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Abstract

Microwave holography is a well established method of using the Fourier relationship between an antenna’s
current distribution and its complex beam-pattern to produce surface maps of large parabolic antennas. As
the final part of a surface upgrade, a holographic map of the HartRAO 26 m telescope was produced. This
showed that the surface has an RMS error of0.45 mm. The measurement used a small reference dish to
correlate against and retrieve amplitude and phase values.Due to system phase instabilities, this dish had to
be attached to the measured antenna in order to enable sharing a high frequency local oscillator (LO). The
movement was modelled and corrected for. However, a slight distortion remained. It is recommended that,
either the LO distribution system is stabilised by using multiple PLLs or amplifiers and low loss cables are
used to enable moving the reference antenna to a stationary position.
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Holographic Measurement of the 26m HartRAO Telescope
Benjamin Klein

Abstract—Microwave holography is a well established method of using

the Fourier relationship between an antenna’s current distribution and

its complex beam-pattern to produce surface maps of large parabolic

antennas. As the final part of a surface upgrade, a holographic map of

the HartRAO 26 m telescope was produced. This showed that the surface

has an RMS error of 0.45 mm. The measurement used a small reference

dish to correlate against and retrieve amplitude and phase values. Due to

system phase instabilities, this dish had to be attached to the measured

antenna in order to enable sharing a high frequency local oscillator

(LO). The movement was modelled and corrected for. However,a slight

distortion remained. It is recommended that, either the LO distribution

system is stabilised by using multiple PLLs or amplifiers andlow loss

cables are used to enable moving the reference antenna to a stationary

position.

Index Terms—Holography, microwave, phase-stabilisation.

I. I NTRODUCTION

The holographic measurement of the Hartebeesthoek Radio Astron-
omy Observatory’s (HartRAO) telescope is the final phase of asurface
upgrade to enable research at higher frequencies, specifically the
22 GHz water line. This translates roughly to removing surfaceerrors
greater than1/2 mm. The project began in 1998 replacing previously
perforated panels with solid ones. The panels have been mounted
and aligned mechanically using a theodolite. For long term operation
and periodic monitoring an indirect method is needed. Microwave
holographic is a logical choice having been applied successfully to
many antennas: Effelsburg 100m antenna 1986,64 m NASA/JPL
1984-85, 34 m and 70 m DSN antennas 1992,32 m Medicina
radio-telescope 1993 etc. [1], [2], [3]. Microwave holography is
a measurement technique founded on the well established Fourier
transform relationship between an antenna’s complex beam pattern
and its current distribution [4], [5] - which in turn directly relates
to the antenna’s surface. The holographic technique was originally
developed at the University of Sheffield [6]. In 1985Rahmat-Samii
formalised a method for determining the relationship between the
surface errors and the aperture phase [1], [7]. (Errors introduced
by the measurement are categorised byRochblattandRahmat-Samii
[8], [2]). The main antenna is a cassegrain reflector consisting of a
26 m parabolic reflector and a3 m hyperbolic reflector, the system
is shown in figure 1. The measurement is performed by scanning
the HartRAO telescope, in a square raster pattern, across a strong
source (a geostationary satellite). The measured signal iscross-
correlated with a stationary signal obtained from a reference antenna
— typically a small (≈ 0.5 m) offset parabola. Producing a square
grid of points sampling the complex antenna far-field radiation or
beam pattern. The measured surface accuracy is directly dependent
on the phase and amplitude stability of the system. The following
document outlines the theory; details the specific application and
presents results, conclusions and recommendations.

Fig. 1. HartRAO telescope with attached reference dish.

Fig. 2. Equivalent geometry of a parabolic reflector (adapted from [1]).

II. H OLOGRAPHICTHEORY

The following theory is based primarily on work byRochblattand
Rahmat-Samii[2], [1]. The theory is summarised here, details are
presented in [9] appendix A.

A. Fundamentals

Microwave holography is a measurement technique founded on
the mathematical relationship between current distribution (J) and
the antenna beam pattern(T) [4], [5]. Under a small observational
angle assumption this simplifies to the Fourier relationship (referring
to figure 2):
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T(u, v) =

Z Z

S

J(x′, y′)ejkz
′

ejk(ux
′+vy′)dx′dy′

(1)

where:

z′(x′, y′) : Dish surface S

u, v : Cosine space

The required surface error functionε(x, y) is related to the mea-
sured antenna beam pattern using a geometrical ray tracing argument
[7]:

ε(x, y) =
λ

4π

r

1 +
x2 + y2

4F 2
∠{ej2kFF

−1[T(u, v)]} (2)

where:

F : Dish focal length

λ : Source wavelength

Consequently by measuring the beam pattern, in both phase and
amplitude, the surface error profile can be reconstructed.

B. Measurement Theory

The measurement is performed in a raster of discrete points N×N.
Equation 1 is computed in the following discritized form:

T(p∆u, q∆v) = sxsy

N
2
−1
X

n= N
2

N
2
−1
X

m= N
2

J(nsx,nsy)

ej2π( np+mq
N

)

(3)

Wheren,m, p, q are the integers indexing the discrete samples,
∆u,∆v are the sampling intervals in cosine space (beam coordinates)
andsx, sy the interval aperture space (antenna surface coordinates),
calculated as:

∆u = ∆v =
kλ

D
(4)

sx = sy =
D

kN
(5)

Where k is the oversampling factor0.5 < k < 1. The nyquist
sampling interval for an antenna of diameterDλ in wavelength is
given byDλ−1 [10]. Sampling finer than a factor of 0.7 improves
the map little [11]. The HartRAO map was sampled at 0.75 giving an
angular distance of0.0425◦ between the points. The resolved limit
of the mapǫ, dependant on the signal to noise ratio (SNR), is derived
in [9] appendix A (based on the work done byButler [12]) as:

ǫerr ≈
λN

3.4πSNR
(6)

and consequential spatial resolutionδ:

δ =
D

kN
(7)

The HartRAO telescope consists of 252 discrete panels (shown in
figure 3), connected to the backing structure of the main telescope.
Each panel is a rigid shape with adjustment screws (four or more)
allowing the panel to be raised, lowered and tilted. The required
spatial resolution is dependant on the size of the panel elements.
A minimum of three and a recommended four points are required,
per panel, to determine the correction required. The theoretically
resolvable error isǫerr < 0.1 mm.

Fig. 3. Panel map of HartRAO’s parabolic reflector, shown with associated

adjustment screws.

Fig. 4. Simulated holographic image produced from a generated beam pattern

of a 26 m parabolic antenna with a ring of panels displaced by0.5 mm,

(blockage pattern is included).

C. Simulations

In order to test the theory and software reduction system, simu-
lations of the map were required. Surface distortions are simulated
by specifying the error functionε in equation 2 and solving for(T).
The resultant beam pattern was used to test the analysis software by
recovering theε function. Noise and systematic errors are included to
give an idea of the effect on the accuracy of the final measurement.
The simulated pattern of a ring of distorted panels is plotted in figure
4. The map is sized to correspond with the minimum measured raster
size of64 × 64.

III. SYSTEM

Full details of the receiver system are presented in [9] appendix
B.
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Fig. 5. System diagram.

A. Receiver

The system is a two element interferometer consisting of a26 m
diameter telescope (to be measured) and, attached to it a0.3 m
reference antenna. An overview of the system is given in figure
5. The HartRAO telescope consists of multiple switchable systems.
Each system down converts its RF into the central range of the
general intermediate frequency (IF) system≈ 1.5 GHz and then a
common system down converts further to160 MHz (for transmission
down to the ground and analysis). Consequently two mixer stages are
required, one for each down conversion, for the holographicsystem
a 10.510 GHz oscillator is used for the first down conversion. Each
down conversion involves a local oscillator (LO). Special care must
be taken to avoid introducing phase noise from these oscillators.

B. Phase Stabilisation

Phase instabilities translate directly to measurement errors by a
factor λ/2π . Tolerance of0.1 mm results in a phase tolerance, at
12 GHz, of ≈ 2◦. Systematic errors are of primary concern. Purely
random errors average out in both the correlation and in the Fourier
integral. Simulations showed that random errors of less than ≈ 10◦

are acceptable.
a) Current System:The HartRAO system uses a single phase-

locked loop (PLL) system to stabilise the millimetre oscillators
used in down conversion. Phase noise requirements for single dish
observations are relatively low. Phase closure is used to achieve
higher stability for Very Long Baseline Interferometry (VLBI) [10].
As a result the HartRAO telescope has a simple phase distribution
system. A highly stable low-noise5 MHz signal is generated using an
Atomic Maser, which is cabled to a series of LOs and phase-locked

^
D

z x

θ

φ

y

H

Fig. 6. Main antenna geometry with attached reference dish.

using a PLL. The cables are calibrated using a delayed1 ms 5 MHz
pulse sent down a similar cable [13].

b) Measured Noise:Phase noise is linearly dependant on the
frequency of the oscillator and the HF sections of the system
are principally considered [14]. The locking signals, although low
frequency, are considered part of the HF system as any phase noise
within them is multiplied up linearly by the PLL. The system
consists of matched left circularly polarised (LCP) and right circularly
polarised (RCP) chains, which are correlated against each other to
measure the inherent phase noise in the IF system. The system’s phase
noise, without the LO circuitry, is measured at below1◦. The LO
distribution phase noise, (measured using a synthesised test signal),
is ≈ 16◦ with an associated drift. This is too high for the desired
map and would not measure the surface to the required accuracy.

c) Stabilisation Schemes:To achieve the high levels of phase
stability in the LO distribution a series of PLL loops are required.
Typical applications are given byLegg [15] and Little [16]. This
was not possible given time and budget constraints. In orderto
overcome the higher frequency instabilities the two systems, instead
of using a PLL, shared a common LO via a short connector. The
configuration required physically connecting the two dishes. This
adds to the complexity of the reference antenna moving with the main
antenna, but it stabilised the overall phase noise to5◦ and removed
high drift rates.

C. Modelled System phase

Attaching the reference dish to the antenna structure, introduces a
phase variation, resulting from a differential movement ofthe phase
centres of the antennas. This is calculated and corrected for. The
phase variation is a result of changing the distance (H) between the
two feeds and the satellite source. Referring to figure 6, thedistance
H , is calculated as:

H =z � RxRy

0

@

Dx
Dy
Dz

1

A = z �

0

@

1 0 0
0 cosφ sinφ
0 sinφ cosφ

1

A×

0

@

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

1

A

0

@

Dx
Dy
Dz

1

A

=Dy sinφ+Dz cos θ cosφ

(8)
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whereRx andRy are general rotation matrices [17].

D. Calibration

The measurement is referenced to the central point of the map
(the bore-site), as the length of the measurement can be significant,
in order to resolve out drifts this point needs to be re-measured
periodically (every few hours). Unlike astronomical measurements
however, holography does not need to resolve absolute amplitudes
but relative amplitudes.

d) Amplitude: The astronomical receiver is calibrated using a
variation on the standard noise diode method [18]. Typically, in radio
astronomy, the receiver level is measured by turning on a noise
diode and injecting its signal into the waveguide as close tothe
feed as possible. To obtain the systems zero level a standard50 Ω
load is used at the input to the detector. The measured amplitude is
zeroed and scaled by the know value of the diode. In the holographic
system, the reference dish has no noise diode and instead itsauto-
correlation is measured and used to track gain variations inthe
system. A radiometer is used to measure the total power of both
channels and track system temperature changes. The cross correlation
is scaled using automatic gain control (AGC) and recorded asa raw,
dimensionless quantity. The data is calibrated to a meaningful value
by scaling it by the system temperature to convert it to Kelvins. The
system temperature is the ratio between the total power recordedTP
(in Hz) and the noised diode calibrator recordedH in Hz/K. The
calibrated auto-correlationA is given in equation 9 and the calibrated
cross-correlationC in equation 10.

A = Ameas
TPR

HR
(9)

C = Cmeas

r

TPMTPR

HMHR
(10)

Where,Ameas and Cmeas are the measured values directly from
the correlator and the M and R subscripts indicate the main and
reference system respectively. In order to obtain a measured power
of the antenna’s gainMgain, independent of variations in the satellite
strength and reference antenna gain, the calibrated cross-correlation
C must be divided by the square root of the auto-correlationA, as
follows (shown in equation 11):

Mgain = Cmeas

r

TPM

AmeasHM
(11)

TheMgain is in volts. The final gain is independent of the reference
dish’s system temperature as expected.

e) Phase:Phase calibration is done periodically (≈ 30 minutes)
on the bore-site and variations during the measurements aremodelled
out. The phase drift must, consequently, be close to linear during the
measurement and lower than a180◦ rate per bore-site in order to
resolve out phase wrapping. Measurements showed that the rate was
slow enough.

E. Software

The data is recorded into the standard format FITS [19] and
later reduced using custom routines, written using the mathemati-
cal package, Octave [20]. The Fourier transform is calculated and
the images are produced using the Astronomical Image Processing
System (AIPS) [21] and Miriad packages [22]. The specific routine
is detailed byGravesandKesteven[23].

Table 1

SATELLITE OPTIONS ARRANGED ACCORDING TOHOUR ANGLE.

Satellite

Name

Long-

itude

Hour Angle

[deg]

Beacon

Frequency

[GHz]

Bonum 1 56 32.51 11.706

Europe Star 1 45 19.98 11.697

Eurasiasat 1 42 16.53 11.699

Eutelsat Sesat 36 9.62 11.450

Eutelsat W4 36 9.62 11.706

Eurobird 28.2 0.6 11.200

Astra 1B 19.2 -9.81 11.697

Eutelsat W2 16 -13.51 11.698

Hot Bird 5 13 -16.96 11.699

Eutelsat W1 10 -20.4 11.451

Eutelsat W3 7 -23.84 12.501

Sirius 2 5 -26.11 11.777

IV. SOURCE

Geostationary satellites are high power, stable and still sources and
therefore ideally suited for holographic measurements. The systems
gain is very high≈ 67 dB and to avoid saturation the broad-band
carrier is filtered out and a continuous wave (CW) locking beacon
is used instead for correlation. Note, in the case of low gain, it is
possible to use the broad-band carrier for holography if theassociated
lags across the correlator are corrected for.

A. Satellite Option

To locate available satellites a media search and a power scan on
the sky was done. The usable satellites are given in table 1. The
optimum satellite for HartRAO is Eutelsat W2.

1) Tracking: Geostationary satellites, although highly stable, drift
appreciably within the beam of the telescope (HPBW≈ 0.059◦)
and need to be actively tracked. The model used is the Keplerian
elements implemented using the NASA/NORAD format provided
by CelesTrak [24]. NORAD does not return the accuracy of the
prediction, however, it is possible to estimate the deviation of the
prediction over time using the model itself [25]. By comparing an
older ephemeris with a more recent one the stability or the speed at
which the model degrades is measured. Simulations show thatover
the modelled period, approximately three days for EutelsatW2, this
varied by≈ 0.03◦. This is removed by performing periodic cross
scans across the source during the map and calculating the offset.

V. RESULTS

The final holographic map was recorded at night, several hours
after the sun had set. This provided as temperature stable a mea-
surement as possible. Three panels were deliberately displaced, (one
raised6 mm, one raised2 mm and one lowered6 mm) in order to
test the measurement. The results are plotted in figure 7. Themap is
produced withN = 80 and an oversampling factor ofk = 0.76. The
map shows that the dish’s accuracy is set within a millimetreof an
ideal surface. The distortion present in the southern area of the dish is
gravitational sagging and, as the dish is equatorial mounted, cannot
be improved. The purposefully displaced panels are clearlyvisible
and correctly measured. The panel map grid is misaligned, applying
the mathematical correction discussed in section III-C largely corrects
it and the result is plotted in figure 8.

The measured root mean square (RMS) distortion of the surface is
0.45 mm, the fitted histogram is plotted in figure 9.
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Fig. 7. Holographic map showing surface distortions.

Fig. 8. Final holographic map.
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Fig. 9. Histogram of measured errors across the aperture foreach point in

mm.

VI. CONCLUSIONS

The holographic measurement system worked correctly and, along
with the chosen satellite Eutelsat W2, provided the required stability
for the map. The band-pass filter and system alterations worked
correctly, allowing the low power receivers to be adapted towork
with a strong source. The overall system does not impact the normal
operation of the telescope and is configured so as to allow remote
operation (without any manual hardware switching). This, along with
the method of scanning the telescope, allows a map to be broken up
and slotted into the observing schedule. The overall map took eight
to ten hours, short enough to be scheduled every few months and
used for routine monitering of the dish surface. The correlation and
mathematical reduction software was tested and worked correctly.
The resulting map, given the size and spacing, is resolved asexpected
and the structure of the dish is clearly visible. Residual distortions
within the map are slight, but still present problems determining
individual panel corrections. To correct for this the reference dish
should be moved such that it does not move with the main antenna,
achievable in two ways. By stabilising the oscillator distribution
system or using high frequency amplifiers and waveguide to still
enable sharing the first LO. The dish is measured to have an RMS
accuracy of0.45 mm, sufficient to allow it perform22 GHz research.
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Appendix A

Holographic Measurement Theory

A.1 Introduction

The holographic technique was originally developed at the University of Sheffield in 1976 [1], the first
application to a large reflector antenna was done at the Mullard Radio Astronomy Observatory in 1977 [2].
The theory is based on well established Fourier transform relationship between an antenna’s complex beam
pattern and its current distribution [3], [4] - which in turndirectly relates to the antenna’s surface. The image
is produced by computing the resulting 2-dimensional Fourier transform. In 1985Rahmat-Samiiformalised
a method for determining the relationship between the surface errors and the aperture phase [5], [6]. The
theory is well established and understood. An overview and summary is given here, with paticular ephasis
on the measurment theory and the relationship with the source’s Signal to Noise Ratio (SNR). The specific
measurment method of cross-correlation is presented and linked with the sampling and error theory. Based
on the theory the measurement is simulated and tested using reduction software.

A.2 Fourier Relationship

The following theory is based on the discussion byRahmat-Sammiias presented in [5]; on the Fourier
relationship between the surface current and the far field radiation pattern. The geometry of the reflector and
coordinate systems used are given in figure A.1.

Figure A.1: Equivalent geometry of a parabolic reflector (adapted from [5]).



A.2

Using physical optics the radiation pattern can be expressed generally as:

E = −jkη e
−jkr

4πr

“

Tθ θ̂ + Tφφ̂
”

(A.1)

whereT is the beam pattern,η is the free space impedance andk = 2π/λ. Using the physical optics integral
this is expressed as:

T(θ, φ) =

Z

s

J(r ′)ejkr′ ·̂rdS′ (A.2)

whereJ is the induced surface current across the reflector (with unit normal n) defined as:

J = 2n × H′ (A.3)

Rahmat-Samiiand Galindo-Israel [7] have shown how integral A.2 can be expressed across the aperture
rather than the surface, using the surface Jacobian transformation:

Js =

s

1 +

„

∂f

∂x′

«2

+

„

∂f

∂y′

«2

(A.4)

into:

T(θ, φ) =

Z

s

J(r ′)ejkr′ ·̂rJsdx
′dy′ (A.5)

wheref = z′(x′, y′), the equation of the aperture. Note, that the current is still evaluated on the surface of
the reflector not in the aperture plane.
Equation A.5 expresses a Fourier relationship for flat surfaces i.ez is a constant. This can be extended for
the limited case of small observation anglesθ (the case for electrically large reflectors). Using the following
identities:

J(x′, y′) = J(r ′)Js (A.6)

r ′ · r̂ = z′ cos θ + ux′ + vy′ (A.7)

u = sin θ cosφ (A.8)

v = sin θ sinφ (A.9)

equation A.5 is simplified to gives the familiar Fourier relationship [3], [4]:

T(u, v) =

Z Z

S

J(x′, y′)ejkz
′
ejk(ux

′+vy′)dx′dy′ (A.10)

This is the dominant term in a Taylor expansion and only validfor small angles and undisplaced feeds, for
these other cases the reader is referred to [7].
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A.3 Sampling Theory

Equation A.10 is computed by sampling an N by N grid and solving the following sum:

T(p∆u, q∆v) = sxsy

N
2
−1
X

n= N
2

N
2
−1
X

m= N
2

J(nsx, nsy)ej2π( np+mq
N

) (A.11)

wheren,m, p, q are the integers indexing the discrete samples,∆u,∆v are the sampling interval inu, v far
field space,sx, sy is the sampling interval in the aperture space [8].N is the size of the map. The sampling
required is calculated using an adaption of the work done byButler [9]. Using non phase-retrieval methods
the aperture measurement error is given by:

ǫaerr =
λ

2π
ψerr (A.12)

whereψerr is the phase error in the aperture plane. In the case of a beacon signal with a high SNR (as
measured at the centre of the map) this is:

ψerr =
N

SNR
(A.13)

The surface error is related to the aperture error as follows:

ǫserr =
ǫaerr

2 cos(γ/2)
(A.14)

whereγ is the angle formed between the feed, sub-reflector and main reflector. Consequently the maximum
error occurs at the edge of the dish at an angle of aroundγ ∼ 65◦

ǫsedgeerr ∼ ǫaerr
1.7

(A.15)

Substituting equations A.15 and A.13 into equation A.12 gives the measurable error:

ǫerr ∼ λN

3.4πSNR
(A.16)

The spatial resolution of the mapδ is given as:

δ =
D

kN
(A.17)

where0.5 < k < 1 represents the oversampling factor of the map andD is the diameter of the dish. The
critical sampling factor isk = N

N+1
, the measurement averages errors over the integration and increasing

the over sampling improves the map little [10]. Typically0.7 < k < 0.8 is sufficient. The resolved area per
point is plotted with the number of points per panels in figureA.2.

Equation A.16 is rearranged to solve for the required SNR in terms of the desired antenna parameters by
substituting equation A.17,

SNR=
λD

3.4πkδǫerr
(A.18)

The required SNR is plotted in figure A.3. Increasing the map size reduces the size of the resolved pixel
within the map, i.e creates a sharper image, however, as seenfrom figure A.3, this reduces the accuracy
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Figure A.3: Plot of signal SNR vs. the RMS error across the surface for the26 m HartRAO telescope for

various map sizes.

of the individual pixels (this can be understood as larger pixels cover a larger surface area and average out
errors). Additional points map the beam to further out side-lobes and consequently require higher SNR in
order for the added data to be meaningful.

A.4 Correlation

To obtain the phase difference and amplitude ratio, the signals from the reference and measured dishes, (the
corresponding voltage vectors) must be mixed - the common method is cross-correlation [11]. The major
advantage of this method is a reduction of noise due to local noise sources being filtered out, a requirement
as the side lobes provide the highest resolution of the surface errors [12].

The cross-correlation of two monochromatic waves, is defined as [11]:
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x(t) = Ex sin(2πωt+ δx)

y(t) = Ey sin(2πωt+ δy)

and solved as follows [13]:

〈x(t)y(t)〉 = ExEy lim
T→∞

Z T

−T

sin(2πωt+ δx) sin(2πωt+ δy)dt

= ExEy

„

1

2
cos(δx − δy) − lim

T→∞

Z T

−T

1

2
cos(4πωt+ δx + δy)dt

«

= ExEy cos(δx − δy)

(A.19)

The probability distribution in the measured noise, in amplitude and phase, is [14].

P (A) =
A

σ2
e
−

A2+|V |2
2σ2 Io

„

A|V |
σ2

«

(A.20)

P (φ) =
1

2π
e
−

|V |2
2σ2

„

1 +

r

π

2

|V | cosφ
σ

e
|V | cos φ√

2

»

1 + Ef

„

|V | cosφ√
2σ

«–«

(A.21)

where Ef is the error function defined as:

Ef (z) =
2√
π

Z z

0

e−t
2

dt (A.22)

|V | is the visibility vector (waveform at the correlator),A = Aejφ is the signal plus noise vector.Io is the
modified Bessel function of zero order. The probability distributions are plotted in figure A.4 and figure A.5.

The standard deviationσ, is given by:

σ =

√
2kTs

AηQ
√

∆νIF τa
(A.23)
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where∆νIF is the bandwidth,τa the integration time in seconds,A the antenna’s surface area,ηQ represents
the processing loss andTs the system temperature.

The probability of a measurement lying within an error rangeof ε can be found as:

Pm =

Z φ+ ε
2

φ− ε
2

P (φ)dφ (A.24)

with the associated confidence interval [15]:

Nσ =
√

2Ef (Pm) (A.25)

The measurement probability and standard deviations of thecorrelations are calculated and plotted as figures
A.6 and A.7.

The correlated SNR, with two antennas with system temperatures Ts1, Ts2 and when pointed at a source
giving antenna temperaturesTa1, Ta2, is:

SNR= η

s

2∆νIF τa
Ta1Ta2

(Ts1 + Ta1) (Ts2 + Ta2)
(A.26)
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whereη ⋍ 0.637 represents the processing losses. This can be formally calculated as:

η = ηQηRηSηD (A.27)

where:
ηQ = quantisation loss (0.637 two-level)
ηR = fringe rotation loss (0.9 one path)
ηS = fringe sideband rejection loss (0.707 1 channel)
ηD = Discrete delay step loss (0.966 video band centred correction)

Solving for η = (.637)(0.9)(0.707)(0.966) = 0.39. To solve for the required sample time equation A.26
is equated with equation A.18 and solved. Substituting in the system parameters and source parameters
(calculated in [16] appendix C) the solution is plotted as figure A.8. From the graph each mapped point
should be correlated for at least3 s.

The correlation time of three seconds results in a minimium map times of:≈ 0.85 hours for aN = 32 map,
≈ 3.41 hours for aN = 64 map and≈ 13.65 hours for aN = 128 map.
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A.5 Simulations

In order to test the theory and software reduction system, simulations of the map were required. The theory
is based on the work done byRochblatt[8].

A.5.1 Phase error

Surface errors are simulated using a geometric ray tracing model to construct a phase distribution. A surface
displacement ofǫ creates an associated phase error due to a path length difference as shown in figure A.9.
The error is calculated as follows [8]:

1

2
∆PL =

1

2

`

P ′P + PQ
´

=
1

2

„

ε

cosφ
+
ε cos 2φ

cosφ

«

= ε cosφ

(A.28)

The resulting phase error is:

∠(∆PL) =
4π

λ
ε cosφ (A.29)

substituting for a parabolic surface:

cosφ =
1

r

1 +
ρ2

4F 2

=
1

r

1 +
x2 + y2

4F 2

(A.30)

rearranging equation A.29 and substituting equations A.5 and A.30 gives:

ε(x, y) =
λ

4π

r

1 +
x2 + y2

4F 2
∠(ej2kFF

−1[T(u, v)]) (A.31)

Equation A.31 relates surface errors to the measured beam pattern. i.e if T is known ε can be solved for.
The simulation reverses the problem by specifyingε and calculates the phase of the beam patternT which
is then used for testing.
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A.5.2 Current distribution

The current distribution is simulated as [6]:

J = B + C
`

1 − ρ2´2 (A.32)

where:

J = current distribution

ρ = radial distance

C = the roll off across the dish

B = 1 − C

edge taper= 20 logB

Plotted as shown in figure A.10 and the associated simulated beam pattern in figure A.11 - the actual pattern
is plotted for comparison (the main lobe is of primary interest, side-lobes discrepancies result from under-
sampling). The taper is shaped by the sub-reflector and for HartRAO is 20 dB (typical for radio telescopes).
The simulation is sufficient for the testing the software, for a more detailed discussion the reader is referred
to Potter andRusch[17].

In order to test the software a ring of panels is simulated as being displaced by 0.5 mm. The leg blockage is
included, refer to [16] appendix B for the theory. The sampling theory presented in section A.3 is implicitly
tested in the spacing of the simulated map. The reproduced surface is shown in figure A.12. The map is
produced using the Australian Miriad software [18], using the Fourier algorithm and mapping software written
by GravesandKesteven[19].

A.6 Conclusions

The theory, broadly summarised, conformed to simulated results. The small angle assumptions made are
negligible for large telescopes. The final estimated correlated times are reasonable and the method of cross-
correlation is considered a good approach for holographic mapping. The requirements for source SNR and
sampling accuracy are both usable for astronomical telescopes. The reduction software worked and returned
the expected results. The mapping times, for larger maps (N > 64), would require careful scheduling within
normal astronomical observing. Mapping should be separable so as to break it up and slot it between sources.
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Figure A.11: Simulated beam pattern used to test holographyimaging software (the actual beam is given for

comparison).

Figure A.12: Simulated holographic image produced from a generated beam pattern of a26 m parabolic

antenna with a ring of panels displaced by0.5 mm, (blockage pattern is included).
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Appendix B

Holographic Physical System Considerations

B.1 Introduction

Holographic measurements require specifically tuned high frequency receiver systems [1]. In the case of two
dish holography two systems need to be built and, as holography is a measurement of phase, synchronised
to work together [2]. Astronomical microwave receivers arespecialised radio frequency (RF) measurement
systems, designed and optimised to receive specific low amplitude sources [3]. Consequently, measurement
of astronomical telescopes requires adapting the astronomical system to receive satellite bands and levels.
The reference system is built by adapting an existing satellite receiver system. The main telescope’s Ku band
(10.7 to 12.75 GHz) receiver system is presented along with the intermediate frequency (IF) system. The
synchronisation of the mixing systems and associated localoscillators (LO) is given. Finally the calibration
procedure and control and analysis software is discussed.

Figure B.1: System diagram.



B.2

Figure B.2: Geometry of cassegrain antenna (adapted from [6]).

B.2 Receiver System

Radio astronomy is a specialised radio frequency application and normally economically expensive. The
12 GHz band (Ku band [4]), however, is utilised for satellite broadcasting. Consequently commercial hardware
is available and a much cheaper system can be built by modifying off the shelf satellite low noise block
converters (LNB)1. For holography, this has the added advantage as the system is configured for the required
satellite source. The system gain, however, is tuned for lowlevel astronomical sources and, in order to
avoid saturation, filtering and attenuation is required. The reference antenna is also incorporated, while
not interfering with daily astronomical monitoring. The overall system diagram is given in figure B.1, a
two element interferometer consisting of the main26 m dish and a reference dish. The signals are down
converted to an IF of≈ 1.5 GHz and then to the final160 MHz at which it is measured and recorded.
The main antenna is an astronomical research instrument, used both locally and internationally. It operates
continuously and performs daily monitoring of radio sources. The system needed to be non-intrusive and be
able to remotely switch in and out of routine observing. Electrical RF switching circuitry was used to switch
in the required system components and out the astronomical receivers.

B.2.1 HartRAO Dish

The main telescope is a polar mounted cassegrain dish consisting of a feed illuminating a hyperbolic reflector
which is in turn placed to reflect onto a parabolic reflector such that the transmit/received wave travels
parallel to the surface. The configuration is shown in figure B.2. The beam pattern of the main reflector can
be calculated using a ray tracing argument and Fourier transforming the resulting illumination function. The
theory is discussed in [5] appendix A.

Feed

The feed is a dual-mode conical horn, (potter horn [7]), shown in Figure B.3. The horn is defined as follows
[8]:

1Limited to ambient systems
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Figure B.3: Dual-mode potter horn.

Figure B.4: Dual-mode horn beam-pattern amplitude [dB] vs.angle [deg].
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Whereu = 2.34 λ k sin θ, (1.84 < ka < 3.83), (3, 83 < kb < 5.33), λ/λg = 1, λ/λ′
g = 0.96, α = 0.6, J1

is a first order Bessel function andJ ′
1 is its differential [8]. The receiver is optimised to suppress side lobe

levels and reduce ground noise. This design gives a HPBW≈ 14.5◦ resulting in a20dB edge taper across
the hyperbolic reflector and consequently20dB taper at the edge of the main parabolic reflector. The beam
pattern is shown in figure B.4.

Hyperbolic reflector

The hyperbolic reflector is a3 m dish mounted at the primary focus, such that its focus is coincidental with
the main parabolic dish’s focus. The hyperbolic reflector isflanged slightly to reduce ground interference as
shown in figure B.5, for a detailed discussion refer to work byRusch[9]. Based on this work the scattered
pattern can be derived as shown in [5] appendix D. The result,practically is computational expensive and a
ray tracing approximation is sufficient (the observing frequency is high and the dish electrically large).
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Figure B.5: Hyperbolic reflector geometry, showing flanges (adapted fromBathker [10]).

Figure B.6: Panel map of parabolic reflector, shown with associated adjustment screws.

Parabolic reflector

The surface consists of 252 solid panels configured as shown in figure B.6. Each panel has at its edges
adjustment screws allowing it to be moved freely (without distortion) in three dimensions. Adjustment of the
surface are limited to moving the panels.

Leg Blockage

The HartRAO dish consists of four leg supports for the hyperbolic reflector which partially obscure the main
reflector. The leg’s shadow up to where the leg reaches the surface is a linear blockage with the width of
the leg. Beyond where the support legs attaches to the surface the blockage is a ‘spherical wave’ shadow
described as [11]:

Abs =
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„

R2
p −R2

q

2
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«
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Figure B.7: Plots of simulated support structure blockage.

where:

AB = Rq(1 − tanα/ tanψ)

ψ = 2arctan
Rq
2f

Rp − radius of the parabolic reflector (projected)

Rq − radius of the hyperbolic reflector (projected)

f − parabolic focal length

Wl − width of leg

α− angle with respect to main antenna axis

Equation B.2 is for a uniform illumination pattern, for a -11db taper at the edge the correcting term to be
subtracted is:

Absc =
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The computed results are plotted in figure B.7 (the central blockage is that of the sub-reflector).

B.2.2 Reference Dish

For simplicity, the reference dish is sized in order to avoidtracking the satellite. The dish is either mounted
near the dish in a fixed location or on the main dish. In the former case the beam must be greater than
the satellite movement. Geostationary satellites move by less than a degree (refer to [5] appendix C) and
thus a HPBP of2◦ is a minimum to allow for a setting accuracy of0.5◦. In the latter case the limiting
factor is the movement of the main telescope. For the required holographic map of 64 points this requires a
beam-width of4◦, to allow for setting error of0.5◦ puts the beam at5◦. Calculating the half power beam
width (HPBW), using HPBW= 1.2λ/D [12], the reference dish size is calculated as a maximum of2 m
and0.45 m respectively.

If the dish is mounted on the main dish, it is aligned to the themain dish and pointing is handled by the
telescope drive systems allowing easy configuration and switching between satellites.
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Mounting the dish separately, it is pointed at the satelliteand fixed. All the satellites to be considered are
geostationary and consequently found on the equatorial arc. For polar mounted dishes it is possible to set
the declination of the dish in order to approximately drive along this arc in the hour angle direction. This
eases the location and possible switching of satellites. The solution for HartRAO’s location are given in [5]
appendix E.

B.2.3 IF components

The HartRAO telescopes is configured to observe multiple frequency bands which are alternatively switched
in. The system, as a result, has two stages of down conversion; the first from the12 GHz RF to1.5 GHz in
order to range it within the general system and then to a standard 160 MHz, used in the measurement and
analysis system. This requires two mixer stages and thus twooscillators.

B.2.3.0.1 Mixers: The first mixer stage is a standard satellite block convertermodified to bypass the
built in oscillator (the original oscillator cannot be phase locked and is unusable). The oscillator circuitry is
disabled and hard line is used to inject the required signal into the mixer circuitry. The secondary mixer is a
high quality, low noise image rejection (single side band) mixer with 25 dB rejection and negligible phase
noise [13].

B.2.3.0.2 Bandpass Filter: Geostationary satellites are, typically, used to transmitto fixed ground receivers
(eg. digital satellite TV receivers). Consequently they contain high power broadband carriers. In principle
this can be considered random noise and used for holography,however this overpowers the receiver. Along
with the broadband communication a low power narrow band beacon signal is transmitted for locking, this
is preferentially used. In order to prevent saturation the bandpass signal is filtered out. The filter is based on
the design byHinshawand Monemzadeh[14]. It is possible to build a narrower filter, however the digital
filter available requires a high level of random noise in order to operate linearly.

B.2.3.0.3 Digital Filter: The digital filtering mechanisms designed for astronomicalcorrelators operate
under an assumption of high noise ratios (as is the case in radio astronomy). The filter’s behaviour in the
case of strong a continuous wave (CW) signal is not well defined. In order to avoid this a large bandwidth is
used to bring the filter into an operational range,4 MHz is used. The bandwidth used must, for calibration,
match the bandwidth of the radiometer.

B.3 Oscillator distribution

Two oscillators are required per receiver chain to down convert the RF to160 MHz. Noise on the oscillator
is linearly summed into the noise of the RF signal [2] and is critical to the measurement.

B.3.1 Phase Noise

The measured phase noise in the system using a single phase lock loop (PLL) is plotted in figure B.8. The
noise is too high for Holography (σ ≈ 16◦). Measurement of the individual sections of the system shows
that the noise is associated with the PLL. The locking oscillator is a5 MHz atomic Maser with (for this
case) near perfect phase. Long cable length (≈ 200m) used in distributing the locking system however add
noise. The high frequency oscillator (10.510 GHz), used in the first down conversion, is shared between both
system in order to defeat the noise associated with the single PLL loop system. This adds the complexity of
requiring a high frequency distribution system.
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Figure B.8: Histogram of measured phase noise on a single PLLat 10.510 GHz, σ = 16◦.

B.3.2 Phase Stabilisation

B.3.2.0.4 High Frequency Transmission: Circular waveguide is a good low loss stable transmission
option (high quality phase stable cables with low loss, although available, are economically expensive). The
attenuation factor,α, for circular waveguide can be calculated as follows [15]:

α =
0.18623

a3/2

s

RCu

RAl [(f/fc)3 − (f/fc)]
(B.4)

Wherea is the radius of the pipe,f is the frequencyfc is the cut off frequency given asc/1.640a for the
TE0,1 mode andR is resistivity. Using standard pipe size, the lock oscillator can be transmitted at a loss
of 0.04 dB/m at10.510 GHz. For tens of meters the major loss factor is the waveguide/cable transmission
which have measured loss of1.5 dB/transmission. Standard pipe sizes are used for the advantage of cost
and allow easy fitting of temperature stabilising sheathing. Alternatively low loss cable is available (however
expensive).

B.3.2.0.5 PLL schemes: Several options are available to stabilise the LO system used to lock the high
frequency oscillators. The reader is referred toLegg [16] andLittle [17], for solutions.

B.4 Phase variation

Attaching the feed to the antenna structure introduces a phase variation resulting from differential movement
of the phase centres of the antennas. This is calculated and corrected for. The phase variation is a result
of the changing distance between the two feeds and the satellite source. The geometry of the antenna and
reference dish is given in figure B.9, the rotational axes of the main antenna and associated anglesθ, φ are
shown. The height differential between the antenna phase centres is the dot product between the differential
vector and the pointing vector to the satellitez � D. The vectorD rotates with the telescope as it changes its
pointing. The vector is modified using the rotational matricesRx, Ry [18]. The solution is given below:
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The variation in phase to be correct for is the difference between the phase calculated on the bore-site (bs)
to each recorded point (n).

∠△ = 2π
Hbs−Hn

λ
(B.6)

The reference antenna is sized to minimise its affect on the measurement however the measurement range
will add a small effect from its beam shaped. The effect is accumulative in the measurement and cannot be
directly measured and consequently has to be calculated andremoved numerically. An offset reflector is the
most readily available of dish for Ku band systems. The field equations, are derived byMaclean[19]. For the
used dish of0.3 m it is considered negligible for the produced maps, howeverif larger maps ofN = 128
are required it would need to be calculated and removed.

B.5 Calibration

The measurement is referenced to the central point of the map(the bore-site), as the length of the measurement
can be significant, in order to resolve out drifts this point needs to be re-measured periodically (every few
hours). Unlike astronomical measurements however, holography does not need to resolve absolute amplitudes
but relative amplitudes.
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Figure B.10: Bore-site phase data.

B.5.1 Amplitude

The astronomical receiver is calibrated using a variation on the standard noise diode method [20]. Typically,
in radio astronomy, the receiver level is measured by turning on a noise diode and injecting its signal into
the waveguide as close to the feed as possible. To obtain the systems zero level a standard50 Ω load is
used at the input to the detector. The measured amplitude is zeroed and scaled by the know value of the
diode. In the holographic system, the reference dish has no noise diode and instead its auto-correlation is
measured and used to track gain variations in the system. A radiometer is used to measure the total power
of both channels and track system temperature changes. The cross correlation is scaled using automatic gain
control (AGC) and recorded as a raw, dimensionless quantity. The data is calibrated to a meaningful value
by scaling it by the system temperature to convert it to Kelvins. The system temperature is the ratio between
the total power recordedTP (in Hz) and the noised diode calibrator recordedH in Hz/K. The calibrated
auto-correlationA is given in equation B.7 and the calibrated cross-correlation C in equation B.8.

A = Ameas
TPR

HR
(B.7)

C = Cmeas

r

TPMTPR

HMHR
(B.8)

Where,Ameas andCmeas are the measured values directly from the correlator and theM and R subscripts
indicate the main and reference system respectively. In order to obtain a measured power of the antenna’s
gainMgain, independent of variations in the satellite strength and reference antenna gain, the calibrated cross-
correlationC must be divided by the square root of the auto-correlationA, as follows (shown in equation
B.9):

Mgain =Cmeas

r

TPMTPR

HMHR
×
r

HR

AmeasTPR

Mgain =Cmeas

r

TPM

AmeasHM

(B.9)

TheMgain is in volts. The final gain is independent of the reference dish’s system temperature as expected.

B.5.2 Phase

Phase calibration is done periodically on the bore-site, variations during the measurements are modelled out.
Phase drift must consequently be close to linear during the measurement and lower than a180◦ rate in order
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to resolve out phase wrapping. The measured system phase drift over several hours is plotted in figure B.10
- as the bore-site is measured a few times every hour the variation is sufficiently slow and linear to remove.

B.6 Software

The data is recorded into the standard format FITS [21] and later reduced using custom routines written using
the mathematical package Octave [22]. The Fourier transform is calculated and the images are produced
using the astronomical image processing system (AIPS) [23]and Miriad packages [24]. The specific routine
is detailed byGravesandKesteven[25].

B.7 Conclusions

The modifications of the astronomical receiver worked correctly and enable the main receiver to operate
within the required satellite band and higher signal levels. The modified satellite system (to be used as
the reference system) also worked correctly. The overall system does not impact normal observing. Phase
variations between the system is considered sufficiently low and the modifications, to synchronise the systems,
worked correctly. Calibration and software reduction worked well and performed as expected. Overall, the
system is considered sufficient to perform the holographic measurement.
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Appendix C

Satellite Considerations

C.1 Introduction

Microwave holographic measurements, ideally, require a high power, stable and still source [1], [2].
Geostationary satellite beacons are well suited, satisfying all the requirements. The following document
considers numerous satellite choices and discriminates between them based on critical and desirable
characteristics. The satellite requires tracking and as itcannot be directly measured during the measurement,
its movement must be predictable. Its motion is modeled and the prediction is compared against measured
positions. The available signal is calculated and conclusions are stated.

C.2 Satellite Choices

Being geostationary, for each satellite only one antenna position can be measured and thus as many satellite
options should be considered so as to allow for the possibility of multiple measurements to map out
gravitational distortions.

C.2.1 Requirements

In order for a satellite to be usable it must have the following properties:

• Visible at the Hartebeesthoek radio observatory (HartRAO)(10◦ to 66◦ East)
• Have a frequency in the receiver band (11.5 to 12.5 GHz)
• The beacon must have a footprint with sufficient power over Gauteng
• The ephemeris data must be updated regularly.

Additionally, for discriminating between satellites the following properties are desirable, ranked from most
to least.

1) As close to the zenith position of the antenna so as to average out gravitational distortions.
2) The broadband carrier must not swamp the receiver and saturate the amplifiers. Preferably the beacon

should be outside the carrier to allow filtering.
3) Stable beacon frequency
4) Operational lifetime of several years.

C.2.2 Satellite Option

To locate available satellites a media search and a power scan on the sky was done. The found, usable
satellites are given in table C.1.
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Table C.1: Satellite options arranged according to Hour Angle.

Satellite

Name

Longitude

East

Hour Angle

[deg]

Beacon

Frequency [GHz]

Beacon

Power [dBW]1

Bonum 1 56 32.51 11.706 -

Europe Star 1 45 19.98 11.697 -

Eurasiasat 1 42 16.53 11.699 -

Eutelsat Sesat 36 9.62 11.450 9

Eutelsat W4 36 9.62 11.706 9

Eurobird 28.2 0.6 11.200 -

Astra 1B 19.2 -9.81 11.6965 16

Eutelsat W2 16 -13.51 11.6992 9

Hot Bird 5 13 -16.96 11.6998 8

Eutelsat W1 10 -20.4 11.451 9

Eutelsat W3 7 -23.84 12.501 9

Sirius 2 5 -26.11 11.7768 -

1 unpublished data would need to be measured, typically the minimum beacon power is 4 dBW.

The satellite decided upon was Eutelsat W2. Eutelsat w2 has abeacon which sits in a narrow10 MHz band
free of the satellite’s broadcast spectrum - allowing for ease in filtering. Additionally it has the required
power, ephemeris stability and position in the sky.

C.3 Technical considerations

The primary concerns for the holographic measurement are those of phase.

C.3.1 Tracking

Geostationary satellites although highly stable, drift appreciable within the beam of the telescope (HPBW
≈ 0.059◦ at 12 GHz) and consequently are actively tracked periodically throughout the measurement. Stable
geostationary satellites trace out a elliptical orbit thatis defined using the classical Kepler model defined as
[6]:

θ = 2 ecc× sin(k(t− t0) − w) − .25 inc2 × sin(2k(t− t0)) (C.1)

φ = inc× sin(k(t− t0)) (C.2)

Where:

k = tan2(ha) + tan2(dec)(1 + tan2(ha))

inc - satellite inclination

ecc - satellite eccentricity

t0 − satellite epoch(time when satellite,

moving north, crosses the equatorial plane)

t− time since epoch

w − argument of perigee

The orbit, for a geostationary satellite (with parameters modeled on Eutelsat W2), is plotted in figure C.1.

The Kepler model is an ideal case and does not account for systematic drifts and variations. In order to
cope with this the maintainers of the satellite provide an updated ephemeris model periodically. The standard
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Figure C.1: Predicted movement of geostationary satellitein the az, el plane, over 24 hours using a Kepler

model.
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Figure C.2: Predicted movement of satellite Eutelsat W2 in the observeddec, ha plane, over 24 hours using

the NORAD model.

model used is the NASA/NORAD Two-Line Element Set format provided by CelesTrak[4]. The prediction
is plotted in figure C.2. The predicted drift for Eutelsat W2 is ≈ 0.1◦.

The accuracy of the prediction is determined by the modeled parameters accuracy and the age of the
ephemeris. CelesTrak does not return the accuracy of the prediction directly however it possibly to estimate
the deviation of the prediction over time using the model itself [5]. By comparing an older ephemeris with a
more recent one the stability or the speed at which the model degrades is measured. Simulations show that
over the modeled period, approximately three days for Eutelsat W2, this varied by≈ 0.03◦.

Offsets in the model are found periodically during the map (every few hours) by performing a series of
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Figure C.4: Probability distribution P(P , Pσ) = (−10.34, 6.71) m◦ of the error in NASA/NORAD

geostationary satellite model in theha plane, measured using a series of cross scans.

iterative cross scans to centre on the satellite and find the offset from the prediction. The statistical error
directly measured (for Eutelsat W2) are plotted as figure C.3and C.4. The error has a systematic error due
to offsets in the antenna’s pointing model. This error is removed with an initial cross scan before the map
is started.

C.3.2 Received power

The received power per Hz from the beacon signal is [3]:

P = η × Flux× Area= η
EIRP
4πR2

S

πR2
D =

η

4
EIRP

„

RD
RS

«2

(C.3)
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WhereRS is the distance to the satellite (≈ 36000 km), RD is the diameter of the dish (0.3 m), η is the
efficiency of the antenna (≈ 50%) and EIRP is the effective isotropic radiated power of the beacon signal.
The noise power spectral density (NPSD) given an antenna temperatureT and a correlator channel bandwidth
B is calculated using Boltzmann law.

NPSD = kTB (C.4)

For the chosen satellite Eutelsat w2 the beacon power above the noise is30 dBm, for the given correlator
channel bandwidth. The resulting antenna temperature looking at the sourceTa is:

Ta =
AS
2k

(C.5)

Where S is the flux density on the source given by:

S =
EIRP

∆νIF 4πR2
S

(C.6)

Where∆νIF is the correlator bandwidth. Solving Equation C.5 gives a temperature on source ofTs ≈ 300 K.
The consequences for holography measurement is discussed in detail in appendix A.

C.4 Conclusions

The use of a geostationary satellite, to perform the holographic measurement, is possible from HartRAO.
Several options are present with the correct elevation and sufficient power and stability to meet the
requirements. The satellite to be used is Eutelsat W2.
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Appendix D

Hyperbolic derivation

D.1 Introduction

The following is the derivation of the field equations for thescattering across a hyperbolic reflector exited
by a potter horn feed. It is an adaption of a similar derivation by Rusch[2].

D.2 Derivation

Figure D.1: Hyperbolic reflector orientation (adapted fromwork by Rusch[2]).

A potter horn feed is orientated at the origin O, facing the hyperbola - as shown in figure D.1. The reflected
field in thear direction is given bySilver [3]:

Es(θ, φ) =
−jwµ
2πR

e−jkR
Z

S

`

n × Hi −
`ˆ

n × Hi

˜

· ar
´

ar
´

ejkρ(θ
′)aρ·aRdS (D.1)

Where:

n - unit normal vector to the hyperbolic surface.
Hi - magnetic field of the incident wave.
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aR, aρ - unit vectors with reference to the Figure D.1

The pottern horn produces a wave propagating in theaρ direction of the form [1]:

Ei = AtPt(θ
′) cosφ′aθ + ApPp(θ

′) sinφ′aφ (D.2)

The magnetic field,Hi is thus:

Hi =

„

ǫ

µ

«

`

aρ × Ei
´

(D.3)

The expressionn × Hi − (
ˆ

n × Hi

˜

· ar)ar is the condition that no current can flow out of the plane of
the surface. The expression does not need to be explicitly calculated but rather by ignoring any transverse
components in the expressionn × Hi. On reflection from the surface the coordinate system is rotated such
that aρ → aR, aθ′ → aθ, aφ′ → aφ.
Substituting equation D.3 inton × Hi where:

n =
(1 + e cos θ′)aρ − e sin θ′aθ′

m(θ′)
(D.4)

and,

m(θ) = [(1 + e cos θ′)2 + (e sin θ′)2]
1
2

e ≡ c
a

for (e > 1) (c and a defined in Figure D.1)

n × Hi = n ×
„

ǫ

µ

«

(aρ × Ei)

= n ×

0

@

r

ǫ

µ

˛

˛

˛

˛

˛

˛

aρ aθ′ aφ′

1 0 0
0 AtPt(θ

′) cosφ′ ApPp(θ
′) sin φ′

˛

˛

˛

˛

˛

˛

1

A

= n ×
„r

ǫ

µ

«

`

−ApPp(θ′) sinφ′aθ′ + AtPt(θ
′) cosφ′aφ′

´

=
1

m(θ′)

r

ǫ

µ

˛

˛

˛

˛

˛

˛

aR aθ aφ
(1 + e cos θ′) −e sin θ′ 0

0 −ApPp(θ′) sin φ′ AtPt(θ
′) cosφ′

˛

˛

˛

˛

˛

˛

=
−1

m(θ′)

r

ǫ

µ
(e sin θ′AtPt cosφ

′aR + AtPt cosφ
′(1 + e cos θ′)aθ

+ ApPp(1 + e cos θ′) sinφ′aφ)

(D.5)

As no aR component the equation simplifies to:

[n × Hi]Trans =
−1

m(θ′)

r

ǫ

µ
(AtPt(θ

′) cosφ′(1 + e cos θ′)aθ

+ ApPp(θ
′)(1 + e cos θ′) sinφ′aφ)

(D.6)

Substituting equation D.6 into equation D.1:

Es(θ, φ) =
−jwµ
2πR

e−jkR
Z

S

` −1

m(θ′)

r

ǫ

µ
(AtPt(θ

′) cosφ′(1 + e cos θ′)aθ

+ ApPp(θ
′)(1 + e cos θ′) sinφ′aφ)e

kρ(θ′)aρ·aRdS

(D.7)
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From inspectionaρ · aR = cos(θ − θ′) cos(φ′ − φ) anddS is:

dS =
−ρ(θ′)2 sin θ′m(θ′)dθ′dφ′

1 + e cos θ′
(D.8)

Therefore:

Es(θ, φ) =
−jw√ǫµ

2πR
e−jkR

Z π

θ0

Z 2π

0

`

AtPt(θ
′) cosφ′aθ

+ ApPp(θ
′) sinφ′aφ

´

ρ2(θ′) sin θ′

× ekρ(θ
′) cos(θ−θ′) cos(φ′

−φ)dφ′dθ

(D.9)

Splitting into Components:

aθ · Es =
−jw√ǫµ

2πR
e−jkR

Z π

θ0

AtPt(θ
′)ρ2(θ′) sin θ′

Z 2π

0

`

cosφ′ekρ(θ
′) cos(θ−θ′) cos(φ′

−φ)dφ′dθ′
(D.10)

aφ · Es =
−jw√ǫµ

2πR
e−jkR

Z π

θ0

ApPp(θ
′)ρ2(θ′) sin θ′

Z 2π

0

sinφ′ekρ(θ
′) cos(θ−θ′) cos(φ′

−φ)dφ′dθ

(D.11)

It is possible to simplify thedφ′ integral using the expansion:

ejψ cos(φ′
−φ) = Jo(ψ) + 2

∞
X

n=1

(j)nJn(ψ) cosn(φ′ − φ) (D.12)

WhereJm is an mth order Bessel function. Consider only thedφ′ integral of equation D.10 and substituting
D.12, whereψ = kρ(θ′) cos(θ′ − θ):

Z 2π

0

cosφ′ekρ(θ
′) cos(θ−θ′) cos(φ′

−φ)dφ′

=

Z 2π

0

`

cosφ′
ˆ

Jo(ψ) + 2
∞
X

n=1

(j)nJn(ψ) cosn(φ′ − φ)
˜´

dφ′

= Jo(ψ)

Z 2π

0

cosφ′dφ′ + 2
∞
X

n=1

(j)nJn(ψ)

×
Z 2π

0

cosφ′ cosn(φ′ − φ)dφ′

= 0 + 2
∞
X

n=1

(j)nJn(ψ)

Z 2π

0

`

cosφ′ cosnφ′ cosnφ+ cos φ′ sinnφ′ sinnφ
´

dφ′

The case wheren = 1 must be considered separately as it is underfined in the standard integral solution and
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thus:

= 2jJ1(ψ)

Z 2π

0

`

cos2 φ′ cosφ+ cos φ′ sinφ′ sinφ
´

dφ′

+ 2
∞
X

n=2

(j)nJn(ψ)

Z 2π

0

`

cosφ′ cosnφ′ cosnφ+ cos φ′ sinnφ′ sinnφ
´

dφ′

= 2jJ1(ψ) cosφ

Z 2π

0

cos2 φ′dφ′ + 2jJ1(ψ) sinφ

Z 2π

0

cosφ′ sinφ′ sinφdφ′

+ 2
∞
X

n=2

(j)nJn(ψ)

„

cosnφ

»

sin(1 − n)φ′

2(1 − n)
+

sin(1 + n)φ′

2(1 + n)

–2π

0

+ sinnφ

»

− cos(n− 1)φ′

2(n− 1)
− cos(1 + n)φ′

2(1 + n)

–2π

0

«

= 2jJ1(ψ) cosφπ + 2jJ1(ψ) sinφ

»

sin2 φ′

2

–2π

0

= 2πjJ1(ψ) cosφ

(D.13)

Similarly for equation D.11
Z 2π

0

sin φ′ekρ(θ
′) cos(θ−θ′) cos(φ′

−φ)dφ′ = 2πjJ1(ψ) sinφ (D.14)

Thus the integral simplifies to:

aθ · Es =
w
√
ǫµ

R
e−jkR cosφ

Z π

θ0

AtPt(θ
′)ρ2(θ′) sin θ′J1(ψ)dθ′ (D.15)

aφ · Es =
w
√
ǫµ

R
e−jkR sin φ

Z π

θ0

ApPp(θ
′)ρ2(θ′) sin θ′J1(ψ)dθ′ (D.16)

D.3 Conclusions

The derived field equations differ from those derived byRusch[2] as they apply, specifically, for a potter horn
feed case. Consequently they can be applied directly to the Hartebeesthoek Radio Astronomy Observatory’s
(HartRAO) 2.5 cm receiver system.
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Appendix E

Reference Antenna Mounting

E.1 Introduction

Geostationary satellites orbit around the equator, an observer located on the equator could set up a
polar mounted antenna to rotate in a single dimension and simplify source location. Observer latitude
changes cause this straight line to be bent. By altering the angle of the hour angle mounted pole
away from the usual latitude this arc can be flattened such that the observer can (if the antenna beam
width is wide enough and the latitude is small enough) reducesearching to the simpler single dimension case.

Rs

Rg

Re

ϕ

Figure E.1: Geometry of antenna and satellite showing the radius of the earthRE, the radius of the satellite

orbit RS and its height above the observerRg

E.2 Calculation

Firstly the look angles are calculated. The observer is located in spherical coordinates given by longitude
λ,latitudeϕ and distance from the centre of the earthRE . The Cartesian coordinates are calculated as:
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XA = RE cos λ cosϕ

YA = RE sinλ cosϕ

ZA = RE sinϕ

(E.1)

The satellite look angles (in hour angleα and declinationδ) are calculated using the geometry shown in
figure E.1. Satellite longitudeλS and its distance from the earths centreRS (for geostationary satellites are
(RE + 35850) Km). The longitude is 0.

α = − arctan

 

RS sin(λS − λ)

RS cos(λS − λ) −
p

X2
A + Y 2

A

!

(E.2)

δ = − arctan

0

@

ZA
q

R2
S +X2

A + Y 2
A − 2RS

p

X2
A + Y 2

A cos(λS − λ)

1

A (E.3)

For HartRAO, located at the longitudeλ = +27 41′ 07”.107 and latitudeϕ = −25 53′ 23”.1246 and a
distanceRE = 6375.5 km from the earth’s centre,(XA, YA, ZA)km = (5085.442, 2668.263,−2768.697).
The calculated(α, δ) is plotted in figure E.2.

The affect on the look angles caused by rotating the antenna axis is calculated by rotating the unit

-80 -60 -40 -20 0 20 40 60 80
Hour Angle [deg]

3.8

3.9

4

4.1

4.2

4.3

4.4

D
ec

lin
at

io
n 

[d
eg

]

Figure E.2: Hour angle and declination satellite look angles calculated for the HartRAO telescope located at

(RE, λ, ϕ) = (6375.5E3, 27.685,−25.890)

vector matrix(X,Y,Z) to (X ′, Y ′, Z′) below. The standard rotational matrices are used [1]. The antenna
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Figure E.3: Satellite look angles with tilted antenna

is tilted by an angle∆ϕ, so the coordinate system is rotated byϕR = ϕ+ ∆ϕ from the horizontal.
2
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(E.4)

Substituting in(X,Y,Z),

X ′ = − cos δ cosα sinϕR + sinϕR cosϕR

Y ′ = − cos δ sinα

Z′ = cos δ cosα cosϕR + sin δ sinϕR

(E.5)

The solution of the optimal tilted angle is calculated numerical and for HartRAO the optimal value is0.554◦

and the resulting look angles are plotted in figure E.3, the range of declination is reduced to 32 arc-seconds.
For a standard satellite tracking antenna of half power beamwidth (HPBW) greater than1◦ this allows for
the antenna to be fixed at a single declination and track for satellites.

The rotated Azimuth and Elevation angles can be calculated using the standard calculation,

El = arctan
Z′

√
X ′2 + Y ′2

(E.6)

Az = arctan
Y ′

X ′
(E.7)

The (Az,El) look angles are plotted in figure E.4. (It is clear that(Az,El) antennas cannot be configure
in this way and this method is limited to(α, δ) antennas).
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Figure E.4: Azimuth and elevation satellite look angles from HartRAO for tilted and standard axes.

E.3 Conclusions

By modifying the mount of the reference dish, for the HartRAOcase, searching for geostationary satellites
can be reduced to a single dimensional (and far simpler) case. The mathematics presented is general and can
be applied with minor adjustment to any latitude. The methodis constrained to a region (determined by the
reference dish’s HPBW) around the equator.
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