there were statistically non-significant 

increases in the mean distance migrated by stage 10 (HH) cNCCs compared to control 

cells, along all axes and at both time points at which they were observed (Fig. 13C). 

When the distances along the x- and y axes were summed, cNCCs obtained from stage 10 

(HH) embryos and treated with 0.4% (v/v) ethanol, showed statistically non-significant 

increases in mean vDistance of migration compared to control cells at both 24- and 48 

hours, (Fig. 14C). 
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Summary of HH stage-dependent distance of migration by cNCCs 

 The most consistent finding was that at embryonic stage 9 (HH), there was an 

increase in mean vDistance among ethanol-treated cNCCs compared to controls, 

both at 24- and 48 hours of observation. This increase was observed at ethanol 

concentrations of 0.3% and 0.4%. 

 Most of the statistically significant increases in distance migrated by ethanol-

treated cNCCs compared to control cells occurred at 48hrs, in cNCCs derived at 

stage 9 (HH) which had been exposed to either 0.3% or 0.4% (v/v) ethanol 

 Most of the significant reductions in distance migrated by ethanol-treated cNCCs 

compared to control cells also occurred at 48hrs, also in cNCCs derived at stage 9 

(HH), which had been exposed to 0.2% (v/v) ethanol. 
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3.10 Time-lapse video microscopy of migrating chick cranial neural crest cells 

Sample copies of the video recordings of two control and three ethanol-treated (two 0.2% 

and one 0.4% v/v) cultures of migrating neural crest cells, as well as the time-analysis of 

the recording of the migration of neural crest cells are available for viewing on the 

accompanying compact disc (Appendix H).  The recordings highlight dynamic aspects of 

neural crest cell migration that were not available from still photographs.  

Control cNCCs commenced their migration after about 2hrs (t+2) from the start of the 

video recording (t) and reached the defined end-point of migration (the edge of the 

microscope field of view) after 12hrs (t+14). At the end of the video recording (t+24), the 

morphology of control neural crest cells was mainly spindle-shaped (Appendix H). 

Compared to control cells, there was an average delay of about five hours in the time that 

it took 0.2% ethanol-treated cNCCs to emerge from the neural tube as they started to 

migrate at about t+7. In addition, this group of ethanol-treated cells reached the edge of 

the field of view about nine hours after control cells had reached the same point (t+23). 

At the end of the video recording, the morphology of the 0.2% (v/v) ethanol-treated 

cNCCs was mainly cuboidal. The neural crest cells which were exposed to 0.4% ethanol 

(v/v) appeared to emerge from the neural tube about one hour ahead of control cells (t+1), 

but failed to reach the end-point of migration observed in the control cells by the end of 

the video recording (Appendix H). Furthermore, at the termination of the video 

recording, in the 0.4% (v/v) ethanol-treated cultures, numerous round bodies were seen in 

the culture medium, atypical of normal neural crest cells.  
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Summary of time-lapse video microscopy observations 

 

 There was an apparent delay in onset of cNCCs emigration from the neural tubes 

that were cultured in 0.2% ethanol (v/v), compared to control cells. 

 There was an apparent acceleration of the onset of migration in 0.4% (v/v) 

ethanol-treated cNCCs compared to control cNCCs. 

 At the end of the period of video recording, 0.2% ethanol-treated cNCCs 

consisted mostly of flattened cuboidal cells, while control cNCCs were mostly 

spindle-shaped 

 Some cNCCs that were exposed to 0.4% ethanol (v/v), failed to assume the 

expected spindle-shaped morphology of neural crest cells (as seen in control 

cultures), but became small round bodies within the culture medium.
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3.11 Effect of ethanol exposure on the actin cytoskeleton of chick neural crest cells. 

Prior to visualization of their actin cytoskeleton by fluorescent microscopy, control and 

ethanol-exposed cNCCs were identified by HNK-1 immunolabelling of their cell 

membranes, using phase-contrast microscopy. The actin cytoskeleton of control cranial 

neural crest cells was well-defined, with an ordered microfilament structure. In addition, 

focal adhesions were clearly visible at points where the cells made contact with the 

substratum (Figs 14A, 15A and 16A). A number of features characterized the actin 

cytoskeleton of ethanol-treated cNCCs. At 48 hrs of culture, while non-treated cNCCs 

showed regularly arranged and clearly recognizable actin filaments, these filaments were 

not as well-defined in ethanol-treated cells (Fig. 15B). Another feature that was noted 

after 48 hrs of culture was that neural crest cells exposed to ethanol were characterized by 

prominent positive phalloidin immuno-fluorescence in the region of the presumptive 

nucleus - a feature largely absent in control cells (Fig. 15). Ethanol-treated cells also 

appeared more numerous and of smaller size than control NCCs (Fig. 15) (previously 

discussed in section 3.8). By 96 hrs of cell culture, actin microfilaments were visible in 

both control cells and in those exposed to ethanol. However, neural crest cells that were 

cultured in ethanol showed disarray in their cytoskeletal actin architecture, a feature that 

was well-observed at higher magnifications (Figs. 15 and 16). Furthermore, in ethanol-

treated crest cells, irregular digitations were seen at leading edges of some cells, focal 

adhesions were fewer than what was observed in controls and ethanol-treated cells 

appeared to clump together and overlap each other (Fig. 16B). This was not observed in 

control cells. Many of the actin microfilaments in alcohol-treated cells were seen „end-
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on‟, suggestive of their altered orientation (Fig. 17B). This feature was not a frequent 

observation in control cells. 
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Fig. 15 A & B. Appearance of rhodamine immuno-labelled actin cytoskeleton of control (A) and 0.4% (v/v) ethanol-
treated neural crest cells (B), after 2 days of culture.  Even at this magnification, actin filaments are clearly seen in 
control cells (arrows), but not in ethanol-treated cells, which do not show extended processes. A phalloidin-positive 
entity within presumptive nuclei is a prominent feature of ethanol-treated crest cells. Many of the ethanol-treated 
cells appear to be in late mitosis (arrowheads). Olympus inverted microscope with epifluorescence200X. 
 
 
Fig. 15. Appearance of rhodamine immuno-labelled actin cytoskeleton of control (A) and 0.4% (v/v) ethanol-treated 
neural crest cells (B), after 2 days of culture.  Even at this magnification, actin filaments are clearly seen in control cells 

A 

B 



72 

 

 

 

 

 

  

   A 



73 

 

 

  

      B 
 
      B Fig. 16 A & B. Appearance of rhodamine immuno-labelled actin cytoskeleton of control (A) and 0.2% (v/v) ethanol-

treated neural crest cells (B), after 4 days of culture. Actin filaments appear to be in disarray in ethanol-treated neural 
crest cells and lack focal adhesions in contrast to control cells (arrowheads in A). There are digitations of the actin 
cytoskeleton at leading edges of some treated cells (arrows) Ethanol-treated cells appear to be clumped together as 
they overlap and have migrated over each other. Olympus fluorescence microscope. 200X. 
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A 
 
A 

B 
 
B Fig. 17 A & B. Appearance of rhodamine immuno-labelled actin cytoskeleton of control (A) and 0.2% (v/v) ethanol-

treated neural crest cells (B), after 6 days of culture. While the actin microfilaments are well-ordered in the control 
cell, they appear disorganized in treated cells.  Some of the actin filaments are seen ‘end on’ (yellow arrowheads), 
indicative of their loss of proper orientation within the neural crest cell cytoplasm. Brighter white spots appear to be 
artefacts. Olympus fluorescence microscope. 400X. 
 
 
Fig. 16. Appearance of rhodamine immuno-labelled actin cytoskeleton of control (A) and 0.2% (v/v) ethanol-treated 
neural crest cells (B), after 6 days of culture. While the actin microfilaments are well-ordered in the control cell, they 
appear disorganized in treated cells.  Some of the actin filaments are seen ‘end on’ (yellow arrowheads), indicative of 
their loss of proper orientation within the neural crest cell cytoplasm. Brighter white spots appear to be artifacts. 
Olympus inverted fluorescence microscope. 400X. 
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Summary of observations on the actin cytoskeleton of ethanol-treated cNCCs 

The actin cytoskeleton of ethanol-treated cranial neural crest cells showed 

 Disorganization, irregularity and thinning, compared to controls 

 Prominent intranuclear phalloidin immunofluorescence, which was not observed 

in control cNCCs 

 Relative absence of focal adhesions 

 

3.12 Surface ultrastructure of chick neural crest cells after exposure to ethanol  

After 24 hrs of culture, low magnification scanning electron microscopy (SEM) revealed 

cranial neural crest cells which have been exposed to 0.2% (v/v) ethanol as having an 

epithelial, rather than a spindle-shaped mesenchymal appearance that was observed in 

non-treated neural crest cells (Fig. 18A). There also appears to be a reticular meshwork 

which was consistently present in ethanol-treated, but not control samples (arrows, Fig. 

18B, C). Evidence of apoptosis (blebbing of the cell membrane) was observed in both 

control and ethanol-treated cells at 48hrs of culture (Fig. 19). Membrane protrusion 

(“blebbing”) was more pronounced in neural crest cells cultured from neural tubes of 

younger embryos (stage 8 HH) than in those from older embryos (stage 10 HH), 

regardless of whether they were ethanol-exposed or not (Fig. 19). On the contrary, the 

appearance of a reticular meshwork was a feature of neural crest cells of stages 9 and 10 

(HH) embryos, which had been exposed to ethanol. It was not found either in similar-

stage control embryos, or in cultured crest cells from stage 8 embryos, whether or not 

these had been exposed to ethanol (Fig. 19), in spite of the fact that they were processed 

at the same time.  
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Another feature observed in ethanol-exposed neural crest cells, particularly those which 

were cultured from stage 8 (HH) derived neural tubes, was the presence of intercellular 

filamentous extensions between apoptotic cells (Fig. 19C). By the 6
th

 day of culture, 

some evidence of neural crest cell differentiation was observed, including the presence of 

nerve cells in control cultures (Fig. 20). Differentiation was also seen in ethanol-exposed 

neural crest cells, some of which showed extensive blebbing of the surface membrane 

(Fig.19B).
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Fig. 18 A, B & C. Scanning electron micrographs of untreated neural crest cells (A) and cells cultured in 0.2% ethanol (v/v) for 24 hrs (B), and 4 days (C). While 
control cells are mesenchymal in appearance, with typical spinous processes (arrowheads), ethanol-treated cells are epithelial in shape. Treated cells also show 
a reticular meshwork (arrows in B, C), possibly remnants of apoptotic events. A, B 300X; C, 1000X.  

     C 
 
     C 

    A 
 
    A 

      B 
 
      B 

Fig. 19 A – F. Scanning electron micrographs of non-treated (control) and ethanol-treated neural crest cells from neural tubes of stages 8-10 (HH) chick 
embryos at 48 hrs of culture. Membrane blebbing (arrows) featured prominently in both untreated (A) and ethanol-treated (B, C) cells cultured from 
neural tubes of stage 8 (HH) embryos (A, B and C), while the presence of a reticular meshwork characterized neural crest cells cultured from neural tubes 
of stage 9 (HH) (F) and stage 10 (HH) (D and E) embryos. At high ethanol concentration, intercellular extensions (arrowheads) are seen between neural 
crest cells (C). A, D, controls; B, 0.3% ethanol (v/v); E, 0.2% ethanol (v/v); C, F, 0.4% ethanol (v/v). A-E, 3000X. F, 2000X. 
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Fig. 19 A - F (See legend on preceding page). 
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B Fig. 20 A & B. Control (A) and 0.2% (v/v) ethanol-treated chick neural crest cells in an advanced stage of differentiation into presumptive nerve 
cells, on the 6th day of cell culture. There are membrane blebs on the soma of both control and treated cells. However, there appears to be more 
“blebbing” on the ethanol-exposed cell and these blebs appear to extend from the long process of the cell (arrows). A, 600 X; B, 450 X. 
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Summary of SEM observation of surface ultrastructure of cNCCs 

 Ethanol-treated cNCCs had an epithelial rather than mesenchymal shape 

 The presence of membrane blebbing and a reticular meshwork appeared to be 

more prominent in ethanol-treated cNCCs, compared to control neural crest cells. 

The blebbing was more prominent at stage 8 (HH) while the meshwork was more 

prominent at stages 9-10 (HH). 

 Ethanol-treated cNCCs that survived until the 6
th

 day of culture appeared to 

differentiate while showing evidence of generalized membrane blebbing.   
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3.13 Apoptosis in chick cNCCs in vitro following exposure to ethanol. 

At 24 hrs of culture, there appeared to be no significant difference between control, 0.2% 

ethanol (v/v) and 0.4% (v/v) ethanol-treated cNCCs as indicated by the FITC marker for 

caspase-dependent apoptosis (Fig. 21 A-C). By 48 hrs of culture however, there was an 

increase in the number of cells which were positive for caspase-dependent 

immunofluorescence among the 0.2% (v/v) ethanol-treated cNCCs (Fig. 21E). A similar 

increase in caspase-dependent immunofluorescence was observed in cNCCs that were 

exposed to 0.4% ethanol (v/v) (Fig. 21F). Quantitation of the FITC-labelled relative to 

unlabelled cells (Table 15) confirmed the qualitative observations that were made using 

fluorescence microscopy. Although the number of FITC-labelled cells increased at 48hrs, 

there was no statistically significant increase in the number of fluorescent cells in 

ethanol-treated cNCCs over control neural crest cells either at 24- or 48hrs of cell culture 

(Table 15). 

 

Summary of fluorescence microscopy results 

There was no statistically significant increase in the number of FITC-labelled cNCCs 

(indicating caspase-dependent apoptosis) following exposure to either 0.2% or 0.4% (v/v) 

ethanol. 
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Fig. 21 A - F. Micrographs of FITC labelling of cells (indicating caspase-dependent apoptosis) in untreated (A, D) and ethanol-treated (B, C, E and F)  
neural crest cells at 24 hrs of culture. (A - C) and 48 hrs of culture (D - F). B, E, 0.2% ethanol (v/v); C, F, 0.4% ethanol (v/v). At 24 hrs, FITC labelling 
increased markedly in 0.2% ethanol (v/v) compared to control samples, but decreased on exposure to 0.4% ethanol. At 48 hrs, there were similar levels 
of slightly increased FITC labelling on exposure to both 0.2% and 0.4% ethanol (v/v). X200 
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Table 15. Mean number of FITC-labelled cells among control and ethanol-treated (Etoh) 

cranial neural crest cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Labelled n (%) Unlabelled n (%) Total n (%) 

 

24 hrs 48hrs 24hrs 48hrs 24hrs 48hrs 

Control 3 (1.2) 10 (4.1) 240 (98.8) 236 (95.9) 243 (100) 246 (100) 

0.2% Etoh 2 (0.6) 11 (3.8) 341 (99.4) 275 (96.2) 343 (100) 286 (100) 

0.4% Etoh 1 (0.5) 15 (4.3) 197 (99.5) 337 (95.7) 198 (100) 352 (100) 

p =0.398  (control versus 0.2% Etoh)
 
 p =0.897  (control versus 0.2% Etoh)

 
 

p =0.422  (control versus 0.4% Etoh)
 
 p =0.906  (control versus 0.4% Etoh)
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3.14 Effect of ethanol on the expression of three candidate genes derived from chick 

neural crest cells  

 

β-actin 

After 24hrs of cNCCs culture in 0.3% (v/v) ethanol, the expression of actin was not 

detectable. However, by 48hrs of exposure to the same concentration of ethanol, the actin 

gene was upregulated to a mean of more than twofold that of control values. This was 

however not significant (p=1.00). With exposure to 0.4%, (v/v) ethanol, the actin gene was 

initially up-regulated compared to controls by a mean factor of almost six (Fig. 22A). By 

48hrs of continuous exposure to this ethanol concentration however, this high level of 

expression was down-regulated to a level of about 2.5 times that of controls (Fig. 22B). All 

the changes in the expression of the actin gene following exposure to 0.4% (v/v) ethanol were 

not significant (p=0.423). 

 

Rho B  

The mean level of expression of the Rho B gene in cranial neural crest cells exposed to 0.3% 

(v/v) ethanol concentrations after 24 hrs was 1.6 times that of controls. This level of gene 

expression was down-regulated to control levels at 48hrs. Neither of these levels of relative 

Rho b expression was statistically significant when compared to control values. Exposure to 

0.4% (v/v) concentration of ethanol changed from an initial down-regulation of the cNCCs 

Rho B gene (a mean of half of the control levels), to a mean level of expression of 1.3 times 

control values at 48hrs of ethanol exposure. This increase in gene expression was not 

significant (p=0.09; Fig. 22A and B). 
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Fig. 22 A, B & C. Effect of different ethanol concentrations on the relative gene expression of selected neural crest cell genes at 24hrs 

(A), 48hrs (B) and in stage 10 (HH) neural crest cells, which were examined at 48hrs of migration. 

 

C 
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Slug   
The cNCCs slug gene showed only a slight (1.2X) mean increase in expression after exposure 

to 0.3% ethanol (v/v) for 24hrs, and a reduced (0.7X) gene expression with exposure to 0.4% 

ethanol (v/v) at 24hrs (Fig. 22). Following 48hrs of 0.3% ethanol exposure, the slug gene 

showed a level of expression that was similar to controls (mean of 0.95X). Cranial neural 

crest cells which were treated with 0.4% ethanol (v/v) also had a level of slug gene 

expression that was similar to that of control cells (mean of 1.2X; Fig. 22). 

 

Relative gene expression of selected chick cNCCs genes at stage HH 10 

From the results of section 3.9.4, we observed that migration of stage 10 (HH) chick cNCCs 

appeared not to be significantly affected by ethanol treatment, either after 24- or 48 hrs of 

culture. This group of cNCCs was therefore chosen for further gene expression analysis in 

order to observe whether there were more subtle changes at the molecular level that were 

being missed from the analysis of cell migration alone. Neural crest cells from the 48-hr 

culture sample were chosen to allow time for such an effect, if present to be observed.   

The relative gene expression compared to controls was highest when stage 10 (HH) derived 

cNCCs were exposed to 0.4% ethanol (v/v) for all the genes examined (Actin, Rac 1, Rho B 

and slug) (Fig. 22C). The greatest amount of up-regulation occurred for the cNCCs slug gene, 

which was up-regulated by a mean of more than 30 times compared to control values 

following exposure of the cNCCs to 0.4% ethanol (v/v). 
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Summary of the results for cNCCs gene expression 

 Except for the expression of β-actin after 24hrs of exposure to 0.4% ethanol, exposure 

of cNCCs to ethanol for 24hrs and 48hrs did not have a significant effect on gene 

expression.  

 However, the slug gene of stage 10 (HH) cNCCs was upregulated by a mean of 30-

fold by exposure to 0.4% ethanol (v/v), while the Rac 1, Rho B and actin genes of 

cNCCs from the same embryonic stage were only upregulated by a mean of about 5 

times.. 
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4.0 DISCUSSION 

4.1 Ethanol may have dormant embryotoxic effects – possible role for cephalometry 

That alcohol is a teratogen to unborn fetuses, even in single acute doses, is no longer in 

doubt. What remains is the attempt to understand how the embryotoxic effects are 

accomplished with a view to ultimate prevention in children born to alcoholic mothers 

(Spong et al., 2001). A preliminary step to understanding how craniofacial abnormalities are 

produced in children suffering from FAS could be the measurement of these effects as 

accurately as possible by means of cephalometry. Ward (1989) argued that simple head 

measurements using relatively inexpensive tools still provide a valuable adjunct to clinical 

observation, despite the wide availability of sophisticated computerized techniques. An 

example of the usefulness of cephalometry is how Peltomaki et al. (1989) showed significant 

differences in linear and angular measurements of the skull base in Turner syndrome patients. 

Such measurements could perhaps reveal patterns that mere subjective evaluations fail to 

make obvious. With only a few exceptions (Schwetz et al., 1978), the effect of acute or 

chronic alcohol exposure on fetal viability, litter size, birth weight, and postnatal growth on 

offspring in both animal and human models appears to be consistently deleterious (Chernoff, 

1977; Streissguth et al., 1980; Sulik and Johnston, 1983; Webster et al., 1983; Brown, 1990; 

Spong et al., 2001). The findings of this study in the murine model demonstrated reduced 

fetal viability and increased fetal reabsorptions, but not a significantly reduced litter size or 

fetal birth weight in ethanol-treated animals as compared to controls. Similarly and perhaps 

related to this, is the fact that unlike some previous studies (Giglio et al., 1987; Edwards and 

Dow-Edwards, 1991; Hernandez-Guerrero et al., 1998) where ethanol-fed dams either lost 

weight or did not gain as much weight as the controls, the ethanol-treated dams in the present 

study continued to gain weight in a pattern similar to that of control animals. This was 

probably due to the fact that in this study food and water were withheld from control dams 
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during the time that the ethanol-fed ones were unable to feed due to alcohol intoxication. That 

the birth weight of the neonate animal should be related to the weight gain or lack thereof of 

its dam appears to be a reasonable assumption and could explain the lack of a significant 

difference in birth weight between the groups of fetuses in our series, especially as both 

treated and untreated dams had the same average litter size. Tze and Lee (1975) observed a 

similar pattern of weight gain in treated and untreated animals as was found in this study. In 

the series of Giglio et al. (1987), the offspring from rat dams that were pair fed with caloric 

and volume equivalents to their ethanol-fed counterparts had a lower (although not 

significantly reduced) birth weight than controls that were allowed to feed ad libitum. Randall 

and Taylor (1979) found no significant differences in the birth weight of mice from either 

ethanol-fed or pair-fed dams, a result similar to that in the present study.  

Concerning the facial appearance of individuals suffering from FAS, it has been suggested by 

some investigators that such dysmorphic features represent only one of the ways in which 

alcohol disrupts embryonic development, and that perhaps it is not the most serious pathology 

arising from in utero alcohol exposure (Webster and Ritchie, 1991). If, as these authors 

claim, „„facial development is not peculiarly sensitive to alcohol,‟‟ then the more exact the 

determination of facial anomalies arising from suspected FAS, the better the characterization 

will be of any abnormalities in the facial appearance of offspring of alcoholic mothers. Giglio 

et al. (1987) highlighted the usefulness of cephalometry in depicting the effect of alcohol on 

the developing head even in the absence of the typical FAS features. Their work showed that 

elements of the mandible, including the mandibular base, condylar process, and coronoid 

process were reduced when measured at 21 days postpartum in treated rats. Interestingly, 

mandibular width was not altered in these animals, again highlighting the fact that the 

craniofacial effects of alcohol could be complex, subtle, and multifactorial, as also suggested 

by Su et al. (2001) from their work on chick embryos. Hernandez-Guerrero et al. (1998) have 
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shown similar results. In their study, cephalometry revealed postnatal reductions in skull and 

mandibular lengths in mice that had been prenatally exposed to alcohol. The fact that the 

present study did not find significant differences between cranial measurements of ethanol-

treated mice compared to controls, may not be as contradictory to previous results as the case 

may first appear to be. Giglio et al. (1987) and Hernandez-Guerrero et al. (1998) conducted 

their measurements on postnatal animals, on average 21 days after delivery. It is possible that 

differences that were not apparent at birth would progressively become obvious later on. 

Streissguth et al. (1980) make the point that „„the growth deficiency typical of FAS is of 

prenatal onset and postnatal catch-up growth generally does not occur.‟‟ Furthermore, these 

authors assert that as FAS-affected children develop, the reduced adipose tissue becomes 

more pronounced, thus highlighting the pre-existing growth deficiency. Studies in the rat 

have previously shown that this rodent‟s skull grows more during postnatal than prenatal life 

(Moss, 1958 cited in Edwards and Dow-Edwards, 1991). In the present study, skeletal 

staining revealed that mice, which had no obvious gross abnormalities at term showed minor 

cranial defects, as well as ossification at stages that lagged behind that in control pups of 

similar ages. Although the latter results were not statistically significant, they at least point to 

the need to investigate the argument more rigorously that latent effects of FAS become more 

prominent after birth, probably due to pre-existing but occult defects (Streissguth et al., 

1980). Interestingly, even though the level of fetal abnormalities observed in our series 

stopped just short statistical significance, a clear trend emerged where the overwhelming 

majority (86%) of abnormalities occurred in ethanol-exposed fetuses. Future studies with 

larger samples may be able to demonstrate that birth defects occurring in mice offspring 

treated with a series of acute ethanol doses may become more overt prenatally rather than 

postnatally. This, in the light of previous studies that showed multiple abnormalities in the 

skeleton of animal fetuses that were exposed to ethanol in utero (Chernoff, 1977; Schwetz et 
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al., 1978; Randall and Taylor, 1979). In contrast, however, to these postulations is the 

observation made by Su et al. (2001), who showed that chick embryos were able to 

compensate for ethanol-induced cranial deficits by the seventh day following hatching. As far 

as is currently known, such recovery from a preterm ethanol insult has not been previously 

demonstrated in rodents or other mammals. An ideal study would be to conduct serial 

cephalometry on ethanol-exposed animals at defined intervals in utero and postnatally, to 

assess critical head and face changes in an accurate manner. With the advent of ultrasound 

scanning and similar modern technology, this is not an inconceivable suggestion.  

 

4.2 Teratogenic dose of blood alcohol concentration remains variable  

Much has been previously written about the role of blood ethanol levels in the aetiology of 

FAS. However, there appears to be a lack of consensus in the literature about the actual 

teratogenic dose. Webster and Ritchie (1991) observed that the doses of maternal alcohol and 

resultant peak blood alcohol levels required to cause teratogenesis in experimental animals 

was in the region of 400-800 mg/100 ml blood. This contrasts with results from the study by 

Randall and Taylor (1979) which demonstrated significant birth defects in fetuses that had 

been exposed to ethanol concentrations just exceeding 100 mg/ml for two out of the 5 days 

for which they were fed with an ethanol diet. Other studies (Schwetz et al., 1978; Mooney 

and Miller, 2001) did not find malformations in pups even though blood ethanol values that 

were attained in their dams were between 200 and 400 mg/dl. Mean BEC peaked at just 

above 180 mg/dl in the present study, although levels as high as 260 mg/dl were achieved in 

some animals. The fact that, similar to some previously published work (Schwetz et al., 1978; 

Mooney and Miller, 2001), the present study did not find significant ethanol-induced gross 

congenital malformations at these levels may reflect the need for a more thorough 

understanding of the mechanisms of the teratogenicity of ethanol. There was no evidence in 
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this study that the food deprivation suffered by treated mice during their state of intoxication 

produced any harmful effects, as these animals showed an overall weight gain pattern similar 

to that observed in controls. Both the control and ethanol-treated groups of animals showed 

certain unexplained swings in their feeding patterns, which did not exceed 24 h at any given 

time. We did not find any evidence that these changes significantly affected the outcomes of 

this study. 

 

4.3 Teratogenic mechanisms of ethanol: a combination of apoptosis and proliferation 

Cranial neural crest cells (cNCCs), emigrating from the embryonic regions of mid-

diencephalon to the level of the 5
th

 somite contribute significantly to forming cranial and 

dentofacial structures (Le Douarin and Kalchiem, 1999; Sant'Anna and Tosello, 2006). It is 

widely accepted that the teratogenic effects of ethanol can be explained, at least in part, 

because it targets these migrating cells (Cartwright and Smith 1995a; Cartwright and Smith 

1995b; Smith and Debelak-Kragtorp, 2005). The precise way in which ethanol affects neural 

crest cells is still under intense investigation and is by no means fully elucidated, but ethanol 

has been shown to amplify the normal process of apoptosis (Cartwright and Smith 1995a; 

Smith, 1997). Ethanol-induced apoptosis is thought to be triggered by, among other 

mechanisms, oxidative stress (Wentzel and Eriksson, 2009), free radical damage (Davis et 

al., 1990; Chen and Sulik, 1996; Chen and Sulik, 2000), alteration of calcium signalling 

(Messing et al., 1986; Debelak-Kragtorp et al., 2003; Garic-Stankovic et al., 2005a; Garic-

Stankovic et al., 2006)  and perturbations of DNA (Davis et al. 1990; Giles et al. 2008).  

Given the overwhelming reports in the literature, of the increase in ethanol-induced apoptosis 

in brain cells generally and cNCCs in particular (Kotch and Sulik, 1992a; Kotch and Sulik, 

1992b; Cartwright and Smith, 1995a; Cartwright and Smith, 1995b; Miller, 1996; Smith, 

1997; Cartwright et al., 1998; Dunty et al., 2001), the finding in the present study of no 
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significant increase in caspase-dependent apoptosis in ethanol-exposed cNCCs compared to 

controls is somewhat surprising. It may be noteworthy to consider that with a few exceptions 

(Davis et al., 1990; Rovasio and Battiato, 2002), the pivotal reports that demonstrated the 

expanded apoptosis of embryonic cells, particularly cNCCs, arose from in-ovo ethanol 

administration in chick (Cartwright and Smith, 1995a; Garic-Stankovic et al., 2005a; Garic-

Stankovic et al., 2005b) and in utero treatment in mouse embryos (Sulik et al., 1988; Gage 

and Sulik, 1991; Johnston and Bronsky, 1991). Furthermore and significantly, previous 

workers (Sulik et al., 1988; Cartwright et al., 1998) have noted that the vulnerability of 

cNCCs populations to ethanol-induced apoptosis is related to how close affected cells are in 

vivo to regions of normal programmed cell death. Graham et al. (1993; 1995) have elegantly 

described how neural crest cell apoptosis occurs in rhombomeres 3 and 5 of the chick 

hindbrain in the presence, but not in the absence of the neighbouring rhombomeres 2, 4 and 

6. Such a “proximity effect” may not be easily replicated for in vitro cultures. More work is 

needed to illuminate the conditions under which ethanol-induced cNCCs apoptosis may be 

optimally demonstrated in vitro.  

Considering the reported deleterious effects of ethanol, it was a surprise finding in this study 

that ethanol had an apparent proliferative effect on cNCCs, as observed subjectively from the 

apparent increase in number of ethanol-treated cNCCs in culture and the qualitatively thicker 

cNCCs columns in ethanol-exposed whole-mount immunolabelled embryos compared to 

control embryos. An ethanol-induced proliferation of cNCCs in the present study was 

however quantified as we found a significant increase in the mitotic index of ethanol-treated 

neural crest cells compared to control cells. Certain authors (Cartwright et al., 1998) have 

previously commented on the “well-documented” ability of ethanol to promote proliferation 

in neural cells in general and in neural crest cells in particular (Rovasio and Battiato, 1995). 

Significantly, the latter author described a high “cell density” of cNCCs when treated with 
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ethanol, which caused them to migrate abnormally into the neural tube lumen. However, the 

aforementioned authors (Cartwright et al., 1998) concluded that such increased proliferation 

was either not statistically significant or otherwise was caused by their “intrinsic proliferative 

behaviour” (Rovasio and Battiato, 1995). On the other hand, Vaglia and Hall (1999), 

reviewing the phenomenon of regeneration – the mechanism by which extirpated 

undifferentiated embryonic cells are replaced by other undifferentiated cells, comment that 

“increased cell division in response to neural crest ablation is likely more common than has 

been reported”. Yet another group of authors (Hoffman and Kulyk, 1999) have described 

how ethanol promotes quantitatively increased formation of cartilage in vitro, from the 

culture of ectomesenchymal cells from facial primordia (maxillary, mandibular, frontonasal, 

and hyoid processes), which are of cNCCs origin. It is apparent that at least under certain 

conditions, ethanol does promote neural crest cell proliferation. This increased proliferation, 

it may be postulated, may cause migrating cNCCs to be directed into ectopic sites (Rovasio 

and Battiato 1995), or to miss crucial spatial and temporal cues along their migratory route 

(Le Douarin, 1986; Dupin et al., 1993; Sieber-Blum and Zhang, 1997; Duband, 2006). The 

misdirected cNCCs would then be removed by apoptosis or other cell protective mechanisms, 

eventually contributing to the FAS phenotype (Arends and Wyllie, 1991; White, 1996).  

Contrary to the above scenario where an ethanol-induced increase in cell numbers could 

direct cNCCs into ectopic migratory pathways, we observed from time-lapse video 

microscopy that in a few ethanol-treated cultures, cNCCs exhibited a late onset of migration 

and a prolonged duration of migration, compared to control cells. A plausible explanation 

may be that there was an initial ethanol-induced delayed migration with subsequent recovery 

of the type described by Cartwright and Smith (1995b). The latter authors found that although 

older embryos showed evidence of cNCC cell death caused by ethanol, they also showed that 

an increased capacity for recovery. In the present study, cNCCs which were slow to emigrate 



95 

 

from the neural tube were comparable to those attributed with “ethanol-induced depletion, 

but increased capacity for recovery” by Cartwright et al. (1995b). Due to the constraints of 

our experiments, our slow-migrating cultures were only observed for 24 hours, a time frame 

that perhaps did not allow such a potential recovery to be recorded. The method of ethanol 

administration, in ovo by Cartwright and Smith (1995b) versus our in vitro ethanol 

application, as well as the final ethanol concentration achieved, may also have contributed to 

the apparent differences in the results obtained between the present study and that of others.  

 

4.4 Ethanol’s effect on neural crest cell migratory potential and surface morphology 

appears to target embryonic stages 9-10 (HH)  

Furthermore regarding stage-specific effects of ethanol on cNCCs, one result in the present 

study was that cNCCs obtained from stage 9 (HH) embryos appeared to be more susceptible, 

at least in terms of their migration, to the deleterious effects of ethanol than cNCCs obtained 

from stages 8 or 10 (HH) embryos. This was inferred from the significant differences in the 

distances migrated by ethanol-treated stage 9 (HH) cNCCs compared to controls. While 

several authors have explored stage-dependent ethanol teratogenesis on other aspects of 

neural crest function (Cartwright and Smith, 1995b; Cavieres and Smith, 2000; Giles et al., 

2008), to our knowledge, this is the first time that an attempt has been made to ascertain 

whether the toxicity of ethanol as pertains to the distance migrated by cNCCs is restricted to, 

or even predominant at any given embryonic stage.  Related to this is the fact that the present 

study found, again perhaps for the first time, that cNCCs from different stage embryos appear 

to respond differently to an ethanol challenge by the type of surface modifications that they 

produce.  While it has been known for some time that migrating neural crest cells lose their 

surface projections, variably termed “microvilli”, “villi” or “arborized dendrites”, and 

develop membrane “blebs”, (Hassler and Moran 1986; Davis et al. 1990; Rovasio and 
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Battiato 2002), we have described in this work the presence of cNCCs surface “meshworks”, 

which appear to be consistently present on ethanol-challenged, but not control cNCCs, 

particularly of neural crest cells derived from embryos of stages 9-10 (HH). The exact nature 

of these “meshworks” is presently unclear. To our knowledge, these “meshworks” have never 

been described before in the literature, probably due to the fact that the majority of the 

morphological studies into apoptosis in comparison to necrosis have understandably 

employed transmission electron microscopy, which enables the visualisation of internal rather 

than surface cell features (Uller et al., 2004; do Vale et al., 2007; Silva et al., 2008). It is 

known that apoptotic bodies are continuously undergoing degradation and phagocytosis by 

surrounding cells (Hengartner, 2001; Ziegler and Groscurth, 2004). If not phagocytosed, 

apoptotic bodies continue to degrade and the process will morphologically resemble necrosis 

– the so called secondary necrosis - with rupture of the cell membrane, excessive chromatin 

shrinkage and leakage of cell contents (Uller et al., 2004; Ziegler and Groscurth, 2004; 

Rydell-Tormanen et al., 2006; do Vale et al., 2007; Silva et al., 2008). Indeed forms of cell 

death that display morphological features similar to both necrosis and apoptosis are known. 

As these become better understood, it is becoming clear, that when cells are challenged 

chemically or otherwise, stereotyped outcomes either as apoptosis or necrosis cannot always 

be expected (Ziegler and Groscurth, 2004).  

 

4.5 Does ethanol have an effect on nuclear actin?  

The disorganized actin cytoskeleton that was observed in ethanol-exposed cells in this study 

has been recognized for some time as a result of the treatment of cNCCs with ethanol 

(Hassler and Moran 1986; Rovasio and Battiato 2002). What has seemingly not been 

described before is the prominent phalloidin staining within presumptive nuclei of ethanol 

treated cNCCs. There is now no doubt among researchers (Rando et al., 2000; Pederson and 
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Aebi, 2002; Bettinger et al., 2003; Pollard and Borisy, 2003; Franke, 2004; Winder and 

Ayscough, 2005; Jockusch et al., 2006; Pederson, 2008; Hofmann et al., 2009) that actin does 

exist within the nucleus and that it is involved in events such as transcription by RNA 

polymerases, chromatin remodelling, spindle formation and nuclear transport of RNA and 

proteins. The literature appears to be unanimous in the opinion that phalloidin does not 

recognise polymeric F-actin under physiological conditions (Rando et al., 2000; Hofmann 

and de Lanerolle, 2006). However, under conditions of cell stress, including experimental 

treatment with membrane active compounds, heat shock or toxins, nuclear actin is rendered 

susceptible to phalloidin immunoreactivity (Fukui, 1978; Fukui and Katsumaru, 1979; Sanger 

et al., 1980; Iida et al., 1986; Kushnaryov et al., 1990; Jockusch et al., 2006). It is likely that 

exposure of cNCCs to ethanol in the present study may have rendered their nuclear actin 

immunoreactive to phalloidin, probably by exposing phalloidin-binding sites on the protein, 

or otherwise changing the phalloidin-insensitive conformation of nuclear actin (Gonsior et 

al., 1999; Schoenenberger et al., 2005). 

 

4.6 The regulation of cranial neural crest cell β-actin, Rac 1, RhoB and slug genes by 

ethanol depends on the concentration and duration of exposure 

A large body of work (McCauley and Bronner-Fraser, 2006; McCabe and Bronner-Fraser, 

2009; Nikitina et al., 2009) has been devoted in the literature to describing the genetic and 

molecular factors that underlie cNCCs delamination, migration and fate determination using 

amphibian, chick and mouse models. Not only are the molecular factors and pathways which 

regulate normal neural crest cells being investigated, but those that are involved in abnormal 

neural crest function and ethanol-induced teratogenicity in humans and in animal models are 

also receiving sustained scholarly attention (Johnston and Bronsky, 1991; Downing and 

Gilliam, 1999; Dick and Foroud, 2003; Lombard et al., 2007; Downing et al., 2009a; 
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Downing et al., 2009b; Ouko et al., 2009). In the present study, we chose to investigate the 

effect of ethanol on three cNCCs genes that have been implicated in cNCCs induction, 

survival, epithelial to mesenchymal transformation, migration and cell lineage determination 

(LaBonne and Bronner-Fraser, 2000; Adams et al., 2008). Our results shows that the β-actin 

gene, which codes for all cytoplasmic actin (Sparrow and Laing, 2008), from ethanol-treated 

stages 8 – 10 (HH) cNCCs was upregulated at high (0.4% v/v) ethanol concentrations 

compared to controls at 24 hours. This observation accords with the results of our migration 

assay, which showed that cNCCs treated with 0.4% ethanol (v/v) migrated further than 

control cells. However, there was a lack of concordance between the relative regulation of the 

β-actin gene and the distance migrated by cNCCs treated with 0.3% ethanol (v/v). Even 

though β-actin transcripts were not detectable relative to controls, 0.3% ethanol-treated 

cNCCs migrated significantly further than control cells at 24 hours. Conversely at 48 hours, 

while 0.3% (v/v) ethanol-treated cNCCs did not migrate as far as control cells, the β-actin 

gene in these cells was upregulated relative to control levels. This discordance between β-

actin gene expression and cytoskeleton-dependent migration is difficult to explain, given the 

synergy observed between these two parameters at 0.4% ethanol concentration. Presumably, 

these effects reflect ethanol concentration-dependent alterations. However the actual cellular 

events producing these observations may be more complex. They may involve molecular 

interactions, rate-limiting steps and feedback loops between β-actin gene transcription, β-

actin mRNA translation and β-actin polymerization into cytoskeletal actin. It is known that β-

actin polymerization is increased at the growing ends of axons (Lund et al., 2002) and at the 

leading or “barbed” edges of migrating cells (Shestakova et al., 2001; Ridley et al., 2003; 

Raftopoulou and Hall, 2004). It may be that an optimal level of β-actin protein synthesis is 

needed to achieve cell migration. The different concentrations of ethanol employed in this 

study may affect this optimal level variably.   
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Rho B, another protein that has wide-ranging roles in actin cytoskeletal assembly, 

maintenance of cell shape and the integrity of cell junctions, among other functions (Hall and 

Nobes, 1992; Nobes and Hall, 1999; Bishop and Hall, 2000; Etienne-Manneville and Hall, 

2002), also exhibited varying levels of mRNA regulation compared to controls, depending on 

ethanol concentration and treatment duration. Again, these disparate results may reflect 

concentration-dependent effects of ethanol. The fact that all the three genes studied were up-

regulated to varying extents in 0.4% ethanol (v/v) at 48 hours of treatment may also indicate 

the effect of duration of ethanol exposure on cNCCs gene expression, such that the genes 

may be over-expressed during long-term ethanol exposure. This over-expression may relate 

to attempts at recovery by ethanol-exposed cNCCs. Ahlgren et al. (2002) found that the 

exogenous over-expression of the Sonic hedgehog gene protected cNCCs from apoptosis. 

Ultimately however, these effects may be due to factors that are yet to be elucidated. Debelak 

and Smith (2000) stated that the heterogeneity in alcohol‟s effects suggested a complex 

aetiology for FAS. We believe that this complexity has its roots at the cellular and molecular 

levels.  

Another observation in the present study was that the slug gene exhibited a 30-fold up-

regulation compared to controls, in cNCCs which were derived from stage 10 (HH) embryos 

and cultured in 0.4% ethanol (v/v). This once again may reflect the stage-dependent effects of 

ethanol, with a potentially interesting implication. In Xenopus and Gallus species, Slug is 

expressed in premigratory and migratory neural crest cells (Carl et al., 1999; LaBonne and 

Bronner-Fraser, 1999; Christiansen et al., 2000; LaBonne and Bronner-Fraser, 2000). In the 

light of the 30-fold up-regulation of slug by ethanol which we observed, it is interesting that 

previous workers have noted that when slug is experimentally overexpressed, NCC-forming 

regions are expanded in vivo, there is an increase in the number of NCCs and supernumerary 

melanocytes (derivatives of NCCs) are produced, particularly when other signalling 
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molecules (FGFs, Wnts) are also present (LaBonne and Bronner-Fraser, 1998; LaBonne and 

Bronner-Fraser, 1999; Christiansen et al., 2000). We observed an increase in cNCCs 

(proliferation) in this study which was greatest at 0.4% ethanol concentration. This may be 

due to the up-regulation of slug. The significantly increased distance migrated by cNCCs, 

particularly at 0.4% ethanol concentration may also reflect the ethanol-induced increase in 

activity of the slug gene. This is because the over expression (up-regulation) of slug (or its 

analogue snail) has been demonstrated to encourage epithelial to mesenchymal 

transformation in vitro and in vivo, principally by inhibiting the cell adhesion molecule E-

cadherin (Cano et al., 2000; Savagner, 2001; Savagner et al., 2005; Moreno-Bueno et al., 

2006). Thus free of cell-to-cell adhesion, induced cNCCs will be free to migrate relatively 

unhindered, compared to cNCCs expressing slug with normal activity. It should be interesting 

to discover whether cNCCs derived from stages 8 and 9 (HH) embryos which were not 

selectively evaluated for slug expression in this study also show a similar activity of this gene 

at the same or other ethanol levels.  

The study of the effect of ethanol on cNCCs gene expression, even when a limited number of 

genes are considered, is intricate because of the multiple factors that are involved. Ahlgren et 

al. (2002) showed that ethanol down-regulated the expression of chick Sonic Hedgehog 

(Shh), a gene that is required for normal craniofacial development (Chiang et al., 1996; 

Helms et al., 1997; Ahlgren and Bronner-Fraser, 1999; Ahlgren et al., 2002; Jeong et al., 

2004).  The authors however also found that when Shh RNA transcripts were retrovirally 

transferred into chick head regions which were then exposed to ethanol, the Shh completely 

prevented cNCCs apoptosis, however at artificially elevated Shh levels.  

Debelak and Smith (2000) observed that the genetic strain of chicks strongly influence 

whether the cNCCs of these animals die or not in response to a single dose of ethanol. In that 

regard, they categorised their chick strains into high, moderate and low responders 
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respectively (Debelak and Smith, 2000). It would be interesting to determine whether the 

Potch koek koek chick strain used in this study is a high, moderate or low ethanol responder, 

in the pattern similar to the animals described by Debelak and Smith (2000). One may 

propose that Potch koek koek birds are either moderate or low ethanol-responders, given the 

results of our in vitro assay for cNCCs ethanol-induced apoptosis in this chick strain, which 

showed non-significant differences between control and ethanol-treated cNCCs.  

In a follow-up study to that of Debelak and Smith (2000), Su et al. (2001) examined whether 

the pattern of chick facial deficits following ethanol-induced apoptosis was also related to 

their genetic strain. Their results showed that although chick genetic strain determined the 

(high or low) patterns of cNCCs loss, ethanol‟s depletion of cNCCs did not necessarily result 

in decreased craniometric measurements or altered facial appearance in the ethanol-treated 

animals (Su et al., 2001). Finally, Kim and Shukla (2006), working on 8 week old rats 

showed that histone H3, a member of the family of proteins that render chromatin accessible 

to transcription factors, was significantly acetylated in some, but not all the rat tissues, which 

they tested. Interestingly the protein was not altered in the brain and heart – structures which 

receive significant neural crest cell contributions (Kim and Shukla, 2006). These results 

reinforce the point that the intellectual effort to characterise the genetic, cellular and 

molecular mechanisms that determine cNCCs loss or malfunction in response to exposure to 

ethanol is a work in progress. 

 

4.7 Conclusion: overall effects of acute fetal ethanol exposure  

We have demonstrated in this study that when C57 BL mice are treated with ethanol in utero, 

they suffer significantly in fetal viability and survival rate as well as show some defects in 

cranial skeleton and delayed ossification, but their body, head and facial measurements 

appear unaffected. Furthermore, chick cranial neural crest cells cultured in the presence of 
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ethanol become epithelial rather than spindle-shaped, and their surface morphology shows 

membrane blebbing; they also lose their ordered cytoskeleton, but appear to proliferate and 

migrate further distances than control cells when exposed to 0.3% and 0.4% (v/v) ethanol. 

Other observed differences in migration between treated and untreated cNCCs vary with the 

concentration of ethanol and the stage of development of the embryo from which the cNCCs 

were cultured. Specifically, stage 9 (HH) derived cNCCs migrate over significantly increased 

distances than controls after exposure to 0.3% and 0.4% ethanol, but the same cells migrate 

over significantly reduced distances following exposure to 0.2% ethanol. Ethanol exposure to 

cNCCs also results in significant proliferation of these cells at 24- and 48hrs, while the slug 

gene transcripts obtained from these cells show a 30-fold up-regulation. More work is needed 

to reconcile previous in vivo and the present in vitro results on the effects of ethanol on 

cNCCs apoptosis, and characterise the genetic and molecular mechanisms which underpin 

these interesting observations more precisely.  
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APPENDIX A 

Spreadsheet showing an example of calculations used to validate Vertico-mental length (VM) 

and Mandibular length (MANL), using the Lin‟s coefficient of concordance method (Lin, 

2001). Concordance values (in bold type) between 0.9 and 1.0 validate the accuracy of the 

measurements. 
 
Serial no ID VM1 VM2 Y1-Y2 (Y1-Y2)

2
 

1 13Mar#A1L 5.678 5.68 -0.002 4E-06 

2 13Mar#A1R 5.789 5.746 0.043 0.001849 

3 13Mar#A2L 5.762 5.746 0.016 0.000256 

4 13Mar#A2R 5.938 5.951 -0.013 0.000169 

5 13Mar#A3L 5.962 5.951 0.011 0.000121 

6 13Mar#A3R 6.108 5.986 0.122 0.014884 

7 13Mar#A4R 5.803 5.797 0.006 3.6E-05 

8 13Mar#A5R 5.633 5.643 -0.01 1E-04 

9 13Mar#A6R 5.694 5.711 -0.017 0.000289 

10 15Mar#A10 6.029 6.363 -0.334 0.111556 

11 15Mar#A11 4.969 4.991 -0.022 0.000484 

12 15Mar#A12 6.116 6.106 0.01 1E-04 

13 15Mar#A13 5.456 5.454 0.002 4E-06 

14 15Mar#A14 5.109 5.094 0.015 0.000225 

15 15Mar#A15 5.89 5.9 -0.01 0.0001 

16 15Mar#A4 5.794 5.797 -0.003 9E-06 

17 15Mar#A5 5.803 5.644 0.159 0.025281 

18 15Mar#A8 5.265 5.265 0 0 

19 15Mar#C1 5.612 5.626 -0.014 0.000196 

20 15Mar#C2 5.856 5.351 0.505 0.255025 

21 15Mar#C3 6.412 6.432 -0.02 0.0004 

22 16DEC#A1 5.941 5.941 0 0 

23 16DEC#A2 6.239 6.249 -0.01 1E-04 

24 16DEC#A3 6.066 5.9 0.166 0.027556 

25 16DEC#A4 5.447 5.407 0.04 0.0016 

26 16DEC#A5 6.16 6.131 0.029 0.000841 

27 17NOV#A1 5.856 5.823 0.033 0.001089 

28 17NOV#A10 5.527 5.491 0.036 0.001296 

29 17NOVA12 6.43 6.439 -0.009 8.1E-05 

30 17NOVA13 5.579 5.562 0.017 0.000289 

31 17NOVA14 6.083 5.858 0.225 0.050625 

32 17NOVA14a 5.874 6.036 -0.162 0.026244 

33 17NOVA15 5.648 5.716 -0.068 0.004624 

34 17NOVA16 5.915 5.906 0.009 8.1E-05 

35 17NOVA17 6.03 6.024 0.006 3.6E-05 

36 17NOVA18 5.527 5.289 0.238 0.056644 

37 17NOVA19 5.942 5.929 0.013 0.000169 

38 17NOV#A2 5.596 5.597 -0.001 1E-06 

39 17NOVA20 5.716 5.716 0 0 

40 17NOVA21 5.907 5.941 -0.034 0.001156 

41 17NOVA22 5.438 5.396 0.042 0.001764 

42 17NOVA24 5.693 5.657 0.036 0.001296 

43 17NOVA25 6.03 6.012 0.018 0.000324 

44 17NOVA26 6.411 6.131 0.28 0.0784 

45 17NOV#A3 6.013 5.989 0.024 0.000576 

46 17NOV#A5 5.7 5.704 -0.004 1.6E-05 

47 17NOV#A6 5.728 5.74 -0.012 0.000144 

48 17NOV#A7 5.63 5.407 0.223 0.049729 

49 17NOV#A8 5.735 5.692 0.043 0.001849 

50 17NOV#A9 5.37 5.751 -0.381 0.145161 

51 17NOVC15 6.116 6.083 0.033 0.001089 

52 17NOVCo1 5.977 5.965 0.012 0.000144 

53 17NOVCo10 5.484 5.739 -0.255 0.065025 

54 17NOVCo11 5.577 5.68 -0.103 0.010609 

55 17NOVCo12 6.203 6.178 0.025 0.000625 

56 17NOVCo13 5.125 5.087 0.038 0.001444 

57 17NOVCo14 5.786 5.775 0.011 0.000121 

58 17NOVCo2 6.099 5.87 0.229 0.052441 

59 17NOVCo3 5.942 6.238 -0.296 0.087616 

60 17NOVCo4 5.803 5.821 -0.018 0.000324 
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61 17NOVCo6 5.925 5.917 0.008 6.4E-05 

62 17NOVCo7 5.786 5.775 0.011 0.000121 

63 17NOVCo8 5.56 5.704 -0.144 0.020736 

64 17NOVCo9 5.368 5.704 -0.336 0.112896 

65 20MAY#A2 5.749 5.74 0.009 8.1E-05 

66 20MAY#A3 5.794 5.787 0.007 4.9E-05 

67 20MAY#A4 5.943 5.941 0.002 4E-06 

68 20MAY#A5 6.03 6 0.03 0.0009 

69 21MAYC1 6.203 6.202 0.001 1E-06 

70 21MAYC10 6.151 6.154 -0.003 9E-06 

71 21MAYC2 6.343 6.356 -0.013 0.000169 

72 21MAYC5 6.368 6.368 0 0 

73 21MAYC6 6.064 6.036 0.028 0.000784 

74 21MAYC7 5.665 5.585 0.08 0.0064 

75 21MAYC9 5.751 5.953 -0.202 0.040804 

76 26AugRHDam4#2 4.83 4.974 -0.144 0.020736 

77 26AugRHDam4#4 4.917 5.317 -0.4 0.16 

78 30JUNEC1 5.96 5.917 0.043 0.001849 

79 30JUNEC10 6.064 5.822 0.242 0.058564 

80 30JUNEC11 5.786 5.728 0.058 0.003364 

81 30JUNEC12 5.752 5.728 0.024 0.000576 

82 30JUNEC13 6.325 6.309 0.016 0.000256 

83 30JUNEC14 5.387 5.372 0.015 0.000225 

84 30JUNEC2 5.56 5.538 0.022 0.000484 

85 30JUNEC3 5.873 5.87 0.003 9E-06 

86 30JUNEC4 5.751 5.775 -0.024 0.000576 

87 30JUNEC5 5.838 5.467 0.371 0.137641 

88 30JUNEC6 5.873 5.739 0.134 0.017956 

89 30JUNEC7 5.821 5.929 -0.108 0.011664 

90 30JUNEC8 5.751 5.704 0.047 0.002209 

91 30JUNEC9 6.23 5.656 0.574 0.329476 

92 31JUL#A1L 5.699 5.729 -0.03 0.0009 

93 31JUL#A1R 6.186 6.192 -0.006 3.6E-05 

94 31JUL#A3 6.134 6.119 0.015 0.000225 

95 31JUL#C1R 5.56 5.466 0.094 0.008836 

96 31JUL#C2L 5.786 5.68 0.106 0.011236 

97 31JUL#C2R 5.664 5.811 -0.147 0.021609 

98 31JUL#C3L 6.116 6.106 0.01 1E-04 

99 31JUL#C4L 6.186 6.19 -0.004 1.6E-05 

100 31JUL#C4R 5.768 5.775 -0.007 4.9E-05 

101 31JUL#C5R 5.699 5.846 -0.147 0.021609 

102 9SEP#A1L 5.293 5.289 0.004 1.6E-05 

103 9SEP#A1R 5.365 5.36 0.005 2.5E-05 

104 9SEP#A2L 5.436 5.396 0.04 0.0016 

105 9SEP#A2R 5.561 5.526 0.035 0.001225 

106 9SEP#A3R 5.613 5.574 0.039 0.001521 

     
2.079823 

 
Mean 5.797217 5.78518868 0.00014468 

 

 
StDev 0.3195126 0.30770648 

  

 
StDev2 0.1020883 0.09468328 

  

 
Lin's coefficient 0.9003588 
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Serial no ID MANL2 MANL1 Y1-Y2 (Y1-Y2)2 

1 13Mar#A1L 2.605 2.986 -0.381 0.145161 

2 13Mar#A2L 2.41 2.419 -0.009 8.1E-05 

3 13Mar#A2R 1.289 1.304 -0.015 0.000225 

4 13Mar#A3L 1.41 1.423 -0.013 0.000169 

5 13Mar#A4R 2.164 2.229 -0.065 0.004225 

6 13Mar#A5R 3.138 3.107 0.031 0.000961 

7 13Mar#A6R 2.578 2.585 -0.007 4.9E-05 

8 15Mar#A4 3.187 3.107 0.08 0.0064 

9 15Mar#A5 2.991 3.226 -0.235 0.055225 

10 15Mar#A8 3.475 3.51 -0.035 0.001225 

11 15Mar#A11 3.378 3.368 0.01 0.0001 

12 15Mar#A12 2.605 2.585 0.02 0.0004 

13 15Mar#A13 3.093 3.486 -0.393 0.154449 

14 15Mar#A14 3.822 3.581 0.241 0.058081 

15 15Mar#A15 2.571 2.988 -0.417 0.173889 

16 15Mar#C1 3.753 3.676 0.077 0.005929 

17 15Mar#C2 3.232 3.724 -0.492 0.242064 

18 15Mar#C3 2.745 2.941 -0.196 0.038416 

19 26AugRHDam4#4 1.563 0.925 0.638 0.407044 

20 26AugRHDam4#2 2.536 1.542 0.994 0.988036 

21 31JUL#A1L 2.223 2.182 0.041 0.001681 

22 31JUL#A1R 1.423 1.648 -0.225 0.050625 

23 31JUL#C1R 2.189 2.597 -0.408 0.166464 

24 31JUL#C2L 2.431 2.526 -0.095 0.009025 

25 31JUL#C2R 2.536 1.98 0.556 0.309136 

26 31JUL#C3L 2.223 2.336 -0.113 0.012769 

27 31JUL#C4R 2.814 2.644 0.17 0.0289 

28 31JUL#C5R 3.023 2.81 0.213 0.045369 

 
Mean 2.62167857 2.62267857 1E-06 2.906098 

 
StDev 0.67133317 0.76112145 

  

 
StDev2 0.45068823 0.57930586 

  

 
Lin's coefficient 0.91182913 
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APPENDIX B 

Mast head of the cover page of the publication arising from this thesis 
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APPENDIX C 

Skeletal staining solutions (Menegola et al., 2001) 

 

 

Acid staining solution (pH 2.8) 

0.14% Alcian blue dissolved in 70% ethanol, 5 parts; 

0.12% Alizarin red S dissolved in 96% ethanol, 1 part; 

Glacial acetic acid, 8 parts, and 70% ethanol, 50 parts. 

 

 

Basic staining solution 

0.7% Potassium hydroxide dissolved in distilled water, 250 parts; 

0.5% Alizarin red S dissolved in distilled water, 1 part. 

 

 

Clearing solution 

70% ethanol, 2 parts 

Glycerin 2 parts 

Benzyl alcohol, 1 part 

 

Conservation solution 

70% ethanol, 1 part 

Glycerine, 1 part 
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APPENDIX D 

Working solutions 

 

 

Chick Ringer solution 

 

NaCl 8.5g 

KCl 0.42g 

CaCl2 0.25g 

1000ml distilled water 

 

 

2.5% Fibronectin solution 

25µl Fibronectin (Sigma) 

975µl sterile distilled water 

 

 

Phosphate Buffered Saline 

To 800mldistlitted water add 

NaCl 8.0g 

KCl 0.2g 

Na2HPO4 1.44g 

KH2PO4 0.24g 

Adjust pH to 7.4 

Adjust volume to 1L with distilled water 
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APPENDIX E 

PCNA (Proliferating Cell Nuclear Antigen) Kit, BioAssay™ (US Biologicals, 

Massachusetts) 

Catalog Number: P3115-11G 

 

Kit Components 

P3115-11G1: Blocking Solution, 1x6ml 

P3115-11G2: PCNA Mab (Biotin), 1x6ml 

P3115-11G3: Streptavidin (HRP), 1x6ml 

P3115-11G4: Substrate Buffer (20X), 1x2ml 

P3115-11G5: DAB (20X), 1x2ml 

P3115-11G6: 0.6% Hydrogen Peroxide (20X), 1x2ml 

P3115-11G7: Hematoxylin, 1x6ml 

P3115-11G8: Histomount™, 1x6ml 

P3115-11G9: Control slides, 1x5 (1 stained, 4 unstained) 

 

Protocol for staining culture cells and cells in suspension 

Preparation of Cells: 

1. Fix cells in 70% alcohol or acid-ethanol for 15-30 minutes at 4°C. Acetone or Methacarn 

fixatives also can be used. 

2. If necessary, block for endogenous peroxidase activity with 3% hydrogen peroxide in 

methanol for 10 minutes. 

3. Wash in 3 changes of PBS for 2 minutes each. 

 

Staining Procedures: 

1. Apply sufficient quantity of P3115-11G1, 2 drops or ~100ul to cover specimen. Incubate at 

room temperature for 10 minutes. 

Drain or blot off the solution. DO NOT RINSE. 

2. Add sufficient antibody P3115-11G2, 2 drops or ~100ul to cover specimen. Incubate at 

room temperature for 30-60 minutes. 

Rinse with PBS (2 min, 3 times). 

3. Add sufficient Streptavidin (HRP) P3115-11G3, 2 drops or ~100ul to cover specimen. 

Incubate at room temperature for 10 minutes. Rinse with PBS (2 min, 3 times). 

4. Prepare DAB mixture as follows: add 1 drop or ~50ul each of P3115-11G4, P3115-11G5 

and P3115-11G6 to 1ml of ddH2O. Mix well, protecting from light. Use with in 1 hour. 

5. Add sufficient quantity, 2 drops or ~100ul of the DAB MIXTURE to cover specimen. 

Incubate for 2-5 minutes. 

6. Counterstain with sufficient quantity, 2 drops or ~100ul of P3115-11G7 HEMATOXYLIN 

to cover specimen. Incubate for 1-2 minutes. Wash slides in tap water. Put slides into PBS 

until sections turn blue (approx. 30 seconds). 

7. Rinse in distilled water. 

8 Dehydrate slides in a graded series of alcohol, and clear with xylene. 

9. Add 2 drops of P3115-11G8 Histomount™ and coverslip. 
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APPENDIX F 

Examples of NanoDrop™ print-out of RNA samples 
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APPENDIX G 

Oligonucleotide primer sequences 

Gallus gallus GTP-binding protein (rhoB) mRNA 

Primer Set 3 

Forward Primer  

Primer Sequence:  TCTTTGAGAACTACGTGGCCGACA 

Primer Start Position:  406 Primer Length:  24 

Primer TM:  59.8 ºC  Primer Self Any:  4.0 

Primer GC %:  50.0 %  Primer Self End:  3.0 

Primer End Stability:  6.36 Primer Penalty:  0.20 
 

 

 

   

 

 

Reverse Primer  

Primer Sequence:  TGTCCACTGAGAAGCACATGAGGA 

Primer Start Position:  555 Primer Length:  24 

Primer TM:  59.6 ºC  Primer Self Any:  4.0 

Primer GC %:  50.0 %  Primer Self End:  3.0 

Primer End Stability:  5.72 Primer Penalty:  0.40 
 

 

 

   

 

Primer Pair/Product  

Primer Pair Penalty:  0.60 Primer Pair Comp Any:  4.0 

Primer Product Size:  150 Primer Pair Comp End:  0.0 
 

 

   

 

 

 

 

 

Gallus sp. Β-Actin mRNA 

GallusBactinF: 5’- ACCCCAAAGCCAACAGA- 3’ 

 
GallusBactinR: 5’- CCAGAGTCCATCACAATACC- 3’ 

 

Gallus sp. GAPDH mRNA 

 
GallusGAPDHF: 5’-GTTCTGTTCCCTTCTGTCTC- 3’ 
 

GallusGAPDHR: 5’-GTTTCTATCAGCCTCTCCCA-3’ 



113 

 

Gallus sp. Slug mRNA 

Primer Set 3 

Forward Primer  

Primer Sequence:  TCCTCCAAAGATCACAGCGGTTCA 

Primer Start Position:  294 Primer Length:  24 

Primer TM:  60.0 ºC  Primer Self Any:  4.0 

Primer GC %:  50.0 %  Primer Self End:  1.0 

Primer End Stability:  5.19 Primer Penalty:  0.04 
 

 

 

   

 

 

Reverse Primer  

Primer Sequence:  TGTGTTTGGCCAACCCAGAGAAAG 

Primer Start Position:  450 Primer Length:  24 

Primer TM:  59.6 ºC  Primer Self Any:  8.0 

Primer GC %:  50.0 %  Primer Self End:  0.0 

Primer End Stability:  4.58 Primer Penalty:  0.37 
 

 

 

   

 

Primer Pair/Product  

Primer Pair Penalty:  0.40 Primer Pair Comp Any:  5.0 

Primer Product Size:  157 Primer Pair Comp End:  0.0 
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Gallus gallus ras-related C3 botulinum toxin substrate 1 (rho 
family, small GTP binding protein Rac1) (RAC1), mRNA 

Primer Set 2 

Forward Primer  

Primer Sequence:  ACGAAGCTATCCGAGCAGTTCTGT 

Primer Start Position:  527 Primer Length:  24 

Primer TM:  59.7 ºC  Primer Self Any:  4.0 

Primer GC %:  50.0 %  Primer Self End:  3.0 

Primer End Stability:  5.47 Primer Penalty:  0.30 
 

 

 

   

 

 

Reverse Primer  

Primer Sequence:  TTCTGAGCAAAGCACAGGGTTTGG 

Primer Start Position:  641 Primer Length:  24 

Primer TM:  59.8 ºC  Primer Self Any:  5.0 

Primer GC %:  50.0 %  Primer Self End:  3.0 

Primer End Stability:  5.29 Primer Penalty:  0.17 
 

 

 

   

 

Primer Pair/Product  

Primer Pair Penalty:  0.47 Primer Pair Comp Any:  4.0 

Primer Product Size:  115 Primer Pair Comp End:  0.0 
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APPENDIX H 

Compact Disc containing time-lapse video recordings of the migration of cranial neural crest 

cells and the time-analysis of the migration.  
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