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ABSTRACT
Characterisation of plasmids conferring ampicillin resistance in South African

isolates of Haemophilus ducreyi.

Fifty-two strains of Haemophilus ducreyi from various geographic regions of 

southern Africa (Botswana, Lesotho, Namibia, Gauteng, Natal and Transkei) 

isolated between 1988 to 1994 were tested for susceptibilities to five antimicrobial 

agents and characterized according to their plasmid content and ampicillin- 

resistance genes.

Minimum inhibitory concentrations (MIC) of the antimicrobial agents were 

determined by the agar dilution method. All isolates were found to be resistant to 

ampicillin (MICW, > 128 pg/ml) owing to the production of P-lactamase. The 

majority of the strains exhibited resistance also to chloramphenicol (MIC*,, 16 
pg/ml), kanamycin (MIC^, 8 pg/ml), streptomycin (MIC90, 32 pg/ml) and 

tetracycline (MIC90, 16 pg/ml).

Plasmid DNAs extracted from the isolates by an alkaline lysis procedure were 

compared by agarose gel electrophoresis. Five plasmid profiles were observed. 

Strains from each geographic region showed several plasmid profiles. An unusual 

plasmid size combination of 5.6-, 4.5-, 3.9- and 3.0-kilobases (kb) was detected in 

strains originating only in Botswana (1992) and Gauteng (1994).

The H.ducreyi plasmids conferring ampicillin resistance were identified by 

transformation into a plasmid-free H.influenzae Rd strain. Three sizes of plasmid 

of 10.6-, 9.3- and 5.6-kb were recovered from the ampicillin-resistant p-lactamase­

positive transformants. After restriction endonuclease digestion with Ava I, Bam 

HI, Pst I and Pvu II, four plasmid types were observed on agarose gels. Although 

two of the plasmids had an identical size of 10.6 kb, they show different restriction
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patterns indicating DNA rearrangement.

A procedure for the transformation of H.ducreyi cells with homologous H.ducreyi 

plasmid DNA was developed by applying electroporation. Optimal conditions for 

transformation of clinical and reference strains were determined using various 

parameters, including growth of the cells, the expression time, the composition of 

the electroporation buffer, the electroporation conditions and the effect of plasmid 

size and plasmid DNA concentration. Electroporation using 9- to 10-kV/cm with 

pulse lengths of 15- and 10-msec respectively resulted in optimal transformation 

frequencies ranging from 3 x 104 to 10'6. Agitation of the cells before or after 

electroporation improved the transformation frequency by 25- and 22-fold 

respectively. Three plasmid genes conferring resistance to ampicillin, kanamycin 

and sulphonamides were transformed successfully to H.ducreyi recipients. All 

plasmids transferred to H.ducreyi by electroporation remained intact and 

extrachromosomal.

This is the first demonstration of transformation of H.ducreyi plasmids to 

homologous cells. The availability of transformable plasmids would allow the 

development of H.ducreyi vectors that may be useful in cloning genes involved in 

pathogenesis or other important functions.
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1.0. INTRODUCTION

1.1. Historical Background

Chancroid or soft chancre is a sexually transmitted disease (STD) which was first 

described by Bassereau in France in 1852. He observed that the exudate from 

some genital ulcers would induce similar cutaneous ulcers at another site of the 

patient following autoinoculation. Thirty seven-years later, Ducrey (1889) 

identified microscopically chains of short, gram-negative pleomorphic rods of 0.5 

pm by 1.0 to 1.5 pm, aligned in a distinctive railroad track' or school of fish' 

arrangement (Figure 1.1.), from ulcers of patients following autoinoculation. 

Ducrey (1889) consistently observed this organism, Haemophilus ducreyi, in 

cleaned soft chancres, in pus from aspirated buboes and in the deep portions of 

abscesses.

Ducrey was unsuccessful in culturing these bacteria; this was accomplished by 

several investigators just before the turn of the twentieth century. The first 

convincing isolations have been credited to Istamanoff and Akspianz in 1897 

(Himmel, 1901; Davis, 1903; Ritchie, 1904), who reported cultures in a medium 

containing macerated human skin in agar. Later, Lenglet reported isolations in 

1898 of organisms that appear to be H.ducreyi by using similar human skin agar 

containing blood. Bezacon, Griffon and Le Sourd isolated H.ducreyi on blood agar 

alone in 1900 and the organism, after serial passages, was able to produce soft 

chancres when reinoculated into humans. Subsequently, other investigators were 

able to produce disease experimentally in humans, apes, chimpanzees and rabbits 

following inoculation with the bacillus or with bubo pus obtained from cases of 

chancroid (Sullivan, 1940).

H.ducreyi is classified in the genus Haemophilus on the basis of morphological 

characteristics, a requirement for haem in and a guanine-plus-cytosine (G+C)
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content of the deoxyribonucleic acid (DNA) (Kilian, 1976). The requirement for 

haemin was confirmed by demonstrating the absence of enzymes involved in the 

conversion of 5-aminolevulinic acid to protoporphyrin (Hammond et al., 1978a). 

The quantitative haemin requirement of H.ducreyi is considerably higher than that 

reported for other haemin-requiring Haemophilus species with H.ducreyi requiring 

25 to 50 pg/ml compared to 1 to 10 pg/ml required by the other haemin-dependent 

Haemophilus species (Albritton et al, 1981). Deoxyribonucleic acid hybridization 

studies have shown H.ducreyi strains to belong to a highly homogeneous group 

with homology values of 85 to 100% (Casin et al., 1985). Casin et al. (1985) and 

Albritton (1989) demonstrated that the level of DNA homology between H.ducreyi 

and other Haemophilus spp., or several members of the genera Actinobacillus and 

Pasteurella was not significant, nor could Albritton et al. ( 1981) confirm significant 

competition for homospecific transformation in Haemophilus influenzae recipients. 

Recently from the analysis of the ribosoma! ribonucleic acid (rRNA) sequences of 

the type strain of H.ducreyi (C1P 542), Rossau et al. (1991) inferred that H.ducreyi 

is related to the Pasteuraellaceae branch of the gamma subdivision of the 

Proteobacteria. They pointed out that the comparison of rRNA molecular 

sequences is a very important tool for studying the evolutionary relationships of 

organisms.

1.2. Clinical Features of Chancroid

Chancroid is a sexually transmitted disease characterised by single but more 

commonly multiple painful genital ulcerations which have a sloughy purulent base 

surrounded by ragged undermined edges, with a distinctive red margin. The ulcer 

may, in addition to exhibiting a necrotic purulent exudate, have a granulomatous 

base which bleeds on scraping (Lagerg&rd, 1995). There is minimal inflammation 

of the surrounding skin (Ronald and Plummer, 1985; Lagergard, 1995). Typical 

ulcers are usually localised on mucosal and moist areas of the genitals (Figure 1.2.) 

(Lagerg&rd, 1995). Following contact with an infected partner, initial lesions
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Figure 1.1. Gram stain of H.ducreyi colony. Magnification 1000 X.

Figure 1.2. Clinical presentation of a typical chancroid lesion.
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usually appear within 4-7 days (Clarridge, Sliawar and Simon, 1990). Without 

treatment, the ulcers may persist for 1-3 months and are frequently complicated by 

fluctuant lymph glands and draining inguinal abscesses (Ronald and Plummer, 

1985). The rate of resolution of the disease has been shown to depend on a 

number of factors, including the site of primary ulceration, size and number of 

lesions and the degree of involvement of associated lymph nodes (Ballard, 1993). 

Chancroid does not spread systemically (Morse, 1989), even in individuals with 

AIDS, in whom the lesions may be extensive (Lagerg&rd, 1995).

1.3. Epidemiology
Genital ulcerative diseases are prevalent in all countries of the world (Morse, 

1989). Recent studies on the aetiology of genital ulcer disease show differences 

that may partly reflect differences in study material, but also genuine geographical 

differences in relative rates of specific genital pathogens (Morse, 1989).

Chancroid is endemic and a major cause of sexually transmitted genital ulcer 

disease in tropical countries, including Kenya (Tyndall etal., 1993, 1994), Thailand 

(Taylor et al., 1985a; Sarafian et a l, 1991a) and southern Africa (Meheus et al, 

1983; Abeck et al., 1988; Dangor et al., 1988a). The disease is rare in Europe and 

is also less common in the United States, although outbreaks have occurred since 

1981 (Coutinho, 1994).

The epidemiology of chancroid is poorly understood because of the lack of typing 

methods that would permit differentiation among strains of H.ducreyi (Sarafian et 

al., 1991b). Difficulties in establishing a clinical and laboratory diagnosis can 

interfere with an accurate identification of chancroid and its aetiological agent 

(Parsons et al., 1989). H.ducreyi is a fastidious organism that requires enriched 

media and other defined growth conditions for successful isolations and has few 

distinguishing biochemical features. Nonetheless, isolation of H.ducreyi in culture
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is required in order to establish a definitive diagnosis of chancroid (Sturm et al., 

1987). Recently, there has been an increased interest in the development of 

nonculture methods for the detection and identification of H.ducreyi and for the 

diagnosis of chancroid in general (Johnson et al., 1994). H.ducreyi strains have 

been characterised phenotypically by outer membrane protein (OMP) profiles 

(Taylor et al., 1985a), enzyme profiles (Van Dyck and Piot, 1987), plasmid profiles 

(Sarafian and Knapp, 1992; Brunton et al., 1982; Handsfield et al., 1981) and 

ribotypes (Sarafian et al., 1991b; Brown and Ison, 1993) as markers which have 

been used for the epidemiological study of H.ducreyi. In addition, enzyme 

immunoassays for detecting serum IgG antibody to H.ducreyi (Duncan et al., 1994) 

could be used for epidemiological studies.

Taylor et al. (1985a) found five different OMP patterns by analysing proteins in 

the range of 26 to 61 kilodaltons from 100 strains of H.ducreyi isolated in 

Thailand. Of the strains, 98% could be categorised into three patterns, however 

these differences are usually small (Taylor et al., 1985a).

Using the API-ZYM system, which included 95 different substrates, Van Dyck and 

Piot (1987) determined the enzyme profiles of 200 strains of H.ducreyi isolated 

from four geographical areas. The best type distribution showing the highest 

discrimination of strains was found by the combination of two enzyme substrates 

L-alanyl-L-phenylalanyl-L-proline and L-ornithine. Significant differences were 

shown between isolates from Asia, Africa and Europe by the two enzyme 

substrates, but not between strains isolated in the two African cities of Nairobi and 

Johannesburg (Van Dyck and Piot, 1987).

It is possible to characterise strains of H.ducreyi phenotypically by plasmid content 

(Sarafian and Knapp, 1992). The plasmid profiles of the H.ducreyi isolates are 

analysed to gain insight into the distribution and extent of temporal changes in
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H.ducreyi strain populations (Sarafian and Knapp, 1992), and may indicate the 

relative efficacy of regimens for the treatment of chancroid (Motley et al., 1992). 

Antimicrobial susceptibilities of H.ducreyi isolates appear to vary according to 

geographical location (Taylor et al., 1985a). The difference in antimicrobial 

susceptibilities among the isolates may be due either to intrinsic differences in the 

susceptibilities of isolates from different geographical areas or in the procedures 

used to determine susceptibility. Motley et al. (1992) observed an association 

between the plasmid content and antimicrobial susceptibility of H.ducreyi isolates. 

Isolates with the 5.7 Mdal p-lactamase plasmid were less susceptible to 

erythromycin, spectinomycin and trimethoprim than were isolates that possessed the 

3.2 Mdal p-lactamase plasmid. Handsfield et al. (1981) observed that plasmids 

isolated from H.ducreyi in their study varied according to geographic origin of the 

strains.

A recent development in nucleic acid analysis, ribotyping, is based on restriction 

fragment length polymorphism (RFLP) of rRNA genes (Sarafian et al., 1991b). 

RFLP and plasmid analysis were used to evaluate an outbreak of H.ducreyi in San 

Francisco between May 1989 and May 1991 (Flood et al., 1993). RFLP analysis 

may prove useful as a tool in distinguishing strains of H.ducreyi in an endemic area 

or during an outbreak, as an adjunct to traditional epidemiologic methods (Flood 

et al., 1993).

In a seroepidemiological study performed by Duncan et al. (1994), in Ethiopian 

women, they observed that a difference in the distribution of seropositivity rates 

may reflect past exposure to H.ducreyi infection. Such differences in seropsitivity 

rates may reflect an evolution over time in the prevalence of chancroid and in the 

geographical distribution of the disease (Duncan et al., 1994).
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1.4. Treatment

For the treatment of chancroid, the geographical origin of the isolate is an 

important determinant for the success of therapy, since antimicrobial susceptibilities 

vary from place to place. A major public health concern relates to studies in 

Africa which have shown that chancroid is a significant co-factor in the 

transmission of the human immunodeficiency virus (HIV) (Wasserheit, 1992).

Early in the antibiotic era, H.ducreyi was susceptible to almost all available drugs. 

However, increasing resistance has been documented among isolates from around 

the world (Aldridge, Cammarata and Martin, 1993). Most isolates now produce P- 

lactamase (Schmid, 1986) with increasing resistance to the sulphonamides and 

trimethoprim (Plourde et al., 1992), tetracyclines, chloramphenicol (Dangor et al., 

1990), streptomycin and kanamycin (Rajan and Sng, 1982; Taylor et al, 1985a). 

Erythromycin is a widely available, reasonably inexpensive and well-tolerated drug 

(Boyd, 1989). It is taken 500 mg orally, four times a day for seven days (Tyndall 

et al., 1994). Azithromycin (1 g) orally as a single dose has been included in the 

Centers for Disease Control (CDC) treatment guidelines (along with ceftriaxone and 

erythromycin) based on its excellent in vitro activity and pharmacokinetics which 

result in prolonged high concentrations in genital tissues and recorded clinical 

efficacy (Krohn, 1991). However, treatment trials with single doses of 

azithromycin and ceftriaxone have proved inadequate in persons with HIV and 

some experts recommend multidose erythromycin therapy to treat HIV infected 

patients with chancroid (Levine et al., 1994). Seven days after initiation of 

therapy, reduced tenderness, absence of purulence and partial reepithelisation 

should be apparent (Ronald et al., 1992).

1.5. Genetics and Mechanisms of Antimicrobial Resistance
Failure of cases of chancroid to respond clinically to therapy can either be the 

result of disease caused by H.ducreyi strains which are resistant to the antimicrobial
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agent or to concomitant HIV infection. The spread of plasmid-mediated resistance 

has been observed to penicillin, ampicillin, sulphonamides, streptomycin, 

kanamycin, tetracycline and chloramphenicol (McNicol and Ronald, 1984) (Table 

1.1.).

1.5.1. Resistance to ampicillin
During an outbreak of chancroid in Winnipeg, Canada, P-lactamase producing 

strains of H.ducreyi were isolated (Hammond et al., 1978b). Ampicillin-resistance 

was later found to be due to the presence of an 5.7 megadalton (Mdal) plasmid, 

designated pJBl (Brunton et al., 1979). Resistance to ampicillin [minimal 

inhibitory concentration (MIC) ^ 128 pg/ml] was shown to be due to the 

production of p-lactamase of the TEM-1 type, the enzyme associated with the 

transposon Tn2, a subclass of Tn4 (MacLean, Bowden and Albritton, 1980). 

Heteroduplex studies of this plasmid demonstrated that it carries 100% of the 

transposable ampicillin-resistance sequence, TnA (Brunton, Bennett and Grinsted, 

1981). Two additional p-lactamase producing plasmids have subsequently been 

identified (Handsfield et al., 1981; Totten et al., 1982). A larger plasmid, 7.0 

Mdal, isolated in Seattle, Washington, from a H.ducreyi strain recovered from a 

patient in the Philippines and a smaller 3.2 Mdal plasmid identified in H.ducreyi 

isolated from a patient who was infected in Brazil. Totten et al. (1982) studied the 

P-lactamase producing plasmids and found that the 5.7- or 7.0-Mdal plasmid had 

the whole ampicillin transposon inserted on the plasmid, whereas the 3.2 Mdal 

plasmid had only part of TnA on its plasmid.

Recently, two different p-lactamase plasmids of 3.51 Mdal containing the bla 

ROB-1 gene, a Bush group 2b enzyme (Bush, 1989b), and a TEM-1 p-lactamase 

plasmid were found within the same isolate of H.ducreyi from Thailand in 1985. 

Isoelectric-focusing data suggest that when these two particular plasmids are 

together, only the TEM-1 p-lactamase is expressed (MacLean et al., 1992).
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1.5.2. Resistance to suiphonamides and aminoglycosides

In 1981, H.ducreyi isolates from Kenya were found to be resistant to 

suiphonamides (Nsanzee/a/., 1981). A 4.9 Mdal nonconjugative plasmid encoding 

sulphonamide resistance was found in clinical isolates of H.ducreyi from Kenya 

and Atlanta (Albritton et al., 1982). This plasmid was found alone or in 

combination with a 5.7- or 7.0-Mdal ampicillin-resistance plasmid (Albritton et al, 

1982).

In Singapore, treatment failure following streptomycin therapy has been observed 

since 1980 (Rajan and Sng, 1982), and susceptibility studies have shown that a 

large percentage of these strains were resistant to both streptomycin and 

kanamycin. Sanson-Le Pors, Casin and Collatz (1985) observed that resistance to 

both these aminoglycoside antibiotics was mediated by a 4.7 kb plasmid and due 

to the synthesis of two aminoglycoside phosphotransferases (APH). Willson et al. 

(1989) characterised a 4.8 kb plasmid from H.ducreyi (plasmid pLS88) which 

encoded resistance determinants for suiphonamides and streptomycin related to 

those of the enteric plasmid RSF1010 and for kanamycin related to Tn903. The 

original source of plasmid pLS88 was a clinical strain of H.ducreyi isolated in 

Thailand by Taylor et al. (1985a).

1.5.3. Resistance to trimethoprim
Trimethoprim in combination with a sulphonamide has been effective in the 

treatment of chancroid in spite of the high prevalence of sulphonamide-resistant 

strains of H.ducreyi (Morse, 1989). However, clinical resistance to trimethoprim 

has been reported in Thailand (Taylor et al., 1985b) and more recently in Africa. 

The genetic mechanism of trimethoprim resistance in these strains is unknown 

(Morse, 1989), although Van Dyck et al. (1994) has proposed that resistance may 

be due to several mechanisms: plasmid coding for a novel dihydrofolate reductase 

enzyme that may become incorporated into the chromosome via transposons or to
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the overproduction of dihydrofolate reductase.

1.5.4. Resistance to chloramphenicol and tetracycline

Handsfield et al. (1981) described three isolates of H.ducreyi from the United
*

States and one from the Philippines that were resistant to chloramphenicol (MICs, 

16 pg/ml). In southern Africa, chloramphenicol-resistant strains of H.ducreyi were 

reported with MICs of 8 pg/ml (Dangor, Miller and Koornhof, 1988b). Sanson-Le 

Pors et al. (1982) demonstrated the presence of chloramphenicol acetyltransferases 

(CAT) in a chloramphenicol-resistant clinical isolate of H.ducreyi. Roberts, Actis 

and Crosa (1985), demonstrated that the CAT determinant was located on a 34 

Mdal conjugative plasmid. They also found tetracycline-resistance genes on the 

plasmid. The recognition of linked tetracycline-chloramphenicol resistance suggest 

that multiple-resistance plasmids may become more prevalent (Albritton et al., 

1984).

Tetracycline-resistant strains have been found in every geographical area surveyed, 

with the percentage of resistant strains varying from 16 to 100% (Albritton et al., 

1984). Both plasmid and chromosome-mediated tetracycline resistance have been 

described in H.ducreyi.

Plasmid-mediated tetracycline resistance is associated with conjugative plasmids of 

30 Mdal (Albritton et al., 1984) and 34 Mdal (Roberts, Actis and Crosa, 1985). 

Albritton et al. (1984) demonstrated conjugative matings, with the 30 Mdal 

plasmid, using as recipients other strains of H.ducreyi or strains of H.influenzae. 

The 34 Mdal plasmid isolated by Roberts, Actis and Crosa (1985) was shown to 

hybridise with a 1.8 kb Tet M probe, a tetracycline-resistance determinant 

belonging to the class M group.
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Tetracycline-resistant strains without apparent plasmids were unable to transfer 

resistance by conjugation, and no difference in resistance levels between strains 

with or without demonstrable plasmids were detected (McNicol and Ronald, 1984). 

Johnson, Biddle and De Witt (1989) studied a tetracycline-resistant, ampicillin- 

resistant H.ducreyi isolate that harboured TetM integrated into the chromosome of 

an isolate of H.ducreyi. The organisation of TetM in H.ducreyi was unusual and 

apparently involved the duplication of the TetM structural gene and perhaps also 

adjoining portions of the transposon (Johnson, Biddle and De Witt, 1989).

1.5.5. Other plasmids of Haemophilus ducreyi

Three novel plasmids with molecular masses of 1.8-, 2.6- and 2.8-Mdal were 

observed in 29 H.ducreyi isolates collected in Thailand in 1984, and in a strain 

isolated in San Francisco, California (Sarafian et al., 1991b). Weak hybridisation 

of the 2.6 Mdal plasmid with the bla probe using the 4.4 Mdal plasmid of 

Neisseria gonorrhoeae was observed (Sarafian et al., 1991b). These isolates 

appear to be unique, as the number and diversity of the plasmids present in each 

of these isolates distinguish them from strains previously described.

1.5.6. Mobilization of non-conjugative antibiotic resistance plasmids

Deneer et al. (1982) reported the presence of a 23.5 Mdal phenotypically cryptic, 

self transferrable plasmid in a clinical isolate of H.ducreyi from Kenya which 

contained two other plasmids. The 23.5 Mdal plasmid was capable of mobilizing 

a small co-resident 7.0 Mdal ampicillin-resistance plasmid and a 4.9 Mdal 

sulphonamide-resistance plasmid in conjugative matings to H.influenzae and 

Escherichia coli recipients (Deneer et al., 1982). The recipient received both the 

23.5 Mdal and either the 7.0 Mdal or the 4.9 Mdal plasmid (Deneer et al., 1982). 

The conjugative plasmid could also mediate the transfer of gonococcal ampicillin- 

resistance plasmids. This plasmid was shown to share homology with the 

ampicillin-resistance plasmids of H.ducreyi (McNicol, Albritton and Ronald, 1983).
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The 23.5 Mdal conjugative plasmid from H.ducreyi was mapped by McNicol, 

Albritton and Ronald (1986) by restriction endonuclease digestion and its molecular 

size was estimated to be 21.7 Mdal. An Ori T site was located which is required 

for in trans mobilization of DNA (McNicol, Albritton and Ronald, 1986). Another 

conjugative plasmid of 30 Mdal that carries the tetracycline-resistance determinant, 

was shown by Albritton et al. (1984) to transfer tetracycline resistance in 

conjugative matings with tetracycline-susceptible laboratory strains of H.ducreyi. 

Three additional tetracycline-resistant strains not exhibiting a 30 Mdal plasmid on 

initial screening were able to transfer tetracycline resistance in conjugative matings 

with a tetracycline-susceptible H.ducreyi strain (Albritton et al., 1984) and 

transconjugants from these matings acquired the 30 Mdal plasmid.

1.5.7. Molecular relationships among the plasmids

As mentioned previously, Albritton et al. (1982) characterised a 4.9 Mdal plasmid 

that specified sulphonamide resistance in H.ducreyi isolates. Electron microscopic 

heteroduplex analysis showed that this plasmid was 80% related to RSF1010, a 

plasmid specifying linked resistance to streptomycin and sulphonamides which is 

found in a wide variety of species, including E.coli and several Salmonella species 

(Brunton, Clare and Meier, 1986). The sulphonamide-resistance plasmid has not 

been found in other Haemophilus species (McNicol and Ronald, 1984).

Albritton et al. (1984) reported conjugative tetracycline and tetracycline- 

chloramphenicol-resistance plasmids in H.ducreyi. These plasmids were closely 

related to an H.influenzae P-lactamase plasmid, as judged by restriction 

endonuclease digestion patterns and their mutual incompatibility (Albritton et al., 

1984). Roberts, Actis and Crosa (1985) examined chloramphenicol-resistant 

Haemophilus parainfluenzae and H.ducreyi strains and showed that their CAT 

genes were related to the enteric type II class and to the H.influenzae CAT genes. 

Their data also suggest that all three Haemophilus species have a common ancestral
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Table 1.1. Plasmids of Il.ducreyi.

Plasmid Mass Resistance Reference
type (Mdal/kb) determinant

Antimicrobial 4.9/7.5 Sur Albritton et al. (1982)
resistance 3.1/4.8 Sur Km' Sanson-Le Pors, Casin and 

Collatz (1985)
3.1/4.8 Sur Strr Km' Willson et al. (1989); 

Dixon, Albritton and 
Willson (1994)

34/52“ Tcr Cm' Albritton et al. (1984); 
Marshall et al. (1984); 
Roberts, Actis and Crosa 
(1985)

34/52“ Tc' Roberts (1989)
30/46“ Tc' Albritton et al. (1984)
5.7/8.8 Amp' Brunton et al. (1979); 

MacLean, Bowden and 
Albritton (1980); Totten et 
al. (1982)

7.0/10.8 Amp' Totten et al. (1982); 
Brunton et al. (1982)

3.2/4.9 Amp' Totten et al. (1982)
3.5/5.4 Amp' MacLean et al. (1992)

Conjugative 23.5/36 None Deneer et al. (1982)
Novel 1.8/2.8 Sarafian et al. (1991a); 

Sarafian and Knapp (1992)
2.6/4b Sarafian et al. (1991a) 

Sarafian and Knapp (1992)
2.8/4.3 Sarafian et al. (1991a) 

Sarafian and Knapp (1992)

kb kilobase
resistant

a conjugative plasmid
showed weak hybridisation with the bla probe 

Amp ampicillin; Cm chloramphenicol; Km kanamycin; Str streptomycin; 
Su sulphonamides; Tc tetracycline
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source for the CATs. A 24.5 Mdal phenotypic cryptic plasmid, which mediates the 

conjugal transfer of R plasmids, has also been described in N.gonorrhoeae (Roberts 

and Falkow, 1977). Both the gonococcal 24.5 Mdal plasmid and the H.ducreyi 

23.5 Mdal plasmid were able to mobilize ampicillin-resistance plasmids of 

H.ducreyi and N.gonorrhoeae (Morse, 1989). In spite of similar size and function, 

restriction mapping and hybridisation studies showed that these were different 

plasmids (McNicol, Albritton and Ronald, 1986). However, some homology is 

present which is located within the transfer operon of the plasmid (McNicol, 

Albritton and Ronald, 1986).

Homology studies of the ampicillin-resistance plasmids of H.ducreyi with DNA 

from other species have been performed by several investigators. The G+C content 

of the 5.7 Mdal plasmid of H.ducreyi of 41 mol% is close to that found in 

H.influenzae and H.ducreyi chromosomal DNA (38 to 39%) (Kilian, 1976) and to 

that of the H.influenzae 30 Mdal plasmid RSF0885 (40%) and the N.gonorrhoeae 

3.2 Mdal plasmid (41%) (Roberts, Elwell and Falkow, 1977). The 7.0 Mdal 

plasmid of H.ducreyi is homologous to and carries the entire sequence of the 4.4 

Mdal 'Asian' plasmid of N.gonorrhoeae (Anderson et al., 1984; Brunton, Bennett 

and Grinsted, 1981). On the other hand, the 7.0- and 5.7-Mdal plasmids of 

H.ducreyi differ only in the presence of a 1.3 Mdal insertion sequence in the 

former, which is also present in the 4.4 Mdal gonococcal plasmid (Anderson et al., 

1984). The 5.7- and 3.2-Mdal H.ducreyi plasmids differ only by the presence of 

the entire Tn2/TnA sequence in the former; the 3.2 Mdal plasmid contains only the 

right-hand 40% of the Tn2 sequence (Anderson et al., 1984). The 3.2 Mdal 

H.ducreyi plasmid is identical to the 3.2 Mdal 'African' plasmid of N.gonorrhoeae 

(Anderson et al., 1984). This strongly suggests that the gonococcal plasmids could 

have been introduced to N.gonorrhoeae from H.ducreyi or other Haemophilus 

species (Brunton et al., 1982).
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Restriction endonuclease and hybridization studies confirm that the 5.4 kb plasmid 

of H.ducreyi, which contains the bla ROB-1 gene, is similar to the 5.4 kb ROB-1 

P-lactamase plasmid from Actinobacillus pleuropneumoniae (MacLe&n etal., 1992).

Cryptic plasmids which could serve as direct progenitors of the H.ducreyi plasmid 

pJBl (5.7 Mdal) have been found relatively commonly in H.parainfluenzae 

(Brunton, Clare and Meier, 1986). Hybridisation studies showed that all of the 

non-TnA fragments of pJBl are homologous to the cryptic plasmid found in 

H.parainfluenzae (Brunton, Clare and Meier, 1986).
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2.0. CHARACTERISATION OF CLINICAL ISOLATES OF 

HAEMOPHILUS DUCREY

2.1.1. Growth Characteristics and the Culture of Haemophilus ducreyi 

Pure cultures of H.ducreyi have a distinctive colony morphology (Sottnek et al., 

1980). Colonies are generally pinpoint size at 24 h and increase to 1 to 2 mm in 

diameter after 48 to 72 h of incubation at 35°C (Lubwama et al., 1986; Morse, 

1989). The colonies are nonmucoid, raised, compact and granular and have a tan, 

yellowish or grey-yellow colour (Morse, 1989). Grown on solid media (Figure

2.1. ) they vary in size, perhaps due to the peculiar cohesiveness of the organism 

(Parsons et al., 1989). Electron microscopic studies suggest these features of 

H.ducreyi, namely the 'railroad track’ arrangement and cohesiveness, may be 

related to areas of intercellular adhesion (Morse, 1989). This may explain the 

characteristic observation that colonies of H.ducreyi can be pushed intact across the 

surface of solid media with an inoculating loop and that uniform suspensions of the 

organism are difficult to obtain (Morse, 1989), as they remain tightly agglutinated 

when suspended in liquid (Oberhofer and Back, 1982; Parsons et al., 1989). 

Although most H.ducreyi colonies will be detected after 48 h of incubation, 

cultures should be held for 5 days before being discarded (Ronald and Plummer, 

1985).

The accurate diagnosis of chancroid depends on the ability to culture H.ducreyi
#•

(Sturm et al., 1987). A major advance in the ability to isolate H.ducreyi was the 

development of a selective medium consisting of an enriched chocolate agar, 

comprising of either a gonococcal or Mueller-Hinton agar base, supplemented with 

5% foetal calf serum (FCS) (Sottnek et al., 1980), L-glutamine in a concentration 

of 0.01%, which is supplemented by IsoVitaleX (Van den Berghe, 1987), 

haemoglobin or chocolatised horse blood (Hammond et al., 1978a) and 3 mg/1 of 

vancomycin to inhibit the growth of certain gram-positive flora associated with
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genital ulcers (Hammond et al., 1978c). Recently, new media for the growth of 

H.ducreyi have been reported. These include: transport medium for H.ducreyi, 

where FCS and IsoVitaleX are substituted by 5% Fildes extract (Dangor et al., 

1992) and clear broth and plate media, using catalase as a source of haeme (Totten 

and Stamm, 1994).

Optimum growth conditions for fresh clinical isolates and laboratory strains of 

H.ducreyi are incubation at 33 - 35°C, for 48 h under microaerophilic conditions 

in an anaerobic jar with 5% C 02 (Sturm and Zanen, 1984a) and a water saturated 

atmosphere which enhances the growth of the organism (Hammond et al., 1978a; 

Sottnek et al., 1980; Lubwama et al., 1986).

Nsanze et al. (1984) reported that by using a single solid medium and optimal 

conditions, the isolation rate of H.ducreyi from presumptive chancroid ulcerations 

is estimated to be 60% to 70%, with higher rates achieved if two media are used.

2.1.2. Biochemical Activity

H.ducreyi is a fastidious organism with very limited biochemical activity because 

it is asaccharolytic (Morse, 1989; Clarridge, Shawar and Simon, 1990), making it 

difficult to identify except on the basis of morphological and cultural 

characteristics. The important characteristics of H.ducreyi are listed in Table 2.1.

Although no unique colonial or biochemical characteristics have been demonstrated, 

H.ducreyi can be differentiated from the other human-haemin-requiring species of 

Haemophilus by its slow growth and lack of requirement for nicotinamide adenine 

dinucleotide (NAD, V-factor) (Ronald and Albritton, 1984).

Non-culture methods of detection of H.ducreyi have also been developed, such as 

those using DNA probes specific for H.ducreyi (Parsons et al., 1989). The recent
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Figure 2.1. Colonial morphology of H.ducreyi on Nsanze medium after 48 h 

growth in microaerophilic conditions at 35°C with humidity.
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development of a polymerase chain reaction (PCR) assay (Johnson et al., 1994) 

appears to be useful, especially since culture sensitivity is low. However, DNA 

probes do not have the specificity necessary for detecting clinical strains as other 

species of the Pasteurellaceae family give weak positive reactions. Applying PCR, 

using primers selected from sequences of an anonymous fragment of DNA cloned 

from H.ducreyi, no amplification was observed for bacteria other than H.ducreyi 

with the exception of a single strain of H.parainfluenzae, which gave inefficient 

amplification of a 500 bp fragment (Johnson et al., 1994). The sensitivity of PCR 

was also reduced by the presence of Taq inhibitors in the specimen.

Table 2.1. Major biochemical characteristics of H.ducreyi.

Characteristics Reaction

Porphyrin biosynthesis -

Nitrate reduction +v
Catalase V

Oxidase +v
Voges-Proskauer +v
Indole production -
Urease V

Ornithine decarboxylase -

Arginine dihydrolase -

Alkaline phosphatase +
H,S production -

Deoxyribonuclease -
Sodium polyanethole-sulfonate (a)

(a) Zone of inhibition with an average size of 15 mm (Shawar, Sepulveda, 
Clarridge, 1990) 
v variable reactions 
Extracted from Albritton (1989)
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2.1.3. Antimicrobial Susceptibility

The first report of antimicrobial susceptibility testing of H.ducreyi dealt with 19 

isolates from an epidemic in Winnipeg, Canada (Hammond et al., 1978b). Most 

of these isolates were moderately or very susceptible to the antibiotics tested: 84% 

were moderately susceptible to ampicillin; 94% were susceptible to tetracycline; all 

were susceptible to cephalothin, kanamycin, chloramphenicol and sulphonamides. 

Three isolates resistant to penicillin and ampicillin were the first H.ducreyi strains 

reported that produced P-lactamase (Hammond etal., 1978b). More recently most 

H.ducreyi isolates have been found to be p-lactamase positive, from 47% in the 

Netherlands (Sturm, 1987) to nearly 100% in other countries (Nsanze etal., 1981; 

Taylor et al., 1985a; Dangor et al., 1988a).

Many strains of H.ducreyi exhibit resistance to one or more antimicrobial agents 
includingsulphonamides, trimethoprim, tetracycline, chloramphenicol, streptomycin, 

kanamycin, penicillin, ampicillin, doxycycline, spectinomycin, gentamicin and 

thiamphenicol (Morse, 1989; Dangor et al., 1990). In many parts of Africa, the 

penicillins, tetracyclines, sulphonamides and most recently trimethoprim have 

become ineffective (McNicol and Ronald, 1984; Plourde et al., 1992). Most 

isolates of H.ducreyi worldwide are susceptible to erythromycin which remains the 

recommended treatment for chancroid, however strains have been encountered in 

Singapore and Thailand which have MICs of 4 pg/ml (Sng et al., 1982; Knapp et 

al., 1993).

Tetracycline resistance is widespread in Thailand (MICS0 > 32 pg/ml), France 

(MIC50, 32 pg/ml), The Netherlands (MIC50, 16 pg/ml) and South Africa (MIC50, 

16 pg/ml) (Dangor et al., 1990).

Canadian and African isolates of H.ducreyi have been shown to be susceptible to

kanamycin (Slootsman et al., 1983), however MICs of ^ 16 pg/ml have been
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reported from South Africa (Dangor et al., 1988a), France (Sanson-Le Pors, Casin 

and Collatz, 1985) and Thailand (Taylor et al., 1985a).

Although H.ducreyi isolates from Belgium have been shown to be susceptible to 

chloramphenicol (Slootsman et al., 1983) and thiamphenicol has been used 

successfully to treat the disease in Zimbabwe (Latif, 1982), chloramphenicol- 

resistant strains producing chloramphenicol acetyltransferases (Sanson-Le Pors et 

al., 1982) have been reported from South Africa (Dangor et al., 1988a), Thailand 

(Taylor et al., 1985a), The Netherlands (Sturm, 1987), France (Sanson-Le Pors et 

al., 1982) and the Philippines (Handsfield et al., 1981).

Trimethoprim resistance has been documented in Thailand (Taylor et al., 1985b) 

and in Nairobi (Plummer et al., 1983) with MICs > 32 gg/ml being frequently 

detected in the United States (Schmid, 1986). Fourteen percent of isolates from 

South Africa exhibited in vitro resistance to trimethoprim (MIC, 4 pg/ml) (Dangor 

et al., 1988a). Susceptibility to sulphamethoxazole has been reported in H.ducreyi 

isolates in Kenya, South Africa and The Netherlands (Dangor et al., 1990), whereas 

isolates in Thailand had MICs > 160 pg/ml for most strains (Taylor et al., 1985b). 

The combination of trimethoprim and sulphonamide is synergistic against 

H.ducreyi, unless high-level sulphonamide-resistance is present (Schmid, 1990).

In this study, antimicrobial susceptibilities of 52 H.ducreyi clinical isolates 

collected during 1988 to 1994 from various regions in southern Africa was 

investigated.

2.2. MATERIALS AND METHODS

2.2.1. Bacterial Strains

The reference strains H.ducreyi ATCC 27722 and C1P 542 were obtained from the 

American Type Culture Collection, USA and the Pasteur Institute in Paris,
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respectively. A total of 52 clinical isolates of H.ducreyi were studied (Table 2.2.). 

Twenty-three isolates acquired in Botswana, Lesotho, Natal and Transkei were 

collected in Carletonville, Gauteng in 1992 when migrant gold miners returned 

from their homes; 7 isolates collected in 1994 in Gauteng; 4 isolates from 

Windhoek, Namibia and 18 isolates collected in 1988 in Gauteng. All isolates 

were collected by the STD reference centre, SAIMR except for the isolates from 

Windhoek, Namibia which were provided by the Namibian Ministry of Health and 

Social Services.

2.2.2. Media (Appendix A)

The media used for H.ducreyi in these studies were Nsanze agar medium (Nsanze 

et al., 1984), chocolate agar and serum-free medium/charcoal agar (Lockett et al., 

1991). Other media used was a supplemented Brain Heart Infusion (sBHI) broth. 

Supplemented BH1 broth with the addition of 15% glycerol (Merck, Germany) was 

used for the storage of isolates at -70°C.

Isolates grown on agar plates were incubated for 48 h at 35°C under 

microaerophilic conditions, in an anaerobic jar (GasPak, BBL, Microbiology 

systems, Becton Dickinson, Cockeysville, USA) with 5% C 02 (GasPak, BBL) and 

high humidity.

2.2.3. Examination of Colony and Cell Morphology

Colony morphology was examined from cultures grown on Nsanze or chocolate 

agar medium. Cell morphology and the arrangement of the bacterial cells were 

observed microscopically after the bacteria were heat fixed onto a glass slide and 
Gram stained.
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Table 2.2. Clinical isolates of H.ducreyi used in this study.

Gauteng, 1988

D16 Y5 Y10 Y70 YD29 Y56

Y76 Y78 Y88 Y109 Y156 Y163

Y165 Y179 Y119 Y182 Y193 Y195

Botswana, 1992

CH137 CH216 P15 P77 PI 16

Lesotho, 1992

CH57 CH90 CH128 CHI 38 CHI 61 CH246

P157 PI 67

Natal, 1992

CH87 CHI 22 CHI 45 CH242 CH248 P2

P6 P97 PI 43

Transkei, 1992

CH247

Gauteng, 1994

HD1 HD2 HD4 HD5 HD6 HD7

HD8

Windhoek, Namibia, 1994

WD793 WD794 G802 G723

2.2.4. Biochemical Characteristics
The biochemical characteristics of H.ducreyi strains were examined according to 

a scheme proposed by Kalian (1976). The following tests, which are described in 

Appendix A.7., were performed for the detection of:

Porphyrin biosynthesis; indole; urease; ornithine decarboxylase; nitrate reduction; 

alkaline phosphatase; hydrogen sulphide (H2S); catalase; oxidase; sodium 

polyanethole-sulfonate (SPS) disk susceptibility test; p-lactamase.
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Isolates were streaked on BHI agar (BBL, Microbiology systems), BHI containing 
2 pg/ml NAD and BHI containing NAD and 10 pg/ml haemin to test for the 

presence of contaminants and other Haemophilus species. H.parainfluenzae and 

H.influenzae were used as positive controls. Both haemin (BDH chemicals Ltd, 

Poole, UK), prepared by heating a stock of 10 mg/ml at 65°C, and NAD (Sigma 

Chemical Company, USA), prepared as a fdter sterilized stock of 2 mg/ml, were 

stored at -20°C.

Gram staining was performed on suspicious colonies, with H.ducreyi ATCC 27722 

used as a control.

2.2.5. Antimicrobial Susceptibility Testing

2.2.5.1. Preparation of inocula

An 0.5 McFarland standard was prepared using H.ducreyi ATCC 27722. From a 

48 h culture on Nsanze medium, 30 colonies were suspended into 2 ml of quarter- 

strength Ringers solution. The cells were dispersed by the method described by 

Jardine (1990). In this method, cells were drawn up a 26 G needle 10 times for 

even dispersal and allowed to settle afterwards for 15 min. Dilutions from 10' to 

10-6 were made from the suspension to find the appropriate concentration of cells 

to be used as a standard.

Twenty colonies of each H.ducreyi isolate was removed from solid media and the 

cells dispensed as described above. Cells were allowed to settle for 10 min before 

being compared and adjusted to the 0.5 McFarland standard, to produce 

approximately 106 cells/ml. Standardization of the density of the inoculum is 

essential if variation in results is to be avoided.

2.2.5.2. Medium and antibiotics for antimicrobial susceptibility testing

Minimum inhibitory concentrations of the antimicrobial agents were determined
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using the agar dilution method by using a gonococcal agar base medium with 10 

g/1 haemoglobin (Difco, Detroit, Michigan, USA), 1% IsoVitaleX (BBL) and 5% 

FCS (Flow laboratories, Scotland). The following antibiotics used were prepared 

according to the manufacturers instructions: ampicillin (Sigma), chloramphenicol 

(SA1MR), kanamycin monosulphate (Sigma), streptomycin sulphate (Sigma) and 

oxytetracycline HC1 (Tedro products, Johannesburg, SA). Serial two-fold dilutions 

of each antibiotic within the range from 0.5 to 128 pg/ml were prepared. Control 

plates were prepared by replacing the antibiotic with sterile water. The antibiotic 

was incorporated into the molten agar and evenly distributed by swirling the plate. 

When the agar had set the plates were stored overnight at 4°C.

2.2.5.3. Inoculation of the antibiotic plates

Prior to inoculation, plates were dried at 37°C. Plates were inoculated with the 

H.ducreyi isolates, using a 36 pin multipoint inoculator (Mast laboratories, 

England), from the lowest to the highest concentration for each antibiotic. Two 

reference strains of H.ducreyi, ATCC 27722 and C1P 542, were used as controls 

for each run of susceptibilities. Control plates with no antibiotics were inoculated 

at the beginning, end and between changes of different antibiotics. The inocula 

were allowed to dry and the plates incubated at 35°C for 48 h in an anaerobic jar 

containing 5% C 02 and moisture. The MIC was defined as the lowest 

concentration of the antibiotic showing no growth, a light hazy growth or 1-3 

colonies.

2.3. RESULTS

2.3.1. Media

Fifty-two clinical isolates grew on Nsanze medium recovered from chancroid- 

infected patients and showed characteristics typical for H.ducreyi. Yellowish-grey 

colonies, varying from pinpoint to approximately 2 mm in diameter were observed. 

Cohesiveness of the H. ducreyi colonies was apparent as they could be pushed
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intact across the surface of the agar. Growth of H.ducreyi strains on serum-free 

(charcoal) medium was similar to growth on Nsanze medium except the average 

size of the H.ducreyi colonies was smaller (0.5-1 mm).

The clinical isolates were able to grow in sBHI broth although growth was weaker 

than the growth of H.ducreyi ATCC 27722 in sBHI broth. Growth of H.ducreyi 

in sBHI broth was more pronounced with agitation at 200 revolutions per minute 

(rpm) resulting in 109 colony-forming units (CFU)/ml as compared to static growth 

of 10M08 CFU/ml.

Gram-stained H.ducreyi colonies showed gram-negative rods appearing as short 

chains in the distinct railroad track' formation.

2.3.2. Biochemical Reactions

The results obtained from the biochemical tests which are summarized in Table 2.3. 

demonstrate the inactivity unique to these organisms. All clinical isolates 

hydrolyse P-lactamase, tested positive for alkaline phosphatase and oxidase and 

were negative in the porphyrin test. Results were inconsistent for the nitrate 

reduction test as 55% of the isolates showed reduction of nitrates to nitrites. 

Negative catalase, indole, urease, carbohydrate utilization and hydrogen sulphide 

tests confirm positive identification of H.ducreyi. All isolates showed zones of 

inhibition around SPS disk of approximately 15 to 16 mm in diameter after 48 h.

2.3.3. Antimicrobial Susceptibilities of the Haemophilus ducreyi Clinical 
Isolates

The susceptibilities of 52 H.ducreyi isolates to ampicillin, chloramphenicol, 

kanamycin, streptomycin and tetracycline are presented in Tables 2.4., 2.5., B.l. 

and B.2. The reference strain ATCC 27722 was found to be susceptible to the 

following antibiotics: ampicillin, MIC < 0.5 pg/ml; chloramphenicol, MIC < 0.5
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pg/ml; kanamycin, MIC 4 pg/ml; streptomycin, MIC 16 pg/ml; and tetracycline, 

MIC < 0.5 pg/ml.

H.ducreyi isolates from 1988 had MICs ranging from 32 to > 128 pg/ml for 

ampicillin. An increase in resistance to kanamycin and streptomycin was evident 

from strains isolated from the Gauteng migrant workers. Chloramphenicol and 

tetracycline resistance also increased in 1994. Strains from Windhoek which were 

isolated separately from the South African strains had low levels of resistance to 

kanamycin and streptomycin.

Table 2.3. Summary of biochemical characteristics of H.ducreyi.

Biochemical test Reference strain 
ATCC 27722

isolates
(n=52)

Porphyrin biosynthesis - -

Nitrate reduction + 28/52 +
Catalase - -

Oxidase + +
Indole production - -

Urea hydrolysis - -

Ornithine decarboxylase - -

Alkaline phosphatase + +
H2S production - -

P-lactamase hydrolysis “ +

n = number of isolates

Table 2.4. Susceptibility of 52 H.ducreyi isolates to antimicrobial agents.
A m p i c i l l i n C h l o r a m p h e n i c o l K a n a m y c i n S t r e p t o m y c i n T e t r a c y c l i n e

m ic 50 >128 <0.5 2 16 4

MIC*, >128 16 8 32 16

Range 32 - >128 <0.5 - 32 <0.5 - >128 <0.5 - >128 <0.5 - 32



Table  2 . 5 . S u s c e p t i b i l i t y  of  t h e  H.ducreyi i s o l a t e s  f r o m  th e  v a r i o u s  g e o g r a p h i c a l  r e g i o n s  to 
f iv e  a n t i m i c r o b i a l  a g e n t s  f r o m  1988 to  1994.

G eographic
region

Number of 
isolates

MIC
jug/ml A m p ic i l l in Ch loram phen ico l Kanamycin Streptomycin Tetracycline

Gauteng 18 50 > 1 2 8 <  0.5 0.5 8 4

1988 90 > 1 2 8 0.5 4 16 8

Botswana 5 50 > 1 2 8 <  0.5 2 16 8

1992 90 > 1 2 8 8 16 16 8

Lesotho 8 50 > 1 2 8 <  0.5 1 16 4

1992 90 > 1 2 8 4 8 16 8

Natal 9 50 > 1 2 8 < 0 .5 4 16 4

1992 90 > 1 2 8 16 64 32 8

Transkei 1 90 > 1 2 8 0.5 8 32 8

1992

Gauteng 7 50 > 1 2 8 16 4 64 8

1994 90 > 1 2 8 32 > 1 2 8 > 1 2 8 16

Windhoek 4 50 64 8 <  0.5 8 16

1994 90 > 1 2 8 16 8 16 16
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Isolates from the various regions had similar MICs for tetracycline and for 

ampicillin. Isolates from Natal showed increased resistance to chloramphenicol, 

kanamycin and streptomycin. Gauteng isolates from 1994 showed resistance to all 

antibiotics tested.

2.4. DISCUSSION

All H.ducreyi isolates were identified on the basis of colony morphology and the 

results of biochemical tests. The colonial appearance of H.ducreyi is as described 

by other investigators (Sottnek et al., 1980; Nobre, 1982; Oberhofer and Back, 

1982; Sturm and Zanen, 1984a; Kraus, Morse and Sottnek, 1991; Totten and 

Stamm, 1994) and the diagnostic importance of simple observations such as 

colonial cohesiveness and the 'railroad track1 arrangement of cells in Gram-stained 

smears of these colonies are valued.

The various media that were used supported the growth of H.ducreyi with the best 

growth obtained using Nsanze medium. Growth on the serum-free medium 

produced pinpoint colonies and in broth, the characteristic clumping of H.ducreyi 

cells was eliminated. Clumping on agar media makes quantitation of bacterial 

suspensions difficult and methods to reduce clumping have been devised (Totten 

and Stamm, 1984). Growth of H.ducreyi in broth was initiated in a static 

environment as H.ducreyi is microaerophilic (Oberhofer and Back, 1982). Totten 

and Stamm (1994) grew H.ducreyi in broth incubated at 35°C with shaking at 200 

rpm for 24 h. They observed that the speed of agitation affected the growth curve 

since it changes the amount of oxygen in the broth. Agitation at 200 rpm resulted 

in a one-to-two fold increase in the number of cells per ml.

H.ducreyi has few demonstrable biochemical characteristics (Ronald and Albritton, 

1984) because of its fastidious growth requirements. H.ducreyi strains have a 

broad range of phosphatase activity, including alkaline phosphatase, acid
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phosphatase and phosphoamidase (Albritton, 1989). Although H.ducreyi is 

described as catalase negative and oxidase positive (Kilian and Biberstein, 1984), 

conflicting reports concerning these enzymes exist and results have depended on 

the methods and reagents used (Shawar, Sepulveda and Clarridge, 1990). Catalase 

activity has been uniformly negative and oxidase activity is generally negative 

when N,N-dimethyl-/7-phenylenediamine oxalate is used and positive when 

N,N,N',N'-tetramethyl-1.4-phenylenediamine dihydrochloride is used (Nobre, 

1982). The slide method was used to test for catalase production and gas 

production was not detected (Kilian, 1976; Sottnek et al., 1980; Clarridge, Shawar 

and Simon, 1990; Shawar, Sepulveda and Clarridge, 1990). Sturm and Zanen 

(1984b) were unable to detect catalase activity after dropping 5% H20 2 on colonies 

of H.ducreyi but observed a positive catalase reaction in the test tube. The 

detection of cytochrome oxidase appears to depend on the substrate used for the 

test (Shawar, Sepulveda and Clarridge, 1990). Positive results were observed with 

tetramethyl-/?-phenylenediamine dihydrochloride, a finding which is in agreement 

with previous studies using the same substrate (Nobre, 1982; Lubwama et al., 

1986; Shawar, Sepulveda and Clarridge, 1990).

The porphyrin test is the preferred method for demonstrating the dependence of 

H.ducreyi strains on exogenous liaemin (factor X) (Hammond et al., 1978b; 

Albritton et al., 1981). Several investigators have reported the failure of some 

strains to reduce nitrate ( Hammond et al., 1978c; Sturm and Zanen, 1984b). This 

failure has been attributed either to incubation time or the test used to measure this 

enzyme activity (Sng et al., 1982). Oberhofer and Back (1982) reported negative 

nitrate reduction by the Minitek test system, while conventional nitrate broth 

supplemented with 20% rabbit serum yielded positive test for nitrate reduction for 

all their strains. Indole production and urease activity have not been convincingly 

demonstrated, although one report (Sottnek et al., 1980) demonstrated three strains 

with weak urease activity. The SPS disk susceptibility test is useful for
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differentiating H.ducreyi from similar organisms, as only H.ducreyi, Gardnerella 

vaginalis and Capnocytophaga species show a zone of inhibition ^ 14 mm 

(Shawari, Sepulveda and Clarridge, 1990).

H.ducreyi is a fastidious organism that presents special problems in susceptibility 

testing. Preparation of a suitable standard inoculum suspension was difficult 

because of the peculiar cohesive nature of the colonies. Methods used to overcome 

this problem have included mechanical agitation with a vortex mixer (Hammond 

et al., 1978b; Bilgeri et al., 1982; Slootsman et al., 1983; Taylor et al., 1985b), 

ultrasonication (Jones, Hafiz and Duerden, 1986; Dangor et al., 1988a) and by 

passing the suspension through a 28 G needle (Jardine, 1990; Dangor, Radebe and 

Ballard, 1993). The recommendations of the National Committee for Clinical 

Laboratory Standards for antimicrobial susceptibility testing of fastidious organisms 

cannot be applied to H.ducreyi, since this organism requires haemin and 

supplementation with other nutrients for growth (Dangor et al., 1990). 

Furthermore, the cohesiveness of colonies and the agglutination in suspension 

renders standardization of inoculum size difficult. In addition, the slow and 

differing growth rates of isolates results in the failure to predictably reproduce the 

logarithmic growth phase (Dangor et al., 1990).

Direct detection of resistance mechanisms was the approach taken for antimicrobial 

susceptibility testing where the resistance mechanisms were deduced from the 

resistance phenotype characterized by conventional testing of a range of agents 

(Courvalin, 1992). The reported resistance phenotype was then predicted from the 

resistance mechanisms (Brown, 1994).

The antimicrobial susceptibility studies were compared with previous studies in 

South Africa (Bilgeri et al., 1982; Abeck et al., 1988; Dangor et al., 1988a). All 

clinical isolates in this study produced p-lactamase, as with investigations in 1988
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(Abeck et al., 1988; Dangor et al, 1988a). The 1982 study (Bilgeri et al., 1982) 

showed 98% of H.ducreyi isolates produced P-lactamase. Although all strains in 

the 1988 studies produced p-lactamase, the MIC50 for penicillin of 16 pg/ml was 

lower than for the 1982 study (Bilgeri et al., 1982) of 128 pg/ml. The isolates 

collected from Windhoek had MIC50 of 64 pg/ml and the remainder had MIC50 of 

128 pg/ml.

Comparing the 1988 and 1994 Gauteng H.ducreyi isolates, an increase in 

resistances to all antibiotics tested was evident. Resistances to the antibiotics from 

isolates taken from migrant workers returning from their homes in different regions 

show a similar pattern. There was an increase in the kanamycin resistance of 

strains from M1C50, 4 pg/ml (Dangor et al., 1988a) to 8 pg/ml with a range of 

< 0.5 - > 128. The MIC for chloramphenicol was stable with the previous study 

by Dangor et al. (1988a) of 16 pg/ml and a range of < 0.5 - 32. The first report 

of emerging resistance to chloramphenicol and thiamphenicol in South Africa was 

reported by Dangor, Miller and Koornhof (1988b). Tetracycline resistance has 

been reported by the previous investigators (Bilgeri et al., 1982; Abeck et al, 1988; 

Dangor et al., 1988a) to increase from an MICW of 16 pg/ml to 64 pg/ml and 

128 pg/ml respectively. However, in this study MICW was 16 pg/ml with a range 

of < 0.5 - 32. This decrease could be the result of decreased prescription of this 

antibiotic. Streptomycin resistance has not been observed by the previous 

investigators, but comparing the results from 1988 and 1994, there has been an 

increase in resistance to this antibiotic.

In general, isolates from developing countries such as South Africa and more 

increasingly from industrialized societies have been found to be resistant to 

penicillin, tetracyclines and sulphonamides as a result of the use of these 

antimicrobials for clinical treatment (Abeck et al., 1988).
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3.0. PLASMID PROFILES AND THE CHARACTERISATION 

OF THE AMPICILLIN-RESISTANCE PLASMID OF 

HAEMOPHILUS DUCREYI

3.1. Introduction

P-Lactam antibiotics are among the most frequently-prescribed antibiotics 

worldwide. They inhibit enzymes involved in cell wall biosynthesis and cell 

division. The most common mechanism by which clinically-important bacteria 

become resistant to p-lactam antibiotics is by the acquisition of plasmids coding 

for the production of P-lactamases (Saunders, Hart and Saunders, 1986). These are 

enzymes that hydrolyze P-lactam antibiotics to inert and ineffective agents (Bush, 

1989a). The enzymes inactivates the drug before it penetrates the cell wall and 

reaches the cytoplasmic membrane-located penicillin-binding-protein (PBP) targets 

(Foster, 1983). The plasmid-specified P-lactamases of gram-negative bacteria are 

expressed constitutively and are located in the periplasmic space between the 

cytoplasmic and outer membranes (Foster, 1983).

The TEM enzyme was the first p-lactamase coded by a plasmid to be recognized 

in gram-negative bacteria (Datta and Kontomichalou, 1965). There are two 

subtypes called TEM-1 and TEM-2 which differ in sequence by a single amino 

acid (Ambler and Scott, 1978; Sutcliffe, 1978), resulting in a change in isoelectric 

point (pi) but no major change in kinetic properties.

Another enzyme, ROB, with a broad TEM-like substrate specificity has been 

isolated from H.influenzae type b (Rubin et al., 1981). It differs from TEM in 

having a different pi and a faster rate of ampicillin hydrolysis (Foster, 1983).

One of the objectives of these studies was to compare the plasmid profiles of 

strains isolated in different geographical regions and to identify the plasmids
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conferring ampicillin resistance in H.ducreyi. This was accomplished by 

transferring the ampicillin resistance genes to a plasmid-free H.influenzae Rd strain 

by DNA transformation and testing the transformants for the production of P- 

lactamase and for the presence of plasmids.

3.2. MATERIALS AND METHODS

3.2.1. Bacterial Strains

H.ducreyi clinical strains used are listed in Table 2.2.

Haemophilus influenzae Rd, obtained from G.Leidy, University of Columbia, New 

York, USA, is a transformable rough derivative of the capsular type d strain 

originally isolated by Alexander and Leidy (1951). The cultures were maintained 

at -70°C in sBHI broth with 10% glycerol (Merck).

3.2.2. Media

H.influenzae Rd was grown on chocolate agar (Appendix A.2.) and on BHI agar 

and in BHI broth (BBL, Becton Dickinson and Co.) supplemented with 10 pg/ml 

haemin and 2 pg/ml NAD. Ampicillin-, streptomycin- and kanamycin-resistance 

transformants were grown on chocolate agar supplemented with either 5 pg/ml 

ampicillin (Sigma), 100 pg/ml streptomycin sulphate (Sigma), 100 pg/ml 

kanamycin monosulphate (Sigma) or 100 pg/ml sulphamethoxazoie (SAIMR).

3.2.3. Haemophilus ducreyi Plasmid Extraction

Plasmid extraction was performed according to a modified procedure of Abeck et 

al. (1988). H.ducreyi isolates were grown on Nsanze medium containing the 

appropriate antibiotic. Colonies from two plates were suspended in 5 ml of TAE 

(50 mM tris (hydroxymethyl) aminomethane (Tris)-HCl, 20 mM sodium acetate, 

20 mM ethylenediaminetetra-acetate (EDTA)) buffer, pH 8.0, and centrifuged in 

a J-21 Beckman centrifuge (Beckman instruments Pty Ltd, California, USA) at
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7000 rpm for 20 min at 4°C in a JA-14 rotor. The pellet was resuspended in 0.5 

ml of 35% (w/v) sucrose dissolved in TE buffer (50 mM Tris-HCl, 20 mM EDTA, 

pH 8.0). The suspension was lysed with 1.2 ml buffer (3% sodium lauryl sulphate 

(SDS) in 50 mM Tris-HCl, pH 12.6) and the lysate heated at 70-80°C for 5 min. 

This disrupts base-pairing, causing the linear chromosomal DNA to denature. The 

pH of the mixture was reduced by the addition of 1 ml of 2 M Tris-HCl, pH 7.0. 

Chromosomal DNA was precipitated by the addition of 1 ml ice-cold 4 M 

potassium acetate-2 M acetic acid and the mixture stored on ice for 1 h. The 

precipitate was sedimented at 7000 rpm for 30 min in a JA-14 rotor at 4°C. The 

supernatant was transferred to another tube and extraction of proteins with a 

phenol: chloroform: 3-methyl-Butan-l-ol (25:24:1) mixture was performed several 

times until no precipitate was present at the interface. Any remaining traces of 

phenol were removed by a chloroform extraction. DNA was precipitated by the 

addition of 0.6 vol isopropano! (Merck). The precipitate was collected by 

centrifugation and either resuspended in 20 pg/ml ribonuclease A (RNase A) 

(Sigma) (heat-treated at 80°C for 10 min to inactivate contaminating 

deoxyribonuclease, if present) in TE (10 mM Tris-HCl, 1 mM EDTA) buffer, 

pH 8.0, and incubated at 37°C for 1 h or purified further on a caesium chloride 

(CsCl) gradient (Sambrook, Fritsch and Maniatis, 1989; Appendix A.8.). To the 

RNA free solution 0.2 M sodium acetate and 2 vol of absolute ethanol (Merck) was 

added to precipitate the nucleic acid at -20°C overnight. The DNA precipitate was 

recovered by centrifugation and the DNA was resuspended in TE (10 mM Tris,

1 mM EDTA) buffer, pH 7.6, and stored at -20°C.

3.2.4. Plasmid Preparation from Haemophilus influenzae Transformants

Plasmids were extracted from H.influenzae Rd by a modification of the alkaline 

lysis procedure of Birnboim and Doly (1979). An overnight culture was grown in 

10 ml of sBHl broth containing 10 pg/ml ampicillin (Sigma). The culture was 

harvested by centrifugation and the cells resuspended in 200 pi of plasmid buffer
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(50 mM glucose, 10 mM EDTA, 25 mM Tris-HCl, pH 8.0) after which 400 pi of 

SDS/NaOH solution (0.2 NaOH, 1 % SDS (w/v)) was added and the contents mixed 

by inversion. The mixture was place on ice for 10 min for cell lysis to occur 

before the addition of 300 pi, 3 M sodium acetate (pH 4.8). After mixing the 

contents thoroughly by inversion, the mixture was incubated on ice for 1 h. The 

precipitated, denatured chromosomal DNA was sedimented by centrifugation at 4°C 

and the supernatant containing plasmid DNA was precipitated with 2 vol of 

ethanol. After 1 h of incubation at -20°C the nucleic acids were sedimented by 

centrifugation at 4°C. The pellet was resuspended in TE buffer (pH 8.0) and RNA 

was removed by the addition of 20 pg/ml heat-treated RNase A (Sigma). After 

incubation at 37°C for 1 h the DNA was resuspended in 300 pi of TE buffer. An 

equal volume of a phenol: chloroform: 3-methyl-Butan-l-ol (25:24:1) mixture was 

added and the tube inverted several times to mix the contents. The mixture was 

centrifuged and the upper aqueous layer containing the plasmid DNA was 

transferred to a clean tube. The procedure was repeated until no protein was 

present at the interface. The plasmid DNA was concentrated by the addition of 0.3 

M sodium acetate and 2 vol of absolute ethanol. The DNA precipitate collected 

after centrifugation was resuspended in 100 ml TE buffer, pH 7.6.

3.2.5. Transformation of Haemophilus influenzae Rd

Transformation of H.influenzae Rd with H.ducreyi resistance plasmids was 

performed by using the method of Gromkova, Rowji and Koornhof (1989). 

3.2.5.I. Preparation of competent cells

H.influenzae Rd was streaked from a frozen stock onto a fresh chocolate agar plate 

and incubated overnight at 37°C. One colony was transferred into sBHI broth. 

The culture was incubated in an Erlenmeyer flask by shaking at 200 rpm for 18 h 

at 37°C. Next day the culture was diluted 1:50 into 5 ml of fresh sBHI broth and 

placed in sterile 90 mm petri dishes. The cells were incubated without shaking at 

37°C until an optical density reading of 0.6-0.8 at 650 nm (OD650) was obtained.
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3.2.5.2. Transformation procedure

All transformation experiments were performed with freshly prepared competent 

cells. To 1 ml of competent H.influenzae cells, MgCl2 was added to a final 

concentration of 0.001 M. One hundred pi aliquots of cells were dispensed into 

5 ml test tubes with the addition of 20 pg/ml of plasmid DNA. The transformation 

mixtures were shaken at 80 rpm, at 37°C for 90 min, in a G 24 Environmental 

incubator shaker (New Brunswick Scientific, Edison, N.J., USA), for the uptake of 

DNA by the cells. For the expression of the genetic markers, 0.5 ml of sBHI broth 

was added and the mixtures were incubated for 4 h, at 37°C with agitation at 

200 rpm. Controls for the level of competence consisted of competent cells with 

20 pg/ml H.influenzae Rd chromosomal DNA containing a streptomycin resistance 

marker which was obtained from Dr.R.Gromkova (University of the Witwatersrand, 

Johannesburg). To estimate the frequency of mutation, controls of competent cells 

without the addition of DNA were used.

3.2.5.3. Selection of transformants

To select for transformants 1 ml of diluted bacterial culture was placed in a petri 

dish followed by the addition of 20 ml of molten sBHI agar containing the 

appropriate antibiotic. The plates were incubated at 37°C for 48 h. All 

experiments were repeated twice. H.influenzae that grew in the ampicillin- 

containing sBHI agar were picked up with an inoculating needle and streaked onto 

fresh chocolate agar. After 24 h incubation at 37°C the colonies were tested for 

P-lactamase activity.

3.2.6. Restriction Endonuclease Analysis of Plasmid DNA

Restriction enzymes (Table 3.1.) obtained from Boehringer Mannheim GmbH 

(Germany) were used as prescribed by the manufacturers. The addition of 5 pi 

loading/stop buffer (0.1% bromophenol blue, 1% SDS, 100 mM EDTA, 50% 

glycerol) terminated the reaction. The incubation mixture was heated at 65°C for 

10 min for the inactivation of the following restriction endonucleases: Ava I, Hind
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II and Hind 111. Fragments containing cohesive ends which might have hybridized 

during the incubation are denatured by this procedure.

3.2.7. Molecular Weight Markers

The plasmids used as molecular weight markers, pUC18 (2.7 kb), pBR322 (4.4 kb), 

p7F12 (8.5 kb) and pDA37 (15.3 kb), were extracted from laboratory-derived 

strains of E.coli by the alkaline lysis procedure of Birnboim and Doly (1979). 

DNA molecular weight markers VII and X were obtained from Boehringer 

Mannheim GmbH (Appendix A.9.).

3.2.8. Agarose Gel Electrophoresis of Plasmid DNA

The DNA was loaded onto agarose gels (SeaKem, FMC) in TAE buffer (40 mM 

Tris-HCl, 5 mM sodium acetate, 1 mM EDTA, pH 7.6) and electrophoresed on a 

horizontal Bio-Rad mini-sub system (Bio-Rad, Richmond, California, USA) at 

60 V. The gel was stained with 0.5 pg/ml ethidium bromide (EtBr) and the band 

pattern viewed by UV-light. Size determinations of DNA were performed by 

comparing with the mobility of molecular weight markers by the method of 

Southern (1979).

Table 3.1. Recognition sequences of restriction endonucleases used in this 
study.

Restriction enzyme Recognition sequence

Ava I Ci(T,C) C G (A,G) A C
Bam HI GtG A T C C
Pst I C T G C AiG
Pvu II C A GiC T G
Hind II GT(T,C)1(A,G) A C
Hind III At A G C T T

A Adenine C Cytosine
G Guanine T Thymine
1 Site of cleavage



39

3.3. RESULTS
3.3.1. Plasmid Profiles of Haemophilus ducreyi

The data shown in Table 3.2. indicate five different types of plasmid profiles 

(Figure 3.1.) among the 52 H.ducreyi isolates. Some differences in the distribution 

of H.ducreyi isolates were observed based on their plasmid profiles. Most isolates 

from all geographical regions possess the 9.3 kb plasmid (75%), while some 

isolates harbour the 10.6 kb plasmid (15%). In addition, two strains from 

Botswana, H.ducreyi CH137 and PI 16, and three strains from Gauteng (1994), 

H.ducreyi HD4, HD6 and HD8 contain a plasmid profile of 5.6-, 4.5-, 3.9- and 3.0- 

kb. Two strains, from Gauteng (1988) and Botswana, Y88 and P77 respectively, 

carry a 9.3- and 7.5-kb plasmid. An isolate from Natal (CH87) harboured a 9.3- 

and a 4.5-kb plasmid. Strains lacking plasmids were not detected.

Table 3.2. Geographic distribution of 52 isolates of H.ducreyi by year of 
isolation and plasmid content.

Geographic
origin

Year of 
isolation

No. of Plasmid Content” 
isolates

Gauteng 1988 17 9.3
1 9.3; 7.5

Botswana 1992 1 9.3; 7.5
2 10.6
2 5.6; 4.5; 3.9; 3.0

Lesotho 1992 6 9.3
2 10.6

Natal 1992 5 9.3
3 10.6
1 9.3; 4.5

Transkei 1992 1 10.6
Gauteng 1994 4 9.3

3 5.6; 4.5; 3.9; 3.0
Windhoekb 1994 4 9.3

a. Molecular masses of plasmids are given in kilobases (kb)
b. Windhoek, Namibia
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Figure 3.1. 0.8% Agarose gel electrophoresis profiles of plasmids. Lanes B 
to F, plasmid DNA from isolates Y88, CH138, CH247, CH87 and 
PI 16 respectively. Lane A represents the E.coli molecular weight 
markers with their sizes in kb's.
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3.3.2. Identification of the AmpiciHin-Resistance Plasmids

These plasmids were identified by transformation. Ampicillin-resistant 

transformants were obtained by transforming plasmid DNA extracted from the 

clinical isolates of H.ducreyi into plasmid-free H.influenzae Rd. The frequencies 

of transformation of the plasmids harbouring the ainpicillin-resistance gene and the 

streptomycin-resistance gene of homologous chromosomal DNA were determined 

and the results from representative plasmids from each size is presented in 

Table 3.3. The transformation frequencies of H.ducreyi ampicillin-resistance genes 

were at least 104 lower than the frequencies of the streptomycin-resistance genes 

of homologous chromosomal DNA. The ampicillin-resistance transformants were 

examined for p-lactamase production and for the presence of plasmids. All 

ampicillin-resistant transformants were P-lactamase producers. The results 

presented in Figure 3.2. show that p-lactamase production is mediated by the 5.6-, 

9.3- and 10.6-kb plasmids.

3.3.3. Comparison of Anipicillin-Resistance Plasmids by Restriction 

Endonuclease Digestion

Since bacteria of the same species may have different plasmids of similar molecular 

mass, restriction endonuclease digestions were conducted to determine whether the 

ampicillin-resistance plasmids harboured by the H.ducreyi clinical isolates were 

similar. The ampicillin-resistance plasmids were digested with the restriction 

enzymes listed in Table 3.1. and their digestion products observed by agarose gel 

electrophoresis. A comparison of the restriction endonuclease patterns of the 

H.ducreyi plasmids is shown in Figure 3.3. The four ampicillin-resistance plasmids 

were designated pCH138 (9.3 kb), pP 116 (5.6 kb), pP15 (10.6 kb) and pCH128 
(10.6 kb).
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Table 3.3. Transformation frequencies of H.influenzae Rd with H.ducreyi 
ampicillin-resistance plasmids.

Donor
DNA

Genetic
marker

Transformation 
frequency (TF)

Number of 
CFU

H.ducreyi plasmids
pCH137 Amp' 9.1 x 108 109
pCH138 Amp' 1.0 x 108 109
pP 15 Amp' 7.1 x 109 109

Controls
H.influenzae Rd
(Chromosomal) Str' 103 109
No DNA 0 109

r resistance
Amp ampicillin 
Str streptomycin

Table 3.4. Ampicillin-resistance plasmids recovered from H.ducreyi strains 
from different geographical regions.

Geographic
region

No. of plasmids
isolates 5.6 kb 9.3 kb 10.6 kb

Gauteng (1988) 18 18
Botswana 5 2 1 2
Lesotho 8 6 2
Natal 9 6 3
Transkei 1 1
Gauteng (1994) 7 3 4
Windhoek 4 4

Recovery of plasmids in the ampicillin-resistance transformants and their sizes.
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Two plasmids of the same size of 10.6 kb were observed when cut with Bam HI 

(7.6- and 2.5-kb) and a third Bam HI site of 9 kb was revealed in pP15. All 

plasmids have a common Pst I fragment of 3.1 kb and Ava I fragment of 4.5 kb. 

In addition, the 9.3 kb and 10.6 kb plasmids have a common Bam HI fragment of

2.5 kb. The 5.6 kb and 9.3 kb plasmids showed identical Pst I sites of 6.1 kb. 

Pvu II cut the 10.6 kb plasmid into three sizes of 4.8- 6.4- and 8.3-kb. Cleavage 

of the plasmids with Hind II and Hind III was not observed.

3.3.4. Recovery of the 4.5 kb Plasmid
The 4.5 kb kanamycin-resistance plasmid from a clinical isolate of H.ducreyi, Hd4 

(resistant to ampicillin and kanamycin), was recovered by extracting the plasmid 

from a 0.8% agarose gel using the Geneclean II kit (BIO 101 Inc., California, 

USA) and transforming the plasmid into H.influenzae Rd. Kanamycin-resistant 

transformants were selected on 100 pg/ml kanamycin-containing, chocolate agar. 

The transformants were also resistant to 100 pg/ml streptomycin and 100 pg/ml 

sulphamethoxazole.

3.4. DISCUSSION

The plasmid profiles of H.ducreyi isolates were compared to those obtained in 

previous studies undertaken in southern Africa. Plasmids of 6.1-, 8-, 8.9- and 9.9- 

kb (Thomson and Bilgeri, 1982) and of 8.8-, 7.5- and 10.8-kb (Abeck et al., 1988) 

have been identified previously from H.ducreyi isolates on the subcontinent. 

Comparing the plasmid profiles with the previous studies, an increase in the 

number of plasmids, with an increase in the level of antimicrobial resistance (as 

discussed in Chapter 2) in the past 4 - 6  years was evident. Plasmids identified in 

this study include the 9.3-, 10.6-kb and the 7.5 kb plasmids, the 9.3- with 4.5-kb 

plasmids and the 5.6-, 4.5-, 3.9- and 3.0-kb plasmids.
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Figure 3.2. Agarose gel electrophoresis of plasmid DNA extracted from 
Il.influenzae Rd transformants. Lanes: A, E.coli molecular 
weight markers; Il.influenzae Rd transformants using Il.ducreyi 
plasmid DNA: B, pCII 138 (9.3 kb); C, pP116 (5.6 kb); D, pP15 
(10.6 kb); E, pCH128 (10.6 kb).



Figure 3.3. Electrophoresis on 1% agarose gels after digestion of plasmid 
DNA, extracted from the H.influenzae Rd transformants.
Plasmids pP116, pCH138, pP15 and pCH128 were digested with
A, Ava I; B, Earn HI: C, Pst I; D, Pvu II; E Hind II; F, Hind III S
respectively. The molecular weight markers VII and X were
used. Lane G represents the untreated plasmid DNA.
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The plasmids which were recovered from the clinical isolates of H.ducreyi seldom 

varied according to the geographic regions, except for the 5.6-, 4.5-, 3.9- and 3.0- 

kb plasmid combination which were present in only two regions. One can 

speculate that migrant mine workers moving from Botswana to Gauteng (1994) 

could have spread the strains carrying the plasmid combination.

In this study five strains were found to harbour multiple plasmids of sizes 3.2-, 2.8- 

2.6- and 1.8-Mdal (4.9-, 4.3-, 4- and 2.8-kb respectively) which appear to be 

similar to the plasmids of H.ducreyi strains isolated recently in Thailand (Sarafian 

et al., 1991a) and in San Francisco, USA (Sarafian and Knapp, 1992). Sarafian et 

al. (1991a) observed that the 3.2 Mdal/4.9 kb plasmid present in these isolates did 

not hybridize with the bla probe, prepared from a 4.4 Mdal p-lactamase-specifying 

plasmid of N.gonorrhoeae, therefore demonstrating that it was unrelated to the 3.2 

Mdal p-lactamase plasmid found in H.ducreyi and N.gonorrhoeae strains described 

by Anderson et al. (1984). Later. MacLean et al. (1992) analysed the strains from 

Thailand. They demonstrated that the ROB-1 p-lactamase is expressed in an 

isolate of H.ducreyi from Thailand and that the bla ROB-1 gene for this enzyme 

is carried on a 5.4 kb plasmid. Furthermore they reported that the 5.4 kb plasmid 

was found in conjunction with the antibiotic-resistance plasmid pLS88 (4.8 kb) and 

two small cryptic plasmids. The 2.8 Mdal (4.3 kb) plasmid observed in the 

majority of these strains may be the kanamycin-resistance plasmid described 

previously (Sanson-Le Pors, Casin and Collatz, 1985; Willson et al., 1989), as in 

this study the plasmid when transformed to H.influenzae conferred resistance to 

kanamycin, streptomycin and sulphonamide.

One of the most surprising observations in transformation of gram-negative bacteria 
is the specificity of the DNA uptake system for homologous DNA (Smith, Danner 

and Deich, 1981). Foreign DNAs can bind to the competent cell surface in large 

amounts but are absorbed poorly (Smith, Danner and Deich, 1981). The poor
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uptake of plasmid DNA into cells reflects the lack of specific base sequences on 

the plasmid DNA (Notani et al., 1981), as the same sequence required for the 

efficient uptake of chromosomal DNA (Danner et al., 1980) is also required for the 

efficient uptake of plasmid DNA (Smith, Danner and Deich, 1981). It has been 

reported (Bendler, 1976) that plasmid DNA transfers its antibiotic-resistance 

markers at least 10'4 fold less frequently than chromosomal DNA transfers its 

auxotrophic markers. This low efficiency applies even to plasmids that bear the 

Haemophilus uptake sequence (Smith, Danner and Deich, 1981).

All H.ducreyi strains examined in this study were ampicillin resistant and the genes 

coding for this resistance were located on plasmids. This was demonstrated, by 

first direct examination of H.ducreyi strains for the production of P-lactamases and 

secondly by transforming the ampicillin-resistance gene to a plasmid-free 

H.influenzae Rd and demonstrating that all transformants have acquired plasmids. 

At least four different types of plasmids were identified. From the 52 isolates, 39 

strains (75%) have the 9.3 kb plasmid, 8 strains (15%) have the 10.6 kb plasmid 

and 5 strains (10%) have the 5.6 kb plasmid. These plasmids are similar in size 

to the ampicillin-resistance plasmids previously described (McNicol and Ronald, 

1984; MacLean et al., 1992). Although a 3.9 Mdal/6.1 kb ampicillin-resistance 

plasmid has been described in 1982 (Thomson and Bilgeri, 1982), it is uncommon 

in Africa (Anderson et al., 1984; McNicol and Ronald, 1984). The acquisition of 

this plasmid could be by conjugative transfer from N.gonorrhoeae isolates which 

carry a 3.2 Mdal (4.9 kb) P-lactamase plasmid, which is also predominant in Africa 

(Roberts, Elwell and Falkow, 1977; Anderson et al., 1984). Plasmid exchange 

between Haemophilus and Neisseria species has been suggested by the isolation of 

an identical ampicillin-resistance plasmid in H.parainfluenzae and N.gonorrhoeae 

(Brunton, Clare and Meier, 1986).
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The majority of clinical isolates possessed the 9.3 kb plasmid coding for the 

production of P-lactamase. This plasmid was designated pJBl by Brunton et al. 

(1979) and the first reported isolation of this plasmid was at the 1978 epidemic in 

Winnipeg, Canada (Hammond et al., 1978b). This plasmid is well distributed and 

was observed frequently over a period of time in this study as well as by other 

investigators (Thomson and Bilgeri, 1982; Abeck et al., 1988). Brunton, Bennett 

and Grinsted (1981) demonstrated that this plasmid possessed an intact TnA which 

could be transposed to co-resident plasmids. The plasmid was shown to code for 

TEM-1 type P-lactamase (MacLean, Bowden and Albritton, 1980).

The 10.6 kb plasmid contains the complete TnA sequence (McNicol and Ronald, 

1984). The finding that there are two different p-lactamase encoding plasmids of 

a similar size of 10.6 kb suggests the possibility of an rearrangement of nucleic 

acids, resulting in a third Bam HI site in the plasmid DNA, as other investigators 

(Brunton et al., 1982) have reported only two Bam HI sites. An enzyme like 

TEM-1 may tolerate amino acid changes better than other enzymes that modify 

drugs because its structure is braced by disulphide and salt bridges (Jelsch et al., 

1993) and because p-lactamases have a single site for binding to their substrate 

(Jacoby, 1994).

The 5.6 kb ampicillin-resistance plasmid was found only in strains from Botswana 

and Gauteng. As mentioned previously, the ampicillin-resistance plasmid carries 

the ROB-1 p-lactamase gene and three other ROB-1 P-lactamase plasmids have 

been described previously (MacLean et al., 1992). A 4.1 kb ROB-1 plasmid from 

Pasteurella strains (Livrelli et al., 1988), a 4.4 kb plasmid, R^, in Haemophilus 

strains and at least one isolate of P.haemolytica (Livrelli, Peduzzi and Joly, 1991) 

and a 5.4 kb plasmid possessing the bla ROB-1 gene in Actinobacillus 

pleuropneumoniae (Medeiros, Levesque and Jacoby, 1986). All of these plasmids 

are related, as measured by DNA hybridization (Medeiros, Levesque and Jacoby,
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1986; Livrelli, Peduzzi and Joly, 1991) and they express a ROB-l-type P- 

lactamase. It has also been suggested that this form of ampicillin resistance has an 

animal reservoir and that conditions fostering its prevalence in animal strains may 

play a role in the spread of resistance to human pathogens (Medeiros, Levesque 

and Jacoby, 1986).

Hind II and Hind III do not cut the plasmid DNA. This is due either to the lack 

of recognition sites on the plasmid DNA or because of the modification of these 

sites by specific methylases. Since both Hind II and Hind III enzymes are derived 

from H.influenzae Rd (Smith and Wilcox, 1970), which was used as a recipient in 

transformation, the lack of digestion of the plasmids was most probably due to 

methylation of the plasmid DNA. It is known that restriction endonuclease are 

active only against unmethylated heterologous and not homologous DNA (Roy and 

Smith, 1973).
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4.0. TRANSFORMATION OF H A E M O P H I L U S  D U C R E Y I  BY 

ELECTROPORATION

4.1. Introduction

Studies on the pathogenicity, physiology and genetics of H.ducreyi have been 

hindered by the lack of efficient methods for gene transfer, in particular, DNA 

transformation. Although several members of the genus Haemophilus are known 

to possess a natural competence-dependent transformation mechanism, attempts to 

induce competence in H.ducreyi under different growth conditions or to promote 

uptake by inducing protoplast formation have been unsuccessful (Dr.R.Gromkova, 

unpublished results).

4.1.1. Background

The use of an electric field to reversibly render cells permeable has been termed 

'electroporation' (Neumann et al., 1982; Potter, Weir and Lieder, 1984) and the 

procedure has found widespread application in biology. The first application of the 

electric pulse technique to transfer genetic material was reported by Auer, Brandner 

and Bodemer (1976) who demonstrated transfer of SV 40 DNA and of mammalian 

cell RNA into human red blood cells. Subjecting membranes to a high-voltage 

electric field results in their temporary breakdown and the formation of pores 

(Kinosita and Tsong, 1977a,b), which permits the exchange of intracellular and 

extracellular components. Kinosita and Tsong (1977a) observed that biomembranes 

are transiently made more permeable by the action of short electric pulses above 

a certain field strength, without damaging the membrane structures. The size of 

these pores could be varied in a controlled manner: increasing the field intensity, 

the pulse duration, or decreasing the ionic strength all resulted in the formation of 

larger pores (Kinosita and Tsong, 1977a). The permeability induced is reversible, 

and the original membrane resistance and impermeability are restored, provided the 

magnitude or duration of the electric field does not exceed a critical limit,
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otherwise the pore size expands, resulting in the release of intracellular components 

(Kinosita and Tsong, 1977b).

In 1982, the first electroporative gene transfer, with subsequent actual gene 

expression was reported (Neumann et al, 1982). Plasmid DNA carrying the 

thymidine kinase (tk) gene, from the herpes virus, was introduced into /^-deficient 

mammalian culture cells by the application of short electric pulses. Stable 

transformants surviving in the HAT (hypoxanthine, aminopterin and thymidine) 

selection medium, in which only cells expressing the tk gene will grow, proved the 

direct gene transfer and subsequent expression of the gene.

Electroporation has become a valuable technique for the transfer of nucleic acids 

into adherent or suspended eukaryotic cells (electro-transfection) and prokaryotic 

cells (electro-transformation), and is an excellent alternative for many cell types 

which cannot be transfected or transformed by using chemical or biological 

methods (Shigekawa and Dower, 1988).

A rapidly growing number of reports on gene transfer by electroporation, 

demonstrates the applicability of this technique not only for mammalian, but also 

for plant, bacterial and unicellular cells.

4.1.2. Mammalian Cells

Studies on the control of gene expression in eukaryotes rely heavily on the ability 

to induce the integration and stable expression of cloned genes in mammalian cells 

(Potter, 1988). Chu, Hayakawa and Berg (1987) demonstrated electroporation- 

mediated transfection can yield efficiencies greater than those obtained by calcium 

phosphate precipitation methods, with electroporation resulting in an increase in 

transient expression, ranging up to 50-fold. These workers applied electroporation 

to a large variety of mammalian cells from different species and tissue types.
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4.1.3. Plant Protoplasts
Electro-transfection of monocot and dicot protoplasts has been performed using 

exponential or square wave pulses. Fromm, Taylor and Walbot (1985) developed 

a method for the electroporation of DNA into carrot, tobacco and maize protoplasts. 

They observed that with the electrical introduction of genes into plant protoplasts, 

a gene can be transferred into a cell and its expression analysed within hours. The 

advantages of the method are convenience, low cell toxicity, efficiency and 

applicability to a wide range of plant protoplasts (Fromm, Taylor and Walbot, 

1985). Langridge, Li and Szalay (1987) by introducing labelled plasmid DNA into 

chloroplasts indicated that, in addition to mediating DNA uptake into protoplasts, 

electroporation may also be used to introduce nucleic acids directly into isolated 

subcellular organelles. Thus, electroporation may now be applied for the genetic 

modification of genes involved in photosynthesis which are transcribed in the 

chloroplasts of economically important crop plants.

4.1.4. Unicellular Organisms

Hashimoto et al. (1985) succeeded in introducing plasmid DNA into intact 

Saccharomyces cerevisiae cells by applying electric field pulses under optimal 

electrical conditions. Since the method was not accompanied by cell fusion, it 

provided a novel method for transformation of yeast cells (Hashimoto et al., 1985).

Two groups have successfully used electroporation to introduce DNA into 

Trypanosoma brucei. Eid and Sollner-Webb (1987) used plasmid DNA containing 

the promoter from a T.brucei rRNA gene and attempted to monitor electroporation 

both by uptake of radiolabelled DNA and by increased transient RNA expression. 

At about the same time, Gibson, White and Borst (1987) introduced whole mini­

chromosomes isolated from T.congolense into T.brucei by electroporation. The 

foreign chromosomes apparently survived in the recipient parasite for several 

generations in the absence of selective pressure. If DNA transformation and
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expression in trypanosomes after electroporation becomes reproducible, it should 

be a great help in elucidating the highly complex and unusual transcription systems 

in these organisms (Potter, 1988).

4.1.5. Bacteria

Since the majority of bacterial species are not naturally competent, this prompted 

the search for new techniques for introducing DNA into bacterial cells. A method 

developed by Mandel and Higa in 1970, used calcium for inducing the formation 

of protoplasts. They subsequently were able to introduce bacteriophage DNA into 

protoplast of bacterial cells. Later, Cohen, Chang and Hsu (1972) further 

developed this procedure by demonstrating that the calcium chloride treatment 

could be used to transfer plasmid DNA into E.coli cells. However, since many 

bacteria of interest are recalcitrant to the above transformation techniques, this 

initiated the development of electro-transformation which is rapidly gaining ground 

today as a simple and efficient technique to transform many species (Solioz and 

Bienz, 1990).

Two bacterial species, E.coli (Calvin and Hanawalt, 1988; Dower, Miller and 

Ragsdale, 1988; Fiedler and Wirth, 1988) and Campylobacter jejuni (Miller, Dower 

and Tomkins, 1988) have been studied extensively. Recent examples include 

Legionella pneumophila (Pope, Dhand and Cianciotto, 1994), which causes 

legionnaires' disease; Clostridium perfringens, a source of food poisoning in 

humans and animals caused by a potent enterotoxin (CPE) (Melville, Labbe and 

Sonenshein, 1994); Bacillus thuringiensis, where the B.thuringiensis toxin gene was 

introduced into wild-type B.cereus, B.brevis and B.subtilis which were used in 

toxicity assays against the caterpillar of Heliothis assulta (Sun et al., 1994); and the 

transformation of Bartonella bacilliformis, an intracellular parasite of human 

erythrocytes (Grasseschi and Minnick, 1994).



4.1.6. Important Parameters of Electroporation

Although electroporation is effective in producing pores in a wide variety of cell 

types, each situation requires slightly different conditions that depend on the special 

characteristics of the target cell (Potter, 1988).

Several parameters are relevant to successful electroporation. Of these, the field 

strength, the duration of the current pulse and the electroporation buffer are the 

most important, and these factors interact in a compensatory manner (Dower, Miller 

and Ragsdale, 1988; Potter, 1988; Shigekawa and Dower, 1988). Two different 

types of electric field pulses are used for membrane electropermeabilization: 

exponential decay or square wave (Potter, 1988; Shigekawa and Dower, 1988). 

The voltage of a square wave is raised to a given amplitude which is maintained 

for a specified time, and then returned to zero (Figure 4.1.). The voltage of an 

exponential pulse is raised to an initial peak amplitude, then allowed to decay 

exponentially (Figure 4.2.). Thus a power supply can be either discharged directly 

across the sample (square wave) (Potter, 1988; Shigekawa and Dower, 1988) or it 

can be used to store charge in a capacitor which is subsequently discharged across 

the sample (exponential decay pulse) (Neumann et al., 1982; Fromm, Taylor and 

Walbot, 1985; Chu, Hayakawa and Berg, 1987).

Other experimental conditions also play a role in the efficiency of transformation. 

These include the specific conditions used for transformation (such as nutrients, 

ionic strength, purity of reagents and temperature) and the time necessary for the 

expression of the genetic marker. It is known from previous studies that the 

expression time depends on the nature of the genetic marker.

4.1.7. Capacitors and Resistance-Capacitance (RC) Circuits

The electric pulse used in electroporation is generated when the charged capacitor 

is suddenly discharged through the electroporation cuvette containing the cells and
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DNA (Fromm et al., 1987; Dower, Miller and Ragsdale, 1988). The ionic 

composition of the solution in the electroporation cuvette, the geometry of the 

cuvette and electrodes determines the electrical resistance of the sample (Fromm 

et al., 1987; Dower, Miller and Ragsdale, 1988; Shigekawa and Dower, 1988). 

The resistance and ionic strength of the medium are inversely related; increasing 

the ionic strength of the medium results in a lower resistance. Discharge of a 

given size capacitor into a medium of higher ionic strength (lower resistance) will 

produce a pulse with a shorter time constant (x). Two dimensions of the sample 

chamber affect resistance: the path length through the sample solution 

(interelectrode distance) and the cross-sectional area of the sample solution. 

Increasing the interelectrode distance or reducing the cross sectional area of the 

solution at the electrode surface will increase resistance.

Gene transfer of H.ducreyi DNA has been performed (Deneer et al., 1982; 

McNicol, Albritton and Ronald, 1983; Albritton et al., 1984) with the bacterium, 

containing a plasmid capable of transferring resistance in conjugative matings, as 

the donor and either H.influenzae, E.coli or H.ducreyi as the recipient. The major 

objective of this study was to attempt to transform H.ducreyi plasmid genes into 

reference and clinical strains of H.ducreyi by electroporation and to determine the 

optimal conditions for transformation.

4.2. MATERIALS AND METHODS
4.2.1. Bacterial Strains and DNA
The bacterial strains and plasmids are listed in Table 4.1. The DNA concentration 

was measured at OD260 with an LKB Ultrospec 4050 spectrophotometer (1 OD260 

unit = 50 (ig/ml).

Chromosomal DNA extracted from a nalidixic acid-resistant mutant of H.ducreyi 

ATCC 27722 was obtained from Dr.R.Gromkova.
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Table 4.1. H.ducreyi strains and plasmids used.

Strain Plasmid Molecular mass 
(kb)

Phenotype

ATCC 27722 plasmid-free
CIP 542 plasmid-free
C147 (Kenya)* plasmid-free
CH128 pCH128 10.6 ampr
CH138 PCH138 9.3 amp'
CH137 pCH137 5.7 amp'
HD 124 pHD124 7.5 su'
HD4 pHD4 5.1 kan'

r resistance
a from L.Slaney, Manitoba, Canada
amp ampicillin; kan kanamycin; su sulphonamides

4.2.2. Electroporation Buffers

Three buffers were used: 10% sterilized glycerol (Merck), 1 mM filter sterilized 

2-[4-(2-hydroxyethyl)-l-piperazinyl]-ethansulfonic acid (HEPES)(Merck) with 10% 

glycerol and filter-sterilized phosphate, sucrose and glycerol (PSG) buffer 

(2.43 mM K2HP04, 0.57 mM KH2P04, 272 mM sucrose and 15% glycerol, pH 7.4)

4.2.3. Preparation of Recipient Cells Grown on Solid Media

A suspension of H.ducreyi was plated directly onto Nsanze medium or chocolate 

agar. Cells from one plate were resuspended in 1.5 ml ice-cold electroporation 

buffer to form a thick suspension. The cells were dispersed by pushing them 

through a 26 G hypodermic needle ten times (Jardine, 1990) followed by 

centrifugation and washing four times with low ionic strength cold electroporation 

buffer. Electroporation at high voltages requires a cell suspension of very low 

conductivity. To achieve this, the ionic strength of the suspension was reduced by 

extensive washing. After the final centrifuge step, the cells were resuspended in 

0.2 ml of electroporation buffer and kept on ice.
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4.2.4. Preparation of Recipient Cells Grown in Broth

Concentrated suspensions of H.ducreyi were diluted 1:50 in 10 ml aliquots of sBHl 

broth (Appendix A.4.). The aliquots were incubated for 48 h at 35°C without 

agitation after which cultures appeared evenly dispersed with no clumping. This 

was achieved by several subcultures of H.ducreyi in broth, followed by storage at 

-70°C in 15% glycerol. Broth cultures showed no presence of clumping, but 

settled to the bottom of the tube. To acquire a cell suspension of very low 

conductivity, the cells were washed more stringently than cells grown on solid 

media, as the surface area of the cells were exposed to higher quantities of 

nutrients and salt than cultures grown on solid media. The cultures were chilled 

on ice for 10 min followed by centrifugation at 10 000 g for 15 min at 4°C. The 

pellet was resuspended to the initial volume in ice-cold PSG electroporation buffer 

and centrifuged as before. In the next wash, the volume of electroporation buffer 

was reduced by half, with subsequent washes (four more times) performed in sterile

1.5 ml Eppendorf tubes (to minimize the loss of cells). After the final wash, the 

cells were resuspended in 0.2 ml of electroporation buffer (a 50 fold concentration) 

and kept on ice prior to electroporation.

4.2.5. Electroporation Equipment

The exponential decay pulses were generated by a Gene Pulser apparatus (Bio-Rad 

Laboratories, Richmond, California, USA). This is a capacitor discharge machine 

that uses individual disposable cuvettes for holding the cell suspension during the 

shock. An electroporation cuvette (Bio-Rad) with a 0.2 cm electrode gap was used. 

The equipment, circuit and electrodes are described in more detail in Appendix C.

The power supply internal to the Gene Pulser apparatus charges the chosen 

capacitor to the selected voltage. The microprocessor monitors this charging 

process and automatically discharges the capacitor through the sample via an 

electronic switch mechanism when the precise voltage has been reached. The pulse
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decays exponentially through time and is defined by the initial field strength and 

the time constant.

4.2.6. Electro-transformation Procedure

Forty pi of washed cells were transferred to a cold 1.5 ml Eppendorf tube and 1 

to 2 pi of DNA, in a low ionic strength medium such as TE or distilled H20 , was 

added to a final concentration of 100 ng/ml to 1 pg/ml. The mixture was mixed 

well and transferred to a chilled sterile disposable 0.2 cm electroporation cuvette 

(Bio-Rad). The cuvette was placed in the electroporation chamber and the 

appropriate pulse applied. Immediately following electroporation, 0.36 ml of sBHI 

broth, warmed to 37°C, was added to the cells and the mixture transferred to a 

sterile 5 ml tube or 1.5 ml Eppendorf tube. All experiments included controls 

comprising of cell-DNA mixtures that were not subjected to electroporation and 

cells which were electroporated in the absence of added plasmid DNA. The 

samples were incubated at 35°C for 4 h to allow for expression of the antibiotic 

resistance gene (shaking the tubes at 225 rpm during this incubation period 

improved recovery). The cells were diluted appropriately in BH1 broth and plated 

(0.1 ml) in duplicate on Nsanze medium or chocolate agar containing either 

10 pg/ml ampicillin, 100 pg/ml kanamycin or on serum-free medium (Appendix 

A.6.) containing 100 pg/ml sulphamethoxazole to screen for transformants. The 

plates were incubated for 48 h, except for H.ducreyi CIP 542 which was incubated 

for 72 h.

Transformation frequency was determined by dividing the number of transformants 

by the number of viable cells. Viability was assessed by determining the number 

of CFU per ml on plates without antibiotics.

Plasmid DNA was extracted from the H.ducreyi transformants and resolved on 

0.8% agarose gels as described in Section 3.2.8.
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4.3. RESULTS

4.3.1. Preliminary Trial

Preliminary experiments were performed using H.ducreyi ATCC 27722 as a 

recipient and the ampicillin-resistance plasmid, pCH138 (9.3 kb) as the donor DNA 

in order to determine the optimal conditions for electroporation. Experimental 

conditions which were varied include the type of electroporation buffer and the 

electrical parameters used.

Three low ionic buffers were compared. Bacteria suspended in the glycerol 

medium tended to aggregate together and settle to the bottom of the tube, even 

after dispersal using the needle and syringe technique. Bacteria suspended in the 

HEPES medium also settled to the bottom, with a tendency to aggregate. 

However, bacteria suspended in the PSG medium were evenly suspended and the 

buffer was accordingly used in subsequent experiments.

In optimizing the conditions for electroporation of H.ducreyi ATCC 27722, the 

effect of several variables on transformation frequency and cell viability were 

determined. The recipient bacteria were initially subjected to electroporation at a 

field strength of 12.5 kV/cm and a pulse length of 10 msec (400 Q, 25 pFd). The 

electroporated bacteria were incubated in sBHI broth at 35°C for 24 h, for 

expression of the antibiotic marker, prior to plating onto ampicillin-containing 

medium. Transformation frequency of 5.1 x 105 was obtained with a survival ratio 

of 1.0. No loss of viability was observed relative to the control cells without DNA.

Various field strengths and pulse lengths of the Bio-Rad electroporation apparatus 

were examined. Approximately 107 CFU of H.ducreyi and 1 pg of pCH138 

plasmid DNA were mixed in electroporation solution. Aliquots (40 pi) were 

electroporated at different field strengths and time constants to determine optimal 

conditions for transformation. Field strengths in the range from 9 kV/cm to



61

12.5 kV/cm and pulse lengths from 5 msec to 15 msec were utilized with the 

capacitor held constant at 25 pFd.

The results presented in Table 4.2. show that parameters in the range of 9 kV/cm 

and 10 kV/cm with pulse lengths of 15 msec and 10 msec respectively, were the 

most efficient for transformation of H.ducreyi with the ampicillin-resistance 

plasmid. The higher field strengths and longer pulse lengths were not as effective 

in transformation of H.ducreyi. No negative effect was displayed on the viability 

of the cells.

H.ducreyi cells subjected to electroporation in the absence of plasmid DNA did not 

mutate spontaneously to ampicillin-resistance and the addition of plasmid DNA 

without applying an electric pulse did not result in transformants.

Table 4.2. Effect of voltage and pulse length on transformation
frequency of H.ducreyi ATCC 27722 with plasmid pCH138.

Field
strength
(kV/cm)

Time
constant
(msec)

Transformation
frequency*

Survival*1

9.0 10 6.9 x 10 5 1.1
9.0 15 1.3 x 104 1.1

10.0 10 1.4 x 10 4 1.0
10.0 15 4.5 x 105 1.3
11.25 5 1.2 x 104 1.1
11.25 10 8.1 x 1 0 6 1.1
12.5 10 2.2 x 105 1.3

a The number of CFU was 108/ml. The cells were grown in sBHI broth.
Plasmid concentration was 1 pg/ml. The expression time was 4 h. 

b Survival ratio = number of CFU after electroporation/number of CFU before
electroporation.
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4.3.2. Expression of the Genetic Marker

It is known that the duration of the expression time of the genes during 

transformation depends upon the nature of the genetic marker. Transformed cells 

incubated at different times (1 to 24 h) were compared. Ampicillin-resistance 

transformants were recovered after 1 h of incubation with improvement in the 

number of transformants with increasing time (Table 4.3.). The number of 

transformants appeared to stabilize after 4 h of incubation.

Table 4.3. Transformation frequency of the ampicillin-resistance gene
of plasmid pCH138 in H.ducreyi ATCC I l l ' l l  after 
varying times for expression.

Time (h) Transformation frequency

1 5.0 x 105
1.5 7.2 x 105
2 7.6 x JO5
4 1.2 x 104
24 1.9 x 104

Electroporation was performed at 10 kV/cm, 10 msec.

4.3.3. The Effect of Cell Concentration, DNA Dosage and the Size of Plasmid 

DNA on Transformation Frequency

The effect of shaking cells at 200 rpm before or after electroporation was 

investigated. Shaking ceils prior to electroporation did not affect the number of 

transformants, although the yield of cells increased from 107 to 109 cells/ml after 

the washing procedure. Agitation of electroporated cells before plating onto solid 

media increased the number of transformants recovered but not the transformation 

frequency. The results of the effect of agitation of the recipient cells using the 4.8 

kb kanamycin-resistance plasmid is presented in Table 4.4.



63

Table 4.4. Effect of agitation on the transformation frequency (TF) of
the 4.5 kb kanamycin-resistance plasmid in H.ducreyi 
ATCC 27722.

Agitation 
(200 rpm)

No. Transformants 
/plate

Viability TF

Before
electroporation 625 8.3 x 108 7.5 x 107
After
electroporation 560 2.8 x 108 2.0 x 10*
None 25 2.6 x 107 9.6 x 107

Electroporation was performed at a field strength of 10 kV/cm and a pulse length 
of 10 msec.

The effect of plasmid DNA concentration on the transformation frequency was 

assessed using DNA concentrations from 0.25 to 1.0 pg/ml. A concentration- 

dependent increase in transformation frequency, approaching a level of saturation 

with increasing DNA from 0.75 pg/ml of transforming DNA per ml (Figure 4.3.) 

was observed.

In order to evaluate the effect of the plasmid DNA size on transformation 

frequency, three ampici 11 in-resistance plasmids ranging in sizes from 5.6 kb to 10.6 

kb were transformed into plasmid-free H.ducreyi recipients (Table 4.5. and Figure

4.4. ). A decrease in the frequency of transformation as the size of the plasmid 

increased was observed.

4.3.4. Chromosomal DNA

Attempts to transform H.ducreyi chromosomal DNA using the nalidixic acid- 

resistance gene as a genetic marker to H.ducreyi ATCC 27722 were unsuccessful. 

Parameters of field strength 10 kV/cm and pulse lengths of 5 and 10 msec were 

used to electroporate both intact and broken chromosomal DNA. Higher voltages 

resulted in arcing of the electric current. The electroporated cells were incubated



Figure 4.3. Effect of DNA concentration on transform ation of plasmid pCH138 to H.ducreyi ATCC 27722 

by electroporation. Cells were grown in sBHI broth. The expression tim e was 4 h. Os
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Table 4.5. Effect of plasmid size on transformation frequency.

Ampicillin-resistance
plasmids

Size Transformation frequency

pCH128 10.6 3.0 x 104
pCH138 9.3 3.6 x 104
pCH137 5.6 7.0 x 10'3

Electroporation was performed at a field strength of 10 kV/cm and a pulse length 
of 10 msec.

for the expression of the genetic marker at 24 h before plating onto Nsanze 

medium containing 5 pg/ml nalidixic acid. No transformants were observed.

4.3.5. Transformation of Different Drug-Resistance Plasmids

The transformation frequency of kanamycin- and sulphonamide-resistance plasmids 

was lower when compared to ampicillin-resistance plasmids (Table 4.6.). 

Electroporation did not damage the plasmids as intact plasmids were viewed after 

plasmid extraction and gel electrophoresis (Figure 4.5.).

4.3.6. Transformation of Different Haemophilus ducreyi Strains

The type strain, CIP 542 was electroporated and tested for transformation of the 

ampicillin-resistance plasmids. Both solid and liquid media were used for growth 

of the strain. CIP 542 cells electroporated at 10 kV/cm, 10 msec showed 

transformation frequencies of 6.4 x 104 and 2.2 x 104 when cells were prepared 

by the broth and agar methods respectively. This strain grew more slowly, formed 

smaller colonies and thus required a 72 h incubation time after plating for 

transformants. Electroporation of the clinical strain of H.ducreyi, C147 (plasmid- 

free) as recipient to the ampicillin-resistance plasmid (9.3 kb), kanamycin-resistance 

plasmid (4.8 kb) and the sulphonamide-resistance plasmid (7.5 kb) were performed 

(Table 4.7.).
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Table 4.6. Transformation frequencies (TF) of different
antimicrobial-resistance plasmids.

Resistance marker Size of plasmid (kb) Approximate TF

ampicillin 9.3 104
kanamycin 4.5 106 to 107
sulphonamides 7.5 10‘5

To establish the reproducibility of the transformation procedure, each experiment 
was repeated at least three times. Only slight variations in the transformation 
frequencies were observed.

Table 4.7. Transformation frequency of H.ducreyi clinical strain C147.

Recipient plasmid size (kb) phenotype TF

C147 4.5 kanr 9.0 x 106
7.5 sur 3.6 x 105
5.6 ampr 5.9 x 104
9.6 ampr 1.7 x 104

Electroporation was performed at a field strength of 10 kV/cm and at a pulse length 
of 10 msec.
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kb A B C D kb

9.3
- 5.6

Figure 4.4. Agarose gel electrophoretic patterns of two anipicillin-resistance 
plasmids isolated from H.ducreyi transformants and plasmids 
from donor strains. Lane A and C are plasmids from the donor 
strains and corresponding lanes B and D are the transformants 
respectively.
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4 .5 -

A B C D E F kb

Figure 4.5. Agarose gel electrophoresis of (A) the kanamycin-resistance 
plasmid (4.5 kb) and (D) the sulphonamide-resistance plasmid 
(7.5 kb). Transformants C147 (Lanes B and E) and reference 
strain ATCC 27722 (Lanes C and F).
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4.4. DISCUSSION

For most bacteria, electroporation is the only experimental method currently 

available for efficient introduction of plasmid DNA. The results presented here 

demonstrate that electroporation can be used for genetic transformation of both 

reference and clinical strains of H.ducreyi.

During these studies the composition of the electroporation buffer used to 

resuspend H.ducreyi was investigated. The electroporation medium composition 

is an important parameter affecting transformation efficiency. The buffer 

containing 10% glycerol and that containing HEPES and glycerol previously used 

for experiments with E.coli cells (Dower, Miller and Ragsdale, 1988) was not able 

to disperse the aggregation of H.ducreyi cells. If electroporated, the aggregated 

clump would be recognized by the applied voltage as a single large membrane- 

bound structure, rather than as a collection of individual cells due to intracellular 

communication within the aggregate (Knight and Scrutton, 1986). The PSG buffer 

used by other investigators (Miller, Dower and Tomkins, 1988; Shigekawa and 

Dower, 1988; Mitchell et al., 1991; Setlow and Albritton, 1992) was found to be 

most suitable for electroporation of H.ducreyi as cells remained dispersed and was 

thus used for all experiments. Electroporation treatment in a higher-ionic-strength 

medium, eg. isotonic saline leads to the implantation of small pores whereas in a 

lower-ionic-strength medium, eg. isotonic sucrose, leads to larger pores where 

identical electroporation conditions are used (Tsong, 1989).

The degree of membrane permeabilization achieved depended primarily on the 

amplitude (electric field intensity) and duration (time constant) of the discharge 

wavelength. Within the range tested, both field strength and pulse length exerted 

an effect on the transformation frequency. Transformation frequencies presented in 

this study demonstrate a complementary relationship between field strength and
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time constant. At the higher field strengths, transformation frequencies decreased, 

which is contradictory to the theory of the inverse relationship of field strength to 

cell length (Potter, 1988; Sliigekawa and Dower, 1988) as the size of H.ducreyi 

cells (0.5 by 1.0 pm) is much smaller than E.coli cells (0.5 by 2.0 pm) whose 

optimum transformation frequencies have previously been achieved at field 

strengths higher than 11 kV/cm (Calvin and Hanawalt, 1988; Dower, Miler and 

Ragsdale, 1988). The characteristic clumping of H.ducreyi cells could explain the 

maximum transformation frequency and the lack of a lethal effect at a lower field 

strength and the survival of electroporated H.ducreyi. The lethal effect of 

electroporation on H.ducreyi as with C.jejuni (Miller, Dower and Tomkins, 1988) 

was not observed even when the highest voltages of 12 kV/cm were applied. 

These observations are in contrast to those obtained with mammalian cells (Chu, 

Hayakawa and Berg, 1987), plant protoplasts (Fromm et al., 1987) and other 

bacterial cells (Dower, Miller and Ragsdale, 1988; Dunny, Lee and LeBlanc, 1991) 

where the high frequency of gene transfer is related to a decrease in cell viability.

A decrease in the transformation frequency with an increase in plasmid size was 

observed in these studies which is in agreement with the findings of Dunny, Lee 

and LeBlanc (1991); Kim, Ray and Johnson (1992); Metzler, Zhang and Chen 

(1992) and Siguret et al. (1994). The fewer number of molecules of the larger 

plasmids and the breakage of plasmid DNA molecules in the recipient could be 

related to the lower number of transformants (Kim, Ray and Johnson, 1992). 

These findings contrast with the findings of other authors who observed that 

plasmids of 20 kb transform with the same molar efficiency as plasmids of 3- to 

5-kb in E.coli (Bio-Rad Laboratories, 1988; Powell et al., 1988) and plasmids 

from 9.8- to 30-kb transform with the same molar efficiency in Lactococcus lactis 

(McIntyre and Harlander, 1989). The interpretation of the above results remains 

unclear.
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Increased number of transformants have been observed with increasing DNA 

concentration (Dower, Miller and Tomkins, 1988; Leonardo and Sedivy, 1990; 

Dunny, Lee and LeBlanc, 1991; Kim, Ray and Johnson, 1992). The 

electroporation system appears to be quite sensitive to both DNA and cell 

concentration as transformants could be obtained with very small concentrations of 

DNA (in picogram range) (Dower, Miller and Ragsdale, 1988). Raising cell 

concentration by agitation (Totten and Stamm, 1994) before or after electroporation 

increased the number of transformants 25- and 22-fold respectively. The recipient 

cells in this study demonstrated signs of saturation with increasing DNA 

concentration. Saturation, previously observed with streptococci (Powell et al., 

1988) and Enterococcus faecalis (Dunny, Lee and LeBlanc, 1991) could be the 

result of fewer permeabilized cells in the bacterial preparation, greater sensitivity 

of the cells to small amounts of deleterious contaminants (eg. phenol, SDS or 

EDTA) that could enter the cell during electroporation (Shigekawa and Dower, 

1988) or due to a lower concentration of cells. Thus it is possible to improve 

electroporation by encouraging the interaction of cells and DNA by increasing the 

cell and/or DNA concentration (Shigekawa and Dower, 1988).

Little is known about how DNA molecules enter cells during electroporation 

(Potter, 1988). Conductivity studies have shown that transient pores are formed in 

the lipid bilayer as a result of the electroshock and resealed within milliseconds 

(Kinosita and Tsong, 1977a; Neumann et al., 1982). The longevity of the 

reversibly electropermeabilized membrane state is explained by Neumann et al. 

(1982) and has been studied systematically by measuring the uptake of normal 

impermeable molecules (drugs, dyes) added to the cells at different times after 

pulse application (Jacob et al., 1981). A strong temperature dependence of the 

resealing has been documented in these studies. Potter, Weir and Leder (1984) 

observed that conducting electroporation at 0°C was 6- to 16-fold more effective 

than at 20°C, which is probably the result of the slower closing of the membrane
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pores at 0°C. Therefore, electroporative gene transfer experiments are usually 

performed at 0-4°C. Incubation of DNA with the cells prior to electroporation has 

no effect on efficiency of uptake (Dower, Miller and Ragsdale, 1988) and the 

efficiency drops rapidly after electroporation unless the cells are immediately 

placed in a growth medium (Dower, Miller and Ragsdale, 1988; O'Hare et al., 

1989).

In experiments where the H.ducreyi recipients were electroporated in the presence 

of different antimicrobial-resistance plasmids a 10 to 100-fold difference in 

transformation frequencies of ampicillin-resistance and sulphonamide-orkanamycin- 

resistance transformants were observed. As plasmids screened for transformants 

were not damaged, the lower frequencies must therefore be due to some damage 

to the bacteria. Steele, Zhang and Shillitoe (1994) compared the effect of 

ampicillin and tetracycline on the efficiency of transformation of E.coli by 

electroporation and their results are consistent with the suggestion that cell wall 

damage can decrease transformation efficiency. This was shown by the decrease 

in the number of tetracycline-resistance transformants recovered after 

electroporation as compared to selection for ampicillin-resistance transformants. 

They suggested that if the cell membrane was damaged by electroporating in such 

a way as to prevent interactions with the drug-resistance protein, this might lead 

to the inability to recover tetracycline-resistant colonies after electroporation. 

Another possible explanation for the low frequency of transformation of some 

plasmid antibiotic-resistance genes is the requirement of some unknown conditions 

for the expression of the antibiotic-resistance genes.

Mitchell et al. (1991) attempted to transform H.influenzae chromosomal DNA by 

electroporation into non-competent H.influenzae Rd but was unsuccessful. Short 

fragments of endonuclease-digested genomic DNA have been electroporated into 

Alcaligenes eutrophus (Taghavi, van der Lelie and Mergeay, 1994) and
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A.tumefaciens (Charles, Doty and Nester, 1994). Although plasmid DNA was 

transformed into H.ducreyi efficiently, attempts to transform chromosomal DNA 

were unsuccessful. However, after cloning H.influenzae genes (Setlow and 

Albritton, 1992) or H.ducreyi genes (Hansen et al., 1992) in compatible plasmid 

vectors it is possible to transform these genes into H.ducreyi cells. The

demonstration that H.ducreyi plasmids can be transformed into H.ducreyi by 

electroporation opens the possibility for developing cloning vectors from 

homologous plasmids that would be more efficient in transformation due to the 

better expression of the selective marker. In addition, the possibility to transform 

the avirulent strains would allow for the study of the genes involved in the 

pathogenicity of H.ducreyi.



74

5.0. CONCLUSION

Clinical isolates of H.ducreyi recovered in southern Africa during the period 

between 1988 to 1994 have shown a significant increase in the level of antibiotic 

resistance, p-lactam agents are among the most frequently prescribed antibiotics 

worldwide. Thus it is not surprising that the most dramatic increase observed was 

that of ampicillin resistance among clinical isolates investigated in these studies. 

Ampicillin-resistant p-lactamase-negative strains of H.ducreyi were not detected 

here although such strains have previously been described from other Haemophilus 

species. These results confirm the conclusion of other authors that the prescribing 

of antimicrobials should be given serious considerations so as to minimize the 

prevalence of resistance.

The majority of H.ducreyi isolates examined in these studies harboured the 

ampicillin-resistance 9.3 kb plasmid (75%) and 15% of the isolates contained the 

ampicillin-resistance 10.6 kb plasmid. A plasmid combination of an ampicillin- 

resistance plasmid of 5.6 kb in conjunction with a 4.5 kb aminoglycoside 

(kanamycin and streptomycin) and sulphonamide-resistance plasmid and two 

plasmids of 3.9- and 3.0- kb was observed in isolates from Botswana (1992) and 

in Gauteng (1994). A similar plasmid profile has been described recently by other 

investigators in isolates obtained from Thailand and San Francisco, USA (Sarafian 

et al., 1991a; Sarafian and Knapp, 1992). This plasmid combination could 

represent an emerging profile among H.ducreyi clinical isolates. This demonstrates 

the diversity of plasmid profiles and permits the identification of several strains. 

Although plasmid profiles are useful in epidemiologic studies, they provide only 

limited information about strain populations. Strains used in this study may be 

more diverse than has been described when applying two or more typing systems. 

Current studies (Sarafian et al., 1991b; Brown and Ison, 1993) suggest the use of 

ribotyping or DNA hybridization in association with plasmid profiles to be more
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relevant, as many strains have identical plasmid profiles.

Studies conducted here using restriction endonuclease digestion of the ampicillin- 

resistance plasmids revealed the presence of four different types of plasmids. The 

finding that two of the plasmids of identical size (10.6 kb) show different 

restriction fragments indicates that some rearrangement of the nucleic acid 

sequences has occurred. Further investigations involving restriction digestions and 

DNA homology studies may reveal more differences or similarities showed by 

these plasmids.

This study describes the development of an efficient method for electroporation of 

H.ducreyi cells and demonstrates for the first time the transfer of H.ducreyi 

plasmids to homologous reference and clinical strains. Three plasmid genes coding 

for ampicillin, aminoglycoside and sulphonamide resistance, were transformed 

successfully into H.ducreyi. The ampicillin-resistance genes were the most efficient 

in transformation indicating differences in the ability of the genes to be expressed. 

The recovery of electroporated bacteria may be influenced by the antimicrobials 

used to select for transformants as demonstrated by the higer number of ampicillin- 

resistance transformants than for the two other antimicrobials. In addition, it was 

found that the small ampicillin-resistance plasmids transformed with higher 

frequencies. The availability of a standard method for genetic transformation will 

provide a tool for developing H.ducreyi cloning vectors that may be useful for the 

investigation of H.ducreyi on the molecular level and it will provide the 

opportunity to examine the expression of chromosomal genes in the organism. 

This may lead to a better understanding of the pathogenicity and other properties 

of this important human pathogen.
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APPENDIX A (MEDIA AND TECHNIQUES)

A.l. Nsanze agar /II (Nsanze et al., 1984)

(A) Goncoccoal agar base (Gibco BRL, UK) 

Distilled water

Autoclave at 121°C for 15 min

36 g 
600 ml

(b) Haemoglobin powder (Difco, Detroit, Michigan, USA) 

Distilled water
10 g

400 ml

Mix rapidly on magnetic stirrer. Autoclave at 121°C for 15 min 

Final Medium

Mix solutions (A) with (B). Cool to 50°C.

Add 10 ml IsoVitaleX (BBL, Microbiological systems).

Add 3 mg vancomycin (Eli Lilly, SA).

Add 50 ml foetal calf serum (Sterilab, Delta Products, SA) (heat inactivated 

at 56°C for 1 h).

Note: If the haemoglobin forms a deposit, do not transfer the deposit.

Mix well and distribute into sterile petri dishes.

A.2. Chocolate agar /2I

(A) Columbia agar base (Oxoid, Hampshire, UK) 80 g

Autoclave at 121°C for 15 min.

(B) Citrated horse blood (SA1MR) 100 ml

Cool (A) to 60°C; add (B). Heat to 80°C. The suspension must be dark chocolate

in colour. Cool to 50°C and distribute into sterile petri dishes.
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A.3. Serum-free medium (Lockett et a l, 1991)

This consists of a gonococcal agar base (Gibco), to which 1% haemoglobin (Difco) 

and 1% IsoVitaleX (BBL) was added. Serum was substituted with 0.2% activated 

charcoal (Sigma).

A.4. Supplemented BH1 broth for the growth of H.ducreyi

This consists of Brain Heart Infusion broth (Difco), supplemented with 5% FCS 

(Flow laboratories, Scotland), 1% IsoVitaleX (BBL) and 100 mg/ml haemin 

(Sigma).

A.5. Media for the storage of H.ducreyi and H.influenzae at -70°C

To autoclaved BHI broth add 5% FCS, 100 pg/ml haemin (BDH Chemicals Ltd,
glycerol

England), 1% IsoVitaleX and 15% sterile glucose (Merck) for storage of H.ducreyi 

or 10 pg/ml haemin, 2pg/ml NAD (Sigma) and 15% sterile glucose for the storage 

of H.influenzae.

A.6. Serum-free medium for the growth of sulphonamide resistant

H.ducreyi strains

Sulphonamide-resistance H.ducreyi strains were grown on Mueller-Hinton agar 

(Difco) supplemented with 50 ml/1 laked horse blood (SAIMR), 0.1% glucose 

(Holpro), 0.01% L-glutamine (Hopkins and Williams) and 100 mg/ml haemin 

(Sigma).

A.7. Biochemical test

A.7.1. Porphyrin test / test for X-factor requirements.

A heavy suspension of 48 h H.ducreyi culture was added to 0.5 ml enzyme 

substrate, 5-aminolevuIinic acid (ALA-Porphyrin test, SAIMR). Tubes were 

incubated at 35°C for 18-24 h and examined for red fluorescence, under a UV 

light, indicating the presence of porphyrins. H.influenzae and H.parainfluenzae
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were used as negative and positive controls respectively.

A.7.2. Indole test.

The indole test is based on the development of a bright red colour complex when 

indole reacts with the aldehyde group of /7-dimethylaminobenzaldehyde, the active 

chemical in Ehrlich's reagent. The peptone water inoculated with the isolate was 

incubated at 35°C for 48 h, after which Ehrlich's reagent was added.

A.7.3. Urease test.

The ability to degrade urea by means of the enzyme urease was determined. The 

urea slant was inoculated with the isolate and incubated at 35°C for 48 h. A 

positive reaction occurs when the substrate urea is split into its products and the 

presence of ammonia creates an alkaline environment, which causes the phenol red 

to turn a deep pink colour.

A.7.4. Ornithine decarboxylase test.

The ability to decarboxylate (remove a carboxyl group, COOH) ornithine was 

demonstrated by the addition of a loopful of isolate into medium containing a 

brom-cresol purple indicator and the amino acid ornithine, layered with mineral oil 

to create an anaerobic environment. In a positive reaction, indicated by a colour 

change, from yellow to purple, the decarboxylase enzyme will split off the 

appropriate carboxyl group, creating an alkaline pH in the medium.

A.7.5. Nitrate reduction test.

The reduction of nitrates was performed by adding a heavy inoculum, from a 48 

h culture, into nitrate broth medium and incubating at 35°C for 48 h. The ability 

to reduce nitrates to nitrites was determined by the addition of two reagents: 

Nitrate (sulfanilic acid) followed by Nitrate II (a-naphthylamine). Following 

reduction, the addition of the two solutions will immediately produce a cherry red
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colour, indicating the presence of nitrites.

A.7.6. Alkaline phosphatase test.

An agar slant containing phenolphthalein phosphate was inoculated with a loopful 

of isolate and incubated at 35°C for 48 h. After exposure to ammonia, phosphate­

positive colonies turned pink due to free phenolphthalein.

A.7.7. Hydrogen sulphide test.

A piece of lead (II) acetate paper strip (Merck) was attached to the inside of a tube 

containing a sBHI broth culture of the isolate. The culture was incubated at 35°C 

for 24 to 48 h. H2S production was indicated by a black ferrous sulphide 

precipitate on the paper strip.

A.7.8. Catalase test.

The ability to degrade hydrogen peroxide, by producing the enzyme catalase was 

determined. A loopful of inoculum was added to 3% of 2H20 2 on a glass slide. 

A positive reaction is indicated by the formation of bubbles of free oxygen gas.

A.7.9. Oxidase test.

The presence of cytochrome oxidase was determined using filter paper saturated 

with N,N,N',N'-tetramethyl-1.4-phenlyenediammonium-dichloride (Merck). A 

portion of a colony to be tested was smeared onto the filter paper. A positive 

reading was observed by the presence of a violet colour.

A.7.10. SPS disk susceptibility test.

An isolate was spread evenly onto fresh Nsanze medium. A disk containing 0.001 

g of sodium polyanethole-sulfonate (SPS) was placed on the surface of each test 

plate, which was incubated at 35°C for 48 h in microaerophilic conditions, with 

moisture. Zones of inhibition around the disk of > 12 mm was considered to
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indicate susceptibility.

A.7.11. p-lactamase test.

Cultures were screened for p-lactamase production by streaking colonies, grown on 

Nsanze medium, onto P-lactamase agar (Bacto-agar containing 3 mg/ml penicillin 

and 5 ml/1 phenol red, pH 8.6). Bacteria which produced P-lactamase were 

identified by turning yellow after a few minutes due to hydrolysis of its p-lactam 

bond.

A.8. Caesium Chloride gradient (Sambrook, Fritsch and Maniatis, 1989)

DNA was resuspended in 7.5 ml of TE (10 mM Tris-HCI, 1 mM EDTA, pH 7.6) 

to which 7.5 g of CsCl (Merck) was added. The mixture was shaken, until the 

CsCl was dissolved completely and transferred to a Beckman polyallomer % X 3 
inch centrifuge tube. 0.75 ml of 10 mg/ml ethidium bromide (EtBr) (Sigma) was 

added. The tubes were sealed with liquid paraffin, balanced and centrifuged in the 

Beckman LK-55 ultra centrifuge at 40,000 rpm for 40 h at 15°C in the fixed angle 

50 Ti rotor. After centrifugation, the tubes were illuminated with a UV lamp to 

detect the presence of fluorescent bands of DNA-EtBr. The upper bands consist 

of chromosomal DNA and linear or nicked plasmid DNA, and the lower band(s) 

consist of covalently closed circular plasmid DNA. The bands were collected by 

inserting a hypodermic needle just below the band. Ethidium bromide was 

eliminated by the addition of an equal volume of 5 M NaCl saturated isopropanol 

and then leaving the mixture until the two phases separated. The upper layer, 

containing the isopropanol and EtBr was discarded and the procedure repeated until 

the EtBr (red colour) was no longer visible.

The removal of the CsCl was performed by one of the three methods, the latter 

being preferred.

a) Dialysis of the sample in dialysis tubing in TE buffer (pH 7.6) for



105

48 h at 4°C.

b) Spin dialysis using the Ultrafree-MC, 30.000 NMWL filter-unit.

c) Using a VS 0.025 pm hydrophobic Millipore filter, floating shiny- 

side up on TE buffer (pH 7.6). One-hundred microlitres of DNA- 

CsCl sample was placed onto the filter for approximately 30 min. 

The CsCl passed through the filter during that period with the sample 

remaining on the filter.

A.9. Boehringer Mannheim molecular weight markers
DNA molecular weight marker VII 

Catalogue number 1209 264

The mixture contains 15 fragments with the following number of kilobase pairs: 

8.0; 7.1; 6.0; 4.8; 3.5; 2.7; 1.9; 1.85; 1.5; 1.4; 1.15; 1.0; 0.68; 0.49; 0.37.

DNA molecular weight marker X 

Catalogue number 1498 037

The mixture contains 18 fragments with the following number of kilobase pairs: 

12.216; 11.198; 10.180; 9.162; 8.144; 7.126; 6.108; 5.090; 4.072; 3.054; 2.036; 

1.636; 1.018; 0.517; 0.396; 0.344; 0.298; 0.220; 0.154.
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VU bp

acao
71 QO 
6COO

-  4flC0

-  3500

-  2700

-  19CQ 
- 1 8 5 0

- 1500
-  1400

-  1150

-1000

X bp
, 12216 

h 11198
f 10180
-  91 62 
- 8 1 4 4  
- 7 1 2 6  
- 6 1 0 8
-  5090

-  4072

- 3 0 5 4

-  203 6  

- 1 6 3 6

- 1 0 1 8

- 6 8 0

- 490

-  370

-  51 7.506

-  396
-  344
-  298

-  220.201 
-  154 . 134,7

Figure A.l. Schematic of the fragment sizes for molecular weight markers 
VII and X, Boehringer Mannheim.
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APPENDIX B (RESULTS OF INDIVIDUAL
ANTIMICROBIAL SUSCEPTIBILITY TESTS)

Table B.l. Susceptibilities (MICs) of 52 H.ducreyi strains in various 
geographical regions to selected antimicrobial agents (gg/inl).

S T R A I N S A M P I C I L L I N C H L O R A M P H E N I C O L K A N A M Y C I N S T R E P T O M Y C I N T E T R A C Y C L I N E

GAUTENG, 1988
D16 > 128 0.5 8 16 32

Y5 128 < 0.5 0.5 8 0.5

Y10 64 < 0.5 4 16 4

Y70 > 128 < 0.5 < 0.5 < 0.5 4

YD29 > 128 < 0.5 < 0.5 2 4

Y56 64 < 0.5 4 16 4

Y76 128 < 0.5 < 0.5 4 4

Y78 > 128 8 < 0.5 4 4

Y88 > 128 < 0.5 2 16 8

Y109 > 128 8 2 8 8

Y156 > 128 < 0.5 0.5 4 2

Y163 > 128 < 0.5 0.5 8 0.5

Y165 128 < 0.5 < 0.5 8 0.5

Y179 128 < 0.5 < 0.5 8 0.5
Y119 > 128 < 0.5 < 0.5 8 < 0.5
Y182 64 . < 0.5 < 0.5 8 0.5

Y193 > 128 < 0.5 0.5 8 4

Y195 32 < 0.5 0.5 8 4

BOTSWANA, 1992
CH137 > 128 8 64 16 8
CH216 > 128 < 0.5 2 16 4

P15 > 128 < 0.5 4 16 8
P77 > 128 < 0.5 1 16 8
P116 > 128 8 64 16 8



1 0 8

S T R A I N S A M P I C I L L I N C H L O R A M P H E N I C O L K A N A M Y C I N S T R E P T O M Y C I N T E T R A C Y C L I N E

LESOTHO, 1992
CH57 > 128 < 0.5 1 2 4

CH90 > 128 2 8 16 4

CHI 2 8 > 128 < 0 . 5 8 16 8

CHI 3 8 > 128 < 0.5 8 16 4

CH161 > 128 4 1 8 8

CH246 > 128 1 8 32 8
P157 > 128 < 0.5 1 2 8
P167 > 128 32 1 16 2

NATAL, 1992
CH87 > 128 < 0.5 64 2 8

CHI 2 2 > 128 < 0.5 4 32 4

CH145 > 128 8 4 16 4
CH242 > 128 16 4 16 8
CH24 8 > 128 < 0.5 4 32 4

P2 > 128 < 0.5 4 16 4

P6 > 128 < 0.5 4 2 2
P97 > 128 16 64 8 16
P143 > 128 16 4 16 2
TRANSKEI, 1992
CH247 > 128 0.5 8 32 8
GAUTENG, 1994
HDl > 128 < 0.5 < 0.5 16 2
HD 2 > 128 < 0.5 < 0.5 16 2
HD4 > 128 16 > 128 > 128 16
HD 5 > 128 16 0.5 8 4
HD 6 > 128 32 > 128 > 128 16
HD7 > 128 32 4 64 8



109

STRAINS A M P I C I L L I N C H L O R A M P H E N I C O L K A N A M Y C I N S T REPTOMYCIN TETRACYCLINE

HD8 > 128 16 > 128 128 32
WINDHOEK, NAMIBIA, 1994
WD793 > 128 8 2 4 16

WD794 64 8 < 0.5 8 16

G802 64 16 < 0.5 8 16

G723 > 128 1 8 16 4

Table B.2. Susceptibilities of 52 H.ducreyi isolates to selected antimicrobial
agents.

M I C  ( p g / m l ) A m p i c i 1 1  i n C h l o r a m p h e n i c o l K a n a m y c i n S t r e p t o m y c i n T e t r a c y c l i n e

< 0 . 5 0 29 12 1 1

L
D

O

0 2 6 0 5

1 0 2 5 0 0

2 0 1 4 5 6

4 0 1 11 4 18

8 0 7 7 14 14

16 0 7 0 20 6

32 1 3 0 4 2

64 5 0 4 1 0

1 2 8 4 0 0 1 0

> 1 2 8 42 0 3 2 0
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APPENDIX C (PHYSICS OF ELECTROPORATION)

C.l. Gene Pulser

The Gene Pulser apparatus (Bio-Rad Laboratories, Richmond, CA, USA), 

illustrated in Figure C.l., is a pulse generator using capacitor discharge to produce 

controlled exponential pulses for cell electroporation. Pulses of Field strengths of 

up to 12.5 kV/cm can be generated in the Bio-Rad 0.2 cm electroporation cuvette. 

The unit provides a digital read-out of the voltage and capacitance settings and 

after a pulse is delivered, the actual voltage and resistance-capacitance (RC) time 

constant are automatically measured and may be displayed. The Gene Pulser 

apparatus contains a power supply and capacitors of 0.25, 1.0, 3.0 and 25.0 

microfarads (pFd).

The Pulse Controller unit (Bio-Rad) is used with the Gene Pulser apparatus for 

electroporation of bacteria where pulses of very high field strength are applied to 

samples of small volume and high resistance.

C.2. Pulse Controller

The Pulse Controller is installed between the output of the Gene Pulser apparatus 

and the sample chamber (Figure C.l.). The multi-position switch on the front of 

the Pulse Controller determines which of six resistors (100, 200, 400, 600, 800, or 

1000 Q) is placed in parallel with the sample chamber. When this resistor is much 

smaller than the resistance of the sample, it is the primary determinant of the 

resistance of the circuit. This resistance and the size of the capacitor determine the 

length of the pulse. The approximate time constants obtained with various 

combinations of capacitors and resistors are shown in Table C.l.

The Pulse Controller greatly reduces the incidence of arcing at high voltages and 

protects the Gene Pulser circuit in the event that a high voltage, high current arc
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Figure C.1. Connections between the Gene Pulser apparatus, the Pulse Controller and the 
Electroporation chamber. (Extracted from Bio-Rad Laboratories, 1989)



Pulse Generator Pulse Controller

R sample

Figure C.2. Electrical circuit for bacterial electroporation. The 
pulse discharged from the capacitor, C, is directed through a 
pulse controlling circuit consisting of R-, placed in series with the 
sample and one of six resistors, R2-7, placed in parallel with the 
sample. (Extracted from Bio-Rad Laboratories, 1989)
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does occur. The unit also allows the Gene Pulser apparatus to fire into a high 

resistance sample and provides the operator with electronic control of the time

constant.

For bacterial electroporation, very high field strengths and small volumes are used, 

resulting in enormous energy densities that can cause arcing across the electrodes. 

To avoid this the Pulse Controller shunts part of the energy around the sample and 

through one of six resistors placed in parallel with the sample (Figure C.2.). With 

samples prepared as described (Sections 4.2.3. and 4.2.4.), the parallel resistance 

is much smaller than the resistance of the sample and determines the total 

resistance of the circuit. This allows control of the time constant by the choice of 

the parallel resistor (see Equation 3, Section C.3.).

An additional function of the Pulse Controller circuit is to place a 20 Q resistor in 

series with the sample. This protects the Gene Pulser circuit by limiting the current 

should an arc occur. With a bacterial sample prepared as described, the resistance 

is about 5000 Q; therefore, during normal operation (no arc) the voltage drop 

across the 20 Q protective resistor will be less than 1%. However, if this circuit 

is used with samples of the much lower resistance typical of eukaryotic 

electroporation (20-200 Q), the voltage lost across the protective resistor becomes 

highly significant.

C.3. Electrical Variables

The capacitor discharge circuit of the Gene Pulser apparatus generates an electrical 

pulse with an exponential decay waveform (Figure 4.2.). When the charge from 

the capacitor is directed to a sample placed between two electrodes, the voltage 

across the electrodes rises rapidly to a peak voltage (also known as the initial 

voltage, V0), and declines over time as
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V, = V0[e'(t/,)] Equation 1

where x is the RC time constant, a convenient expression of the pulse length. 

According to Equation 1, x is the time over which the voltage declines to 1/e 

(~37%) of the peak value.

The voltage gradient between the electrodes is also known as the electric field (E) 

and is calculated as the initial voltage divided by the distance between the 

electrodes,

E = V/d Equation 2

where d is the distance (in cm) between the electrodes. The strength of the field 

and the size of the cells determine the voltage drop across each cell, and it is this 

voltage drop that seems to be the important manifestation of the voltage effect in 

electroporation.

The effective resistance placed in parallel with the electrodes is much lower than 

that of the sample and determines the time constant of the pulse. The time of the 

electric current pulse (the shock) is described by a decay time constant, x, which 

corresponds to the time at which the voltage has dropped to approximately 37% of 

its original value. The time constant (x = RC) of the electric shock is determined 

by the product of the resistance, R, (both of the cell/DNA mixture and any parallel 

resistor) and the capacitance, C, of the circuit through which the electric field is 

being discharged.

The time constant is a measure of pulse length, and is defined as the time it takes 

for the initial voltage to drop by
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l/e(x = V,/e) Equation 3

or by ~37%. The time constant may also be defined as 

x = RC Equation 4

where x is measured in seconds, R is resistance in ohms (Q), and C is capacitance 

in farads (Fd). The resistance of the sample depends on both its conductivity and 

its cross-sectional area.

For bacterial electroporation, using the Pulse Controller, part of the energy, 

resulting from the field strengths used and the volume of suspension, is shunted 

around the sample and through one of several high power resistors (R2 7) that can 

be switched into the circuit in parallel with the sample. This greatly reduces the 

likelihood of striking an arc. The resistance of the samples (~5000 F2) is usually 

much higher than that of the parallel resistor, R2.7 (100 to 1000 Q). In most cases, 

the total resistance of the circuit is determined primarily by the choice of parallel 

resistor, as follows,

1 = 1 + 1 Equation 5
^ to la l ^  I+ ^-sample ^ 2  7

When R, + R3ample »  R2.7, then Rtoltl * R2.7. Since it establishes the resistance of 

the circuit, R2.7 can be chosen to obtain a particular pulse length as described in 

Equation 4. Flowever, when the value of R2.7 is closer to the resistance of the 

sample, the sample has a greater effect on the total resistance and the time constant.

R, is a small resistor placed in series with the sample to limit the current and 

protect the instrument should an arc occur. R, is much smaller than R^ le and, 

during a normal pulse (no arc), a negligible voltage loss will occur across R,.
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Table C.l. Approximate time constants produced with various combinations 
of capacitors and resistors.

Resistor (ohms) Time constants (msec) with various capacitors
0.25 pFd 1.0 pFd 3.0 pFd 25 pFd

100 0.025a 0.1 0.3 2.5
200 0.05a 0.2 0.6 5
400 0.1 0.4 1.2 10
600 0.15 0.6 1.8 15
800b 0.2 0.8 2.4 20
1000b 0.25 1.0 3.0 25

a Pulses of less than 0.1 msec are displayed as 0.1 on the Gene Pulser
apparatus LED display.

b With the larger resistors, the pulse length may be more greatly affected by 
the sample resistance. The actual pulse length may be about 20% lower 
than those shown in this table.

Extracted from Bio-Rad Laboratories (1989).


