Applications of Small Molecule Crystallography

ይ

by

David Gordon Billing

On B

A thesis submitted in the Faculty of Science, University of the Witwatersrand, Johannesburg, for the Degree of Doctor of Philosophy.

February, 1995

65

 C^{1}

Abstract

K

A detailed knowledge and understanding of the three-dimensional structure of molecules is important in many branches of chemistry. The majority of this is obtained via the results of small molecule crystallographic analyses. The application of the techniques and methods of small molecule X-ray crystallography is however not straight forward. Many systematic as well as random factors could affect the collection of the necessary diffraction data. The subsequent derivation of the crystal structure from the diffraction data is also not always obvicus and without problems.

In this thesis, the results obtained from the successful refinement of 19 crystal structures are presented. These structure determinations, in addition to them contributing to the general body of known crystal structures, were undertaken for a number of chemically important reasons. These included an investigation into the nature of some chemical bonds, the conformational preferences of some molecules, hydrogen bonding in crystals of triglycine sulphate, as well as the identification and characterisation of some reaction products.

Also, because of the advantages obtained from performing the crystallographic at low temperatures, a previously unreliable cryostat was significantly modified and tested. The modified cryostat proved to be far more reliable, as well as stable and easier to use.

Declaration

I devilare that this thesis is my own, unalded work. It is being submitted for the degree of Doctor of Philosophy in the Faculty of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted for any degree or examination in any other University of Institution.

•*-E*]

:0

David Gordon Billing February, 1995

Acknowledgements

• () ∗

-526

I am grateful to my supervisor, Prof. J.C.A. Boeyens, for his support and guidance during the course of this project, and for the engless patience and advice that was needed during the preparation of this manuscript.

Ø

I would also like to express my gratitude towards the following people:

Prof. D.H. Reid for providing me with the heterapentalene crystals and his interest in my work.

Johan du Toit for his support, useful insights and discussions shared over numerous cups of coffee, as well as for proof-reading parts of this manuscript

My wife Caren, for her help and support throughout all this.

Gordon Donald Billing.

3

ſ,

Ð

-55

1the

s a Da

8<u>9</u>9

0.

ιţη ο

 α

Publications

2.

З.

The following publications have resulted from some of the work presented in this thesis as well as from related work.

- 1. The structure and conformation of 1,1'-Bipyrrolidene-2,2'dithione. J.P.Michael, D.G.Billing, J.C.A.Boeyens, L.Carlton, L.Denner, I.Hindmarch. J.Mol.Struc.,238,(1990),391-401.
 - Conformational analysis of rotational barriers n N-Arylpyrrolidin-2-ones. D.G.Bilijkig, J.C.A.Boeyens, L.Denner, K.du Plooy, G.C.Long, J.P.Michael, Acta Cryst., (1991), **B47**, 284-288.
 - Structure of 6⁽⁷-Dihydro-2-phen-1-5h-2aλ⁴-thia-3-selena-1,2-diaze cyclopent-[cd]indene. D.G.Billing, D.C.Levendis, D.H.Reid.
 - Acta Cryst.,(1991), C47, 759 764.
 - The structure of uns-cis-mer(Pyt)dene-2-carboxylato-N,D)(ethylenediamine diacetato- N,N',O,O')cobatt(III). D.G.Billing, S.M.Dobson, G.Pattrick, L.Carlton. Acta Cryst.,(1991), C47,1964 1966.
- Comparison of the NMR coupling paths in leucodrin and conocarpin by low temperature X-ray analysis.
 D.G.Billing, J.C.A.Boeyens, L.Carlton, D.C.Lévendis, G.W.Peroid.
 J. Chem. Soc. Perkin Trans. 2, (1991) 695-700.

C

Control of metal ion size-based selectivity through the structure of the oxygen donor pendant groups on Lariat ethers. A crystallographic and thermodynamic study.

K.V.Damu, R.D.Hancock, P.W.Wade, J.C.A.Boeyens, D.G.Billing and S.M.Dobson.

J. Chem. Soc. Dalton Trans. (1991), 293.

<u>8/</u>

√7.

8.

9.

10.

Structure of 2,3-Dicyclohexyl-6,7-dihydro-5H-2aλ⁴-thia-2,8,4a,7a-tetraazacyclopent[co]indene-1(2H),4(2H)-diselone. D.G.Billing, J.C.A.Boeyens, L.Denner, M.D.Hellyar, L.Le, A.J.Matthee and D.H.Reid.

Acta Crych (C) (1991), C47, 2564-2567.,

Structured and stability of some complexes of Lariat others with sterically hindered pyridyl groups as pendent donors K.V.Damu, R.D.Hancock, J.C.A.Boeyens, D.G.Billing and S.M.Dobson. S.A.J. of Chem.,(1991), 44, 65-70.

Crystallographic study of N-arylpyrrolidin-2-ones. D.G.Billing, J.C.A.Boeyens, D.C.Levendis and J.P.Michael. S.A.J. of Chem..(1991), 44, 75-79.

Metal Dimer Chemistry: Me₃NO induced substitution reactions of $(\eta^{3}-C_{s}H_{s})MoMn(CO)_{s}$. X-ray structure determinations of $(\eta^{3}-C_{s}H_{s})MoMn(CO)_{s}$.

Varie L. Ingham, David G. Billing, Demetricia C. Levendis and Neil J. Coville.

inorg/ Chem. Acta. (1991), 187, 17-21.

Novel production of 3-Benzoyl-2,1-benzisoxazoles from

2-Phenyl-4(1H)-quinolinones.

B. Staskun, T. van Es, D.G. Billing and J.C.A. Bosyens.

J. Chem. Soc. Chem. Comm., (1991), 927.

Is the metal-metal bond length in MnRe(CO)₁₀ anomalous? The X-ray structure determination of MnRe(CO)₉L (L = 'BuNC, P(CH₂C₈H₆)₃) and MnRe(CO)₈(CN(Bu')(PPh₃).

viii -

A.E. Leins, D.G. Billing, D.C. Levendis, J. du Toit and N.J. Coville. Inorg. Chem., (1992), 31, 4756 - 4761.

Structures of 2,3-Diethyl-6,7-dihydro-5H-2aλ*-selena-2,3,4a 2-tetraazacyclopent[cc]indene-1(2H),4(2H)-diselone and 1,4-Bisethylimino-5,6-dihydro- 2,2e.4,3-triselena-4a,6a-diazacyclopenta[co]pentalene. D.G Billing, E.E Ferg, L. Laï, D.C. Levendis and D.H Reid. Asta Cryst. C, (1993), C49,

Structure of 5,10-Dihydro-3-phonylimino-1,2,4-Thiaselenazolo[4,5-b][2,4]
 benzo diazepine.
 D.G. Billing, J.C.A. Boeyens, W. Haag, L.L. Lai and D.H. Reid.

Acta Cryst. C, (1998), C49, 1781-1782

- Crystal and Molycular structure of 6-exo-methyl-6-endo-nity-2-exo-phenylbicyclo[2.2.1]heptan-2-endo-ol
 J.P. Michael, D.G. Billing and T.L. Maqutu
 - J. Chem. Crystall., (1994), 24, 309-312
- 16. Crystal structure of 2,3-Diethyl-5,6,7,8-tetrahydro-2aλ⁴-thia-2,3,4a,8a-tetraazacyclopent[*co*]azulene-1(2*H*),4(3*H*)-diselone.
 D.G. Billing, J.C.A. Boeyens, L.L. Lai and D.H. Reid.
 Acta Cryst. C, (1994), (in press)

12.

13.

Q.

D

 17. Crystal structure of 5,6,7,8 - Tetrahydro - 2,3-diphenyl - 2sλ⁴- this - 2,3,4s, Ba-tetraazacyclopent[co]azulene -1[2H],4[3H] - diselone.
 D.G. Billing, J.C.A. Boeyens, L.L. Lai and D.H. Reid.
 Acta Cryst. C, (1994), (in pless)

ΪX

- 3,5-Diphenyl-2,2'-pyridylamino-1-thia-6,6aλ⁴-diselenaperitalene.
 D.G. Billing, D.C. Levendis, D.H. Reid and B.G. Rose
 Acta Cryst. C, (1994), (accepted for publication)
- 19. 5-thylaming-3-p-tolyl-1λ⁴,2,4-thia-selenazol-1-ylium Bromide.
 D.G. Billing, J.C.A. Boeyens, L.L. Lai and D.H. Reid.
 Acta Cryst. C, (1994), (submitted for publication)

Contents

Abstract

Declaration

Acknowledgements

Dedication

Publications

Contents

List of Computer programs used

Chapter

2

// Introduction

Crystal structure determination

2.1 Introduction

2.2 Crystal growth

2.3 Specimen selection and preparation

Dece

ij.

ili.

İ٧

. Xili 🌱

15

17

18

20

24

25 °

28

131

33

35

37

38

40

2.4 Crystal mounting

2.5 Data collection

2.6 Data reduction

2.7 Structure solution

2.8 Structure refinement

2.9 Geometrical parameters

2.10 Graphical representation of structures

Cryostat design, construction and testing

3

Ð

3.1 Introduction

3.2 Modification concepts and criteria

Q

3.3 Prototype construction

3.4 Discussion and conclusion

The	metal-	metal	bond length	n in MnRe	e dimers 🐭
		•	ч,		

4.1 Introduction

4.2 Crystallographic analysis.

- 4.3 Results and Discussion.
- Bonding in Heterapentalene type compound 5.1 Introduction 5.2 Crystal structure of 5,6-Dihydro-1,4-bis-p-tolylimino-2a2*-thia-2,3,diselena-4a,6a-diazacyclopent[cd]pentalene. 5.3 Gystal structure of 3,5-Diphenyl-2,2'-pyridyla ino-1-thia-6,6aλ⁴-disetenapentalene. 5.4 Crystal structure of N-Phenyl-2-(5-phenyl-3H-1,2-diselenol-3ylidine)acetamide. 5.5 Crystal structure of 1,4-Bis(ethylimino)-5,6-dihydro-2,2a14,3 Triselona-4a,Ca-diazacyclopenta[cdloentalene. 5.6 Crystal structure of 2,3-Diethyl-6,7-dihydro-5H-2e14-selena-2(3,4a,7a-tetraazecyclopent[co]indene-1(2/J),4(3/J)-diselone. 5.7 Crystal structure of 5-p-Methoxyphenyl-2-p-methoxyphenylimino-3,2-phonyl-1,6,6a24-triselenagentalenea 5.8 Crystal structure of 1,4-Bis-p-etripx phenylimino-5,6-dihydro-2,3-dithia-2a%-selena-4a,6a-diazacyclopenta[co]pentalene. 5.9 Crystal structure of 2,3-Diethyl-5,6,7,8-tetrahydro-2a1*-thia- @ 2,3,4a,8a/tetraazacyclopent[cd]azulene-1(2H),4(3H)-diselone. 86 5.10 Crystal structure of 5,5,7,8-Tetrahydro-2,3-diphenyl-2ax4-thia-2;3,4a,8a-tetraazacyclopent[cd]azulene-1(2H),4(3H)-disclone. 5.11 Crystal structure of 6,7-Dihydro-2-phenyi-5H-2a¹-thia-3selena-1,2-diazacyclopent[co]indene
 - 5.12 Discussion.

 $\gamma_{i}(z_{i})$

99

95

90

57

55

60

65

69

73

77

Conformation preferences in single ortho, N-substituted acetanilide derivatives.

XÜ

108

115

) 129

133

°135

136

139

Ĵj

- X-ray Diffraction study of TGS.
- 8 The crystal structure of 5-Ethylamino-3-p-tolyl-1λ⁴,2,4-thiaselenazol- 1-ylium Bromide.
- The crystal structure of 3-Benzoyl-5-methyl-2,1-benzisoxazole.

Ş}-

10 Concluding discussion.

Bibliography

6

7

References

Appendix

List of computer programs used.

The following computer programs were used during the course of the work

CAD4 - Diffractometer control program by Enraf Nonius PROFIT - Data reduction program, including profile fitting (Strei'tsov *et al*; 1989) SHELXS86 - Structure solution program (Sheldrick; 1985) SHELXL93 - Structure refinement program (Sheldrick; 1993) XTAL 3.2 - Suite of programs (Hall *et al*; 1992)

😞 in particular the following routines were used:

ABSCAL - Scale diffractometer data for psi-scan absorption.

ABSORB -Apply Gaussian, an lytical and spheribal absorption corrections. ADDATM-- Load atom parameters to binary file.

ADDREF - Place and reduce refliction data onto binary file, ATABLE - Prepare table of atomic parameters for publication BONDLA - Calculate bond lengths and angles.

CONTRS - Contour Fourier maps.

6

QRYLSQ - Refine atomic paraceturs by least-squares.

Ch SAT - Process CAD4 Nicolet and other diffractometer tapes FC - Calculate structure factors.

FOURR - Map Prever-Lipson and Fast Fourier transform.

LATCON - Refine lattice constants from two theta values.

ORTEP - Calculate thermal ellipsoid data for plotting.

PIG - Display and manipulate molecular coordinates.

FIX)TX - Apply plot commands for specific graphics devices.

\$LANT - Interpolate slanted map from FOURR map.

SORTRF - Sort and merge reflection data on F, F² and I.

STARTX - Create and update binary data file with cell and symmetry data.

Ş

C

NRCVAX - Suite of programs (Gabe et al. 1989) SCHAKAL - Produces graphical representations of molecules. (Keller; 1988) The Cambridge Crystallographic Database.

CHAPTER 1

75

From the time when it was first postulated that atoms could interact with each other to form molecules, chemists have been interested in the nature and properties of these atomic aggregates. It was soon realised that some knowledge of the structures of these molecules would be central in the understanding of their properties. As chemists knowledge and understanding grew, their concept of a molecular structure also evolved. From where it was little more than an enumeration of the ratios of the various elements in the structure, to a point where it also includes information about the connectivity between these atoms, and their relative positions in three dimensional space. Today the fundamental laws governing molecular structures are still far from well understood and is the source of much speculation and research in many branches of chemistry. This, however, has not prevented chemists from using structural information, with great success when, for example, designing synthetic routes to new products, investigating the properties of materials or when studying the reactions of melecules.

There are many techniques available that can be used to obtain structur. Information about a molecule of interest. Most of these are based on the interaction of electromagnetic radiation with a sample containing the molecule. So, for example, techniques such as infrared spectroscopy, ultraviolet and visible spectroscopy as well as nuclear magnetic resonance spectroscopy are based on the absorption of electromagnetic radiation by the molecule under investigation. Such techniques can generally be used to obtain information concerning the atomic connectivity and functional groups present in the molecule. The appeal of these methods lie therein that they are relatively easy to use and that liquids and solutions can be used as samples.

To obtain detailed structural information, including interatomic distances and stereochemical data, it is necessary to use one of the diffraction-based techniques. Of these, single-crystal X-ray diffraction has assumed a leading position, mainly

because of the affordability and hence availability of equipment. In this technique a single crystal is exposed to a monochromatic beam of x-rays, and the angular distribution and intensities of the diffracted beams are recorded. From these the electron density distribution in the crystal may be determined and hence the positions of atoms inferred.

Because of the internal regularity of crystals, X-rays are diffracted by the crystal lettice according to the equation:

$2d_{hkl} \sin \theta_{hkl} = n\lambda$

which is known as Bracg's law. X-rays are diffracted by a set of crystal plane's when and only when this equation is satisfied. The diffracted beam then appears to have been reflected from the *hkl* lattice planes. Each diffracted beam is identified by the Miller indices of the set of parallel planes causing the reflection *hkl*. The wave scattered by the contents of the unit cell in the direction of the *hkl* reflection is described in amplitude and phase by the structure factor, $F_{0,n}$. This may be derived by noting that the reliation acattered by one atom will interfere constructively and therefore the scattering from the entire crystal will depend on where each atom lies in the unit cell. The structure factor is then given by:

$F_{hkl} = F_{hkl} \exp(i\alpha_{hkl}) = \sum i_j \exp[2\pi (hkl + |y_j + |z_j)]$

where ρ_{nu} and F_{nu} are the phase and amplitude, respectively, of the diffracted beam. The sum is over all atoms in the unit cell and *i*, is the scattering factor of the *j*-th atom at the value of sin0/ λ corresponding to the Bragg reflection *bkl*. The positional coordinates of the atoms, *x*, *y*, and *z*, are expressed as the fractions of the unit cell edges. Thus if the atomic positions are known, then F_{th} can be calculated and so can the phase angle σ_{th} It is important to realize that each atom in the unit cell (and hence in the systel) contributes to the intensity of each reflection by an amount that depends on its position in the unit cell, its scattering power and, to a lesser extent, the scattering angle. Thus each F_{hel} contains information about the entire crystal structure.

The electron density in a crystal is normally (epresented by means of a three-dimensional map of the electron-density function, p(xyz), calculated by Fourier synthesis at various points in the unit cell. Fourier summation methods are used because the electron density within a crystal is a triply periodic function and hence can be expressed by the triple summation of appropriately phased waves. Thus it is the simulation of the action, of a lens and is a summation of waves of known amplitude F_{hd} and phase α_{hdt} . The electron-density distribution is given by the following equation:

$$\rho(xyz) = \frac{1}{V} \sum_{\substack{i \neq j \\ i \neq i}} \mathbf{F}_{hkl} \exp \left[-2\pi i (hx + ky + lz)\right]$$

where V is the volume of the unit cell. This equation can also be written in the from :

$$\rho(xyz) = \frac{1}{V} \sum_{nkl} F_{nkl} \cos[2\pi(hx + ky + lz) - \alpha_{nkl}]$$

where the amplitudes, F_{hkh} and the phases, α_{hkh} of the diffracted beams appear explicitly. Note that while the structure amplitudes are directly accessible by experiment, the phase angles are not; they have to be obtained in some way if we wish to calculate the electron-density map.

Since the electron-density function may be expressed as a Fourier series with the structure factors as coefficients, the structure factors may also be expressed in terms of the electron density. Thus the structure factor, F_{hkr} is the fourier transform of the electron density $\rho(xyz)$:

$$\mathbf{F}_{hkl} = \int_{\mathcal{O}} \rho(xyz) \exp(i\phi) \, dV$$

- 17

(where ϕ is $2\pi(hx + ky + lz)$), and the electron density is the inverse Fourier transform of the structure factor:

$$\rho(XYZ) = \frac{1}{V} \sum_{hkl} F_{hkl} \Theta X P(-i\phi)^*$$

In this last equation a triple summation is used because $/\!\!/F_{MM}$ is only observed at discrete points. Thus the intensity of a Bragg reflection is proportional to the value at that reciprocal-lattice point, *hkl*, of the square of the Fourier transform of the electron density.

So far only the kinetic theory of X-ray diffraction has been considered. That is, only the interference effects between the elementary waves scattered within the volume of the crystal have been considered. In fact, this theory neglects two important phenomena. Firstly, when the incident wave propagates through the crystal its intensity decreases gradually because a part of its energy is transferred to the scattered beam. And secondly, the diffracted waves interfere with each other and with the incident beam. The theory which takes all these phenomena into account and analyses the wave-field set up as a whole is called the dynamic theory of diffraction. It was initiated by Ewald, and later on Laue showed that Ewald's theory is equivalent to analysing the propagation of any electromagnetic field through a modium having a periodically varying complex dielectric constant.

Dynamic effects develop gradually in a crystal, and it may be shown that for sufficiently small thicknesses the incident beam is not weakened considerably. The diffracted waves are not so strong as to give rise to remarkable interference effects with the incident beam and the effects of absorption are negligible. Under the nese conditions (theoretically, thicknesses <10⁻³ - 10⁻⁴ cm) the kinematic theory is a fairly accurate approximation to dynamic theory. In practice however, the corresponding equations proved to be valid even for crystals having dimensions of several tenths of a millimeter. This is due to the structure of real crystals.

A simplified model of a real crystal was proposed by Darwin (1914 &1922) when he showed that it can be ideally schematised like a mosaic of crystalline blocks with dimensions of about 10⁻⁵ cm, tilted very slightly to each other at angles of the order of fractions of a minute of arc. Each block is separated by faults and cracks from other blocks. The interference between waves only occurs inside every single block, whose dimensions satisfy the theoretical conditions of applicability of the kinematic theory. Because of the loss of coherence between the waves diffracted from different blocks, the diffracted intensity from the whole crystal is equal to the sum over the intensities diffracted from every single block.

A great advantage of the X-ray method is its ability to show some totally unexpected and surprising structures with complete certainty.

The detailed structure, that is obtained from an X-ray structure analysis, is important to chemists because it provides the chemist with the following information about the molecule:

- The atomic connectivity
- Interatomic distances (such as bond lengths)
- Conformational information
- Stereochemical data

 \mathcal{O}

- Information about non-bonded interaction (such as hydrogen bonding).
- Information concerning the motion of atoms in the crystal

In some cases where exceptional care was taken during the collection of the diffraction data, it is also possible to obtain reliable electron density information. This information is of great use in theoretical studies concerning bonding and molecular shape.

In this project, a number of compounds were studied by X-ray crystallographic methods. These structures were then used to answer questions relating to :

i. The metal-metal bond length in Mn-Re dimers.

ii. Bonding in heterapentalenes.

Conformational preferences in single -ortho, N-substituted acetanilide derivatives. iv. Hydrogen bonding in Triglycine Sulfate.

Ð

Reaction product identification and characterisation.

In most cases, the structures could be solved by routine structure determination techniques. For the purposes of this project, this is considered to involve the solution of a structure not influenced by disorder or any other systematic problem. In a number of cases, however, these routine methods failed to give data reliable enough to answer the questions at hand. In these cases it was generally possible to improve the accuracy and precision of the experiment in order to obtain the information at the desired accuracy. This was done by reducing the effects of some of the known systematic errors. The systematic effects encountered in this project and the methods by which they were minimised are listed in Table 1.1.

Systematic problem	Possible actions		
Absorption	1 smaller crystal 2 empirical absorption corrections 3. Apply analytical absorption correction		
Crystal [#] decay	1. Apply linear decay correction 2. Apply non-linear absorption correction 3. Perform study at low temperature		
Extinction	Consider during refinement		
Thermal diffuse scattering	Perform study at low temperature		
Disorder	1. include disorder model in refinement 2. Perform study at low temperature		

When the diffraction experiment is performed at low temperature, the X-ray diffraction pattern obtained from crystalline matter would change. The extent of the changes depends on the crystal under investigation as well as the temperature range through which cooling has taken place. A small change in temperature could lead to hardly any discernible change in the diffraction pattern, unless the crystal undergoes a phase change. In this case the diffraction pattern could change dramatically, depending on the nature of the phase change that takes place. Thus, for example a disorder-order phase transition could result in diffuse layer lines in the diffraction pattern resolving into sharp reflections. This and other types of phase transition could also be associated with changes in the unit cell, which on its own has a dramatic effect on the spatial distribution of reflections.

On the other hand, if a crystal does not undergo a phase change on cooling, the changes in the diffraction pattern are more subtle, even for large changes in temperature. Firstly, the unit cell of the crystal will undergo a slight reduction in size due to thermal contraction. This would cause a slight spreading out of the reflections in the diffraction pattern. One must also bear in mind that the structure factor expression as written previously refers to atoms at rest, with f_j corresponding to a stationary atomic model. The thermal motion of an atom can be taken into account if the scattering factor for the stationary atom is replaced by the scattering factor a vibrating atom, f', which has the form:

$$f' = f \exp\left[\frac{-B \sin^2 \theta}{\lambda^2}\right]$$

The quantity B, known as the Debye-Waller factor, is related to the atomic vibration by:

$$B=8\pi^2 u^2$$

where u is the rept-mean-square amplitude of atomic vibration. The effect of the additional factor in the struture factor expression, is to cause an increased fall-off of intensity with respect to sin $0 + \lambda$.

Thus on cooling, high order reflections show the most obvious changes, in the sense that they become more intense. More importantly, they become measurable. Therefore the number of measured reflections included in a data set increases significantly. This results in better, more precise structure refinements, including improved figures of merit.

With this in mind and because of problems encountered with the cryostat used in previous projects, a computer controlled cryostat was also designed and built. It was then tested by collecting the low temperature data used in this project.

Table 2 lists the structures determined during the course of this project, and is fairly representative of the type of structures amenable to study by small molecule X-ray diffraction methods.

Ø

" "

d

a

. 10

° ™ 0 ×

CHAPTER 2

Crystal Structure Determination

2.1 Introduction

The object of a crystal structure determination is to identify and locate the positions of all the atoms within the unit cell, and thus, to completely define the structure of the crystal. For X-ray diffraction methods this can be accomplished because of the Fourier relationship which exists between the electron density distribution within the unit cell and the intensities of the X-ray beams diffracted by the crystal. The positions of atoms are then assumed to correspond to the centres of ovoids of charge. To accomplish this in practice it is necessary for a number of distinct stages to be completed successfully. And as these stages are to be completed in sequence of it is important that as few errors as possible be introduced at each stage. Figure 2.1 shows the sequence of events that comprises the average modern X-ray structure determination. The principal steps being:

- Crystal growth
- Specimen selection and preparation
- Crystal mounting
- Data collection
- Structure solution
- Structure refinement
- Calculation of geometrical parameters
- Graphical representation of the structure

In the remainder of this chapter each of these steps will be discussed briefly.

° O

ß

2.2 Crystal growth

It is obvious that suitable crystals should be available before the crystal structure of a material can be determined. Unfortunately, because of the quality and the size of the crystals needed, it is often neccessary for crystals to be grown specially for the diffractic? analysis. In general the growth should be slow so that a regular arrangement of molecules or ions, leading to a well-formed crystal, may be obtained. The aim is to reach a point at which the soluton is just saturated and then to slowly lower the saturation point while limiting the rate of nucleation, so that only a few crystals can grow to a relatively large size.

15

The method most frequently employed is slow evaporation, which unfortunately often deposits crystals as a microcrystalline crust on the walls of the container just at the surface of the solution. As the solvant evaporates, the solution recedes, leaving the crust in a position where it is not effective in inducing good crystal growth. Futhermore, it is so difficult to control the evaporation from small volumes of solution that appreciable amounts of solvent, a few millilitiers, are required.

The second method commonly used is slow cooling. Cooling rates from elevated temperatures for solutions contained in laboratory vessels of ordinary size are often too rapid to produce anything but microscopic crystals. The rate of cooling can be slowed somewhat by placing the vessel containing the solution in a large container of hot water or by surrounding it with sufficient insulating material. The whole process can also be carried out with advantage in a Dewar vessel. Extremely slow rates of cooling can be obtained in a well-insulated and thermostatted oven by reducing the thermostat settings gradually.

If difficulty is experienced in growing satisfactory crystals from single solvents by either of the above methods, mixtures of two or more solvents should be tried. Changing the nature of the solvent often has a pronounced effect on the crystal habit and the size of the crystals grown, since properties that may influence crystal growth, such as density, dielectric constant, viscosity, solvation and solubility, can be varied in a controlled manner over wide ranges.

16

Another method that can often give good single crystals with milligram amounts of solute is by altering the solvent by vapour diffusion as illustrated in Figure 2.2

Figure 2.2: Crystallisation by vapour diffusion

A solution of the substance in solvent S_1 is contained in tube T. A second solvent S_2 , placed in the closed beaker B, is chosen such that it produces with S_1 a mixture in which the solute is less soluble that in S_1 alone. Slow fifusion of S_2 into T (and S_1 out) will cause crystallisation, which under favourable conditions, can result in the growth of relatively large single crystals. If S_2 is more volatile than S_1 , it is possible for the volume of the solution to increase during crystallisation and thus avoid the troublesome crusts that often form when solutions evaporate. In order to obtain good mixing of S, and S₂ as they diffuse together it is helpful that their densities be relatively similar, or, preferably that S, be denser that S₁.

Diffusion in the liquid phase can also be used to grow crystals. Figure 2.3 shows one arrangement that depends on the differences in density to maintain the initial separation between solvents S_1 and S_2 . The solute must always be dissolved in the solvent in which it is more soluble. Crystals appear at the interface between S_1 and S_2 and grow as the solvents mix by diffusion.

Figure 2.3 : Crystallisation by liquid diffusion

Satisfactory crystals can sometimes also be grown from the melt by slow cooling. This method is not amenable to the wide variations in conditions attainable with the methods already outlined, and has only limited application in growing crystals of organic compounds. For certain inorganic substances and metals, however, melting and crystallizing in a zone growth technique is capable of producing very large and pure crystals.

Sy olimation is another method of limited applicability, but one that sometime orks well. If a solid vapourises readily without des imposition, sublimation can be considered as an alternative to other methods. If a gas condenses rapidly as a solid on a relatively cold surface, crystal growth is impaired and only a microcrystalline mass results. However, if sublimation is carried out slowly, so that large crystals grow at the expense of smaller ones, very large crystals may sometimes be obtained.

2.3 Specimen selection and preparation

A crystal whose structure is to be determined must be a single crystal, not cracked or a conglomerate. This may be checked by examining it under a polarizing microscope. If rotated about an axis normal to the polarising material, the crystal should either appear uniformly dark in all positions or be bright and extinguish, that is appear uniformly dark, once every 90°. Crystals made up of two or more fragments with different orientations will often reveal themselves by displaying both dark and light regions at the same time. Choosing a crystal of suitable size is also important. If it is too large it would not be bathed homogeneously by the collimated beam of X-rays. If it is too small on the other hand it would result in difficulties in measuring the diffracted intensities reliably. Another important effect in determining a suitable crystal size is the absorption of x-rays by the crystal, and it can be shown that the optimum thickness is a function of the linear aborption coefficient and is given by:

 $t_{opt} = 2/\mu$

All these phenomena could lead to serious systematic errors in the measured diffraction intensities.

If a crystal is too large it may be possible to cut it with a razor blade or with a solvent coated fibre. Ideally one should try to find a crystal that is, or can be ground into an approximately spherical, shape, as this would minimize absorption effects. Alternatively a crystal with well defined faces should be selected, as these faces can be indexed, measured and used for calculating analytical absorption corrections. However, some crystals are too soft, fragile or sensitive for even delicate cutting and manipulation and must be used in the shape in which they grew.

2.4 Crystal mounting

Ű

Ċ

For preliminary studies as well as the subsequent intensity data collection using a diaractometer, the selected crystal is generally attached to the end of a glass fibre using an adhesive. In cases where the crystal is unstable, the crystal may be put inside a thin-walled capillary (Lindemann tube) and the capillary sealed. An appropriate atmosphere may be maintained within the capillary to ensure stability. The fibre or capillary in turn is fixed into a brass pin using sealing wax. (See figures 2.4 and 2.5). The pin is used for handling the assembly and attaching it to the goniometer head.

Р.

Figure 2.4 : Crystal mounted on glass fibre.

Figure 2.5 : Crystal mounted in glass capillary

These mounts are nowever not suitable for use in low temperature studies. The glues used to bind the crystal to the rod and the different coefficients of expansion of the materials used in these mounts may cause stresses on the crystal. It has been shown (Argoud & Muller; 1989) that these stresses could lead to strong modifications of diffraction intensities. The suggested method for mounting crystals for low temperature studies is illustrated in Figure 2.6, where the crystal is attached to a quartz rod, that had been drawn into a fibre, using a small amount of silicone grease.

£

 \mathcal{O}

\$

2.5 Data collection

75

The collection of crystallographic diffraction data poses two quite different problems. The first is the determination of the geometry of diffraction, from which the size, shape, and symmetry of the direct and reciprocal lattices may be calculated. The second is the assignment of an observed intensity to every point in the reciprocal lattice, which may ultimately be related to the distribution of electrons in the unit cell. Historically photographic methods served both erids, but automated diffractometers have largely replaced them for intensity data collection. Photographs, however, reveal significant portions of the reciprocal lattice simultaneously, making them ideal for confirming the quality of a crystal and for establishing the crystal system and space group of a crystal.

20

In photographic methods a camera containing a piece of film is placed behind or around the crystal, with allowance for entry of the direct beam from the collimator. The cameras used are constructed so that the indexing of the reflections is unambiguous and, with the precession camera, simple. The indices of the diffracted beams and the orders of diffraction may be determined by inspection or by calculation from the positions of the spots on the film. With most cameras, direct recording of the diffracted beams gives dark spots on the photographic film. In recent years Polaroid film has been used for preliminary indexing and space group determination; in this an intensifier (such zinc sulfide) faces the X-ray source and the visible light emitted is recorded on the Polaroid film. Such films give positive images rather than negative ones. The degree of blackness (or whiteness) of a spot depends on the exposure time, on the intensity of the diffracted beam and, to some extent, the conditions of development of the film.

In a diffractometer, the film is replaced by a photon detector and the intensity of a diffracted beam is determined by counting the photons associated with it. Generally such detectors can only measure a single beam at a time, and thus the diffracted beam intensities have to be measured sequentially. This could result in difficulties when collecting diffraction data for crystals which show significant radiation damage.

Diffractometer principles

Most contemporary diffractometers are of the four-circle type and are completely computer controlled. The essential geometry of a four-circle diffractometer is shown in figure 2.7. The incident X-ray beam and the diffracted beam, when orientated for measurement, lie in the horizontal plane which contains the crystal. The crystal can be rotated about three axes and the detector about a fourth axis; all four axes must intersect at the crystal. The crystal is mounted on a goniometer head which is attached to a spindle. The head is provided with centering slides and a height adjustment so that the crystal can be precisely positioned at the intersection of the three axes about which it can be rotated. The spindle, on which the head is mounted, can be rotated about its axis, which is designated the φ -axis, by the controlling computer. The spindle assembly, including the crystal, can be rotated about a perpendicular axis, designated the χ -axis, by rotation of ring B inside the stationary ring A (figure 2.7). This χ -ring together with the spindle assembly and the crystal can be rotated about a vertical axis, designated the φ -axis.

The purpose of the three rotation axes, φ , χ and ω , is to enable the normal to a selected reflecting plane *hkl* to be brought into the horizontal plane, defined by the axes of the collimator C and the detector D, so that it is inclined to the incident beam at an angle of 90° - θ . The detector D, usually a scintillation counter, is mounted on an arm which enables it to be rotated about a vertical axis, designated the 29 axis, coincident with the ω -axis so that it is inclined in the horizontal plane at 2 θ to the forward direction of the incident beam; the detector is then correctly positioned to measure the intensity of the X-ray beam reflected from the selected *hkl* plane. The fact that the crystal can be rotated about three axes, leads to a degree of flexibility in the way in which it can be moved into the reflecting position for any given set of *hkl* planes.

Since the crystal is mounted at random, it is initially necessary to determine the orientation of its reciprocal lattice relative to the fixed reference axes of the diffractometer, X, Y, Z. These reference axes are orthogonal, right-handed, and such that X is directed along the forward direction of the incident X-ray beam while Z is vertical (figure 2.6). If the *hkl* reciprocal lattice vector, d_{hkl}^{*} where $|d_{hkl}^{*}| = \lambda/d_{hkl}$ has coordinates X, Y, Z when the scales of φ , χ and ω are zero, then it is apparent that in order to bring d'his into the reflecting position the rotation on \$ must be tan" X/Y, on χ , sin⁻¹(-Z/d^{*}_{1,kl}), and on ω , sin⁻¹ ½d^{*}_{hkl}, where d^{*}_{hkl} = $\sqrt{X^2 + Y^2 + Z^2}$. In order to be able to calculate these angles for a particular reflection it is necessary to know X, Y, Z for the corresponding reciprocal lattice vector, which implies the necessity to know the orientation of the reciprocal lattice axes relative to the diffractometer reference axes. This can be achieved by searching a predetermined 0 range for reflections and then deducing the orientation of the reciprocal unit-cell from the measured ϕ_1 , χ_2 , and θ of the recorded reflections. If the components of the reciprocal lattice vector a' along the diffractometer reference axes X, Y, Z are a'x, a'y, a'z, the components of b" are b'x, b'y, b'z, and the components of c are c'x, c'y, c'z, then the coordinates X, Y, Z of the hkl reciprocal lattice point are given by the operation of what is known as the UB matrix on the indices hkl

. "C

 $\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} a_X^* \ b_X^* \ c_X^* \\ a_X^* \ b_Y^* \ c_Y^* \\ a_Z^* \ b_Z^* \ c_Z^* \end{bmatrix} \begin{bmatrix} h \\ k \\ i \end{bmatrix}$

Since crystals usually reflect over a small range of θ and since it is the total intensity reaching the detector from a given reflection that is required, the crystal is rotated through the reflecting position about the ∞ -axis at constant speed. For accurate intensity measurements it is important both to set the limits of such a scan correctly for each reflection and to maintain the intensity of the incident beam at a constant magnitude within acceptable limits. The background intensity is estimated from measurements at the limits of the chosen ∞ -scan and subtracted from the peak measurements to yield the *net integrated intensity* of the reflection.

The x-ring permits complete rotation of the crystal about the x-axis, but its construction, involves quite sophisticated engineering, which is expensive, and a moreover, its thickness may inhibit the measurement of diffracted beams as well as restricting rotation on the o-axis by the necessity to avoid collision with the collimator. In the so-called kappa-axis diffractometer an axis designated k is inclined at 50° to the a-axis and can be rotated about the a-axis; the x-axis substitutes for the x-axis of the Eulerian four-circle diffractometer. In the kappa-axis diffractometer the o-axis is mounted on an arm attached to the k-axis so that it can be rotated on a small circle about the k-axis. The whole ok assembly can be rotated about the o-axis. The kappa-axis diffractometer is in its engineering simpler than the Eulerian four-circle diffractometer and has the advantage that the X-ray reflection from any hki plane can be recorded as the plane is rotated through 360° about its normal. Such an azimuthal scan may be utilised for making empirical absorption corrections to intensity measurements. With the Eulerian four-circle diffractometer, azimuthal scans are also possible, but are limited by the necessity to avoid collision of the χ -ring with the collimator and by the obstruction of the diffracted beam by the χ -ring.
Diffractometer practice.

As has already been indicated, most modern diffractometers are computer controlled and many software routines have been implemented to facilitate the tasks of the operator. With these routines the operator, having centered the crystal on the diffractometer, could:

 Search through a region of space and use the reflections to determine an orientation matrix and unit cell.

- Transfrom the cell if necessary.
- Identify reflections to be used as position and intensity controls.
- Set up a procedure for automatically collecting the data.

Qata reduction

Once the net integrated intensity, I_{hkr} of a Bragg reflection has been measured, it must be corrected by some factors that take into account the relative length of time the crystal was in the diffracting position, the extent of polarization of the X-ray beam and the absorption of X-rays by the crystal. This may be done by the following equation :

 $F_{hkl}^2 = I_{hkl}(KLpA)^{-1}$

where F_{hel} is the structure amplitude. The Locentz factor, L, takes into consideration how long each set of lattice planes was in the distracting position, and depends on the technique used for data collection. The polarization factor, p_i^* originates from the fact that the variation of the reflection efficiency of X-rays with the scattering angle depends on the polarization status of the incident beam. The transmission factor, A_i takes into account the reduction of the intensity due to absorption the X-rays by the crystal. It may be computed geometrically from pein lengths P_i intensity of a reflection as the crystal is rotated about the scattering vector.

2.7 Structure solution

From the equation

where V is the cell volume and F_{hkl} the structure factor for a particular set of indices h, k and l, the electron density distribution throughout the unit cell may be obtained, provided that both the magnitudes and the phases of the structure factors are known. As has already been seen the magnitudes of the structure factors may readily be derived from the intensities of the diffracted X-ray beams. Unfortunately the relative phases cannot be determined experimentally, which represents one of the main obstacles that have to be overcome during the course of a structure analysis. This situation as been called the "phase problem" within crystallographic circles.

 $p(x, y, z) \simeq \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F_{hkl} e^{-2\pi i (hx + ky + lz)}$

Therefore a vital aspect of any X-ray structure determination is the determination of a set of phases which corresponds to a trial structure which is chemically meaningful. Some of the main techniques that have been developed with the aim of accomplishing this initial structure solution will now briefly be considered.

Trial and error methods

A tentative atomic arrangement is found in some way and the phase angles are calculated from the coordinates in the model. A number of arrangements can be tested systematically; the correct model is usually identified by comparing the observed and calculated structure amplitudes. This method was the one find originally but is not used much any longer, unless the structure is extremely simplify.

Direct methods

The electron density raise be positive or zero but never negative since electrons are never less than absent. This requirement, together with the information that there are peaks at atomic positions but that elsewhere the map is fairly flat (near zero), implies that there are mathematical constraints on possible phase angles (Karle and Hauptman; 1950). The best set of phases may be found by 'direct methods'. In these methods the phases are chosen to give the least negative electron-density map. The simplest case is that of centrosymmetric structures, where the phase problem reduces to the of determining the sign of each A_{hh} . For example, for three intense reflections with indices *hkl*, *h'k'l'* and *h+h',k+k',i+i'*, the signs of the respective A terms in the structure factor expression are related by the following equation

 \bigcirc

0

26

_____s(hkl) × s(h'k'l') ≈ s(h+h', k+k', l+l') *

where s means 'sign of' (ie. + or -) and \approx means 'probably equal to' and stresses the importance of the probability aspects of these equations. If two of these signs (phases) are known, it is possible to derive the tht d. From such relationships it is often possible to derive phases for almost all intense Bragg reflections. Giace it is these intense Bragg reflections that dominate the electron-density map, it is possible to obtain a good approximation to that map. Analogous methods are used for non- centrosymmetric structures.

For such analyses the structure amplitudes are normalised by emoving the effects of fall-off of scattering with angle so that only the geometric component, E_{hm} is left. Usually only the highest *E* values are used; any intense high-0 reflections are thereby given high weight in the calculations that follow. An malysis of the statistical distribution of the *E* values will indicate whether the structure is centrosymmetric or non-component. The triple products among high *E* values, that is any triplets with indices *hkl*, *h'k'l'*, and *h+h',k+k',l+l'* are found and, after fixing the phases of some origin determining reflections, the signs of as many *E* values as possible are developed from triple products of the type listed above and probability formular. Usually there are several sets that satisfy the truncated data set so used. Often it is possible to identify the correct set on the basis of the probability associated with sign relationships. Otherwise several electron-density maps (computed from *E* values) may have to be calculated and searched for reasonable geometry of peak positions.

Patterson and heavy atom methods

If one or a few atoms in a structure have high atomic numbers and therefore dominate the scattering, the structure determination may be simplified by first finding the positions of these few atoms. The method for doing this is to calculate a *Patterson function* (Patterson; 1934, 1935), which uses the squares of the amplitudes of the diffracted beams and a cosine function

$$P(u, v, w) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F_{hkl}^{2} \cos[2\pi(hu + kv + lw)]$$

ാ

When compared with the equation for the electron density distribution in the unit cell, two main differences become apparent. The structure factors are squared and there are no phase terms in the equation. Thus this equation may be evaluated directly from the experimental data. Peaks in the Patterson map can be shown to represent vectors between atoms; the height of the peak being proportional to the product of the atomic numbers of the two atoms at the ends of the vector. So, a Patterson map for a unit cell containing N atoms will contain about N^2 peaks, however, if one or two atoms have high atomic numbers the vectors between them V we very high and will dominate the map. Therefore, if the space group of a determined.

Isomorphous replacement

Isomorphous compounds are isostructural and capable of forming solid solutions. In the method of isomorphous replacement, differences in intensities from crystals of isostructural compounds differing only in the identity of one atom is measured. The varying atom, usually a heavy atom, is located by Patterson methods, and from this phases may be derived if the structure is centrosymmetric. Otherwise more isomorphs must be studied. This method of solving the phase problem is of great value in protein crystallography (Blundell and Johnson; 1976), but is only occasionally applied to small molecules.

2.8 Structure relinement

In general, just after the structure has been solved, the calculated diffraction pattern does not agree optimally with that obtained experimentally. It is also quite feasible that the trial structure obtained during the solution is not yet complete or contains gome structural anomalies. These situations may be resolved by the use of least-squares refinement and difference Fourier methods.

SR.

In essence, the least-squares process involves the adjusting of a scale factor and the positional and displacement parameters of the atoms in the unit cell so as 1p, obtain the best agreement between the experimental $|F_{\rm o}|$ and the calculated $|F_{\rm o}|$ quantities derived from the structure model. In its most usual application, the technique minimizes the function.

$$R = \sum_{n} w(|F_0| - G|F_0|)^2$$

where the sum is taken over the entire set of crystallographically independent terms f_i , w is the weight for each term, and G is the reciprocal of the scale factor K for $|F_a|$. Let p_i (i = 1, 2, ..., n) be the variables in $|F_a|$ whose values are to be refined. Then

<u>873</u> = 0

$$\sum_{h} w \Delta \frac{\delta(F_{ol})}{\phi_{i}} = 0^{\circ}$$

where Δ is $|F_{o}| - |F_{c}|$. For a trial set of parameters not too different from the correct values Δ is expanded as a Taylor series to the first order:

$$\Delta(\mathbf{p} + \xi) = \Delta(\mathbf{p}) - \sum_{j=1}^{n} \xi_j \frac{\delta|F_c|}{\delta p_j}$$

where the shift ξ_i is the correction to be applied to parameter ρ_p and p and ξ represent the complete sets of variables and corrections. Substituting back leads to the normal equations

$$\sum_{j=1}^{P} \left[\sum_{h}^{\infty} w \frac{\delta |F_{o}|}{\delta p_{j}} \frac{\delta |F_{o}|}{\delta p_{j}} \right] \xi_{j} = \sum_{h}^{\infty} w \Delta \frac{\delta |F_{o}|}{\delta p_{j}}$$

The n normal equations may be expressed neatly in matrix form;

$$A\xi = \mathbf{b} \text{ or } \sum_{i} a_{ij} \xi_{i} = b_{i}$$

where °

$$a_{ij} = \sum_{h} w \frac{\delta |F_o|}{\delta p_i} \frac{\delta |F_o|}{\delta p_j}$$

 $b_j = \sum_{h} w \Delta \frac{\delta |F_{\sigma}|}{\delta p_i}$

and

The normal equations are solved by standard mathematical procedures. It is important to remember that the least-squares procedure provides the best fit for the parameters that have been included into the model. Hence, it is essential to examine the final difference Fourier map at the completion of a least-squares refinement, after several cycles of calculations have led to negligible differences ξ .

If the Fourier series with $|F_o|$ coefficients is represented as $\rho_o(x, y, z)$ and the corresponding synthesis with $|F_o|$ as $\rho_o(x, y, z)$, then the difference-Fourier synthesis $\Delta \rho(x, y, z)$ may be obtained in a single-stage calculation from the equation

$$\Delta \dot{\rho}(x, y, z) = \frac{2}{V_0} \sum_{h} \sum_{k} \sum_{i} (|F_0| - |F_0|) \cos[2\pi(hx + ky + hz)]$$

ag

Since the phases are substantially correct at this stage of the structure determination, it is in effect, a subtraction, point by point, of the 'calculated' or trial

Fourier synthesis from that of the 'observed' or experimentally based synthesis. This map should be featureless, as any peaks or troughs could indicate errors in the structure model used for the refinement.

The agreement between the scaled observed and the calculated structure-factor amplitudes may also be evaluated by means of a reliability factor. An overall reliability factor (R-factor) may be defined as:

$$R = \left(\sum_{hkl} |K|F_0| - |F_0|\right) / \sum_{hkl} K|F_0|$$

For a well-refined structure model, the value of *R* approaches a small value (about 1% at pest) corresponding to the errors in both the experimental data and the model. Another useful index used in structure refinement is the so called 'goodness of fit' where:

S =	$\left[\frac{\sum w(F_0 - F_c)^2}{n - m}\right]^{\frac{1}{2}}$
	اس ت ا

for *n* refinable parameters and *m* observations, *w* is the weight factor associated with each structure amplitude. S is a measure of the degree to which the found distribution of differences between $|F_i|$ and $|F_i|$ fits the distribution expected from the weights used in the refinement. If these weights are correct, which implies that the errors in the data are strictly random and correctly estimated, and if the model properly represents the structure that gives rise to the data, the value of S is 1.0.

The very weak reflections in an X-ray diffraction data set have relatively large errors and those for which the background exceeds the peak will have negative net intensities. They are undefined and cannot, therefore, be used when refining against $|F_0|$. It is customary to eliminate the very weak reflections by use of a threshold, that is, reflections with intensities less than some positive threshold value such as $2\sigma(l)$ are given zero weight. The use of any threshold, however, introduces a bias in the data and is indefensible in principle; it is therefore much better to refine against $|F_0|^2$ so that all data can be included. Accordingly the function

$$R' = \sum_{hkl} w_{hkl} (|F_0|^2 - |kF_0|^2)^2$$

is minimised. This again leads to a set of normal equations as seen before, as well as related reliability factors etc.

When comparing refined structures it is important to note what parameters were used in the refinement as well as the criteria used to evaluate the refinement.

2.9 Geometrical parameters

Following a crystallographic analysis, the atomic positions within the unit oal are normally expressed in terms of vactional coordinates. To interpret and compare molecular structures chemically, it is useful to describe the structure in terms of bond lengths, bond angles, torsion angles etc. Relations used to calculate the geometrical parameters include:

Bond Lengths:

In the triclinic case, the distance between two points in fractional coordinates (x_1, y_1, z_1) and (x_2, y_2, z_2) is given by the law of cosines in three dimension,

 $I \doteq \left\{ (\Delta xa)^2 + (\Delta yb)^2 + (\Delta zc)^2 - 2ab\Delta x \Delta y \cos \gamma \\ - 2ac\Delta x \Delta z \cos \beta - 2bc\Delta y \Delta z \cos \alpha \end{array} \right\}$

where a, b, c, α , β , γ are the unit-cell parameters.

Cond angles:

The angle θ subtended by bonds AB° and AC (Figure 2.8) can be calculated in various ways. If the lengths AB, AC and BC are known, then the law of cosines provides a direct means of computing the angle

 $() \theta = \cos^{-1} \left[\frac{(AB)^2 + (AC)^2 - (BC)^2}{2(AB)(AC)} \right]$

If the axes of the unit cell are orthogonal, the angle can be calculated from the direction cosines of the line segments AB and AC

22

ຸ ຈ

 $0 = \cos^{-1}(l_1l_2 + m_1m_2 + n_1n_2)$

where I_1 , m_1 , n_2 are the direction cosines of AB and I_2 , m_2 , n_2 are the direction cosines of AC.

Figure 2.8: Bond angles

Torsion angles

 $\langle 1 \rangle$

For a sequence of four atoms A, B, C, D, the torsion angle ω (ABCD) is defined as the angle between the normals to the planes ABC and BCD (see Figure 2.9). By convention (Klyne and Prelog; 1960) ω is positive if the sense of rotation from BA to CD, viewed 4 wm BC, is clockwise, otherwise it is negative. From this definition and Figure 2.0 it d m be shown the

$$\varpi = \sin^{-1} \left(\frac{Vb}{ab^2 c \sin \alpha \sin \gamma} \right)$$

Mean planes

In discussing the geometry of a molecule, it may be desirable to test the planarity of a group of atoms. This is best done by fitting a least-squares plane through the atoms of interest, where a least-squares plane is that plane which minimises the function $\sum_{m} d_{m}^{2}$, where d_{m} are the perpendicular distances of the *m* atoms from the plane. The calculations involved in determining this plane have been illustrated by Schomaker *et al* in 1959.

Puckering parameters

A large number of compounds contain cyclic fragments and it is insightful to compare the observed conformations of these rings with the known preferred conformations of such rings. By using puckering parameters this comparison may be made quantitatively. These puckering parameters stem from the generalisation, in terms of cartesian coordinates, by Cremer and Pople (1975) of the expression derived by Kilpatrick and others in 1947, to describe the out-of-plane displacement of the jth atom, perpendicular to the mean plane of a monocyclic ring. In general the ^{of} N-3 puckering parameters derivable for an N membered ring consists of puckering amplitudes an ^o phase angles. The puckering amplitudes relate to the extent of puckering while the phase angles refer to the nature of the puckering.

2.10 Graphical representation of structures

Following a small molecule crystallographic analysis, the results are generally represented in some graphical from. This is because a large amount of chemically meaningful information may be conveyed using a single picture. The exact nature of the representation will depend on the information that needs to be conveyed. Frequently, small molecules are represented in terms of ball-and-stick or ORTEP diagrams. These diagrams are mostly used to disseminate details about the molecular conformations as well as the numbering scheme employed. The latter having the advantage in that it also includes a representation of the anisotropic displacement of atoms about their mean positions. On the other hand, packing

•diagrams can be used to show intermolecular interactions such as hydrogren • bonding, or to illustrate some interesting packing features exhibited by the molecule. Lastly, various Fourier maps may be used to show interesting features, found in the electron density distribution within the molecule.

0

Ø

Q.

CHAPTER 3

Cryostat design, construction and testing

3.1 Introduction

As discussed earlier in this thesis, it is highly desirable to collect single-crystal diffraction data at low temperatures. To accomplish this a number of cryostats have been designed and built. A number are also available from commercial instrument manufacturers and suppliers.

35

In general cryostats suitable for use in the collection of 3-dimensional single-crystal diffraction data may be classified according to the presence of any windows though which the beam of X-rays have to travel as well as the cryogen used.

Liquid helium (LHe) cryostats generally contain windows (usually Be) to separate the cold chamber from the room temperature environment. This reduces the precision of the diffractometer by absorption and parasitic x-ray scattering. This is the configuration generally encountered with continuous flow cryostats (Coppens *et al.*, 1974; Albertsson *et al.*, 1979) with fickible, low-loss transfer lines. In recent years, closed-cycle refrigerators on Displexes have also been used in designing cryostats for single-crystal diffraction studies (Hendriksen *et al.*, 1986). The lower running cost of these designs make them particularly attractive for long term experiments. An alternative design, exemplified by that of Greubel *et al.*, 1990, does not make use of any windows or a cold chamber, instead it employs the gas-flow principle also used in most liquid-nitrogen (LN2) cryostats. Examples of such cryostats include the Open Nitrogen Jet LT708 marketed by Oxford Instruments and the Liquid Nitrogen Cryostat manufactured by Enraf Nonius.

A gas flow cryostat operates on the principle of blowing a stream of cold gas over the crystal to be studied. To minimize condensation the cold stream is enveloped in a concentric stream of warmer gas (see Figure 3.1). Figure 3.1:Gas flow cryostat nozzle

Crystal

Warm stream

36

Cold stream

Considerable difficulty was experienced using an earlier version of the Nonius cryostat that operates on this principle. In this design, shown schematically in Figure 3.2, the cold and warm stream of gas is generated by evaporating the nitrogan in boiling units. The cold stream is then kept cold until it reaches the Crystal in a silvered glass Dewar tube. The warm stream is warmed to approximately room temperature and conveyed to the nozzle of the cryostat by a piece of plastic tubing. The main problems ware traced to the sensing of the cryogen level in the transfer Dewar. Transfers from the supply Dewar did not take place reliably resulting in an inability to keep the level of cryogen relatively constant. On at least two occasions this resulted in damages to the heating elements of the transfer Dewar. Froblems were also experienced with the temperature stability as the cryostat had no facility for controlling the temperature. On speaking to other users of this and more recent models from Nonius, similar problems were reported. It was thus decided to extensively modify the cryostat.

ŝ

Figure 3.2 : Schematic diagram of Nonius cryostat

3.2 Modification concepts/criteria

In the original cryostat the level of the cryogen in the transfer Dewar was sensed by thermistors, that is resistors with a large negative temperature coefficient. Thus when submersed in LN2 they have an infinitely high resistance. Unfortunately repeated cooling to such low temperatures cause irreversible changes in the characteristics of the thermistors. Also they often cannot withstand the mechanical stresses placed on them and they break in two. The behaviour of thermocouples are well known and they have been widely used in cryogenics for the measuring of low temperatures. Thus it was decided that they could be used for the sensing of the cryogen levels. For the recording of the EMF's produced by the thermocouples, as well as the necessary decision making, it was decided to use a presonal computer. This would allow for the greatest versatility in the recording and control necessary. Using a computer also allows for a number of possible in ture expansions. Level sensors were included in the supply Dewar to give an indipation of the rate of the LN2 was consumed and to decide when next to refill the supply Dewar.

37 a

3.3 Prototype constructio

To test these concepts a prototype was designed, built and tested. Copper-constantan thermocouples were installed in the sryostat as shown in Figure 3.3:

- 38

Figure 3.3: Thermocouple placements

All these thermocouples allowed for the monitoring of the cryogen levels in both the transfer and the supply Dewars, as well as the temperature of the cold stream near the crystal. Also included is a safety device which is used to sense the possibility of the system running out of cryogen. The thermocouples were connected to operational amplifiers which amplified the signals before sending it to a 12 bit A/D converter installed in an XT computer. The A/D convertor stores the EMF's from the thermocouples in specific memory locations within the computer from where they may be accessed by a control program. Control of additional electrical devices is also achieved via the A/D convertor. The basic logic required for the control of the

3.4 Discussion and conclusion

Initial testing of the prototype showed that even without the use of any temperature control facilities, temperature stabilities of the order of one degree could be achieved. The cryostat was then used to collect approximately five data sets, including those of **17** and **18** in this thesis. During these data collections the cryostat remained operational for extended periods of time. Overall, it could be concluded that this design overcomes the problems experienced prior to modification and holds promise of being both reliable, and user friendly. Further improvements and expansions could include the addition of a temperature control facility. This could be accomplished by including a heating coil in the cold stream, and then controlling the power supplied to it from the computer. This would improve the imperature stability of the cryostat and also facilitate the choice of the temperature of which the analysis is done. This would greatfy facilitate the study of different phases and phase transitions.

CHAPTER 4

The metal-metal bond length in MnRe dimers

4.1 Introduction

C

While performing routine investigations into the structures of organometallic compunds, a value of 2.96Å was obtained for the Mn-Re bond length in 1, (MnRe(CO)_e(CNBu¹)). Although this analysis was based on relatively poor data, this value appeared "normal" because:

- The value lay halfway between the reported metal-metal bond lengths for Mn₂(CO)₁₀ [2,9038(6)Å (Churchill *et al*; 1981), 2.895(1)Å (Martin et al; 1982)] and Re₂(CO)₁₀ [3.0413()Å (Churchill *et al*; 1981)]
- ii. An X-ray structure determination of MnRe(CO)₁₀ gave the value as 2.96Å (Struchkov et al; 1967).

When the structur, was, however, redetermined to correct for certain errors made in the assignment of the spacegroup (Rheingold *et al*; 1986) the authorg peorted a shorter bond length of 2.909(1)Å, a value nearly identical to the Mn-Mn bond length in Mn₂(CO)₁₀. This redetermined value suggests that the bond lengths of heteronuclear dimers may not be related in any intuitive manner to the bond lengths in the homonuclear dimers. To obtain further information on the metal-metal bond length in heteronuclear MnRe dimers, it was decided to also determine the structures, of the two related compounds 2 and 3. Because of the variety of substituents involved it should also be possible to assess the influence of different storic and electronic effects on the Mn-Re bond length.

8

Mn

C(CH₃)3°

Re

C₆H₅

4.2 Crystallographic analysis

Crystals of 1, 2 and 3 for analyses were grown from acetone/hexane solutions and suitable specimene mounted on glass fibres for the study. Cell determinations, using 25 high-order reflections, and data collections were done on Enraf-Nonius CAD4 four-circle diffractometers equipped with graphite monochromators. Crystals of 1 decayed excessively in the X-ray beam when using Mo-K α radiation, and had to be collected using less energetic Cu-K α radiation. Data reduction included corrections for Lorentz, polarization and background effects. Crystal decay was corrected linearly for compounds 1 and 2, while a fifth-order polynomial was used for compound 3. Empirical absorption corrections (North *et al*; 1968), were applied to the intensity data of compounds 1 and 2. Analytical absorption corrections, calculated by the ABSORP routine of the NRCVAX set of programs were applied to the intensity data of compound 3. This routine requires that the faces of the crystals be indexed and measured. If then uses this information to calculate the necessary corrections by a Gaussian integration method.

Unit-cell parameters and details of the data collections are given in Table 4.1. Atomic coordinates for the structures are listed in Table 4.2, Table 4.3 and Table 4.4 respectively. The structures were solved using Patterson and difference-Fourier techniques, and refined by least-squares based on F². Hydrogen atom positions were generated geometrically and refined in riding mode in the final cycles of refinement. The SHELX suite of programs were used for structure solution and refinement,

Compound	1	2	3
Empirical formula	C ₁₄ H _e MnNO _e Re	CasH21MnO9PRe	CatH24MnNO8PRe
Formula weight / g.mol ⁻¹	576.36	797.58	810.62 // "
Wavelength/Å	1.5418	0.7107	0.7107
Crystal cystem	Monocilnic	Triclinic	Monoclinic
Space group	P 2,/n	P-1	· P 2,/c
a/Å	12.(\303(7)	12.314(7)	17.841(3)
b/Å	20.8343(8)	_14.308(10)	9.616(2)
c/λ	15.2223(13)	19, 198(6)	20.505(4)

43 _(

and and a second s			
cu/°	*	68.40(5)	н С н,
₿ /° ["]	91.083(6)	78.39(4)	113.150(10)
W	nation in the second set of the state of the second second second second second second second second second se	8R.98(4)	-
Volume/Å ³	3813.7(4) °	3074(6)	3234.8(11)
2 · · · · · · · · · · · · · · · · · · ·	. 8	4	4
√ Mg.m ⁻¹	2.008	1.723	1.695
Absorption coefficient/mm ⁻¹	18.035	4 447	4.227
F(000)	2176	1552	1584
Rango	3.60≲⊎≤64.95	350<23	2.5≲0≲30
Index ranges : h k I	-14-+14, - 0-+24 ∽ 0-+17	° -13>13 ⊙ -14->15 0>15	-22-→20 0-→12 0-→25
Reflections collected	6450	8325	7025
Independent reflections	6190	6325	7025
Data/restraints/parameters	8190/0/461	6325/0/430	7025/0/389
Max shift, &z	i 2014 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0.001	
Residual density / e Å ⁻³ (Δμ ³) _{max} (Δμ ³) _{max}	4.026 -3.335	1.295 -1.429	1,1859 -0.823
Reliability indices R1 (I > 2o(I)). wR2 (I > 2o(I)) R1 (ali data) wR2 (ali data)	0.089 0.175 0.081 0.180	0.048 0.122 0.085 0.128	0.034 ° 0.083 0.084 0.087
S	1.017	1.065	0.95

0 ب

 \Diamond

3

" ⁼-∹~≫

Ò

(* 04**4** *

	x/a	y/b	z/c	ິ ປ
/in(A)	3083(1)	-3454(1)	1268(1)	41(1)
₹ 0(A)	1895(1)	-4252(1)	2557(1)	35(1)
D(1A)	4236(10)	·/ -2671(7) ·	-27(8)	111(4)
D(2A)	4252(9)	-2938(5)	2863(8)	86(3)
D(3A)	1580(8)	-4141(5)	-11(7)	70(2)
J(4A)	4685(9)	-4541(6)	1224(10)	103(4)
D(6A)	1309(8)	-2488(5)	1491(8)	90(3)
D(6A)	1541(10)	-3054(4)	3743(7)	82(3)
Q(7A) °ം	4172(8)	-4510(6)	3519(9)	93(4)
D(8A) •	-298(7)	-3884(5)	1572(6) *	68(2)
)(9A)	732(8)	°-5134(4)	3823(6)	Đố(2)
N(1A)	2230(7)	-5462(4)	1280(6)	45(2)
2(1A)	° 3771(11)	-2981(7)	471(10)	68(4)
C(2A)	3793(10)	-3139(6) 🧔	2260(11)	60(3)
)(3A)	2152(9)	-3880(6)	465(9)	51(3)
2(4A)	4038(12)	-4124(7)	, 1222(11)	70(4)
>(5A)	1951(10)	-2846(6)	" 1413(9)	57(3)
:(6A)	0 1677(9)	-3494(6)	3303(7)	48(3)
C(7A) ि	3358(10)	-4430(8)	3157(9)	54(3)
>(8A)	501(8)	-4025(5)	1910(7)	· 41(2)
2(9A)	1171(9)	-4806(5)	3349(7)	41(2)
C(10A)	2121(8)	-5036(5)	1716(7)	· 41(2)
C(11A)	2385(10)	-6002(5)	663(8)	49(3)
>(12A)	1316(19)	-6374(10)	620(17)	133(9)
C(13A)	3301(17)	-8398(9)	979(14)	120(9)
2(14A)	2583(18)	-5707(8)	230(12)	101(6)
An(B)	• 1277(1)	-3520(1)	6984(1)	34(1)
Re(B)	3703(1)	-3778(1)	6947(1)	37(1)
2(1B)	-1155(7)	-3382(5)	6881(8)	83(3)
D(2B)	1668(9)	-2913(5) [°]	8731(6)	75(3)
D(3B)	1291(6)	÷4127(5)	··· 5219(6)	68(2)
D(4B)	1189(7)	-4768(4)	7875(8)	63(2)
D(5B)	1786(10)	-2264(4)	6157(8)	89(5)
D(6B)	4115(8)	-2407(5)	7685(6)	73(3)
)(7B)	3641(9)	-4272(5)	8867(7)	72(3)
D(8B)	3692(9)	-3284(6)	5035(7)	66(3)
)(9B)	6197(7)	-4045(4)	6699(7)	63(2)
V(1B)	2 3066(7)	-5208(5)	8306(8)	46(2)
)(1B) (17	-206(9)	-3432(5)	6950(8)	47(2)
3(25)	1512(10)	-3141(5)	8080(9)	51(3)
2(3B)	1314(10)	-3907(5)	5911(9)	49(3)

ļ

64

47

0

 \bigcirc

ł

C(48)	1228(9)	-4303(5)	7504(8)	45(3)
°C(5B)	1611(9)	-2757(6)	6472(8)	250(3)
C(68)	3968(10)	-2908(5)	7382(9)	57(3)
C(7B)	3643(8)	-4105(5)	8154(8)	45(3)
C(8B)	3697(9) ₀	-3454(6)	5735(9)	53(3)
C(9B)	5243(9)	-3930(5)	6903(7)	42(2)
C(10B)	3308(9)	-4700(5)	6533(8)	46(3)
C(11B)	2745(9)	-5560(5)	6142(9)	52(3)
C(12B)	1477(13)	-5098(7)	5955(13)	89(5)
C(13B)	3372(19)	-8051(10)	5300(14)	118(8)
C(148)	3020(18)	-6237(7)	6944(13)	97(6)

4

:

	x/a	y/b	z/c	. U ₄₉
Re(A)	2265(1)	1607(1)	1215(1)	43(1)
Mn(A)	1442(1)	-358(1)	1279(1)	42(1)
P(A)	2737(2)	3220(2)	1186(2)	42(1)
O(1A)	° 682(7)	-2284(7)	1259(5)	78(3)
0(2A)	-7(8)	912(7)	287(6)	82(3)
O(3A)	3296(9)	-53(7)	-58(8)	78(3)
O(4A)	2644(8)	-1318(7)	2402(6)	80(3)
D(5A)	-186(8)	o -358(7)	2849(6)	82(3)
O(6A)	4626(6)	795(6)	949(5)	· 68(3)
O(7A)	2289(8)	593(7)	2948(6)	78(3)
O(8A)	-218(8)	2003(7)	1833(6)	82(3)
O(9A)	2482(9)	2373(7)	-554(6)	79(3)
C(1A)	959(10)	-1510(9)	1267(7)	58(3)
C(2A)	576(10)	435(9)	653(7)	56(3)
C(3A)	2591(11)	-154(9)	457(9)	58(4)
C(4A)	2350(10)	-935(8)	1947(8)	50(3)
C(5A)	417(10)	-342(9)	2123(9)	54(3)°
C(6A)	3795(10)	1138(8)	1024(7)	48(3)
C(7A)	2259(10)	988(8)	2314(9)	51(3)
C(8A)	683(10)	1856(8)	1477(8)	55(3)
C(9A)	2357(9)	2127(8)	90(9)	52(4)
C(10A)	2638(10)	3258(8)	2132(7)	49(3)
C(12A)	1817(6)	4760(7)	2322(6)	80(2)
O(13A)	1909(6)	5694(6)	2386(6)	80(2)
C(14A)	2950(8)	6110(5)	2339(6)	80(8)
C(15A)	3898(6)	5592(7)	2227(6)	80(2)
C(18A)	3807(6)	4858(7)	2162(6)	80(2)
Ç(11A)	2765(8)	4242(5)	2210(6)	80(2)

۲. « G,

d

..

				Sec. 1.
G(17A)	1802(9)	4221(8)	805(6)	· .40(3) ·
C(19A)°	702(7) °	3973(6)	-112(5)	79(2)
C(20A)	540(6)	4188(7)	-852(6)	79(2)
C(21A) c	1284(8)	4858(7)	-1480(4)	79(2)
C(22A)	2189(7)	5314(6)	-1369(5)	79(2)
C(23A)	2351(6)	5105(7)	-629(6)	79(2)
C(18A)	1607(8)	4437(7)	Q(4) ⁶	79(2)
C(24A)	4061(8)	× ' 3858(8)	\$07(7)	49(3)
C(28A)	5898(6)	3193(6)	-42(4)	66(1)
C(27A)	6664(6)	2668(6)	-47(4)	66(1)
C(28A)	7042(5)	2205(8)	/ 631(5)	68(1)
C(29A)	6455(8)	2266(6)	1313(4)	68(1)
C(30A)	5489(6)	2790(8)	1317(4)	66(1)
C(25A)	· 5110/5)	3254(6)	640(5)	66(1)
Re(B)	313171)	2150(1)	8234(1)	51(1)
Mn(B)	4129/1)	1853(1)	7574(1)	48(1)
P/R)	2003/2)	2458(2)	5273(2)	A9(1)
O(1B)	5181(9)	1655(8)	8887/B)	92(3)
0(72)	3032/0)	3703(8)	7490/63	GALO
	5024/10)	3108(0)	B308(7)	118(4)
O(30)	5424(10) 5424(0)	08/8)	7287(7)	100(4)
	2146(40)	60(0) 644/03	9540(7)	105(2)
~/ep)	£110(10)	1804/40	5440/A)	148/5)
	(8)60460		3410(0) 8970(7)	PO(2)
	2002(0)	F100(7)	7280/6)	95(9)
0(88)	(C) 1043(0)	2300(7)	(302(C))	(0)00
O(8B)	3903(8)	4404(0)	- ())4600	· 82(0)
C(1B)	-4741(12)	-1714(10)	1827(9)	67(4)
C(2B)	-3430(11)	-2990(11)	2405(11)	65(4)
<u>C(3B)</u>	5200(13)	2647(12)	6884(9)	65(4)
C(4B)	•4755(11)	-771(11)	2609(8)	85(4)
<u>(¢(5B)</u>	2903(12)	1067(11)	8148(9)	78(4)
C(6B)	4586(12)	1887(11)	5659(8)	72(4)
C(7B)	2810(10)	676(11)	6634(8)	84(4)
C(8B)	1801(10)	2262(9)	6939(8)	53(3)
C(9B)	3594(10)	3597(11)	5854(8)	59(3)
C(10B)	905(10)	3245(9)	5332(8)	<u>, 61(4)</u>
C(12B)	1563(9)	5068(8)	4691(5)	<u>₀ 98(2)</u>
C(13B)	1810(8)	5993(7)	4731(5)	96(2)
C(14B)	1607(9)	6102(6)	5438(7)	96(2)
C(15B)	1157(9)	5287(8)	6105(5)	86 (2)
C(16B)	910(8)	4362(7)	6065(5)	96(2)
C(11B)	1113(9)	4253(6)	5359(7)	96(2)
C(17B)	1420(10)	1301(9)	5308(8)	81(4)
C(19B)	609(6)	1531(7)	4153(6)	84(2)

c

° 4'

. نت

C(20B)	-305(8)	1551(7)	3822(4)	84(2)
C(21B)	-1377(7)	1390(7)	4270(6)	84(2)
C(22B)	-1536(6)	1210(7)	5050(5)	84(2)
₇ C(23B)	-622(8)	1190(7)	5382(4)	84(2)
C(18B)	450(7)	1351(7)	4933(6)	84(2)
C(24B)	2770(10)	3107(10)	4281(7)	63(4)
C(26B)	4835(8)	3510(6)	3864(6)	83(2)
C(27B)	5899(7)	3298(6)	3570(6)	83(2)
C(28B)	6057(6)	2433(7)	3397(6)	83(2)
C(29B)	5149(8)	1781(6)	3518(6)	<u>, * 83(2)</u>
C(30B)	4084(7)	1993(6)	3812(6) 🜼	83(2)
C(25B)	3927(6)	2858(7)	3988(8)	83(2)

C

•

o

· · · · · · · · · · · · · · · · · · ·	x/a	y/b	z/c	U _{en}
Re	7381(1)	3779(1)	1933(1)	43(1)
Мл "	6261(1)	2476(1)	591(1)	53(1)
P 6	8209(1)	4729(1)	3052(1)	46(1)
N	6769(3)	1451(4) o	2739(2)	57(1)
Ď(1)	5045(3)	1261(5)	-715(3	104(2)
D(2)	5934(3)	5412(5)	6 8(3)	94(1)
0(3)	5096(2)	28%6(6)	1304(2)	79(1)
D(4)	6849(3)	-270(4	1281(3)	83(1)
D(5)	7712(2)	2481(5)	211(2)	90(1)
0(6)	. 5998(3)	5944(4)	1699(3)	89(1)
D(7)	8005(3)	- 5683(5)	·1041(2)	94(1)
D(8)	8685(2)	1677(4)	1906(2)	78(:)
2(1)	5528(3)	1730(7) 😐 🎽	-207(3)	69(2)
C(2)	6058(3)	4308(8)	285(3)	68(2)
C(3)	5547(3)	2620(6)	1037(3)	60(1)
C(4)	8 823(3)	781(7)	1032 3)	62(1)
C(5)	7151(3)	2499(6)	356(3)	64(1)
C(6)	,8498(3)	5127(6)	1800(3)	60(1)
C(7)	/ 7771(2)	4993(6)	1388(3)	59(1)
C(8)	8212(3)	2438(5)	1933(3)	54(1)
C(9)	6967(3)	2302(5)	2448(2)	47(1)
C(10)	6482(4)	403(6)	3105(3)	84(1)
3(11)	5932(6)	1082(8)	3386(5)	(131(4)
D(12)	7215(6) O	-115(11)	_a 3701(6)	160(4)
C(13)	6109(8)	-735(0)	2834(5)	^{1,5} 182(6)
C(14)	8742(3)	6359(5)	8045(3)	\$1(1)
Č(15) 🖉	9531(3)	6563(8)	3503(3)	65(1)

50

7

(<u>~</u>_____

 \circ

ó

			a construction of the second second	
C(16)	9870(4)	7931(7)	3485(4)	75(2)
C(17)	9441(5)	8904(7)	3017(5)	96(2)
C(18) 0 °	8652(5)	8659(6)	2554(5)	102(2)
C(19)	8311(4)	7365(6)	2574(4)	79(2)
C(20)	7714(3)	5229(5)	3854(3)	52(1)
C(21)	8150(3)	5904(7)	4282(3)	75(2)
C(22)	7777(4)	6354(7)	4723(4)	83(2)
C(23)	6964(4)	8122(6)	[°] 4539(4)	79(2)
C(24)	6525(4)	5443(6)	3919(3)	72(2)
C(25)	6897(3)	4985(6)	9 3485(3)	61(1)
C(28)	9026(3)	2584(5)	3592(3)	53(1)
C(27) .	9871(3)	3336(6)	3366(3)	64(1)
C(28)	10286(4)	2418(7)	3785(4)	- 81()
C(29)	10269(5)	1731(8)	4328(5)	99(2)
C(30)	9644(5)	1932(7)	4537(4)	81(2)
C(31)	9014(4)	2852(6)	4166(3)	75(2)

4.3 Results and Discussion

3

Compound 1 was synthesised from MnRe(CO)₁₀ and 'BuNC using PdÖ as a catalyst, while compound 2 was synthesised from MnRe(CO)₁₀ and P(CH₂C₈H₅)₃. Compound 3 was obtained from the reaction of 1 with PPh₃. As can be seen in Figures 4.1 to 4.3, the crystal structure determination of the three complexes 1 - 3 reveal that substitution had taken place at the Re atom in every instance.

Selected bond length and bond angle data are given in Table 4.5. From the data the following conclusions can be drawn:

- i. The Mn-Re bond lengths are all close to 2.96A. This value is little affected by axial, equatorial or axial-equatorial substitution patterns.
- Ii. There are no bridging carbonyl groups. The ligands on the metal atoms are in a staggered arrangement with C-Mn-Re-C torsion angles in the range 45±5° for all three structures.
- iii. Typical M-CO bond lengths are observed; ie., M-C(O) bonds that are cis to the Mn-Re bond and trans to a CO group are lenger than M-C(O) bonds that are trans to a M-M bond or the 'BuNC group.

Table 4.5 - Sele	icted bond length	s (A) 🔬 🐘 🧭			<u>.</u>
97 - C		1	*		3
«	A	B	A	B *	P
Mn-Re	2.959(2)	2.970(2)	2.056(2)	2.959(2) 0	2.9583(9)
Mn-C(1)	1.798(14)	1.792(11)	1,772(12) 🗋 🕯	1.79(2)	1.794(6)
Mn63(2)	1.85(2)	. 1.832(13)	1.828(12)	1.838(14)	1.858(7)
Mn-C(3)	1.845(14)	1.824(13)	1.83(2)	1.78(2) •	1.841(5)
Mn-Č(4)	1.826(13)	1.815(11)	1.829(14)	1.83(2)	1.852(7)
Mn-C(5)	1.859(12)	· 1.819(12)	1.85(2)	1.80(2)	1.832(5)
Re-C(6)	······································	C1.952(1,1)	1.998(12)	2.005(14)	1.974(8)
Re-C(7) 🥏	3,991(12)	1.964(12)	1.98(2)	. 1.98(2)	- 9.926(5) °&
Re-C(8)	3.977(9)	1.963(13)	1.972(13) 🤉	1.949(14)	1.969(5)
Re-C(9)	1.899(11)	1.863(11)	1.09(2)	1.98(2)	2.070(5)
Re-C(10)	2.098(11)	2.072(11)	·	يني. س	4
C(10)-N(1)	1.117(13)	1.148(14)	*	8	4 °
Re-P	ng n	C. Surger	2.353(3)	2.359(3)	2.3691(13)

 \mathcal{C}

e iv. The position of the ligands in the coordination sphere is that expected from the steric/electronic properties of BuNC and the phosphice ligend.

The crystallographic data indicates that in this case the M-M bond lengths give little information about the position or degree of substitution on the inners. Although it has been shown that bond lengthening can take place as steric crowding increases, the amount of steric crowding in complexes 7 - 3 is minimal. This of course provides strong evidence for a bond length of ±2.96Å for MnRe(CO)₁₀ as originally observed. (Struchkov *et al*; 1967) It should be noted that difficulties were experienced by Rheingold and co-workers in analyzing the MicRe(CO)₁₀ data (Rheingold *et al*; 1966). They dealt with the disorder associated with the Mn and Re positions by four different strategies, all giving a Mn-Re bond length of approximately 2.91 Å. No disorder was observed in our investigations, primarily because substitution had only taken place on the Re atom. Our data suggests that their bond length should be treated with caution.

(ĵo

CHAPTER 5

Bonding in heterapentalene type compounds.

5.1 Introduction

If pentalene were to be reduced according to the scheme in figure 5.1 the product would be expected to have a planar aromatic structure.

Figure 5.1 : Reduction of pentalene

Hypothetically this reduction could be achieved by replacing some of the carbon atoms in the pentalene framework by other atoms. The first structure of this nature reported was that of thio-thiophen, (Figure 5,2) [Bezzi *et al*; 1958] which was obtained by treating diacetyl-acetone with phosphorus pentasulphide.

Bezzi et *al* reported the structure to be characterised by no-bond resonance which conferred upon it an aromatic character. The electronic structure of this compound was soon investigated [Giacumetti et al; 1959] and this led to the structure being described in terms of the resonance hybrid between foul structures (Figure 5.3) [Mammi et al; 1960]. When considering the stabilization of centers with six valence electrons through electron-rich three-center bonding, Gleiter and Hoffmann (1968), suggested that thio-thiophthene contains an electron rich three-center bond. This

bond being further stabilised by the fact that all three atoms form part of a π -electron system.

54

Figure 5.3 : Resonance scheme for thio-thiophen

Subsequent to this, a number of the structures of related molecules have been determined. These structures differed from thic-thiophen in substituents as well as the type and number of heteroatoms in the pentalene framework. All exhibited the linear tri-atomic sequence that is characteristic of this group of molecules.

Our interest in these structures started from collaboration with Reid and co-workers to characterize a number of reaction products, which, based on previous experience and NMR evidence, were expected to contain heterapentalene frameworks. We report here the results of these structural analyses. It also became clear that the nature of the bonding in these compounds is still not well understood and that no simple predictive method existed for predicting bond lengths in these compounds. Finally a clearer understanding was sought by comparing a number of new structures, with known structures from the literature. To facilitate this comparison, the bond order of each of the bonds in the pentalene framework was needed in order to compare structures containing different aton types.

5.2 Crystal structure of 5,6-Dihydro-1,4-bis-p-tolylimino-2a¹-thia-2,3, diselena-4a,6a-diazacyclopent<u>[cd]</u>pemalene.

The title compound 4 crystallises in the triclinic system and contains two molecules, A and B in the asymetric unit. These molecules differ conformationally in terms of the orientation of the aromatic rings relative to the rest of the molecule. Both molecules exhibit the characteristic structural features of heterapentalenes, with long Se-S bonds and wide Se-S-Se bond angle. All other bond lengths in the heterapentalene framework are intermediate between those of single and double bonds.

The Se-S bond lengths in molecule A, 2.5044(12)Å and 2.5309(12)Å, are greater by 14.1 and 15.3% respectively than (two-centre two-electron) covalen. Se-S single bond lengths [2.195(15)Å, Allen *et al*;1987]. The Se-S bonds in molecule B are 2.5007(14)Å and 2.5639(14)Å in length and thus longer that the Se-S bond (2.195Å) by 13.9 and 16.8% respectively. The lengths of the corresponding bonds and the size of the corresponding bond angles in the two halves of the triheterapentalene framework in A and B are very similar, differing from one another by at most 0.063 Å and 1.42° respectively.

Compound 4 crystallized from dichloromethane-acetonitrile (1:3), as red needle-shaped crystals, m.p. 458-460K (decomposition). Cell determination, using 25 high-order reflections, and data collection were done on an Enraf-Nonjus CAD4 four-circle diffractometer equipped with a graphite monochromator. Data reduction included correction for Lorentz and polarisation effects using standard Enraf Nonjus routines, and absorption effects were corrected for empirically (North *et al*; 1968). Three standard reflections monitored every hour showed ontwandom fluctuations. Unit cell parameters and details of the data collection are given in Table 5.1. The

structure was solved by direct methods using SHELXS@ and refined using SHELXL93. All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed geometrically in the final cycles of refinement and allowed to refine with a common isotropic displacement parameter. Figure 5.4 shows a labelled SCHAKA!, diagram of the molecule and indicates the atomic numbering scheme used. Atomic coordinates and selected bond lengths are listed in Table 5.2 and Table 5.3 respectively. The selected torsion angles listed in Table 5.4 illustrate the conformational differences between the two molecules in the assymetric unit.

· · · · · · · · · · · · · · · · · · ·	0			
Table 5.1: Crystal and refinement data				
Compound	4 4			
Empirical forhula	C ₁₆ H ₁₈ N ₄ SSe ₂			
Formula weight / g.mol ⁻¹	492.35			
Temperature/K	295			
Wavelength/Å	0.71069			
Crystel system	Triclinic 🛛			
Space group	P-1			
a/Å □	12.428(2)			
b/A ° 00	13.423(6)			
ċ/Å	13,069(2)			
cu/*	112.35(2)			
β /ο [#]	109.19(2)			
W ^e	94.81(2)			
Volume/A ^o	1934.0(10)			
7	4			
p? Mg.m ^o	1.691			
Absorption coefficient/mm ¹	3.942			
A(000)	° 976			
C:ystal size/mm ^{ik}	0(7 x 0.5 x 1.0			
Range	³ 3≲0≤30			
ndex ranges : o	11 13			
head	0-→17			
	-10>18 -10+12			
Reflections collected	7999			
Incignation trailediana	7724			
Intershe Inter I allections	1104 6			

R _m	0.018 7784/0/473 0.029	
Date/restraints/parameters		
Max shift, ∆z		
Residuel density / e.Å ^{.s}		
(Δρ) _{max}	1.46	
(Δρ) _{min}	-1.200	
Reliability Indices	ь	
A1 (l > 2σ(l))	0.052	
wR2 (I > 20(1))	0.133	
R1, (all data)	0.116	
wR2" (all data)	0.145	
S	0.922	

Ü

57

Figure 5.4: Labelled Schakal diagram of 4

цэ.

	x/a	.₀ y/b	z/c	U.,
Se(1A)	4714(1)	्र 2361(1)	4962(1)	56(1)
Se(2A)	6486(1)	2106(1)	2081(1)	52(1)
S(1A)	5637(1)	2341(1)	3562(1)	45(1)
N(1A)	3486(4)	96(3)	4252(3)	« 44(1)
N(2A)	4620(3)	352(3)	° 3329(3)	· 37(1)
N(8A)	5545(3) [°] a	240(3)	2196(3) °	36(1) 🧳
N(4A)	6503(4)	-210(3)	995(3)	42(1)
C(1A)	4155(4)	. B13(4)	4174(4)	39(1)
C(2A)	5253(4)	921(3)	3020(4)	35(1)
C(SA)	6223(4)	573(4)	1674(4)	37(1)
C(4A) o	* 5090(5)	-926(4)	1698(4)	48(1)

1 D

0,0

ή

Ň

and the second se				
G(5A)	4365(5) 📿	-858(4)	2618(4) ⁰	46(1)
C(6A)	° 2888(4)	350(4)	5003(4)	46(1)
C(7A)	2392(5) -	-522(4)	5107(5) 🤊 👘	61(2)
C(8A)	· 1748(5)	-386(5)	5799(6)	66(2)
C(9A)	1574(5)	631(5)	6377(5)	57(2)
C(10A)	2093(7)	1515(6)	6286(6)	87(2)
C(11A)	2730(7)	1383(5)	5607(6)	84(2)
C(12A)	868(6)	765(6)	7117(6) °	84(2)
C(13A)	7185(4)	0(4)	413(4)	40(1)
C(14A)	6680(4)	-783(4)	-715(4)	41(1)
C(15A)	7512(5)	-664(4)	-1346(4)	49(1)
C(16A)	8471(5)	218(5)	-871(4)	∘ '49(1)
Č(17A)-	[®] 8787(5)	965(5)	261(5)	58(2)
G(18A)	8169(4)	847(4)	909(4)	<i></i>
C(19A)	9153(6)	385(6)	•• •1657(6)	75(2)
Se(18)	6294(1)	6296(1)	6049(1)	53(1)
Se(2B)	3305(1) •	5021(1)	7766(1)	55(1)
S(1B)	4739(1)	5113(1)	6798(1)	45(1) ^{**}
N(1B)'	8475(4)	06 01(4)	7952(3)	51(1) 0
N(2B)	6903(4)	6312(3)	6393(3)	43(1)
N(3B)	5599(4)	6207(3)	9123(3)	42(1)
N(4B)	4542(4)	6432(3)	10222(3)	43(1)
C(1B)	7401(5) 🕚	6177(4)	7576(4)	44(1),
C(2B)	5794(4)	a 6910(4) 🛝	° 8164(4)	°, ⊴ 36(1) →
C(3B)	4507(4)	» 5 971(4)	9205(4)	· 42(1)
C(4B)	6665(5)	6302(5)	10143(4)	49(1)
C(5B)	7604(5)	6873(5)	9633(4)	52(1)
C(6B)	9000(5) ⁰	6592(4)	7155(4)	52(1)
C(7B)	9978(5)	6176(5)	7208(5)	60(2) jac
C(8B)	10540(6)	6170(5)	6497(5)	68(2)
C(9B)	× 10 ¹ 50(6)	6591(5)	5710(6)	70(2)
C(10B)	9176(7)	7047(6)	5661(6)	80(2)
C(11B)	8599(6)	7031(6)	6382(6)	75(2)
C(12B)	10758(8)	8604(6)	4917(7)	o 98(3)
C(13B)	3554(4)	6366(4)	10511(4)	42(1)
C(14B)	3736(5)	6334(4)	11543(4)	49(1)
	لغاصاران باردار بارده منظمتك محجومته كلاكك محجج برجمعه	وإغابة الأراجي فلجلنا البارابان ومتاعيه ومتكرية والتكار المرجع ومعاديهم والمراجع	المحافظات الشوالانية المعادة كالمتحديد والمحافظية والمدوما ومدموها المحا	

58 **%**

E.

<u>à</u>

0

Q.

0

Ø

с,

6

v

G

	51		الروي المراجع ا	
O(15B)	。 2845(6)	6330(4) 32	11934(5)	56(2) °
"C(168)	1754(5)	6405(5) [°]	11323(5)	58(2)
C(17B)	1582(6)	6473(6)	10291(5)	68(2)
C(10B)	2462(5)	- 6464(5)	• • • 9891(5) • • •	61(2)
C(19B)	786(6)	6433(7)	11762(6) ุ 🔍	93(Ž)
*	0 • •	1 di		8 O

й 0 1⁷¹

в [.]

Э

59

Ð

Table 5.3: Selected bond	lengths (Å) for 4	· · · · · · · · · · · · · · · · · · ·	o ' 0
Se(1A)-C(1A)	1.877(5)	Se(1B)-C(1B)	1.900(5)
Se(1A)-S(1A)	2.5044(12)	Se(1B)-S(1B)	2 5007(14)
Se(2A)-C(3A)	1.884(5)	Se(2B)-C(3B)	√889(5)
Se(2A)-S(1A)	2.5309(12)	(\$9(2B)-S(1B)	2.8639(14)
S(1A)-C(2A)	1.716(4)	S(1B)-C(2B)	° • 1.728(5) °
N(1A)-C(1A)	1.276(6) 🕤	N(1B)-C(1B)	1 .262(6) "
N(2A)-C(2A)	1,320(5)	N(2B)-C(2B)	1.323(6)
N(2A)-C(1A)	1.418(5)	N(2B)-C(1B)	1.407(6)
N(3A)-Q(2A)	1.334(5)	N(3B)-C(2B) °	1.329(5)
N(3A)-Q(3A)	1.412(5)	N(3B)-C(3B)	1.417(6)
N(4A)-C(3A)	1.271(5)	N(4B)-C(3B)	1.272(6)

, a ",	n, 🗘	· · · · · · · · · · · · · · · · · · ·	
	0		6 ¹
Table 5.4: Selected torsion any	les (°) for 4		. o C
C(A)-N(1A)-C(6A)-C(7A)	-168.6(5)	C(1B)-N(1B)-C(6B)-C(7B)	-125.3(6)
C(1A)-N(1A)-C(6A)-C(11A)	13.4(9)	C(1B)-N(1B)-C(6B)-C(11B)	59.3(8)
C(3A)/N(4A)-C(13A)-C(14A)"	44.6(7)	C(3B)-N(4B)-C(13B)-C(14B)	145.2(5)
C(3A)-N(4A)-C(13A)-C(18Å)	-141.8(5)	C(3B)-N(4B)-C(13B)-C(18B)	-42.8(8)

U

u

κţ

Ð

£
5.3 Crystal structure of 3,5-Diphenyl-2,2'-pyridylamino-1-thia-6,6aλ⁴ diselenapentalene.

The title compaund S crystallises in the triclinic system and contains two independent molecules, A and B in the assymetric unit. These molecules differ conformationally in terms of the orientation of the aromatic rings relative to the pentalene framework of the rest of the molecule. Both molecules exhibit the characteristic structural features of heterapentalenes, with long Se-Se and Se-S bonds and wide Se-Se-S bond angle. All other bond lengths in the heterapentalene framework are intermediate between those of single and double bonds.

Ph

Se

Ph

Se-

٩Ħ

Ν

The Se-Se and Se-S bond lengths in molecule A, 2.465(2)Å and 2.498(3)Å, are greater by 5.3% and 13.8% respectively than the (two-centre two-electron) covalent Se-Se and Se-S single bond lengths (2.195(15)Å and 2.340(24)Å, Allen *et al*, 1967). The Se-Se and Se-S bonds in molecule B are 2.488(2)Å and 2.495(3)Å in length and thus graeter than the SS-Se (2.340Å) and So-S (2.195Å) by 6.3% and 13.7% respectively. The lengths of corresponding bonds and the size of the corresponding bond angles in molecule Å and molecule B are very similar, differing from one another by at most 0.023Å and 0.9° respectively.

5.8

Compound 5 crystallized from cyclo-hexane, as red needle-shaped crystals, m.p. 482-483 K. Cell determination, using 25 high-order reflections, and data collection were done on an Enraf-Nonius CAD4 four-circle diffractometer equipped with a graphite monochromator. Data reduction included correction for Lorentz and polarisation effects using standard Enraf Nonius routines, and absorption effects were corrected for empirically (North *et al; 1968*). Three standard reflections monitored every hour showed only random fluctuations. Unit cell parameters and

Mar they

details of the data collection are given in Table 5.5. The Structure was solved by direct methods using SHELXS86 and refined using SHELXL93. All non-H atoms were refined, with anisotropic displacement parameters. H atoms were placed geometrically in the final cycles of refinement and allowed to refine with a common isotropic displacement parameter. Figure 5.5 shows a labelled SCHAKAL diagram of the molecule and also indicates the numbering scheme used. Atomic coordinates and selected bond lengths are listed in Table 5.6 and Table 5.7 respectively. The selected torsion angles listed in Table 5.8 illustrate the conformational differences between the two molecules in the assymetric unit.

and the second	
Table 5.5 : Crystal and refin	ement data 🧧
Compound	° 5 .
Empirical formula	C ₂₂ H ₁₈ N ₂ SSe
Formula weight / g.mol ¹	498.35 ⊂ ∂
Temperature/K «	295(2)
Wavelength/A	0.71089
Crystal system	Triclinic
Space group	e R-1
a/A.	8.586(8)
ь⁄А °́,	15.286(11)
°¢⁄Å	15.606(8)
- w/° "	94.57(4)
B/° "c).	92.31(4)
No.	100.58(4)
Volume/Å*	2004(3)
2 2 2	4
p/Mg.m ^o	1.652
Absorption conficient/mm ⁻¹	3.804
F(000)	984
Crystal size/mm ⁹	0.08 x 0.5 x 0.2
Range	લ 2⊴9≲30
Index ranges :	
h and a second	[°] -12-→12 ^{°°} ∘
k the second second	-2121
	61↔19
Retiections collected	11147 0

Independent reflections	9951 🔹
Data/restraints/parameters	9951/0/488
Max shift, Az	0.007
Residual density / e.Å ³ (Δρ) _{max} (Δρ) _{min}	733 ⁷ 3යි. 0.512
Reliability indices R1 (l > 2σ(l)) wR2 (l > 2σ(l)) R1 (all <u>data</u>) wR2 (all data)	0.055 [°] 0.138 [°] , 0.222 0.158
S	0.89 5 ×

(⁴⁵ C

5±1

cii ^{C14}

v

CIB CIT CIT

C15

CS

С 24

26

С 25

C 22,

Figure 5,5 :Labelled Schakal diagram of 5

Sp

for <i>5.</i>				
	<u>, x/a</u>	y/b	z/c	ົ ປຸ 😁
Se(1A)	4853(1)	-253(1)	2077(1)	65(1)
Se(2A)	6717(1)	1191(1)	2261(1)	50(1)
S(3A)	8539(2)	2668(1)	2273(1)	48(1)
C(4A)	7570(6)	2962(4)	· . 1427(9)	38(1)
C(5A)	6144(7)	2423(4)	1061(3)	39(1)

Ģ

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34(1) 37(1) 37(1) 36(1) 49(2) 57(2) 60(2) 24(2) 44(2) 36(1) 43(2) 56(2) 58(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37(1) 36(1) 36(1) 49(2) 57(2) 60(2) E4(2) 44(2) 36(1) 43(2) 56(2) 58(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 >> 35(1) 36(1) 49(2) 57(2) 60(2) €4(2) 44(2) 36(1) 43(2) 56(2) 58(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36(1) 49(2) 57(2) 60(2) E4(2) 44(2) 36(1) 43(2) 56(2) 58(2)
C(10A) 1409(7) -1108(4) 1258(4) C(11A) 128(8) -1663(4) 973(5) C(12A) -255(8) -1857(5) 22(5) C(13A) 604(7) -1074(5) -459(4) C(14A) 1893(7) -483(4) -68(4) C(16A) 5193(7) 2353(4) -488(3) C(17A) 4361(7) 2653(5) -1137(4)	49(2) 57(2) 60(2) 24(2) 44(2) 36(1) 43(2) 56(2) 58(2)
C(11A) 128(8) +1683(4) 873(5) C(12A) -255(8) -1657(5) 22(5) C(13A) 604(7) -1074(5) -459(4) C(14A) 1893(7) -483(4) -68(4) C(15A) 5245(6) 2726(4) 337(5) C(16A) 5193(7) 2353(4) -488(3) C(17A) 4361(7) 2653(5) -1137(4)	57(2) 60(2) E4(2) 44(2) 36(1) 43(2) 56(2) 58(2)
C(12A) -255(8) -1657(5) 22(5) C(13A) 604(7) -1074(5) -459(4) C(14A) 1893(7) -483(4) -68(4) C(15A) 5245(6) 2726(4) 337(5) C(16A) 5193(7) 2353(4) -488(3) C(17A) 4361(7) 2653(5) -1137(4)	60(2) E4(2) 44(2) 36(1) 43(2) 56(2) 58(2)
C(13A) 604(7) -1074(5) -459(4) C(14A) 1893(7) -483(4) -68(4) C(15A) 5245(6) 2726(4) 337(5) C(16A) 5193(7) 2353(4) -488(3) C(17A) 4361(7) 2653(5) -1137(4)	E4(2) 44(2) 36(1) 43(2) 56(2) 58(2)
C(14A) 1893(7) -483(4) -68(4) C(16A) 5245(6) 2726(4) 337(5) C(16A) 5193(7) 2353(4) -488(3) C(17A) 4361(7) 2653(5) -1137(4)	44(2) 36(1) 43(2) 56(2) 58(2)
C(15A) 5245(6) 2726(4) 337(5) C(16A) 5193(7) 2353(4) -488(3) C(17A) 4361(7) 2653(5) -1137(4) C(19A) 2520(7) 2357(5) -1137(4)	36(1) 43(2) 56(2) 58(2)
C(16A) 5193(7) 2353(4) -488(3) C(17A) 4361(7) 2653(5) -1137(4) C(19A) 2520(7) 2357(5) -1137(4)	43(2) 56(2) 58(2)
C(17A) 4361(7) 2653(5) -1137(4).	56(2) 58(2)
	58(2)
C(19A) 3670(8) 3760(5) -163(4)	59(2) .
C(20A) 4454(7) 3442(4) 503(4)	46(2)
N(21A) 8086(6) 3764(3) 1068(3)	47(1)
C(22A) 9429(7) 4426(4) 1246(4)	46(2)
N(23A) 9228(7) 5200(4) 970(4)	60(2)
C(24A) 10458(10) 5859(5) 1986(5)	72(2)
C(25A) 11878(9) (3 5815(5) 1479(5)	68(2)
C(26A) 12084(8) 5019(6) 1725(4)	67(2)
C(27A) 10859(8) 4304(5) 1626(4)	58(2)
Se(1B) -913(1) -609(1) -2891(1)	59(1)
Se(2B) 1025(1) 785(1) 2726(1)	46(1)
S(3B) 2876(2) 2246(1) 2703(1)	50(1)
C(4B) 2171(7) 2700(4) 3569(3)	41(1)
C(5B) 873(7) 2215(4) 3991(3)	37(1)
C(6B) 226(6) 1325(4) 3690(3)	34(1)
C(7B) +1041(6) § 818(4) 4084(3)	39(1) *
C(8B) -1689(7) -57(4) -3846(3)	37(1)
C(9B) -2936(7) -593(4) 4300(4)	⊴38(1)
C(10B) -3085(7) -420(4) 5184(4)	42(2)
C(11B) -4268(8) -932(5) -5598(4)	56(2)
C(12B) -5292(0) -1616(5) 5154(5)	° 62(2)
C(13B) -5164(8) -1800(4) 4299(5)	60(2)
C(14B) -4012(B) -1308(4) 3874(4)	» 50(2) «

а - 0

8

₀ **63**ି

.e

<u>ب جنبی</u> از با ا

		<u> </u>	×	
C(15B)	219(6)	°, 2668(4)	4747(3)	37(1)
C(16B)	407(7)	2423(4)	5557(4)	48(2)
C(17B)	» +233(B)	2846(5)	6247(4)	66(2)
Č(188)	-1015(8)	9515(5)	6131(5)	ə 61(2)
C(19B)	-1177(8)	3793(5)	5328(5)	64(2)
C(20B)	-590(7) 。	3359(4)	4624(4)	, 53(2)
N(218) 🕤	2828(6)	3547(3)	3952(3)	54(1)
C(22B)	4065(7)	4167(4)	3732(4)	47(2)
N(23B)	3973(6)	5001(4)	4021(4)	. 59(2)
C(24B) °	5169(10)	5645(5)	3882(5)	78(2)
C(25B)	6451(9)	5530(6)	3461(6)	83(2)
C(26B)	6596(9)	4691(6)	3185(5)	» 83(2)
C(27B)	Ğ407(8)	3981(5)	3334(5)	70(2) -

ΰ.

1

'n,

Ø

¢

Se(1A)-Se(2A)	× 2.465(2)	Se(1B)-Se(2B)	<u> </u>
Sp(1A)-C(8A)	1.854(5)	Se(18)-C(88)	1.861(5)
Se(2A)-C(6A)	1.879(5)	Se(28)-C(6B)	1.873(5)
Se(2A)-S(3A)	2.496(3)	Se(2B)-S(3B) 🔿	2.495(3)
S(3A)-C(4A)	<i>i</i> 1.681(6)	S(3B)-C(4B)	1.662(6)
C(4A)-C(5A)	1.427(8)	C(4E)-C(5B)	1.417(8)
C(5A)-C(6A)	1.402(8)	C(5B)-C(6B)	1.408(8)
C(6A)-C(7A)	1.419(7)	C(6B)-C(7B)	1.409(8)
C(7A)-C(8A)	1.369(8)	C(7B)-C(8B)	1.366(8)

Table 5.8: Selected torsion ang	les (°) for 5	1. 	
Se(1A)-C(8A)-C(9A)-C(10A)	32.8(7)	Se(1B)-C(8B)-C(9B)-C(10B)	"150.1(4)
Se(1A)-C(BA)-C(9A)-C(14A)	-146.2(4)	Se(18)-C(88)-C(98)-C(148)	a -29.0(7)
C(4A)-C(5A)-C(15A)-C(16A)	108.3(6)	C(4B)-C(88)-C(15B)-C(16B)	-110.1(6) [°]
C(4A)-C(5A)-C(15A)-C(20A)	-69.8(7)	C(4B)-C(5B)-C(15B)-C(20B)	69,3(7)
C(4A)-N(21A)-C(22A)-N(23A)	-158.2(6)	(4B)-N(21B)-C(22B)-N(23B)	155,9(6)
C(4A)-N(21A)-C(22A)-C(27A)	25(1) ° G	C(4B)-N(21B)-C(22B)-C(27B)	5.5

Øω

c

5.4 Crystal structure of <u>N-Phenyl-2-phenyl-2-(5-phenyl-3H-1,2-</u> diselenol-3-ylidine)acetamide,

The title compound 6 crystallises in the monoclinic system with one molecule in the asymmetric unit. Although the molecule contains a planar framework, and could be considered as the heterapentalene depicted in Figure 5.6, the Se-Se bond length of 2.3873(9)Å and the Se-O distance of 2.348 Å would seem to indicate that this σ structure should be considered to be monocyclic. As such the Se-Se bond length is only slightly longer that the covalent Se-Se bond length of 2.340(24)Å, (Allen *et al*; 1987).

Figure 5.6 : Possible heterapentalene equivalent to 6

Compound 6 crystallised from a mixture of dichloromethane and hexane as orange crystals; m.p. 472-473K. Cell determination, using 25 high-order reflections, and data collection were done on an Enraf-Nonius CAD4 four-circle diffractometer equipped with a graphite monochromator. Data reduction included correction for Lorentz and polarisation effects using standard Enraf Nonius routines, and absorption effects were corrected for empirically (North *et al*; 1968). Three standard reflections monitored every hour showed an average decrease of 9.8% and this was corrected for linearly. Unit cell parameters and details of the data collection are given in Table 5.9. The structure was solved by direct methods using SHELXL93 by least-squares methods, based on F². All non-H

 \odot

atoms were refined with anisotropic displacement parameters. H atoms were placed geometrically in the final cycles of refinement and allowed to refine with a common isotropic displacement parameter. Figure 5.7 shows a labelled SCHAKAL of the molecule and also indicates the numbering scheme used. Atomic coordinates and selected bond lengths are listed in Table 5.10 and Table 5.11 respectively.

້

1

		t
Table 5.9: Crystal and refine	ement data	
Compound	6 .	
Empirical formula	C ₂₃ H ₁₇ NOSe ₂	
Formula weight / g.mol*	481.3	
Temperature/K	295(2)	
Wavelength/Å	0.71059	ŀ
Crystal system	Monoclinic	l
Space group	P 2,/n	I
a/A	9.879(4)	1
b/Å	⁽⁾ 10.3395(8)	1
c/A	19.346(6)	
« ""	90	
Br	97.47(1)	ł
γ/ ^p	9Ö	
Volume/Å ³	1959.3(10)	
Z	° 4	
o / Mg.m ³	1.622	
Absorption coefficient/mm ¹	3.786	
F(000)	952	
Crystal size/mm ³	0.1 x 0.2 x 0.3	ļ
Range	3≲0≲30	
Index ranges :	19 <u>-</u>	
h	-13 →13	
K	∦ ∺•1-→14 .	ł
	-7	
Reflections collected	6772	
Independent reflections	5693	
R _{mt}	0.058	
Data/restraints/parametera	6693/0/245	
Max shift, Az	· · · · · · ·	
Residual density / e.A.ª	19 19	
(Δp) _{max}	0.813	ſ
(Ap)ma	-0.715	

ß

S		,0.812
R1 (all data) wR2 (all data)	D^{-1}	0.208
$wR2(1 > 2\sigma(1)) = 0$	· ·	0.102
R1 $(1 > 2\sigma(1))$		0.052
Reliability Indices		

ł	•
¢	
٠	_

Ø

· · ·	rri x/a	y/b	z/c	Ų _{eq}
Se(1)	2321(1)	1960(1)	-602(1)	55(1)
Se(2)	3757(1)	1269(1)	420(1)	47(1)
O(3)	4906(3)	211(3)	1398(2)	£*(1)
C(4)	4455(4)		4387(2)	43(1)
C(5)	3462(4)	-1334(4)	806(2)	39(1)
C(6)	3012(4)	-419(4)	328(2)	36(1)
C(7)	2013(4)	-626(4)	-269(2)	39(1)
C(8)	1563(4)	305(4)	-738(2)	• 41(1) •
C(9)	474(4)	108(5)	-1335(2)	46(1)
C(10)	441(5)	873(5)	-1938(2)	55(1)
C(11)	4580(6)	705(6)	-2479(2)	71(2)
C(12)	-1569(6)	-195(7)	-2438(3)	79(2)

, «	* 0 n		le service de la constante de	0 2
C(13,	-1554(5)	-943(6)	-1659(3)	88(?)
C(14)	-538(5)	-793(5)	°-1300(2)	f (1)
C(15)	2967(4)	-2693(4)	758(2)	35(1)
C(18)	· 1617(4)	-2987(4)	805(2)	48(1)
C(17)	1155(5)	-4258(5)	753(2)	··· 58(1)
C(18)	2020(6)	-5228(5)	658(2)	57(1)
C(19)	3357(5)	-4970(5)	611(2)	53(1)
C(20) 5	3825(4)	-3707(5) 。	652(2)	46(1)
N	4876(3)	-1770(3)	1899(2)	48(1)
C(21)	5891(4)	1576(4)	, 2474(2)	40(1)
C(22)	· 6683(4)		2709(2)	54(1)
C(23)	7647(5)	2504(8)	3289(2)	82(1)
C(24)	7531(5)	-1347(6), 🤗	3627(3)	69(2)
C(25)	7045(6)		_3401(3)	71(2)
C(26)	6072(5)	-413(5)	2815(3)	° 81(1)

Ø,

Se(1)-Se(2)	*	2.3877(9)
Se(1)-C(8)		1.872(4)
Se(2)-C(6)		1.894(4)
C(3)-C(4)	y ,	°, 1.239(5) °
C(4)-C(5)		1.461(6)
C(5)-C(6)		1.359(5)
C(8)-C(¹)	10 	1.432(5)
C(7)-C(19		1.358(5)
Se(2)-O/3)		• [°] 2.348 · • •

0

٦.

żĴ

3

2

4

68

Ø

e

¢

5.5-Crystal structure of 1,4-Bis(ethylimino)-5,6-dlhydro-2,2a2,3triselena-4a,6a-dlazacyclopentalcd]pentalene,

The title compound 7, crystallises in the monoclinic crystal system and exhibits the characteristic structural features of heterapentalenes, with long Se-Se bonds and wide Se-Se-Se bond angle. All other bond lengths in the heterapentalene framework are intermediate between those of single and double bonds.

The Se-Se bond lengths in 7, 2.5960(6)A and 2.6560(6)A are greater by 10.9% and 13.5% than the (two-centre two-electron) covalent Se-Se single bond length [2.340(24)Å, Allen *et al*; 1987]. The lengths of corresponding bonds and the size of corresponding bond angles in the two halves of the triheterapentalene framework are very similar, differing from one another by at most 0.06A and 2.2° respectively.

Compound 7 crystallised from dichloromethane-hexane (1:3) as orange needle-shaped crystals; m.p. 448-451K. Cell determination, using 25 high-order reflections, and data collection were done on an Enraf-Nonlus CAD4 four-circle diffractometer equipped with a graphite monochromator. Data reduction included correction for Lorentz and polarisation effects using standard Enraf Nonlus relatives, and absorption effects were corrected for empirically (North *et al*; 1968). Three standard reflections monitored every hour showed an average decrease of .8% and this was corrected for linearly. Unit cell parameters and details of the data collection are given in Table 5.12. The structure was solved by direct methods using SHELXS86 and refined using SHELXL93 by least-squares methods, based on F². All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed geometrically in the final cycles of refinement and allowed to refine with a common isotropic displacement parameter. Figure 5.8 shows a labelled SCHAKAL

diagram of the molecule and also indicates the numbering scheme used. Atomic coordinates and selected bond lengths are listed in Table 5.13 and Table 5.14 respectively.

Compound 7 Emplrical formula C ₂ H ₁₈ N ₄ Se ₃ Formula weight / g.mol ⁻¹ 415.12 Temperature/K 295(2) Wavelength/Å 0.71073 Crystal system Monoclinic Space group P 2,/a a/Å 8.005(1) b/Å 13,717(2)	لی المیلی الم المیلی المیلی br>المیلی المیلی br>المیلی المیلی
Emplrical formula CgH.gNgSe3 Formula weight / g.mol ⁻¹ 415.12 Temperature/K 295(2) Wavelength/Å 0.71073 Crystal system Monoclinic Space group P 2./s a/Å 8.005(1) b/Å 13.717(2)	
Formula weight / g.mol 1415.12Temperature/K295(2)Wavelength/A0.71073Crystal systemMonoclinicSpace groupP 2,/aa/A8.005(1)b/A13,717(2)	
Temperature/K295(2)Wavelength/A0.71073Crystal systemMonoclinicSpace groupP 2,/aa:/A8.005(1)b:/A13,717(2)	
Wavelength/A 0.71073 Crystal system Monoclinic Space group P 2,/a a/A 8.005(1) b/A 13,717(2)	
Crystal system Monoclinic Space group P 2,/a a/A 8.005(1) b/A 13,717(2)	indifica S indigers Alexander
Space group P 2,/a a/A 8.005(1) b/A 13,717(2)	
a/A 8.005(1) b/A 13,717(2)	
6/A 13,717(2)	
10/A · · · · · · · · · · · · · · · · · · ·	
000(1)	
0/3 0/3 0/2	
p//	
	nja majalama nj s
Volume/A* 1309.8(3)	
Z la marine and a second se	
p/Mg.m ³ ⇒ 2.105	و مناقد م
Absorption coefficient/mm ⁻¹ 8.404	<u>س. ز.</u>
F(000) 792	
Crystal size/mm ³ 0.35 x 0.13 x 0.11	0
Range 2.3≤0≤25	
Index ranges ;	an a
h *9-→ 9	
K 0->16	
II = 110 mm statement of the statement	o'~#2 1 000
Reflections conected 4585	
Independent reflections 2298	
R _{int} 0.031 *	-
R _{int} 0.031 ⁰ Data/restraints/parameters 2298/0/147	
R_{int} 0.031Data/restraints/parameters2298/0/147Max shift, Δz 0	
R_{int} 0.031Data/restraints/parameters2298/0/147Max shift, Δz 0Residual density / e.A ³ 0	
R_{int} 0.031Data/restraints/parameters2298/0/147Max shift, Δz 0Residual density / e.A ⁻³ 0.542	
R_{int} 0.031Data/restraints/parameters2298/0/147Max shift, Δz 0Residual density / e.Å-30.542 $(\Delta p)_{max}$ 0.542 $(\Delta p)_{max}$ 0.441	
R_{int} 0.031Data/restraints/parameters2298/0/147Max shift, Δz 0Residual density / e.Å ⁻³ 0.542 $(\Delta r)_{max}$ 0.542 $(\Delta r)_{max}$ 0.441Reliability indices0.542	
R_{int} 0.031Data/restraints/parameters2298/0/147Max shift, Δz 0Residual density / e.Å.30.542 $(\Delta p)_{max}$ 0.542 $(\Delta p)_{max}$ 0.441Reliability indices0.026R1(i > 2 σ (i))0.026	
R_{int} 0.031Data/restraints/parameters2298/0/147Max shift, Δz 0Residual density / e.Å ⁻³ 0 $(\Delta p)_{max}$ 0.542 $(\Delta p)_{max}$ 0.441Reliability indices0R1(i > 2 σ (i))0.026wR2 (i > 2 σ (i))0.059R1(all data)0.052	ing and the second seco
$\begin{tabular}{ c c c c c c } \hline R_{int} & 0.031 \\ \hline Data/restraints/parameters & 2298/0/147 \\ \hline Max shift, Δz & 0 \\ \hline Residual density / e.$A^3 & 0.542 \\ \hline (Δr)_{max} & 0.542 \\ \hline (Δr)_{max} & 0.542 \\ \hline (Δr)_{max} & 0.441 \\ \hline Reliability indices & 0.026 \\ \hline R1 & $(i > 2\sigma(i))$ & 0.026 \\ \hline WR2 & $(i > 2\sigma(i))$ & 0.052 \\ \hline WR2 & $(all data)$ & 0.063 \\ \hline \end{tabular}$	inge der

ы

 \sim

0	x/a	y/b "	z/c	- U.,
Se(1) ²	288(1)	8446(1)	<u>, 2022(1)</u>	48(1)
Se(2)	1851(1)	8454(1)	3982(1)	° 37(1)
Se(3)	3445(1)	8048(1)	5940(1)	46(1)
N(1)	-151(4)	6486(2)	1212(3)	45(1)
N(2)	1086(3)	6641(2)	· 2961(2)	35(1)
N(3)	2458(3)	6476(2)	4590(2)	34(1)
N(4) °	3558(4)	5968(2)	8285(2)	#1(1) ,
C(1)	349(4)	7086(2)	1979(3)	36(1)
C(2)	1798(4)	7099(2)	3845(3)	31(1)
C(3)	3174(4)	6894(2)	5678(3)	
C(4)	2174(5)	5466(2)	4223(3)	41(1)
C(5)	1260(5)	5574(2)	3068(3)	- 44(1)
C(6)	-906(5)	6907(3)	175(3)	52(1)
C(7)	-1647(6)	6131(3)	-576(3)	70(1)
C(8)	4243(5)	6137(3)	7428(3)	50(1)
C(9)	2911(5)	> 6012(3)	8245(3)	67(1)*

Se(1)-Se(2) Se(2)-Se(3) Se(1)-C(1)	2.5960(8) °° 2.6560(8) 1.895(3)
Se(2)-Se(3) 20 Se(1)-C(1)	2.6560(6) 1.895(3)
Se(1)-C(1)	1.895(3)
9 144 19 19 19 19	
S#(2)-C(2)	1.857(3)
Se(3)-C(3)	1.894(3)
N(2)-C(1)	1.408(4)
N(2)-C(2)	1.328(4)
N(3)-C(2)	1.321(4)
N(3)-C(3)	. 1.421(4)
N(1)-C(1)	1.261(2)
N(4)-C(3)	1.259(4)

Ű

a

0

4

з

5.6 Crystal structure of 2,3-Diethyl-6,7-dihydro-5H-2al4-selena-2,3, 4a,7a-tetraazacyclopent[cd]indene-1(2H),4(3H)-diselone.

The title compound 8, crystallises in the monoclinic crystal system, and exhibits the characteristic structural features of heterapentalenes, with long Se-N bonds and wide N-Se-N bond angle. All other bond lengths in the heterapentalene framework are intermediate between those of single and double bonds.

Compound 8 contains elongated Se-N bonds of length 2.030(5)Å and 2.042(5)Å which are greater by 8.6% and 9.2% respectively, than the two-centre two-electron Se-N covalent bond of length 1.87Å, based on the sum of the covalent radii of Se and N (Pauling; 1960). The lengths of corresponding bonds and the size of corresponding bond angles in the two halves of the tribeterapentalene framework are very similar, differing from one another by at most 0.027Å and 1.2° respectively.

Compound 8 crystallised from dichloromethane-hexane (1:3) as yellow needle shaped crystals; m.p. 468-469K. Cell determination, using 25 high-order reflections, and data collection were done on an Enraf-Nonlus CAD4 four-circle diffractometer equipped with a graphite monochromator. Data reduction included correction for Lorentz and polarisation effects using standard Enraf Nonius routines, and absorption effects were corrected for empirically (North *et al*; 1968). Three standard reflections monitored every hour showed only random fluctuations: Unit cell parameters and details of the data collection are given in Table 5.15. The structure was solved by direct methods using SHELXS86 and refined using SHELXL93 by least-squares methods, baced on F². All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed geometrically in the final cycles of

refinement and allowed to refine with a common isotropic displacement parameter. Figure 5.9 shows a labelled SCHAKAL diagram of the molecule and also indicates the numbering scheme used. Atomic coordinates and selected bond lengths are listed in Table 5.16 and Table 5.17 respectively.

Table 5.45: Crystal and refi	nement data
Compound	8
Empirical formula	C ₁₀ H ₁₆ N ₄ Se ₃
Formula weight / g.mol ^{.1}	429.15
Teangerature/K	293(2)
Way slength/A	9.71073
CryLial system o	Monoclinic
Space group	P2,
a/A	5,322(2)
b/A	10.531(3)
c/A	12,939(2)
al ^o	. 90
β/° · · · ·	
γ/?	90
Volume/A ³	715.8(4)
Z (set)	2
p/Mg.m ³	1.991
Absorption costficient/mm*	7.693 0
F(000)	412
Crystal size/mm ¹⁸ .	1.72 x 0.12 x 0.12
Rånge "	. ≥ 2.5≤∂≤30
index ranges :	
ħ	-7-+7
K	° 0>14 .48
Patiantions collected	4370
Independent reflections	2102
B "U	ñ 078
Data/restrainte/něramatore	2193/0/154
	0.001
MRX STIR, AZ	
rtesiqual density / e.A.*	D.733
(Ap) _{rein}	-0.476
Reliability indices	u in the second se
R1 (1 > 2 0 (1))	0.037
WR2 (l > 2ct(l))	0.089
wR2 (all date)	0.078
	and all program in the second state of the sec

Figure 5.8 : Labelled Schakal diagram of 8

¢

40

	x/a	y/b	z/c	U,
Se(1)	786(1)	-4889	8970(1)	57(1)
Se(2)	6465(1)		8434(1)	43(1)
Se(3)	10360(1)	-1727(1)	5449(1)	64(1)
N(1)	3936(10)	-2886(5)	9105(4)	42(1)
N(2)	4136(9)	-3833(6)	7856(4)	43(1)
N(3)	6947(9)	-2915(6)	6629(4)	45(1)
N(4)	8687(10)	-1143(6)	7354(4)	45(1)
C(1)	3062(11)	-3716(7)	8605(5)	41(1)
C(2)	5771(11)	-2935(6)	7474(4)	39(1)
C(3)	8626(11)	-1889(7)	6562(7)	45(2)
C(4)	6385(13)	-3919(9)	5822(5)	56(2)
C(5)	5691(13)	-5129(8)	6307(5)	60(2)
C(6)	3474(12)	+4922(8)	6933(5)	54(2)

8:33

C(7)	3282(13)	2266(9)	10110(5)	58(2)
C(8)	· 5037(18)	-2917(10)	10978(6)	78 (3) [~]
C(9)**** §	10143(13)	^{2,} 52(8)	7496(6)	57(2)
C(10)		1128(10)	6862(7)	83(3)
0	for the second s			0 Qj

And and a

-5

q

φ

σ

đ

Ç.

¢7

ß

0

o

Table 5.17: Selected bo	ond lengths (Å) for 8 👘 💡
Se(1)-Č(1) ∞ "	1.829(7)
Se(2)-C(2)	1.831(6)
Se(2)-N(1)	2.030(5)
Se(2)-N(4)	2.042(5)
Sê(3)-C(3)	1,838(6)
N(1)-C(1)	1,310(9) 0
N(2)-C(2)	1.331(8)
N(2)-C(1)。 °	1.440(8)
N(3)-C(2) 🖘	1.344(7)
N(3)-C(3)	1.413(9)
N(4)-C(3)	1.288(9)

ił

0

a

5.7 Crystal structure of 5-p-methoxyphenyl-2-p-methoxyphenyl -Imino-3,24 henyl-1,6,6a A triselenapentalene.

The title compound 9, crystallises in the monoclinic crystal system, and exhibits the characteristic structural features of heterapentalenes, with the Se-Se honds long and the Se-Se-Se bond angle wide. All other bond lengths in the heterapentalene framework are intermediate between those of single and double bonds.

The Se-Se bond lengths in 9, 2.542(2)A and 2.598(2)A are greater by 8.6% and 11.0% than the (two-centre two-electron) covalent Se-Se single bonc [2.340(24)A, Allen et al; 1987]. The lengths of corresponding bonds and the size of corresponding bond angles in the two halves of the triheterapentalene framework a differ somewhat but this would be consistent with the assymetric substitution pattern on the pentalene framework.

O

Compound 9 crystallised from benzene as purple needle-shaped crystals; m.p. 506-507 K. Cell determination, using 25 high-order reflections, and data collection were done on an Enraf-Nonius CAD4 four-circle diffractometer equipped with a graphite monochromator. Data reduction included correction for Lorentz and polarisation effects using standard Enraf Nonius routines, and absorption effects were corrected for empirically (North et al, 1968). Three standard reflections monitored every hour showed an average increase of 3.2% and this was corrected for linearly. Unit cell parameters and details of the data collection are given in Table 5.18. The structure was solved by direct methods using SHELXS86 and refined using SHELXL93 by least-squares methods, based on F². All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed geometrically in the final cycles of refinement and allowed to refine with a common

is tropic displacement parameter. Figure 5.10 shows a labelled SCHAKAL diagram of the molecule and also indicates the numbering scheme used. Atomic coordinates and selected bond lengths are listed in Table 5.19 and Table 5.20 respectively.

Table 5.18 : Crystal and refinement data					
Compound	9				
Empirical formula	S25H21NO2Se				
Formula weight / g.mol ⁻¹	604.31				
Temperature/K	293(2)				
Wavelength/Å	0.71069				
Crystal system	Monoclinic [®]				
Space group	P 2,/c				
L/A	7.394(7)				
b/A	18 295(2)				
c/A	17.487(1)				
α/° • °	0 90				
₿ ₽ ₿	90.12(4)				
Y12.	• 80				
Volume/A ³	2365(2)				
2	· · · · · · · · · · · · · · · · · · ·				
o / Ma.m ⁻³	1.897				
Absorption coefficient/mm*	4.687				
F(000)	11.84				
· · · · · · · · · · · · · · · · · · ·					
Crystal size/mm ³	0.35 x 0.5 x 1.0				
Crystal size/mm³ Range	0.35 x 0.5 x 1.0 ° 2.5≤0≤30				
Crystal size/mm ³ Range Index ranges :	0.35 x 0.5 x 1.0 2.5≤0≾30				
Crystal size/mm ³ Range Index ranges : h	0.35 × 0.5 × 1.0 2.5≤0≤30				
Crystal size/mm ³ Range Index ranges : h k	0.35 × 0.5 × 1.0 2.5≤0≤80 -10-→10 -1-→25				
Crystal size/mm ³ Range Index ranges : h k l	0.35 × 0.5 × 1.0 2.5≤0≤30 -10→10 •1→25 •1→24				
Crystal size/mm ³ Range Index ranges : h k l Reflections collected	0.35 × 0.5 × 1.0 2.5≤0≤80 -10-→10 -1-→25 -1-→24 7913				
Crystal size/mm ³ Range Index ranges : h k l Reflections collected Independent reflections	0.35 × 0.5 × 1.0 2.5≤0≤30 -10→10 -1→25 -1→24 7913 6873				
Crystal size/mm ³ Range Index ranges : h k l Reflections collected Independent reflections R _{mt}	0.35 × 0.5 × 1.0 2.5≤0≤80 -10->10 -1->25 -1->24 7913 6873 0.056				
Crystal size/mm ³ Range Index ranges : h k l Reflections collected Independent reflections R _{mt} Data/restraints/parameters	0.35 × 0.5 × 1.0 2.5≤0≤30 -10→10 -1→25 -1→24 7913 6873 0.056 6873/0/281				
Crystal size/mm ³ Range Index ranges : h k l Reflections collected Independent reflections R _{mt} Data/restraints/parameters	0.35 × 0.5 × 1.0 2.5≤0≤80 -10->10 -1->25 -1->24 7913 6873 0.056 6875/0/281 -0.001				
Crystal size/mm ³ Range Index ranges : h k 1 Reflections collected Independent reflections R _{at} Data/restraints/parameters // ax shift, Δz Residual density / e.A ⁻³	0.35 × 0.5 × 1.0 2.5≤0≤80 -10-→10 -1-→25 -1-→24 7913 6873 0.056 6873/0/281 -0.001				
Crystal size/mm ³ Range Index ranges : h k l Reflections collected Independent reflections R _{mt} Data/restraints/parameters // γx shift, Δz Residual density / e.Å ⁻³ (Δρ) _{max}	0.35 × 0.5 × 1.0 2.5≤0≤80 -10->10 -1->25 -1->24 7913 0873 0.056 6873/0/281 -0.001 0.931				
Crystal size/mm ³ Range Index ranges : h k 1 Reflections collected Independent reflections R _{int} Data/restraints/parameters // px shift, Δz Residual density / e.Å ⁻³ (Δp) _{max} (Δp) _{max}	0.35 × 0.5 × 1.0 2.5≤0≤80 -10-→10 -1-→25 -1-→24 7913 6873 0.056 6873 0.056 6873 0.056 0.931 -0.464				
Crystal size/mm ³ Range Index ranges : h k l Reflections collected Independent reflections R _{mt} Data/restraints/parameters // γx shift, Δz Residual density / e.Å ⁻³ (Δρ) _{max} (Δρ) _{max} (Δρ) _{max}	0.35 × 0.5 × 1.0 2.5≤0≤80 -10->10 -1->25 -1->24 7913 0873 0.056 6873/0/281 -0.001 0.931 -0.464				
Crystal size/mm ³ Range Index ranges : h k 1 Reflections collected Independent reflections R_{mt} Data/restraints/parameters Max shift, Δz Residual density / e.Å ⁻³ ($\Delta \rho$) _{max} ($\Delta \rho$) _{max} ($\Delta \rho$) _{max} (Δr) _{max} (Δr) _{max} (Δr) _{max}	$\begin{array}{c} 0.35 \times 0.5 \times 1.0 \\ \hline 2.5 \le 0 \le 30 \\ \hline -10 \rightarrow 10 \\ -1 \rightarrow 25 \\ -1 \rightarrow 24 \\ \hline 7913 \\ \hline 0.056 \\ \hline 6873 \\ \hline 0.056 \\ \hline 6873 / 0/281 \\ -0.001 \\ \hline 0.931 \\ -0.464 \\ \hline 0.052 \\ 0.049 \\ \end{array}$				
Crystal size/mm ³ Range Index ranges : h k 1 Reflections collected Independent reflections R _{int} Data/restraints/parameters // px shift, Δz Residual density / e.A ⁻³ (Δp) _{max} (Δp) _{max}	$\begin{array}{c} 0.35 \times 0.5 \times 1.0 \\ \hline 2.5 \leq 0 \leq 30 \\ \hline -10 \rightarrow 10 \\ -1 \rightarrow 25 \\ -1 \rightarrow 24 \\ \hline 7913 \\ \hline 0.056 \\ \hline 6873 \\ \hline 0.056 \\ \hline 6873 \\ \hline -0.001 \\ \hline 0.931 \\ -0.464 \\ \hline 0.052 \\ \hline 0.099 \\ \hline 0.196 \\ \end{array}$				
Crystal size/mm ³ Range Index ranges : h k l Reflections collected Independent reflections R_{mt} Data/restraints/parameters Max shift, Δz Residual density / e.Å ⁻³ (Δp) _{max} (Δp) _{max}	0.35 × 0.5 × 1.0 2.5≤0≤80 -10->10 -1->25 -1->24 7913 6873 0.056 6873/0/281 -0.001 0.931 -0.464 0.052 0.099 0.196 0.111				
Crystal size/mm ³ Range Index ranges : h k 1 Reflections collected Independent reflections R_{mt} Data/restraints/parameters Max shift, Δz Residual density / e.Å ⁻³ (Δp) _{max} (Δp)(Δp)(Δp) (Δp)(Δp)	0.35 × 0.5 × 1.0 2.5≤0≤80 -10-→10 -1-→25 -1-→24 7913 6873 0.056 6873 0.056 6873/0/281 -0.001 0.931 -0.464 0.052 0.099 0.196 0.111				

œ

C

. .

。 **78**

Ő.

ely,

ں د (ر)

Figure 5.10: Labelled Schakal diagram of 9 &

~u

Ċ17

C10

C13

۴١

 \Diamond

çı,

Table & d.A. Ata	A second s	Lange and the second	and an all so in the second	
Table 5.19: Atomic x103)	for 9) and equivalent isotro	pic displacement pa	irameters (A* ,
······································	x/a	dy/b	z/c	U,
Se(1) °	3441(1)	6195(1)	5321(1)	44(1)
Se(2)	6393(1)	5747(1)	4742(1)	40(1)
Se(3)	_ 9316(1),	5352(1)	4031(1)	48(1)
O(1)	- /080(5)	9222(2)	5183(2)	82(1)
O(2) 。	15835(5)	4406(2)	1760(2)	68(1)
N	10125(5)	° 6223(2)	2772(2)	50(1)
C(4)	9037(6)	6145(2)	3381(3)	42(1)
C(5)	7617(6)	6648(2)	3500(2)	38(5)
C(6)	8333(5)	6585(2)	4080(2)	(april)
C(7)	4927(6)	7087(2)	4193(2)	3.80
C(8)	3548(6)	7029(2)	4704(2)	ઉન્દ
C(9)	2124(6)	7585(2)	4804(2)	40(1)
C(10)	2405(6)	8307(3)	4801(3)	48(1)
C(11)	1115(6)		4724(3)	54(1)
C(12)	-514(7)	4660(3)	5072(3)	46(1)
C(13)	-841(7)	7940(3) 0	5254(3)	59(1)
[#] C(14)	458(6)	7416tak	5127(3)	55(1)
C(15)	-3321(7)	9072(4)	5566(4)	85(2)
C(16)	7421(6)	7247(2)	2930(2)	37(1)
C(17)	6130(7)	7201(3)	2357(3)	51(1)
C(18)	5988(7)	7734(3)	1807(3)	62(2)
C(19)	7116(8)	8316(3)	1815(3)	61(2)
C(20)	8397(8)	8384(3)	2378(3)	65(2)

C(21) •	8534(7)	7846(3)	2935(3)	56(1)
C(22)	11567(8)	5755(3)	2534(3)	· 44(1)
C(23)	12984(6)	5592(2)	3028(3)	44(1)
C(24)	14373(6)	5149(3)	2780(3) 0	45(T)
C(25) "	14336(6)	4862(3)	2053(3)	48(1)
C(26)	12928(7)	5028(3)	/ 1589(3)	61(1)
C(27)	11554(7)	5476(3)	1808(3)	59(1)
C(28)	17115(7)	4210(4)	2248(3)	75(2)

Se(1)-C(8)	1.872(4)	0	с С
Se(1)-Se(2)	2.542(2)	, .	
Se(2)-C(8)	1.893(4)		
Se(2)-Se(3)	2.598(2)		i) I
Se(3)-C(4)	4.855(4)		······································
C(4)-C(5) a ··	1.411(6)		
Q(0)-C(8)	1,399(5)	8 J J	
C(6)-C(7) 0	1.428(6)		in de la company de la comp
C(7)-C(8)	1.361(6)	PRoc (nai taini, * 1 - 1 - Spinit	n na manadalah kata dari kata d

۵)

¢

0

ý.

5.8 Crystal structure of 1,4-Bis-<u>p</u>-ethoxyphenylimin3-5,6-dihydro-2, 3-dithia-2aλ⁴-selena-4a,6a-diazacyclopenta[<u>cd]</u>pentalene.

The title compound **10** crystallises in the triclinic system and contains two molecules. A and B in the asymmetric unit. These molecules differ conformationally in terms of the orientation of the arômatic rings relative to the pentalene framework of the rest of the molecule. Both molecules exhibit the characteristic structural features of heterapentalenes, with long S-Se bonds and wide S-Se-S bond angle. All other bond lengths in the heterapentalene framework are intermediate between those of single and double bonds.

The Se-S bond lengths in molecule A 2.478(4)Å and 2.493(4)Å are greater by 12.9% and 13.6% respectively than the (two-centre two-electron) covalent Se-S single bond length [2.195(15)Å, Allen *et al*, 1987]. The Se-S bonds in molecule B are 2.467(4)Å and 2.518(4)Å in length and thus longer that the Se-S bond (2.195Å) by 12.4 and 14.7% respectively. The lengths of the corresponding bonds and the size of the corresponding bond angles in the two halves of the triheterapentalene framework in A and B are very similar, differing from one another by at most 0.015 Å and 0.6°, and 0.051Å and 0.76° respectively.

10

ΩEI

Compound 10 crystallised from dichloromethane as blight yellow needle shaped crystals; m.p. 465-466K. Cell determination, using 25 high-order reflections, and data collection were done on an Enraf-Nonius CAD4 four-circle diffractometer equipped with a graphite monochromator. Data reduction included correction for Lorentz and polarisation effects using standard Enraf Nonius routines, and absorption effects were corrected for empirically (North *et al*; 1968). Three standard reflections monitored every hour showed an average decrease of 5.7% and this was corrected for linearly. Unit cell parameters and details of the data collection are given in Table 5.21. The structure was solved by direct methods using SHELXS86 and refined using SHELXL93 by least-squares methods, based on F². All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed geometrically in the final cycles of refinement and allowed to refine with a common isotropic displacement parameter. Figure 5.11 shows a labelled SCHAKAL diagram of the molecule and also indicates the numbering scheme used. Atomic coordinates and selected bond lengths are listed in Table 5.22 and Table 5.23 respectively. The selected torsion angles listed in Table 5.24 illustrate the conformational differences between the two molecules in the assymetric unit

Compound	10
Empirical formula	, C21H22N4O2S2Se
Formula weight / g.mol ⁻¹	505.51
Temperature/K	293(2)
Wavelength/Å	0.71073
Crystal system	Tristinic •
Space group	F.I
ØA	13,67 (10)
NA	14.11(2)
» Av	14.399(8)
xp ° × 2.	· 94.49(6)
3/P	4 118,25(3)
/ ⁰	111.51(5)
Volume/Å ³	2167(4)
	4
o / Mg.m ^{.a}	.1.55
Absorption coefficient/mm ⁻¹	 1.952
F(000)	1032
Crystal size/mm ³	0.15 x 0.2 x 1.1 🐂
Range	°2.5≤9≤30
ndex ranges :	n - 19 ² - 192 -
h	·-19->16
K ¹	-19-→19
	0-+20
Reflections collected	13044
ndépendent reflections	12576

ųσ

R _m	0.021
Data/restraints/parameters	12576/0/382
Max shift, ∆z	0.182 🖏 🖷
Residual density / e.A.3	an ha she an
(Δρ) _{(πax}	1.257
(Ap) _{min}	-0.911
Reliability Indices	Ξ G
R1 $(l > 2\sigma(l))$	· 0.058
wR2 (1 > 20(1))	0.165
R1 (all data)	0.121
wR2 (ali data)	0.173
8	1.072

Figure 5.11: Labelled	Schakal	diagram	of	1	0
-----------------------	---------	---------	----	---	---

	∠ x/a	y/b	z/c	U _{en}
Se(A)	4625(1)	8037(1)	4613(1)	47(1)
S(1A)	5807(1)	9778(1)	6077(1)	57(1)
S(24)	3529(1)	6095(1)	3574(1) 🍃	59(1)
N(1A)	6531(3)	9731(2)	8172(3)	57(1)
N(2A)	5828(3)	8141(2)	6881(2)	47(1)
N(3A)	4543(3)	6488(2)	5733(2)	45(1)
N(4A)	3430(3)	4712(2)	4821(2)	48(1)
O(1A)	2821(8)	6009(4)	785(4)	158(2)
O(2A)	147(3)	823(2)	1455(2)	70(1)
C(1A)	6040(3)	\$247(3)	7172(3)	48(1)
C(2A)	4954(3)	° 7517(3)	5811(3)	44(1)
C(3A)	3763(3)	5455(3)	4719(3)	46(1)
C(4A)	4971(4)	6330(3)	6825(3)	57(1)
C(5A)	5716(4)	7472(3)	7611(3)	62(1)
C(6A)	6821(4)	10824(3)	8432(3)	54(1)
C(7A)	8017(5)	11636(4)	8962(4)	86(1)

.

٩ï

.

 ${}^{\bigcirc}$

		······································	· · · · · · · · · · · · · · · · · · ·	
C(8A)	8270(8)	12699(5)	9248(5)	100(2)
C(9A)	7317(4) 0	12849(4)	8968(4)	• 73(1)
C(10A)	6165(5)	12177(4)	8495(4)	81(1)
C(11A)	- 5905(4)	11117(4)	8225(4)	72(1)
C(12A)	8308(7)	14722(6)	9519(7)	147(3)
C(13A)	8111(6)	15768(5)	9638(5)	100(2)
C(14A)	2634(3)	3773(3)	3928(3)	45(1)
C(15A)	1594(4)	* 3628(3)	2911(3)	6D(1)
C(18A)	811(4)	2649(3)	2118(4)	63(1)
C(17A)	1013(3)	1757(3)	2297(3)	· · · 52(1)
C(18A)	2012(3)	1882(3)	3302(3)	51(1)
C(19A)	2791(3)	2865(3)	4105(3)	48(1)
C(20A)	257(4)	-126(4)	1845(4)	74(1)
G(21A)	-867(5)	-1059(4)	843(4)	87(2)
Ge(B)	1570(1)	8076(1)	3989(1)	56(1)
S(1B)	2396(1)	9948(1)	5027(1)	60(1)
S(2B):	410(1)	6066(1)	3196(1)	69(1)
N(1B)	1428(2)	10278(2)	6262(2)	45(1)
N(2B)	724(2)	8568(2)	5308(2)	43(1)
N(3B)	-160(2)	6845(2)	4488(2)	44(1)
N(48)	-1241(3)	6 5047(2)	3818(2)	48(1)
O(1B)	3983(3)	° 14702(2)	8224(2)	61(1)
O(2B)	-3338(2)	694(2)	1717(2)	58(1) 🐔
C(1B)	1503(3)	9671(3)	5614(3)	P 43(1)
C(2B)	641(3)	7808(3)	4630(3)	44(1)
C(3B)		5872(3)	3823(3)	a (47(1)
C(4B)	-729(3)	6904(3)	5130(3)	47(1)
C(5B)	-124(3)	8104(3)	5691(3)	48(1)
C(6B)>	2099(3)	11392(3)	6701(3)	45(1)
C(7B)	3107(3)	12081(3)	6649(3)	55(1)
C(8B)	3696(4)	13174(3)	7152(3)	57(1)
C(9B)	3317(3)	13618(3)	7742(3)	48(1)
C(10B)	2331(3)	12950(3)	7793(3)	52(1)
C(11B)	1739(3)	11886(3)	7279(3)	50(1)
C(12B)	3700(4)	15171(3)	8925(3)	58(1)
C(13B)	4535(4)	16382(3)	9363(4)	68(1)
C(14B)	-1700(3)	3977(3)	3234(3)	45(1)
C(15B)	-2367(3)	3208(3)	3540(3)	48(1)
C(16B)	-2903(3)	2127(3)	3020(3)	51(1)
C(17(?)	-2787(3)	1775(3)	2172(3)	48(1)
C(18B)	-2133(3)	2534(3)	1850(3)	56(1)
C(19B)	-1595(4)	3819(3)	2374(3)	57(1)
C(20B)	-3145(4)	306(3)	906(4)	65(1)
C(21B)	-3882(4)	-897(3)	506(4)	70(1)

 \mathcal{O}

3

ļ;

ý.

84

ŕ

Table 5.23: Select	ted bond lengths (A) t	for 10"	б с ₃
Se(A)-C(2A)	1.850(4)	° 86(B)-C(2B)	1.849(3)
Se(A)-S(1A)	2.478(4)	St(B)-S(1B)	2.497(4)
Se(A)-S(2A)	2.493(4)	Se(B)-S(2B)	2.518(4)
S(1A)-C(1A)	1.741(4)	S(18)-C(18)	1.742(3)
S(2A)-C(3A)	1.732(4)	S(2B)-C(3B)	1.745(4)
N(1A)-C(1A)	1.259(5)	• N(1B)-C(1B)	° 1.284(4)
N(2A)-C(2A)	1.337(5)	N(2B)-C(2B)	1.326(4)
N(2A)-C(1A)	1.400(5)	N(2B)-C(1B)	1.409(5)
N(3A)-C(2A)	1.324(5)	N(3B)-C(2B)	⁽²⁾ 1.320(4)
N(3A)-C(3A)	1.412(5) °	N(3B)-C(3B)	1.417(5)
N(4A)-C(3A).	1.284(5)	N(4B)-C(3B)	1.268(4)

B5

	والمردان المحاولة والمناط والمنطقة والمنطقة والمنطاة مزر سيسا بنفته وسلطتهم والمؤفسية مقدو والمتده سليك	
gles (°) for 1	0 <u> </u>	
-105.2(5)	C(1B)-N(1B)-C(6B)-C(7B)	-8.6(6)
79.2(5)	C(1B)-N(1E)-C(6B)-C(11B)	173.0(3)
-38.6(5)	C(3B)-N(4B)-C(14B)-C(15B)	167.2(4)
149.6(8)	C(3B)-N(4B)-C(14B)-C(19B)	-15.3(8)
	gles (°) for 1 -105.2(5) 79.2(5) -38.6(5) 149.6(8)	gies (*) for 10 -105.2(5) C(1B)-N(1B)-C(6B)-C(7B) 79.2(5) C(1B)-N(1E)-C(6B)-C(11B) -38.6(5) C(3B)-N(4B)-C(14B)-C(15B) 149.6(6) C(3B)-N(4B)-C(14B)-C(19B)

5.9 Crystal structure of 2,3-Diethyl-5,6,7,8-tetrahydro-2aλ⁴- thia-2,3,4a,8a-tetraazacyclopent[cd]azulene-1(2H),4(3H)-diselone.

U

The title compound **11**, crystallises in the monoclinic crystal system, and exhibits the characteristic structural features of heterapentalenes, with long S-N bonds and wide N-S-N bond angle. All other bond lengths in the heterapentalene framework are intermediate between those of single and double bonds.

Compound 11 contains elongated N-S bonds [1.8765(13)Å and 1.9032(14)Å] which are greater by 9.7% and 11.3% respectively, than the two-center, two-electron N-S bond [1.710(19); Allen *et al*;1987]. The lengths of the corresponding bonds and the size of the corresponding bond angles in the two halves of the heterapentalene framework are very similar, differing from one another by at most 0.027 Å and 0.83° respectively.

The title compound was recrystallised from a mixture of dichloromethane and hexane (1:2) as clear crystals, m.p. 413-414 K. Cell determination, using 26 high-order reflections, and data collection were done on Enraf-Nonius CAD4 four-circle diffractometer equipped with a graphite monochromator, using standard Enraf-Nonius routines. Data reduction was done using the PC version of NRCVAX and included correction for Lorentz and polarisation effects. Absorption effects were corrected for analytically, using the ABSORP routine from the NRCVAX suite of programs. This routine required that the faces of the crystal be indexed and measured. It then used this information to calculate the necessary corrections by a Gaussian integration method. Three standard reflections monitored every hour showed only random fluctuations. Unit cell parameters and details of the data

collection are given in Table 5.25. The structure was solved by direct methods using SHELXS86 and refined using SHELXL93 by least-squares methods, based on F². All non-H atoms were refined with anisotropic displacement parameters. H a ms were placed geometrically in the final cycles of refinement and allowed to refine with a common isotropic displacement parameter. Figure 5.12 shows a labelled SCHAKAL diagram of the molecule and also indicates the numbering scheme used. Atomic coordinates and selected bond lengths are listed in Table 5.26 and Table 5.27 respectively.

Table 5.25: Crystal and refin	ement data
Compound	.11
Empirical formula	C ₁₁ H ₁₀ N ₄ S ₄
Formula weight 7 g.mol ²¹	302.47
Temperature/K	293(2)
Wavelength/Å	0.7107
Crystal system	Monoclinic
Space group	P2,
a/A	5.815(2) 🐇
b/A	10.0665(10)
c/A	13.0482(10)
au ^{ro}	90
ß/°	100.13(2)
۰ ۲	90
Volume/A ^s	726.0(3)
Z	2
p / Mg.m ⁻³	1.* ?4
Absorption coefficient/mm ⁻¹	0.499
F(000)	. 320
Crystal size/mm ³	0.37 x 0.45 x 0.9
Range	2.5s0s40
index ranges : h k l	-10-→10 -1-→18 23-→23
Reflections collected	5043
Independent reflections	5043
Data/restraints/parameters	5043/0/165
Max shift, Az	\$2.009
Residual density / e.Å ⁻³ (Δρ) _{mex} (Δρ) _{mex}	0,256 2 ²² -0.241

Figure 5.12: Labelled Schakal diagram of 11

	///////////////////////////////////////		Mirana antala antal Marindan dan Varanan adal kabu dan d	Richards Bernard Lin, makin offersis is a
*	x/a or	y/b	z/c	U _{sa} .
S(1) *	3882(1)	374	1650(1)	46(1)
)(2)	90(1)	366(1)	4312(1)	63(1)
\$(3)	9326(1)	-2501(1)	1069(1)	62(1)
N(1)	6201(2)	-464(2)	997(1)	51(1)

Ø

-92

0		Ф.,	· · · · · ·	
N(2) .	1745(2)	\$20(2)	2551(1)	51(1)
N(3)	3019(2)	-785(1)	3424(1)	. 45(1)
N(4)	6368(2)	-1709(1)	2408(1)	44(1)
C(1)	4712(2)	-816(1)	2585(1)	d' 42(1)
C(2)	4465(3)	-1544(2)	4382(1)	58(1)
C(3)	4003(3)	-3011(2)	4270(2)	68(1)
C(4)	4918(3)	-3818(2)	3336(2)	66(1)
C(5)	7085(3)	-2897(2)	3050(1)	58(1)
-C(6)	7255(2)	-1507(2)	1459(1)	47(1)
G(7)	1803(2)	217(2)	3383(1)	48(1)
C(8)	\$482(4) 0	-20(2)	° -40(1)	65(1)
°C(9)	4791(5)	-771(3)	4862(2)	89(1)
C(10)	155(3)	2059(2)	2264(1)	60(1)
C(113	1037(4)	3286(2)	2873(2)	84(1)

S(1)-C(1)		1.7149(13)
S(1)-N(1)	а. "Ци	1.8765(13)
S(1)-N(2)	9	1.9032(14)
S(2)-C(7)		1.6819(13)
S(3)-C(6)		1.6797(14)
N(1)-C(6)	ΰ, ^β	. 1.300(2)
N(2)-C(7)		1.291(2) * 🗈
N(3)-C(1)		1.348(2)
N(3)-C(7)		1.428(2)
N(4)-C(1)		1.342(2)
N(4)-C(6) °	*	1.426 (2)

5.10 Crystal structure of 5,8,7,8 - Tetrahydro - 2,3-diphenyl - 2aλ⁴ thia - 2,3,4a,8a - tetraazacyclopent<u>[cd]</u>azulene -1[2H],4[3H] diselone.

The title compound 12 crystallises in the triclinic system and contains two molecules, A and B in the assymetric unit. These molecules differ conformationally in terms of the orientation of the aromatic rings relative to the pentalene framework of the rest of the molecule. Both Molecules exhibit the characteristic structural features of heterapentalenes, with long S-Se bonds and wide S-Se-S bond angle. All other bond lengths in the heterapentalene framework are intermediate between those of single and double bonds.

The N-S bond lengths in molecule A 1.910(3)Å and 1.900(3)Å are greater by 11.7% and 11.1% respectively than the (two-centre two-electron) covalent N-S single bond length [1.710(19)Å, Allen *et al*, 1987]. The N-S bonds in molecule B are1.90734)Å and 1.901(3)Å in length and thus longer that the N-S bond (1.710Å) by 11.5% and (1.2% respectively. The lengths of the corresponding bonds and the size of the corresponding bond angles in the two halves of the heterapentalene framework in A and B are very similar, differing from one another by at most 0.010 Å and 0.3°, and 0.09Å and 0.3° respectively.

Compound 12 crystallised from MeCN-CH₂Ci₂ as light yellow crystals; fi.p. 419-420K. Cell determination, using 25 high-order reflections, and data collection were done on an Enraf-Nonius CAD4 four-circle diffractometer equipped with a graphite monochromator. Data reduction included correction for Lorentz and polarisation effects using standard Enraf Nonius routines, and ethological effects

 $\left(\mathcal{F}_{\mathcal{V}}^{0} \right)$

5.40 Crystal structure of 5,6,7,8 - Tetrahydro - 2,3-diphenyl - 2a⁴ - thia - 2,3,4a,8a - tetraazacyclopent[cd]azulene -1[2H],4[3H] - diselone.

The title compound 12 crystallises in the triclinic system and contains two molecules, A and B in the assymetric unit. These molecules differ conformationally in terms of the orient on of the aromatic rings relative to the pentalene framework of the rest of the molecule. Both Molecules exhibit the characteristic structural features of heterapentalenes, with Iona S-Se bonds and wide S-Se-S bond anale. All other bond lengths in the heterapentalene framework are intermediate between those of single and double bonds.

The N-S bond lengths in molecule A 1.910(3)Å and 1.900(3)Å are greater by 11.7% and 11.1% respectively than the (two-centre two-electron) covalent N-S single bond length [1.710(19)Å, Allen *et al*;1987]. The N-S bonds in molecule B are1.90734)Å and 1.901(3)Å in the size of the lengths of the corresponding bonds and the size of the corresponding bond angle. In the two halves of the heterapentalene framework in A and B are very similar, differing from one another by at most 0.010 Å and 0.3° respectively.

Compound 12 crystallised from MeCN- CH_2Cl_2 as light yellow crystals; m.p. 419-420K. Cell determination, using 25 high-order reflections, and data collection were done on an Enraf-Nonius CAD4 four-circle diffractometer equipped with a graphite monochromator. Data reduction included correction for Lorentz and polarisation effects using standard Enraf Nonius routines. and absorption effects

e: ...

were corrected for empirically (North et al; 1968). Three standard reflections monitosed every hour showed only random fluctuations. Unit cell parameters and details of the data collection are given in Table 5.28. The structure was solved by direct methods using SHELXS86 and refined using SHELXL93 by least-squares methods, based on F³. All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed geometrically in the final cycles of refinement and allowed to refine with a common isotropic displacement parameter. Figure 5.13 shows a labelled SCHAKAL diagram of the molecule and also indicates the numbering scheme used. Atomic coordinates and selected bond lengths are listed in Table 5.29 and Table 5.30 respectively. The selected torsion angles listed in Table 5.31 illustrate the conformational differences between the two molecules in the asymmetric unit.

	e O ja
Table 5.28 : Crystal and refi	nement data
Compound	12
Empirical formulas	C18H18N4SSe2
Formula weight /.g.mol ⁻¹	492.35
Temperature / K	293(2)
Wavelength / A	0.71069
Crystal system	Triclinic
Space group	P -1
8/4	9.395(7)
b/Å	14.373(8)
¢/Å	14.530(5) 🤟
α/ ^p	89.11(4)
B/	88.27(4)
y/°	85.79(4)
Volume/Å ³	1958(2)
z.	4
o/ Mg.m ⁻³	1.670.
Absorption coefficient/mm ⁻¹	3,894
F(000)	· 976
Crystal size/mm ³	° 0.5 x 0.7 x 1.1
Range	2 ≲0≤ 30
Index ranges :	
h (***)	₀ -1⊶11
K 12 0 }	+18→18 -2018
Ballaniana anizaitai	
veneotions onageled	1 2404 J

5)

Independent reflections	8411		
R _{int} "	0.02		
Data/restraints/parameters	8411/0/469		
Max shift, Az	-0.003		
Residual density / e.Å* (Δρ) _{mas} (Δρ) _{ma}	1.169 -0,800		
Reliability indices R1 (I > 2rr(I)) wR2 (I > 2rr(I)) R1 (all data) wR2 (all data)	0.036 0.099 0.079 0.105		
S	1.07		

Figure 5.13: Labelled Schakal diagram of 12

	x/a	y/b	z/c	U _{eq}
Se(1A)	1869(1)	8489(1)	10261(1)	66(1)
Se(2A)	2019(1)	7106(1)	4882(1)	53(1)
S(1A)	41,21(1)	7627(1)	7586(1)	38(1)
N(1A)	3838(3)	7999(2)	8830(2)	42(1)
N(2A)	1611(3)	8053(2)	8357(2)	37(1)
N(3A)	1674(3)	7670(2)	6760(2)	36(1)
N(4A)	3914(3)	7289(2)	6333(2)	40(1)
C(1A)	2516(3)	8161(2)	9108(2)	39(1)
C(2A)	2297(3)	7794(2)	7508(2)	34(1)
C(3A)	2622(3)	7359(2)	6030(2)	· 38(1)
C(4A)	39(4)	8162(3)	8494(3)	57(1)
C(5A)	-698(4)	7343(3)	8149(3)	61(1)
O(8A)	-844(4)	7332(3)	7131(3)	58(1)
C(7A)	157(4)	7924(3)	6604(2)	54(1)
C(8A)	5068(3)	8038(2)	9377(2)	39(1)
C(9A)	5648(4)	7226(3)	9762(2)	47(1)
C(10A)	6879(4)	7253(3)	10253(3)	59(1)
C(11A)	7510(4)	6070(4)	10359(3)	63(1)
C(12Å)	6960(5)	× 8862(3)	9975(3)	69(1)
C(13A)	5718(4)	8860(3)	9470(3)	57(1)
C(14Å)	5180(3)	o 6976(2)	5832(2)	39(1)
C(15A)	5566(5)	6054	\$810(3)	63(1)
C(16A) %	6883(5)	5758(4)	· 5410(3)	78(1)
C(17A) *	7760(4)	6388(4)	5048(2)	74(1)
C(18A)	7367(4)	7305(4)	5058(3)	. 68(1)
C(19A)"	6064(4)	7612(3)	5457(3)	54(1)
Se(1B)	-3113(1)	45269(1)	8414(1)	63(1)
Se(2B)	-2800(1)	9880(1)	6997(1)	53(1)
S(1B)	-761(1)	12591(1)	7484(1)	35(1)
N(1B)	-1081(3)	13849(2)	7857(2)	- 41(1)"
N(2B)	-3290(3)	13396(2)	7821(2)	38(1)
N(3B)	-3183(3)	11779(2)	7475(2)0	34(1)
N(4B)	-938(3)	11318(2)	7177(2)	(37(1)
C(1B)	-2415(3)	34131(2)	8010(2)	39(1)
C(2B)	-2580(3)	12569(2)	7598(2)	33(1)
C(3B)	-2223(3)	11025(2)	7218(2)	36(1)
C(4B)	-4847(3)	13602(2)	7734(3)	47(1)
C(5B)	-5443(4)	13107(3)	6918(3) S	50(1)
C(6B)	-5730(4)	n [™] 12097(2)	7134(3)	51(6)
C(7B)	-4665(3)	1\$641(2)	7781(2)	o 43(1)
(C/8R)	110/21	1 L A DO / D		and the second secon

 \mathcal{O}

				V		
C(9B)	797(4)	14741(3)	7195(3) °	67(1)		
C(10B)	1994(5)	15229(3)	7280(5)	¹ • 95(2) -		
C(11B)	2516(5)	15392(3)	8117(6)	101(2)		
C(12B)	1819(8)	15054(3)	8890(5)	93(2)		
C(13B)	630(4) °	14554(3)	8809(3)	66(1)		
C(148)	327(3)	10771(2)	* 6928(2)	· 37(1) ·		
C(15B)	677(4)	10615(3)	6007(3)	50(1)		
C(18B)	1971(5)	10142(3)	5785(3)	65(1)		
C(17B)	2890(4)	9864(3)	6461(4)	62(1)		
C(18B)	2538(4)	10035(3)	7367(3)	63(1) •		
C(198)	1238(4)	10485(2)	7609(3)	49(1)		

· · ·		P	
Table 5.30: Selected I	oond lengths (A) for 1	2 .	
Se(1A)-C(1A)	1.824(3)	Se(1B)-C(1B)	1.826(3)
Se(2A)-C(3A)	1.828(3)	Se(2B)-C(3B)	1.825(3)
S(1A)-C(2A)	1.719(3)	S(1B)-C(2B) **	1.712(3)
S(1A)-N(1A)	1.900(3) 🖉	S(1B)-N(1B)	1.901(3)
S(1A)-N(4A)	1.910(3)	S(1B)-N(4B):	1.907(3)
N(1A)-C(1A)	1.304(4)	N(18)-C(18)	1.309(4)
N(2A)-C(2A)	1.348(4)	N(28)-C(28)	1.344(4)
N(2A)-C(1A)	1:419(4)	N(2B)-C(1B)	* 1.410(4)
N(3A)-C(2A) 👘 🔹	1.344(4)	N(3B)-C(2B)	1.340(4)
N(3A)-C(3A)	1.425 4)	N(3B)-C(3B)	1.418(4)
N(4A)-C(3A)	1.302(4)	N(4B)-C(3B)	1.300(4)
<i>ii</i> :	8	/ ·	1

Table 5.31: Selected torsion an	gles (°) for 12) 	արդությունը հետ հայտներին հայտներին հայտներին հայտներին հայտներին հայտներին հայտներին հայտներին հայտներին հայտն հայտների հայտներին հայ հայտների հայտներին հա	<u>مرد معمد همه محمد تریم و موان منطقه می اور مطلقه می اور مطلقه می اور م</u> رکز می اور موان می مطلقه می موان می موان رو
S(1A)-N(4A)-C(14A)-C(15A)	92.1(4)	S(1B)	N(4B)-C(14B)-C(15B)	° -99.7(3)
S(1A)-N(4A)-C(14A)(C(19A)	-81.4(4)	S(1B)-	N(48)-C(148)-C(198)	74.3(5)
S(1A)-N(1A)-C(8A)-C(9A)	-81.0(3)	S(1B)-	N(1B)-C(8B)-C(0B)	75.7(4)
S(1A)-N(1A)-C(8A)-C(13A)	94.8(3)	S(1B)-	N(18)-C(8B)-C(13B)	-99.9(4)

3 0 1 0 1 0 94

ő,
5.11 Crystal structure of 6,7-Dihydro-2-phenyl-5<u>H</u>-2a¹-th/a-3-selena-1,2-diazacyclopent[cd]indene

The title compound *13*, crystallises in the triclinic crystal system, and exhibits the characteristic structural features of heterapentalenes, with elongated Se-S and S-N bonds and wide Se-S-N bond angle. All other bond lengths in the heterapentalene framework are intermediate between those of single and double bonds.

The Se-S and S-N bond lengths in **13**, 2,5891(10)Å and 1.817(3)Å, are greater by 18.0% and 6.3% respectively than the (two-centre two-electron) covalent Se-S and S-N single bond lengths (2,195(15)Å and 1.710(19)Å, Allen et al, 1987].

Compound 13 crystallised from hexane as green crystals; m.p. 368-370K. Cell determination, using 25 high-order reflections, and data collection were done on an Enraf-Nonius CAD4 four-circle diffractometer equipped with a graphite monochromator. Data reduction included correction for Lorentz and polarisation effects using standard Enraf Nonius routines, and absorption effects were corrected for empirically (North *et al*; 1968). Three standard reflections monitored every hour showed only random fluctuations. Unit cell parameters and details of the data collection are given in Table 5.32. The structure was solved by direct methods using SHELXS86 and refined using SHELXL93 by least-squares methods, based on F². All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed geometrically in the final cycles of refinement and allowed to refine with a common isotropic displacement parameter. Figure 5.14 shows a labelled SCHAKAL diagram din (m) lecule and also indicates the numbering scheme used.

Atomic coordinates and selected bond lengths are listed in Table 5.33 and Table 5.34 respectively.

Table 5.32 : Crystal and refi	nemet t date
Compound	13
Empirical formula	C ₁₃ H ₁₂ N ₂ SSe
Formula weight / g.mol ⁻¹ @	307.27
Temperature/K	8 293(2)
Wavelength/Å	0.71089
Crystal system	Triclinic
Space group	P-1
a/A	7,698(2)
ЪХA	7.818(4)
c/A e	11.684(2)
w ^p	90,24(2)
β/°	97.89(2) o
γ/°	117.60(3)
Volume/A ³	-615.4(4)
Z	2
p/Mg.m ⁻³ o	1.658
Absorption coefficient/mm ⁻¹	3.197
E(000)	308
Crystal size/mm³	0.45 × 0.45 × 0.85
Range	, 3≤0≤30 .
Index ranges : ** o	می از می باد است. ۲۰ از ۲۰ از می است
1	-10 ⁴ *10
	-10>10
Deflections collisiond	2752
	0610 \$66.0
Indonandant rations	V.VZ3
macherine interested	9573 / A / 155
Manager and the second s	-0 001
Max Shift, AZ	
	1,017
	-1.026
Reliability indices	<u>الم الم الم الم الم الم الم الم الم الم </u>
R1 (1 > 20(1))	0.049
WR2 (I > 20(I)) *	0.129
wR2 (all data)	0.143
S R	0.914

an or and

~

s)

Figure 5.14: Labelled SCHAKAL diagram of 13

्

	×/a	s y/b	z/c	" " U.
Se	1404(1)	3023(1)	* 1173(1)	74(1)
S	855(1)	· 2674(1)	3277(1)	50(1)
N(1)	-201(4)	2203(4)	4672(2)	43(1)
N(2)	-2037(4)	816(4)	4658(2)	° 50(1)
C(1)	~1120(5)	1099(5)	738(3)	· 81(1)
C(2)	-2334(5)	227(4)	1531(3)	49(1)
C(3)	-1658(4)	854(4)	2721(3)	45(1)

- . Y

0.0

C(4)	-2831(5)	87(4)	3591(3) "	* 47(1)
C(5)	-4918(5)	-1547(5)	,3299(3) •	58(1)
C(6)	-5769(5)	-1477(5)	2050(3)	58(1)
°C(7)	-4395(5)	-1426(5)	1213(3)	58(1)
C(8)	929(5)	3299(4)	5722(3)	47(1)
C(9)	2674(5)	4976(5)	5689(3)	57(1)
C(10)	3809(8)	6047(5)	6715(3)	64(1)
C(11)	3175(8)	5496(8)	7745(3)	• 65(1)
C(12)	1434(8)	3844(6)	7775(3)	64(1)
C(13)	301(5)	2710(5)	6769(3)	58(1)

Se-S	2.5891(10)
S-N(1)	1.817(3)
Se-C(1)	1.819(3)
S-C(3)	1.715(3)
N(ii)-N(2)	1.321(3)
N(2)-C(4)	1,314(4)
C(1)-C(2)	1.350(5)
C(2)-C(3)	e 1.416(4)
C(3)-C(4)	1.406(4)

Ξ.

5.12 Discussion

The characteristic structural features of heterapentalenes include a planar bicyclic system and a linear tri-atomic sequence with elongated bonds. These features have been observed in the heterpentalene structures (listed in Table 5.35) that have been determined during the course of this work, as well as in the known structures listed in Table 5.36. The lengths of the bonds in the heterapentalene framework in these structures are listed in Table 5.37 using the labelling set out in Figure 5.15.

Figure 5.15 : Bond labels used.

A convenient way of looking at the bonding in these heterapentalene systems is in terms of a σ skeleton consisting of both localised and delocalised bonds; where the σ system in the tri-hoteraatom sequence is equivalent to that in trihalide ions and may be referred to as a three-center four-electron bond. Futhermore, there is also a delocalised π system comprising the ten electrons in p orbitals perpendicular to the plane of the two fused rings, that is, a π system analogous to that in naphthalene. Hence the partial bonds in the linear tri-heteraatom sequence are both σ and π in character, but weaker than the other bonds in the molecule and therefore more susceptable to changes in bond length when the σ system or the π system is perturbed to some degree.

This dependence of the bond lengths, on the substitution pattern in the molecule has been discussed extensively in the case of 6a-thio-thiophenes (Hordvik and Saethre; 1972), and can also be seen in the bond lengths listed in Table 5.37,

Qu.

0 V

Co Co

0

1

Ø

))

.

y 9 ×

ം ന്ന്ന് പ്രീം കാ പ്രിം <u>,</u>8

Table 5.37 : Obs Sfurcture (1) (2)	Discived heter Linear Hater Saccos S-Se-S Sacco S-S-S Sacco S-S-S-S S-S-S-S S-S-S S-S-S S-S-S S-S-S-S S-S-S-S S-S-S-S S-S-S-S S-S-S-S-S S-S-S-S S-S-S-S-S-S S-	t 2.473(1) 2.467(2) 2.444(2) 2.349(1) 2.579(3) 2.475(2) 2.371(4) 2.529(1) 2.499(3) 2.543(3) 2.543(3) 2.550(1) 5.62550	2 2,507(2) 2,507(2) 2,372(2) 2,043(8) 2,349(1) 2,2583(3) 2,257(4) 2,267(1) 2,267(1) 2,267(3) 2,2563(3) 2,563(3)	3 1.651(3) 1.689(5) 1.313(12) 1.720(4) 1.856(29) 1.653(5) 1.653(5) 1.659(2) 1.659(7) 1.771(23)	4 1.302(9) 1.310(6) 1.307(14) 1.372(5) 1.372(5) 1.377(12) 1.378(3) 4.360(9)	5 1.350(9) 1.340(5) 1.442(14) 1.425(4) 1.427(31) 1.439(5) 1.430(11) 01.423(3)	Bond 5 1.402(10) 1.395(6) 1.395(6) 1.395(30) 1.395(30) 1.593(6) 1.412(12) 4.472(3)	7 1.357(11) 1.39(2) 1.372(5) 1.371(28) 1.385(6) 1.367(12)	8 1.830(8) 1.687(6) 1.821(13) 1.720(4) 1.811(1.638(5) 1.658(5)	9 1.905(5) 1.899(4) 1.858(10) 1.7(1(5) 1.904(23) 1.747(4)	10	
Table 5.37 : Obe Structure (i) (ii) (iii) (iii) (iii) (vi) (vii) (viii) (xi) (xii) (xiii) (xiiii) (xiiiii) <	Deserved heter Linear heter Sa-Se-S Sa-Se-S Sa-Se-O S-S-S Sa-Se-Se S-S-S-S S-S-S S-S-S S-S-S S-S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S-S-S S-S-S-S S-S-S-S-S-S S-	1 2473(1) 2473(1) 2467(2) 2349(1) 2579(3) 2475(2) 2371(4) 2528(1) 2439(3) 2543(3) 2543(3) 2555(1) 5 (2557)	2 2.507(2) 2.507(2) 2.507(2) 2.507(2) 2.503(3) 2.568(3) 2.257(4) 2.267(4) 2.267(1) 2.267(1) 2.267(3) 2.2563(3)	3 1.631(3) 1.683(5) 1.318(12) 1.726(4) 1.856(25) 1.653(5) 1.653(5) 1.659(2) 1.669(7) 1.771(23)	4 1.302(9) 1.310(6) 1.307(14) 1.372(5) 1.372(5) 1.377(12) 1.378(3) 1.360(9)	5 1.350(9) 1.340(5; 1.442(14) 1.425(4); 1.427(31) 1.439(5) 1.430(11) 0.1.423(3)	Bond 5 1.402(40) 1.395(6) 1.395(6) 1.395(30) 1.395(30) 1.593(6) 1.412(12)	7 1.357(11) 1.39(2) 1.372(5) 1.371(28) 1.385(6) 1.367(12)	8 1.830(8) 1.687(6) 1.521(15) 1.720(4) 1.811(1.638(5) 1.558(5)	9 1.905(5) 1.899(4) 1.658(10) 1.7(1(5) 1.904(23) 1.747(4)	1 0	
Table 5.37 : Obt Sfucture (I) (II) (III) (VIII) (VIIII) (VIIIIIII	Deserved helen Linear helen Sa-Se-S S-Se-S Sa-Se-S Sa-Se-Se S-S-S-S S-S-S S-S-S-S S-S-S-S S-S-S-S S-S-S-S S-S-S-S S-S-S-S S-S-S-S S-S-S-S S-S-S-S S-S-S-S S-S-S-S S-S-S-S-S S-S-S-S-S S-S-S-S-S S-S-S-S-S S-	1 2.473(1) 2.473(1) 2.467(2) 2.349(1) 2.579(3) 2.475(2) 2.371(4) 2.528(1) 2.439(3) 2.543(3) 2.543(3) 2.555(1) 5.625571	2 2507(2) 2372(2) 2372(2) 2349(1) 2349(1) 2586(3) 2297(2) 2297(2) 2297(4) 2297(4) 2297(1) 2297(1) 2297(3) 2297(3) 2297(3) 2297(3)	3 1.631(3) 1.689(5) 1.318(12) 1.726(4) 1.858(29) 1.653(5) 1.676(8) 1.699(2) 1.659(7) 1.771(28)	4 1.302(9) 1.310(6) 1.307(14) 1.372(5) 1.372(5) 1.377(12) 1.378(3) 1.360(9)	5 1.350(9) 1.340(5; 1.442(14) (1.426(4); 1.427(31) 1.439(5) 1.439(5) 1.430(11) 01.423(3)	Bond 6 1.402(10) 1.395(6) 1.395(6) 1.395(30) 1.395(30) 1.593(6) 1.412(12)	7 1.357(11) 3360(7) 1.39(2) 1.372(5) 1.371(25) 1.325(6) 1.365(12)	8 1.630(8) 1.687(6) 1.821(15) 1.720(4) 1.811(1.638(5) 1.658(5)	9 1.902(5) 1.899(4) 1.853(10) 1.711(5) 1.904(23) 1.747(4)	- 10 	
(i) (ii) (iii) (iii) (iv) (v) (v) (vi)	Linear heler 	1 2.473(1) 2.467(2) 2.444(2) 2.349(1) 2.579(3) 2.475(2) 2.371(4) 2.528(1) 2.439(3) 2.439(3) 2.543(3) 2.543(3) 2.555(1) 5.62557	2 2.507(2) 2.372(2) 2.043(8) 2.349(1) 2.2585(3) 2.237(2) 2.257(4) 2.267(1) 2.267(1) 2.218(3) 2.553(3)	3 1.631(3) 1.689(5) 1.313(12) 1.726(4) 1.856(29) 1.653(5) 1.676(8) 1.659(2) 1.569(7) 1.771(28)	4 1.302(9) 1.310(6) 1.307(14) 1.372(5) 1.372(5) 1.362(6) 1.377(12) 1.378(3) 4.360(9)	5 1.350(9) 1.340(5; 1.442(14) 1.426(4; 1.427(31) 1.439(5) 1.430(11) 1.423(3)	Bond 5 1.402(10) 1.305(6) 1.395(6) 1.395(30) 1.395(30) 1.593(6) 1.412(12)	7 1.357(11) 36360(7) 1.39(2) 1.372(5) 1.371(28) 1.385(6) 1.367(12)	8 1.830(8) 1.687(6) 1.821(15) 1.720(4) 1.811(1.638(5) 1.658(5)	9 1.905(5) 1.899(4) 1.858(10) 1.711(5) 1.904(23) 1.747(4)		
Structure (i) (ii) (iii) (iii) (iii) (vi) (vii) (viii) (viii)<	heler - Allence S2-S0-S S-S6-S S-S6-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S N-S-M N/-1.M	1 2.473(1) 2.467(2) 2.444(2) 2.349(1) 2.579(3) 2.475(2) 2.371(4) 2.528(1) 2.439(3) 2.543(3) 2.543(3) 2.550(1) 5 (2557)	2 2.507(2) 2.372(2) 2.343(8) 2.343(1) 2.2583(3) 2.257(4) 2.257(4) 2.267(1) 2.267(1) 2.263(3) 2.563(3)	3 1.631(3) 1.689(5) 1.318(12) 1.726(4) 1.856(29) 1.653(5) 1.676(8) 1.659(2) 1.669(7) 1.771(28)	4 1.302(9) 1.307(14) 1.307(14) 1.372(5) 1.372(5) 1.377(12) 1.378(3) 4.360(9)	5 1.350(9) 1.340(5; 1.442(14) 1.426(4); 1.427(31) 1.439(5) 1.430(11) 01.423(3)	6 1.402(10) 1.395(6) 1.391(14) 1.406(4) 1.395(30) 1.533(6) 1.412(12) 4.402(12)	7 1.357(11) 1.39(2) 1.372(5) 1.372(5) 1.371(28) 1.385(6) 1.367(12)	8 1.830(8) 1.687(6) 1.521(15) 1.720(4) 1.811(1.638(5) 1.658(5)	9 1.902(5) 1.899(4) 1.853(10) 1.711(5) 1.904(23) 1.747(4)	0 1	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (3) (4) 5	S1-S2-S S-S2-S S-S2-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S N-S-M N-2-M	2.473(1) 2.467(2) 2.444(2) 2.349(1) 2.579(3) 2.475(2) 2.371(4) 2.529(1) 2.439(3) -2.543(3) 2.550(1) 5.625571	2.507(2) 2.372(2) 2.043(8) 2.349(1) 2.2586(3) 2.237(2) 2.257(4) 2.287(1) 2.287(1) 2.287(1) 2.287(3) 2.563(3)	1.631(3) 1.689(5) 1.343(12) 1.725(4) 1.856(29) 1.653(5) 1.676(8) 1.659(7) 1.771(28)	1.302(9) 1.310(6) 1.307(14) 1.372(5) 1.372(5) 1.362(5) 1.377(12) 1.378(3) 4.360(9)	1.350(9) 1.340(5; 1.442(14) 1.426(4) 1.427(31) 1.439(5) 1.430(11) 01.423(3)	1.402(10) 1.395(6) 1.395(6) 1.395(30) 1.395(30) 1.593(6) 1.412(12) 4.402(3)	1.357(11) **360(7) 2 1.39(2) 1.372(5) 1.372(5) 1.371(28) 1.365(6) 1.367(12)	1.830(8) 1.687(6) 1.821(15) 1.720(4) 1.811(1.638(5) 1.658(5)	1.908(5) 1.899(4) 1.858(10) 1.711(5) 1.904(23) 1.747(4)		
(ii) (iii) (iv) (v) (vi) (vi) (viii) (viii) (viii) (viii) (vi)	S-SE-S Sa-Se-O S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S SE-SE-Se S-S-S S-S-S N-S-M N-2-M	2.467(2) 2.444(2) 2.349(1) 2.579(3) 2.475(2) 2.371(4) 2.529(1) 2.499(3) 2.543(3) 2.543(3) 2.550(1) 5.62557	2372(2) 2043(8) 2349(1) 2588(3) 2287(2) 2287(4) 2287(1) 2287(1) 2287(1) 2283(3) 2583(3)	1.689(5) 1.318(12) 1.726(4) 1.856(29) 1.693(5) 1.696(2) 1.659(2) 1.659(7) 1.771(28)	1.310(6) 1.307(14) 1.372(5) 1.372(5) 1.362(6) 1.377(12) 1.378(3) 4.360(9)	1.340(5; 1.442(14) 1.426(4) 1.427(31) 1.439(5) 1.430(11) 01.423(3)	1.399(6) 1.391(14) 1.395(30) 1.395(30) 1.593(6) 1.412(12) 4.473(2) 	***:360(7) 1.39(2) 1.372(5) 1.371(28) 1.385(6) 1.367(12)	1.687(6) 1.821(13) 1.720(4) 1.811(1.638(5)	 1.899(4) 1.659(10) 1.7(11(5)) 1.904(23) 1.747(4) 		
(ii) (v) (v) (vi) (vii) (viii) (Se-Se-O S-S-S Se-Se-Se S-S-S S-S-S S-S-S S-S-S Se-Se-Se S-S-S S-S-S N-S-M N/: M	2.444(2) 2.349(1) 2.579(3) 2.475(2) 2.371(4) 2.529(1) 2.499(3) -2.543(3) 2.350(1) 5.62557	2.043(8) 2.343(1) 2.588(3) 2.237(2) 2.257(4) 2.267(1) 2.218(3) 2.563(3)	1.318(12) 1.725(4) 1.856(29) 1.653(5) 1.676(8) 1.659(2) 1.669(7) 1.771(28)	1.307(14) 1.372(5) 1.372(5) 1.362(6) 1.377(12) 1.378(3) 4.360(9)	1.442(14) 1.426(4) 1.427(31) 1.439(5) 1.430(11) 1.423(3)	1.391(14) 1.406(4) 1.395(30) 1.593(6) 1.412(12)	1.39(2) 1.372(5) 1.371(23) 1.385(6) 1.367(12)	1.821(13) 1.720(4) 1.811(5 1.638(5) 1.655(10)	1.658(10) 1.711(5) 1.904(23) 1.747(4)		
(v) (v) (viii) (viiii) (viiii) (viii) (viiii) (viiii) </td <td>S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S N-S-M N/:.M</td> <td>2349(1) 2579(3) 2475(2) 2371(4) 2528(1) 2439(3) -2543(3) 2355(1) 1 (2557)</td> <td>2349(1) 2586(3) 2297(2) 2297(4) 2297(4) 2297(1) 2297(1) 2297(3) 2563(3) 2563(3)</td> <td>1726(4) 1.856(25) 1.653(5) 1.676(8) 1.699(2) 1.659(7) 1.771(28)</td> <td>1.372(5) 1.874(31) 1.362(5) 1.377(12) 1.378(3) 4.360(9)</td> <td>1.426(4) 1.427(31) 1.439(5) 1.430(11) 01.423(3)</td> <td>1.406(4) 1.395(30) 1.593(6) 1.412(12)</td> <td>1.372(5) 1.371(28) 1.385(6) 1.367(12)</td> <td>1.720(4) 1.811(1.638(5)</td> <td>1.711(5) 1.994(23) 1.747(4)</td> <td></td> <td>Ļ</td>	S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S S-S-S N-S-M N/:.M	2349(1) 2579(3) 2475(2) 2371(4) 2528(1) 2439(3) -2543(3) 2355(1) 1 (2557)	2349(1) 2586(3) 2297(2) 2297(4) 2297(4) 2297(1) 2297(1) 2297(3) 2563(3) 2563(3)	1726(4) 1.856(25) 1.653(5) 1.676(8) 1.699(2) 1.659(7) 1.771(28)	1.372(5) 1.874(31) 1.362(5) 1.377(12) 1.378(3) 4.360(9)	1.426(4) 1.427(31) 1.439(5) 1.430(11) 01.423(3)	1.406(4) 1.395(30) 1.593(6) 1.412(12)	1.372(5) 1.371(28) 1.385(6) 1.367(12)	1.720(4) 1.811(1.638(5)	1.711(5) 1.994(23) 1.747(4)		Ļ
(V) (W) (Will) (Vill) (Vill) (Vill) (Vill) (Vill) (Vill) (Vill) (Xi) (Xi) (Xi) (Xii) (Xiii)	39,58-58 5-5-5 5-5 5-5 5-5 5	2.579(3) 2.475(2) 2.371(4) 2.528(1) 2.439(3) -2.543(3) 2.543(3) 2.555(1) 5.625571	2588(3) 2237(2) 2267(4) 2267(1) 2218(3) 2563(3)	1.856(29) 1.653(5) 1.676(6) 1.659(2) 1.659(7) 1.771/28)	1.374(31) 1.362(6) 1.377(12) 1.378(3) 4.360(9)	1.427(31) 1.439(5) 1.430(11) 01.423(3)	1,395(30) 1,593(6) 1,412(12)	1.371(28) 1.385(6) 1.367(12)	1.811(C) 1.638(5)	1.904(23) 1.747(4)		÷
(19) (vil) (vili) (vili) (vili) (vil)	5-5-5 5-5-5 5-5-5 5-5-5 5-5-5 5-5-5 5-5-5 5-5-5 5-5-5 N-5-M N-2-M	2,475(2) 2,371(4) 2,529(1) 2,499(3) 2,549(3) 2,543(3) 2,3550(1)	2,237(2) 2,257(4) 2,287(1) 2,218(3) 2,563(3)	1.693(5) 1.676(8) 1.699(2) 1.669(7) 1.771/23)	1.362(6) 1.377(12) 1.378(3) 4.360(9)	1,439(5) 1.430(11) 01.423(3)	1.593(6) 1.412(12)	1.385(6) 1.367(12)	1.638(5)	1.747(4)	<u>.</u>	1_
(vil) (vili) (vili) (vili) (xi) (xi) (xii) (xiii) (xiii	S-S-S S-S-S S-S-S S-S-S-S S-S-S N-S-M N/:-M	2.371(4) 2.528(1) 2.499(3) 2.543(3) 2.355(1) 5.625571	2.257(4) 2.287(1) 2.218(3) 2.563(3)	1.676(8) 1.699(2) 1.669(7) 1.771(23)	1.377(12)* 1.378(3) 4.360(9)	1.430(11) °1.423(3)	1.412(12)	1.367(12)	4 REEMO		ſ	1.
(viii) (24) (xi) (xi) (xii) (x) (x) (x) (x) (x) (x) (x) (x) (x) (x	S-S-S S-S-S S-S-S-S- S-S-S N-S-M N/:.M	2.528(1) 2.499(3) 2.543(3) 2.350(1) 5 (2557)	2.287(1) 2.215(3) 2.563(3)	1.699(2) 1.669(7) 1.771/23)	1.378(3)	° 1.423(3)	4 422/20			1,755(8)		1-
(21) (X) (X) (X) (X) (X) (X) (X) (X) (X) (X	S-S-S Se-Se-Se S-S-S N-S-N N-S-N	2.499(3) 2.543(3) 2.350(1)	2.215(3)	1.669(7)	4.360(9)	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	J.375(3)	1.636(2)	1.744(2)	0	┢
(X) (X) (Xi)	Se-Se-Se S-S-S N-S-N	2543(3)	2.563(3)	1 771/23)		1.448(11)	1.398(9)	1.374(11) *	1.696(5)	-1.741(5)		
(xd) (xd) (xd) (xd) (xd) (xd) (xd) (xd)	S-S-S N-S-N N-3-N	2350(1)	anna		1.375(24)	1.432(23)	1.414(22)	1.397(23)	1.811(22)	1,839(20)	╡╌╾╴╼╼╴╴╸╸╝╌╴ ┨	†-
(xii) (xii) (xii) (xii) (xii) 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N-S-M	\$ 625571	2.300111	1.673(3)	1.347(3)	1.401(2)	1.401(2)	° 1.347(3)	1.673(2)	1,737(3)		1-
()(ii) ()(iv) ()(iv)) ((iv))	N		1.931(7)	1.307(10)	1,414(10)	1:352(10)	1.345(10)	1.375/11)	1.324(9)	1,726(8)	1.844(9)	
(xiv) ((xiv) (xiv) 44 44 52 54 54 54 54 54 54	25,222,229	1,963(6)	1,548(6)	1.318(9)	1.441(9)	1.329(9)	1.318(9)	1,432(9)	1.337(9)	1.71/(7)	1.220(9)	f
(xv) (xv) 43 44 52 52 54 54 52 54 54 52 54 55 52 54 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 55	ALS.N	1.9:4(8)	1,920(8)	1.3(6(8)	1,446(7)	1.334(7)	1.329(7)	1,414(7)	1.337(8)	1.720(6)	1.223(7)	1
(xui) 43 44 52 54 54 56 5 7	N-S-N	1.932(5)	1.643(5)	1.330(8)	:,439(7)	1.334(7)	1.33477)	2 (548)	1.3(1(3)	1.713(6)	1.225(8)*	1
43 4b 52 54 54 8 7	N-Se-N	2.045(6)	2.072(6)	1.293(9)	1,413(9)	1.326(9)	1.331(5)	1.445(13)	1.294(13)	1.852(7)	1.675(12)	<u> </u>
4b 52 56 8 7	Se-S-Se	2,5509(12)	25044(12)	1,877(5)	1.418(5)	1.320(5)	1,334(5)	1.412(5)	1.584(5)	1.716(4)	1.27715	<u> </u>
52 56 5 7	58-S-Se	2.5239(14)	2.5007(14)	1.965(5)	1.407(5)	1.323(6)	1,329(5)	1.417(6)	1,889(5)	1.728(5)	1.272(6)	ţ
54) 8 7	S-Se-Se	2,458(3)	2.465(2)	1.854(5)	1.369(8)	1.410(7)	1,402(8)	1.427(8)	1,681(6)	1.879(5)	a	†-
8 7	S-Se-Es	2.435(3)	2.488(2)	1.861(5)	1.366(3)	1.409(8)	1.403(8)	1,417(8)	1,662(6)	1.073(5)		-
P	C-Se-Se	2.348	2.3877(9)	1.872(4)	1.358(5)	1.432	1.359(5)	1.461(6)	1,239(5)	1,294(4)	1	
	Se-Se-Se	2.6560(5)	2.5360(6)	1 1.895(3)	1.408(4)	1.328(4)	1.321(4)	7:371(4)	1,594(3)	1.867(3)	1.259(4)	Ť
	N-Se-N	2.042(5)	2.030(5)	1.310(9)	1.440(8)	1.331(8)	1.344(7)	1.413(3)	1,238(9)	1.831(6)	1.838(6)	1
9	Se-Se-Se	2,538(2)	2542(2)	1.872(4)	1.361(6)	1.426(6)	1.399(5)	1.41t(6)	1.855(4)	1.893(4)	ł – – – – – – – – – – – – – – – – – – –	5
10a	S-Se-S	2.493(4)	2.478(4)	1.741(4)	1,400(5),	1.337(5)	1.324(5)	4.412(5)	1.732(4)	1.850(4)	1.284(5)	Γ
126	S-Se-S	2.518(4)	2.697(4)	1.742(3)	1.409(5)	1.326(4)	1.320(4)	1.417(5)	1.745(4)	1.849(3)	1.268(4)	
11	N-S-N	1.8765(13)	1.9032(14)	1.291(2)	1.428(2)	1.346(2)	1,342(2)	1.428(2)	1.300(2)	1.7149(13)	1,6797(14)	1
12= 4	W-S-N	1.900(3)	1.910(3)	1.302(4)	1.425(4)	1.344(4)	1.543(4)	1.419(4)	1.304(1)	1.719(3)	1.824(3)	
12b		1.901(3)	1.907(3)	1.300(4)	1.418(4)	o1.340(4)	1.344(4)	1.410(4)	1.274	1.712(3)	1.825(3)	
13	N-S-N		2589100	1.619(3)	1.360(5)	1.416(4)	1.406(4)	1.314(4)	1.321(3)	1.715(3)	}	1

ē

Ъ., К

e

່ ອີ ເ

3

Ċ

When considering the bond lengths listed in Table 5.37, it is clear that the bond lengths within related heterapentalene fragments are similar. What is not clear, however, is whether the bonding in molecules containing different types of atoms within, the heterapentalene structure is comparable. This question may be addressed by determining the orders of the bonds that make up the heterapentalene fragment.

The orders of bonds can be evaluated by using the empirically derived relation (Pauling; 1960)

log 10 n = (ro -

where r_i is the order of the bond of length r_i , r_e represents the sum of the covarent radii of the atoms involved and c is an empirically derived constant. Table 5.38 lists the orders of the bonds listed in Table 5.37, as evaluated using this relation. The values used for the constant c and the covalent radii are those suggested by Pauling (1960), and may be in need of some refining. The results are nevertheless very informative. For example, if one looks at the sum of the bond orders of bonds.⁴ and 2, it is consistently close is unity. This result is consistent with what would be expected for three-center four-electron bonds. Another interesting observationrelates to the order of bonds 4 and 7. It is clear that two different equounts of delocalisation are present. The two extreme cases are illustrated in Figure 5.16 with the overage bond orders for the two cases are shown in Figure 5.17. The asymmetry observed in the bond orders can be ascribed to the asym. etric substitution pattern found in most of the studied compounds.

Q

Figure 5.16 : Types of delocalisation observed in heterapentalenes

Table 5.38) : Caic	ulated o	orders o	f hetera	pental	ene bon	ds.		نفط نظر کار اور سنبه یک	المشيعة. يحتلو يبدينها	
				·····		"Bond	(شابله ۷ «۱۵۰۰ ۴۰) (ما ینه) (۱۹۹۰ ۲۰۰۰			1986 A.S. 1997 (19	,
Structure	1	2	3	*4 *	5	ß	7	8	9	10	11
_ ()	0.7	0.4	1.5	1.7	1.5	1.6	1.8	1.4	1.1		,0
(1)	0,6	0,4	1.5	1.7	1.5	1.6	1.8	1.5	1.2		
(iii)	0,7	0.5	° 1.2	1.7	1.4	1.6	o1.7°	1.5	1.3		
(iv)	∘ 0. 4	0.4	1.4	1.8	1.6	.1.6	1.8	1.4	1.4		
(V)	0.5	D.5	1,3	1.7	1.5	1.6	1.8	1.5	1.1		
(VI)	0.3	0.6	1.5	» 1. 8	1.4	1.6	1.7	1.5	1.2	and the second s	~~
(Vil)	Ũ.4	0.5	1.5	. 1.7	1.4	1.5	1.8	1.8	1.2		
(viii) $_{0}$	0.5	0.5	1.4	1.7	1.5	1.5	1.7	1.7	13		
° ; (ix)	° 0.3	0.6	1.6	1.8	1,4	1.6	1.7	1.7	1.3		inner a bis and
(X)	0,5	0.5	1.7	1.7	1.4	1,5	1.6	1.8	1.2		
(xi)	0.4	0,4	1.6	1.9	1.6	1.6	1.9	1.9	1.3		1) 11
• (xii)	0.5	0.5	1.7	1.2	1.5	1.5	1.4	1.4	1.3	1.4	1,5
(xlii)	0.5	0.5	1.7	² 1.1	1.6	1.7	1.1	1.1	1.4	2	2
(xiv)	0.6	08	1.7	1.1	1.8	1.8	1.2	1.2	⇒ 1 .4 -	2	2
(XV)	0.5	0.5 ″	1.6	1.1	1.6	1.6	1.1	1.1	1.4	2 °	2
(XVI)	0.6	0.6	1.8	1.2	1.6	1.6	1.1	1.1	1.3	1.6	1.4
48	0.4	0.4	1.2	.1.2	1.6	1,6	1.2 。	1.2	1.4	1.9	1.9
45	0.3	0.4	1.2	1.2	1.6	1.8	1.2	1.2	1.3	1.9	2
5a	0.4	0.7	1.3	1.8	1.5	1.8	1.5	1.5	1.2		
_ 5 b	0.4	0.6	1.3	1.8	1,6	1.8	1.5	1.5	1.3		Ç.
7	0,4	1.4	1.2	1.2	1.8	1.6	1.2	1.2	1.3	2	2
8	0.6	0.6	1.7	1.1	1.6	1.5	1.2	1.8	1.4	1.4	1.4
9	0,4	0.5	1.3	1.8	1.5	1.6	1.5	1.3	1.2	0	
10a	0.4	0.4	1.3	1.3	1.8	1.6	1,2	1,3	1.4	8.2	7) 81
10b	,0.4	0.4	1.3	1.2	1.6	16	1.2	1.3	1.4	1 9	1.8
,11	0.8	0.6	1.8	1.2	1.5	1.5	1.2	1.8	1.4	7.5	1.5
12a	0.6	0.6	1.7	1.2	1.5	1.5	1.2	1.7	1.4	1.5	1.5
12b	0.6	0.6	1.8	1.2	1.6	1.5	1.2	1.7	1.4	1.5	1.5
13	0.8	9.3 •	1.5	1.8	1.5	1.0	1.7	1.3	1.4	¢	

 \mathcal{A}

106

v ⊖

These average bond orders may be used to predict the expected bond lengths in other related compounds. The bond order calculations may also be refined by improved estimates of the empirical constant as well as the covalent radii of the atoms. It would be interesting to see if the calculated bond orders could be used to predict the bond lengths in tellurium containing heterapentalenes. The advantage of considering these structures in terms of the observed bond orders, instead of bond lengths, lies therein that structures containing different types of atoms may readily be compared.

£2

CHAPTER 6

Conformational preferences in single ortho, Nsubstituted acetanilide derivatives.

The relative spatial disposition of the moleties attached to the nitrogen atom in single-ortho, N-substituted acetanilide derivatives has long been of interest (Staskun; 1980 and Baert *et al*; 1984). The dispositions of particular interest is the preferred conformation of the amide carbonyl group (Figure 6.1) as well as that of the alkyl substituent on the memorylene bridge (Figure 6.2).

Figure 6.2 : Possible orientations of the alkyl group

Previous studies have included investigations into the preferred conformation in the solid state as well as in solution. The determination of the crystal structures of **14** and **15**, contributes to this growing body of knowledge. The observed conformations may be compared by referring to the torsion angles defined in Figure 6.3.

ß

When the crystal structures of compounds 14 and 15 were determined, the amide carbonyl group was found in the exo-conformation in both structures. Further, the ortho substituent, X, on the phonyl ring, and the R group attached to the nitrogen atom via the methylene bridge were found on the same side of the amide plane. This is clear from the fact that the torsion angles (a and b in Figure 6.3) listed in Table 6.1 have the same sign. This result differs from that of Boeyens and co-workers (1987), who in their investigation into the structures of three single-ortho, N-substituted amide derivatives, (xvii), (xviji) and (xix), found the ortho substituent/ and the R group on opposite sides of the amide plane. (The torsion angles a and b for (xvii), (xviii) and (xix) listed in Table 6.1 have opposite signs). In all five structures considered, the amide carbonyl group is found in the exponention. It would thus appear that while the conformation of the amin't carbonyl group is independent of the nature of the acyl group, the preferred compation of the alkyl substituent, R, may not be. A molecular mechanics study should be able to preal if the conformation adopted by 14 and 15, is indeed a low-energy conformation, or merely their preferred conformation in the solid state.

[⊘]{xvii}

(xviii)

ø

Ċ,

Compound	Torsion angle a	Torsion angle I		
14	102.0(2)	-63.5(2)		
15	104.3(3)	-85.6(3)		
(xvli)	-91(2)	-91(2)		
(xviii)	93.5(3)	106.7(3) °		
(xix) (7)	101.6(8)	100.2(9)		

(xix)

The crystal structures of 14 and 15 were determined from data collected on Enraf Nonius diffractometers, using graphite monochromated Mo-Ka radiation. In each case the cell-yas determined from 25 accurately measured high-order reflections. Data reduction included corrections for Lorentz and polarisation effects using standard Enraf Nonius routines. Standard reflections monitored hourly showed only random fluctuation. Unit cell parameters and the details of the data collections are given in Table 6.2. The structures were solved by direct methods using SHELXS86, and refined by least-squares methods, based on F², using SHELXL93. All non-hydrogen atoms were refined with anisotropic displacement parameters, while H atoms were refined in riding mode with a common isotropic displacement parameter. Figure 6.4 and Figure 6.5 snow SCHAKAL diagrams of the compounds and indicate the labelling schemes used. Atomic coordinates are listed in Tables 6.3 and 6.4 respectively.

6.13

and the second se		
Compound .	14	16
Empirical formula	C _{te} H ₁₄ CINO	C ₁₈ H ₁₇ NO
Formula weight / g.mol ⁻¹	259.72	239.31
Temperature / K	293(2)	° 293(2)
Wavelength / A	0.71089	0.71059
Crystal system	Monoclinic	Mogoclinic
Space group	P 2,/p	P 2,/n
a/A	9.387(3)	9.393(4)
8/A.	13,5896(9)	13.627(2)
c/A	10.589(4)	10.69(2)
α/%	90 .	ŭ 9 0 .
₿ <i>1</i> ° ÷	101.81(2)	102.42(9)
Y/P	90	-90
Volume / Å ³	1322.2(7)	1366(3)
	••••••••••••••••••••••••••••••••••••••	
ი / Mg.m ⁻³	1.305	° 1.19
Absorption coefficient / mm ⁻¹	0.276	0.074
F(000)	544	512
Range	a 2.5≤0≤30	* 3≤0≤30
Index ranges :		
h a 积 。	-13 -→ 13	-18-+13
K i	-1	-1+18
»] محمد المربوع بالمحمد بين محمد معرف من المعرف محمد محمد محمد معرف معرف محمد معرف محمد معرف محمد محمد معرف محم المحمد المحمد المحمد المحمد المحمد المحمد محمد محمد محمد محمد محمد محمد محمد	*i ** 14	
	4/35	4/8¥
independent renections	23637	6886
RM	0.013	0.0393
Data/restraints/parameters	a 3831/0/164	3883/0/164
Máx shift, Az	0 *	0.001
Residual density / e.A.a		
(A) Jun	0.249	0.500
	*U.JU£	
Reliability indices	0 0411	0 1078
$wR2 (l > 2\sigma(l))$	0.1284	0.3348
R1 (all data)	0.0662	0.1495
wR2 (all data)	0.1357	0.3704
an a	1 084	0 0 1 05A

ø

_ .

8

.

87

<u>у.</u>,

K

Ũ

Û

à

	x/a 👘	y/b	z/c e	IJea
xI	1698(1)	6211(1)	3689(1)	58(1)
)	916(1)	5552(1)	7080(1)	63(1)
l.	2455(1)	6705(1)	6543(1)	45(1)
(1)	2426(1)	7318(1)	4349(1)	41(1)
;(2)	2710(1)	8055(1)	3530(1)	49(1)
(3)	3288(2)	8936(1)	4035(2)	g 57(1)*
(4)	3587(2)	9086(1)	5346(2)	o 58(1)
(5)	3305(1)	8350(1)	6168(1)	52(1)
(8)	2708(1)	° 7459(1)	5678(1)	*41(1)
(7)	1096(2)	6336(1)	6542(1)	44(1)
(8)	-190(1)	.8944(1)	5939(1)	42(1)
(8)	-277(2)	7945(1)	ð195(1)	50(1)
(10)	-1540(2)	8462(1)	5714(2)	63(1)
(11)	-2721(2)	7988(1)	4971(1)	68(1)
(12)	-2643(2)	7008(1)	4719(2)	63(1)
(13)	-1394(2)	6476(1)	5196(1)	53(1)
(14)	3748(2)	6199(1)	7295(2)	81(1)
(15)	• 4523(2)	5583(2)	6489(2)	77(1)

Ø

 \mathcal{P}

ø

		C.	9 9
coordinates (x 10") for 15	and equivalent iso	tree displacement pa	rameters (Å ² ,
x/a	y/b	z/c	U _{eq}
, 909(2)	561(2)	1950(2)	72(1)
2455(2)	1686(2)	1442(2)	51(1)
2734(2)	2448(2)	618(2)	45(1)
\$287(3)	3345(2)	1144(2)	58(1)
3587(3)	4092(2)	390(3)	66(1)
3336(3)	3964(2)	-924(3) N	65(1)
2794(3)	3086(2)	-1462(2)	57(1)
2478(2)	3211(2)	-718(2)	48(1)
1928(3)	1350(2)	-1331(2)	* 59(1)
1097(3)	1326(2)	1439(2)	50(1)
-192(2)	1950(2)	839(2)	45(1)
-265(3)	2943(2)	1074(2)	55(1)
-1528(3)	3461(2)	614(3)	64(1)
-2735(3)	2995(3)	-120(3)	71(1)
-2662(3)	1994(3)	-366(3)	71(1)
-1411(3)	1485(2)	108(2)	59(1)
3736(3)	1203(2)	2251(3)	67(1)
4562(4)	582(3)	1501(4)	88(1)
	 coordinates (x 10⁴) for 15 x/a 909(2) 2455(2) 2734(2) 3287(3) 3587(3) 3587(3) 3336(3) 2794(3) 2478(2) 1928(3) 1097(3) -192(2) -265(3) -1528(3) -2735(3) -2682(3) -1411(3) 3736(3) 4562(4) 	coordinates (x 10") and equivalent iso k/a y/b 909(2) 561(2) 2455(2) 1686(2) 2734(2) 2448(2) 3287(3) 3345(2) 3587(3) 4092(2) 3336(3) 3964(2) 2794(3) 3086(2) 2478(2) 3211(2) 1928(3) 1350(2) 1097(3) 1328(2) -192(2) 1950(2) -265(3) 2943(2) -2735(3) 2995(3) -2662(3) 1994(3) -1411(3) 1485(2) 3736(3) 1203(2)	2 coordinates (x 10") and equivalent iso x 2 c displacement part for 15x/ay/bz/c909(2)561(2)1950(2)2455(2)1686(2)1442(2)2734(2)2448(2)618(2)3287(3)3345(2)1144(2)3587(3)4092(2)390(3)3587(3)4092(2)390(3)3336(3)3964(2)-924(3)2794(3)3088(2)-1462(2)2478(2)3211(2)-718(2)1928(3)1350(2)-1331(2)1097(3)1328(2)1074(2)-192(2)1950(2)839(2)-265(3)2943(2)1074(2)-1528(3)3461(2)614(3)-2735(3)2995(3)-120(3)-2662(3)1994(3)-366(3)-1411(3)1485(2)108(2)3736(3)1203(2)2251(3)4562(4)582(3)1501(4)

φ

114

ç

· BY

G

CHAPTER 7

۰<u>ر</u> ۲

X-ray diffraction study of TGS

Due to its electro-optic properties triglycine sulphate (TGS) has been studied extensively. Of particular interest has been the effect that doping the crystals with impurities has on its ferroelectric properties. (Ravi *et al* ; 1993). The influence of laser light on its X-ray diffraction pattern has also been investigated (Zhukov *et al*; 1993). In this study it was found that the intensities of some of the Bragg reflections increased significantly when TGS was irradiated with laser light perpendicular to its b-axis.

The aim of this study was to try and reproduce the results obtained by Zhukov and co-workers in 1991, and also to investigate the H-bonding network present in TGS by means of a low temperature diffraction study. It was hoped that this could lead to some understanding of the influence of laser light on the diffraction pattern.

Very large crystals of the title complex were grown from aqueous solutions containing stoichiometric amounts of glycine (NH,CH,COOH) and sulphuric acid (H₂SO₄) by slow evaporation. Crystals selected for analysis were ground into spheres with radii in the range 0.2 to 0.3 mm, using a Nonius crystal grinder. Cell determinations, using 25 high-order reflections, and data collections were done on Enraf-Nonius CAD4 four-circle diffractometers equipped with graphite monochromators and Mo-Ka radiation. The low temperature data was collected using the cryostat described in chapter 4. Because of the shape of the crystals used and the relatively light elements prosent in the crystals, no absorption corrections were applied to the data.

Unit cell parameters and details of the data collections are given in Table 7.1. Atomic coordinates for the structures are listed in Table 7.2 and 7.3 respectively. The structures were refined, starting with coordinates retrieved from the Cambridge Crystallographic Database for a previous analysis (Solans *et al*, 1985), by least-squares methods based on F² using SitELXL93. The ORTEP diagrams shown in Figures 7 and 7.2 show the numbering scheme used in the analysis. In both, structures, the positions of the hydrogen atoms not an bixed in hydrogen bonding were calculated geometrically, and refined riding on the atom to which it is bonded.

The remaining two hydrogen atoms are both involved in hydrogen bonding and their positions were inferred from the difference Fourier maps, calculated using the low-temperature data, shown in Figures 7.3 and 7.4. These positions were refined isotropically using economon isotropic displacement parameter for all the hydrogen atoms. Table 7.4 lists the coordinates of all the hydrogen atoms as determined from the low-temperature data. The hydrogen bonds present in the crystal are illustrated in Figure 7.5, whilst the stacking of the molecules along the c-axis is shown in the packing diagram in Figure 7.6. It is interesting to note that at a first glance all the glycine molecules in TGS are present in the zwitterionic form of glycine $(H_N^+CH_cO_{2})$.

Table 7.1 ; Crystal and refine	ment data	
Compound 23	16	. 17 .
Empirical formula	C ₆ H ₁₇ N ₃ O ₁₀ S	H _{IV} N ₂ O ₁₀ S
Formula weight / g.mol ⁻¹	323.29	323.29
Temperature / K	<u> 293(2)</u> -	• 100(2)
Wavelength / Å	0.71069	0.71069
Crystal system	Monocilinic 🔗	Monoclinic 👘 🔬
Space group	P 2	. P 2
a/A	9.1669(8)	9.1508(4)
b/A o	12.649(1)	12.5890(5)
c/A A	5.731(6)	5.6047(2)
β/°	105.554(6)	^{C4} 105.180(4)
Volume / A ^a	640.1(7)	632.08(4)
Z	° 2	, 2 =
p/Mg.m ³	1.677	1.699
Absorption coefficient / mm ⁻¹	0.311	0.315
F(C00)	340	340
Crystal diameter / mm	0.6	× 0.4
Ránge 🖉 🔗 🔗	2.8 ≤ 0 ≤ 35	2.3 ≤ 0 ≤ 82
Index ranges :	° .14 14	-22 -> 21 GS
k	-1 -→ 20 -7 -→ 9	-1 -→ 31 -1Ω -→ 13
Reflections collected	[°] 3066	\$352 °
Independent reflections		9283

19

C>

 $(\geq$

•

£١

R.		n oda
Data/(estraints/parameters	3066 / 0 / 182	9283 / 0 / 190
Max shift, Az	n	
Residual density / e.Å ⁻³ - (Δρ) _{max} (Δρ) _{max}	• 0.549 -0.380	1.032 [°] »-1.084 "
Reliability indices R1 ($l > 2\sigma(l)$) wR2 ($l > 2\sigma(l)$) R1 (all data) wR2 (all data)	0.0295 0.0993 0.0299 0.0299 0.0999	0.0281 R0885 0.0347. 0.0914
8 · · · ·	0.815	1.069 🛯 🚬 🔹

 \mathbb{K}_{2}^{\prime}

	F	igure	7.2	÷	Labelled	ORTEP	diagram	of 1	17
--	---	-------	-----	---	----------	-------	---------	------	----

· · ·	x/a	∞ y/b	z/c	U,
\$(1)	9997(1)	2500	2735(1)	° 17(1)
)(1)	9655(1)	2517(1)	85(2)	30(1)
D(2)	8574(1)	2494(1)	3507(2)	28(1)
D(3)	10874(1)	1559(1)	3745(3)	30(1)
0(4)	10849(1)	3463(1)	3764(2)	29(1)
O(11)	6068(1)	2423(2)	10287(2)	36(1)
O(11B)	4953(2)	2328(2)	13288(2)	48(1)
C(1)	4894(1)	2401(2)	11170(3)	28(1)
C(2)	3401(1)	2446(2)	9246(3)	30(1)
N(1)	3583(2)	2874(2)	6939(2)	40(1)
0(21) 🐧 🛸	2137(2)	4982(1)	-480(3)	36(1)
O(21B)	4484(2)	5192(2)	. 1925(3) //	45(1)
C(21)	3019(2)	5238(1)	1424(3)	1 28(1)
C(22)	2485(2)	5685(2)	3500(3)	30(1)
N(2)	831(2)	5732(1)	2887(2) 🔊	26(1)
O(31) a	7793(2)	4951(1)	10553(3)	36(1)
O(31B)	5392(1)	° 4682(2)	8405(3)	39(1)
C(31)	6832(2)	4678(1)	8710(3)	25(1)
C(32)	7295(2)	4301(2)	6508(3)	30(1)
N(3)	8946(2)	4295(1)	6964(3)	26(1)

ø

	x/a	y/b	z/c	₩
S(1)	9988(1)	2500	2707(1)	6 (1)
O(1)	9875(1)	2525(1)	° 27(1)	。 10(1) °
O(2)	8547(1)	2486(1)	3447(1)	10(1)
O(3)	10878(1)	1553(1)	37,09(1)	10(1)
O(4)	10828(1)	3474(1)	3752(1)	10(1)
O(11)	6081(1)	2373(1)	10144(1)	13(1)
O(118)	4969(1)	2244(1)	13209(1)	15(1)
C(1)	4905(1)	2335(1)	11054(1)	10(1)
C(2)	3404(1)	2408(1)	9139(1)	11(1)
N(1)	3573(1)	2887(1)	6845(1)	11(1) *
O(21) »	2097(1)	4971(1)	-466(1)	13(1)
O(21B)	4432(1)	5108(1)	2073(1)	17(1)
C(21)	2962(1)	5204(1)	1500(1)	10(1)
C(22)	2412(1)	5658(1) 🔉	3580(1)	11(1)
N(2)	747(1)	5738(1)	2888(1)	°., 9(1)
O(31)	7789(1)	4907(1)	10611(1)	12(1)
O(31B)	5374(1)	4860(1)	8474(1)	12(1)
C(31)	6811(1)	*4652(1)	8746(1)	ସ୍ଟି(1) ା
Č(32)	7272(1)	4302(1)	6483(1)	11(1)
N(3)	8937(1)	4294(1) ₍₁₎	8939(1)	9(1)
able 7.4" Hydroc	on coordinates (x 104) and isotrof in displa	cement naramaters	(Å ² x10 ³) for 17
	4 x/a	viti	z/c	LI
H(2A)	3036/71	1299(11)	8879(5)	24/11
H(2B)	2802(11)	2774(7)	9879(10)	24(1)
H(1A)	2811(11)	3042(10)	5823(15)	24(1)
H(1B)	4073(13)	2406(7)	6058(15)	24(1)
H(1C)	4141(14)	3515(9)	7201(5)	24(*)
H(22A)	2718(5)	5233(7)	4910(22)	24(1)
H(22B)	2821(7)	6312(11)	3974(6)	24(1)
H(2C)	442(4)	5994(10)	4121(17)	24(1)
H(2D)	351(5)	5104(8)	2503(24)	24(1)
H(2E)	453(4)	6165(10)	1626(22)	24(1)
H(32A)	6893(6)	3623(10)	6029(7)	24(1)
H(32B)	6855(6)	4766(7)	5199(20)	24(1)
H(3A)	9188(3)	4048(10)	5617(20)	* 24(1)
	9340(5)	3873(1)	8216(22)	24(1)/
H(3C)	9294(5)	4956(9)	7261(23)	°24/11
Hrit	7089/201	2516/21	° 11269(93)	24(1)
the second s				Children and a state of the sta

L?

Ŋ.

≂

φ

 $\mathbb{C}^{\mathbb{C}}$

0 9

6

¢

0

0 o

119

ŝ

Ŋ

¢

n

Figure 7.4 : Difference Fourier map through O(21). O(21B) and O(31B)

.

In a previous invelligation, increases of up to 30% in the integrated intensities of the Bragg reflections of TGS, when irradiated by laser light ($\lambda = 630$ nm) perpendicular to the b-axis have been reported. (Zhukov *et el*: 1991) It was also reported that the intensity maximum was reached just after switching the laser radiation on and that the most noticeable changes where observed for low-angle reflections.

*122

In our analysis TGS crystals were irradiated with laser light from a battery-powered solid state diode laser ($\lambda = 670$ nm) mounted on the goniometer head as shown in Figure 7.7. Before any measurements were made it was ensured that the additional strain placed on goniometerhead by the mounted laser did not cause the centered crystal to move within the X-ray beam. Care also had to be taken throughout the study to ensure that the laser and its mount did not cause any collisions between the various diffractometer arms.

أرتيتها

Figure 7.7 . Laser tisate mounted on goniometerhead

To establish if the effect of the laser on the diffection pattern is isotropic or not, the directions from which the crystals were inrediated were chosen at random. In all the effect of the laser radiation on the X-ray diffirmation of three randomly oriented spherical crystals were investigated. Although no detailed measurements were recorded it was established that laser light does significantly after the observed intensities of some of the reflections. How or, it was observed that the extent to which individual reflections are affected depends on the orientation of the laser beam with respect to the unit cell of the crystal. That is the observed phenomenon is anisotropic. It was also noted that the observed phenomenon does not remain reversible indefinitely. In other words, after some period the diffracted intensity becomes insensitive to laser light.

The crystal structure of TGS is characterised by the presence of the two hydrogen bonded complexes shown in Figures 7.7 and 7.8. The packing of these complexes can be seen in the packing diagrams shown in Figures 7.5 and 7.6. The sort of hydrogen bonding seen in TGS kas also been observed in other crystals with nonlinear properties. For example in the 1:1 complex formed between 4-nitropyridine N-oxide and 4-nitrophenol (Fuquen *et al*; 1992). It has been suggested that hydrogen bonding plays an important role in acentric materials with nonlinear properties. It is conceivable that the changes in the Bragg intensities observed under the influence of laser radiation is due to changes in the hydrogen bonding network.

- ₆0

CHAPTER 8

The crystal structure of 5-Ethylamino-3-p-tolyl $1\lambda^4$,2,4-thia-selenazol-1-ylium Bromide.

125

The structure determination of the title compound **18**, obtained by intermolecular oxidative coupling of compound (xx) with bromine (Lai; 1992), was undertaken to confirm that Se-S coupling in **18** had indeed occured, rather that Se-N coupling which would lead to the isomeric salt (xxi). The cation in the salt is a derivative of the $1\lambda^4$, 2,4-thiaselenazol---ylium cation, a new heteroarchatic system whose derivatives are being employed in a new systhesis of hypervalent heterocyclic compounds (Lai; 1992). The length of the Se-S bond [2,1893(8)A] is nearly the same as the accepted covalent Se-S bond length [2,195(15)A; Allen, Kennard, Watson, Brammer, Orpen and Taylor, 1987]. The C(2)-Se and C(1)-S bonds are essentially C(sp²)-Se and C(sp²)-S single bonds, respectively. The cation in the salt **18** is planar and the heterocyclic ring bond lengths indicate that there is some π -electron delocalisation extending over the C(2); N(1), C(1), N(2) sequence, with the C(2)-N(1) and the C(1)-N(2) bonds shorter than the C(1)-N(1) bond.

(XX)

The title compound 18 was obtained as yellow needle-shaped crystals, from the reaction mixture, after washing with acetonitrile; m.p. 511 - 513K. As the crystals, proved to be unstable in the X-ray beam at ambient temperature, data while collected at 123K. This was done using a liquid nitrogen gas-flow cryostat mounted on a CAD4 diffractometer, equipped with standard Enraf Nonius data collection, routines. Data reduction, including Lorentz, polarisation and analytical absorption corrections was done using the PC version of the NRCVAX set of programs. Unit cell dimensions and details of the data collection are given in Table 8.1. The structure was solved by direct methods using SHELXS86 and refined by full-matrix least-squares methods based on F^2 using SHELXS86 and refined by full-matrix were refined with anisotropic displacement parameters. Hydrogen atoms were placed in geometrically calculated position, and allowed to refine in riding mode in the final cycles of refinement. Figure 8.1 shows a labelled ORTEP diagram of the molecule and the atomic coordinates are listed in Table 8.2.

Se

(xxi)

Et

126

Compound	18 C ₁₁ H ₁₃ BrN ₂ SSe 364.16	
Empirical formula		
Formula weight / g.mol ^{.1}		
Temperature / K	126(2)	
Navelength / Å	0.71069	
Crystal system	Moneclinic	
Space group	P 2,/n	
I/A .	7 237(2)	
v/Å	10.4340(10)	
/Å /	17.450(2)	
/0	{ 80	
10 012	99.42(1)	

¢

Me

a sea a se a se a se a se a se a se a s	
γ/• · · ·	a 90
Volume / Å?	1299.9(4)
2 6 9	4 , 8
p/ Mg.m³ 🍐 🦭 👘	1.861
Absorption coefficient / mm1	6.042 **
F(000)	718
Crystal size / mm ³	0.34 x 0.15 x 0.14
Range	2.3 ≤ 0 ≤ 30
index ranges : h o k i	-10-→10 0-→14 0->24
Reflections collected	n 8911
Independent reflections	° 3778 •
R _{int} 2	0.0268
Date/restraints/parameters	3776/0/148
Max shift, Az	a D
Résidual dens/ty / e.Å ^{co} (Ap) _{mar} (Ap) _{ma}	1.052 -1.012
Reliability indice: R1 (I > 2c(I)) wR2 (I > 2c(I)) R1.0 (all data) wR2 (all data)	0.0356 0.0923 0.0606 0.0967
S .	0.988.0

12

67

.127

BR

р	° x/a	y/b • •	z/c	U _{es} ×
8r°	5532(1)	4582(1)	5866(1)	16(1)
S¢	3300(1)	8077(1)	4139(1)	14(1)
S	¥137(1)	6724(1)	o 5091(1)	° 11(1)
N(1)	3164(4)	9039(3)	5614(2)	11(1)
N(2)	4128(4)	7497(3)	6538(2)	13(1)
C(1)	° 3786(4)	7845(3)	5811(2)	12(1)
C(2)	2821(4)	9320(3)	4869(2)	11(1)
C(3)	2093(4)	10567(3)	4804(2)	12(1)
C(4)	1695(5)	11477(3)	5142(2)	14(1)
C(5)	1010(4)	12889(3)	4899(2)	13(1)
C(8)	° 690(4)	13000(3)	4107(2)	13(1)
C(7)	1080(4)	12097(3)	3573(2)	13(1)
C(8)	1756(4)	10883(3)	(°3809(2)	13(1)
C(9)	-28(5) ₀	14307(3)	3855(2)	17(1)
C(10)) 3917(5)	8318(3)	7200(2)	7 19(1)
C(11)	3487(5)	7515(4)	, 7865(2)	18(1)

 α

Ð,

G,

8

a T

J

 \sim

Ø 0

0

Chapter 9

(XXII)

9 |}

The crystal structure of 3-benzoyl-5-methyl--2,1-benzisoxazofe.

The title compound **19** was identified on the basis of a single crystal X-ray structure determination. It had been obtained from the treatment of (xxii) with excess sodium dichloroisocyanurate (xxii) in methanolic aquecus sodium hydroxide.

-No

ĊI

(xxIII)

129

19 0

The yellow crystal selected for the analysis afforded data reliable enough to allow ofor the refinement, using isotropic displacement parameters, of the positions of the. hydrogen atoms, located using difference Fourier maps. The fused ring system within the title compound is planar, with its atoms deviating from the mean plane by at most 0.013Å. The C(2)-C(1)-C(8)-O(2) torsion angle (-11-8(3)°) indicates that the carbonyl group deviates somewhat from the mean plane of the fused ring system of The C(1)-C(8) bond, of length 1.477(2)A, shows that there is some delocalisation of electronic charge taking place between the fused ring system and the carbonyl group. In general meshond lengths and angles of the title compound are virtually identical to couthe ° corresponding bond lengths and angles în S benzoyi-2,1-benzisoxazole (Sundaralingam and Jeffrey; 1962).

Cell determination, using 25 high-order reflections, and data collection were done on an Enraf-Nonius CAD4 four-circle diffractometer equipped with graphite monochromator. Data reduction included corrections for bound and polarisation effects using standard Enraf Nonius rotitines. Absorption effects were corrected for empirically (North *et al.* 1968). Three standard reflections monitored every hour showed only random fluctuations. Unit cell parameters, as well as datails of the data collection, solution and refinement are given in Table 9.1. The structure was solved by direct methods using SHELXS86 and effined using SHELXL93 by least-squares methods, based on F². All non-H atoms were refined with anisotropic displacement parameters. Figure 9.1 shows a labelled ORTEP diagram of the molecule and also indicates the numbering scheme used in the analysis. Atomic coordinates and selected bord lengths are listed in Table 9.2 and Table 9.3 respectively.

Ū.	·
Table 9.1 : Crystal and refined	nent data
Compound	19
Empirical formula	C ₁₈ H ₁₁ NO ₂
Formula weight / g.mol ⁻¹	237.25
Temperature / K	o 293(2)
Wavelength / Å	0.71089
Crystal system	Monoclinic
Space group	C 2/c
a/A	24.415(4)
b/A	5.7540(10)
c/A	17.143(2)
a/°	90
11/0	94.463(7)
y/9	90 🐤
Volume / A ³	2400.9(6)
Z	8
p/Mg.m ⁻³	1.313
Absorption coefficient / mm ⁻¹	0.038
F(090)	992
Crystal size / mm ^a	0.3 x 0.2 x 0.8
Range	2.8 ≤ 0 ≤ 30 [™] ()
Index ranges :	
h	-1->34
Γ Κ 1	1 >B
المى يەرىپىيە يەرىپىيەر يەرىپىيە بەر يەرىپى بەر يەرىپىيە بەر يېرىپىيە بەر يەرىپىيە بەر يەرىپىيە يەرىپىيە يەرىپى	-24-→24
Reflections collected	4379
Independent reflections	° 🗢 3472 *
---	--------------------------------------
R _{mt}	<u>,</u> ∝0.0561
Data/restraints/parameters	3472/0/207
Max shift, Az •	0.001
Residual density / e ₍ A ⁻³ (Δρ) _{max} (Δρ) _{min}	0.391 -0.261
Reliability indices R1 ($l > 2\sigma(l)$) wR2 ($l > 2\sigma(l)$) R1 (all data) wR2 (all data)	0.0633 0.1924 0.0857 0.2042
8	1.079

Figure 9.1: Labelled ORTEP diagram of 19

XI	07101.78			()	
	x/a	y/b 👘 🦷	<u></u> z/c •	U,,	
O(†)	676(1)	2587(2)	1527(1)	- 54(1)	
O(2)	2006(1)	2311(3)	2473(1)	65(1)	· «
N	455(1)	4036(3)	927(1)	55(1)	-7-6-4
C(1)	1197(1)	3248(2)	1758(1)	45(1)	1994) - 2 9 7
C(2)	1337(1)	* 5126(2) -	1317(1)	42(1)	
C(3)	1807(1)	6566(3)	1272(1)	48(1)	
C(4)	1780(1)	9337(3)	742(1)	53(1)	
C(5)	1283(1)	8730(3)	247(1)	58(1)	
C(6)	1 826(1)	*7424(3)	270(1)	54(1)	(.)

st)

C(7)	851(1)	5551(3)	813(1)	• 45(1)
C(8)	1514(1)	1951(3)	2378(1)	47(1)
(F)	。 1235(1)	238(2)	2861(1)	44(1)
C(10)	888(1)	497(3)	3035(1)	* 52(1)
C(11)	447(1)	-1186(4)	····· 3478(1) ^{····} 。	60(1)
C(12)	7 42(1)	-3091(3)	3744(1)	. 60(1)
C(13)	1287(1)	-3330(3)	3592(1)	58(1)
C(14)	° 1536(1)	o -1873(3)	3157(1)	50(1)
C(15)	2264(1)	9915(4)	″ 6 65(2) 📎	78(1)

O(1)-C(1)	1.358(2)	O(1)-N	1.398(2)	در د در دان در در در در در ا
O(2)-C(8)	1.329(2)	N-C(7)	1.374(2)	4. Y
C(1)-C(2)	1.374(2)	C(1)-C(8)	1.471(2)	
C(2)-C(3)	1.423(2)	C(2)-C(7)	1.431(2)	lan fandi an fa' yn fryffyn yfar
C(3)-C(4)	1.383(2)	C(4)-C(5)	1.442(3)	a a."
C(5)-C(5)	1.348(2)	C(6)-C(7)	1,423(2)	ي. م
C(8)-C(9)	1.487(2)	· ·	0	° 0

¢,

Chapter 10

Concluding discussion

In recent years, approximately 10 000 new crystal structures have been added annually to the Cambridge Crystall/graphic database. This fact is a testimony to the importance of structural data within chemistry. In general, these structures, determined by small molecule crystallographic methods, form the basis on which chemists have now founded their knowledge of molecular structure. In this thesis, the results of 19 successfully refined structures have been presented. These structure determinations, in addition to contributing to the body of known crystal structures, were undertaken for a number of chemical reasons, and the issues addressed included the nature of some hemical bonds, conformational preferences in molecules, hydrogen bonding in crystals as well as the identification and characterisation of reaction products.

133

Improvements and developments in crystallographic methodology as well-as advances in the fields of computing and automated diffractometry have greatly reduced the effort required for the successful completion of a structure determination. It is, however, still far from being as routinely applicable as, for example, proton NMR spectroscopy. The reason for this is that both the precision and accuracy of each crystallographic analysis may be influenced by a humber of factors, beyond the control of the crystallographer.

When, for example, measuring the intensities of the X-ray diffraction pattern a multitude of problems may be encountered. The may be categorised as instrumental problems, crystal problems and user problems. These include random errors such as misalignment of the instrument, fluctuations in the power of the X-ray beam, failure of the detecting system, non-uniformity of a low-temperature gas stream, if used, crystals moving on their mounts and intermittent X-ray shutter failures. There are other errors, such as those derived from crystal decay in the X-ray beam, which are systematic and may be corrected from by measuring periodically a few standard reflections to check on the constancy of the experimental

set-up. The absorption of the X-ray beam by the crystal is also systematic and may be minimised by the use of either empirical or analytical absorption correction methods. For the latter the faces of the crystal are accurately measured and indexed, and this information then used to determine appropriate correction factors for each reflection measured. There are also other types of errors that are more difficult to correct for unless more information is available; these include multiple reflection, extinction and thermal diffuse scattering. These type of errors are normally only considered when an extremely accurate crystal structure is required.

Disorder too can cause serious problems during crystallographic investigations. Real crystals deviate from the ideal picture of a periodically period repetition of a unit. Because of thermal motion, atoms oscillate around an equilibrium position within the unit cell, and is described by the anisotropic displacement parameters. For some crystals very large movements are possible and this results in dynamic disorder. Because the diffraction experiments show a time-averaged situations, the observed electron density appears to be smeared out. This problem may generally be reduced by performing the diffraction experiment at reduced temperatures. Another type of disorder that may occur in crystals is referred to as static disorder, and in this case the average contents of the unit cell is obtained by averaging over space, i.e. over the different unit cells. An important example of this type of disorder, which is common in minerals, and alloys is the substitutional disorder where the same site is occupied by different types of atoms in different unit cells.

It is clear that although crystal structures can today be determined with greater ease and precision than ever before, cognisance needs to be taken of all the factors that may influence the outcome of the analysis. Care should also be taken when the results of crystallographic analyses are considered or compared.

. .

00

De.

Bibliography

- Blundel, J.L. and Johnson, L.N., (1976), Protein Crystallography, Academic Press, New York.
- 2. Buerger, M.J. (1970), Contemporary crystallography, McGraw Hill
- 3. Domenicano, A and Hargittai, I. (1992), Accurate molecular structures, their determination and importance, Oxford science publications.
- Giacovazzo, C (1992), Fundamentals of Crystellography, Oxford University Press.
- 5. Ladd, M.F.C and Palmer, R.A. (1993), Structure determination by X-ray crystallography, Plenum Press.
- Luger, P. (1985), Modern x-ray analysis on single crystals, Walter de Gruyter, Berlin.
- 7. Mak, W and Zhou, G-D, (1992), Crystallography in modern chemistry, e: Asource book of structures, John Wiley and Sons.
- McKie, D. and McKie, C. (1986), Essentials of crystallography, Blackwell scientific publications.
- 9. Pauling, L. (1960), The nature of the chemical bond, Cornell University Precs.
- 10. Pickworth Glusker, J and Trueblood, K.N. (1985), Crystal structure analysis, primer, (2nd ed.), Oxford university press.
- 11. Stqut, R.H and Jensen, L.H. (1989), X-ray structure determination, a practical guide. (2nd ed.), Wiley.
- 12 Woolfson, M.M (1970), An introduction to X-ray crystallography, Cambridge university press.

References

3.

6.

٩,

- Albertsson, J.; Oskarsson, A. and Stahl, K., (1979), J. Appl. Cryst., 12, 537-544.
- Allen, C.; Boeyens, J.C.A.; Briggs, A.G.; Denner, L.; Markwell, A.J.; Reid, D.H. and Rose, B.G.; (1987), J. Chem. Soc., Chem. Commun., 967-968.

- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G. and Taylor, T., (1987), J. Chem. Soc. Perkin Trans II, S1-S19.
- . Argoud, R. and Muller, J., (1989), J. Appl. Cryst., 22, 378-380.
- Baert, F.; Lamoit, J.; Couturier, D.; Roussel, D. and Ricart, G., (1984), Acta Cryst., C40, 1071.
- Billing, D.G.; Boeyens, J.C.A.; Denner, L.; Hellyar, M.D.; Lai, L-L.; Matthee, A.J. and Reid, D.H., (1991), Acta Cryst., C47, 2564-2567
- Birknes, B.; Hordvik, A. and Saethre, L.J., (1975), Acta Chem. Scan., A29, 195-200.
- 8. Birknes, B., Hordvik, A. and Saethre, L.J., (1982), Acta Chem. Scan., A36, \$83-688.
- 9. Bezzi, S.; Mammi, M. and Garbuglio, C. (1958), Nature, 182, 247-248.
- 10. Churchill, M.R.; Amoh, K.N.and Wasserman, H.J., (1981), Inorg. Chem., 20, 1609.
- 11. Cremer, D. and Pople, J.A. (1975), J. Am. Chem. Soc., 97, 1354.
- 12. Coppens, P.; Rogs, F.K.; Blessing, R.H.; Cooper, W.F.; Larsen, F.K.; Leipoldt, J.G.; Rees, B. and Leonard, R. (1974), J. Appl. Cryst., 7, 315.
- 13. Darwin, C.G., (1914), Philosophical Magazine, 27, 315.
- 14. Darwin, C.G., (1922), Philosophical Magazine, 43, 800.
- 15. Fuquen, R.M.; de Almeida Santos, R.H. and Lechat, J.R., (1992), J. of Cryst. and Spec. Res., 22, 201-204.
- 16. Gabe, E.J., Le Page, Y and Charland, J-P (1989), J. Appl. Cryst., 22, 384.
- 17 Giacometti, G. and Rigatti, G. (1959), J. Chem. Phys., 30, 1633-1634.
- 18. Gleiter, R. and Hoffmann, R., (1968), Tetrahedron, 24, 5899-5911.

19. Greubel, K.H.; Gmeilin, E.; Moser, N.; Mensing, Ch. and Walz, L., (1990), Cryogenics, 9091.

_ **137**)

- 20. Hall, S.R. and Steward, J.M., (1992), Eds. Xtal3.2 Reference Manual . Universities of Western Australia and Maryland.
- 21. Hansen, L.K. and Hordvik, A., (1973), Acta Chem. Scan., 27, 411-420.
- 22. Hendrikson, K.; Larsen, F.K. and Rasmuşsen, S.E., (1986), J. Appl. Cryst., 19, 390-394.
 - 23. Hordvik, A., (1971), Acta Chem. Scan., 25, 1822-1834.
- 24. Hordvik, A. and Julshamn, K., (1971)a, Acta Chem. Scan., 25, 2507-2515.
- 25. Hordvik, A. and Julshamn, K., (1971)b, Acta Cherger Scan., 25, 1835-1848.
- 26. Hordvik, A. and Porten, J.A., (1973), Acta Chem. Lan., 27, 485-492.
- 27. Hordvik, A. and Saethre, L.J., (1972), Isr. J. Chem., 10, 239-248.
- Hordvik, A.; Sletten, E. and Sletten, J., (1969), Acta Chem. Scan., 23, 1852-1870.
- Iwasaki, F.; Murakami, H.; Yamazaki, N.; Yasui, M.; Tomura, M. and Matsumura, N., (1991), Acta Cryst., C47, 998-1003.
- 30. Karie, J. and Hauptman, H., (1950), Acta Crystallegr., 3, 181-187.
- 31. Keller, E. (1988), SCHAKAL88. A Fortran Program for the Graphical Representation of Molecular and Crystallographic Models. Albert-Ludwigs Univ. Freiburg, Germany.
- 32. Kilpatrick, J.E.; Pitzer, K.S. and Spitzer, R., (1947), J. Amer. Chem. Soc., 69, 2483-2488.
- 33. Klyne, W. and Prelog, V. (1960), Experientia, 16, 521.
- 34. Lai, L.-L., (1992), Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa.
- 35. Mammi, M.; Bardi, R.; Garbuglio, C. and Bezzi, S. (1960), Acta cryst., 13, 1048-1049.
- 36. Martin, M.; Rees, B. and Mitschler, A., (1982), Acta Crystallogr., B38, 6,
- 37. North, A.C.T.; Phillips, D.C. and Mathews, F.S., (1968), Acta Crystallogr., A24, 351.
- 38. Patterson, A.L., (1934)., Phys. Rev., 46, 372-376
- 39. Patterson, A.L., (1935)., Z. Kristallogr., 90, 517-542.

- 40. Ravi, G.; Aebukumar, S. and Ramasamy, P., (1993), J. of Crystal Growth, 133, 212-216.
- 41 Schomaker, V.; Wasser, J.E.; Marsh, R.E. and Gergman, G., (1959), Acta Cryst., 12, 600.
- 42. Sheidrick, G.M., (1985), SHELXS86 In Crystallographic Computing 3, edited by G.M. Sheidrick, C. Kruger and R. Goddard, pp 175-189, Oxford , Univ. Press.
- 43. Sheldrick G.M., (1993), SHELXL93, J. Appl. Crysts (In preparation).
- 44. Solana, X.; Franco, F. and Mikavitlles, G. (1985), J. of Ferroelectrics, 62, 59. 45. Staskuri, B., (1980), J. Org. Chem., 45, 2482.
- 46. Strel'tsov, V.A. and Zarodnik, V.E., (1989), Kristallografia, 34, 1769.
- 47. Struchkov, Yu. T.; Anisimov, K.N.; Osipova, O.P.; Kolobova, N.E. and Nesmeyanov, A.N., (1967), Dokl. Akad. Nauk SSSR, 172, 107.
- 48. Sundaralingam, M. and Jeffrey, D.A., (1962), Acta Cryst., 15, 1035
- 49. Rheingold, A.L.; Meckstroth, W.K. and Ridge, D.P., (1986), Inorg. Chem,, 23, 3706.
- 50. Zhukov, S.G.; Fetisov, G.V. and Aslanov, L.A., (1994), J. Appl. Cryst., 24, 34-76.

<u>а</u>ч.

Appendix

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometrical parameters have been included in compressed form on the accompanying DOS disk. The files include the neccessary escape codes forprinting on an HP faser printer with A4 paper, and may be decompressed with PKUNZIP

9

Author: Billing David Gordon. Name of thesis: Applications of small molecule crystallography.

PUBLISHER: University of the Witwatersrand, Johannesburg ©2015

LEGALNOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page)for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.