THE CHEMICAL CONSTITUTION OF THE

FRUIT-COAT FAL FROM

MYRICA CORDIFOL: A - CAPE BERRY AX.

THESIS

submitted for the degree of Master of Science in Engineering in the Branch of Charitage Engineering in the Feculty of Engineering. University of the Witwatergrand.

by

David Johannes Schoeman. B.Sc. (Eng.) Rand.

Work done inder the Supervision of Professor H. Stephen, O.B.E., D.Sc. Manchester), F.R.I.C., and Mr. F. Hawke, M.Sc. (Eng.) Rand, A.R.I.C., in the laboratories of the Department of Chemistry and Chemical Engineering.

> University of the Witwatersrand. Johannesburg.

> > JUNE 1948.

BALS!

9114

1000

4:167

INDEX.

Introduction	3.
Fross Morphology of Myrica Cordifolia	11.
Physical Properties	13.
Chemical Constants	21.
Changes in Constants with Variation in	

Time of gathering the Berries	31.
Mould attack on Berries and Wax	35.
Fatty Aoid Composition	36.
Glyceride Composition	46.
Vaea	65.
Conclusions	68.
Lethods of Analysis	69.
Acknowledgements	90.
Bibliography	91.

GRAPHS AND DIAGRAMS.

		and hafter
F15. 1.	Photograph of Berries	11.
Fig. 2.	Refractive Index Graph	15.
Fig. 3.	Specific Gravity Graph	17.
F1g. 4.	Calibration Curves of Specific	
	Gravity Bottles	69.

INTRODUCTION.

- 3 -

This investigation was undertaken as a result of an observation by Mr. Hawke, namely, that Cane Berry Wax has an acetyl value in the neighbourhood of 70.

The only important vegetable oils showing high acetyl values, thus indicating the presence of an hydroxy acid or acids, are castor oil (Richnus species of sub-tropical habitat) and ivory wood see" oil, the seed fat of Agenandra brasiliensis. In the form 2, hydroxy acide comprise about 90 per cent of the total 1,2. mixed fatty acids, whilst in the latter cil, ricincleic ac'd is present to the extent of about 47 per cent in the total mixed fatty acids.

In the majority of other cases, the acetyl value is variable and indicates the presence of adventitious alcoholic bodies or the presence of hydroxyl groups due to hydrolytic rancidity, rather than major constituents of natural fats. Thus the presence of ricincleic acid in the oil of the grape seed (Vitis Vinifera) has been disproved by more recent work, the carlier reports, probably, having been based on acetyl values determined on oils which had undergone partial hydrolysis to yield mono- or diglycerides. Hydroxy acids have been reported as minor constituents of certain other oils namely Ergot oil (Secale cornutum)" and the oil obtained from Wrightin annamensis.

ALL THE PARTY

Although it is generally known that natural waxes give fairly high acetyl values, due to the sterols and higher aliphatic alcohols present, it must be bornin mind that Cape Berry Wax, though commonly referred to as Myrtle Wax or Berry "ax, is strictly speaking not a wax but a fat. It is composed of the glyceryl estars "of the of the higher fatty acids with a small amount of the free acids present.

As Hilditch points out, an acetyl value, showing the presence and proportion of compounds cortaining free hydroxyl groups, will indicate any of the following possibilities:

 the presence of an hydroxylic fatty acid;
 whether saturated or unsaturated, both free and combined.

200 20

13.27 1. 1

ing in

1 × 1910

- nr

0. 12-

Maren .

14.20

114

tores?

200

à

Deta

of

24

2. the presence of free alcohols such as the higher aliphatic alcohols, sterols, or of some highly hydroxylated compound such as myricetin. In such cases, there will be a high proportion of unsaponifiable matter.

3. The presence of di- or mono-glycerides in the product. Gare must be taken in such cases where free fatty acids are present, that the carboxylic hydroxyl group is not included when reporting results as a measure of the mono- or diglycerides present. In such cases a suitable correction must be applied.

A survey of the literature, in essence, revealed very little as to the chemical constitution of the "waxes" from the different Myrica species and in particular from Myrica Cordifolia.

No acetyl value has yet been recorted in the literature.

A further point borne out by the literature survey, which caused some confusion, is that although most of the previous workers conducted their researches on Myrth Wax, there exists no uniformity in their reports as to the species of Myrica from which the wax was obtained.

/Thus

Thus Smith and Wade refer to Myrtle Wax, obtained from Myrica Cerifera, also as Laurel Wax which Hilditch" shows to be totally different, being obtained from Laurus nobilis. Hilditch, however, attributes Myrtle Wax to Myrica Mexicana. In other papers Myrtle Wax is referred to generally as Myrica Wax and is stated to have been obtained from various Myrica species such as M. Cerifera, M. Carolinensis or M. Cordifolia whilst Cape Berry Wax is reported to have been obtained from Myrica Cordifolia and also Myrice Quercifolia. The result is that the value of comparing the different results reported by different investigators becomes highly doubtful. In certain papers it is pointed out, however, that the waxes obtained from Myrica Cerifera and Myrica Carolinensis are very similar to Berry Wax, from Myrica Cordifolia. In this thesis, though, the term Berry Wax always refers to the wax obtained from the seeds of Myrica Cordifolia.

- 5 -

.

1 000

10-100

A brief summary of the literature on this subject serves to show the lack of uniformity in the published results regarding the composition of the "Myrica Waxes".

Smith and Wade, summarise all previous work carried out on Myrica Wax and show that the consstants and constitution as determined by different investigators are somewhat contradictory. The first to have attempted an analysis of Myrtle Wax are Moore and Chevreul. This work was carried out presumably on samples obtained from Myrics Cerifera. Moore and Chevreul both agree that it consists mainly of free palmitic acid with about 20 per cent of tripalmitin. Moore, however, claims that it contains in addition some combined lauric acid whilst Chevreul maintains that

Ayrtle

Myrtle Wax, in addition to the Palmitic acid, free and combined, contains myristic, stearic and "margaric" scide.

Benedict states that it is composed mainly of tripalmitin with some trimyristin and tristearin.

Lewkowitsch describes the wax obtained from the different Myrica species to be the same, being tho glycerides of stearic, palmitic and myristic acids with a small quantity of oleic acid.

According to van der Riet the above statement of Lewkowitsch holds true for Cape Berry Wax except with regard to the presence of the olcic acid. By the Huol method, he failed to detect any unsaturation in the material.

Allen, whilst omitting to give the composition of Myrtle Wax, states that it contains only 0.12 per cent of free acid as palmitin acid. Chittenden and Smith merely state that

Myrice wax consists mainly of tripalmitin.

124

. 183

21.4

.......

r. Tar

Ser Int

TAX ANY

Smith and Wade, besing their deductions on experimental work carried out on the wax extracted from the berries of Myrica Corifera with petroloum ether, express themselves in agreement with those investigators who had reported the absence of oleic acid and of volatile acids from the fat. In a table of fat constants they do, however, report an Iodino Value (Hubl) of 3.9 and a Reichert-Meisel Value of 0.5. They further agree with the investigators who consider Myrtle Wax to consist essentially of tripalmitin, some glycerides of lower fatty acids with a small amount of free acids. these authors also claim to have separated tripalmitin from the wax in four crystallisations from petroleum ether. (Melting point 62.5°C, Saponification value 209.4, /Refractive..

- 6 -

Refractive Index at 80°G 1.4380). Smith and Wade further made the observation that certain of the physical constants of Myrtle Wax changed on standing. The melting point, in particular, was found to have changed appreciably; in so much that the melting point of a four year old sample increased from 48° to 57°G. This fact Led them to suspect the presence of tristearin but as they report: "repeated crystallisations from alcohol yielded only practically pure tripalmitin (Melting point 61.5°C and Saponification Value 206.7)". These constants are, however, considerably at variance with those reported for the product by crystallisation from petroleum ettor.

Smith and Wade finally proved the absence of stearic acid by the Hehner and Mitchell method and they concluded therefore that the high melting point of the older material was due to some obscure change which had taken place in the fat on standing. Although the authors state their intention of continuing further work on Myrtle Wax with the object of studying the change which had taken place on standing, no reference could be found to any subsequent publication.

- - 1000.5

Abderhalden states that Myrtle Wax is considered to be obtained from the fruit of different Myrica species namely M. cerifera, M. carolinensis, M. cordifolia or M. Licinata and is regarded to be identical with Cape Berry Wax (stated to be derived from M. quercifolia). The Myrica fat is said to consist exclusively of the triglycerides of palmitic acid (70 per cent), myristic acid (8 per cent) and lauric acid (4.2 per cent). The presence of stearic acid, however, could not be established.

/Schneider....

Sonneider butlished a very similar analysis to the above for the fatty acids from Myrica Wax obtained presumably from either M. Cordifolia or Quercifolia namely: Palmitic acid 70 per cent, Myristic acid & per cent. and Lauric acid 10 per cent, a total of only 88 per cent. He further reported the glycerine content as 9.4 per cent.

- 8 -

11000

1485

Langer.

and they

X 2.00

10.00

Masin

1.10

1.25

The state

30

A later publication on Cape Berry Wax, again stresses the similarity of Berry Wax to Myrtle Wax obtained from Myrica Cerifera, but its source is left undecided, as being one or other of the several species M. Cordifolia, M. Quercifolia, M. Lacinata or M. Serrata.

Hilditon in discussing frui -coat fats, states that the general characteristics are the same: the main components are palmitic and oleic acids, the latter, however, being of negligible proportions in the Myrtle and Rhus "waxes". With the exception of linoleic acid, the other component acids, it is stated, rarely form more than 2 - 5 per cent of the mixed acids. Among the exceptions to this last statement we have the fruit-coat fats of the Myrica species which contain a fair percentage of myristic acid. The values published for Myrica Mexicana aro 61 per cent. myristic acid, 37.5 percent palmitic acid and 1.4 per cent oleic acid and a trace of stearic acid. Iodine value (Hanus) -1.2; Saponification Value 216.7; Unsaponifiable matter 0.85 per cent; Wax content of the berries 28.3 per cent. Jamieson further mentions that, although characteristics are published only for Myrtle Wax (Myrica cerifera), Cape Berry Wax gives constants within the ranges noted.

/Trcm.....

					the state and the set			イー・イー
CONSTANTS.	424	22	35	121	316	572	623	10 H
origin.	1	1	. 1	M. Jordificial	M. Cordifolia	M. Certfern	N. Certfern	M. Certf hm
Malting Point.	1	1 15°C.	43.202.	40.500.	-De5t - Th	10- 480C.	40 - 16° C.	Cont
Soliditying Point.	1	1	1	1	10 - 100 II	39 - 15°c.	-	1150
Specific Gravity.	1.005(170)	1.004(1990)	a. 2763(99°c)	0,5741(999.0)	1.007(15 0).		0.395 -0.576	(2015) (9915)
Saponificantion Value.	1.	1	214.5	1.12	124.6		212 - 492	
Iodine Walne.	1	1	2.38(1)	1.76(7)	MILENI).	1.95-3.9(Some)	2 - 4 (gama)	3.9 (Hunt).
Acid Falue.	1	1	10.4	4.03		1		30.7
Nean Mol. Wolght of Batty Acids.	1	ł	1	1.965	1	241.4 - 243.	-	1
fitter of the Inthy Acids.	1	1	1	47.500.	1	47.5-46.5	46° a.	1
Refractive Index.	1	1	1	1	Ţ	1	1.4363	1.4363.
Red chert-Metsal Value.	I.	1	1	1	J	ļ	gra	0.5

1

coluble 1. 20 parts boiling alcobol, and readily benzol, carten tetrachlaride.). soluble in hot ether and other organic solvants. (Acatons, chloraform, The war is insoluble in water, sparingly soluble in cold alcohol, Solubility, 19, 28.

- 8-

2.5 yer

11

Unsappuifiable Matter.

charact on the follows (1) they a extract invest prepart phimmis . (2) the ext (3) of unsat this, invest unsatu (4) values namoly

Ē

the spe "Myrtle tion as (2) consti

specifi

(1)

From the foregoing it would appear that: (1) Little or no differentiation is made between the species of Myrica when considering the source of "Myrtle Wax" or with regard to differences in composition and constitution of these waxes.

(2) Very little data is available regarding the constitution of the Myrica waxes with no data dealing specifically with the wax from Myrica Cordifolia.

All the published data for the different characteristics of the "Myrice Waxes" are tabulated on the opposite page.

Considering the results tabulated, the following points merit discussion:

(1) Smith and Wade report an acid value of 30.7: they mention, however, that the sample was prepared by extraction with petroleum ether. They were the only investigators that followed this procedure, the others preparing their samples by boiling with water and skimming off the fat.

(2) Jamieson reports unsaponifiable matter to the extent of 2.5 per cent.

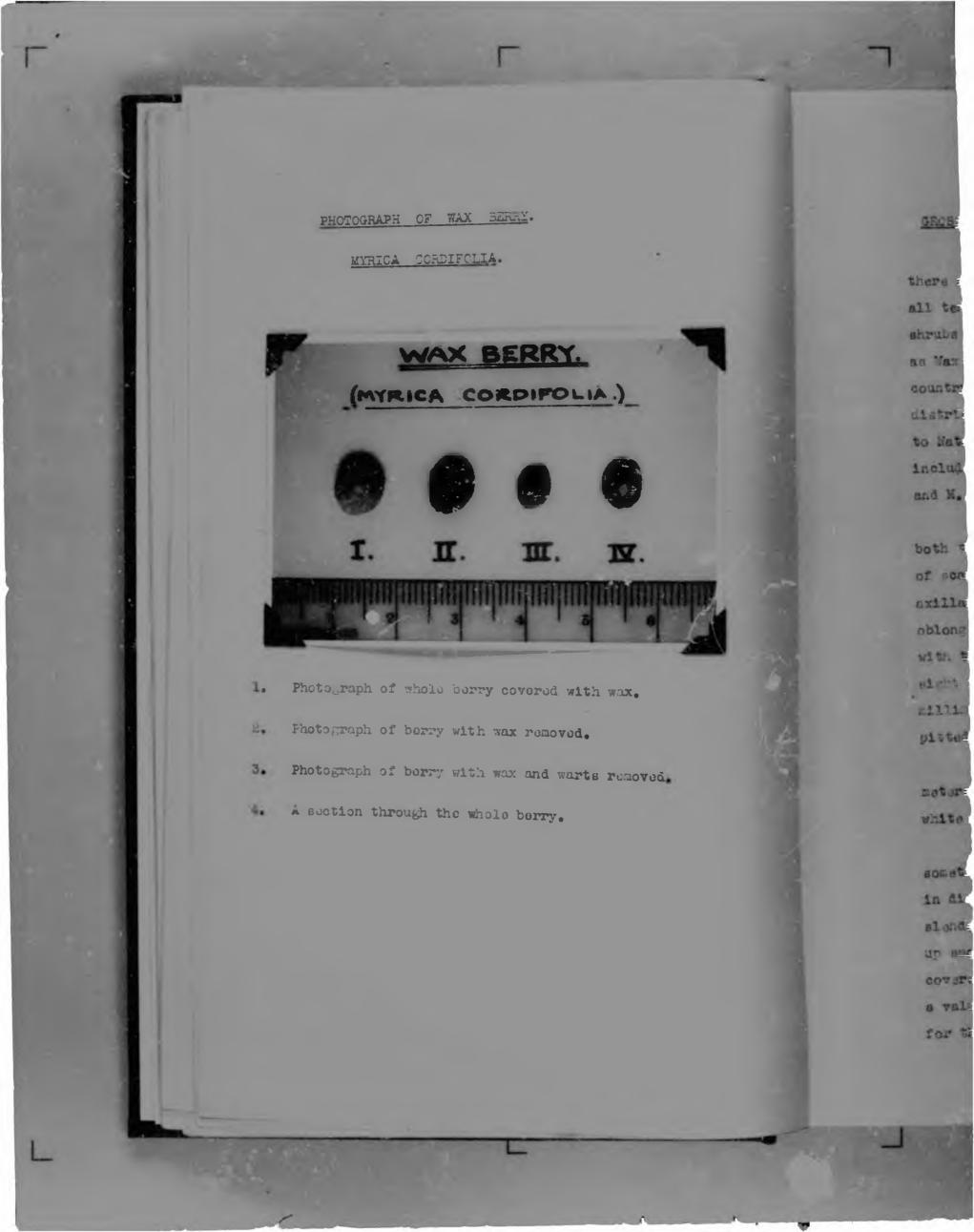
(3) Except for van der Riet, who claims the absence of unsaturated acids in the fat, (Smith and Wade confirm this, though they report an Iodine Velue (Hubl)), the other investigators seem to be in agreement that the fat is unsaturated to a clight extent.

(4) There appears to be some disagreement in the values published for the Specific gravity at $15^{\circ}C/15^{\circ}C$ namely 0.995 and 1.005.

- 10 -

write boiling alcohol, and readily

luble


stustics of a

and other or

cher

d ni ol'dulos

trachlarias.

GROSS KORPHOLOGY OF MYRICA CORDIFCLIA.

All members of the Myricaceae of which there are about fifty species, widely distributed in all temperate climates except Australia are either shrubs or trees. In Sout Africa they are all known as Max Berry bushes. There are fifteen species in this country scattered in the south-western and south-eastern districts of the Ca e and also extending from Clanwilliam to Natal and the forthern Transval. The most common include Myrica Cordifolia, M. Brevifolia, M. 2 specifolia and M. A thiopica.

5.23.30.

Myrica Cordifolia is usually dioscious; both the male and female flowers bein: in the axils of various ciliated bracts in oblong or elongated axillary catkins. The leaves are alter ste, ovate or oblong from a cordate base; they are abruptly point d with three to six to the on each side, firm, numerous, ei to nevente o millimeters long, and six to thirteen millimeters wide, very short petioled, glabrous and pitted on the under surface.

The "berry" or drupe is about four millimetors in diameter, warted and closely coated with a white wax (see fig.1).

The stems of the bush are much-branched, sometimes erect, three to four feet high and two inches in diameter, but more frequently they are prostrate, slandor, wide-spreading and buried in the sand sending up small erect branches. A single plant generally covers an area ten to twenty feet in diameter and forms a valuable sand stay on coastal sandhille. When used for this purpose, it as given excellent results. /In.....

- 11 --

In addition to the value of the wax, the bark of the stem and r of is of use in tanning owing to its astringent qualities.

- 12 -

PHYSICAL ANT CHEMICAL CONSTANTS.

The present work was carried out on samples of wax obtained from the berries of Myrica Cordifolia, through the courtesy of the Forestry Department. The principal sample was obtained from a firm of wholesale chemical suppliers during February 1944. The wex is hard, with a smooth glassy surface. It is greenishwhite to green in colour, but on continued exposure to light and air, the outer portions become bleached. The wax has a characteristic herb-like odour.

The large-scale preparation of the wax is briefly as follows:-

The berries are all hand-picked by coloured labourers and freed from leaves, twigs etc. before bagging. The bagged berries must be transported as soon as possible in order to avoid fermentation, as large quantities of berries, closely packed, will start fermenting within four to five days. The wax is separated from the berries by boiling with vater, (one grain bag of berries per 44 gallons of water) when the wax floats to the surface and can be removed by skimaing. The boiling process is continued for about four hours during which time practically all the wax is conarated. The hot wax is strained and collected in separate containers and then allowed to cool and solidify; during this process a fair amount of water is expelled which can to drained off. The solid wax is then remaited in clean containers and strained for a scoond time. This wax on cooling and solidifying is substantially free from water and pure enough for commercial use.

Upon receipt of the principal sample, the wax was filtered through a hot funnel, using Whatman No. 4, filter paper, and the following constants determined.

/Phyeical:::::...

- 13 -

PHYSICAL CONSTANTS.

- 14 -

up to 80°C. (See p.19)

Refractive Index (N), for temperatures from $40.6 - 80^{\circ}$ C. (See p.15).

Optical ActivityNegligible. Surface Tension at 55°C..... 27.9 dynes per c.m. Interfacial Tension against water at 55°C..... 7.8 dynes per cm.

Some of these constants merit further discussion and will be treated in detail below:--

1. Melting Point.

211191

HC IL

1 Ac

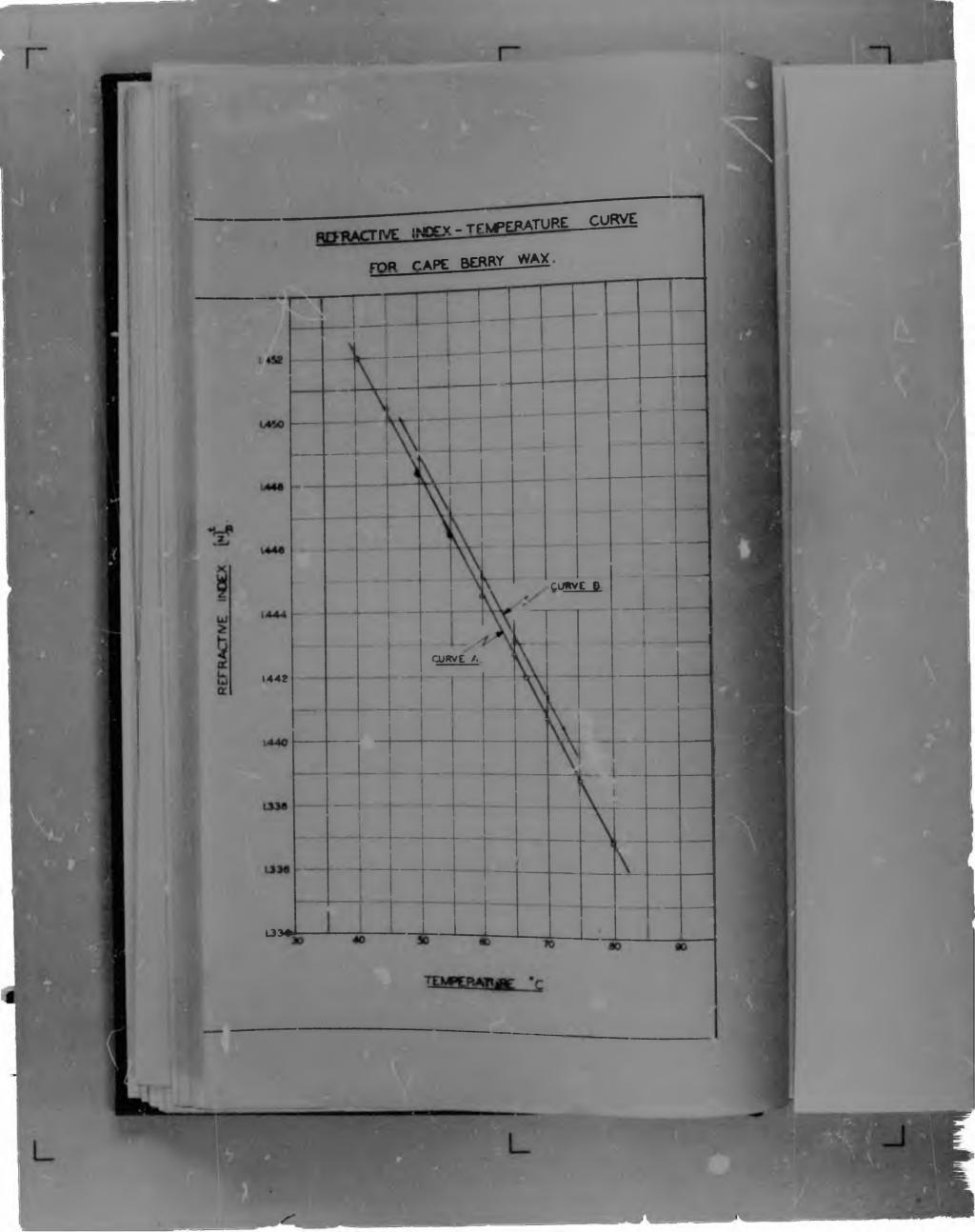
(Date)

000

1.1

125

100


200

81.81

100

The melting point of the original wax sample was very sharo; the fat softened and melted completely within a degree, softering at 40.0° C. and was completely milter at 40.7° C. Such a sharp melting point would seer to indicate a pure compound, thus supporting the view of earlier investigators that Myrica Wax was more or less a pure compound. Smith and Wade stated that the molting point of the sample of fat increased with time. This was confirmed by a determination of the melting point after the sample had been in use for about 18 months when the melting point was found to be 47° C. It is reported that waxes and fats on exposure to air and light become bleached, a process which results in a considerable increase in melting point.

This increase is melting point would seem to indicate that some atereochemical change must have occurred in the fat, either as a result of the atmospheric action or due to the continual heating and /solidifying.....

solidifying of the mass or more probably to both.

2. Refractive Index.

The Refractive Index was determined over the temperature range 40 - 80°C. and the values are tabulated below. A graph of Refractive Index against temperature shows a straight line relationship.-Curve A.

Temperature. t ^{°C} 40.5.	Refractive (N D 1.4520.	Index.
45	1.4504	
50	1.4483.	
55	1.4464.	
60	1.4445.	
65	1.4427	
67	1.4420.	
70	1.4407.	
75	1.4398.	
80	1.4309.	

The Refrective Index, varying inversely as the temperature, can be reduced to any temperature between 40.6 and 80°C., by means of the equation:-

 $R = R^{t} + C (t^{t} - t)$

where R = Refractive Index reduced to temperature t,<math>R' = Refractive Index at the operating t mperaturet', and C = constant correction per degree centigrade.

= 0.00038 as calculated from the slope of the curve. This is the same as the value given by Jamieson for fats in general.

Stereochemical changes in the fat were suspected as a result of the continual heating of the sample so that the Refractive Index determinations were /repeated..... repeated after about two months. The change was negligible. When, however, after 18 months the melting point was found to have increased, these determinations wore ropeated once more. A slight increase in the values was observed as indicated by the following results and the accompanying graph - Curve B.

Refractive Index (N) Tompe	raturo t°C.
----------------------------	-------------

- 16 -

1.44	88	50
1.44	70	55.
1.44	51	60
1.44	31	65.
1.44	14	70
1.44	04	72.5.

The slopes of the two curves are identical

as is to be expected since the constant C = 0.0003 is generally accepted to apply for all fets. Thus this increase in Refractive Index together with the increase in meltin, point indicates that some storeochemical ohange must have taken place in the fat.

3. Specific Gravity.

The change in specific gravity with temperature was determined and the values obtained plotted. The specific gravities are reported in terms of both D_{t} and D_{1} .

Over the range 40-50°C the values obtained were variable and are not reported. A solid wax-cake did not melt when left in a constant temperature waterbath at 45°C for three hours, though partial fusion around the edges had taken place. Similarly a liquid wax sample could not be maintained liquid in a waterbath at 50°C and solidification slowly set in.

/m10

This poculiar behaviour of the fat, as woll as the increase in melting point and refractive index with time can most probably be explained by assuming polymorphic changes to have taken place in the glycorides.

Mulkin first demonstrated that triglycorides can exist in at least four different modifications (Efremov namely the $X - d - \beta' - and \beta - phases.$ obtain evidence to show that tripalmitin exists in three polymorphic forms). In so far as they can be applied generally, the main identifying characteristics of the polymorphic forms are listed below:

	0 0 10	
Relative Stability	Lonst	Hoat
Molting Point	Lowost	Highest
Density	Locst	Greatest
Rofractive Index	Lowest	Highest
Gross Appearance	Vitroous	Brittle and oven powdery

How obtained

(a)	from	liquid	Rapid	cooling	very slow cooling.
					41 7

Not possible (b) from other stable form near the aclids molting point of that

form.

corides

Quite general in Apparently Existence of type form in other longmono- and diglyuniquo in triglyoerides chain compounds

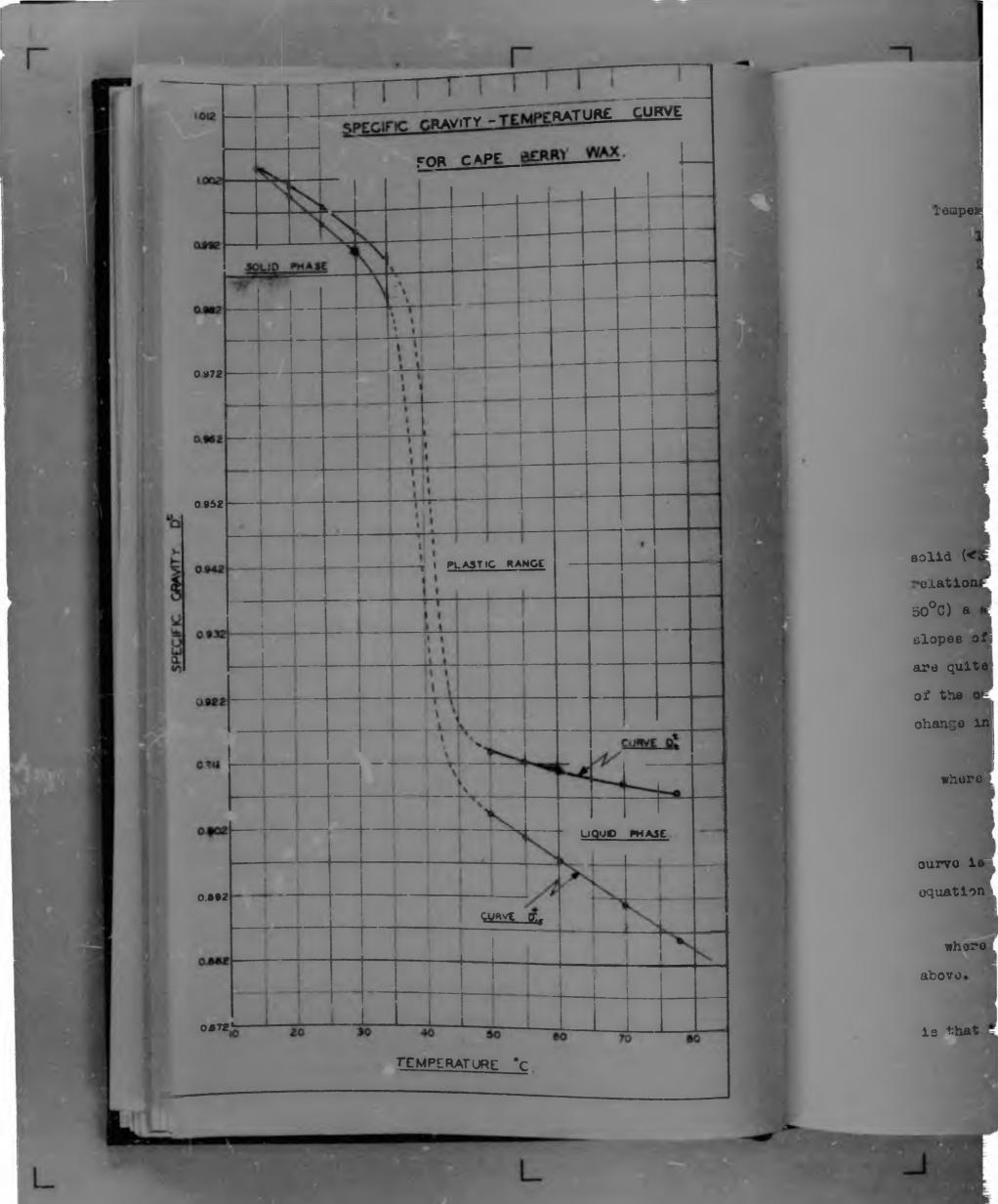
From the above table, it follows that the continued melting of the wax, had slowly converted the glycerides into their most stable modifications. Malkin stated that the chilling process in the melting point determination, converted the glycerides from the more stable modifications into the unstable, lowest aulting form. This statement will explain the partial /funion.....

fusion of the wax-cake in the specific gravity bottle when loft in the thermostat at 45°C. The outer layers of the wax, which were more rapidly cooled had changed into the lower melting modifications whilst the glycerides in the central portion still existed in the most stable form.

It was pointed out, however, that the δ form will slowly revert back to the stable modifications. Joglekar and Watson stated that in the chilling process, numerous nuclei of the β -form were formed in the unstable γ -form. The formation of these nuclei was responsible for the reversion of the γ - into the β -form.

The higher molting point for the sample of wir, extracted with petroleum ether, reported by Smith and Wado can partly be explained by a statement of Duffy that glycerides crystallise from solvents in the more stable modifications i.e. in the higher melting point forms.

Further, the unstable glass-like nature of the low melting modification was from time to time emphasized, especially by Malkin, and its slow reversion to the most stable and brittle phase pointed out. A similar change in the physical structure of the wax under investigation was observed over the period of two years. Although the outer surfaces of the wax were still hard and glass-like the core was soft and brittle and even powdery.


In the determination of specific gravities of the wax-cake at various temperatures, concordant results were only obtained provided an air-free sample had been prepared. Various modifications of the general procedure were adopted to ensure that this by case. /The.....

- 18 -

10120

201

2.1

	The values	obtained	are	tabulated	bel
Temperature	• °C.	Dt		D 15	
15	1.	.004	1.0	04	
20	1	.001	0.9	995	
25	0.	.9977	0.9	948	
30	Ó.	.9937	0.9	908	
35	0.	9895 ·	0.9	837	
50	0	.91.36	0.9	042	
55	0.	.9121	0.9	007	
60.4	0.	9107	0.8	971	
70	0	9088	0.8	907	
78	0	.9074	6.8	652	

From the ourves, it would appear that in both the solid (<35°C) and liquid (>50°C) phases straight-line relationships hold whilst over the plastic range (:5- 50° C) a sudden drop in specific gravity occurs. The slopes of the two straight-line portions of the graph are quite different. Considering curve D_{1b} the slope of the ourve over the solid range is 0.00088 per degree change in to perature, and the equation to the curve:

 $D^{1} = D - 0.00058(t^{1} - t)$

where D' = specific gravity at temperature t:.

D = specific gravity at temperature t.

Over the liquid range, however, the slope of the ourve is 0.0007 per degree change in temperature, and the equation to the curve becomes:

 $D^{1} = D - 0.0007 (t^{1} - t)$

where D! and D have the same significance as montioned above.

An important point arising from this investigation is that the value obtained for the specific gravity at /15°C.....

- 29 -

CURVE

ED

15°C corresponds to that published by certain of the 24,25,1 previous investigators, whilst one possible explanation for the low value reported by the other investigators is that the samples of wax were not airfree. This is postulated since low values were obtained in the determinations, before the samples were rendered air-free.

4. Optical Activity.

The optical activity of the fat as well as that of the free fatty acids was determined in solutions in chloroform of five per cent. and ten per cent. concentration. In all cases the rotation was negligible, being within the limits of experimental error.

5. <u>Surface - and Interfacial Tencions</u>.

The surface tension of the fat against air was determined at 55°C, and found to be 27.9 dyncs per cm. Further, an abnormal lowering of the interfacial tension against water, also at 55°C, was experienced, the tension being only 7.8 dynes per cm. $\frac{72}{72}$ According to Bailey, such a low value is indicative of the presence of di- or monoglycerides in the fat.

CHEMICAL CONSTANTS.

- 21 -

a) By Ether Extraction.... 90.3 - 90.6 per cent.

b) By Wax-cake Method..... 90.1 - 90.5 per cent.
Glycorine Content...... 1525 per cent.
Mean molecular weight of the

Mean molecular weight of the fatty acids..... 242.2 - 244.6.

The iodine value (Wijs), though very shall, indicates the prosence of unsaturation either in the glycoride molecule or in the unsaponifiable matter. The unsaponifiable matter in the fat is practically nogligible thus indicating the unsaturation to be confined within the glycoride molecules. This determination tends to disprove the claim made by cortain investigators ' to the effect that the fat is completely saturated.

The very ow Reichert-Heissl value confirms the absence of any volatile low molecular weight acids whilst the small Polenske value is probably due to the small quantity of lauric acid in the fat.

The acid value is very significant as the low value, as determined indicates that the fit is not raneid and no marked hydrolysis of the glycoridus has taken place.

/A discussion.....

A discussion of the high acetyl value and its implications will follow under a separate heading.

- 22 -

The fatty acid content of the fat was determined by both the other extraction and the wax cake methods. The near value of 90.5 per cent. is much lower than would be expected for a toglycoride (usually of the order of 95 per cent.). With such a low fatty acid content, a high glycorine content was suspected and this was confirmed by an analytical estimation of the glycorine. Both the standard acetin method and the 34 Bertran and Rutges method were employed.

The latter method was standardised against a pure oil of known glycerine content and found to give the theoretical result. For this purpose a pure triglyceride oi, was analysed in the usual way. The acid - and saponification values were determined as well as the glycerine and fatty asid contents according to the Bertra: and Rutges and other extraction lethods respectively.

The pure sample of linize Oil, gave the following characteristics on analysis:

Acid Value..... 0.27. Saponification Value..... 188.8. Glycerine Content..... 10.23 per cent. Fatty Acid Content..... 9..5 per cent.

The theoretical fatty acid content, by calculation

= 95.7 per cont.

Using the following formula. (aerived below), we can calculate the theoretical glycerine content of any triglyceride fat:

/G....

G = 0.05467 E.

whore 9 = percentage glycorine in the fat.

- 23 -

E = oster value.

Hence, substitutin the value of E in the above equation, we obtain:

G . 0.05467 x 188.5.

= 10.30 por cent.

These values confirm the applicability of the Bertram and Rutges method for estimating the glycerol content of a natural fat.

The formula, for calculating the percentage glycerine is derived as follows+-

Let G = percentage glycerine available from the fat. But 92 m lycerine = 1 mgm. of triglycerides. where H = mean molecular weight of the triglyceride molecule. ...<u>92000</u> mgm. glycerine = 1 gm. of tri lycerides. But. 1 gm. of fat contains 1 - 0.01 (a + a) ms. of triglycerides,

where a = percentage free fatty wids. u = percentage unsaponifable watter in the fat.

.. aga. of glycerine obtained on the hydrolysis of 1 gm. of fat = $\frac{92000}{14}$ (1 - 0.01 (a + u)) or G = $\frac{9200}{14}$ (1 - 0.01 (a + u)) But = = $\frac{1000}{14}$ $\frac{1}{5}$ $\frac{1}{1}$ - 0.01 (a + u))

and therefore substituting in the above equation, we obtain:

 $G = \frac{9200(1 - 0.01(a + u))}{1.683 \times 10 (1 - 0.01(a + u))}$

= <u>9200</u>. x Z. 1.685 x 10

= 0.05457 E.

This formula is only valid if the percentage of free fatty acids, (obtained by hydrolysis of the glyceride molecules), is low. If the free acid content is high, indicating partial hydrolysis of t e triglycerides, then the value for G, as calculated, would be incorrect as L, in this case, would not apply solely to a triglyceride but to a mixture of a diglyceride and triglyceride. In such a case, the above formula needs no iffication.

- 24 -

For this reason an oil of low acidity, was selected for standardising the Bertran and Ruiges method. A further check on the structure of the glyceride molecule is found in the detirmination of the total fatty moles.

Although both methods were used, the Bertram and Rutges method was finally adopted as it gave fewer possible sources of los of glycerine, and appeared to be more reliable. A brief consideration of the manipulations involved in preparing the glycerine sample for analysis by the standard acetin method, will suffice to indicate the complexity of the process and will substantiate the claim made in this paper as to the suitability of the Bertram and Rutges method for determining the glycerine contents of the oil samples. A full description of the process follows later under a separate heading.

Firstly, the double evaporations of the aqueous solutions are only to be carried to the point of incipient crystallisation. As this is difficult to judge, evaporations may easily be carried too far, resulting in some loss of glycering.

In the extraction processes, where only a small quantity of glycerine is present, tegether with a large proportion of sodium sulphate or barium sulphate, adsorption on the crystal surface becomes of major importance. Again losses may readily result.

/The....

The removal of the alcohol and water from the filtered extract by evaporation, even under vacuum, may result in loss of glycerine due to its volatility in steam. Also, the ralid method of analysis for glycerine, $\frac{36}{26}$ as proposed by Hilditch, did not work satisfactorily as the glycerine residue, finally obtained, always contained some solid matter which only appeared on concentration of the solution.

In view of these possible sources of loss of glycerine, during the preparation of the sample, it was felt that the methods are not altogether satisfactory and the method of Bertram and Rutges was therefore used.

The mean molecular weight of the fatty acids, as determined by direct titrotion, gave values varying between 242.2 and 244.6 with a mean value of 243.3.

From a knowledge of the percentage of unsaponifiable matter, the acid value and the saponification value, the mean molecular weight of the fatty acids can be calculated using a formula derived as follows:

Hawke derived the following formula for L, the mean molecular weight of the glyceride holecule,

 $M = \frac{1.633 \times 10^{5}(1 - 0.01(a + u))}{\text{Estor value}}$

and for m = mean molecular weight of the fatty acids

where a = percentage of free fatty acids in the fat. u = percentage of unsaponifiable matter. Two important assumptions were made in this

derivation nagely:

= <u>1. - 38</u>

(1) All the combined fatty acids are present as trialycerides.

/(2) The....

- 25 -

(2) The mean molecular weight of the free fatty acids is the same as that of the combined or total fatty acids.

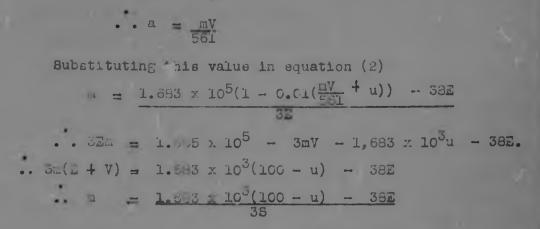
Hawke also points out that for free acidities up to 15 per cent. the error in the calculated value of \underline{a} is protically negligible. It should have been pointed out, however, that this statement only holds true if the free acidity does not result from the hydrolysis of the triglycerides. If that were the case, the weight of glycerides per gram of fat (1 - 0.01 (a + u))though assumed to correspond to triglycerides, would actually constitute a mixture of di- and triglycerides. In such a case the above formula becomes invalid, and has to be modified accordingly.

It will be noticed that to calculate \underline{x} . the percentage free fatty acids \underline{a} is required but to calculate \underline{a} from the acid value \underline{V} , \underline{m} is required. Hence to eliminate the factor \underline{a} from the above equation, another formula can be derived thus:

$$= \frac{1.053}{10^{5}(1 - 0.01(a + u))} - (1)$$

Furthor **m** = <u>1 - 30</u> 3

1.0. _ = 3.1 + 3.5.


Substituting this value for . in equation (1), we obtain:

 $32 + 38 = \frac{1.683 \times 10^{5}(1 - 0.01(a + n))}{E}$ $\therefore n = \frac{1.663 \times 10^{5}(1 - 0.01(a + n))}{3E}$ but 1 gn. fat contains 0.01a gns. free fatty acids or 10a mgn. free fatty acids. but 10a mgn. free fatty acids = V ngn. KOH. where V = acid value of the fat.

and m mgm. free fatty acids = 56.1 mgm. KOH.

/50.1

- 26 -

. 27 -

 $\frac{56.1}{V} = \frac{m}{10a}$

From the constants determined on the sample, a theoretical mean molecular weight of the fatty acids can be calculated using the above formula.

Thus,
$$u = 0.12$$
 per cent.
 $S = 214.7 \text{ mgm/gm}.$
 $I = 214.7 - 3.7 = 211.0 \text{ ngm/gm}.$
and $a = \frac{1.653 \times 10^3 (100 - 0.12) - 38 \times 211.0}{3 \times 214.7}$
 $= 100098 - 8018$

= 243.5.
The values for A, found by experiment to be
243.5 by the titration sethod and 243.1 from the ester
fractionation data, (see later under a separate heading),
show an unexpected divergence from the calculated value
and indicate the presence of a factor or factors un-

644.1

accounted for in the formula.

As has been pointed out before, the above formula is valid only if the free acidity does not result from the hydrolysis of a triglyceride and also provided the ester is a triglyceride. If the free acidity does result from the hydrolysis of the triglyceride, the formula has to be modified to take into account the fact that the ester present will consist of / a mix sure..... a mixture of triglycerides and di lycerides. A modified formula can be derived as follows:

CH2000R	+	H20	CH_OH		
CFOCOR I			 CHOCOR	+	RCCOH
CH20COR			CH20COR		
Li			ш – ш +	16	8

- 53 -

Hence the liberation \underline{m} grams of fitty boids, will be accompanied by the formation of $\mathbb{N} - m \Rightarrow 18$ grams of diglycerides.

But the free fatty acid content of the fat - a per cent. . Per ram of fat,

the weight of free fatty acids - loa mgn. and the weight of diglycerides = 10a(11 - n + 18) mgm.

Thus if the percentage unsaponifiable matter = u per cent then the weight of triglyceride per gram of fat will

be = 1000 - 10a - 10u - <u>10a(11 - 4 + 15)</u> mcm.

= 1000 - 10a - 10u - 10ai + 10a - 180a mgm.

= $1000 - 10(u + \frac{a^2}{m} + \frac{18a}{m})$ mgm.

By or saponification,

X mgm. trijlycorides require 3 x 56.1 mgm. KOH 1000 - 10(u + all + 13a) mgm. trijlycorides require (mgm. KOH,

ALSO:

M = n + 18 mgm. di lycerides require 2 x 56.1 mgm. KOH <u>10a(M - m + 16</u>) mgm. diglycerides require X mgm. KOH, m where X = <u>10a(M - n + 18</u>) x 2 x 56.1

/Similarly.....

Similarly:

m mgm. of free fatty acids require 56.1 mgm. KOH. .. 10a m m. of free fatty acids require 10n x 56.1 mgm. KOH That the seponification value, 8, is equivalent to the mgm. KOH required to seponify 1 gram of fat. .. 8 = 1000 - 10(u + ai + 10a) x 3 x 50.1 + 10a x 2 x 56.1 $\frac{100}{m} = x 56.1$. = 56.1(3000 - 30u - 30a - 540a + 30a) 8.1. = 56.1(3000 - 30u - 540a) But as shown proviously, M = 3m + 38. and a = $\frac{10}{500}$

Substituting the values for K and a in the above equation gives:

 $8(3u + 38) = 56.1(3000 - 30u - 540 \times \frac{nV}{561})$ $38m + 388 = 1.583 \times 10^{2}(100 - u) - 54V.$ $m = \frac{1.683 \times 10^{3}(100 - u) - 54V}{38}$

Substituting the values of u, V and S, as determined, in the above equation, we have:

 $m = \frac{1.653}{1.653} = \frac{10^3(100 - 0.12)}{3 \times 214.7} = \frac{165039 - 199.6}{044.1}$

= 245.0.

Although the value so obtained for m is slightly less than that obtained for a sure triglyceride, it still does not explain the low experimentally determined value. As it would appear that the presence of a diglyceride /lowara....

- 29 -

lowers the value for m as calculated from the formulae, a corresponding relationship between m and the oil constants can readily be computed for a ture dialyceride.

Thus:	11	11	<u>1000 x 2 x 56.1(1 - 0.01(a 4 u))</u> Ester Value
		n	$\frac{1.122 - 10^5(1 - 0.01(a + u))}{E}$
aná	m	11	$\frac{2}{2} \rightarrow \frac{56}{2}$
or	14	=	2m + 56.
21 4 5	6	#100	1.122 x $10^{5}(1 - 0.01(mV + u))$
			E
2m2		208	$1.122 \times 10^5 - 2mV - 1.122 \times 10^3 u - 56E$
21(Z	+ V)		$1.122 \times 10^3 (100 - u) - 56E$
and	a		$\frac{1.122 \pm 10^3 (100 - u)}{25} = \frac{552}{25}$

Again using the same values for u, E and S, and substituting in the above formula, we get:

- $m = \frac{1.122 \times 10^3 (100 0.12) 56 \times 211.0}{2 \times 214.7}$ $= \frac{112065 11316}{429.4}$
 - = 233.4

These values indicate that the fat under consideration may be a mixture of diglycerides and triglycerides as the emperimentally determined mean molecular weight c the fatty acids is intermediate between the values calculated for diglycerides and triglycerides.

CHANGES IN THE CONSTANTS WITH VARIATION IN TIME OF GATHERING THE BERRIES.

- 32 -

A series of determinations was also corried out on samples of berries collecte at different periods through-out the season so as to investigate the changes in the wax during growth of the berry. The berries ripen at the end of the summer season and are gathered between April and August. Two samples of berries were used, one collected at the beginning of the season and the other very late in the season.

The first of such samples was collected towards the end of April, 1944. A portion of the batch was extracted with diethyl other whilst the main bulk of the sample was stored in a bottle. Before the wax content of the berries could be determined, the berries had started fermenting. The extracted fat sample the very dark in colour necessitating the use of Alkali Blue 6B as indicator for all titrations. The unsaponifiable matter could not be determined because of the stable emulsions that formed during the extraction process. Both diethyl ether and petroleum ether wore tried for this extraction. A possible explanation is that some emulsifying agent may have been extracted from the berry by the ether.

Since the wax content of the berries could not be determined for this batch, a further sample was obtained, which had been collected during May. The wax was immediately extracted by boiling the berries with water and skimming off the separated wax. This was filtered hot, the wax-cake remelted and filtered rgain. A small portion of the berries was recerved for a quantitative determination of the wax content.

/The

The characteristics of the different fat samples are tabulated below:-

	SAMPLE 1.	SAMPLE 11.	SAMPLE 111.
Period when collected.	April	May.	August.
Separation process.	Extracted with cold diethyl ether,	Boiling	with water.
Acid Velue.	6.60.	2.13	2.42
Saconification Value	211.4	216.1	215.0.
Acetyl Value.	66.2	62.3	72.5
Iodine Value	3.74	0.74	0.44
Unseponifiable Matter.	-	0.30 per cent.	* .

From the results shown in colum 3 11, and 111, we see that: An increase in acetyl value is accompanied by an increase in the free acidity, but not nearly sufficient to account for the large increase in the former by hydrolysis. The extraction of the first sample with dicthyl other could possibly have resulted in the high scid value, since it is claimed that solvent extraction promotes enzyme activity especially in the presence of a small amount of moisture, On the other hand, the low values for free acidity in the water-boiled samples as compared with the ether-extracted sample might result from a partial solution of the lower molecular weight free fatty acids in the large bulk of water used. Smith and Wede reported an acid value of 30.7 for a petroleum other extracted sample of Myrtle Wax. This extraordinarily high value can possibly be explained as the result of an enzymatic reaction along the lines mentioned above.

210

24

-

The high iodine value obtained for the ether extracted sample, can be explained by the assumption that some unsaturated body was extracted from the berry. Iodine values were determined on the different wax samples obtained during the quantitative wax content determinations /of......

- 32 -

of semples 11 and 111.

These samples which were, both, petroloum ether and chloroform extracted, gave the following results:-

	SAMPLE 11.		SAMPLE 111.			
Solvent.		troleum Tther.	Water.	Water.	Chloro- form.	Petroleum Ether.
Iodine vilue.		1.27	0.74	0.44.	1.70,	1.02.

These results show that extraction of the wax with organic solvents results in a product more unsaturated than is obtained by the water-beiling method probably due to some unsaturated body extracted from the berry itself.

The wax content of the burries was quantitatively determined by ex.. Acting a weighed sample of burries in a Soxhiet apparatus with the required solvent. The results obtained together with the treatment given each set of determinations are tabulated below:-

SAMPLE.	% FAT CONTENT.	SOLVENT AND TREATMENT.
Sample 11. (Lay).	20.0 per cent.	Extracted with petro- leum ether for 10 hours; dried for 6 hours at 80°C4

Tample 111. (August) 19.95 per cent.

Extracted with Chloroform for 5 hours and 10 hours; dried for 6 hours at 80°C.

Extracted with petroleum ther for 19 hours; dried for 6 hours at 80°C.

These results indicate that the change in wix content of the berries over the serson is negligible. The wax sample obtained from the chloroform extraction was brown in colour instead of the usual greenish-white, had a foul odour and did not solidify vary readily. The extraction of some other volatile, edoriferous compound from the berry by the chloroform could explain the brown /solour.....

19.85 per cent

- 33 --

colour and roul odour in the sample and could also account for the higher Indine value obtained for this sample.

- 34 -

It was found that the wax was not readily soluble in petroleum ether, for after six hours extraction portions of the wax on the berries had not been recovered. Thus the time of extraction was proged to ten hours when the wax recovery was complete. MOULD ATTACK ON THE BERRIES.

- 35 -

The mould, which had formed on the sample of fermented berries, was investigated by Mrs. E. Hawke, of the Botany Department, and was found to belong to one of the penicillium species.

In order to study the attack of the mould on the wax-cake, two tests were conducted in which testcakes of wax were inocculated in special culture bottles with the mould obtained from the fermenting berries. A special nutrient was supplied with the one sample, whilst in the other case, the mould was left to feed on the wax alone. After five months the wax-cakes were cleaned of nutrient and mould and reweighed. In both cases, the tests showed that the mould had but a negligible effect on the waxcake, the actual decrease in weight amounting to less than one per cent. over the testperiod, and which can easily be explained as simply a loss of surface meisture from the waxcake.

THE FATTY ACID COLPOSITION.

- 36

In order to study the fatty acid composition, the methyl esters of the fatty acids were prepared and fractionally distilled in a vacuum through an electrically heated and packed column ("E.H.P. column"). Owing to the absence of any lower volatile acids, no preliminary separation was necessary. Also, because of the very low unsaturation in the fat, there was no need to attempt a lead salt-other separation of the saturated from the unsaturated members. Consequently the mixed acids were osterified as a whole and the esters distilled directly.

As pointed out by Hilditch and by Norris and 40 Terry, the vacuum employed should not be too high, but should be of the order of one to five millimeters at the column head. In all runs, the operating pressure at the head of the column, was consequently maintained at one to two millimeters.

The mixed esters were fractionally distilled at this pressure, through the "E.H.P. column". The apparatus used and the techniques employed are described by Hilditch from the original publication by Longenscker.⁴² The only modifier on applied was in the heating of the packed column; a fine control on the temperature being regulated by a Variae connected in series with an ammeter to the heating coil.

The column head temperatures as recorded, though reported systematically, have little or no absolute significance, but morely afforded, in conjunction of the pot temperature, some indication of the efficience of the fractionation. The temperature at the midpoint of the column was measured by means of a thermocouple /insorted..... incerted between the column and the electrically heated jacket.

An important point noted by Longenecker is that despite the somewhat prolonged heating period nocessary for fractionating a complex mixture, there is no evidence that the residual unsaturated esters undergo more profound decomposition than when a simple WillstHtter bulb ⁴³ is employed. He further points out that for maximum officiency in fractionation to be obtained, no "flooding" in the packed column should take place. This requires a very careful control of the pet and column temperatures.

By regulation of the stopcock in the still head, the distillation was maintained at a steady rate of five to six drops per minute. The receivers for the ester fractions were all stout-walled 6" x 1" test-tubes fitted to the Perkin triangle through a good quality cork, pro-44 viously charred.

In the following tables, the results from duplicate oster fractionations are set out. The method of calculation is also illustrated by means of an explicit example.

/Fractional.....

- 38 -

Fractional Distillation of the Methyl Esters of 1. the Fatty Acids of Borry Wax.

(63.5 gms. distilled through "E.H.P. column"). Duration of run - six hours.

Prossuro in system - one to two millimotors.

(a)		Temporat	uro (°C) 51			1.0
(4)		Oil Bath.	Col	umn		
8amp"	Weight		Liddlo	Hoad	Sap Val.	Iod. Val.
A	4.44	176 - 184	160 - 167	111 - 110	233.2	0.42
B	4.61	184	167 - 171	110	231.2	0.15
C	7.12	184 - 185	171 - 173	110	231.4	0.07
D	9.40	185 - 190	173 - 181	110.5	231.1	0.00
E	2.01	190 - 194	181 - 184	110.5 - 114	230.2	0.22
F	3.05	194 - 200	184 - 186	114 - 126	223.7	0.27
G	3.42	200 - 215	186 - 200	126 - 130	210.4	0.38
He	3 .0 8	215 - 230	200 - 208	130 - 130.5	208.2	0.22
I	11.06	230 - 232	208 - 210	130.5 - 131	207.7	0.28
J	9.02	232 - 235	210 - 218	131 - falling	207.3	0.33
K	2.25	Resi	duo from co	lumn.	208.3	2,28
R	1.89	Ro	siduo in fl	ask.	209.5	7.14
	63.35					

/b. calculated

Sec. and P.

139.12

To all

341.174

b)		Calcul	atod Co	mpositio	on of the	Ester Fractions.
			Satura	tod Acid	ls.	Unsaturated Acids a
	Sample	C ₁₂	C ₁₄	C ₁₆	C ₁₈	Palmitoloic.
	A	0.26	4.16		-	0.02
	В		4.56	0.04		0.01
	C	***	7.06	0.05	-	0.01
	D		9.26	0.14	-	0.00
	E	-	1.90	0.10	-	0.01
	F		2.06	0.98	-	0.01
	G	-	0.41	3.00		0.01
	H		0.14	4.93	-	0.01
	I		0.11	10.92	-	¢.03
	J			8.86	0.13	0.03
	K		0.05	2.15	-	0.05
	R		0.16	1.59		0.14
	Weights	0.26	29,87	32.76	0.13	0.33
Per cent, ostors. Por cent. acids.	0.41	47.15	51.71	0.21	0.53	
	0.40	46.99	51.88	0.21	0.52	
	al or cont.	0.49	49.84	49.01	0.18	0.50

11

- 0.

Dotails of the Method of Calculation Involved.

The assumptions made in the following calculations are:

1) that each fraction contains only two saturated esters and one unsaturated ester.

2) that because of the low unsaturation of the fat and because of the predominance of palmitic and myristic acids, the unsaturated acid was taken in every case to be palmitoleic $(\underline{\beta}^{9:10})$ hexadeceneic acid).

On making those assumptions the calculations are comparatively simple: complete information for each fraction being obtained from the respective saponification

/and

8

and iodine values. This is best illustrated by a definite example e.g. fraction I (11.06 grams, S.V. 207.7, I.V. 0.28, containing the methyl esters of myristic, palmitic and palmitoleic acids.

Let m, p, and u represent the respective weights of myristic, palmitic and palmitoloic acid esters.

The saponification values of the esters are respectively 231.5, 207.5 and 209.0.

The iodino value of palmitoloic acid is 94.8.

The equations, therefore, are:

231.5m + 207.5p + 209.0u - 11.06 x 207.7... (2)

94.8 u = 11.06 x 0.28.... (3)

= 0.032 (0.03 gns.)

From equation (3)

Substituting this value in equations (1) and (2), we have:

 $m \downarrow p = 11.03.....(4)$ 231.5m 4 207.5p = 2297.2 - 6.9 = 2290.3..... (5)

```
(4) \times 231.5 - (5)
 231.5m 4 231.5p = 2552.4
 231.5m + 207.5p = 2290.3.
     .. 24.0p = 262.1
      p = 10.92 gms.
    whence m = C.11 gm.
```

From the results shown in table (b) we then obtain the following percentage composition of the mixed esters: P

or cont.	C12	614	~1 6	~18	
osters.	0.41	47.15	51.71	0.21	0.50
			/1=		

1 mar V

from which a percentage composition of the mixed fatty acids can be calculated as follows:

		012		C ₁₄		C ₁₆	C	18	Palm	itoleic
	0.41	x200.3	47,	15 _x 228.3 242.3	51.7	x256.4	0.21	298.5	0.53	254.4
	ų	0.38	-	44.41	N	49.04	-23	0.20	=	0.49
Por cent. acida.		0.40		48,99		51.88		0.21		0.52
		(0.4;;)		(47.0%)		(51.9%)		(0.2%)		(0.5%)
	Ĩ	ron this	dat	ta the mol	Lal po	roontag	os of	the fa	tty e	acids
	can	readily	be d	calculator	i.					
		0.40 200.3		<u>46.99</u> 228.3		<u>51.88</u> 256,4		0.21 228.5		<u>0.~2</u> 254.4
	× (.002027	a (0.2058		.2023	- 0	.000727	± 0.	002053
Kolal per cont		0.49		49.84		49.01		0.18		0.50

Those results show that the total fatty acids ecnsist of practically an equimolocular mixture of myristic and palmitic acids with very small amounts of lauric, stearic and palmitoloic acids.

(49.0%)

As a check on the unsaturated acids present, the total unsaturation in all the fractions can be balanced against the unsaturation of the mixed esters.

Iodino value of the mixed esters = 0.50

χ

X

(49.8%)

x.X = a.A + b.B + c.C + - - - - - - - - - = woights of the fractions. A,B,C, - - - - - = the corresponding iodine values of these fractions.

- weight of hixed esters.

= iodino value of the mixed ostors.

(0.25)

(0.5%)

Thus:

(0.5%)

/63.35 x 0.50

63.35 x 0.50 = (4.44 x 0.42) + (4.61 x 0.15) + (7.12 x 0.07) + (2.01 x 0.22) + (3.05 x 0.27) + (3. 2 x 0.38) + (5.08 x 0.22) + (11.06 x 0.23) + (9.62 x 0.33) + (2.25 x 2.28) + (1.9 x 7.14). ... 31.67 = 1.37 + 0.69 + 0.50 + 0.44 + 0.13 + 1.30 + 1.12 + 3.10 + 2.98 + 5.12 + 13.50.

- 12 -

= 31.45.

These values agree sufficiently well to confirm the presence of 0.5 per cent. of palmitoleic acid.

In a similar manner, the results can be checked by means of saponification values. A determination of the saponification value of the mixed esters gave a value of 219.4. Therefore applying the above rule:

> + (7.12×231.4) + $(9.40 \times 231.)$ + $(2.01_{\times}230.2)$ + (3.05×223.7) + (3.42×210.4) + (5.08×208.2) + (11.06×207.7) + (9.02×207.3) + (2.25×208.3) + (1.89×209.5)

13898

= 1039 ↓ 1066 ↓ 1648 ↓ 2173 ↓ 463 ↓ 683
↓ 720 ↓ 1058 ↓ 2298 ↓ 1870 ↓ 469 ↓ 396.
= 13883.

The discrepency of 0.11 per cent. is well within the limits of experimental error. Finally, using the above percentage composition of the fatty acids, the mean molocular weight of the mixed fatty acids can be computed:

Thus mean molecular weight of the fatty acids

11	$\frac{0.40 \times 200.3}{100} + \frac{4}{2}$	6.99 _x 229.3	+ 51.85.256.4	÷	0.21 _x 254.5
IJ	0.51 + 107.3 +	133.0 + 0.59	4 1.33	ŧ	0.52x254.4
-	243.0.				100

/Tabulating.....

Tabulating the above results we get: Weight C12 C14 C'16 Palmitoloic C18 Per cont. acids. 0.1% 47.0% 51.9% 0.2% 0.5% lolal Per cent. acids. 0.5% 49.3/ 49.0% 0.2% 0.5% Mean molecular weight of the fatty acids = 243.0. Direct Determination Fractional Values Total unsaturation product 31.67 31.45 Total saponification product (1.0. weight x Sap. Value) 13398 13883

> 11. For the duplicate determination a further sample of methyl esters was prepared in a similar manner to the above and a portion of it fractionally distilled through the "E.H.P. column". Both the saponification value and the iodine value of the mixed esters were determined.

Saponification Value = 219.3

Iodine Value = 0.53.

Fractional Distillation of the Methyl Fsters of the total Fatty Acids of Berry Wax.

(57.00 gms. distilled through "E.H.P. column"). Duration of run - five-and-a-half hours.

Pres une in system - one to two millimeters. Tomperature (°C) of

(8)		011 Bath	Ce	Coluan		
Sample	Weight		Middle	Head	Sap. Val.	Iod.Val.
A	5.40	174 - 188	161 - 163	112 - 113	232.3	0.23
B	6.33	188	163 - 175	113	230.6	0.14
C	8,13	188 - 198	175 - 130	113 - 114	231.2	0.14
D	4.09	193 - 199	180	114 - 116	230.2	0.11
E	5.64	199 - 207	180 - 184	116 - 132	217.5	0.14
F	6.83	207 - 213	134 - 195	132.5	203.6	C.25
G	8.95	213 - 217	195	132.5 - 133	207.5	0.11
H	6.50	217 - 222	195 - 207	133 - falling	207.4	0.28
I	2.35	Res	idue in col	umn.	205.1	.23
R	1.75	R	lesidue in f	lask.	210.0	3.04
	56.87			/Cal	culated	. 1

- 43 -

(b)

Calculated Composition of the Ester Fractions.

		Saturate	d Acids.		Unsaturated Acids a
Sample	012	C ₁₄	C ₁₆	C ₁₈	Palmitoleic.
A	0.16	5.23			0.01
В	-	5.10	0.22		0.01
C	****	8.01	C.11	-	0.01
D		1,72	0.26		0.01
D	105	2.35	5.28	~	0.01
F	-	0.30	6.51		0.02
G			8.94	-	0.01
H	-	***	0,45	@.0 3	0.02
I	-	-	2.13	0.16	0.06
R		0.14	1.44		0.17
Weights.	0.16	26.85	29.34	0.19	0.33
Per cent. esters.	0.28	47.22	51.60	0.33	0.58
Per cent. acids.	0.25 (م.3%)	47.04 (47.0%)	51.76 (51.8%)	0.34 (0.3%)	0.58 (0.6%)
Holal Pe. cent. acids.	0.34 (0.37)	49.90 (49.9%)	48.9° (48.9%)		0.55 (0.6%)

Again checking the unsaturation and saponification values of the fractions against that of the mixed esters,

we have:

10

1.1.

100

200

2.

- 40

. r.

-

1. Unsaturation.

 $56.87 \times 0.53 = (5.40 \times 0.23) + (5.33 \times 0.14) + (8.13 \times 0.14)$ $+ (4.99 \times 0.11) + (5.64 \times 0.14) + (6.83 \times 0.25)$ $+ (8.95 \times 0.11) + (5.50 \times 0.26) + (2.35 \times 2.23)$ $+ (1.75 \times 9.04)$ 30.14 = 1.24 + 0.88 + 1.14 + 0.55 + 0.79 + 1.11 + 0.55+ 1.32 + 5.24 + 15.32.

30.14 = 30.17.

2. Saponification Value.

/56.87 x 219.3.....

 $56.87 \times 219.3 = (5.40 \times 232.5) + (6.33 \times 230.5) + (8.13 \times 231.2)$

+ (4.99×230.2) + (5.64×217.5) + (6.83×208.7) + (1.95×207.5) + (6.50 ± 207.4) + (2.35×206.1) + (1.75×209.6) .

= 1255 + 1466 + 1880 + 1149 + 1227 + **1425**

+ 1853 + 1349 + 485 + 568.

- 45 -

12470 = 12456

Finally calculating the mean molecular weight of the fatty acids from the fatty acid composition, we have:

Lean molecular weight of the fatty acids

$= \frac{0.28 \times 200.3}{100} +$	$\frac{47.04_{x}^{228.3}}{100} + \frac{51.76_{x}^{256.4}}{100}$	Ŧ	0.34 _x 234.5 100
≠ 0.56 - 1.07.4	+ 132.7 + 0.96 + 1.48	÷	0.58 _x 254.4 100

= 243.1.

35

These values can be tabulated as follows:

Direct Determination Fractional Values.

Total unsaturation product	30.14	30.17
Total saponification product (A.e. weight x sap. val.)	12470	12456

Hear molecular weight of the fatty acids = 243.1 Thus from the data obtained by the duplicate

ester fractionations, it can be concluded that the

composition of the total fatty acids is:

	Weight	Per cent.	Molal	Per cent.
Lauric acid	0.34	(0.3%)	0	(0.470)
_yristic acid	47.01	(47.0%)	49.87	43.9%)
Palmitic acid	51.82	(51.8%)	48.97	(49.0%)
Stearic achd	0.28	(0.3%)	0.22	(0.2%)
Unsaturated acids as Painitoleic	0.55	(0.0%)	0.52	(0.5%)
	106.00		200 33	
		A A Alia diad		. Ant da 2

The Mean Molecular Weight of the total F_{a} ty Aoids = 243.1.

A PRELIMINARY INVESTIGATION OF THE GLYCERIDL STRUCTURE.

- 46 -

As has been pointed out in the introduction, an acetyl value, which is a measure of the hydroxyl content of the material, may be explained by any one of the following possibilities:

(1) the presence of an hydroxy fatty acid, free or combined. The acid may either be saturated or not.

(2) the presence of free alcohols (either higher aliphatic alcohols or storels) or of some highly hyd: xylated compound such as myricetin. In all such cases there will be a high propertion of unsapenifiable matter.

(3) the presence of di- or monoglycerides in the product, either naturally or as a result of hydrolytic rancidity in the fat.

To investigate the nature of the hydroxylic body in the material it is necessary to consider each possibility in detail on the basis of experimental evidence.

An unsaturated hydroxy fatty acid in the material would necessarily result in a high iodine value to account for the high acetyl value. The very low iodine value of the material (0.6, Wijs - 45 minutes), however, altogether excludes the presence of such an acid in the material. The presence of a saturated hydroxy acid e.g. dihydroxy stearie acid, though possible from the point of view of unstituration, was eliminated by the acetyl value of the total mixed fatty acids. This commination was first carried out on a sample of the mixed methyl esters, propared for the fractional distillation, which gave the low value of 3.6. As a check, a repeat determination was carried out on a sample of mixed fatty acids to eliminate the possibility of removal or reaction of the hydroxyl group during the arying and esterification processes. The mixed fatty acids, after removal of the solvent (diethyl other) on a waterbath, were consequently dri i at a relatively low temperature (80°C.) and then acetylates. Again the acetyl value obtained was 3.8.

From the superification value and neutralisation value of the methyl esters and free fatty acids respectively a mean molecular weight of the fatty acids was caloulated to be 243.3, which agrees very well with the values obtained by direct titration and from the ester fractionation data.

The presence of free saturated higher aliphatic alcohols, glyceryl-ethers, or sterols can also be eliminatod. Their general insolubility in water and ready solubility in other, would result in a high proportion of unsaponifiable matter. This determination on the asterial, however, gave the negligible value of 0.1 per cent. Further, the group of saturated alcohels of intermediate molecular weight, occurs mainly in marinoanimal oils, whilst the alcohols f higner molecular weight, present as the esters of acids of similar molecular size in certain plant waxes, are eliminated by the low mean molecular weight of the fatty acids. Myricetin, an unsaturated hydroxylic compound, known to be present in the bark of Myrica Nagi, might have been present in the wax trom Myrica Corlifolia, thus accounting for the high acetyl value. The very low percentage of unsaponifiable matter together with the very low iodine value of the fat, eliminates the possibility of Myricotin or of some similar body buing present in the fat under investigation.

/The

- 47 -

The most probable explanation, therefore, for the high acctul value is the presence of diglycorides and possibly monoplycomides in the mathemat without naturally or as a result of hydrolytic reneadity. In the latter instance, a high acetyl value would be accompanied by a high sold value. Experiments showed that with both methods of extraction, namely otherextraction and water-boiling, the percentage of free fatty acids was low, never exceeding 2.86 per cent. in the camples investigated. Hydrolysis had, therefore, not set in and the abnormaliy high acetyl value could not be explained in this manner. It is worth noting that Smith and Wado reported an acid value of 307for a sample of wax extracted with petroleum other from the berriss of Myrica Cerifera. Although in the present work, a higher acid value was obtained for an etherextracted sample than, for the water-boiled sample (6.6 as against 2.2), it was still considerably lower than the value reported by the earlier investigators. Their value can probably be ascribed to rancidity in the fat, but no acetyl value was reported to support this supposition.

- 48 --

Thus from the experimental evidence, we can deduce the presence of diglycerides, and, possibly, monoglycerides in the natural fat, from the bearies of Myrica Cordifolia. This is indeed a rare occurrence, for no reference has yet been made as to the occurrence of diglycerides in natural fats which are not rancid. This fact is further substantiated by the high glycerine and low fatty acid contents of the fat. Normally for triglycerides, these values approximate to 10 per cent and 95 per cent. respectively, though in the case und r

/investigation

investigation the values obtained were 1 2 per sent. and 90.5 per cent. respectively.

According to Grun, the difference setween the acouyl value of the sample and that of the mixed mothyl estors propured from it, corresponds to the quantity of aiglycorides (and of monoglycorides, if present) in the material.

Thus assuming, firstly, that the mixture consists only of triglycoridos, diglycoridos and frow fatty acids, we can calculate the theoretical glycerine and total fatty acid contents from the acetyl value of the fat together with the mean molecular weight of the fatty acida.

Acetyl value of the fat = 68.2 Acetyl value of the mixed esters = 3.8. Lean molecular weight of the fatty acids = 243.1. Thus: CH20COR1 CH20COR1 CHOH Снососна ____ снасоон ____ кон CH20CUR-CHoOCORo

Mol. Weights: 542.2 584.2 60. 56.1 1.e. 584.8 . The acotylated product # 56 1 agm. of KOH. . . 1000 m.m. acetylated product = 1000, 56.1 mgm. of KCH. 584.2

= 96.05 mgm. KOH.

Thus the acetyl value of the above diglyceride = 96.05 The acid value of the fat = 3.63.

. . Perconta e of free fatty acide = $\frac{3.69 \times 243.1 \times 100}{56.1 \times 1000}$

= 1.6 per cont.

Hence the glycorides in 1 gran of rat = 0.984 grams. Let x = fraction of diglycorides in the fat. (0.984 - x) = fraction of triglycoridos in the fat.

12 granter

- 43 -

. . 1 gram unacetylated fat - x gm. diglycerides

- 50 -

+ (0.984 - x) gm. triglycerides + 0.016 m. free fatty acide.

But on acetylation, 1 gram. of fat will yield:

= * <u>594.2</u> + (0.984 - x) + 0.016 grame ucotylatod material. = 1.078x + 1 - x

Total weight = 1 + 0.078x grams.

The acotyl value of this mixture would be:

A. ■ 1.078x x 96.05 1 4 0.078x

Thus for an acotyl value of 64.4, wo obtain:

64.4 -	<u>1.0</u> 1 +	78x 96.05
4.4(1 + 0.078x)	11	1078x x 96.05
64.4 + 5.03x	Fall	103.5x.
• • 98.47x	225	64.4
A CONTRACTOR OF	-	

x ~ 0.654 or 65.4 por cont.

Thus the fat consists of 65.4 per cont. diglycorides

33.0 por cont, triglycoridos

1.6 per cont. frou fatty acids.

From the above we have that:

542.° gm. diglycoridos will yiold 486.2 cm. fatty acids. + 92 gm. glycorino.

and 767.2 gm. triglycorides will ytold 729.3 (. fatty acids. 4 92 gm. glycorine.

Thus: 65.4 gm. diglycorides will yield:

65.4_x486.2 gm. fatty wolds. + 65.4_x92 gm. glycorino. 542.2

= 58.5 gm. fatty acids. = 1..09 gm. glycorino.

Also: 33.0 gm. triglycoridos will yiold:

33.0x729.3 gm. fatty noide. + 33.0x92 gm. glycerine. 767.3 767.3

= 31.4 gm. fatty aoid:. = 3.96 gm. glycerine.

. . Theoretical fatty sold and glycering contents are:

/Glycerine.....

The experimentally determined values are 1528 per cent. and 90.5 per cent, respectively. The theoretical seponification value of this mixture would be:

 $\frac{65.4 \times 118.2}{542.2} + \frac{33.0 \times 168.3}{767.3} + \frac{1.6 \times 56.1}{243.1}$

= 135.3 + 72.5 + 3.7.

E 211.5.

The experimentally determined value is 214.7.

A comparison of the values determined experimentally with those calculated above shows that the molecular weights of the diglycorides cannot be equal to values comput 4 from the mean molecular weight of the fatty acids. For, using the mean molecular weight of the fatty acids and the saponification value as bases, would give a percentage composition as follows:

if x = fraction d'olycerides in the fat. (0.984 - x)= fraction triglycerides in the fat.

<u>x</u> x <u>112.2</u> 542.2	+ (U.	504 ~ X) X	767.3	3	$\frac{214.7 - 3.7}{1000}$
. 0.2072 +	0.216	~ 0.219x		11	0.211.
	•••	0.012x		=	0.005.
			x	=	0.417.

. . Percentage diglyceride = 41.7 per cent. and Percentage triglyceride = 56.7 per cent.

For this weight of diglycerides to account for the acetyl value, the theoretical acetyl value of the diglyceride would be:

 $64.4 = \frac{1.078 \times 0.417}{1 \times 0.078 \times 0.417}$ $64.4 \times 1.0326 = 0.449x.$ $\therefore x = 148.$

/This.....

This acetyl value is much higher than can be accounted for in any way by a diglycoride, possible from the fatty acid resolution data. It would appear, therefore, that monoglycorides are present in the material or that the distribution of the fatty acids on the giveeryl radicle is specific in the case of the diglycorides (1.0. the mean molecular weight of the fatty acids in the diglycerides is not 243.1).

In order to resolve the fat into its constituent glycerides, systematic crystallisations from organic solvents were carried out. From the ester fractionation data, it appears that the total mixed fatty acids consist of a practically equimelecular mixture of myristic and palmitic acids. Based on Hilditch's "rule of even distribution", it was considered that the diglycerides would, most probably, consist essentially of myristopalmitin. The fat was, therefore, repeatedly crystallised from the solvents, in an attempt to separate out pure myristo-palmitin.

Absolute alcohol was first used, as it was considered that the solubility of the digly oride in such a solvent would be increased. Repeated crystallisations were carried out and the sapenification value determined on each fraction separated. These varied from 217.8, for the least soluble, down to 209.1 for the most soluble fraction. (The sapenification value of myristo-painitin is 207.6). Owing to the few solubility of the material in absolute alcohol, (a three per cent. solution, only, could be prepared at 35° C), the quantity of material apparated in each fraction was too small to allow further determinations to be carried out. This same limitation existed when methyl alcohol was used as a solvent.

/Acetone.....

A stone proved to be superior to the lower alcohols as a solvent since twelve per cent. #/v. solutions could be employed (See page 87). Again using the apponification value as the criterion of purither repeated orystallisations from acctone were performed. The apponification value of the fractions gradually d'minither od, (with decrease in solubility), to a value of 2000, which agrees fairly well with that of myristo-palmitin as calculated. An acetyl value determined on this sample, however, gave the low value of 25.7. Determinations on the material recovered by evaporation of the solvent from the first filtrate, i.e. the most soluble fraction, however, gave the following results:

> Baponification Value 216.5 Acotyl Value 95.2

Those values seen to indicate that the diglycerides are composed essentially of the lower molecular weight acids, such as dimyristin and myristo-palmitin with a small quantity of lauromyristin. Further proof of this statement is found in the previous calculation. The molecular weight of myristo-palmitin is 540 and is practically identical to that calculated for a diglyceride (542) using the mean molecular weight of the fatty acids (243). In the calculation it was shown to be highl improbable for the diglyceride to be only myristopainitin. Hence two other possibilities have also to be considered namely dimyristin and dipalmitin. A large quantity of dipalmitin of saponification value 197.2, will give the final product a comparatively low saponification alue, and thus not account for the experimental value of 214.7. Thus we may consider the diglycorides present to consist mainly of dimyristin and m, ristopaimitin.

/Considering.....

- 53 -

2.

Arrie .

100

Considering the lower molecular weight acids, therefore, to be chiefly ined in the diglycerides, the theoretical composition and constants may be computed as follows; assuming all the diglycerides to be composed of lauro-myristin, dimyristin and myristopalmitin.

 $\texttt{CH}_{2}\texttt{OCOC}_{11}\texttt{H}_{23} \qquad \texttt{CH}_{2}\texttt{OCOC}_{11}\texttt{H}_{23} \qquad \texttt{CH}_{2}\texttt{OCOC}_{13}\texttt{H}_{27} \qquad \texttt{OH}_{2}\texttt{OCOC}_{13}\texttt{H}_{27}$ - GHOCOCH. AND CHOH CHOCOCH3 CHOH CH20C0C13=27 CH20C0C13H27 CH20C0C13H27 CH20C0C13H27 484 526 512 554 QH20COC13H27 CH20C0C13H27 CHOH CHOCOCH. Cn20COC15H31 Ch20C0C15H31 Mol. Weights. 540 582. From the estur fractionation data, we have: Per cont. C12 C14 C16 C18 Unsaturated acids. aoids. 0.4 47.0 51.8 0.2 0.6

60

Considering 1000 mgm. of fat yielding 90.5 per cent. of fatty acids:

the weight of lauric acid = $\frac{0.4 \times 905}{100}$ = 3.62 mgm. the weight of myristic acid = $\frac{47.0 \times 905}{100}$ = 425.4 m m.

and the weight of palaitic acid = $\frac{51.8 \times 905}{100}$ = 468.8 mgm. . . Teight of lauro-myristin present = $\frac{3.62 \times 434}{200}$

= 8.76 mga.

and the weight of myristic acid combined = $\frac{3.62 \times 228}{200}$

= 413 mgm.

Weight of myristic acid available for further combination = 425.4 - 4.1 = 421.3 aga.
 Let x = weight of dimyristin present.

y = weight of myristo-paimitin present.

- 54 -

•• X x 456 4 y x 228 = 421.3 0.8900x + 0.4225y = 421.3 - - - - - (1) But on acetylation, the weight of the acetylated product formed will be: $8.76_{x}\frac{524}{484} + x_{x}\frac{554}{512} + y_{x}\frac{582}{540} + (991.2 - x - y) m_{em}.$ = 9.56 + 1.051x + 1.078y + 991.2 - x - y mgm. = 1000.8 + 0.081x + 0.073y mgm. Thus the mostyl value of this mixture will be: 1000 x 9.56 x56.1 + 1000 x 56.1 554 1000.8 + 0.081x + 0.078y 524 1000.8 + 0.078y 554 514 $+ \frac{1000}{1000.8 + 0.081x + 0.078y} \times \frac{582y}{540} \times \frac{56.1}{582} = 64.4$ $\frac{.56.1_{x}^{9.56}}{.524} + \frac{.56.1x}{.512} + \frac{.56.1y}{.540} = \frac{.64.4}{.1000} (1000.8 + 0.061x + 0.078y)$ $1.02 \neq 0.1095x \neq 0.1039y = 64.45 \neq 0.0052x \neq 0.0050y.$. 0.1043x + 0.0989y = 63.43. - - - - - (2)Eliminating x from (1) and (2), 0.8900 = 0.1043x + 0.0441y = 44.000.8900 x 0.1043x 4 0.0-60y = 56.90 . 0.0439v = 12.90 = 294 ngm. x = <u>63.43 - 29.0</u> = <u>34.43</u> = **355.** mgm. 0.1043 0.1043 1.0. total weight of diglyce .des present = 294 4 368 4 8.8 = 34.8 m.

. .

- 55 -

• Por cont. diglycerides present = • 5.48 per cont. of which 382per cent. is dimyristin.

Weight of paimitic acid in the diglycoride

¤ <u>256 x 294</u> ■ 139.4 mgm. 540

. . Woight of painitic acid in the triglycerides

= 466.8 - 139.4 = 329.4 mgm.

/1:0an

56 -

Mean molecular weight of the fatty acids remaining:

a (329.4 _x 256.3 ↓	$\frac{0.35_{x}905_{x}254.3}{100} + \frac{0.2_{x}905_{x}284.4}{100}$	1_1_
¤ (84,500 ∔ 1265	+ 515) 1	336.2
- 06000	256.5.	

But the purcentage free fatty acids (based on a mean molecular weight of 256.5) = 1.637 per cent. This corresponds to a weight in the fat sample of 16.87 mgm. Weight c. triglycerides present = 1000 - 653.8 - 16.9.

= 1000 - 651.7

= 348.3 mgm.

Hence, to calculate the theoretical glycorine content we have:

(a) from the diglycerides

<u>8.8 x 92</u> + <u>338 x 92</u> + <u>294 x 92</u> mgm. glycerine = 1.68 + 60.05 + 50.05 = 111.7 mgm glycerine. (b) from the triglycerides

34A.3 x 92 807.5 39.52 mgm. glycorine. =

Total weight of glycerire - 111.78 4 39.82

= 151.6 mgm.

. . Porcentage glycerine = 15.16 per cent.

Furthermore, the assumption made in the above calculation would necessarily result in a high percentage or tripalmitin. Hilditch, in a discussion of fruit-coat fats, states that in the case of certain fruit-ocat fats, tripalmitin forms a definite glyceride constituent; a statement which substantiates the above assumption. The assumption is further supported by saponification values and acetyl values obtained on samples separated from a combined acctone - petroleum ether crystallisation process.

/The

The fat sample was primarily crystallieed from a 1 in 8 acetone solution. The crystallised material was then repeatedly crystallised from petrolcum other, whilet the most soluble fraction was separated from the acetone liquor by a continual partial evaporation of the solvent.

	The	valu	es obtai	ned ar	e as	follows:		
		onpo	onificat	ion Val	lue	acetyl	Value	3.
Sauple	A.		212.	4		94.		
Sample	в.		225.	5		110.	9.	
where Sa	mple	A = 1	the most	insolu	ble	fraction	fl om	the
			petrole	un etha	r cr	ystalliss	tions	-

and Sample B = the most soluble fraction in acetone. These values can only be explained by assuming the presence of lower molecular weight diglycerides or the existence of monoglycerides in the material.

It would, therefore, appear that a fair proportion of the paimitic acid is combined as tripalmitin, Cenerally, earlier investigators seem to agree that "Myrica Wax" contains tripalmitin. An experiment perlo formed by Smith and Wade was repeated by orystallising the fat successively from petroleum ether. They claim to have separ tod tripalmitin after your crystallisations from petroleum other. (Molting point-62.5°C, Saponification Value-209.4, Refractive Index (10) - 1.4380).

After the form the crystallisation by the author a product was separated showing the following constants: Sapenification Value - 209.1; whiting Point - 63.0°C; Refractive Index $(N)_D^{COO}$ - 1.43°2: Acetyl Value - 105.4. These values are in good agreement with the reported by Smith and Wade except that it shows the very high scetyl value of 106.4, indicating quite conclusively

/that....

- 57 --

that the material separated ould not have been tripalmitin. It ough Smith and Wads worked on the wax obtalled from Myri "eri is it has been pointed out by several investig: a shat the constants of Berry Tax are within the ranges noted for Myrtle Wax, and the author, therefore, feels that the claim made by Smith and Wade to have separated tripalmitin from the fat, is invalid. It would be appropriate at this use to note a statement made by Hilditch that "before deciding on the identity of any glycoride as many constants is possible should be determined on the sample".

- 58 -

Five crystallizations, in all, were carried out at concentrations varying from 1 in 5 ml. to 1 in 17 π 1. of potroleum other. The results obtained on all fractions are tabulated below:

The samples are tabulated in the order of their solu-ility in petroleum other.

Sample	Weight	Saponification Value	Acotyl Value.
A	20.3 gm.	232.5	56.0
В	11.2 gm.	229.3	44.0
٥	17.3 gm.	215.1	33.1
D	20.2 gm.	228.0	51.5
E	5.9 gp.	227.6	56.6
r	2.5 gm.	225.9	73.0
Ģ	9.2 gm.	209.1	106.4
8-	2.7 gm.	220.0	105.5
I	37.5 gm.	1.99.1	106.3
	127.0 gm.		

Since the values obtained on certain fraction, as tabulated above, are difficult to interpret, a systematic crystallisation of the fat from anhydrous acetone was carried out. The general procedure adopted

/was....

was similar to that previously used (see page 87), the concentrations of the solutions decreasing from 1 in 6 ml. to 1 in 23 ml. of acetone. Saponi "ication and acetyl values wore determined on each fraction, as well as the mean molecular weights by a modification of the Rast mothol, (see page 69) and the results obtained are tabulated below. The fractions are again reported in the order of their solubility in acetone.

Fraction	Veight	Sap.Val.	"P.S.V"	Acetyl Val.	"P.A.V"	Hean Hol. Weight.	%OH.
A	16.2	215.0	3503	102.2	1656	512	3.36
в	8.9	215.8	1922	103.7	923	503	3.42
σ	9.5	215.6	2047	88.94	845	522	2.88
D	23.8	216.6	5156	83.83	1997	6 01	2.71
Е	7.4	215.0	1592	92.04	682	548	2.99
7	20,2	217.0	4384	92.15	1865	541	3.00
0	11.1	216.6	241.3	80.00	904	582	2.61
ä	28.1	217.6	611.6	72.52	2040	635	2.32
I	21.3	214.2	4563	68.30	1456	599	2.18
J	11.4	211.3	2409	61.44	701	622	1.95
K	6.5	210.3	1367	54.05	352	650	1.71
L	4.8	210.1	1009	62.44	301	712	1.98
M	41.6	210.0	8740	14.32	600	770	0.44
	210.8	gn.	452?1		14320		2.19

rt.S.

P.S.V. - Product, Sap. Value x Weight.

+ P.A.V. = Froduct, Acetyl Value x Weight.

From the product values, the saponification and acetyl values of the original fat should be 214.5 and 68.0 respectively. The differences between these values and those obtained directly on the main sample, (namely 214.7 and 68.2 respectively), are within the limits of experimental error.

/Troc.....

-+ 59 --

From the acetyl values, it is obvious that each fraction must contain a certain proportion of diglycerides or possibly monoglycerides. Further, the mean molecular weights obtained, except for the final two fractions, are all loss than can be accumted for by any triglyceride formed from the abids present. Again, the values obtained for the first two samples are lower than can be attributed to any diglyceride and would therefore indicate the presence of monoglycerides.

- 60 -

A surther check on the proposed diglyceride constitution of the wax is found in the percentage of hydroxyl group in the fat as calculated from the values tabulated. Thus from the fat analysis we have:

427

17

×

Δ

group. = 2.19 per cent. 0.129).76 This gives a total number of molecules attached to the glyceryl radicle as 3.01 molecules, which purther

proves the deduction that the war must contain natural diglycerides.

The percentage of hydroxyl group in the wax may be calculated as follows:

Hydroxyl Value - <u>Acetyl Value(A)</u> 1 - 0.00075 A.

Considering the whole wax: Acetyl Value = 68.2.

... Hydroxyl Value = $\frac{68.2}{1 - 0.00075 \times 68.2}$ = $\frac{68.2}{1 - 0.051}$ = $\frac{58.2}{0.949}$ = 71.9.

But the Hydroxyl Value 2 the number of milityvans KOH equivalent to the hydroxyl groups in one gram of war.

/1.0. 71.9.....

1.8. 71.9 mgm. IOH = -OH in 1 gran of wax. But 56.1 mgm. KOH = 17 mgm. of -OH. . Weight of -OH/mmam of wax = <u>71.9 x 17</u> <u>56.1</u>

- 61 -

21.

= 21.9 mgm. of -OH.

• • Percentage of -OH = 2.19 per cent.

Thus it seems possible that by using the saponification and acetyl values and the mean molecular weights of the fractions, a probable composition of each fraction may be computed. Further, bearing in mind that the lower molecular weight acids are probably combined, chiefly, in the diglycorides, such a computation may be carried out as follows:

Consider for example fraction G of saponification value 216.6, hostyl value 80.0 and a mean molecular weight of 582.

In such a calculation, it is assumed that each iraction consists of only two constituent glycerides, one diglyceride and one triglyceride. Although there is no evidence to substantiate this statement, it is obvious from the tabulated results that each fraction. must at loast contain one diglyceride and one triglycoride. An acetyl value of 80, would indicate approximately 80 per cent. of diglycerides in the fraction since the acetyl values of all the possible di-lycerides are about 100. Hence the saponification value of the diglyceride in question must necessarily approximate to 215 - 116, the only glycorides possible being invristin at 219.0 and myristo-palmitin at 207.6. Dimyristin, on the one hand, would require a triglyceride of saponifi nation value loss than 215, the only possibility being tripalaitin, whilst ayristo-palmitin would require a trigiveeride of a much higher saponification value than 215 e.g. trimyristin 232.8.

/Thus.....

Thus these two possibilities exist which can be considered separately from the saponification value, acetyl value and mean molecular weight determinations. (a) Considering the fraction to consist of myristopalmitin and trimyristin.

52 -

Lot x - weight of ayristo-palmitin.

(Sap. Value - 207.6, Acetyl Value - 96.1) (11.1 - x) = Weight of trimyristin. (Sap. Value - 232.8)

(1) According to the Acetyl Value

 $x = \frac{80 \times 11.1}{96.1} = 9.24$ (1).

(2) According /the Saponification Values.

 $x \ge 207.6 + (11.1 - x)232.8 = 11.1 x 216.6$ 25.2x = 11.1 x 16.2 x = 7.14 gm.

These results indicate that it is highly improbable for the fraction to consist of myristo-paimitin and trimyristin. Using palmito-dimyristin in the above calculation will give even a lower value for <u>x</u> when calculated from the seponification values.

(b) Assuming the fraction to consist of dimyristin and tripalmitin.

Let x = weight of dimyristin.

(Sap. Value - 219.0, Acetyl Value - 101) y = weight of tripalmitin.(Sap. Value - 206.5)

(1) According to the Acetyl value

(2) According to the Saponification values.
 x x 219.0 4 (11.1 - x)208.5 = 11.1 x 216.6.
 . 10.5x = 8.1 x 11.1
 x = 8.56 grams.

/(3).....

(3) According to the mean molecular weights.

<u>x</u> 11	x 512	÷	$(\frac{11.1 - x}{11.1})$	=	58 0 .
46.2x	♣ 807	1	72.7x		580
			• • 26.5x	11	227.

x

= 8.52 grans.

The shall differences in the results can easily be explained in that it is improbable that the fraction consists only of dimyristin and tripalaitir. Other mixed triglycorides will be present but it is quite clear that the major constituents must be dimyristin and tripalmitin.

A complete table is not drawn up in this fashion since calculations indicate the presence of more than certain two glycerides in/fractions. Although the major constituents in each fraction may be determined, the data at our disposal is not sufficient to warrant the attempt of a complete calculation.

Consideration of the resulus obtained on fraction M, will show it to be primarily tripalmitin with a smale proportion of diglycerides (Acetyl value 14.3). Further the results, as shown, for fractions A and B sannot easily be explained in the above manner, and it would appear that monorlycerides may be present in these fractions to account for the very high acetyl values. This is reinforced by a consideration of the results of the provious table, (see page 58) for the petroleum other crystallisations. There, three fractions were separated with acetyl values exceeding 105. The only possible explanation that can be given is by assuming menoglycerides to be present.

S.m.

It, therefore, seems quite definite from the experimental results that the fat under investigation /consists.....

- 63 -

consists of a mixture of diglycerides and triglycerides together with a shall proportion of monoglycerides. Further it would appear that a fair percentage of tripalmitin is present together with dimyristin and myristopalmitin as the major diglycerides. The presence of simple glycerides in natural fats, though contrary to the "rule of even distribution" has been proved by recent workers in the case of cottonsced, soybean, $50 \quad 47 \quad 47$ linseed, palm and clive oils.

- 64 -

ani

Before concluding the discussion on Berry Max, it is necessary to consider possible uses for this material.

18 Chittenden and Smith, stating Berry Wax to consist essentially of tripalmitin, suggested its possible use as a source of palmitic acid.

Another application of Berry Wax repeatedly referred to is its use in the candlemaking industry. Abderhalden merely points to its use in this respect without elaborating on the general efficiency of the candles so produced. It was also suggested as a sucstitute for beeswax. Jamieson, too, only mentions its use along with other subscances in the manufacture of candles. In another publication, it is pointed out however, that its low melting point might render Berry Wax unsuitable for this purpose, although the candles made from this wax are stated to burn slowly, with very little amoke and to emit an a reeable balaamic odour; they are, however, reported to give a poor light. It is suggested that the wax should be mixed with an equal proportion of tallow in order to make the candles burn more brightly. When used for the adulteration of beeswax, it is stated that the resulting product does not assume the same polish as pure becowax when rubbed.

A second important application of Berry Wax is as a general scapstock; giving a hard, ivory-white scap with an agreeable odour and of splendid quality.^{23,51,52} A firm of scap-makers in Durban, however, reported in 1915 that after investigating the possibilities of Berry Wax in this field, found it to be unsuitable for the use. It seems, however, that it has been used for 1 rdon-/ing.....

- 65 -

USTS.

ing and preserving other soaps. The general impression would appear to be that its high price largely militates against its further use in this field.

A third major use for Berry Wax, and one in which it is still applied today, is in the polishes industry.' Although it has been referred to as a rival for Carnauba Wax in the manufacture of boot-ereen, floor-polish etc., its low melting point renders this claim extremely improbable. Generally, though, manufacturers of floor-polishes, who have tried Berry Wax, maintain that it lacks certain essential properties for use in manufacturing polishes. In the Western Province, Berry Wax appears to have been used by local house-holders in conjunction with paraffin wax for floor-polish and to some extent for boot-cream.

The cost of Berry Wax over a period of about 40 years has fluctuated considerably. In 1906, it sold at about 27/- per owt., but in the years following a tremendous interest developed in this product resulting in a price increase up to 11.4 pennies per pound in 1915. A marked depreciation in the value of Berry Wax then took place, dropping to 5½ pennies per pound in 1922, a price which furnished little inducement to collect the wax. Today, with Berry Wax quoted at 2/3 per pound, it is used, only to a small extent, in the polishes industry.

Another industry that might favourably employ this material is the cosmetics industry, where its hardness, smoothness and fairly low melting point would indicate its use in lipsticks and creams. It has also been found to be an excellent material for use in oil-baths in chemical laboratories, being prefer

/to

- 66 -

to paraffin-wax as it can be heated to a much higher temperature (300°C) without emitting any obnoxious vapours and because it has a very high flash-point. It is further suggested by the author, that Berry Wax might find applieation, after refining and deedourisation, in the manufacture of "superglycerinated" shortenings for manufacturing cakes, sweet yeast doughs and similar products. The oil was also found to be an excellent emulsifying agent.

It seems quite definite, though, that the Forestry Department would not tolerate unrestricted exploitation of the berries, as the shrub Lyrica Cordifolia, abounding on the sandy flats along the Southwestern and Southers, coasts of the Cape Province, exhibits excellent sand-binding qualities. It thus forms an important auxiliary in the fixing of the sand-dunes for when properly established, it puts an end to the shifting of the sand by constantly pushing new shoots $\frac{28}{28}$

Summarising, we can state that the only industrial use for Berry Wax today appears to be in the polishes industry though use in the cosmetics and food industries indicates definite possibilities. Its high price excludes its use from the scap industry as well as from candlemaking, whilst its low molting point remders it further unsuitable for the latter use and as a general substitute for Carnauba Wax. Although the melting point of the wax increases by some B^OC over a period of about two years, it is considered that this change proceeds too slowly to be of any industrial importance.

- 67 -

CONCLU IONS.

22

14

- 68 --

1. Cape Berry Wax consists of a mixture of digitizerides, trigitizerides, a small proportion of free fatty acids, possibly monoglycerides and a trace of unsaponifiable matter,

The fatty acids present consists essentially of opproximately equimolocular proportions of myristic (49.9 mol. per cent.) and palmitic (49.0 mol. per cent.) acids. The minor component acids are lauric (0.4 mol. per cent.), stearic (0.2 mol. per cent.) and a monosthemoid acid, probably palmitoleic (0.5 mcl. per cent.).

3. The wax has an abnormally high acetyl value, which was first reported in 1940, and which formed the basis of this investigation.

4. The specific gravity of air-free samples approximates to that of water at 15°C.

5. The specific gravity, melting point and refractive index increase with ageing thus indicating the probability of polymorphic changes.

6. Possible uses for the wax are in the manufacture of "superglycerinated" shortenings, and in the cosmetics industry. It is a excellent emulsifying agent. The wax is not, however, suitable for the manufacture of high-grade polishes.

7. There seems to be little or no change in
the composition of the wax once the berries have ripered.
8. It has an abnormally low interfacial tension
against water at 55°C.

CONCLUSIONS.

. . .

1 -----

Rei

12

2.4

PTT I

pa

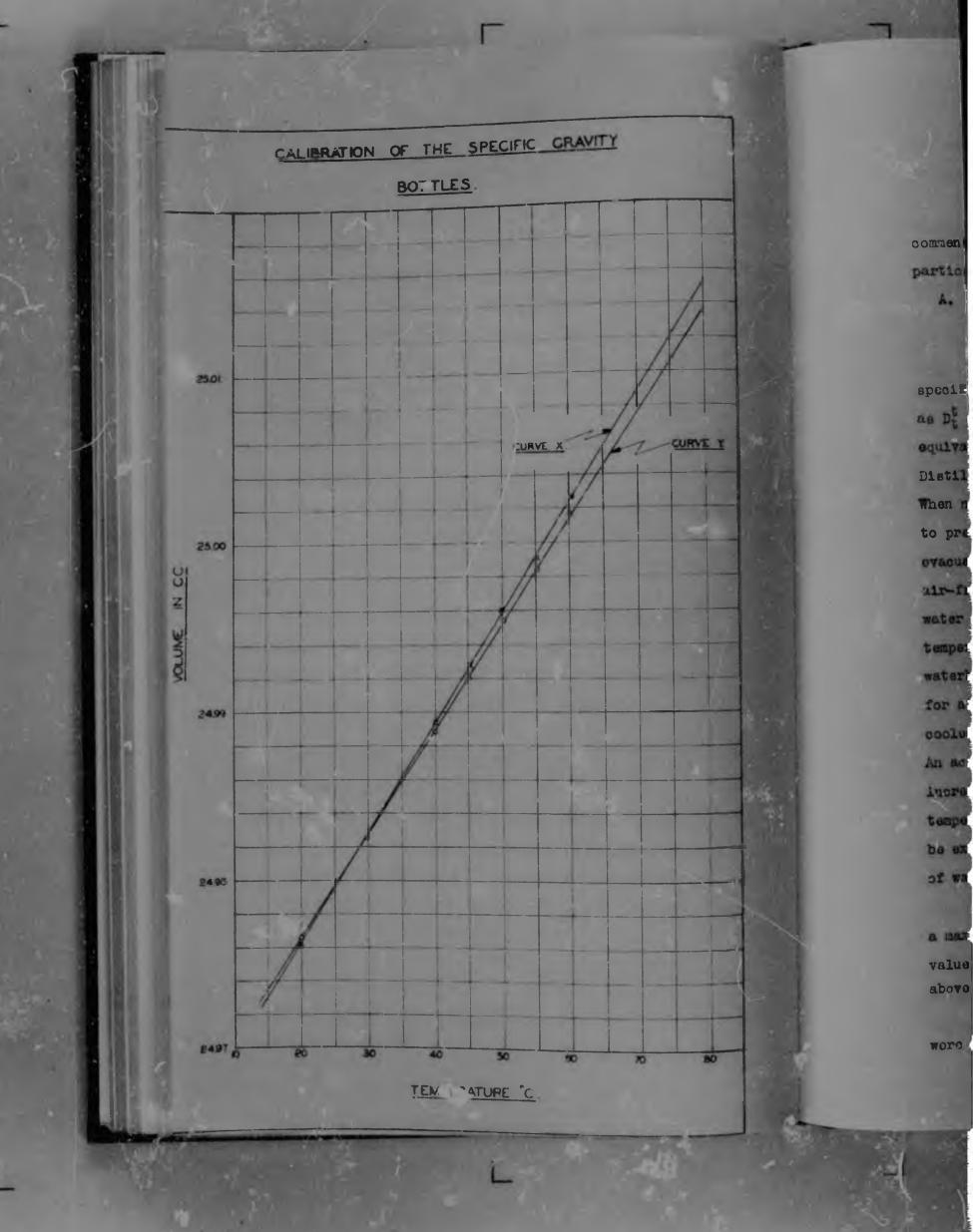
3

1E

1. Cap Berry Wax consists of a mixture of diglycerides, triglycerides, a small proportion of free fatty acids, possibly monoglycerides and a trace of unsaponifiable matter.

2. The fatty acids present consists essentially of approximately equimolocular proportions of myristic (49.9 mol. per cent.) and palmitic (49.0 mol. per cent.) acids. The minor component acids are lauric (0.4 mol. per cent.), stearic (0.2 mcl. per cent.) and a moncethenoid acid, probably palmitoleic (0.5 mol. per cent.).

3. The wax has an abnormally high acetyl value, which was first reported in 1940, and which formed the basis of this investigation.


4. The specific gravity of air-free samples approximates to that of water at 15°C.

5. The specific gravity, melting point and refractive index increase with ageing thus indicating the probability of polymorphic changes.

6. Possible uses for the wax are in the manufacture of "superglycerinated" shortenings, and in the cosmetics industry. It is an excellent emulsifying agent. The wax is not, however, suitable for the manufacture of high-grade polishes.

7. There seems to be little or no change in
the composition of the wax once the berries have ripered.
8. It has an abnormally low interfacial tension
against water at 55°C.

- 68 -

METHODS OF ANALYSIS.

- 69 -

Where the methods used are standard, no comment is made except for giving a reference to that particular method.

A. PHYBICAL CONSTANTS.

CURVE Y

1. Specific Gravity.

The specific gravity was determined using a specific gravity bottle. Since the results are reported as D and D, an accurate measure of the weight of en equivalent volume of water at all temperatures is essential. Distilled water was boiled and then cooled under vacuum. When not in use, the vacuum over the water was maintained to prevent solution of air. Nevertheless, frequent evacuations of the bottle were essential to ensure ah air-free sample of water for all determinations. As these water determinations were only carried out at the lower temperatures, immersion in a thermostatically controlled waterbath for half-an-hour proved to be quite sufficient for attaining thermal equilibrium. The bottles were then cooled for twenty minutes in cold water, dried and weighed. An accurate graph, as shown, can thus be plotted of the increase in volume of the specific gravity bottle with temperature. The curve, bein a straight line can thus be extrapolated to any temperature up to the boiling wint of water.

In all the specific gravity determinations, a maximum doviation in temperature about the required value was maintained at $\stackrel{+}{=}$ 0.05°C below 60°C and $\stackrel{+}{=}$ 0.1°C above 60°C.

The wax determinations at 50°C and higher wore carried out exactly in a similar manner. The major /wax..... wax sample was maintained molton at about 60° C to exclude as much dissolved air as possible.

- 70 -

The specific gravity bottles, after introducing the samples, were left in an oven, at the same tam, rature as that at which the determination was being carried out, for one hour. The bottles, after filling them completely, were then transferred to the thermostat and left for one hour. The bottles were then allowed to cool, first in air and then in cold water, for half-anhour, dried and weighed. After each determination the bottles were left in the oven for at least an hour before the determinations were repeated. Thus having determined the weight of wax at t^oC and the corresponding weights of water at t^oC and 15^oC, D and b could be calculated.

To determine the specific gravity of the solid wax-cake, a different procedure had to be adopted. Eriofly the method was as follows: a sample of wax was introduced into the specific gravity bottle, allowed to cool, and weighed. The bottle was then filled with water, evacuated and its weight determined at any particular temperature at t^oC. Hence from the weight of the wax-cike and the corresponding weights of an equivalent volume of water at toC and 15° C, the specific gravity could be calculated.

As has been noted previously, considerable difficulty was experienced before reproducible results were obtained, and various modifications of the general procedure were adopted.

After introducing the samples, the specific gravity bottles were left in an oven at 80°C for an hour to expel the unclosed air. The samples were then cooled Atmospherically and the specific gravity determined.

/In.....

In the following series of determinations, the same procedure was adopted except that in the one case, the samples were cooled suddenly by plunging them into cold water and in the other case, very slowly by immersing the bottles in a beaker of water at 80°C and allowing it to cool slowly to room tomperature. In each of the above cases, the bottles were evacuated after filling with water so as to remove the trapped air.

- 71 -

5.03.1

20.

20

10

The next modification consisted in cooling the wax sample under vacuum. The same preliminary precautions were adopted as before and the cooling was carried out both very slowly and rapidly as described above, though for most reliable results it was found that atmospheric cooling under vacuum was preferable.

The .othod finally arrived at was as follows. The sample of wax was introduced and the bettle Jeft to stand in an oven at 80°C for at least an hour. This was essential otherwise bubbles formed on the wax surface, through air becaping, whilst cooling under vacuum. Such bubbles immediately introduced an error and the samples had to be discarded. This proliminary heating ensured that the sumple had a smooth surface free from pits. The sample, was then cooled slowly under vacuum, the cooling being completed in cold waterbath. The bottle was dried and weighed, about half the required amount of water introduced and the bottle and its contents ovacuated until no further air bubbles escaped. (The vacuum was maintained at a sufficiently low value to provent boiling of the water). The pottle was filled complotoly and its weight detormined after leaving in a thormostat until thermal/oquilibrium was established. The bottle was then re-evacuated and the weight deter-/minod....

mined after loaving in the thermostat as before. This operation was repeated until concordant results were obtained - usually two or three times.

For each determination the bottle was left in the thermostat for an hour and then cooled for halfan-hour before weighing. In all cases, the samples were introduced through a long, thin-stemmed funnel to keep the wax off the upper sides of the bottle as much as possible, since such a film of wax split off in small pieces whilst evacuating the sample with a resulting loss of material.

Over the plastic range 35 - 50°C, considerable difficulty was experienced due to partial fusion and polymorphic changes. The results obtained were unreliable and are not reported.

2. Refractive Index.

The Refractive index of the sample was determined to sodium light using the direct reading Zeiss Abbé Refractometer with temperature controlled prisms. The Refractometer was standardised against pure, airfree distilled water at 20°C. The oil sample, introduced between the prisms, was allowed ample time to attain the temperature of the apparatus before a reading was taken. The temperature control on the instrument was maintained to within 0.1°C.

The change of refractive index with temperature was determined over the range $40 - 80^{\circ}$ C and plotted as shown in the graph facing page 15.

3. Nolting Point of Wax.

The wax sample was molted, thoroughly mixed, and the capillary tubes dipped into the molten material /so.....

- 72 -

so that the melted sample rose to a height of one centimeter in the tubes. The ends of the capillary tubes were then carefully fused and allowed to cool. The tubes were left overnight in a refrigerator at about 5°C, and the melting point of the wax determined in the usual way.

4. Optical Activity.

This was determined to sodium light in the usual manner, using a solution of the wax in chloroform. The determinations were all made at a temperature of 20°C. The instrument used was a Winkel-Zeiss research type polarimeter.

5. Tiver of the Fatty Acias.

About 50 grams of fat were saponified with caustic-glycorine solution; diluted with water and the acids split by the addition of sulphuric acid solution (30 per cent. by weight). The acids were then extracted with other as described under 7(b).

The apparatus used is described by Jamieson and consisted of a wide-mouth bottle (450 ml.) fitted with a stout 6" x 1" test-tube by means of a good quality cork. The bottle and test-tube containing the molted fatty acids, were fixed in a two liter beaker which was filled with water at 20°C to a level one continueter above that of the fatty acids. A stirrer and titer thermometer were then inserted into the tube and the acids stirred at a steady rate of 100 up-anddown motions per minute. The stirring was continued until the temperature remained constant for 30 seconds or began to rise within the 30-second interval. The stirring was then discontinued and the maximum temperature recorded by the thermometer, noted.

/6.....

- 73 -

5. Burface and Interfacial Tensions.

- 74 -

The surface tension against air and the internacial tension against water were both determined at 55°C using the du Nouy direct reading tensionettr. A platinum-iridium ring, six contimeters in diameter, was used in all cases. The instrument was first standardised by supporting different weights on the ring to create the pull on the wire. This pull on the instrument was belanced by applying a tarque to the wire given by:

> - <u>16</u> 21

whore M = weight in milligrams used.

- g = accoloration due to gravity.
 - = 979.5 om./soc.²

L = 6.001 om. (mean diameter of the wire). The lengths of the torsion arms were then altered until the scale reading corresponded to the above value. The instrument was then checked against pure distilled water at 22°C.

For bost results, extreme cleanliness of all apparatus used must be ensured. To this effect all glassware used was belied with a strong chronic acid solution, thoroughly washed with distilled water and dried with filter paper. The ring, after cleaning with chromic acid solution and rinsing with distilled water, was heated to bright redness in an alcohol flame. This procedure was repeated after each determination.

/B. Chemical.....

B. CHEMICAL JONSTANTS.

1. Acid Value.

12

100

About te. grans of fat were accurately weighed in a 200 ml. Erlenneyer flask and dissolved in 50 ml. of boiling neutral ethyl alcohol (35 per cent.). Muc mixture was then thoroughly swirled and immediately titrated with aqueous decinormal caustic potash to phenol phthalein indicator, swirling the mixture vigorously throughout the titration. The endpoint was taken when the pink colour persisted for one minute.

In all cases the acidity was reported as milligrams KOH per gram of fat.

2. Sabonification Value.

About 2 grams of fat wore accurately weighed in a 200 ml. Erienmeyor flask, six drops of a one per cont. alcoholic solution of phonol phthalein indicator added and the fat saponified under reflux, on a boiling waterbath for $\frac{3}{4}$ of an hour, with 30 ml. of approximately seminormal alcoholic caustic potash. - (added from a burette at a definite rate to ensure constant drainage.) The flask was swirled at intervals during the saponification. At the end of the refluxing period, the flask was raised from the waterbath, the condenser washed down with 25 ml. of neutral ethyl alcohol (95 per cent.) and allowed to druin for one minute. The excess alkali was then back-titrated with seminormal hydrochloric acid solution.

Two blank doturminations were carried out concurrently with the tests, one treated before the samples and one after; the agreement in the acid backtitrations maintained within 0.03 ml., or the determinations rejected. The saponification value, in terms /of.....

- 75 -

of milligrams KOH required to superify one gram of fat, was then calculated.

3. Acetyl Value.

a

~ 76 -

The method was standardised for five gram samples, though with a suitably modified apparatus, samples as shall as one gram were used since comparative determinations showed that the use of one gram samples for acetylation in stead of the more usual five to ten gram samples in no way impaired the accuracy of the results.

Using the special flack, the sample was acetylated by refluxing 5 pl. of wax with an equal volume of acetic anhydride in an oil-bath at $140 - 145^{\circ}0$. for two hours. The flack and its contents were allowed to ecol to about 100°C, 50ml. of beiling distilled water added and the whole beiled in the eil-bath at 100 - 105°C for 15 pinutes, bubbling a slow stream of carbon dioxide through the mixture to prevent oxidation and to minimise bumping.

The water was then siphoned off using a siphon of barometer tubing with the end of the shorter limb ground to fit into the depression at the bottom of the flask. By this means an almost quantitative separation of the two layers was effected. The boiling and siphoning proceeses were then repeated twice. After the third boiling, the acetylated wax was washed twice with 50 ml. portions of hot distilled water (50°0) in the same vessel. This was done by shaking well with water and allowing the two layers to separate, siphoning off the aqueous layer and removing the droplets of water adhoring to the sides of the flask with a spill of filter paper.

/..fter.....

After the second washing, a gram of anhydrous sodium sulphate was shaken with the acetylated product which was then allowed to stand for at least an hour and the product filtered in an air-over at about 90°C using a Whatman No. 4 paper, not greater than 7 cm. in diameter, and a stemiese funnel. By this means lesses were minimised. The seponification value of the acetylated product was then determined as in (2) above, and the acetyl value calculated from the formula.

 $= \frac{8^{1} - 8}{1 - 0.00075 \times 8}$

- 77 -

where A = acetyl value.

S' = saponification value of the ace. ated sample.

and 8 = saponification value of the original sample.

4. U.saponifiable Matter.

About 5 grams of wax, accurately weighed out, wore saponified with 5 ml. of a concentrated alkali solution (10 grams KOH in 10 ml. water) added to 30 ml. of othyl alcohol (95 per cent) for one hour under reflux on a beiling waterbath. The solution was cooled, 50 ml. of petroleum other (Beiling range 30 - 50°C) added, the flack shaken and the contents transferred to a 250 ml. oylindrical separating funnel. The flack was rinsed with a further two, 25 ml., pertions of petroleum other, each washing being added to the separating funnel vhich was then well shaken for one minute, rapidly twirled and the layers allowed to separate.

The scop layer was run off and extracted with a further four, 30 ml., portions of petroleum other, uniting all the extracts. The combined other extracts were then washed with water until free from alkali to

/phenol....

phenol phthalein. In the event of an emulsion forming during washing, it was broken by the addition of a small quantity of anhydrous sodium sulphate. The extract was then dried with anhydrous sodium sulphate for two hours and filtered through fat-free filter paper into a tared 300 al. Erlenmeyer flask, washing out the separating funnel and filter with three successive 25 ml. pertions of petroleum other. The solvent was then carefully distilled off on a waterbath and the residue dried to constant weight at $95 - 100^{\circ}$ C in an air-oven.

It is important that the stopeocks and stoppers of the separating funnels be lubricated with a lubricant, insoluble in petroleum other.

5. Iodine Value.

All iodine values were determined by the Vijs method.

About 0.4 - 0.5 gram of wax was accurately weighed into a clean $1^{\circ} \times \frac{1}{4}^{\circ}$ sample tube and the tube transforred to a clean, dry iodine value flack. 10 ml. of carbon tetrachloride were ad od to dissolve the wax and then 15 ml. of Wijs solution run in slowly and at a constant rate from a burette, taking care not to warm the solution duries handling because of the high coefficient of expansion of acetic acid. The flack was then tightly stoppered and scaled with a few drops of petassium iodide solution. It was theroughly swirled and allowed to stand in the dark for exactly 45 minutes, swirling twice during the first ten minutes.

lonl, of a 10 por cent. potassium iodido solution word then added to the annular space around the stopper and the flask carefully opened, allowing the solution to run down the sides. 50 ml. of cold distilled water wore then added, pouring it over the stopper and /down.....

- 78 -

down the sides of the flack. The liberated iodine was then titrated immediately with decinormal sodium thtosulphate solution to staroh indicator in the usual manner. Two blank determinations were carried out simultaneously, under exactly the same conditions, with each series of determinations, one before and one after those containing the wax samples. This precaution was taken to ensure the detection of any appreciable temperature change taking place during the addition of the Wijs solution to the sample.

79 +

From the titration figures the iodine values were calculated, the results being reported as grams iodine absorbed per 100 grams of wax.

Mijs Solution.

đų.

12

13 grame of resublimed indine were dissolved in one litre of glacial acetic acid (not less than 99.5 per cent.) in a one litre round-bottom flash by warming on a waterbath, keeping the mouth of the flash loosely plugged with cottonwool to prevent alsorption of meicture. The solution was cooled to room temperature and 50 ml. transforred to a glass-stoppered bottle. Fure dry oblerine gas was then passed through the remainder in the flash, until the colour just changed from deep-red to amber. The chlorination was then discentinued, the 50 ml. of iedine solution added, (the colour is a pale ruby-red) and the resulting solution transferred to a brown glass-stoppered bottle and stored in the dark. Any solution more than a month old was rejected

1 the titration of 10 K. of the iodine solution against docinormal "hissupphate solution was <u>n ml.</u>, then the titration of 10 ml. of the chlorinated solution (adjusted if necessary), lay between (2n - 0.5)

/and

and 2n ml. to onsure the absence of iodine trichloride.

6. Volatile Acids.

THEFT

T'LOL SI &

P.C.P.STLAN

195

TAN MOUS

atomate

124 12 -

Sub 1

J 12 6 443

14.04

in anut

Setting.

- 21L

x + 125

the state

at the

ALC: U

T.M.C.

15. 20

STATES.

- 48.6.

and a

the fit

P.S.M.A.

- 80 --

About 5 grams of the sample were accurately v signed into a 300 ml. flat-bottom flask and completely saponified (indicated by the mixture becoming hom -geneous) with 20 ml. of glycerine - caustic soda solution (20 ml. of a 50 per cent. w/w caustic soda solution added to 180 m. of pure glycerine) with slight war ng. 130 ml. of freshly boiled water were added, followed by 10 ml. of dilute sulphuric acid solution (20 ml. sulphuric acid in 100 ml. water) and about one gram of powdered punice. Without previously melting the separated fatty acids, the solution was distilled using the standard apparatus for the Reichert - Mcissl and Polenske values. The flame was so regulated that 110 ml. of distillate were collected in 30 minutes. The flame was removed when the 110 ml, distillate had been collected and a 25 ml. measuring cylinder substituted so as to collect any drops of distillate that fall later. The contents of the receiver - flask were thoroughly mixed and the latter immersed almost completely in cold water for 15 minutes. The distillate was then filtered and 100 mi. of the filtrate titrated with decinormal caustic potash solution using six drops of phenol phthalein indicator. The pink colour persisted for two minutes at the endpoint. A blank determination was carried out to correct for impurities in the solutions.

Reichert-Meissl Value = ml. of decinormal caustic potash solution (after correction for the blank determination) x 1.1.

The remainder of the soluble acids were then removed from the insoluble acids upon the filter

/paper

paper by washing with three successive 15 al. portions of water proviously passed through the condenser, the 110 ml. receiving flask and the 25 ml. measuring cylinder. The insoluble acids were than dissolved by passing three successive 15 ml. portions of neutral othyl alochel (95 per cont.), through all the previous containers and the filter. The combined alcoholic washings were then titrated with decinormal caustic potash solution in the same. manner as noted for the soluble acids determination.

Polonsko Value - ml. decinormal coustic potash solution required for neutralisation.

7. Total Fatty Aoid Content.

- 81 -

This dotermination was carried out by two different methods:

(a) Wax-cake method.

5 6

En de

Sin the

and a state

100 Mar 10

12.24

2 1/2

WT DU

140

100.6

stile

- 104

6/7

1240

12872

AND S

No the

1080

About 8 grams of fat, accurately weighed, were saponified with 3 grams of caustic potash in 60 ml. of ethyl alcohel for 12 hours on a boiling waterbath. The alkaline soap solution was then quantitatively transferred to an 800 ml. tall beaker, containing a glass rod, and the solution dissolved in 500 m2., of hot distilled water. Beveral drops of methyl orange indicator were added and the fatty acids thrown up by the addition of a slight excess of 1 : 1 sulphuric acid. The beaker was left on the boiling waterbach, stirring frequently until the frity acid layer was clear, when a weighed quantity (about 20 grams) of good quality beeswax was added. The heating was continued until this was dissolved in the fatty acid layer. The mixture was then left to stand overnight. In the morning it was reheated and stirred to give better clearing of the aqueous lay or. When the two layers had separatia completely, the bubbles on the surface were /removed

removed by blowing air through a heated tube and the beaker then cooled by surrounding it with cold water.

- 62 -

The wax-cake was removed on the glass rou, and washed with a fine jet of cold distilled water, collecting the washings in the aqueous layer which was subsequently used for the glycorine determination. The wax-cake and wax adhering to the boeker, were then dried by standing or wiping lightly with filter paper. The cake was then removed from the rod, placed on a tared watch-glass and the rod and beaker scraped with a spatula, this wax being added to the main cake which was then weighed.

(b) The Ether-extraction Lethod.

The mil-

E 2 - - -

7135A.L

a state of

a RALLIN-

- ----

- 25

About 4 grams of fat, accurately weighed, wore saponified with 40 ml. of seminormal alcoholic caustic potash solution, for one hour under roflux on a boiling waterbath. The solution was diluted with 20 ml. of water and the alcohol distilled off. The alkaling soap solution was then cooled and transforred to a 250 ml. cylindrical separating funnel, A fow drops of methyl orange indicator were added and the fatty acids split with 1 : 1 Hydrochloric acid solution. The flash was rinsed thoroughly with acidified distilled water and then with 50 ml. of petroleum ether. (Boiling range 30 - 50°C). The washings were all added to the contents of the separating funnel, which was gently shaken for one minute. The layers were allowed to separate and the aqueous layer run off and extracted with a further seven, 50 ml., portions of petroloum ether to ensure complete removal of all the fatty acids. The combined extracts were then washed with cold distilled water to remove traces of minoral acids,

cold distilled water to remove viaces of internal and the solution dried with anhydrous sodium sulphate for /four.....

four hours and filtered through fat-free filter paper, washing the final container and funnel with four successive, 25 ml., portions of petroleum ether. The solvent was carefully distilled off on a waterbath and the fatty acids dried to constant weight in an air-oven at 80°C and under reduced pressure.

Again, as in the determination of unsaporiflable matter, all stopcocks and stoppers were lubricated with a lubricant inscluble in petroleum ether.

8. Mean Molecular Weight of the Fatty Acids.

This determination could only be done directly using a titrimetric method. The fatty acids were separated exactly as described under 7(b) above. The residue was then titrated with standard alkali (as described under (1) and the mean molecular weight of the fatty acids calculated.

9. <u>Glycerine Content</u>.

About 25 grams of fat, accurately weighed, were saponified with 6 grams of clustic soda in 100 ml. of ethyl alcohol (95 per cent.), for two neurs under reflux. The solution was diluted with an equal volume of water, the slochol distilled off and the fatty acids split with hydrochloric acid solution (1 : 1). The fatty acids were then extracted with petroloum ether as described under 7(b) above, and the aqueous residue and washings evaporated to a total volume of about 70 ml. The solution was then filtered into a 100 ml. standard flar's, neutralised with aqueous caustic soda solution and made up to volume with distilled water.

10 ml. of this glycerol solution were pipettod into a 100 ml. glass-stoppered standard flask, 10 ml. of caustic soda solution added (30 grams of caustic soda per /100 ml.....

- 63 -

dition 7

1. - 1.

21.62

\$CW

der.

141

424

64

Sela

113

100 ml. of solution) and 60 ml. of sthyl alcohol (95 per cent.). The contents were mixed theroughly and alcoholic cupric chloride solution (10 grams of CuCl_2:2H_2O per 100 ml. of solution in othyl alcohol - 95 per cent.) added gradually in small portions $(\frac{1}{2} - 1$ ml. at a time) with therough shaking between additions, until a clearly visible permanent precipitate of supric hydroxide was formed. The flask was then filled to the mark with 95 per cent. athyl alcohol, the contents well mixed and about 80 ml. thereof transferred to a 100 ml. centrifuge tube. The suspension was then centrifuged for 20 minutes at 1300 - 1500 r.p.m.

The clear supernatent solution was decanted off and 50 ml. of it pipetted into a 300 ml. Erlenmeyer flask. 100 ml. of cold distilled water were added followed by a small piece of litmus paper, and the contents of the flask made slightly acid to litmus with sulphuric acid solution (1:6). 10 grams of potassium iodide were then added and the liberated iodine titrated with decinormal sodium thiosulphate solution until the contents were pure white in colour.

A blank determination was carried out on the reagents using 10 ml. of distilled water instead of the glycerol solution. This is to correct for the solubility of the cupric hydroxide in the alcoholic solution. 1 ml. of 0.1 N Thiosulphate solution

9.1975 mgm. of glycerine.

Notes:

DEFENSION

A.C. 1. 1. 1. 1. 1.

ATTEL MAN

11 15

5 8.24

to ind the

Sec. 1

B. (00)

Burkey !!

14000

in 2m

100.000

a cont

100

12255

Life C

223525-

The endpoints are more readily observed if the solutions contain 400 mgm. of glycerol or less. It is important that a considerable excess of cupric hydroxide is present before centrifuging and that the

/solution

- 84 -

solution is well centrifuged.

30 Res

5.2

5 mar 17

Solin ?

10 24

Astro.

- 85 -

The sulphuric acid solution is preferably added from a burette. It is simple to follow the course of this titration by the changes in colour of the solution and the appearance and disappearance of a precipitate.

> 10. Preparation of the Glycerine Sample for Analysis by the Acotin Process.

About 8 grams of fat, accurately weighed, were saponified with 3 grams of caustic soda, in 60 ml. of alcohol (95 per cent., for $l\frac{1}{2}$ hours on a boiling waterbath. The fatty acids were then separated by either method described under (7).

The aqueous acid liquor and washings were then transferred to a large evaporating basin, made slightly alkaling to mathyl orange indicator with caustic soda solution, and evaporated on a boiling waterbath to incipient crystallisation of the sodium sulphate. The dish was then removed and cooled in running water, stirring and scratching all the time with a glass rod. Crystallisation started in fine needles, after which stirring and cooling were continued for a short time when the whole mass became pasty. The dish was then left uncovered overnight, when the orystalline mass became quite stiff and dry.

The crystalline mass was then extracted in a Soxhlet extractor with ethyl alcohol (95 per cent.) until the liquid siphoning over was colourloss. The thimble was then emptied out into the evaporating dish, the crystals dissolved in water and the solution again evaporated and crystallised as described before. The orystals were again extracted in the same thimble with 95 per cent, othyl alcohol for a further two hours.

/Aftor

After the addition of sche punice, the alcohol was distilled off on a waterbath and the water removed by heating the flask in a stean-oven. It is recommended to complete the evaporation of the alcohol from the contents in the flask under reduced pressure to prevent loss of glycerol.

The standard soetil method was then applied to determine the percentage of glycerine in sample.

A modification of the above procedure, consisted in neutralising the acid liquor with barium oarbonate instead of caustic soda, resulting in the precipitation of barium sulphate. Evaporation was continued until the mass became pasty after which it was extracted with a mixture of ethyl alcohol and diethyl ether. The mixed solvent was then carefully distilled off on a boiling waterbath and the residue dried over concentrated sulphuric acid in a desiceator. The glycerine content of the residue was then determined in the usual manner by the acctin process.

11. <u>Preparation of Mixed Methyl Esters for</u> <u>62</u> the <u>er Fractionations</u>.

About 150 grains of wax were saponified with 60 grams of potassium hydroxide in about 700 ml. of 95 per cent ethyl alcohol. The solution was boiled under roflux for about four hours and most of the alcohol then removed by distillation. The concentrated weap solution (about 100 ml.) was dissolved in about 400 ml. of water and the scaps split with 1 : 1 hydrochloric acid solution. Because of the small amount of unsaponifiable matter present (0.1 per cent.), no separation was effected before splitting. The fatty acids were then extracted with diethyl ether to a total /bulk.....

- 86 -

at was

ale to

in the

1.64

240

1

1545

0.0

31

1.15

bulk of 2000 ml., the solvent distilled off and the acids dried at 80°C overnight.

1 45 Miles

Bern Welland

1 1 1 1 T

and the second

27

10.00

0.04

20

Area

These acids (about 135 grams) were then converted into the neutral methyl esters by esterifying with four times their weight of methyl alcohol in the presence of about two per cent. of concentrated sulphuric acid for four hours. About three-quarters of the methyl alcohol was distilled off and the asidue dissolved in disthyl other to a total bulk or about 600 ml. The unesterified acids were then removed by washing the ethemal solution several (four) times with a dilute (1 per cent.) potassium carbonate solution. (A more concentrated solution of potassium carbonate cannot be used for fear of saponifying some of the esters and because of its tendency to emulsify the whole sample. Such an emulsion can, however, readily be broken by destroying the excess alkalinity with a few drops of dilute hydrochloric acid solution.)

The ethereal solution was then iried overnight with anhydrous sodium sulphate: filtered and the solvent distilled off and the mixed methyl esters left in an oven at 110°C overnight.

12. Fractional Crystallisation from Organic Solvents.

Although the description that follows applies specifically to the acctone crystallisation processes, a similar procedure was adopted for all such experiments. In every case the crystallisation was allowed to proceed overnight at room temperature. The wax sample was primarily crystallised

from anhydrous acetone (dried over and distilled from calcium chloride) in a solution of one gram of wax in

/six

simil. of acetone. The separated material was then reportedly crystallised from anhydrous acetone, the concentration of the solutions gradually diminishing from 1 : 6 ml. to 1 : 26 ml. of acetone for the major acetone crystallisation process. The filtrates, in all cases, were evaporated to dryness and the wax fractions recovered.

The wax from the primary filtrate was recovered by partially evaporating the liquor on a waterbath and allowing it to stand overnight. By this means several fractions were separated, the most soluble fraction being obtained by the complete evaporation of the solvent.

13. Hean Holecular Waight Determination by the Macro-Rast Method.

About 0.01 grams of solute was weighed into a clean, dry fusion tube. To ensure maximum homogeneity, each fraction was first melted before the sample was weighed out. To this about 0.1 gram of camphor, the solvent, was added and the tube weighed again. The weights should be very nearly in the proportion oflic. The tube was then sealed and drawn out into a fine rod, by means of which it was a tached to the thermometer. The thermometer, with tube attached, was

then suspended, firstly in a small beaker of paraffin. A lamp was placed behind the beaker, which was then slowly heated with a small flame until the mixture had molted. The tube was then ahaken to ensure that the solution would be homogeneous, and allowed to cool when the mixture solidified.

The beaker was then heated very gently, stirring the paraffin all the time, and the temperature /noted.....

- 89 -

513 40

Sheet

14.22

noted when all the orystals had moltod and the solution was perfectly clear. Several readings were taken of this temperature. The melting point of the camphor was determined in a similar manner.

Due to the low heat transfer through the comparatively thick-wall of the fusion tube, which caused a terinite time-lag in recording changes in temperature, the heat capacity of the heating medium was increased by carrying out further determinations in a two litre beaker containing about 1500 ml. of parafilm. The rate of heating was also reduced from 1°C per minute to 1°C per three minutes, Again several determinations had to be carried out before concordant results were obtained. For each determination the sample was allowed to ecol about 10°C below its melting point.

The mean molecular weight was then calculated from the formula:

 $\underline{H} = \frac{1000 \times k_b \times w}{7 \times \Delta^{\frac{1}{2}}}$

where w = woight of solute

48----

2600

1244

-

1150

W = weight of camphor.

Atr = depression in melting point.
kb = freezing point depression constant for camphor - 40.

- 89 -

ACKNOWLEDGE INTS.

.....

0.00

100 100

- 1544

- - 2

2 15/

. 90 -

The author wishes to express his inanks to the following:-

Professor H. Stephen for invaluable advice and criticism and for granting of full laboratory facilities.

Mr. F. Hawke for the direction of this research, his assistance in the necessary glassblowing and for the photograph of the terries.

The Union Department of Forestry for the samples of berries and for the information regarding the preparation of the wax.

Mrs. E. J. Hawke for carrying out ex-

BIBLIOWRAPHY.

1.	Panjutin and Rapoport, Chem. Umschau, 1930), 37, 30.
2,	Steger, van Loon and Smelt, J.Soc. Chem. Ind. (1936),
-	55. 41.
3.	Gurgel and de Amorim, M Inst. Chim. Rio de Janeiro, (1929), No.2, 31.
4.	Carriere and Br Ast, Compt. Rend. (1927), 185, 1516.
4.	Margaillan, Bull. Soc. d'Encour. (1927), 126. 560. Brit. Chem. Abs. E, (1927), 945.
5.	Fiero, J.Amer. Pharm. Assoc. (1933), 22, 608.
7.	Matthes and Schutz, Arch. Pharma. (1927), 265. 541.
8.	Margaillan, Compt. Rend. (1931), 192, 373.
9.	Hilditch: "Industrial Fats and Waxes", Bailliere, Tindall and Cox, (1947), p. 30.
10.	Smith and Wade, J.A.C.S. (1903), 25.629.
11.	Hilditch; "Cherrical Constitution of Natural Fate", Wiley and Sons, (1944), p. 117.
1' .	Hoore, Amer. J. Sci. and Arts, 2nd series, 33, 313-
13.	Chevreul, Compt. Rend. (1845), 20, 38.
14.	Benedict, Analyze der Fetts 3rd Ed. p. 535.
15.	Lewkowitsch, "Chemical Analysis of Olls, Fats and Waxes", p. 542.
16.	v. d. Riet, Trans. of S.A. Phil. Soc., <u>16</u> , Part 5, June 1907, p. 443.
17.	Allen, "Connercial Organic Analysis", Churchill (London) Vol. 11, Part 1, (1899).
18.	Chittenden and Smith, Amer. Chem. J. 5, 218.
19.	Abderhalden Biochemiese Handleksikon, (1911), No. 3, p. 119 - 120.
20.	Schneider, Agricultural Journal, Vol. 111, No. 12, p. 89.
21.	Bull. Imp. Inst. (1906), 4 300.
ee.	Hilditch, "Chemical Constitution of Natural Fats", Wiley and Sons (1944), p. 121.
23.	Jamieson, McKinney and Gertler, See Jamieson, "Vegetable Fats and Oils, New York, (1943), p. 37.
24.	Journel d'Agriculture Tropicale, May (1904), No. 35, p. 132.
25.	Journal d'Agriculture Tropicale, March (1912), No. 129, p. 67.

A er. Review of Propical Agriculture, March - April (1910) 26. No. 3 - 4, 1, 108. Selected Reportd from Scientific and Technical Pepts. Of Imperial Institute, Y, Oils, Fats and Wa ., p.578. 27 . Sim: "Forests and Forest Flora of the Colony of Cape of Good Rope", Henderson and Taylor (1906), p. 329. 28. Phillips: "The Genera of South African Plants" Cape Times Government Printers, (1926),p. 197. 29. Davy: "Flowering Plants and Ferns", Longman's Green and Co., London, (1932), p. 434. 30. 31. Johnson: B.P. 306,053 Brit. Chem. Abs. B. (1929), 314. 32. Jamieson, Wegetable Fats and Oils", New York (1943), p.378. Jamieson, "Vegetable Fats and Cils", New York (1943), p. 426. 33. 34. Bertran and Rutges, Roc. Trav. Chim. (1938), 57, 681. Hawke, Journ. of S. A. Chem. Inst., (1940), 23, 21. 35. Hilditch: "Industrial Fats and Waxes. Bailliere, Tindall and Cox, (1943), p. 65. 35. 37. McKinney and Rose, Ind. and Eng. Chem. (1944), 36, 138. Hilditch: "Chemical Constitution of Hatural Fate", Wiley 38. and Sons, (1)44), p. 377. Hilditch: "Chemical Constitution of Natural Fats", Wiley and Sons, (1944), p. 374. 39. Norris and Terry, Oil and Soap, (1945), 22, 41. 40. Hilditch: "Chemical Constitution of Natural Fate", Wiley 41. and Sons, (1344), p. 376. Longernecker, J. Soc. Chem. Ind. (1937), 56, 199T. 42. Hilditch: "Chemical Constitution of Natural Fats", Wiley and Sons, L1944), p. 374. 43. Morton, "Laboratary Technique in Organic Chemistry", MoGraw-Hill (1938), 44. Hilditch: "Chemical Constitution of Natural Fats", Wiley 45. and Sons (1944). Brin, Oi Fett. Ind., (1919), 1, 339, 364. 46. Allditch: "Chemical Constitution of Natural Fats", Wiley and Sons (1944), p. 20. 47. Riemensohneiler, Swift and Sands, 011 and Soap, (1940), 17, 145 - 148. 48.

.

-

.

200

. .

. h

. 12

. 1

13.2

2

1.7 2

.....

1000

1 3ks

anto.

200

2 .-

ALLES

286.50

Sec. and

1200

Bake .

1.1.1

1 State

10.05

Marsh R

49. Goss, See Bailey, "Industrial Oil and Fat Products". Intercolence Publishers (1945), p. 8.

/50....

- 92 -

- 93 -19 16 Walker and Lills, J. Soc. Chem. Ind. (1943), 62, 106 - 109. 50. S. A. Journal of Ind. (1922), 5, 516 - 518. 51. S. A. Journal of Ind. (1918), 1, 338. 52. Bailey, "Industrial Oil and Fat Products," Interscience 53. Publishers, (1945), pp. 245, 263. Hawke, private communication. 54. Jamieson, "Vegetable Fats and Oils", New York (1943) p. 376. 55. Jamieson, "Vegetable Fats and Oils", New York (1943) p. 379. 56. Jamieson, "Vegetable Fats and Oils", New York (1943) p. 378. 571 Cook, J. Amer. Chem. Soc. (1922), 44, 392. 58. nawke, Journ. of S. A. Chem. Inst. (1938), 21, 98. 59, Jamieson, "Vegetable Fats and Oils", New York (1943) p. 393. 60. Jamieson, "Vegetable Fate and Oils", New York (1943) p. 400. 61. -Hilditch, "Chemical Constitution of Natural Fate? Wiley 62. and Sons, (1944), p. 367. Carter and Lalkin, J. Chem. Soc. (1939), 1518. 63. 415 1.000 64. Efremov, Ann, Inst. Polytech. Oural, (1927), 6, 155. 100 65. Ferguson and Lutton, Chem. Rev. (1941), 29, 355. 66. Joglekar and Watson, Indian Inst. Sci. (1930), A13, 119. 67. Duffy, J. Cnem. Soc. (1853), 5, 197. 14 4-5 Clarkson and Malkin, J. Chem. Soc. (1934), 666. 68. 1.0 Hilditch, "Industrial Fats and Waxes", Bailliers, Tindall and Cox, (1943), p. 60. 69. 1. 1 Priest and von Likusoh, Ind. and Eng. Chem. (1940), 32, 1316 70. 2100 £1610 Jamieson, "Vegetable Fats and Oils", New York (1943), p. 380 71. 100 Bailey, "Industrial Oil and Fay Products". Interscience Publishers, (1945), p. 56. 72. · 34 du Nouy, Surface Equilibria of Biological and Organic Colloids, New York, Chem. Cat. Co. (1926), 212. 73. 150 du Nouy, J. Gen. Physiol. (1919), 1, 521. 74.

.

.

Mixture by volume of :-

-4

ik.

.

1.22

14

.

5

....

.

10

12.2

.

1

tin top "

TRANS LITTLE

XOF LOUTS

2445 4

220- 25

12. 12

60 parts ETHYL ALCOHOL 20 " PETROL 20 " BENZOL

Fuel Data

Carbo	a - 66.	9 %	
Rydro	gen- 12.	.2 🐔	
Oxygen	a - 20.	9 \$	
68,120) C.H.U.	per g	allon.
8,530	C.H.U.	per li	
degrees Centigr	ade -	. 799	
156 C.	H.U. Pe	r lb.	
abs. cgs. units	.01013	(101	57 1-20)
	10.0	0	
		20 C 83	50 C 142
rcent Distilled	10%	50% D	d point 73.5
	Hydrod Oxygen 68,120 6,530 degrees Centign 156 C. abs. cgs. units mperature P. in mm. of Hg	Rydrogen- 12. Oxygen - 20. 68,120 C.H.U. 6,530 C.H.U. degrees Centigrade - 158 C.H.U. Pe abs. cgs. units .01013 mperature 10 C P. in mm. of Hg 45 rcent Distilled 10%	8,530 C.H.U. per 14 degrees Centigrade799 156 C.H.U. Per 1b. abs. cgs. units .01013(1013 mperature 10 C 20 C P. in mm. of Hg 45 85 rcent Distilled 10% 50% M

8.30 A. 3.00 P.	M. Baro	neter-2 Z	4.733	ins He	Dry bulb	-49.1 F Wet 60.5 F "	bulb-45.0 51.9
	oximete l Lal tyre			s/ sq 1	ns- front	27, back 28	•
Av. speed mph.	i run	press.	tenD.	temp.	In.man.Ai vacuum te ins Hg	r Mil mp. F Begin B	.eages:- nd Diffxl
N 29.2 S 28.8 N 28.9 S 28.8 N 28.9 28.8	4-38.2 5-46.6 4-47.5 5-51.3 4-48.6 5-50.6	0.2	350 310 360 315 350 295	141 148 141 151 143 151	11.9 63 14.3 11.0 14.2 11.6 14.2	97.33 00 00.24 02 03.18 05	.55 23.1 .99 28.1 .52 23.2
Tyre	pressure	5- fron back	t 29 30				
N 38.0 S 38.0 N 37.9 S 38.2 N 37.9 S 38.0	3-21.6 4-29.4 3-23.5 4-31.2 3-27.4 4-29.4	6.2 0.9 4.4 0.8 5.5 0.7	485 440 430 450 465 470	142 152 142 149 144 149	10.2 65 13.6 11.2 13.3 11.3 13.8	15.1 17 18.14 20 21.16 24	.94 28.4 .28 21.4 .04 29.8 .47 21.8
Tyre	pressure	bac	nt 29 k 33	reduce	d to 29 " 29		
\$ 47.1	3-11.9	2.0 6.0 2.0 6.4 1.6	560	143 150 145 150 147 149 reduce	11.4 8.7 11.9 9.2 12.0		.05 25.2 .26 19.3 .72 25.5 .9 18.8
N 58.6 S 56.8 N 57.6 S 57.3 N 56.7 S 58.0 Tyre	1-45.6 2-17.5 1-45.7 2-18.8 1-43.5 2-17.1 pressure	9.3 3.2 9.0 3.5 9.7 2.9 5:- 1ro	640 610 635 600 630 600 nt 30	147 151 148 151 151 151	6.5 66 9.4 6.8 9.6 6.6 9.1	50.6 52 53.45 55 56.25 56	2.77 21.7 5.14 16.9 3.46 22.1 5.76 16.5
N 67.9 S 67.1 N 67.5 S 66.9 N 66.9 S 67.1	1-14.2 1-36 1-14.7 1-35.4 1-14.7 1-33.5	bac 13.0 4.7 11.5 5.2 11.8 4.8	x 32 710 670 720 670 730 660 70nt	153 156 154 153 152 154	2.3 64 5.2 1.8 4.9 1.6 5.0 63	70.8 71 73.48 71 76.49 7	.44 17.9
Tyre	pressure		ack	33			
Į	ccelerat	lon tes	ts				

TABLE 11 B.

.

APL-

. Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of Hg 25.0 V-pour Pressure of moisture in atmosphere (Average). Ins of Hg 0.2

25.01 0.284

	_		-		1	
Car Speed in m.p.L.		28.9	38.0	47.1	57.2	67.2
Wind Pressure, inches of water.	N S	4.1	3.4 0.8		9.3 3.2	12.1
Absolute Wind Velocity in direction of motion, m.p.h.		16,5	17.0	14.0	14.9	15.1
Mean Tyre Pressure, 1bs/sq in	18	28.5	30.2	30	30.2	31.5
Mean Air Temperature ^O Cent,		17.8	18.5	18.5	18.3	17.8
Miles per gallon	N S	27.9	21.5 28.5	18.8 25.4	18.8	14.0 17.7
Simple Mean M.P.G.		25,4	25.0	22.1	19.3	15.0
Inlet Manifold Pressure, inches of Hg absolute	n S	22.7	12.5	14.2	16.7 13.8	21.5 18.4
Average,		10.5	10.9	12.3	15.2	12.9
Exhaust Gas Temperature degrees Centigrade.	N S	392 348	490 477	800 878	636 612	696 660
(above atmospheric) Average.		370	495	539	824	678
Cooling Water Temperature at entrance to radiator,	n S	142 150	143 150	145 150	149 151	153 154
degrees Fahrenheit. Average (converted to Cent.)		63.3	63.6	64.2	65.5	67.5
Temperature Difference, water to air, Degrees Cent.			45.3	45.9	47.3	49.7
Acceleration Time (seconds)	N S	21.7 19.1		Ave	rage:-	20.3
Exhaust Gas Analysis 12.6	%C0		-	2 0.3	%C 0	
	2H2	(estimat	ted) SA	.1 1	Ng (by d	iff)

Remarks :- Starts sasily and idles well.

TABLE 11 C M.P.G. converted to Standard Basis.

Car Speed in m	.p.h.	281.9	38.0	47.1	87.2	67.8	
Reciprocal Mean of North & South		25.8	24.5	21.6	18.9	15.6	
	a) Wind	8.2	7.2	3.9	3.8	3.0	
S Correction for	b) Weight	-0.4	-0.3	-0.3	-0.2	-0.2	
	c) Barometer	-	-	-	-	-	
	d) Air Temp.	0.8	0.7	0.7	0.8	1.0	
	e) Tyre Press.	-0.8	-0.7	-9.4	-0.1	-0.1	
Total correc	st10n- %	8.4	6.9	3.9	4.3	3.7	
Corrected Miles		\$7.8	26.2	22.4	1%.7	18.2	

Table 11 D Volumetric	fficiency	& A11	/Fuel	Ratio
Ideal Air Juel Ratio				
Average Molecular Weight		57	,	
Mixture Density relative	to Air	1		
Speed in m.p.h.				

Speed in m.p.h.	28.9	38.0	47.1	57.2	67.2
Compression Temperature	382	372	348	328	306
" Pressure	10.05	10.45	12.0	13.75	17.4
Volumetric Efficiency	. 252	.268	1329	.400	2543
Ditto to std. Basis	. 232	.251	. 317	. 384	.524
Theoretical Air/Fuel Ratio	11.2	11.65	12.65	13.5	15.3
Air/Fuel ratio (exh. anal.)	-	-	12.6		
Weight of exhaust gas per gallon of fuel	97.5	101	109	116	130.5
			_		

Table 11 E Heat Balance

Speed in m.p.h.		28.9	38.0	47.1	57.2	67.2
Heat available from fuel	CHU/gal	68120 100	68120 100	€5120 100	68120 100	68120 100
Heat to tractive effort	CHU/gal	17300 25.4	20200 29.6	20950 30.7	21900 32.1	21250
Heat to exhaust (a) Sensible	OHU/gal	9260 13.6	12500 15.5	17150 25.2	19500 28.6	24100 35•3
(b) Latent	CHU/gal	4300 6.3	4450 6.5	4800 6.9	5100 7-5	3750 8.4
(c' Unburnt gases	CHU/gal	3	?	670 1.0	-	-
Heat to Cooling water	CHU/gal	55.7	30900 45.3	23500 34.4	18900	18350 26.9
Unaccounted for	%	(-1.0)	(-0.2)	1.8	4.1	-1.8

A Constant and a constant of an and a constant of a constant of an and and a constant of a constant

which is subscription of the

AND

Annual of annual

Allegiant on succession

A and the set

All and arrenged

WHERE STREET, STREET,

10

they still be really

PREL NO. 12.

Mixture by volume of :-

50 parts ETHY, ALCOHOL 20 " PETROL 50 " BENZOL

Puel Data

Composition by weight Carbon - 71.1 \$ Hydrogen- 11.7 \$ Oxygen - 17.2 % Higher Calorific Value 71,280 C.H.U per gallon 8,850 C.H.U. per 1b. Specific Gravity at 20 degrees Centigrade - .807 Latent Heat 145 C.H.U. per 1b. Kinematic Viscositvin abs, cgs. units .00914(1-.0141 T-20) Vapour pressure Temperature V.P. in mm. of Hg 10 C 45 20 C 85 20 C 150 Distillation Percent distilled 10% Temperature 61 50% End point Temperature 66.5

ALLING AN INT

TANK INANT

which it have

MENTER'S AND ADDRESS OF

DATE OF BRIDE

tith of orne

Nale Casizus

LANDER FRI THE

reader to diam

E Mr. Mart

Mailell and Distantia

0.015

division (a)

od-Jam

Puel No. 12 50% Alcohol-20% Petrol-30% Benzol 25th September A.M.

Table 124.

8.30 Barometer-24.733 ins Hg dry bulb-49.1 W Wet balb-45.0 P 3.00 P.M. "24.601 " " 60.5 F " 51.9 P

Approx. load 380 lbs

Initial tyre pressure, 1bs/se ins- front 27, back 28.

Av. speed	run	Dress.	Lemp.	temp.	r In.mar vacuum	h.Air		Milea	CS:-	
mph.	min.sec.	insH20	galvo	P	ins "g	P	Begin	prid	DILLXIO	-
N 29.5 S 28.9	4-54-I 5-41	3.5 0.4	360 300	140 146	12.3	56	02.49	04.9	24.1 27.4	
N 29.4	4-57.1	2.8	340	140	12.8		08.4	10.83	24.3	
S 29.3 N 29.3	539 4-58.1	0.5	295 350	145 141	14.2		11.34	14.1	27.6	
S 29.1	5-40	0.3	305	144	12.5		14.25	19.91	24.3	
Tyre j	pressures		ont 26 ck 26							
7 78.1	3-29.7	5.1	440	140	11.4	57	20.12	22.34	22.2	-
\$ 38.0	4-35	1.0	460	146	13.6		23.0	25.9	29.0	
N 38.3 S 38.0	3-36 4 4-33.4	4.0	46 0 440	141 144	11.7		28.16	28.46	23.0	
N 38.4	3-36.6	4.5	440	141	11.8		32.39		23.1	
\$ 38.3	4-31.5	0.9	450	144	13.8			38.27	28.9	
Tyre I	ressures	Bac	nt 27 k 26.		ped up t	27	-			
N 47.8	2-29.1	6.3	550	141	9.4	57	38.7	40.68	19.8	
3 47.5	3-11.8	1.8	(495)	144	12.2			44.17	25.3	
N 47.6 S 47.5	2-30.5	5.8	600 570	141 144	9.3		44.49 47.29		19.9 9 26.1	
N 47.7	2-33.2	6.8	600	143	9.5		50.13		20.3	
\$ 47.4	3-19.8	2.3	560	145	11.8			55.58	26.3	
	ressures		nt 27 k 28							
N	-	8.7	660	144		58	55.95		17.5	
S 57.6	2-24.9	2.8	620	147	9.8		58.72		23.2	
N 57.6	1-51.9	8.2	660 620	144 147	6.6 10.1		61.57		17.9 23.1	
S 57.1 N 57.2	2-25.5	3.8 9.5	660	146	5.9		67.26		17.7	
5 56.9	2-26.7	2.7	630	148	9.8		70.06		23.2	
	ressures	:- Fro	nt 28 k 29	••						
N 17.2	1-16.1	13.3	750	148		60	75.17	74.59	14.2	
5 67.9	1-43.5	4.2	660	154	6.4		75.8	77.75	19.5	
N 67.4	1-16.4	12.0	740	146	3.0		78.37	80.3	4.3 19.5	
S 67.5	1-44.1	5.3	680 770	151 150	6.4		84.48		13.9	
N 67.0 5 66.5	1-14.7 1-45.7	13.7	670	154	7.5		87.14		19.5	
Tyre p	ressures	:- Pro	nt 29							
		Bac	k 29							
Acce	leration	tests								_

Direction Accel. time 1	n seconds	N 21.9	S 18.0	N 22.4	S 18.4	
Accel. time 1	n seconds	6100	10.0			

NAME OF A DESCRIPTION OF

1.2.2

t at

NUMBER OF STREET, STORE

BULL SUPPLY

STREET, STREET

TABLE 13 B. Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of Hg 25.01 Vapour Pressure of moisture 0.284 in atmosphere (Average). Ins of Hg

.

an our

	_	+		+		
Car Speed in m.p.h.		29.2	38.2	47.6	57.5	67.2
Wind Pressure, inches of water.	n S	3.2	4.5	6.3 2.0	8.8	13.0
Absolute Wind Velocity in direction of motion, m.L.h.		14.0	13.7	18.3	14.6	15.8
Mean Tyre Pressure, 1bs/sq in	.8	26.8	26.4	27.5	28.1	29.9
Mean Air Temperature OCent.		13.5	15.9	14.4	15.0	13.6
Miles per gullon	n S	24.2 27.5	22.8 28.9	20.0 25.9	17.7 23.2	14.1 19.5
Simple Mean M. P.G.		85.8	25.6	22.9	20.4	16.8
Inlet Manifold Pressure, inches of Hg absolute	N S	10.6 9.0	11.6 9.3	13.8 11.4	16.5	21.1 16.7
Average,		9.8	10.4	12.6	14.9	15.9
Exhaust Gas Temperature legrees Centigrade. (above atmospheric) Average.	N S	390 346 368	478 680 479	602 570 586	652 523 637	715 665 690
Cooling Water Temperature t entrance to radiator, egrees Fahrenheit.	N S	140 145	141 145	142 144	145 147	148 155
Average (converted to Cent.) Temperature Difference, water to air. Degrees Cent.		61.4 48.1	61. 7 47.5	61.7 47.3	63.5 48.3	65.8 50.2
Acceleration Time (seconds)	N S	22.1 10.2		Ave	age ; -	20.1
Exhaust Gas Analysis 13.9	%C0	2 l. (estinai	1002	0,5	%CO 2 (by)	diff)

Remarks :-

TABLE 12 C M.P.G. converted to Standard Basis.

Car Speed in m.p.h.	29.2	38.2	47.6	57.3	67.2
Reciprocal Mean M.P.G. of North & South runs.	25.7	25.5	22.6	20.1	15.9
a) Wind	5.9	4.7	6.7	3.7	3.5
Correction for:- b) Weight	-	+		-	•
c) Barometer	-	-		-	
d) Air Temp.	3.3	2.4	2.3	2.2	2.1
e) Tyre Press.	0.5	0.9	0.5	0.5	0.5
Total correction- %	8.8	8.0	9.5	6.4	5.9
Corrected Miles per Gallon	28.0	27.5	24.8	21.4	17.9

THOUT MIL/IS	el Ratio			ir/Juel 11.5	
Average Molecular Weig		ht		60	
Mixture Dens			ir	1.04	
Speed in m.p.h.		29.2	35.2	47.6	57.3
Compression Tempe	rature	380	378	547	329
" Press	ura	9.55	10.0	11.8	13.5
Volumetric Effici	ency	.238	. 251	, 303	. 390
Ditto to std. Bas	18	.219	.232	292	. 366
Theoretical Air/F	uel Ratio	10.7	11.15	22.75	13.9
Air/Fuel ratio (e	xh. anal.)	-	-	12.3	-
Weight of exhaust gallon of fuel	gas per	94.2	98.0	111	120.3
Speed in m.p.h.		29.2	38.2	\$7.6	57.3
Speed in m.p.h. Heat available from fuel	CHU/gal	29.2 71280 100	38.2 71280 100	¥7.6 71280 100	57.3 71280 100
Heat available	-	71280	71280	71280	71280
Heat available from fuel Heat to	70	71280 100	71280 100 21250	71280 100 23200	71280
Heat available from fuel Heat to tractive effort Heat to exhaust	» CHU/gal	71280 100 17700 24.8	71280 100 21250 29.7 12300	71260 100 23200 32.5	71280 100 23800 33-3 20700
Heat available from fuel Heat to tractive effort Heat to exhaust (a) Sensible	% CHU/gal OHU/gal	71280 100 17700 24.8 3900 12.5 4080	71280 100 21250 29.7 12300 17.3	71280 100 23200 32.5 17400 24.4	71280 100 23800 33.3 20700 29.0
Heat available from fuel Heat to tractive effort Heat to exhaust (a) Sensible (b) Latent (c) Unburnt	> CHU/gal CHU/gal CHU/gal	71280 100 17700 24.8 3900 12.5 4080	71280 100 21250 29.7 12300 17.3 4250 6.0	71260 100 23200 32.5 17400 24.4 4800 6.7	71280 100 23800 33.3 20700 29.0 5220 7.3

Davismin Tarrill

A DESCRIPTION OF TAXABLE PARTY OF TAXABL

show at lovel in -----

sade's Just Witness of the state

APRILATE PARTY AND These LD' Testamolitik

Arth Loth Lines.

Lines of the sheeland

Interest the Delayer WINCOWSER STILL) ATHERNE

Stating Table? Seller? Ben of reposite 14

States (States of States

state of Allenders

Carlot And Avenue

21 2.200F

The local is made No. of Concession, Name

a second as a literative p

A Carton William Bar

-BERTENL

ADDRESS IN ADDRESS INTA ADDRESS IN ADDRESS INTA ADDRESS INTA ADDRESS IN ADDRESS INTA ADDRESS INTA ADDRESS INTA ADDRESS INTA ADDRESS INTA ADDRESS INTA ADDR

C ADDIE AND THE PARTY OF

FUEL No. 13.

Mixture by volume of :-

Higher Calorific Value

40 parts ETHYL ALCOHOL 20 PETROL 40 BENZUL

Muel Data

Composition by weight

Carbon - 75.2 % Hydrogen- 11.2 \$ Oxygen - 13.8 % 74,440 C.H.U. per gallon 9,130 C.H.U. per 1b.

Specific Gravity at 20 degrees Centigrade - .815 Latent Heat 134 C.H.W. per 1b. Kinematic Viscosityin abs, cgs. units .00837(1-.0137 T-20) Vapour Pressure Temperature 10 C V.P. 1n mm. of Hg 49 30 C 160 20 C 88

Distillation

and a market

Percent Listilled 10% Temperature 60

50% End point 64.5 116

Puel No.13. 40% Alcohol-20% Petrol-40% Benzol

Taole 13A.

Barometer 24.745 ins Hg Dry bulb-56.8 st bulb-52.6 F 8.30. A.M. 3.00 P.M. Approx load 380 lbs Initial tyre pressures, 1bs/sq in- front 27, back 28. Av. Time of Tind Exh. Water In. man.Air Mleages:-speed run pr 3. temp. temp. vacuum temp. mph. min.sec.insH2O galvo F ins Hr P Begin End Diffx10 speed 28.8 5-15.8 $1.5 \\ 1.3$ 295 295 13.4 13.7 13.3 26.88 29.4 140 50 25 2 S 29.0 N 29.1 29.85 32.18 32.72 35.3 141 28.3 5-18.9 305 300 300 1.5 141 141 25.8 S 29.0 5-28.5 26.5 13.6 35,56 38.21 N 29.2 S 29.2 5-19.3 5-29.9 1.4 38.42 41.61 41.3 43.97 142 13.7 290 142 26.7 13.8 Tyre pressures:-Front 28 Back 27 63.5 44.21 46.77 47.17 49.91 50.13 52.75 N 38.5 2.3 2-59.4 400 25.6 148 13.1 S 37.8 4-20.6 380 143 12.9 4-5.4 4-17.9 4-6.9 N 38.4 38.5 2.4 410 145 26.2 13.0 53.15 59.9 2.1 410 145 12.9 27.5 h 37.9 26.0 2.2 410 146 13.1 56.09 58.69 S 38.2 4-23.7 2.4 400 59.01 61.8 27.9 146 13.1 Tyre pressures:-Front 2 Back 28 N 47.0 S 47.0 N 46.9 3.5 3.4 3.3 3.7 11.7 11.4 11.7 62.06 84.33 65.04 67.47 67.84 72.24 2-58.5 3-6.3 560 23.3 148 65 147 570 24.0 0 3-4.1 565 149 570 575 70.67 73.15 73.52 75.9 S 47.2 E 47.0 3-9.2 148 151 11.5 24.8 3.2 23 .-11.4 -2.1 76.38 78.51 (2133) 565 149 11.6 S C Sample I. Tyre pressures:-Front 28 29.5 Back 82.11 84.28 84.95 87.08 21.7 N 57.0 S 56.9 2-12.9 2-17.3 5.1 625 152 9.6 68 5.6 151 152 9.8 620 625 21.3 N 57.3 2-13.8 5.1 21.8 21.4 22.1 87.78 89.96 90.58 92.72 152 S 57.0 N 57.4 S 57.6 2-17.8 2-14.3 2-17.6 630 6.2 9.3 630 630 5.6 152 9.0 9.2 95.61 153 93.4 Tyre pressures:-Front 29 31 Back 720 5.7 68 96.45 93.28 18.3 158 7.6 N 67.1 1-38.2 158 156 158 99.18 01.0 5.4 18.2 700 \$ 67.4 1-37.3 18.0 17.7 18.7 02.07 03.87 1-37 1-35.2 7.0 700 5.6 li 66.9 04.8. 06.62 595 700 700 5.5 S 66.9 158 158 N 67.6 7.6 1-39.5 10.47 12.26 5.2 17.9 9.2 S 67.1 1-36 29.5 Tron: Tyre pressures:-Back Acceleration 1-sts Direction 18.9 20.5 18.9 20.7 Accel. time in seconds

A DETRICTATION

ARTICLE

TABLE 13 B. Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of Hg 25.05 Vapour Pressure of moisture in atmosphere (Average). Ins of Hg 0.519

		+	+	i	.	
Ca :peed in m.p.h.	29.0	38.2	47.0	57.2	87.2	
Wind Pressure, N inches of vater. S	1.5	2.3	3.3 3.6	5.3 5.8	7.4	
Absolute Wind Velocity in direction of motion, m.p.h.	1.0	0.5	0.9	1.2	2.2	
Nean Tyre Pressure, 1bs/sq inn	27	27	28.1	29.4	30.4	
Mean Air Temperature OCent.	16.1	17.8	18.9	20.0	20.0	
Miles per gallon N S	25.6 26.5	25.9 27.6	23.7 24.0	21.2 21.9	18.3 17.9	
Simple Mean M.P.G.	26.0	26.7	23.8	21.5	18.1	
Inlet Manifold Pressure, M inches of Hg absolute S	9.6	10.0 30.1	11.6	13.8 13.8	18.1 18.0	1
Average,	8.0	10.0	11.6	13.8	18.0	14
Exhaust Gas Temperature N degrees Centigrade. S (sbove atmospheric)	340 355	443 438	580 582	625 625	687 680	
Average.	359	440	581	625	683	
Cooling Water Temperature N at entrance to radiator, S degrees Fahrenheit,	141 141	145 145	143 148	152 152	157 158	
Average (converted to Cent.) Temperature Diffei nce,	60.6	52.0	64.7	66.7	69.7	
water to air, Degrees Cent,	44.5	45.0	45.8	46.7	49.7	
Acceleration Time (seconds) N S	18.9 20.7		Ave	rage; -	19.7	
Exhaust Gas Analysis 14.9 %C	0 ₂ 1. 2 (ostima		2 0.1 33.9 7	73CO (by с	i(ff)	

Remarks:-

Car Speed in m.p.h.	29.0	38.2	47.0	57.2	67.2	
Reciprocal Mean M.P.G. of North & South runs.	26.0	26.7	23.8	8 21.5 18.1		
a) Wind			-	-		
S Correction for:- b) Weight		-	-	-	-	
c) Barometer	0.1	0.1	0.1	0.1	0.1	
d) Air Temp.	1.3	0.9	0.5	-	-	
e) Tyre Press.	0.5	0.7	0.3	0.2	0.1	
Total correction- %	1,9	1,7	0.8	0.3	0.2	
Corrected Miles per Gallon	26.5	27.1	24.0	21.7	18.1	

RT.R TH G M.P.G. converted to Standard Basis

A Longer

·

.

.

ingtal .a.t .a.t

M. real means

No WART TAXABLE

- 1

Andreas and a second and a seco

W.Y.M. casts alapse

Lates of Do sawolor.

ABATTAL.

HERE TO AN TRANSPORT

Aladienta's entended Aladienta's encoded destangent) e-opera destangent e-ope

WEARS THE PARTY OF

LAND TOWN

2. 61. 6200.0

fund all brook we

of and last disc.

within making and the

Table 13 D Volumetric Difficiency & Air/Fuel Ratio Ideal Air/Fuel Ratio 11.9 Average Molecular Weight 63.5 Mixture Density relative to Air 1. 142 Speed in m.p.h. 29.0 38.2 47.0 57.2 67.2 Compression Temperature 410 401 374 351 326 9 9 Pressure 9.3 9.6 10.85 12.5 15.75 Volumetric Efficiency .215 . 228 .276 .460 . 339 Ditto to std. Easis .212 . 224 . 274 .338 .459 Theoretical Air/Fuel Ratio 9.6 10.45 11.4 12.85 14.7 Air/Fusl ratio (exh. anal.) -12.5 --Weight of exhaust gas per gallon of fuel 86.2 93.3 101 113 128 Table E Heat Balance

Speed in m.p.h.		29.0	38.2	47.0	57.2	67.2
Heat available from fuel	CHU/gal	74440	74440	74440	74月40	74440
Heat to tractive effort	CHU/gal	16750	20900 28.1	22450 30.1	24200 32.4	23700
Heat to exhaust (a) Sensible	CHU/gal	7450	10700 14.4	15670 21.0	19000	23800
(b) Latent	CHU/gal	3570 4.1	3820 5.1	4140 5.6	;640 6.2	5250 7.1
(c) Unburnt gases	CHU/gal	2	7	210 0.3		-
Heat to Cooling water	CHU/gal	35800	31650	25100	20500	16300
Unaccounted for	%	(14.5)	(9.5)	9.2	8.2	7.1

Arristic and and and

Mixture by volume of :-

30 parts ETHYL AL/SOROL 20 " PETROL 50 " BENKOL

Fuel Date

2: position by reight

Higher Calorific Value

2

WARM DAVELOUD

and all the Alterna

THE ATTACK

ALC: NO. TAK

Carbon - 73.4 % Hydrogen- 10.6 % Oxygen - 10.0 % 77,600 C.H.U. per galien. 9,430 C.H.V. per 1b.

Specific Gravity at 20 degrees Centigrade - .824InterferenceInterferenceKinematic ViscosityIn abs. cgs. units.00748(1-.0111 T-70)Vapour PressureTemperatureV.P. in mm. of Hg55U.2

<u>Distillation</u>

Percant Distilled 10% Temperature 57

50% End point 62 90 PUBL No. 14

F ... 1

Wixture by volume of :-

1.00 - KA - 19.000

S MALICOLD

L'officer Daughter

WIGH TO JOIN

Same Mar - 2100

STATISTICS, NA. AATO

30 perts FTHYL ALCOHOL 20 " PETROL 50 " BENZOL

Puel Data

Composition by weight

Higher Calorific Value

Carbon - 79.4 % Hydrogen- 10.6 % Oxygen - 10.0 % 77,600 C.H.U. par gallon. 9,430 C.H.U. par 1b.

Specific Dravity at 20 degrees Centigrade - .824Latent Heat123 C.H.U. per 1b.Kinematic Viscosity in abs. cgs. units .00748(1-.0111 T-20)Vapour Pressure10 C 20 C 30 CVapour Pressure10 C 20 C 30 CY.P. in mm. of Hg 55 102 178

<u>Distillation</u>

Percent Distilled 10% 500 Temperature 57 62

50° End point 62 90

8. 20 . 3.00	A.M. BI	arometer.	24.761	ins H	le dry	bulb	-60.1 74.0	F Met t	ulb-56. " 60.	39
Ap	prox. los	ad 340 1	.bs							
In	itial typ	re p ress i	ires, 1	bs/80	1ns-fr	ont 2	8, bac	k 28.		
Av spe mp		Dreac	Exh. temp. galvo	Maier temp.	In.ma vacuum ins H	n tem	0.7 Begi	Mileag n End	es:-	5
N 28.1 S 29.9 N 28.3 S 29.4	5-21. 5-8.7 5-24.	3 0.5 2.0 5 1.0	280 275	157 149 152	13.3 13.9 12.4 13.7	75.	75.4 78.3 81.1	7' 87 2 80.9 1 83.59 86.65	24.7 25.8 24.8	
	5-24. pressur	6 0.7 es:- Fr	280 260 260 28 28 28 28	154 155	13.2		86.8	2 89.32 92.31	25.0	
N 37.9 S 38.2 N 37.9	4-23.4 3-57.1 4-27.1 3-55.1 4-31.4	4 1.6 5 3.5 8 1.5 5 4.0 4 1.5	440 410 440 408 460 430	154 158 155 158 137 160	12.9 12.1 12.4 13.2 12.5 13.4		95.48 98.59 01.56 04.71	95.02 98.28 01.05 04.4 07.19 10.55	28.2 24.6 28.4 24.8	
N 45.2	pressure 2-43	Bac	ont 29 k 29							
S 47.9 N 47.3	3-8.1 2-49.8 3-8.7	2.5 4.9 2.7	570 550 580 570 585 570	157 163 160 162 162 163	10.3 12.2 10.7 11.9 10.9	77.5	13.93 16.78 15.57 22.45	12.25 16.43 19.01 22.0 24.69	25.0 22.3 0 24.9 0 22.4	
Tyre	pressure	s:- Pro Bac	nt 29	the second se	12.0 ample	1.	20.02	27.78	24.8	
S 56.5 N 57.1 S 57.0 N 56.3 S 55.3	2-7.7 2-29 2-9.4 2-25.3 2-11.6 2-24.9	7.8 4.5 7.0 4.6 7.6 4.9	620 620 640 640 650 625	165 165 166 166 168 168	E.O 9.8 8.7 9.7 9.0 9.9	79.5	31.04 33.67 36.7 39.55	30.27 37.38 35.92 39.0 41.61 44.66	20.3 23.4 20.5 23.0 20.6 23.1	
Tyre 66.5	pressure	Bac	nt 3° .: K 31.:	5						
67.5 66.5 66.8 67.6 66.5	1-32.8 1-45.6 1-35.4 1-51 1-32.7 1-47.1		720 700 725 690 725 725 710	170 170 168 169 170 173	5.5 6.2 5.5 7.2 5.2 6	82	48.1 51.05 53.74 56.68 59.45	50.08 52.81 55.8 58.42	17.1 19.8 17.6 20.6 17.4 19.8	
	pressure		it 31					-		
Ac	celeratio	on tests								
	rection cel. time			N 20.2	S 19.8	N 20.5	S 19.7	N 20.5		

.

18

F

A DE WHITH ALL

ALES A STATE

Depende

я

TABLE 14 B.

.

5761 All 1

B. Summarised Results of Table A.

22

Nean Barometric Pressure corrected for altitude. Ins of Hg 25.05 Vapour Pressure of moisture in atmosphere (Average). Ins of Hg 0.41

Car Speed in m.p.h.	_	28.9	38.1	47.7	56.9	66.9	
Wind Pressure, inches of water.	n S	2.2	5.8 1.5	5.4	7.5	10.3	
Absolute Wind Velocity in direction of motion, m.p.h.		7.0	8.7	7.3	6.4	6.0	
Mean Tyre Pressure, 1bs/sq 1	Mean Tyre Pressure, 1bs/sq ins		28.8	29.0	30	31.2	-
Mean Air Temperature OCent.		24.4	25.0	25.8	25.8	26.1	
Miles per gallon	N S	24.8 26.1	24.6 29.5	22.1 24.8	20.5 23.2	17.4 20.1	
Simple Mean M.P.G.		25.4	26.5	23.4	21.8	3.8.7	
Inlet Manifold Pressure, inches of Hg absolute	N S	9.9 9.3	10.6 9.9	12.4 11.2	14.7 13.5	18.0 16.7	
Average,		9.6	10.2	11.8	14.1	17.3	
Exhaust Gas Temperature degrees Sentigrade. (above atmospheric)	n S	327 313	477 450	590 577	648 627	696 682	
Average,		320	465	583	638	689	
Cooling Water Temperature at entrance to radiator, degrees Fahrenheit.	n S	151 155	157 159	160 165	166 166	169 171	
Average (converted to Cent.) Temperature Difference,		67.2	69.4	72.0	74.4	76.7	
water to air. Degrees Cent.		42.8	44.4	46.2	48,6	50.5	
Acceleration Time (seconds)	n S	20.4 19.8		Aver	ago:- 1	29.1	
Exhaust Gas Analysis 15.5	%C0	o 2.1		93.1 %	%CO	iff)	

Remarks :-

TABLE 14 C M.F.G. converted to Standard Basis.

Car Speed in m	.p.h.	28.9	38.1	47.7	56.9	66.9
Reciprocal Mea of North & Sout		25.4	27.3	23.4	21.8	18.6
4	a) Wind	1.4	1.9	1.1	0.7	0.5
Correction for:	b) Weight	-0,,4	-0.3	-0.3	-0.2	-0.2
	c) Barcmoter	0.1	0.1	0.1	0.1	0.1
	d) Air Temp.	-1.5	-1.9	-2.4	-2.7	-2.8
	e) Tyre Press.	-0.1	-0.1	-	-	-0.1
Total correction- %		-0.5	-0.3	-0.9	-2.1	-2.5
Corrected Miles per Gallon		25.3	27.2	23.2	21.4	18.1

Lucal Alr/F	lel Ratio			Air/Fuel		
Average Mole				12.4		
				67.5		
Mixture Dens	sity relati	ve to A	ir	1.044		
Speed in m.p.h.		28.9	38.1	\$7.7	56.9	
Compression Temps	rature	423	409	352	767	
" " Press	ure	9.4	9.8	11.0	357	
Volumetric Effici	ency	.212	.229	.275	. 342	
Ditto to std. Bas	.213	.230	.277	. 349		
Theoretical Air/F	uel Ratio	9.1	10.7	1105	12.9	
Air/Fuel ratio (e	xh. anal.)		-	13.0	-	
Weight of exhaust gallon of fuel	gas per	83	96.3	99	114.5	2
Table 14 E	Heat Bal	lance	-	1		
Speed in m.p.h.					56.9	T
		28.9	38.1	47.7	120.9	l
Heat available from fuel	CHU/gal	77600 100	77600 100	77600 100	77600	7
from fuel Heat to		77600	77600	77600	77600	1
	% CHU/gal	77600	77600	77600 100 21700	77600 100 23800	
from fuel Heat to tractive effort Heat to exhaust	% CHU/gal %	77600 100 16000 20.6	77600 100 21000 27.1	77600 100 21700 28.0	77600 100 23800 30.7	
from fuel Heat to tractive effort Heat to exhaust (a) Sensible	CHU/gal	77600 100 16000 20.6 6750 8.7 3080	77600 100 21000 27.1 11700 15.1 3540	77600 100 21700 28.0 15400 19.9 3630	77600 100 23800 30.7 19900 25 3	1
from fuel Heat to tractive effort Heat to exhaust (a) Sensible (b) Latent (c) Unburnt	CHU/gal	77600 100 16000 20.6 6750 8.7 3080	77600 100 21000 27.1 11700 15.1 3540 4.6	77600 100 21700 28.0 15400 19.9 3630 4.7	77600 100 23800 30.7 19900 25 3	

A second second

States of langt an

Wallay Try salls

ADDA DO DATE STORE

and a first and a second

argAtive.

Lines South and Sugers

Antipation in a second fragment antipation of the second second

Aleriani, and boaid

- Contradie

5.17 A.M.T.

distant and values of

All post increased

writes on the second do

ALL DESCRIPTION OF THE OWNER.

. . 1

Mixture by volume oft-

20 parts ETHYL ALCOHOL 20 " PETROL 60 " BENZOL

Fuel Data

Composition by weight Carbon - 83.1 \$ Hydrogen- 10.2 \$ Oxygen - 6.7 % Higher Calorific Value 80,760 C.H.U. per gallon. 9,710 C.H.U. per 1b. Specific Gravity at 20 degrees Centigrade - .882 Latent Heat 115 C.H.U. per 1b. Kinematic Viscosity in abs. cgs. units .00705(1-.0126 T-20) Vapour Pressure Temperature 10 V.P. in mm. of Hg 59 20 0 30 C 105 185 10 0 105

Distillation

Disks Could and

al allow his manifest

all a loss of a loss of

ALTRACI OT & PASS

100,010 CTL24802

ALD ANYO IAL

Percent distilled 10% 50% End point Temperature 55 59 67 Fuel No.15 20% Alcohol-20% Petrol-60% Benzol

Table 154

		x load								
		al tyre	ht appm.	e,105/	sq ins-	- front	28,	back 29		
	Av. speed mph.	Time of run min.sec.	Dress	tomp	Water temp. F	In.man vacuum ins Hg	rem	p. Begin		
	28.7	5-39.5	1.2	350	148	13.5				DITIX
	28.8	5-46.9	1.4	300	145	13.0	13	15.62	15.05	27.0
S	28.7	5-52.5	2.1	210 310	140 146	14 13.0		18.81	21.62	28.1
	28.7	5-51.4	0.6	270	148	14		24.9	24.66	27.8
	28.8	5-50.1		300 ront 30	145	17.0			27.93	
			Ba	ack 31						
S	37.9	4-11.8	1.9 2.9	5 50 350	154 154	12.5	79	51.0	33.65	
N	37.7	4-10.3	1.8	350	153	13.0		34.0	36.65	26.5
	37.2	4-12.8	3.5	360	151	12.5		39.84	42.45	26.1
S	37.7	4-16	2.5	350 350	159 155	13.0		42.8		26.2
	Tyre p	ressures	:- PT	ont 31 ck 31				45.7	46.38	26.8
	47.8	2-43.4	3.2	520	163	11.0	79	41.72	50.89	(21.7
SA	47.1	3-4.6			157	11.2		51.69	54.1	24.1
	46.7	3-10.2	4.0	560 570	159 156	11.0		54.48	56.83 59.83	
N 4	16.7	3-4.8	3.6	550	161	11.0		60.3 6		24.7
	17.2	3-11.5 ressures	3.6	530	158	11.5		63.15	65.60	25.1
-		6380,63	Ba	ck 32	,5					
N S F	-	2-5.9		610 610	168 160	7.0	84	66.06 69.1	67.75	
N 5	57.4	2-21.9		630	166	10.:		71.81	71.03	19.3 22.6
	6.5	2-14.7	7.2	660	164	8.0		74.65	76.78	21.3
85	7.0	2-21.3	4.0	630 640	162 165	9.5		77.43		22.2
		essures:	- Pre	ont 31	100			00000		~1.0
8.0	7.0	1-39.5	8.4	<u>ck 32</u> 690	169	6.0	79	85.5	85.15	18.5
S B	7.0	1-43.8	8.3	700	167	5.0		86.12	88.05	19.3
	6.7	1-40.4	7.0	690	170	7.0		88.85		18.6
		1-39.9 1-40.1	7.7	710 700	169 169	5.0			93.56	18.6
		1-36.8	9.5	700	171	5.5		97.28		18.0

and a state of the

Cinter 10

mu

20.20

AS (LTUIN

TABLE 10 B. Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of Hg 25.25 Vapour Pressure of moisture in stmosphere (Average). Ins of Hg 0.247

		4	-				
Car Speed in m.p.h.		28.7	37.7	47.1	57.0	65.2	
Wind Pressure, inches of water.	N S	6.8 1.6	2.1		4.4	7.9	
Absolute Wind Velocity in direction of motion, m.p.h.		4.1	4.0	0.6	8.1	1.3	-
Mean Tyre Pressure, Ibs/sq in	8	29.5	30.7	31.7	31.9	32.5	
Mean Air Temperature Cent.		26.1	26.1	27.2	26.1	25.6	
Miles per gallon	N S	28.0	26.3		22.4	18.6	
Simple Mean M.P.G.		27.9	26.4	84.3	21.9	18.5	
Inlet Manifold Pressure, inches of Hg absolute	N S	9.8 10.4	10.8		13.5	17.5	
Average,		16.0	16.3	12.4	14.2	18.0	
Exhaust Cas Temperature degrees Centigrade. (above atmospheric)	N S	330 350	398 398	560 552	630 8 43	675 685	
Average.		340	396	556	636	680	
Cooling Water Temperature at entrance to radiator, degrees Fahrenheit.	N S	149 145	152 13 3	150 157	165 164	169 169	
Average (converted to Cent.) Temperature Difference,		83.9	67.0	70.3	73.6	76.1	
water to air. Degrees Cent.		37.8	40.9	43.1	47.5	50.5	
Acceleration Time (seconds)	N S	21.4		Av er	age:-	28.0	
Exhaust Gas Analysis 15.4 0.1	%C0	2 0.2 (estimat	4		SCO	iff)	

Remarks :-

8

......

24

1.16-1

-01-1

.

TABLE 15 C M.P.G. converted to Standard * sis.

Car Speed in m.	.p.h.	28.7	37.7	47.1	87.0	66.9
Reciprocal Mean of North & South		27.9	26.4	24.3	21.9	15.6
	a) Wind	0.5	0.4	•	0.5	
Correction for	b) Weight	1.3	1.3	1.1	0,4	0.7
c) Barometer		0.3	0.0	0.5	0.7	0.8
	d) Air Temp.	-2.1	-2.3	-3.0	-2.6	-2.5
	e) Tyre Press.	-0.8	-1.0	-1.0	-0.6	-0.4
Total correction- %		-0.3	-1.2		-1.1	-1.5
Corrected Miles	per Gallon	27.7	28.1	-3.8	21.7	18.5

	1
	Table 15
	Ideal Ain
	Average i
August 12 Sound and	Mixture I
	Spe * in m.p.r
	opo an meper
States in succession of	Compression Te
the type systems and	π ü Pr
stative its resident	Volumetric Eff
Ardina use each)	Ditto to std.
-College annual services	Theoretical Ai
THE THE STATE	Air/Fuel ratio
alkiness in pressure	Weight of each
Coldina Coldina	galion of fuel
-abergadest sompti-	Table E
TANKAGO.	Speed in m.p.h
saller or emprise	
# Barysrpool, Baron	Heat available from fuel
A ANT ANT ANT AND AND A	Heat to tractive effort
Unities and tends	Heat to exhaust (a) Sensible
A REAL PROPERTY	(b) Latent
Statut at Amore th	(o) Inburnt gases
	Heat to Cooling water
-	Unaccounted for
1	
STREET LINE	

Table D	Volumetri	Le Effici	1000m 2. 4	A 15	Pa 4 1	
Ideal Air/Fu	el Ratio		LOHCY & A	ir/ruel .	Hatlo	
Average Mole		ht		12.8		
Mixture Dens				71.5		
and and the second s				1.046		-
pe ' in m.p.h.		28,7	37.7	47.1	53.0	
ompression Tempe	rature		1 21.01	-1.1	57.0	66.9
a o Press		420	414	381	361	338
olumetric Effici		9.75	9.9	11.6	12.85	15.8
itto to std. Bas.		1.202	.229	.291	. 340	.447
heoretical Air/F	uel Ratio	.223	.232	.298	- 343	.454
ir/Fuel ratio (e:		10.4	10.25	12.1	12.7	14.3
Light of enhaust	-	-	12.7	-	-	
alion of fuel		95	93.5	109	114.3	127.5
able E	Heat Ba	lancerre				- 461.3-
15						
pead in m.p.h.		28.7	37.7	47.1	57.0	66.9
oat available com fuel	CHU/gal	80760 100	50760 100	80760	80760	10760
at to active effort	CHU/gal	17500	20150 25.0	22250 27.6	24100 29.9	24000
at to exhaust) Sensible	CHU/gal	8250 10.2	9550 11.8	16100 20.0	19650 24.4	23600
) Latent	CHU/gal	3500	3440	4010 5.0	4210 5.2	4700 5.2
) Juburnt gases	CHU/gal	7	7	1360	-	-
at to oling water	CHU/gal	31000 38.4	27200	23200 28.7	20900	16800
accounted for	%	(25.4)	(25.1)	17.0	14.6	14.4

maxie.

FUEL No. 16.

Mixture by volume of :-

10	parts	ETHYL ALCOHOL
50	81	PETROL
70	11	BENZOL

Fuel Data

Composition by weight

ALTER OF LANCING

Saver & Arte

NECESSARY (*)

JOHPOBLUICH DY HUIKAT	Carbon - 87.0 \$	
	Hydrogen- 9.7 5	
	Oxygen - 3.3 \$	
Hirter Calorific Value	85,920 C.H.U. per gallon	
	10,000 C.H.U. per 1b.	
Specific Gravity at 20 degree	ees Centigrade829	
Latent Heat	102 C.H.U. per 10.	
Kinamatic Vitaosity in abs,	ogs. units .00663(10115 (-20)	
<u>Vapour Pressure</u> Temperat V.P. 1n	ture 10 2 20 C 30 C bf Hg 56 100 170	
Distillation		

186: 1186100

Percent distilled 10% 50% and point Temperature 60 75 101 Fuel No.16 10% Alcohol-20% Petrol-70% Benzol

Table 154.

8.30 A.M. 3.00 P.M.	Bay ometer-24.936 " 24.868	1347	Be	Dry	bulb-57.1	PP	Tet	bull	-43.2	
					14.0	100			01.0	10

Approx. load 460 1.bs

minist tyre pressure, 1bs/sq ins- front 28, back 29.

moh.	1 1411	ind press.		LEFALZARA A	Vacuum	tam	Mileages:-			
	min.sec.	inska	galvo	P	ins Hg	A	Begin	End	DITIXI	Ō
S 29.1	5-47	16	200	370			Choke			
N 28.9	5-58.5	1.6	320	138	13.0	60		95.63		
5 28.8	5-52.6	1.3	325	139	13.2			98.54		
1 28.7	40	1.5	300	137	13.1			01.65		
5 28.8	5-54	1.6	330	139 137	13.5			04.59		
	pressure	5:- F1	ont 2	3	13.0		04.80	07.68	28.3	
38.0	4 10 7		ick 30							
5 37.3	4-10.3		390	143	12.9	155		10.43		
137.9	4-8	2.1	395	141	12.5		10.85	13.55	27.0	
5 37.7		2.4	390 38 5	143	13.2			16.40		
37.7	4-10.5	2.1	390	142 143	12.6		16.8	19.5	27.0	
5 37.9	4-20.6	2.3	380	141	12.6			25.47	25.2	
Tyre	pressures	5:- PT			16.0		LL. IL	GU . 21	27.5	
		Ba	ick 3]					-		
\$7.6	3-4.5	3.3			11.0	0.	25.79		24.1	
5 43.9	3-12	1.0		144	10.8		28.7	31.2	25.0	1
47.2	3-5.2	3.2	490	147	11.4		31.65	34.08	24.3	
47.2	3-11.6	3.9	530	145	10.5		34.59	37.1	25.1	
48.8	3-3.2	3.3		147 146	11.2		40.51		23.8	
47.5	3-12.5 ressures	4.2	540 nt 29	140	Sampl	e 1.	10.01	10.00	6008	
		Bac	k 31.	5						
		5.7	680	151	9.8	00	40.48		21.7 21.7	
56.5	2-18.5	6.5	670	150	9.0		49.3	51.48	21.8	
56.9	2-18	5.5	670	151	9.8		52.2	54.45	22.5	
57.3	2-21.5	6.9	670	1:0	9.3 10.0		55.15		21.8	
56.7	2-18.4	5.7	670 870	151	8.8		58.1		22.0	
58.5	2-20.4 ressures	6.0	nt 30	1.0	0.0			00.0		-
		Bac	k 32				-	87 51		
66.9	1-39.1	8.5	7.5	156	5.0	57	61.25		18.4	
66.3	1-42.4	8.6	760	157	4.0		84.13 87.05		19.0	
66,8	1-42.5	7.8	770	158	5.0		69.93	71.85	19.0 19.2	
66.5	1-44	7.8	750	158	4.5		72.85		19.3	
67.9	1-42.2	8.6	750	160	5.0	AG	75.86		19.2	
	ressures	8.6	730 nt 31	159	0.0	00	70.00	11.0		
the b	ressires	Bac								
Acceler	ation te	sts								
Directi	07			2 21.	2 21.8	5	1 22.	-	5	

BREAK

Allowers.

72 7

SCIEN.

13.7 52.3 NL-3 00.5 and bread . mortage ATL ATES LASTIN 4 77 71 5277 The state 0.00-0 100 . . 22-2 -1-. 3.0-2 . .11-. letter . . 1.71-2 A Line I a lamb 28-

in atmosphere (Average). Ins of Hg 0.225 Car Speed in m.p.h. 28.9 37.8 47.1 56.8 Wind Pressure, N 1.4 2.0 3.3 inches of water. 5.6 S 2.3 4.0 6.2 Absolute Wind Velocity in direction of motion, m.p.h. 0.6 1.1 2.0 1.3 Mean Tyre Pressure, 1bs/sq ins 28.7 29.5 29.6 30.6 Mean Air Temperature Cent. 18.7 17.8 18.3 18.9 Miles per gallon N 27.1 26.2 24.1 21.8 S 28.2 27.2 25.2 22.1 Simple Mean M.P.G. 27.6 26.7 24.5 21.9 Inlet Manifold Pressure, N 10.5 10.4 12.2 13.6 inches of Hg absolute S 9.8 10.7 12.7 14.4 AVOTAR". 10.0 10.5 12.4 14.0 Exhaust Gas Temperature N 355 548 158 532 450 717 Jegrees Centigrade. S 367 427 660 710 (above atmospheric) Average. 361 428 553 661 715 Cooling Water Temperature N 139 145 147 151 158 at entrance to radiator, 3 137 141 145 0.50 158 degrees Fahrenheit. Average (converted to Cent.) 58.9 61.1 63.3 63.8 70 Temperature Difference, water to air. Degrees Cent. 42.2 43.3 45.0 46.9 50.6 Acceleration Time (seconds) N 22.0 22.0 3 Average:-22.0 1.1 500 Extaust Gas Analysis 20g 13.9 %002 1.8 0.2 (Ha (estimated) 63.0 N2 (by diff) Romarks :-It is possible that some air was left in the exh. gas sampling tube. M.P.G. converted to Standard Basis. TABLE 16 C 28.9 37.8 47.1 56.8 67.0 Car Speed in m.p.h. 27.6 26.7 24.6 21.9 19.0 b --.... 0.9 0.8 0.6 1.2 ght 0.4 0.5 0.6 c) Barometer 0.5 0.7 0.9 0.5 d) Air Temp. 1.1 e) Tyre Press. -0.2 -0.2 -0.4 -0.4 -0.1 2.2 1.8 1.8 1.5 Total correction- %

Summarised Results of Table A.

5.0

2.5

0

31.5

19.4

18.9

19.1

19.0

18.6

19.1

18.8

-

0.5

0.7

0.2

1.3

19.5

25.0

27.2

28.2

22.2

WIN F	Reciprocal Mean M.P.G. of North & South runs.
	a) win
	b) Wei

Corrected Miles per Gallon

TABLE

18 B.

Mean Barometric Pressure

Vapour Pressure of moisture

corrected for altitude. Ins of Hg 25.24

Sold . INC

business and an and a state

and the second se	
shirts at front to	
	E
the second se	
FRENDER DATE ADDING	
Walling to mainten	
Henry In Contraction	I
. Grues and an	
· · · · · · · · · · · · · · · · · · ·	
Say and a set of the s	
and for the second second second	
20.5183 1967 251	5
	1
	ł
The second secon	ŧ
DESCRIPTION OF TAXABLE	1
second additional fails	
and he was to be seen	
A NO TO AN	
A VA	L
A CONTRACT ON TO THE	
A CONTRACTOR	
	E
โลรรษษฐอาสส	
Atvestigation	н
And the second s	I.
Colling Forest Tanger	
Author of Strates in	I
Aladavadat assess	
Aladovidat advis	1
persities another and	I
Land , the second	Ł
NAMES OF TAXABLE PARTY.	
23 mult not fursionia	F
-	I
SPREIGHT MALL PROPERTY.	
Carl Street and Street	1
Contraction of the second s	1
CAR IN ARRENT	
	I

D

T

A

(b

(c) Unburnt gases

Heat to Cocling water

Unaccounted for

Manual Long Vill

the Artest & dress to

STATISTICS

CAPACITY OF LATER APE MALLEY GALLENS

Lable 16 D	Volumetri	c Efficie	enc- a At	ir/Muel R	atio	
Ideal Air/Fuo	1 Katio			and a color at	a (2. U	
Average Molect	ular Wein	ht		13.2		
Mixture Densi				76		
		1	c	1.045		
speed in m.p.h.		28.7	1.7.7	47.1	57.0	66.9
compression Tempers	ature					
a a Piessur	re	415	405	375	360	333
olumetric Efficien	acv	9.75	10.1	11.6	12.7	16.5
itto to std. Basis		.225	.238	. 236	. 338	.475
heoretical Air/Fue		.221	.234	.291	.333	.469
		10.4	10.7	12.3	12.5	15.55
ir/Fuel ratio (exh		-	-	13.9(7)	-	
eight of exhaust gallon of fuel	gas per			1		
, 		95.7	98	111.5	113.5	139
able 16 E	Heat Bal	ance	probably	y = 13.0	18 007	rect.
peed in m.p.h.		28.7	37.7	47.1	57.0	66.9
eat available rom fuel	CHU/gal	83920 100	83920 100	83920 100	83920 100	53920 100
eat to ractive effort	CHU/gal	17850 21.3	21000 25.0	23350 27.8	24700 29.4	25300 30.2
eat to exhaust a) Sensible	CHU/gal	5550 10.5	10900 13.0	16400 19.5	20300	27200
b) Latent	CHU/gal	3240	3320	3770	3848	43.8

1

35900

(21.5)

3040 3.6

25600

13.1

?

21100 25.1

(16.9) 10.6

7

30400

(21.8)

CHU/gal

CHU/gal ~

3

17800 21.2

FUEL NO. 17.

Mixture by volume of :-

60 parts ETHYL ALCOHOL 30 PETROL 10 BINZOL

Muel Data

Composition by Teint

Latent Heat

Carbon - 55.7 % Hydrogan- 13.0 4 Oxygen - 21.3 % Higher Calorific Value 67,560 C.H.U. per gallon 8,610 C.H.U. per 1b. Specific Gravity at 20 degrees Centigrade - .785 156 C.H.U. per 1b. Kinematic Viscosity in abs. cgs. units .0105(1-.0147 7-20)

Vapour Pressure Temperature 10 (V.P. in mm. of Pg 48 10 C 20 C 90 30 C 130 Distillation

Percent distilled low Temperature 61 50% ED4 point 70 74

may - man

AREA LAST ANALY

LANT BE DELLAND

a Same / Provi

3.00 P.	M. "	2	4.720	ins Hr	Dry b	ulb-6	0.0 F	wet bu	10-56.1 P
	rox. loa							1.A.	
	tial tyr	but	Exh	atar	10. 100	412		ck 28.	
mph.	min.sec	• TUBH20	galvo.	temp.	ins Hg	temp	Begin	End	DIFINIC
A 28.7 S 29.2	5-40-1	0.4	200	140 144	12.3	55	25.21 38.14	27.68	24.7 27.6
S 29.0	4-59.6	0.3	325 290	141 146	12.2 14.0		41.12	43.64	
S 28.9	5-1.3 5-59	3.0	310 280	142 149	12.1 14.1		47.24	49.68	24.4
	pressure	Bac	<u>:k 28</u>				1		
	4-19.2	0.9		143 147	11.0 12.8	68	56.29	55.4i 59.0	21.3 27.1
\$ 37.2	3-29.4	1.4	470	142 148	11.4			61.44	22.0
S 37.1	3-32.5	1.0	460 46 5	142 149	11.3 13.1			67.38	22.3 27.4
	pressures	Bac	k 28.	.5			1 14		
S 47.3	2-22.4 2-2.1	1.8	560 545	145 148	9.0 11.0		74. 76	72.98	
	2-28.6		550	147 149	9. 2 11.5		79.52	78.85	24.4
N 47.1 S 47.2	2-29.1	1.7	550	146 152	9.0			84.16 87.34	
Dre p	pressures	:- Pro	nt 29 k 29.	5	@ Samp)				
N 56.2 S 58.0	1-46.4 2-13		600	151 153	E.8 8.5			92.54	
N 57.0	1-4817 2-17.7	7.2	635 580	152 153	7.0 9.8			97.79	17.2 21.7
	1-46 2-13.6	9.0	620 590	151	6.5 9.1			99.9 02.94	16.8 21.4
tyre p	ressures	- Fro	nt 30 k 30	.D					
N 67.5 S 67.1	1-14.7 1-32.9		705	157	2.3	73	08.25	05.28	
N 66.6 S 67.6	1-17.5	11.0	700 670	160 161	2.4		11.4		17.7
N 67.0 S 67.9	1-14.7	11.6	710 670	161 162	1.8 5.3			15.49 18.12	13.9 16.2
Tyre p	ressures	- Fro Bac	nt 30 k 31						
		tecto			-				
ACCE	leration								-2.8 -
Dire	ction 1. time	in seco	nds	N 21.6	20.2 2	N.1.8	\$ 20.2		
							1		

Г

No. 200101

ottles

LT DATESTIC

HL THERE

Г

d souters

T-10MET

attirali.

TABLE 17 B.

.

Luna to a ----

TEL.

Lile!

AD AL

1.

Summarised Results of Table A.

Vapour Pressure of moisture in atmosphere (Average). Inc	f H	s c,	390			
car Speed in m.p.u.		29.2	37.6	47.2	57.1	87.3
Wind Pressure, inches of water.	N S	2.6	4.5	5.7	8.1 3.3	11.7
Absolute Wind Velocity in direction of motion, m.p.h.	•	10.8	18.7	12.6	12.6	12.0
Mean Tyre Pressure, 1bs/sq 1	na	27.6	28.1	28.9	29.7	30.4
Mean Air Temperature Cent.		18.4	20.0	21.1	22.2	22.8
Miles per gallon	N S	24.6 28.3	21.9 27.3	19.2 24.3	16.9 21.5	14.1
Simple Mean M.P.G.			24.6	21.7	19.2	15.6
Inlet Wanifold Pressure, inches of Hg absolute	N S	11.1 9.3	18.1 10.2	14.2	16.0	81.5 18.4
Average,		10.2	11.2	13.0	15.4	19.8
Exhaust Gas Temperature legrees Centigrade, (above atmospheric)	n S	360 332	420 493	580 562	627 602	684 662
Average.		346	491	571	614	673
Cooling Water Temperature at intrance to radiator, legrees Fahrenheit.	N S	241 146	142 148	145 150	151 154	159 161
Average (converted to Cent.) Temperature Difference,		62.0	62.8	64.4	87.0	71.1
ater to air. Degrees Cent.		42.6	42.8	43.3	44.6	48.3
Acceleration Time (seconds)	N S	21.6 80.2	-	Avera	uge :-	20.9

Remarks :-

TABLE 17 C M.P.G. converted to Standard Basis.

Car Speed in m.p.h.	29,2	37.4	47.8	57.1	67.3
Reciprocal Mean M.P.G. of North & South runs.	26.3	24.3	21.4	13.9	15.5
a) Wind	3.5	4.0	3.2	2.7	1.9
Correction for :- b) Weight		-	-	-	
c) Barometter	0.1	0.2	8.0	0.2	0.3
d) Air Temp.	0.2	-	-0.4	-0.2	-1.3
e) Tyre Press	. 0.8	0.8	-	0.1	0.1
Total correction- #	4.0	4.4	3.0	2.1	1.0
Corrected Miles per Gallon	27.3	25.4	22.1	19.1	15.7

Sty L

And A Distance of the second s

23

SI

Co

P

-					
			-		
-					
Successive Name					
			-		
-					
22					
				-	
Date:					-
and in					-
		1015			
-					
120					
-					
1					
		1000			

30 05227738 3 **37**10 3

- 10.01

Alexand will reason

ALLA KA HUGE BY

Are maint incruit

E Pt

Ge.

able 17 D Volumet	ria Effia	ioney & A	1	-
Ideal Air/Fuel Ratio		1040, a A.	11.1	ART10
Average Molecular We Mixture Density relat		ir	57.5 1.03	18
peed in m.p.h.	292	37.6	47.2	57.1
ompression Temperature	383	368	346	328

F

67.3

7		,	540	760	310
" Pressure	9.95	10.65	12.15	13.95	17.3
Volumetric Efficiency	. 247	. 275	. 374	.4.4	-530
Ditto to std. Basis	.238	.263	. 324	.405	.525
Theoretical Air/Fuel Ratio	11.75	12.1	13.0	14.2	15.2
Air/Fuel ratio (exh. anal.)	-	-	12.8		-
eight of exhaust gas per gallon of fuel	100	103	110	119	127

Table 17 E Heat Balance

Speed in m.p.h.		29.2	37.9	47.4	57.4	67.5
Heat available from fuel	CHU/gal	67560 100	67560 100	67560 100	67560 100	67560 100
Heat to tractive effort	CHU/gal	17300 25.6	19600 29.0	20650	21250 31.4	20600
Heat to exhaust (a) Sensible	CHU/gal	5540 13.1	13300 19.7	16750 24.8	19650 29.1	23200
(b) Latent	CHU/gal	4610 6.8	¥750 7.0	5060 7 • 5	5500 8.1	5860 8.7
(c) Unburnt gases	CHU/gal	?	7	400 0.6	-	-
Reat to Cooling water	CHJ/gal	35100 51.9	26000 41.4	21600 32.0	17100 25.3	13600 20.1
Unaccounted for	žó	(2.6)	(2.9)	4.5	6.1	6.3

PUN XO. 18.

Mixture by volume of :-

36 30.00

50 parte ETRYL ALCOHOL 30 " PETROL 20 " BERZOL

Fuel Data

Composition by weight

Higher Calorific Value

Carbon - 70.1 % Hydrogen- 12.4 % Cxygen - 17.5 % 70,720 C.H.U. per gallon 8,920 C.H.U. per 1b.

Specific Gravity at 20 degrees centigrade - .793Latent Heat144 C.H.U. Per 1bKinematic Viscosityin abs. ags. units .00916(1-.0120 T-20)Vapour Pressure10 C 20 C 30 CV.P. in mm. of Hg 48 20 150

Distillation Percent distilled 10% 50% End point Temperature 60 68 95 Fuel No.18 50% Alcohol-30% Petrol-20% Benzol

26th September P.M.

Table 18A.

_		Approx. Initial			6, 1 b s,	/ s q 1ns-	fron	t 28,	back 2	8.	
	speed	Time of run min.sec.	press.	tend.	Lemp.	Vacuum	tem				15
S	29.0	5-24.4 5-40 5-28.5	1.3 1.1	310 320	149 146	13.9 13.8		17.14 20.15	19.76 22.88	25.2	
3	28.6	5-38	1.0	310 320	147 146	14.0		26.03	25.71 28.7	26.7	
S	28.8	5-32.3 5-35.8	1.2	310 300	148 147	13.8 14.0	_		21 51 34.44		
		pressure	Bac	ont 27. ck 29.	5						
	37.8	4-5.5 4-10.2	1.8		152 149	13.6 12.5	76		37.18 40.14		
N	37.8	4-7.9	1.9	415	153	13.4		40.3	42.9	26.0	
N	37.8	4-16.4	1.8	400	151 152	12.2 12.9	1	46.01	45.84 48.6	25.9	
S	37.9	4-18.3	2.3	370 ont 28.	151	13.0		48.98	51.7	27.2	
-		2-46.8	Bac	<u>k 29.</u> 540	5	11.5	78	51.05	54.15	22.0	
S	47.9	2-52.4	3.7	555	253	10.5		54.85	57.14	22.9	
		2-53.2 2-55.4	3.2	550 555	154 154	11.3 10.3		60.55	59.95 62.85	23.0	
N		2-53.9 2-48.9	3.1 3.4	550 5%0	157 156	11.8		63.34	65.61 68_45	22.7	
3	Tyre p	ressures	S:- Pro	ont 28.	5	9 Sample	2.			Y	
N	57.0	2-9	5.3	610	159		78		71.38		
S	57.3 57.4	2-6.4	6.3 6.0	610 600	160 159	8.0		74.78	73.98	20.0	
S	57.5	2-10.6	4.9	595 610	159 161	8.5 8.8			73.7 82.47	20.9	
	57.8	2-9.1 2-7.6	5.3 6.5	610	150	8.7		83.26		20.4	
	jyre	pressure	Ba	ACK OX			L.		-		
	68.0	1-30.6	8.0	690 700	187	4.3	81	89.09	87.98 90.72	16.3	
N	67.3 37.6	1-31.6	7.2	680	166 166	5.0			93.67		
	65.8 67.8	1-29.3	9.7	700 680	167	5.4	83	97.5	99.28 01.99	17.8	
S	-	ressures	8.4	690 0nt 30.	167	4.2		00.0	04.033	1000	
	-9-0 5		Bac	<u>k 32.</u>	.5						
	Accel	leration	tests			and a				-	
	Direc	tion . time i	n secol	nds i	N 19.2	S 20.1 18	N 3.8	S 21.0	N 19.1	5 20.5	

1212270

Linger

traditio

STREET,

TABLE 18 E. Summarised Results of Table A.

Mean Barome'.ric Pressure corrected for altitude. Ins of Hg 28.05 Vapour Pressure of moisture in atmosphere (Average). Ins of Hg 0 319

.

250 200

the Avenue

.

.

:

Ŧ

.

....

#11 . Jr-1

and a

1

544

112

ALL DE

Car Speed in m.p.h.		28.8	37.9	47.4	57.4	67.5
Wind Pressure, inches of water.	N S	1.2	1.8	3.2 3.7	5.5	7.4
Absolute Wind Velocity In direction of motion, m.p.h.		0.6	2.3	1.7	1.0	3.2
Mean Tyre Pressure, 1bs/sq in	8	28.8	28.6	28.8	89.9	31.1
Mean Air Temperature Cent.		23.9	25.0	25.6	26.1	27.8
Miles per gallon	N S	26.4 27.0	25.9 26.9	22.5	20.4	17.4 15.6
Simple Mean M.P.G.		26.7	26.4	23.5	80.4	17.0
Inlet Manifold Pressure, nches of Hg absolute	n S	9.2 9.2	9.8 10.5	11.5	14.1	18.5 19.0
Average,		9.2	10.1	12.0	14.4	18.7
Exhaust Gas Temperature egrees Centigrade. Above atmospheric)	N S	353 367	437 442	563 566	610 607	668 678
Average,		385	439	564	608	675
Cocling Water Temperature t entrance to radiator, egr es Fahrenheit.	N S	148	17 2 150	155 154	160 160	167 166
Average (converted to Cent.) Temperature Difference,		65.9	66.1	68.0	71.1	74.7
ater to air. Degrees Cent.		40.0	41.1	42.8	45.0	46.9
Acceleration Time (seconds)	N S	19.0 20.5		4701	rage ; -	19.7
Ethaust Gas Analysis 13.6	%C0	~		2.0 5		
-	FH2	(estima	ted)	4.2 ?	2 (by	diff)

82

Remarks :-

TABLE 18 C M.P.G. converted to Standard Basi: .

Car Speed in m.p.h.	28.8	37.9	47.4	57.4	67.5
Reciprocal Mean M.P.G. of North & South runs.	26.7	26.4	22.5	20.4	17.0
a) Wind	•			-	- 2
S Correction for:- b) Weight	-0.4	0.3	-0.3	-0.2	-0.8
c) Barometer	0.1	0.1	0.2	0.1	0.1
d) Air Temp.	-1.5	-1.9	-3.3	-8.6	-3.6
e) Tyre Press.	-0.1	-	0.1	•	•
Total correction- %	-1.7	-2.1	-2.4	-2.7	-\$.7
Corrected Miles per Gallon	26.3	25.9	22,0	19.9	16.4

Table 16 D	Volumetric	Efficie	int & A:	ir/luel
Ideal Air/Fu	el Ratio			1
Average Mole	cular Seiff	it		6
Mixture Dens	ity relation	to ki	r	-
Speed in m.p.h.		28.8	37.9	47.4
Compression Tempe	rature	420	398	357
" " Press	ure	9.0	9.7	11.2
Volumetric Effici	ency	.203	.232	. 290
Ditto to std. Bas	is	. 205	.237	. 297
Theoretical Air/F	uel Ratio	9.5	10.9	11.8
Air/Fuel ratio (e	xh. anai.)	-	-	12.7
Weight of exhalst gallon of fuel	gas ver	83	94.5	101.5
Table 15 E	Heat Bal	ance		
Speed in m.p.h.		28.8	37.9	47.4
Heas available from fuel	CHU/gal	70720	70720	70720
Heat to tractive effort	CHU/gal	16650 23.6	20000	20550
Heat to exhaust (a) Sensible	CHU/gal	7550 13.7	10500	15250
(b) Latent	CHU/gal	3700 5.2	4200 5-9	14520 6.4
(c) Unburnt gases	CHU/gal	-	-	400 0.6
	CHU 'gal	31400	27200	21200
Heat to Cooling water			L	

104

ant ant a

1845

ALL A

1

CAMPAGE AND THE REAL PROPERTY AND /Iuel natio

60.5

11.6

1.04

57.4

344

13.05

. 360

. 370.

13.25

113

57.4

70720

22100 31.3

18450 26.1

5030 7.1

17950 25.4

10.2

67.5

323

16.35

.481

. 497

14.75

125

67.5

70720

21500

22900

5560 7.9

-

13700

9.9

FUEL No. 18

Wixture by volume of :-

40	parts	ETHYL ALCOHOL
30	**	PETROL
30		BINZOL

Fuel Data

Composition by weight

Higner Calorific Value

al alaray it

ALCON THE R. O.

Carbon - 74.2 % Hydrogen- 11.9 % Oxygen - 13.9 % 73,880 C.H.U. per gallon S,220 C.H.U. per 1b.

Specific Gravityst 20 degrees centi, rade .801Latent Heat132 C.H.U. per 1b.Kinematic Viscosity in abs. cgs. units .00829(1-.0125 T 20)Vapour PressureTemperature 10 C 20 C 50 CV.P. in mm. of Hg 56 98 156

Distillation Percent distilled 10% Temperature 59

50% End point

8.	30. A.	M. Bero	meter-2	4.852	<u>e 194.</u>	Dry h	ulb 5	0 0 0 0) - EQ 0	
3	.00 P.		2	4.787	1 115	UIS U	7	4.5 F	Tet ou	10-53-2 60-	PR
	App	rox. loa	1 380	198				-			
	Ini	tial tyr	e press	ures;	lbs/sq	ins- f	ront	26, ba	ck 27.		
_	AV.			Exia.	Water	In.man	Air		fileag	68:-	
	speed	Tun min.sec.	press. insH ₂ 0	Lemn	Tem	TO O DE LIN	TO MUL				0
X	29.4	5-5.5	2.4	300 270		13.9	61	44.2	46.69	24.9	
N	29.0 29.1	5-6.1	2.3	300	142	14.0		50.1	49.78 52.57	24.7	
N	29.3	5-22.5	2.5	270 255	144	14.1 13.7			55.57		
S	28.9	5-24.8 pressures	0.7	280 ont 26	146	14.0		58.69		26.1	
-17	38.0	3-47.5	Bai	ck 27 420?	145	12.3	0.0				_
S	38.3	4-18.3	2.0	465	151	13.7.	66	64.48	64.03 67.23	27.5	
	38.2 38.3	3-47.8	3.5	470	147 152	12.3			69.95 73.35	24.1 28.0	
	38.3	3-47.5		485 450	151 152	12.2			76.0		
		ressuros	:- Pro	ont 27	100	40.1			18.0		
N			6.5		152	10.0	70		P1.88		
	47.6	3-10.7 2-44.7	3.1 5.8	560 590	158 154	11.9			85.15 87.55		00
S	47.0	3-15	2.9	560 590	155 155	12.2		88.22 91.05	90.77	25.5	
	48.1	3-11.1	3.2	580 nt 28	156	11.8		93.92		25.5	
_		ressures	Bac	k 29				AL 04	10101 7:44		
	55.1	1-57.3 2-16.7	8.0	660 630	158 160	7.5	12	96.84 39.66	01.85	18.3 21.9	
N	57.2	1-57.6	8.8	640 620	158 160	8.0 9.8		02.48		18.7	
N	57.1	2-1.0	8.2	630	160 160	7.9		0.15	10.07	19.2 22.3	
5	57.3 Tyre p	2-20.1 ressure		610 nt 28	100	3.0		10.01	1000	~~~	- '
T	60.5	1-21.1	<u>Bac</u> 1.3	<u>k 29</u> 750	162	3.0	74	14.4 1		15.0	-
S	68.2 6618	1-35.1	5.0	690 740	163 161	6.2 3.7		17.12 20.06	19.92 21.57	18.0	
8	67.6	1-35.3	4.8	690	164 161	5.8		22.78		17.9	
	-	1-26.1	12.0	740 680	164	6.2	75	28.44		19.6	
	Tyre p	res.sures	:- Fro Bac	nt 29 k 30							
		and an an an									
	Accel	eration_	tests								
	Direc	tion time 1	n secol	ids 2	N 0.5 1	s 8.9 21	N L.6 1	S 18.4 2	N	5 18.8	
	ACCEI	· · · · · · · · · · · · · · · · · · ·				-	-	-	-	-	-

California t

Г

NAME AND ADDRESS OF

Distant

Thinks .

1 Mail

Lines.

140117

TABLE 19 B. Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of Hg 25.16 Vapour Pressure of moisture in atmosphere (Average). Ins of Hg 0.377 car Speed in m.p.h. 29.1 38.2 47.5 57.2 57.2 wind Pressure, N 2.4 3.6 11.6 6.0 8.3 inches of water. S 0.9 1.8 5.0 4.3 5.3 Absolute Wind Velocity in direction of motion, m.p.h. 7.0 6.5 8.2 13.0 9.4 Mean Tyre Pressure, 1bs/sq ins 26.5 27 28 29 28.5 Mean Air Temperature Ogent. 17.8 20.0 82.8 21.7 23.5 Miler per gallon N 21.6 15.4 24.8 24.1 18.7 S 26.0 27.9 25.4 22.5 18.5 Simple Mean M.P.G. 26.0 25.4 23.5 20.5 16.9 Inlet Manifold Pressure. N 21.0 9.6 10.9 13.0 15.7 inches of Hg absolute 11.4 S 9.3 10.0 13.9 Average, 10.4 12.2 19.2 9.4 14.8 Exhaust Gas Temperature **54**0 , **31**8 ' 498 490 638 622 710 670 N 598 degrees Centigrade. S 580 (above atmospheric) Average. 494 589 630 690 329 148 152 154 156 _61 164 Cooling Water Temperature 159 N 142 at entrance to radiator, 145 160 3 degrees Fahrenheit. Average (converted to Cent.) 72.5 62.0 65.6 68.3 70.8 Temperature Difference, water to air, Degrees Cent. 49.2 48.0 44,2 45.6 46.8 Acceleration Time (seconds) N 21.2 Average:-S 19.9 18.7 20% 0.4 100 14.6 %002 Exhaust Gas Analysis 0.7 0.1 (estimated) 84.2 N2 (by diff)

Ì

Remarks : -

- - To.

.

*

.

4

.

.

10020

and the second

1-

.

.

32

annun .

Car Speed in m.p.h.	29.1	38.1	47.5	57.2	67.2
Reciprosal Mean M.P.G. of North & South runs.	25.4	25.9	23.4	20.4	16.1
e) Wind	1.4	1.0	1.4	1.5	1.5
Correction for:- b) Weight	-	-			
c) Barometer	0.2	0.3	0.4	0.4	0.5
d) Air Temp.	0.8		-0.6	-1.2	-1.5
e) Tyre Press.	0.8	0.7	0.4	0.4	0.4
Total correction- #	3.2	2.0	1.6	1.1	0.9
Corrected Miles per Gallon	26.2	26.4	23.8	20.6	17.0

" RL

Ideal Air/Fuo Average Molec Mixturo Densi	ular . ofit			12.05 64.5 1.042	
Speed i. p.h.		29.1	38.2	47.5	57.2
Compression Temper " Pressu Volumetric Efficie Ditto to std. Basi Theoretical Air/Fu Air/Fuel ratio (ex Weight of exhaust gallon of fuel	re ncy s el Ratio h. anal.)	414 9.2 .211 .205 9.3 - 52.5	393 10.0 .242 .237 11.0 - 96	367 11,4 .296 .291 12.3 12.5 106.5	344 13.4 .371 .367 13.5 -
Table E Speed in m.p.h.	Heat Bal	lance			
Heat available from fuel	CHU/gal	29.1 75550 100	341.2 73080	47.5 73650 100	73880
Heat to tractive effort	CHU/gal	16.00 22.4	20400 27.6	22 25 0 30.2	22900
Haat to exhaust (a) Sensible	OHU/gal	6910 9.11	12500 16.9	16400 22.7	19700
(b) Latent	CHU/gal	3630	4070 5-5	4690	5100 6.9
(c) Unburnt gases	CHU/gal	7	9	1100	-
0					
Heat to Cooling water	CHU/gal	35200	31400 42.5	25450 34.4	20200

designed as the

Darping L. wry

. 89.

2510

and in the second

RECTAND IN

2.54

statut at 3.2 2200 ALC: A ALCON

ta inter an

14

CB.

24

FUNL No. 20.

Mixture by volume of :-

30 parts FTHYL ALGOHOL 30 " PETROL 40 " BENZOL

Fuel Data

Composition by veight

Carbon - 78.4 % Hydrogen -11.3 % Oxymen - 10.3 % 77,040 C.N.U. per gallon 9,540 C.H.U. per 1b.

Higher Calorific Value

4- 10 al-0

Ferenat distilled 10% 50% h m point Temperature 58,5 64 28

Fuel No.20 30% Alcohol-30% Petrol-40% BenzoT 30th September A.M. Table 201. 6.30 A.K. 2.00 F.M. Approx. load 380 lbs Initial tyre pressures, 10s/sq ins-front 27, back 28. Av. thme of Wind Exh. Water In.man.Air Mileages:-speed run press. temp. temp. Tacuum temp. mph. min.sec.insH20 galvo F ins Hg F Begin End Diffx10 AV. N 29.2 S 29.3 N 29.2 S 29.2 N 29.2 S 29.1 5-7.1 5-14.7 5-7.4 5-16.7 5-12.3 5-15.7 290 285 85.28 87.77 24.9 85.2 90.76 25.5 91.06 95.55 24.9 93.9 96.47 25.7 96.76 95.3 25.4 95.6 02.16 25.5 1.6 142 64 13.7 142 143 1.0 12.8 12.7 12.8 12.8 290 280 290 270 1.4 142 1.3 144 12.9 Tyre pressures:-Front 27 Back 28,5 N 38.0 370 370 390 390 390 390 390 390 3-56.7 2.0 144 25.0 27.5 25.5 27.8 25.3 27.9 02.48 04.95 05.37 06.12 12.1 66 S 28.1 N 37.8 1.9 2.3 1.9 2.7 1.8 146 13.4 4-2.4 146 13.0 06.35 10.9 11.35 14.13 14.32 16.85 17.29 20.08 \$ 38.1 146 3-58.1 12.3 N 38.2 3-58.1 S 38.2 4-22.3 Tyre pressures:-12.3 118 13.5 Front 30 Back N 47.2 5 48.7 2-55.4 3-15.6 3.7 560 23.0 25.4 23.7 25.6 20.3 22.6 150 11.8 65 550 150 12.2 Ø N 47.0 3-1.3 3.4 3.7 570 11.8 152 26.15 23.52 ē 3-16.6 2-56.8 585 570 S 48.9 153 28.95 31.51 31.76 34.09 34.35 36.84 N 47.5 4.0 23.3 154 11.8 \$ 47.0 580 2-46.7 3.4 155 11.8 21.9? Tyra pressures:-Front 28.5 Back 32 reduced to 30 2 Sample 2 N 57.4 S 57.0 N 56.6 S 37.1 N 56.5 S 57.5 2-12.2 2-22.6 2-13.7 1 . 121 37.52 39.65 40.34 42.6 8.5 157 9.5 76 21.1 4.3 630 10.0 157 640 630 159 158 5.6 43.2 9.6 45.3 21.0 2-21.9 2-15.7 2-21.6 48.02 48.27 22.5 5.8 ŷ.9 640 635 9.4 48.87 B1.0 51.69 53.95 5.1 160 5.8 159 22.6 Front 50.5 Tyre pressures:-Back 31.5 N 88.5 090 165 5.8 54.74 58.53 1-35.9 7.8 75 17.9 S t 5.4 N 67.1 S 67.5 N 67.3 57.56 59.6 60.41 62.24 63.16 65.04 7.8 700 164 1-45.2 6.0 19.4 690 700 710 9.27.8 6.5 6.5 5.7 1-38.2 165 18.3 1-40.2 1-36.9 18.8 165

Acceleration tests

1-43

Tyre pressures:-

S 66.5

8.8

8.0 690 Front 32

Back

Direction	N	S	N	9
Accel. time in seconds	19.5	19.8	19.8	20.0

32

167

165

3.3

73

66.08 67.89

68.81 70.71

18.1

19.0

TOTAL.

 n_{1-2}

1705

2004123

TUSH

31.811.12

TABLE 20 B. Summarised Results of Table A.

Hean Barometric Pressure corrected for altitude. Ing of the 25.05 Vapour Pressure of meisture in atmosphere (Average). Ins of Hg 0.418

Car Speed in m.p.h.		29.2	38.1	47.1	87.0	66.2
Wind Pressure, inches of water.	N S	1.4	2.5	3.7	6.1	8.6
Absolute Wind Velocity in direction of motion, m.p.h		2.0	2.4	1.5	1.5	2.2
Mean Tyre Pressure, 1bs/sq i	ns	27.7	28.4	89.6	1 30.1	31.5
Mean Air Temperature OCent.		18.5	19.4	21.1	22.8	22.0
Miles per gallon	N S	25.1 25.6	25.3	25.3	21.1 28.6	18.1
Simple Mean M.P.G.		25.3	26.5	24.3	21.8	18.4
Inlet Manifold Fressure, inches of Hg absolute	N B	9.5	10.1 9.7	11.4 11.8	13.7 13.3	17.4 17.1
Average,		9.4	9.9	11.5	13.5	17.2
Exhaust Gas Temperature legrees Centigrade. (above atmospheric)	N S	334 320	420 410	580 578	636 630	6.90 680
Average,		387	415	576	633	680
Cooling Water Temperature at entrance to radiator, legrees Fahrenheit.	n S	145 148	146 146	152 135	189 186	165 165
Average (converted to Cent.) Temperature Difference, Mater to air. Pegrees Cent.		61.4 43.1	65.5	67.0	70.3	73.9
Acceleration Time (seconds)	N	19.7				9.8

65

Remarks :-

.

.

.

.

1.

.

.

٠

The st

25-

State of Lot

1

1.0

1ABLE 20 C M.P.G. converted to Standard Basis.

Car Speed in m.p.h.		29.2	38.1	47.1	57.0	66.9
Reciprocal Mean of North & South	M.P.G. runs.	85.3	26.5	24.3	24.3 21.8 1	
	a) Wind	-	•	-	-	
Correction for :- b) Weight		-	-	-	-	
	c) Barometer	0.1	0.1	0.1	0.1	0.1
	d) Air Temp.	0.6	0.8	-0.4	-1,8	-1.5
	e) Tyre Press.	0.3		-0.2	-	-0.1
Total correct:		0.9	0.3	-0.5	-1.3	-1.5
Corrected Miles per Gallon		25.6	26.6	24.8	81.0	10,6

our restantion with the strategiest of the strategiest state of the strategiest state of the sta

name of the Parcel of the Parc

waterson't als me spilles and sold

DATE IN CASE ADDATE

Teler. marking Pressing spinishe off in spinishes

AVERTON

ADDRESS OF TAXABLE almail 7ault moins and a April 1998

Distant, Statistics of Lines. In the LOW TAXABLE IN A DESCRIPTION OF THE PARTY OF T

International Advances Saveline and Automatic

Rive Street

statute hit saves all

Not send forestation

1 20 NAMES OF A CONTRACT OF

110

1.64

2.14

ADD DATION THAT IS NOT

O DED RADING INCOME.

TableDVolumetric ffficiency & Air/Fuel RatioIdeal Air/Fuel Ratio12.5Average Molecular Veleht68Mixture Density relative to Air1.044						
Speed in m.p.h.	29.2	38.1	47.1	57.0	66.9	
Compression Temperature	419	408	354	359	335	
Pressure	9.2	9.5	10.55	12.2	15.05	
Volumetric Efficiency	.210	.22	.262	. 324	.429	
Ditto to std. Basis	.205	.221	.263	. 327	.434	
Theoretical Air/Fuel Ratio	9.1	10.2	11.1	12.5	14.2	
Air/Fuel ratio (exh. anal.)	-	-	12.5	-	1	
Weight of exhaust gas per gallon of fuel	81.7	90.4	97.7	10%	122.5	

Table 20 E Heat Balan.e

Speed in m.p.h.		25.2	38.1	47.1	57.0	66.9
Heat available from fuel	CHU/gal	770 ² ,0 100	77040 100	77040 100	77040	77040
Heat co tractive effort	CHU/gal	16200 21.0	20500	22600 29.3	24000	24100
ficat to exhaust (a) Sensible	CHU/gal	6500 5.5	9720 13.9	15020 19.5	18600 24.1	22650 25.4
(b) Latent	CHU/gal	3420 4.4	3780 4.9	4090 5-3	4560 5-9	5130 3.7
(c) Unburnt gases	CHU/gal	*	7	600 0.8	-	-
Heat to Cooling water	CHU/gal	33300 43.3	29400 33.1	25400	21950 25.5	17200
Unaccounted for	%	(22.5)	(16.5)	12.2	10.3	10.3

PUEL NO. 21. W At re b, volume of -

80

20	parts	ETHYL ALCOHOL
30	FE	PETROL
50	92	BENZOL

Puel Data

Composition by weight	Carbon - 84.4 \$
	Hydrogen - 10.8 %
	0xy=en - 6.8 %
Higher Calorific Value	80,200 C.H.U. per .allon
	9,810 C.H.M. per 1b
Specific Grevity at 20 degree	s Centigrade318
Letent, Peat	111 C.H.U. per 1b
Kinematic Viscosity in abs. c	gs. units .00681
Vepour pressure V.P. 1n m	re 10 C 20 C 30 C m. of Mg 55 100 175
Distillation Percent D Temperatu	1stilled 10% 50% End point re 56 62.5 125

DISTILLETION

8.30	A.M. Baro	meter-2	4.708	e 21A ins He	Dry b	ulb-6	1.0 8	Wet bu	1h-55 0	
5.00 1	r . M.	2	4.559	" "	"	" 7	7.9 F	17 P	59.8	F
	rexisate la tial tyre			sq in	s- fron		back 2			
AV.	Ting of ed run n. min.sec.	Wind press.	Exh.	Water	In.man	.Alr		vileag	es:-	0
5728.0 N 29.0 S 29.2	5-46.9 5-8.5 5-51.1 5-12	0.5 2.8 0.5 3.5 1roi		1:2 146 142 147 142 148	12.5 13.8 12.4 14.0 12.8 14.0		58.77 61.76 64.76 67.74	58.11 61.54 64.26 67.55 70.25 73.55	27.7 25.0 27.9 25.1	
N 38.1 S 38.5	4-31.4 4-26.6 3-52.5	4.3 1.4 3.0 1.7 3.6 2.1 7 - from			11.9. 12.2 12.0 13.7 12.3 13.9 F Bra	W5	80.04 83.16 86.23 89.38	76.1 79.7 82.46 86.0 88.69 92.1	24.2 28.4 24.6	<u>+</u> _
S 46.9 N 47.3 S 47.4	3-10 2-50.6 3-12 2-48.3	3.1 4.7 3.5 5.1 3.3	570 560 580 570 575 550 512 29		11.0 11.3 10.6 11.9 10.9 10.9 12.0 5 Samp		95.38 98.18 01.05 0(.85	94.49 97.85 00.4 02.55 06.03 09.21	24.9 22.2 25.0 22.1	8
N 57.0 S 58.0	2-21.3 2-2.9 2-21.7 2-7.7	7.4 5.3 6.4 5.5 8.7 5.8	650 630 660 640 nt 30	162 164 163 153 103 160	8.8 5.5 5.9 8.2 5.9	74	12.51 15.39 18.24 21.1	11.7 14.77 17.34 20.49 13.12 26.08	22.6 19.5 22.5 20.2	
N 88.0 S 67.0 N 67.5 S 67.3 N 65.7 S 67.3	1-29.1 1-40.7 1-29.6 1-42.1 1-28.5	11.2 8.4 10.5 7.0 10.0 7.6	710 750 750 720 740 720	169 171 171 172 170 172	5.2 4.6 4.5 5.7 4.4 5.9	78 78	29.83 32.85 35.59 39.79	25.76 31.7 34.53 37.5 41.46 44.35	18.7 16.8 19.1 16.7	
	Accelerati	DEC	<u>K JI</u>					-		
	Direction Accel. tim			n	S	n	S		e e e	

and the second

Sec. 20

ATTEN TO A

and we

-

.

Г

A Contraction of the second se

CARD DUCK

10.272+1U

Mean Barometric Pressure corrected for altitude. Ins of Hg Vapour Pressure of moisture in atmosphere (Average). Ins of Hg			
Car Speed in m.p.h.	29.0	38.2	47
Wind Pressure, N inches of water. 5	2.4	3.6	53
Absolute Wind Velocity in direction of motion, m.p.h.	12.2	7.2	5
Nean Tyre Pressure, 1bs/sq ins	27.4	27.9	29
Mean Air Temperature OCent.	20	21.7	28

Summarised Results of Table A.

67.5

10.6

5.5

.2

5.1

.3

57.4

7.5

4.4

TABLE 21 B.

	19	27.4	27.9	29	30	30.5			
Mean Air Temperature Cent.		20	21.7	22.8	23,9	24.4			
Niles per gallon	N S	25.2 38.0	24.2 28.6	21.8 25.0	20.0	16.8			
Simple Mean M.P.G.		26.6	26.4	23.4	21.2	17.8			
Inlet Manifold Pressure, nches of Hg absolute	n S	10.5 9.2	11.0 9.5	12.4	14.5	18.7			
Average,		9.8	10.2	11.9	13.9	18.4			
Emhaust Gas Temperature agrees Centigrade. above atmospheric) Average.	n S	350 318 334	450 412 431	574	642 632 637	702 700 701			
Cooling Water Temperature c entrance to radiator, ogrees Fahrenheit. Average (converted to Cent.) Comperature Difference, ater to sir, Degrees Cent.	n S	142 147 62.5 42.5	148 151 65.3 43.6	156	163 164 73.0 49.1	170 172 77.2 52.8			
coleration Time (seconds)	N S	21.1 20.7				20.9			
Thaust Gas Analysis 15.0 %CO ₂ 0.2 %O ₂ 0.9 %CO 0.2 %H ₂ (estimated) 85.7 %N ₂ (by diff)									

Remerks :-

I in

E de (a

Ci at dei At To wat

E

TABLE 21 C M.P.G. converted to Standard Basis.

Car Speed in m.p.h. Reciprocal Mean M.P.G. of North & South runs.		29.0	38.2	47.2	57.4	67.5
		26.5	26.2	23.3	21.1	17.7
	a) Wind	4.5	1.3	0.6	0.3	0.4
• Correction for	b) Weight	-	-	-	•	1.1
	c) Barometer	-	-	-	-	1.00
	d) Air Temp.	-	-0.6	-1.0	-1.5	-2.0
	e) Tyre Press.	0.8	0.3	-	-	0.1
Total correction- %		4.8	1.0	-0.4	-1.3	-1.5
Corrected Miles per Gallon		27.8	26.5	23.2	20.8	17.4

and the second second		
	the second second	
	Table 21 D	Volumetri
Party and the Party of the Part	Ideal Air/Fuc	1 Ratio
and an an an and an	Average Molec	ular Tel
A DA DA DA DA DA	Mixture Densi	
And in case of the local division of the loc		
Statut Ingel and the	Speed in m.p.h.	
states in Annual Street of	Company on M	
Company and the	Compression Temper	
easternmery 55 mill	rressu	
section, the system	Volumetric Efficie	ncy
	Ditto to std. Basi	8
PERSONAL PROPERTY AND	Theoretical Air/Fu	el Ratio
mbdoufe of he being	Air/Fuel ratio (ex	h. anal.)
.mmmak	Weight of exhaust gallon of fuel	gas per
Alleranty participations of the second secon	Table 21 E	Heat Ba
States of the second	Speed in m.p.h.	
Second Manual Statements	Heat available from fuel	CHU/gal
Antistation Table (10)	Heat to tractive effort	CHU/gal
	Heat to exhaust (a) Sensible	CHU/gal
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	(b) Latent	CHU/gal
All som carrying	(c) Unburnt gases	CHU/gal
An	Heat to Cooling water	CHU/gal
-	Unaccounted for	%

10

Average Molecula Kixture Density	r Teir		12.9 73 ^r 1.04	6		
Speed in m.p.h.		29.0	38.2	47.2	57.4	67.5
Compression Temperatur " " Pressure	rə	417	410	382	362	336
Volumetric Efficiency Ditto to std. Basis		.220	.225	11.15	12.6	16.1
Theoretical Air/Fuel Air/Fuel ratio (exh. a		10.0	.226	.250	·335 12.1	.465
Weight of exhaust gas gallon of fuel	per	89.7	92	12.7	107	124.5
Table 21 E He	eat Bal	lance				
Speed in m.p.h.		29.0	38.2	47.2	57.4	67.5
Heat available CH	₩/gal	50200 100	50200 100	50200 100	50200 100	80200 100
Heat to CH tractive effort	W/gal	17600	20500	21700 27.1	23100 28.5	22800 28.5
Eeat to exhaust CH (a) Sensible	W/gal	765 9•5	103L° 12.9	15500 19.3	18400 23.0	23850 29.7
(b) Latent CH	W/gal	3450 4.3	15 110	3840 4.8	4100 5.1	4780 6.0
(e) Unburnt CH gases	U/gal	7	1	2280 2.8	,	-
Heat to CH Cooling water	U/gal	35600	29000 36.2	24700 30.5	20900 26.0	16900 21.1

(21.0)

(20.0)

15.2

(17.1)

14.7

21 D Volumetrio Officiency & Air, Fuel Rat &

FUEL No. 22.

Γ.

Mixture by Volume off-

.

10 parts ETHYL ALCOHOL 30 " FATROL 60 " BENZOL

Fuel Data

Composition by weigh	<u>it</u>	Carbon	- 88.	5 1		
		Hyaruge	si- 10.	3 5		
		oxyreen	- 3.	4 %		
Higher Calorific Val	lue	83,360	C.H.U.	per g	allon.	K
		10,090	G.H.U.	per 1	b .	
Specific Gravity at	20 degrees	Centigre	lde	.8R6		-6
Latent Heat		100 C.F	i.v. pe	r 15.		
Kinem die Viscosity	in abs. Cgs	. units	.0064	5(10	107 1	25
Yapour Fressure	Temperature V.P. in Em.	of Hg	10 C 56	20 C	30 C 170	
Distillation	Percent dis			50% F	nd point	nt

Not a minimum

Inc. Total

ADD	.M. " ox load tal tyre	340 100							10-56.1 F " 59.8 F
Av. speed mph.	Time of run min.sec	Wind	Exh.	Water	In.man	.Air		Wileag	
N 28.9 S 29.1 N 28.9 S 29.1 N 28.7 S 29.3 Tyre	5-58.5 5-21.4 6-4 5 5-23.5 5-51.7	0.4 2.1 0.7 2.9 0.8	280 280 280 260 275 260 275 260	148 151 146 152 148 150	13.1 14.0 13.0 14.2 13.0 14.1	77	29.32	29.15 31.9 35.3 38.07	25.8
N 37.9 S 38.0 N 38.0 S 38.0 N 77.9 S 58.1	3-57.8 4-35.5 4-1.8 4-34.2 3-56.5 4-38.5 pressures	Bac 3.5 0.9 4.0 2.0 4.7 1.2	28. 380 360 405 360 450 360 360 360	152 156 150 152 151 156 5	12.8 13.5 12.4 13.1 11.9 13.3	79	47.8 51.0 54.15	44.1 47.55 50.35 53.9 56.64 60.22	25.0 29.1 25.5 29.0 24.9 29.5
N 47.5 S 47.6 N 47.3 S 47.6 N 47.5 S 47.4 Tyre	2-52.8 3-27.1 2-56 3-25 2-52.9 3-31.8 Messures	5.5 2.0 4.6 3.0 5. 2 2.1		156 161 160 160 161 161	11.2 12.1 11.1 12.2 10.9 11.8 0 Samp	79 1e 2	69.79 72.79 75.74	66.35 68.98	22.8 27.4 9 23.1 = 27.1 22.8 27.8
57.5 57.4 57.6 57.0 57.6 57.6 Tyre	2-3.5 2-8.7 2-36,2 2-10.2 6-34.4 pressures	8.5 5.5 7.2 4.3 7.8 4.2 :- Fro	k 30. 680 645 645 630 645 615 615 nt 30	164 184 186 167 164 166	8.0 5.8 9.2 9.9 8.7 10.6	81	78.93 81.87 84.75 87.55 90.51 93.38	84.3 86.8 90.05 92.57	19.7 24.3 20.5 25.0 20.6 24.7
63.1 67.5 67.3 67.4 67.0 67.5 Tyre p	1-31 1-49.4 1-34.2 1-51.2 1-37.5 1-44.5 ressures	11.5 7.0 10.0 7.7 11.0 6.8 :- Froi	k 30.1 710 690 720 670 710 685 11 30.1 631.	171 171 172 173 173 174	7.0 5.0 7.1 5.5	82 33		01.45 03.96 03.55 11.25	17.2 20.5 17.6 20.8 18.1 19.6
Accel	eration						•		
Direc Accel	tion . time in	second			5 21.	.9 2	s	-	1.9
-		1 Carl	an l	-					

Г

-

SHIT A DRIV

a (aller

nio se

12.52

No.

Mar H

	*	
1.0		
Televit	•	
1.1 -		

		100
		11.
240	0.00	100
0.3	147	100
	5-6	

			- 20	
	-			
5			1	
			1.6	

-	1	
2		
-		000

-		
	-	50
	×	

-

talization and

TABLE 22 B. Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of Hg 25.11 vapour Pressure of moisture in atmosphere (Average). Ins of Hg 0.390

				-		A
Car Speet in m.p.h.		0.68	38.0	47.5	57.4	67.5
wind Pressure, inches of water.	N S	2.4	4.1	5.1.	7.8	10.8
Absolute Wind Velocity in direction of motion, m.p.h.	,	9.7	10.0	8.9	7.3	6.8
Hean Tyre Pressure, 1bs/sq in	18	27.7	28.4	29.1	29.9	30.5
Mean Air Temperature Cent.	_	25.0	25.6	86.7	27.2	27.8
Miles per gallon	n S	25.7 89.1	25.1 29.2	22.9	20.5 24.7	17.6 20.3
Simple Mean M.P.G.		27.4	27.1	25.1	22.5	18.9
Inlet Manifold Pressure, inches of Hg absolute	N S	10.2	10.8	12.8 11.2	14.8 13.2	18.1 26.4
Average.		9.6	10.3	11.7	14.0	17.2
Exhaust Gas Temperature degrees Centigrade. (above atmospheric) Average.	N S	322 318 320	435 400 417	585 557 571	640 632 631	690 668 679
Cooling Water Temperature at entrance to radiator, degrees Fahrenheit.	N S	147 151	151 158	159 161	165	172 173
Average (converted to Cont.) Temperature Difference, water to air. Degrees Cent.		65 40.0	67.2	71.1	74.2 47.0	78.0 50.2
Acceleration Time (seconds)	N S	21.5 20.4		Ave	rage:-	20.9
Exhaust Gas Analysic 14.6 0.4		D2 2 (ostima		2 2.3	500 Ng (by d	liff)

Remarks :-

TABLE 22 C M.P.G. converted to Standard Basis.

Car Speed in m.p.h.	29.0	38.0	47.5	57.4	67.5
Reciprocal Mean M.P.G. of North & South runs.	27.3	26.9	25.0	22.3	18.9
a) Wind	2.3	2.5	1.6	0.9	0.6
Correction for:- b) Weight	-0.4	-0.3	-0.3	-0.2	-0.2
c) Barometer	0.1	0.2	0.2	0.2	0.3
d) Air Temp.	-1.7	-2.1	-2.7	-3.1	-3.6
e) Tyre Preds.	0.8	•		-	0.1
Total correction- %	1.0	0.3	-1.2	-2,2	-2.8
Corrected Miles per Gallon	27.0	27.0	24.7	21.6	10,4

TABLE 22 B.

.

- 1 L I

-

-

1100

B. Summarised Results of Table A.

.

ł

1

Mean Barometric Pressure corrected for altitude. Ins of Hg \$5.11 vapour Pressure of moisture in stmosphere (Average). Ins of Hg 0.390

tar S. eed in m.p.h.		00.0		1		
ar 2.000 In mopon.		29.0	38.0	47.5	87.4	67.5
Wind Pressure,	м	2.4	4.1	5.1	7.8	10.8
inches of water.	3	0.6	1.4	2.4	4.7	7.2
Absolute Wind Velocity						
in direction of motion, m.p.h.		9.7	10.0	8.9	7.5	5.8
Mean Tyre Pressure, 1bs/sq in	.8	27.7	28.4	29.1	29.9	30.5
Mean Air Temperature Cent.		25.0	25.6	26.7	27.2	27,8
Miles per gallon	N	25.7	25.1	22.9	20.5	14.6
	3	29.1	29.2	27.4	24.7	20.3
Simple Mean M.P.G.		27.4	27.1	25.1	22.5	18.9
Inlet Manifold Pressure,	N	10.2	10.8	12.2	14.8	18.1
inches of Hg absolute	S	9.1	9.9	11.2	13.2	16.4
Average.		2.6	10.3	11.7	14.0	17.2
Exhaust Gas Temperature	N	322	435	585	640	690
degrees Centigrade.	S	318	400	557	622	688
(above atmospheric) Average.		320	417	571	631	679
	N	147	151	159	165	172
Cooling Water Temperature at entrance to radiator,	S	151	155	161	166	173
legrees Fahrenheit.				71.1	74.2	78.0
Average (converted to Cent.) Temperature Difference,		65	67.2	1794		
Mater to air. Degrees Cent.		40.0	41.6	44.4	1 27.0	50.2
Acceleration Time (seconds)	N	21.5				90.0
	S	20.4		Ave	rage:-	20.9
Exhaust Gas Analysis 14.6	%00	2	- 50	2 2.3	7500	
0.4	CH.	(estima	ted) 8	8.7 9	No (by d	(171)

M

Remerks :-

Car Speed in m.p.h.	29.0	58.0	47.5	57.4	67.5
Reciprocal Mean M.P.G. f North & South runs.	27.3	26.9	25.0	22.3	18.9
s) Wing	2.8	2.5	1.8	0.9	0.6
Correction for:- b) Weight	-0.4	-0.5	-0.3	-0.2	-0.2
c) Barometer	0.1	0.2	0.2	0.2	0.3
	-1.7	-2.1	-2.7	-3.1	-3.6
d) Air Temp.	0.2	•	-	-	0.1
e) Tyre Press.	1.0	0.5	-1.2	-2.2	8.8-
Total correction-	27.0	:7.0	24.7	21.0	18.4

	-
Citra .	
and the second se	
and the second second	
ADDRESS IN ADDRESS OF THE OWNER	
A DESCRIPTION OF TAXABLE PARTY.	Tabl
and which the state of the stat	
and the second second	
Voted AL Deep St.	
A PERSONAL PROPERTY AND	
A DESCRIPTION OF ADDRESS	
statement next and	Spee
And in the other designation of the	
	Com
the furnished and such	
Property and the same	18
and the second division of the second divisio	Volu
Second Cold Second	VOT
	Diti
State of the second states	
Concession in the state of the	The
solution for site in cases	Air,
and the second s	
- A STREET,	Wei
NUMBER OF STREET, STRE	gal:
And Personal Provide Advances	
International and	Tab
A DECEMBER OF A	
Support and paint	870
defaultion of something or	010
And Personnel in Concession of Street, or other	
Report of the local division of the local di	Hea fro
seer la car, banked	11.0
TAR DOLLARS THE OWNER.	
and the second se	Hea
Address of the Party of the Par	tra
and the second second	
Contract of the local division of the	Hea
Contraction of Contra	(a)
1990 C	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(b)
Conservation of the local division of the lo	
the second se	
Contraction into a construction	(c)
With and Impaction	
A DECK COMP C - A TANK THE PARTY	
F (r	Hea
water and the second second	Coo
1 (a)	
2.10	Una
5.10	
1.10	

A root level from Boarse

le 22 D Volumetric Efficience & Air/Fuel Ratio Ideal Air/Fuel Ratio 13.3 Average Molecular Teight 78 Mixture Density relative to Air 1.048 ed in n.p.h. 29.0 35.0 \$7.5 pression Temperature 433 417 394 a Pressure 9.4 10.9 9.9 .208 umetric Efficiency . 264 . 227

57.4

368

12.7

. 330

.337

12.7

-

113

67.5

348

15.05

.413

.421

13.4

-

119

to to std. Basis .206 .226 .267 10.4 111.2 oretical Air/Fuel Ratio 9.6 12.5 /Fuel ratio (exh. anal.) * ght of exhaust gas per lon of fuel 94 101 87.5 22 E Heat Balance 10

Speed in m.p.h.		29.0	35.0	47.5	57.4	67.5
Heat available from fuel	CHU/3a1	83360 100	83360 100	83360 100	83360 100	83360 100
Heat to tractive effort	CHU/gal	17450 21.0	20850	23100 27.7	24250 29.1	24100 29.9
Heat to exhaust (a) Sensible	CHU/gal	7110 8.5	10150 12.2	15400 18.5	19200 23.1	22000 26.4
(b) Latent	CHU/gal	3280 3.9	3520	3790 2.5	4230 5.1	4450 5-3
(c) Unburnt gases	CHU/gal	9	7	5860 7.0	?	7
Heat to Cooling water	CHU/Sal	33000 39.6	28800 34.5	24900 29.9	20750 24.9	16750
Unaccounted for	ź	(27.0)	(24.1)	12.4	(17.8)	(20.2)

Mixture by volume of :-

-

(anthe selected

50 parts ETHYL ALCOHOL 40 " PETROL 10 " BENZOL

Fuel Data

HODRIG HODRIG	CHLDON - 08-0 %
	Hydrogen - 13.2 %
	Oxygen - 17.8
Higher Calorific Walue	70,160 C.H.U. per gallan
	9,040 C.H.U. per 1b.
Specific Jravity at 20 degree	s Centigrade777
Latent Heat	143 C.H.U. per 10.
Minematic Viscosity in abs. S	ge. units .00930(10130 T-20
Vacour pressure	

 Temperature
 16 C
 20 C
 30 C

 V.F. in ma. of Hg
 45
 87
 160

Distillation

Composition by

Percent distilled 10% 50% End point Temperature 60 69.5 118 Puel No.23. 50% Alcohol-40% Petrol-10% Benzol

Table 23A.

		ximate lo l tyre pr			/sq 1n	s- fron	t 23.	back	28.	
	Av.	Thme of							110ag	
	speed mph.	run min.sec.	press.	Lemp.	Lemp.	VACIUM	temn			
		5-51.8	0.8	300 39 0	165	13.6	83		08.35	
	N 28.7	5-46.1	1.2	310	157	13.5		08.76	11.36 14.3	28.0
	S 28.5 N 28.7	5-57.6 5-53.6	1.8 4.7	300 300	152 158	13.2		14.5	17.33 20.32	28.3
	S 28,6	_ 5-53.5	2.5	300	151	13.3			23.11	
•	I have been a second	pressures	Bac	ck 28,	.5			100	10	
	N 37.9 S 37.9	4-6.7 3-50.9	1.5	440	130 158	12.6	85		26.15 29.0	
	N 37.9	4-10.5	1.5	460	160	12.6		29.36	32.0	26.4
		4-7.7	3.7	460 470	155 163	12.4		92.20	34.81 37.69	~D.0
	S 38.0	4-6.6	3.4	480	156	11.9			40.5	26.0
	Tyre i	pressures	Bac	nt 29 k 29						
	N 48.3		3.0	560	164	10.9	87		43.05 45.69	
		2-44.2 2-55		570 560	161 159	10.0		46.34	48.64	25.0
	S 47.5	2-43.2	4.0	560	161 162	9.8 11.5		49.15	51.3	21.5
	N 47.7 S 47.8	2-40.5	5.5	550 560	158	10.0		54.87	57.0	
	Tyre	ressures	:- Pro	nt 29. k 31.	5	a Sa	ple	2.		
	N 57.1	2-4.7	4.9	620	166	7.9	74	62.35	64.33	19.8
	S 57.1 N 57.5	2-5.5 2-5.2	5.6	610 630	150 151	8.2		68.06	70.06	20.0
	\$ 57.8	2-7.8	5.8	C20	152	7.6		70.6	72.65	20.5
	N 57.8 S 57.0	2-5.2	4.8	620 620	152 153	7.7		75.65		20.5
	Tyre ;	ressures	- Pro	nt 31 k 32						
	N 62.7	1-30.1	7.2	710	160	4.5	76		79.98	15.7
	S 67.2	1-29.5	8.0	700 6 90	161 161	3.3			82.59 85.24	16.
	N 67.0 S 65.8	1-30.8 1-3C.4	7.5	700	160	3.5		86.28		16.5
	N 67.4	1-30.8	7.3	880 700	161 160	5.0	77		93.27	
	S 68.3	1-29.7 ressures	8.4	nt 31						
			Bac	<u>k 32</u>						
	Ag	celerati	on test	8.			-			
		irection		econd s	P	1 S			S	

L

11mmannth

e mentiti

LOUN C

ALL LAN

THE OW

CONTRACTOR OF

TABLE 23

.

B. Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of Hg 25.C7 Vapour Pressure of moisture in atmosphere (Average). Ins of Hg 0.205

Car Speed in m.p.h.		28.8	57.8	47.6	57.4	67.1	
Wind Pressure, inches of water.	N S	0.9 2.2	1.8 3.5	2.9	5.0	7.3	
Absolute Wind Velocity in direction of motion, m.p.h.		6.3	5.5	6.0	1.3	2.0	
Mean Tyre Pressure, 1bs/sq in	28.1	28.9	29.5		31.5		
Mean Air Temperature Clent.	28.9	30.0	30.8		24.4		
Miles per gallon	N S	28.1 28.1	25.4	28.8 21.4	20.5	18.9 16.7	_
Simple Mean M.P.G.		28.1	25.8	22.1	20.1	16.8	
Inlet Manifold Pressure, inches of Hg absolute	N S	9.8	10.5	12.1 13.3	15.4	16.7 19.9	
Average,		9.8	10.7	18.7	15.4	19.5	
Exhaust Gas Temperature degrees Centigrade. (above atmospheric)	N S	348 340	186 192	172 878	127 118	677 688	
Avorage,		344	89	\$75	322	680	
Cooling Water Temperature at entrance to radiator,	N S	158 153	161 150	162 160	1.53 1.52	161 160	
legrees Fahrenheit. Average (converted to Cent.) Temperature Difference,		68.6	70.3	71.7	67.0	71.4	
water to air. Degrees Cent.		39.7	40.3	41.1	43.1	47.0	
Acceleration 'ime (seconds)	19.8		Ave	rage:-	19.9		

¿ (estimated) 86.3 (N2 (by diff)

Test rung at 60 and 70 m.p.h. and accel.tests were carried out first. Remarks:-

M.P.G. converted to Standard Basis. TABLE 23 C

Car Speed in m.p.h.	28.8	37.8	47.6	57.4	67.1		
Reciprocal Mean M.P.G. of North & South runs.	28.1	25.8	28.1	20.1	16.8		
a) Wind	1.8	0.8	0.7	-	-		
Correction for :- b) Weight	-0.4	-0.3	-0.3	-0.2	-0.2		
c) Barometer	0.1	0.1	0.1	0.2	0.2		
d) Air Temp.	-3.0	-3.8	-4.4	-1.6	-2.0		
e) Tyre Press.		-0.1	-0.2	-0.5	-0.1		
Total correction- \$	-2.1	-3.3	-4.1	-1.9	-2.1		
Corrected Miles per Gallon	27.5	28.0	21.1	19.7	16.5		

No. of Concession, Name						
And Street of St	Table 23 D	Volumetri.	C Tficie	ncy & Ai:	r/Iuel R	atio
	Ideal Air/Fu		+	11	•7	
IN AN ADDRESS OF	Average Nole			61		
Defice the surgery	Mixture Dens	ity celatio	ve to Air	1	.041	
April spran	Speed in m.p.h.		26.8	37.8	47.6	57.4
and over 1990.	Compression Tempe	rature	417	398	370	340
and six may	Press	ure	9.6	10.3	11.9	13.9
Ling only solar	Volumetric Effici	ency	.219	. 246	. 306	. 391
	Ditto to std. Bas	is	.223	.254	.316	. 398
No. of Lot of Lo	Theoretical Air/F	uel Ratio	11.15	11.55	12.25	14.9
States and	Air/Fuel ratio (e:	kh. anal.)			12.7	1.4.6.2
arrang.	Weight of exhaust gallon of fuel	gas per	94.3	97.5	103	120.
Construction Construction Reports Health	Table 23 E	Heat Bal	ance	1.500.0		
AND AND A	Speed in m.p.h.		25.5	37.8	47.6	57.4
AND	Heat available from fuel	CHU/gal	70160 100	70160 100	70160 100	7016 100
arestronia -	Heat to tractive effort	CHU/gal	17400 24.8	19300 27.5	19700 28.1	2190 31.2
	Heat.to exhaust (a) Sensible	CHU/gal	8250 11.7	12500	15800 22.6	2020
100	(b) Latent	CHU/gal	4460 6.4	4620 6.6	4880	5710
AL DESCRIPTION OF	(c) Unsurnt ganes	CHU/gal	9	?	640 0.9	-
manant	Heat to Cooling water	CHU/Sal	32500	25600	19350 27.6	1680
			(10.7)	(11.6)	13.9	8.0

	11.7
	61
Air	1.041

beed in m.p.h.	26.8	37.8	47.6	57.4	67.1
mpression Temperature	417	398	370	340	321
Pressure	9.6	10.3	11.9	13.95	16.9
Dumetric Efficiency	.219	.246	.306	.391	.502
tto to std. Basis	.223	.254	.318	. 398	.512
meoretical Air/Fuel Ratio	11.15	11.55	12.25	14.5	15.75
r/Fuel ratio (exh. anal.) ight of exhaust gas per llon of fuel	94.3	97.5	12.7 103	120,5	- 130

Speed in m.p.h.		28.8	37.8	47.6	57.4	67.1
Heat available from fuel	CHU/gal	70160 100	70160 100	70160 100	70160 100	701 60 100
Heat to tractive effort	CHU/gal	17400 24.8	19300 27.5	19700 28.1	21900 31.2	21550 30.8
Heat.to exhaust (a) Sensible	CHU/gal	8250 11.7	12500 17.8	15800 22.6	20200	24000 34.3
(b) Latent	CHU/gal	4460 6.4	4620 6.6	4880 6.9	5710 8.1	6160 8.8
(c) Uncurnt ganes	CHU/gal	?	?	640 0.9	-	-
Heat to Cooling water	CHU/Sal	32500	25600 36.5	19350 27.6	16800 24.0	13800 19.7
Unaccounted for	%	(10.7)	(11.5)	13.9	8.0	6.4

Mixture by volume of :-

40	parts	ETHYL ALCOHOL
40	11	PETROL
20	11	BENZOL

Fuel Data

Composition by weight

Higher Calorific Value

Specific Gravity

Latent Heat

-85

Rollin address

ALCONT ON

Kinematic Viscosity

Vapour Pressure

Distillation

Carbon - 73.3 % Hydrogen- 12.6 % 0xygen - 14.1 % 73,320 C.H.U. per gallon 9,340 C.H.U. per 1b. .785

133 C.H.U. per 1b. .00349(1-.0140 T-20)

 Temperature
 10 C
 20 C
 30 C

 V_P_ in mm. of Hg
 52
 97
 175

Percent distilled 10% 50% and point Temperature 58 67 142

Fuel No. 24 40% Alcohol-40% Petrol-20% Benzal 21st September A.M.

Table 24A

8.50 A.M. Barometer-24.808 ins Hg Dry bulb-62.0 P Wet bulb-55.7 P 3.00 P.M. 24.736 TS Brown 55.7 P

Approximate load 380 lbs

Initial tyre pressures, 1bs/sq ins:- front 27, back \$7.5

Av. speed	Time of	Wind press.	TAMD.	P States	In.man.	Air	1	Mileage	es:-
mph.	min.sec	.insH ₂ 0	galvo	P	ins Hg	F	Begin	and	SILVINIC
N 29.0 S 29.1	5-40.1 5-58.9	1.3	295	136	13.9	58	98.8	01.34	27.4
N 28.9	5-39.3	1.4	30 0 30 0	138	13.7		11.6	04.5	29.1
S 28.6	5-58.9	1.2	300	138	13.6		04.7	07.42	27.2
N 28.6	5-39.6	1.1	290	139	13.9		07.74 10.78	10.59	
S -	-	1.2	290	139	13.8		13 77	16.64	27.0 28.7
	pressure	es:- Tro	ont 26			r sto			sinutes.
¥ 37.9	3-32.3	2.2	<u>28 27</u>				17.0		
S 37.6	4-27.7	1.8	390	140	13.0 12.9	68	16.9	19.14 22.57	(22.4) 27.5
N 38.2	5-53.6	2.1	400	142	12.6			25.36	24.8
\$ 37.8	4-19.2	1.9	390	142	12.5			28.56	
N 38.2	4-1.8	2.2	405	148	12.8			31.45	
\$ 37.9	4-19.4	2,2	380	143	13.0		31.77		27.3
tyre	pressures							1.00	
N 47.1	2-50.4	08C	27.5	146	11.3	68	34.77	37.0	22.3
S 47.3	2-58.9	3.5	570	145	11.0	00	37.7	40.05	
N 47.2	2-54	3.2	560	148	11.6		40.5	42. 78	22.8 0
S 47.8	3-1	3.9	560	147	10.9		43.35		24.0 .
N 47.3	2-55.3	3.2	555	149	11.6		46.18		23.0
\$ 47.2	3-1.9	4.0	570	147	10.8		49.08	51.44	23.8
Tyre	ressures		it 28.0)	e Sam	le 3			
-		back		152	9.0	71	101	53.95	20.1
N 57.2	2-6.5	4.9	610 610	150	8.9	1		56.75	
S 56.7 N 57.4	2-5.2 2-1.1	5.0	610	151	9.5		57.58	56.75	19.3
S 57.0	2-7.7	5.8	620	.151	9.1		60.37	62.39	20.2
N 57.4	2-10.5	5.2	620	152	8.6		63.21	65.29	20.8
S 58.1	2-12	6.2	620	152	8.9		65.9	68.03	21.3
Tyre r	ressures	- iron	1 28.5)					
		back		162	5.2	74	A6.99	70.61	17.2
. 88.3	1-30.6	8.4	680 680	161	4.3		71.75	73.55	16.0
S →	-	8.5	710	163	5.0		74.64	76.4	17.6
N	1-35	9.0	680	165	5.3		77.4	79.15	17.5
S 3C.4 N 67.5	1-30	7.8	680	164	5.1			81.85	17.7
S 67.1	1-35.1	8.0	580	163	4.0	77	83.01	84.78	17.7
Tyre p	ressures	- ITON	1 28.2	5					
		back	29						

Acceleration tests.

Direction Accel. time	in	seconds	N 19.8	S 20.4	N 19.6	20.1	
							in succession of the local division of the l

gs exprate

Salsagnot

Hinter De

10110001

M arezel

18 Amints

Thease of

ellitato.

TABLE 24 B.

Summarised Results of Table A.

yean Barometric Pressure corrected for altitude. Ins of Hg 25.11 yapour Pressure of moisture in atmosphere (Average). Ins of Hg 0.345

Car Speed in m.p.h.		28.8	37.9	47.3	57.6	67.3
Wind Pressure, inches of water.	N S	1.3	2.2 2.0	3.8		7.9 8.5
Absolute Wind Velocity In direction of motion, m.p.h		1.0	0.7	2.0	2.2	1.1
Mean Tyre Pressure, 1bs/sq in	ns	87	27	27.8	28.6	88.0
Mean Air Temperature Cent.		17.8	19.5		45.5	23.5
Xiles per gallon	NS	28.7	27.3	23.8	20.4	17.7
Simple Mean M.P.G.		27.9	26.8	25.1	20.2	17.6
Inlet Manifold Pressure, inches of Hg absolute	n S	9.4	10.5	11.8	14.2 14.3	18.4 19)
Average.		9.4	10.5	12.1	14.2	18.7
Anhaust Cas Temperature egrees Centigrade.	N S	40	425	870 880	615 618	675 668
above atmospheric) Average.		140	427	575	616	670
Cooling Mater Temperature t entrance to radiator,	n S	.58 .58	142	145 146	15M 151	163 165
egrees Fahrenheit. Average (converted to Cent.)		58.9	61.1	63.9	66.4	72.8
Temperature Difference, Water to air, Degrees Cent.		41.7	41.7	45.5	44.2	48.9
Acceleration Time (seconds)	N S	20.8		Ave	age;-	19.9
Enhaust Gas Analysis	Ş.C.	20	100		500	

Remarks :-

TABLE C M.P.G. converted to Standard Basis. 20.0 37.0 57.5 87.6 67.8 Car Speed in m.p.h. 23.2 Reciprocal Mean M.P.G. 20.2 17.6 26.2 27.9 of North & South runs. . . a) Wind \$ Correction for :----. b) Weight 0.2 0.2 05 0.2 0.1 c) Baromster -0.9 -1.8 0.2 -0.2 1.0 d) Air Temp. 0.7 0.5 0.4 0.5 0.5 e) Tyre Press. -0.3 -1.0 1.1 0.5 1.6 Total currection- \$ 02.0 a0.1 17.4 ----88.5 Corrected Miles por Gallon

	and the second s
	T
and the second second	
	Table 2
	Idea
	Aver
ALLEN THE R	
	Mixt
	Speed in
	Compressi
per-binger: 17k long	
STATUS TON AND IN	Volumetri
	Ditto to
	the second se
Parton and other	Theoretic
THE SCHOOL PRINT	Air/Fuel :
stream for 2 mile	
	Weight of gallon of
rises) des Treparen	
	Table 9
and	
and the state of the local data	Speed in a
Agent Palenting	
A DESCRIPTION OF THE PARTY OF T	Heat avri
Southern of the lot of	from fuel
and statements of the local division of the	
al man particular 1	Heat to tractive
station out toold	
Contraction of the local distance of the loc	Heat to e
	(a) Sensi
1.500	
	(b) Laten
10.000	
Acres of Long St.	(c) Unbur:
LALY CASE ADDRESS	gases
AGY DESC A APPORT	
1 34	Heat to
NAME AND ADDRESS OF	Cooling w
10	
EQL .	Unaccount
de la compañía de la	
L.R.	Contraction of the
2.14	12
Contraction of the Contraction of the	A DECKS

AD THE MAXIM NAME

Table 24 D Volumetri	c fficie	nc- & Ai	r/Wel a	atic	
Ideal Air/Fuel Hatio			2.15		
Average Molecular Veig		6			
Mixture Density relat:	ve to Air		1.043		
Speed in m.p.h.	25.5	37.9	47.3	57.6	67.3
Compression Temperature .	413	392	368	349	327
" Pressure	9.2	10.1	11.3	12.85	16.4
Volumetric Efficiency	.212	. 245	.292	. 350	.478
Ditto to std. Basis	.209	. 243	.290	. 351	.482
Theoretical Air/Fuel Ratio	10.6	11.6	12.25	12.8	15.4
Air/Fuel ratic (exh. anal.)	-	-	12.8		
Weight of exhaust gas per gallon of fuel	91	99	104	104.5	129
Table 24 E Heat Ba	lance				
Speed in m.p.h.	25.5	37.9	47.3	57.6	67.3
Heat avrilable CHU/gal from fuel >	73320	73320	73320	7:389	73320
Heat to CHU/Sal tractive effort %	17900	20500	21800 29.7	22350 30.5	22800 31.1
Heat to exhaust CHJ/gal (a) Sensible	7900 10.8	11000	15950 21.8	18100 24.7	23500 32.1
(b) Latent CHU/gal	4100 5.6	4450 6.1	4680 6.4	4890	5800 7.9
(c) Unburnt CHU/gal gases	9	4	640 0.9		
Heat to CHU/gal Cooling water ~	45500 48.5	28300 38.6	228CD 31.1	17700 24.2	15350 20.9
Unaccounted for %	(10.7)	(12.4)	10.1	13.9	8.0

FUEL No. 25.

Mixture by volume of :-

30 parts ETHYI "COHOL 40 PETROL 30 " BENZOL

Fuel Data

Higher Calorific Value

Composition by weight

Specific Gravity

Latent Heat

Kinematic Viscosity

Vapour Pressure

1,630 C.H.U. per 1b. .79 127 C.H.U. per 1b. .00741(1-.0116 T-20)

76,480 C.H.U. per gallon

Carbon - 75.5 %

Hydrogen- 12.0 %

oxygen -10.5 %

Temperature 10 C V.P. 1n mm. of Hg 55 20 C 102 30 C 184

Distillation

Temperature

Percent distilled 10% 50% End point Temperature 57 65 137

Automation Sal

And at 141

ALC: N

.Tel + - + + - + 7/2

1000

State State of States

8.30 A. 3.00 P.	M. Baron	eter-24 24	.760	ins Hg	Dry b	ulb-6	1.4 P 1.1 P	et bu	10-48.6 54.8	P P	
	ximate lo al tyre p			s/sq 1	ns- fro	nt 28	, back	29.			
Av. speed mph.		press.	temo.	tema	In.man vacuum ins Hg	tema		Vileage End	es :- DITTALC		
\$ 29.0	6-0.2 5-40.2 5-4.1 5-39.8 6-2.5 pressures		300 295 290 t 27.1	138 138 138 139 139 139	13.8 13.7 13.8 13.8 13.9 13.6		72.4 75.55 78.58 81.68	78.28	29.0 27.3 29.2 27.4		
N 37.8 S 37.7 N 37.9 S 37.8 N 38.2 S 38.1 Tyre	4-8.6 4-24.4 4-10.4 4-26.5 4-12 4-25 pressures		390 395 390 400 400 390 20	142 141 143 143 143	12.9 13.2 13.3 13.0 13.1	66	90. ·8 93.81 95,77 99,8	90.44 93.55 96.45 99.57 02.47 05.67	27.7 26.4 28.0 26.7		
N 47.3 S 46.4	3-0.4 3-14.8 3-0.4 3-16.1 3-0.3 3-18.1 pressupes	back 3.4 3.0 3.7 3.2 3.7 3.1 :- fron	29 575 560 580 570 570 570 560 529	146 145 147 146 148 147	11.4 11.3 11.4 11.5 11.5 11.9	68	11.7 14.54	11.37 14.09 17.1 19.78	25.2 23,9 25.6	_	
N 56.8 S 57.1 N 57.4 S 57.1 N 57.2 S 57.2 Tyre T	2-13.7 2-18 2-15 2-19.6 2-14.1 2-19.8 pressures	5.4 5.3 4.9 5.4 5.6 5.5 ;- from	30 625 640 620 630 635 630	151 149 150 151 152 151	9.6 9.3 9.4 9.0 9.3 9.1	70	25.96 28.8 31.63 34.45	25.25 23.15 30.95 33.84 36.58 39.53	21.9 21.5 22.1 21.3		
N 67.4 S 67.7 N 67.8 S 67.4 N 68.1 S 68.1	1-39.6 1-39.1 1-40 1-39.1 1-39.1 1-39.1	Dack 7.5 8.0 7.3 8.5 7.8 7.3 :- fron	32 710 705 710 700 710 705 705	159 157 158 158 159 159	5.2 5.2 5.4 5.8 5.8 5.8 6.0	72	40.34 43.1 45.91 48.7 51.58 54.35	44.97 47.78 50.57 52.46	18.4 15.7 18.7 18.7 18.8 16.8 18.4		X
	eration t	DACK	32.	5							

L

.

10 273/22 IM

HAT : Lorent

SHE TRATE

Spectring i

TALLAS IN

attiments.

TT MUNICIPY

TRELLINK

TABLE 25 B. Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of Hg 25.07 Vapour Pressure of moisture in atmosphere (Average). Ins of Hg 0.205

Car Speed in m.p.h.		29.0	37.9	47.1	57.2	67.5	
Wind Pressure, inches of water.	N S	1.4	2.1 B.2	3.6 3.1	5.3 5.4	7.5 7.9	
Absolute Wind Velocity in direction of motion, m.p.h.		1.6	0.3	1.5	0.8	1.0	
Mean Tyre Pressure, 1bs/sq ins		88.4	28.4	29	30.2	31.5	_
Mean Air Temperature Cent.		17.8	19.4	20.6	21.7	28.8	
Miles per gallon	N S	27.3 29.1	28.4 27.9	25.8	21.3 22.1	18.6	
Simple Mean M.P.G.		28.2	27.1	24.6	21.7	18.6	
Inlet Manifold Pressure, inches of Hg absolute	n S	9.4 9.5	10.1	11.9 11.6	13.9 14.2	17.9	
Average.		9.4	10.1	11.7	14.0	17.8	
Exhaust Gas Temperature legrees Centigrade. (above atmospheric)	n S	340 337	430 433	387 577	626 630	690 685	
Averege.		358	431	582	628	587	
Cooling Water Temperature at entrance to radiator,	N' S	138 139	143 142	147 146	151 150	159 158	
legrees Fahrenheit. Average (converted to Cent.)		59.2	61.4	63.6	65,8	70.3	
Temperature Difference, water to air. Degrees Cent.		41.4	42.0	43.0	44.	48.1	
Acceleration Time (seconds)	n S	19.5 20.5		Ave	rage:-	20.0	
Exhaust Gas Analysis	9:00		3 %0	2.0	%CO	iff)	

Remarks :-

TABLE 25 C N.P.G. converted to Standard Basis.

Car Speed in m.p.h.	29.0	37.9	47.1	57.2	67.5
Reciprocal Mean M.P.G. of North & South runs.	23.2	27.1	24.1	21.7	18.6
a) Wind	-	-	-		10000 100
Correction for :- b) Woight	-		-	-	
c) Barometer	0.1	0.1	0.1	0.2	0.2
d) Air Temp.	0.8	0.2	-0.8	-0.7	-1.0
e) Tyre 1 ress.	-0.2	-	-		-0.1
	0.7	0.3	-0.1	-0.5	-0.9
Total correction- %	28.4	27.2	54.1	21.0	10.4

- Street L	
COMPANY OF THE OWNER	
A REAL PROPERTY AND ADDRESS OF TAXABLE PARTY.	Ta
-ladition) - annual surface	
A REAL PROPERTY.	
of the second second second	
And Descent and	
STATUT TH makel	
A constant of the second se	Sp
Woold Lais protont	
and the second division in which the second division is not the second division in the second division is not the second division in the second division is not the second division in the second division is not the second division in the second division is not the second division in the second division is not the second division is not the second division in the second division is not the second d	Co
the first Presson 1286	
P MELSOLADOVY TAL AND	
BRITAN TOT BALLS	Vo
*	Di
AND MALES	Th
manufaction and state	
statutes of to same	A1
inganova .	We
station and formations	ga
California Amat. rammo	
Intracipation avenue	Ta
A REPORT OF	
Managanie maders anlants	Sp
PRODUCED IN A SUBJECT OF THE	
Contractory overcome	
A R.R. (Million of the Association of the Associati	He fr
A strength of state of sold and	
And I should not see the	
And I have a strength of the strength of the	Не
Carlson of the Automation of t	tr
ARREST OF DESIGN	
22 June 11	He
NAME ADDRESS OF TAXABLE PARTY.	(a
Real and the second second	(b
AR Statement	
And in case of the local division of the loc	
My fam 21 Auton me	(c
BALLY CALL FOR STREET	
AREA DADAD IN ADALST TO	
and the second s	He
A Filterantain demander	Co
MT CF	
111	Un
and all	011

A. 14

1.10

STREET, LATT

NO THE BELLE AND THE OWN

oling water

accounted for

N

%

(15.1)

Average Molecular Weitht 69 Mixture Density relative to Air 1.045 beed in m.p.h. 29.0 47.1 67.5 37.9 57.2 mpression Temperature 420 354 332 405 378 11 .11 Pressure 9.2 15.8 9.7 10.95 12.7 lumetric Efficiency . 209 . 342 .449 . 229 .276 tto to std. Basis . 208 . 343 .276 .453 .228 ecretical Air/Fuel Ratio 10.4 11.0 11.9 13.3 15.1 r/Fuel ratio (exh. anal.) 1 13.3 -ight of exhaust gas per llon of fuel 90.7 95.2 102.5 133.5 128 25 E ble Heat Balance 67.5 57.2 eed in m.p.h. 29.9 37.9 47.1 76480 76480 76480 CHU/gal 76480 at available 76480 om fuel 100 10 24100 22500 29.5 24000 CHU/gal at to 17950 23.5 21000 27.4 31.4 active effort 10 15900 19200 25.1 24000 10650 at to exhaust CHU/gal 7840 31.4 13.9) Sensible 10.3 CHU/gal 4260 4720 5310 3.2 5.2 2770) Latent 400 0.6 CHU/gal) Unburnt 1 -9 ,0 gases 15900 23400 19000 29300 CHU/gal 35300 at to

ble 25 D Volumetric Efficiency & Air/Tuel hatio Ideal Air/Fuel Matio 12.6

12.4

12.9

(15.1)

9.3

PUSL NO. 28.

Mixture by volume of :-

- 20 parts ETHYL ALCOHOL
- 40 12 PETROL
- 80 7 BENZOL.

Fuel Data

<u>Distillation</u>	Percent dist	illed	10% 57	50% E	nd polr 142	ıt
Apour Pressure	Tomperature V.F. in T.	of Re	10 C 48		30 C 165	
Kinematic Viscosity			.00682((101	15 1-20	5)
Latent Huat		110 C.H	I.U. per			
Specific Gravity		.802				
		9,930	C.R.6.	per 1	b.	
Higher Calorific Val	<u>us</u>	79,640	с.н.у.	per g	allon	
		Orygen	- 6.5	, e.		
		Hydroze	m- 11.5	s 🤹		
COMPOSITION ON MALEN	<u>u</u>	garbon	- 21.0	2 2		

Percent distilled Temperature

Marrie Locality

0

Puel No. 26 204 Alcohol-404 Petrol-404 Benzol

Table 26;

RENTER PU WAY

8.30 A.M. Aarometer-24.808 ins Hg Dry bulb-62.0 P Wet bulb-55.7 P 24.736 " 78.0 P 5.1 P

Approximate load 340 lbs

Initial tyre pressures, 1bs/sq ins:- front 27, back 28.

sper	ed run	press.	Leamin	TOMIN	In.man.		N	lleare	s:-
וקוד	n. min.sec.	insH20	galvo	F	ins Hg	P	Berin	end	0171210
5 29.	5 50 0	0.8	280	153	13.9	82		92.5	27.4
1 28.6			300	150	13.3		92.75		28.8
5 28.		0.8	280 300	155	13.7			98.64	
28.8		1.3	270	151 156	12.9		98.8	01.63	
29.0		1.8	310	100	14.1 13.0		01.8	04.68	
TYPE	the same state of the		ont 27.	5	10.0		04.89	07.72	28.3
		Bac	k 28.	.5					
38.		2.0	360	156	13.8	82		10.63	28.9
38.0		2.7	395 410	157	13.0			13.68	27.7
37.9		2.8	380	160 155	13.4		10.9%	16.56 19.62	27.4
38.0		2.1	400	161	13.3		20.0	22.68	26.8
38.8		2.5	390	157	13.0		22.85		28.1
	preseures	s:- Pro	nt 28						~~~~
			<u>k 29</u>				75 07	10101 1444	
47.2		4.3	560	163	11.8	85	28.95	28.33	23.9
47.2		4.8	570 560	159 164	12.0		81.77		24.5 0
47.4		4.2	565	183	11.3		34.63		24.7
47.5		2.8	550	168	12.3		37.48		25.1
47.5	3-8.8	5.3	575	164	11.0		40.34		24.9
	pressures	- 280	nt 28.	5	e Sampl	le 4.			
57.7	2-11.7	5.5	640	171	9.3	85	43.28	45.37	21.1
57.4		6.5	655	168	9.0	00	45.04		21.9
57.6		5.0		171	9.4		48.84		21.7
57.6		7.0	680	167	8.4		51.66	53.85	21.9
57.7		5.4		169	10.0		54.48		22.2
57.7		6.5	660	167	8.7		57.3	59.52	22.2
Tyre		- Pro	nt 29.	5					
66.6	1-38.4	9.3	<u>k 31.</u> 720	177	6.5			62.23	18.4
67.1	1-3812	9.0	750	175	4.8		83.25	65.1	18.5
68.4		7.2	720	178	5.8		65.95		19.2
67.8		9.6	730	174	4.8		68.9	70.79	18.9
68.3		9.5	1-	176	*		71.61	78.57	19.6
67-1	1-42	9.5	730	174	<u> </u>	86	74.49	76.39	19.0
Tyre	pressures	:- Fro Bac	nt 31 k 32.						

Acceleration tests

Direction Accel. time in seconds	N 19.7	S 21.8	19.1	21.4	19.4	21.2.	

Lake how hat

Phenomen Contra

2012 Lances

All a Strength

Theory Income

antistates in

TABLE 28 E. Summarised Results of Table A.

.

Vapour Pressure of moisturs n atmosphere (Average). Ins o	of H	_	5.11 0.345			
ar Speed in m.p.h.		28.8	38,1	47.4	57.6	57.5
Wind Pressure, nchas of water.	N S	1.0	2.0	5.6	5.5	8.7 9.4
Absolute Wind Velocity n direction of motion, m.p.h.		4.5	2.6	3.5	3.5	1.3
Mean Type Pressure, 10s/sq in	15	87,7	28.2	28.9	29.8	30,9
Mean Air Temperature OCent.		27.8	28.3	28.9		
Miles per gallon	N S	28.3	27.0	24.5	29.4 21.7 22.0	89.4 19.0 18.8
Simple Mean M.P.G.		28.4	27.4	84.7	21.8	18.9
Inlet Manifold Pressure, nches of Hg atsolute	n S	9.3 10.0	9.7 10.2	11.2	13.7	17.4 18.8
Average,		9.6	9.9	11.6	14.1	17.8
Exhaust Gas Temperature egrees Centigrade. abovo atmospheric)	N S	320 348	425 425	578 582	640 665	696 705
Average.		334	425	\$77	658	700
Cooling Water Temperature t entrance to radiator, egrees Fahrenheit,	n S	155	159 156	162	170 167	177 174
Average (convertea to Cent.) Imperature Difference,		68.7	69.7	72.8	75.8	79.7
ater to air, Degrees Cent.		38.2	62.6	45.9	40.4	50.3
Acceleration Time (seconds)	N S	19.4 21.5		Ave	rage:-	80.4

Remarks :- Wind very gusty

TABLE 26 C U.P.G. converted to Standard Basis.

Car Speed in m.p.h. Reciproca. Mean M.P.G. of North & South runs.		28,8	36.1	47.4	57.6	67.5	
		28.4	27.4	24.7	21.8	18.9	
	a) Wind	0.5	0.1	0.2	0.1		
Correction for:- b) W	r:- b) Weight	-0.4	-0.5	-0.5	-0.8	-0.8	
	c) Barometer	0.1	0.2	0.8	0.2	0.3	
	d) Air Temp.	-2.8	-5.2	-5.6	-4.1	-4.3	
	e) Tyre Press.	0.1	0.1	-	-		
Total corre	ction- 1	-2.2	-3.1	-3.5	-1.0	-4.3	_
Corrected Miles per Gallon		27.8	28.6	83.9	21,0	18.1	

Advertisian and Destination

Property and Descent one own Print Con. Manual Print, Street, or other APRILIT INTO A CO. CONTRACTOR OF MURICIPAL STREET, STREET

Station Manhood Manhood

CON INSTOLS FRANKING APPENDIX OF No. Assess

And Address of the other distance of the oth

PORT ON TANK states and and and and the states of the state of the sta A 18 Million State of Cold

as here-can ; -Day and in Links

singless on courts 2 3 40 Mar

6.14

5 64

STRATES OF STREET, COLOR. TO THE AND ADDRESS

Table 26 D Volumetric Efficiency & Air/Fuel Ratio

Ideal Lir/Fuel Ratio 13.05 Average Molecular Teight

74

Mixture Density relative to Air 1.047

Speed in m.p.h.	28.8	38.1	47.4	57.5	67.5
Compression Temperature	435	428	396	380	356
" Pressure	9.4	9.5	10.85	12.8	15.7
Volumetric Efficiency	.206	.215	.262	. 322	.420
Ditto to std. Basis	.210	.221	.271	. 335	.438
Theoretical Air/Fuel Ratio	10.2	10.3	11.4	18.5	14.8
Air/Fuel ratio (exh. anal.)	-	-	13.0	-	-
Weight of exhaust gas per gallon of fuel	89.7	90.5	99.5	108	122

Table 26 E Heat Balance

		+				
Speed in m.p.h.		28.8	38.1	47.4	57.6	67.5
Heat available from fuel	CHU/gal	79640 100	79 640 100	79640 100	79640 100	79640 100
Heat to tractive effort	CHU/ga_ %	17600 22.1	20500 25.8	22350 28.1	23300 29.3	23750 29.8
Heat to exhaust (a) Sensible	CHU/gal	7640 9,6	10000 12.5	15300 19.2	19050 23.9	23300 29.3
(b) Latent	CHU/gal	3630 4.6	3660 4.6	4030 5.).	4370 0 - 5	4950
(c) Unburnt gases	CHU/gal	7	8	1230	7	-
Heat to Cooling water	CHU/Eal	35000 40 3	28200 35.3	23800 29.8	19700	16550
Unaccounted for	1/A	(23.4)	(21.8)	16.3	(16.6)	13.9

PUEL No. 27.

Mixture by volume of :-

CC

1

:10	parts	ETHYL ALCOHOL
40	-	PATROL
50	91	BENZÓL

Fuel Data

Distiliation	Percent dist Temperature	tilled	10% 57	50% D 72	151	nt
Vapour Pressure	Temperature V.P. in mm.		10 C 50	20 C 94	50 C 170	
Kinematic Viscosity	-		.00631	(101	02 7 2	5)
Latent Heat		59 C.H	.U. per	15.		
Specific Gravity		.810				
		10,220	C.H.M.	per 1	b.	
Higher Calorific Va	lue	82,800	C.H.V.	per g	allon.	
		wyger.	- 3.	4 %		
		Hydrog	en- 13.	0 %		
SCHOOPICIUN D. HOIN	nv	Carbon	- 85.	5 %		

densities (v)

VLYER LOCAL PROPERTY

*) right fact (w

Addate and the sea

FUEL No. 27.

Mixture by volume of :-

10 parts ETHYL ALJOHOL 40 "PATROL 50 "BURZÓL

Fuel Data

Composition by weight Carbon - 85.6 % Hydrogen- 11.0 % Oxygen - 3.4 % Higher Calcrific Value 82,800 C.H.U. per gallon. 10,220 C.H.U. per 1b.

Specific Gravity

Latent Hest

LAND & IN LYZE

ARCAE IN A COM

Kinematic Viscosity

Vegour Pressure

.810 99 C.H.U. per 1b. .00631(1-.0102 T 20) Temperature 10 C 20 C 30 C V.P. 1n mm. of Hg 50 94 170

<u>Distillation</u>

Percent distilled 10% 50% End point Temperature 57 72 121 Fuel No.27 104 Plcohol-404 Petrol-505 Benzol

Table 27A.

		prox. los itial typ			lbs/se	ing_ f	con t	29 he		
-	AV.	time of	Ind	Exh.	ater	In-man	ATT			
		run min.sec.			Lemp.	vacuum Ins Hg	I Star D			DIFTE
	29.0 28.7	5-15.7	2.5	280 300	154 155	13.1 12.9	79		13.0	25.4
X	28.5	5-21	3.0	290	151	12.0			16.51 19.22	
	29.4	6-5.6 6-21	1.0	280 280	154 149	13.3			22.78	29.8
	29.0	8-9-8	0.8	270	149	12.8		28.12	25.66 29.1	25.6
		pressures	Bac	ont 27 ck 27						
	37.8	3-49.4		490 380	157	11.2 13.0	81		31.72	
	37.8			490	156	11.5		35.5	35.23	28.4
S	-	7 40 8		390	158	13.2		38.55	41.5	29.5
	38.1 38.2	3-49.6	5.3	500 390	155 161	11.0		41.80	44.29	24.3
-		pressures	:- PTC	ont 28 k 29						
	47.0	2-47.5	7.2	590	181	9.7	82	48.03	50.22	21.9
	47.0	3-19 2-51	2.0	550 580	163 164	11.8			53.65	26.0
2 0,	47.7	3-23.1	2.7	560	165	11.2		56.91	59.6	26.9
N	47.9	2.39.3	6.3	600 550	166 166	9.7			62.07 65.55	
3	tyre	3-23.8 pressure	2.8 5:- M	ont 2	-	Bample	2	0		
T	50.8	1-57.1	9.1		100		85	60.0	67.85	18.5
S	57.5	2-24.7	3.4	640 670	168 163	9.2		68.85 71.7	71.16	25.1 19.7
	57.3	2-3.8	7.7			9.5		74.47	76.75	22.8
N	-		8.0	660	171	8.2		77.34 80.1	79.35 82.35	20.1
S	57.6	z-20.5	5.0	620 0nt 29	170	9.8		00.1	02.00	
			Bac	k 29.	172	5.0	81	84.35	84.86	15.1
	67.3 67.4	1-20.8	13.0	730	170	4.8		86.0	87,87	18.7
	66.9	1-27.7	9,0	740	173	4.5		89.06	90.89	16.3 19.2
S	87.7	1-42.1	6.5	730 730	174 175	5.0		94.68	96.35	16.7
	67. 7	1-28.7	11.5	720	171	4.5		00.05	01.77	17.2
-	Tyre p	ressures	:- PTC	nt 30.	5					
			Dat	5 000						
	Acce	leration	tests							
_										

N WA HOURSEN

2 annon th

el afi quin tit

in states

AND STORING

W. C.LT CRAMIT

ALTER THE

attait truth

TABLE 27 D.

Summarised Results of Table A.

18

Mean Barometric Prossure	
corrected for altitude. Ins of Hg Vapour Pressure of moisture	24.9
in atmosphere (Average). Ins of Hg	0.2

Car Speed in m.p.h.		28.8	38.0	47.5	57.3	67.4
Wind Pressure, inches of water.	N S	2.8	4.2	A.0 2.5	8.2	11.3
Absolute Wind Velocity in direction of mc on, m.p.h.		9.8	10,7	10.2	8.3	7.4
Mean Tyre Pressure, 1bs/sq in		27	127.8	28.7	29.2	82.3
Mean Air Temperatura Cent.		24.7	27.2	27_8	28.5	87.4
Miles per gallon	N S	25.5 29.7	24.1 89.0	21.9 26.6	19.4 22,3	33.0 18.C
Simple Mean M.P.G.		27.5	25.5	24.2	21.1	17.2
Inlet Manifold Pressure, inches of Hg absolute	n S	10.5	12.0	13.2 11.8	15.6 15.7	18. 18.?
Average.		10.2	11.0	12.5	14.6	28.8
Exhaust Gas Temperature legrees Centigrade. above stmospheric)	NS	330 330	518 426	500 570	657 630	702 548
Average.		330	472	585	643	673
Gooling Water Perperature at entrance to radiator, legrees Fahrenheit.	n S	151 155	156 159	164 165	186 170	173 172
Average (converted to Cent.) Temperature Difference,		67.2	69.7	73.6	76.1	78.0
Mater to air. Degrees Cent.		40.5	42.5	45.8	47.8	80.2
Acceleration Time (seconds)	N S	21.4 22.0		AT 6:	rage:-	21.7
Exhaust Gas Analysis 14.9	\$C)2 - (estima		1.4	300	

Remarks:-

Car Speed in m.p.h.	28.3	38.0	47.8	57.3	67.4
Reciprocal Mean M.P.G. of North & South runs.	27.4	26.4	24.0	20.9	17.1
a) Wind	2.9	2.9	2.1	1.2	0.7
Correction for:- b) Weight	0.5	0.4	0.5	0.5	0.2
c) barometer	-0.1	-0.1	-0.1	-0.2	-0,2
d) Air Temp.	-2.3	-2.7	-3.2	-3.6	-3.5
e) Tyre Press.	0,5	0.3	0.1	3.0	0.3
Total correction- #	1.8	0.8	-0.8	-2, '	-2.3
Corrected Miles per Callon	27.9	26.6	23.8	20.5	16.7

INDER OT OTHER OF A-TAN OF DAMPS AND

with the party of the local division of the

Tab.

printing is sold with a PERSONAL PROPERTY. Statute Line Tell statutes

IN LAW THE ARLE

and he was and a second from the second

132031

Digate the Tanger International Access ALC: NO.

probative theorem Wangstreet States reinstates. STREET, STREET

REPERTATION AND DESCRIPTION

2 22

the Lot all stands will

AND AND ADDRESS OF STREET, ST.

A STATUTE AND INCOME.

Statement PALS

2.75

13

to any matthe darment

10 27	D Volumeti	ric Efficien	nor 2. Air/Fuel	l Ratio
Ideal A	ir/Fuel Katio		13.5	
Average	Molecular Fei	liht	79	
Mixture	Density relat	tave to Air	1.049	
ed in m n	h			

Speed in m.p.h.	28.8	38.0	47.5	67.3	67.4
Compression Temperature	423	408	387	366-	348
" Pressure	10.0	10.5	11.7	13.2	16.5
Volumetric Efficiency	.226	.249	.290	. 340	24 68
Ditto to std. Basis	222	.248	.292	. 351	.478
Theoretical Air/Fuel Ratio	10.7	11.0	12.2	12.65	13.95
Air/Fuel ratio (exh. 1.1.)	-	-	13.0	1	-
Weight of exhaust gas per gallon of fuel	98	101	107	110.5	.81

Table 27 E Heat Balance

Speed in m.p.h.		28.8	38.0	47.5	57.3	67.4
Heat available from fuel	CHU/gal	82800 100	82800 100	82800 200	82800 100	82800 100
Heat to tractive effort	CHU/gal	17650 21.3	20500 24.8	92250 26.9	22600 27.5	21900 26.5
Heat to exhaust (a) Sensible	CHU/gal	8000 9.7	12500 15.1	16750 20.2	19200 23.2	22200 25, 8
(b) Latent	CHU/gal	3600 4.4	3840 4.6	4050 4.9	4200 5.1	4600 5.6
(c) Unburnt gases	CHU/gal	7	7	8800 4,6	1	7
Heat to Cooling water	CHU/gal	33800 40.8	29000 35.1	24950 30.2	19900 24.1	15480 16.7
Unaccounted for	d'	(24.8)	(20.4)	13.2	1.5.2)	(22.4)

FURL No. 28.

Mixture by volume of :-

40	parts	ETHYL ALCOHOL
50		PETROL
10	20	BENZOL

Miel Data

Composition by weight	cht Ca	arbon - 7	2.2 %	
	ң	yarceen 1	5.4 %	
	o	xyzen - 1	4.4 %	
Higher Calorific Ve	<u>lue</u> 73	2,760 C.H.I	U. per 🖢	allon
	5	9,440 C.H.I	T. per 1	b.
Specific Gravity	•	771		
Latent Heat	13	51 C.H.V.	per 1b.	
Kinematic Viecosity		.008	55(101	58 (-20)
Vapour Pressure	Temperature V.P., am. of Ne		2 C 98	30 C 175
Distillation	Percent distil Temperature	11ed 10% 59.5	50% 10 68.7	nd point 141.5

Entral Care State and a section of

Margari (6)

Fuel No. 28 40% Alcohol-50% Petrol-10% Benzol 14th September A.M.

5.30 A.M. Barometer-24.761 ins Hg Dry bulb-61.3 F wet bulc-52.8 F

Table 284

Initia	l tyre	pre	ssures	, 1bs/:	sq ins-	- front	28,	back 29).	
/v. spee mph			Wind press. insH ₂ 0			In.men. Vacuum ins He	temp		ll leage	PITTIO
N 29.3 N 29.3 S 29.4 N 28.9 S 29.2 Tyre	5-4 6-2 5-2 5-5	8.5.1.0.5		310 290 300 290 300 290 290	139 146 140 149 143 148	12,5 14.0 13.0 13.8 13.5 13.7	68	49.43 52.7 55.95 59.27	48.95 52.39 55.18 58.92 61.7 65.66	24.3 29.6 24.8 29.7 24.3 29.2
N 38.3 S 38.2 N 37.9 S 38.0 N 37.9 S 38.0	4-23 3-40 4-19 3-31 4-30	5.9 5.2 5.5 7.1	back 4.8 0.7 3.8 1.7 5.1 1.1	27 470 440 510 400 450 440 440 450 440	147 150 148 151 147 152	11.0 12.3 10.5 13.5 1170 12.5	72	78.12	71.7 74.25 77.84	22.3 28.0 23.2 27.4 22.9 28.5
N 47.1 S 47.4 N 47.0 N 47.3 S 47.0 S -	2-33 2-8 2-35 2-34 3-12	.6 8 5.4	5.3 6.8 3.0 2.3	 29 560 550 560 580 550 560 	151 152 153 151 154 154	10.0 10.7 10.0 9.5 10.8 10.9	75	87.3 90.25 98.27	86.38 89.78 92.08 98.3 95.78 01.6	24.9 20.3 20.3
S 57.5 N 57.2 S 56.6 N S 57.5	1-49 2-17 1-59 2-20		8.5	590 590 630 590 620 590 620 590	5 155 157 157 157 158	7.8 9.0 6.9 8.8 7.1 9.6	'78	05.0 07.92 10.65	03.95 >7.2 >9.73 12.86 18.49	22.0 18.1 22.1
5 66.5 5 66.5 8 67.2 567.4 8 65.9 5 67.4	1-20 1-38	-5 -5 -8 -6 -3	6.2 10.0 6.5 12.0 5.2	720 690 700 670 730 780	162 162 161 166 164	3.0 4.3 3.2 5.0 3.2 4.0	78	27.8	20.96 25.92 26.69 29.68 39.65 27.27	15.0 18.2 15.6 18.8 14.5 18.8

Acceleration tests.

Direction Accel. time in	seconds	N 22.6	S 21.3	N 22.7	20.9	4	

11

esture by w

CALCULATION OF

State of the

Indi Imazal

T. Manual Di

ANTE TRACEY

ATTALL TRACT

TABLE 28 B.

· 11 1100

B. Summarised Results of Table A.

Mean Barometric Pre. corrected for altitude. Ins of Hg 25.06 yapour Pressure of moisture in atmosphere (Average). Ins of Hg 0.304

		+		+			
Car Speed in m.p.h.		29.2	58.1	47.2	57.0	56.9	
Wind Pressure, inches of water.	N S	2.5	4.6	6.C 2.6	8.2	11.2	
Absolute Wind Velocity in direction of motion, m.p.h.		11.1	13.2	9.8	7.3	10.5	-
Mean Tyre Pressure, 1bs/sq ins	27.5	27.7	29.0	29.8	30.2		
Mean Air Temperature OCent.		21.1	23.3	24.4	25.0	25.6	
Miles per gallon	N S	24.5	22.7 28.0	20.2	17.6 22.0	15.1 18.6	_
Simple Mean M.P.G.		27.0	25.5	22.5	19.8	16.8	
	n S	20.8	18.5	13.5 12.5	16.1 14.2	20.1 19.3	
Average,		9.8	11.6	13.0	15.1	19.7	
degrees Centigrade. (above atmospheric)	N S	348 337 342	516 457 486	577 562 569	618 602	685 680 682	
Average,	_				610		
total ng the total and the total total	n S	141	147 151	152 153	156 157	162 164	
Average (converted to Cent.)		62.5	65.0	67.0	89.2	72.8	
Temperature Difference, water to air, Degrees Cent.		41.4	41.7	42.5	41.8	47.8	
the content of the forester the second secon	NS	22.5		Aver	age:-	21.8	
	%C0	2 (əst in s	2.6 %0 ted) 8		100 g (by c	liff)	

Remarks :--

TABLE 28 C M.P.G. converted to Standard Basis.

22.2	38.1	47.8	57.0	66.9	
26.8	25.1	22.3	19.6	16.6	
3.7	4.3	1.9	0.9	1.4	
8.0	1.7	1.4	1.2	0.9	
		-			
-2.4	-1.2	- 1.8	-2.1	-2.6	
0.5	0.3	•	0.1	0.2	
5.4	5.1	1.5	0.1	-0.1	
28.5	26.3	22.7	18.5	15,6	
	26.8 3.7 8.0 -0.4 0.5 5.4	26.8 25.1 3.7 4.3 2.0 1.7 -0.4 -1.2 0.3 0.3 5.4 5.1	26.8 25.1 22.3 3.7 4.3 1.9 2.0 1.7 1.4 - - -0.4 -1.2 - 6.3 0.3 - 5.4 5.1 1.5	26.8 25.1 22.3 19.6 3.7 4.3 1.9 0.9 2.0 1.7 1.4 1.2 -0.4 -1.2 -1.6 -2.1 -5.4 5.1 1.5 0.1	26.8 25.1 22.3 19.6 16.6 3.7 4.3 1.9 0.9 1.4 8.0 1.7 1.4 1.2 0.9 $ -0.4$ -1.2 -1.8 -2.1 -2.6 0.3 $ 0.1$ 0.8 5.4 5.1 1.5 0.1 -0.1

Last PLANADA, Salary of William, a Allower In A Parada a Allower In A Parada In Allower In Allower In Allower Allow

A.S. H AND MEAN

- Antion of the second states

...........

And a stranger of the second s

ABATERS AND A

- account

ALL SAME

August an implication

ADD FLORE & CRIPE IN

The second second second

OUT BALLY LOCATED

The Contract

18

Table28Volumetric EfficiencyAir/Duel RatioIdeal Air/Fuel Ratio12.3Average Molecular Veicht66Mixture Density relative to Air 1.043Speed in m.p.h.29.238.147.257

		38.1	47.2	57.0	66,9
Compression Temperature	413	385	367	360	328
" Pressure	9.6	10.95	12.05	13.7	17.2
Volumetric Efficiency	.223.	.271	.313	. 378	.500
Ditto to std. Basis	.210	.258	. 308	. 378	.500
Theoretical Air/Fuel Ratio	3.0.9	12.55	12.9	13.6	15.5
Air/Fuel ratio (exh. anal.)		-	14.05	in the second	-
Weight of exhaust gas per gallon of fuel	91.5	104.5	107.5	112.5	127.5

Thule 28 E Heat Balance

Speed in m.p.h.		29.2	38.1	47.2	67.0	66.9
Heat available from fuel	CHU/gal	72750 100	72760 100	72760	72760 100	72769 100
Heat to tractive effort	CHU/gal	17900 24.5	20400 28.0	21200 29.1	21800 29.8	21600 25.9
Heat to exhaust (a) Sensible	CHU/gal	7990 11.0	13340 18.4	16300 22.4	18400 25.4	R36 50 34.6
(b) Latent	CHU/gal	4000 5.5	4570 6.3	4700 6.5	4920 6.8	5580 7 c 7
(c) Unburnt gases	CHU/gal	•	•	•	-	-
Heat to Cooling water	CHU/gal	33850 46.5	28100 38.6	21760 29.9	17330 23.8	14100
Unaccounted for	%	12.4	8.7	12.1	14.1	11.4

FUEL No. 29

Mixture by volume of :-

80	parts	ETHYL ALCOHOL
50	**	PETROL
20		BENZOL

Fuel Dat

	ruel base				
Composition by weig	ht	Carbon	- 76.	5 %	
		Rydrog	en- 12.8	8 %	
		oxygan	- 10.	7 %	
Higher Calovific Va	<u>lue</u>	75,920	C.H.U.	per ga	llon
		9,750	C.H.U.	per 10	
Specific Gravity		.778			
Latent Heat		119 5.8	I.T. per	r 10.	
Kinematic Viscosity			.02760	(1013	3 t-20)
Vapour Presure	Temperature V.P. 1n mm.	of Hg	10 C 55	20 C 99	50 C 175
Distillation	Percent dist Temperature	111ed	10% 56	50% ID1	d point 144

_						e Dry		76.5	P 11	H 55	.3
		ox load						.1			
		ial tyre							(29.		
8	Av. peed aph.	min.sec							Mileag	DITTX	10
N 2	8.6	5-17 5-58.4	1.7 0.4	320 300	139 144	13.2 13.9	70	12.72	15.32	28.0	_
S 28	3.9	5-36.8	0.9	30 0 30 0	144 144	13.3		18.85	21.58	27.3	
N 23	.0	5-41 5-46.9	1.5	290 310	146 140	13.6		25.07	24.78	27.5	
T	rep	pressure	S:- PT	ont 28 ck 29	140	13.0		28.16	30.95	27.9	
N 57 S 37	.8	3-57.9 4-19.6	2.6	400	148	13.0	75		33.5		
N 38		3-54	3.1	390 450	148 149	12.8		34.07	36.79 39.51	27.2	
N 38	.2	4-15.8 3-52.4	3.3	430 470	150 152	13.9		39.97	42.68 45.35	27.1	
<u>S 38</u> Ty	re p	4-21.2 ressures	1.8	420 nt 28.	<u>154</u> 5	13.0		45.91	48.67	27.6	
	.5		Bac	K 29.	155	10.0	74	49.0			
S 4.7	.2	3-8.4	3.0	570	155	11.2		51.88	54.35		
5 47	.2	2-47.2 3-12.5	3.4	570	156	10.2		57.45	56.87 59.98	25.3	9
N 47 S 47		2-45.4 3-14.5	5.4 3.0	280	156 157	10.0		50 .24 62.95	62.4 65.5	21.6	9
Ty	re pi	ressures		nt 29 k 29	9 S	ample 1	•				
N 57		1-57.1 2-19.5	8.2	670 630	160 159	7.0	76		67.71 70.66	18.8	
N 57	.2	1-59.7 2-16.2	7.5	670 670	161 160	7.5		71.07	72.97	19.0 21.7	2
1 55	.0	2-0.4	8.0	650	160	7.8		76.6	78.54	18.4	
5 57 Ty:	re pi	2-21 ressures	5.5 :- Fro	630 nt 29	161	9.2		19.69	81.54	22.6	
57	1	1-25.2	12.0	k 30 730	163		76		83.68	15.9	
67. 68.		1-39.7 1-29	7.7	700 720	164 165	5.2			86.68	18.6	
67 67	0	1-41	8.2	680 740	168 166	6.5			92.05	18.8 16.6	
66	7	1-29 1-43.1	6.5	700	167	6.0			97.87		_
Tyr	e pr	essures	- Bacl	<u>k 32</u>							
Ac	cele	eration 1	tests								
					N	S	N	S			
I	lrec	tion	n secu	nds 2		20.0 21	1.1	20.6			

「大

R REF # 10 17.157

ø

t nationalis The form Line

1201120120

TABLE 22 B. Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of Hg 24.95 Vapour Pressure of moisture in atmosphere (Average). Ins of Hg 0.245 car Speed in m.p.h. 29.1 56.9 **be.**0 47.2 67.3 Wind Pressure, 3.0 N S 1.4 10.8 5.£ 5.1 7.9 inches of water. Absolute Wind Velocity 0.5 3.2 6.0 6.4 6.5 in direction of motion, m.p.h. Mean Tyre Pressure, 1bs/sq ins 28.5 28.6 28.9 29.2 30.2 Mean Air Temperature Cent. 28.2 22.8 23.9 24.4 24.4 Miles per gallon 24.8 27.4 21.8 18.7 16.5 N 18.8 8 28.5 25.2 22.2 Simple Mean M.P.J. 27.9 26.0 23.5 20.4 17.6 Inlet Manifold Pressure, 9.7 10.3 15.9 N 13.1 18.9 inches of Hg absolute S 12.1 14.8 17.4 Average. 8.7 10.2 12.6 15.3 18.1 654 700 47 0 590 350 Exhaust Gas Temperature N degrees Centigrade. S 350 448 583 640 678 (above atmospheric) 647 689 350 459 586 Average. 165 Cooling Water Temperature at entrance to radiator, 160 160 150 155 N 143 142 156 151 S degrees Fahrenheit. 71.1 74.2 68.6 Average (converted to Cent.) 61.4 65.8 Temperature Difference, 46.7 49.8 43.0 44.7 39.2 water to air. Degrees Cent. 21.2 Acceleration Time (seconds) N 20.7 20.5 Average:-3 0.4 502 0.4 500 14.6 \$002 Exhaust Gas Analysis 0.1 (Hg (estimated) 84.5 Mg (by diff)

Remarks :-

Car Speed in m.p.h.	29.1	38.0	47.2	56.9	67.5
Reciprocal Mean M.P.G. of North & South runs.	27.9	36.0	23.4	20.3	17.5
a) Wind	-	0.2	0,8	0,8	0.6
Correction for:- b) Weight	1.1	0.9	0.8	0.6	0.5
c) Baromater	-0.1	-0.1	-0,1	-0.2	-0.2
d) Air Temp.	-0.7	-1.0	-1.6	-1,9	-2.0
e) Tyre Press	-0.3	+	-	9.2	0.8
Total correction- #	-	-	-0.1	-0.5	-0.9
Corrected Miles per Gallon	27.9	26.0	23,4	20.2	17.4

the second

The statement of the second se

and marel in majoh. New Mercuret, Sand to estimaan estimation of section, Anti-Type (Vermine), 120 Anti-Type (Vermine), 120

sante Break M.F.S.

Talah Sewilling Transmit

-TERSONA

The second of a function of a second of a

a for substances in

O THE OWNER DOWN

2.16

2.14

Table 29 D Volumetric fficiency & Air/Suel Ratio

Ideal Air/Fuol Ratio Average Molecular Veight

12.75 70

Mixture Density relative to Air 1.04

Speed in m.p.h.	29.1	38.0	47.2	56.9	67.3
Compression Temperature	419	410	372	349	334
" Pressure	9.5	9.8	11.8	13.85	15.8
Volumetric Efficiency	.216	.826	. 303	. 379	.452
Ditto to std. Basis	.216	.228	.303	. 380	-456
Theoretical Air/Fuel Ratio	10.9	10.7	13.0	14,2	14.7
Air/Fuel ratio (exh. anal.)	-	-	12.85		-
Weight of exhaust gas per gallon of fuel	92.7	91	109	118	182

Table 29 E Heat Balance

Speed in m.p.h.		29.1	38.0	47.2	56.9	67.3
Heat available	CHU/gal	75920	75920	75920	75980	75920
from fuel		100	200	100	100	100
Heat to	CHU/gal	17650	20100	21900	22500	22800
tractive effort		23.3	26.5	28.8	29.6	30.0
Heat to exhaust	CHU/gal	8300	00	17100	20650	22900
(a) Sensible		11.0	14.4	32.5	27.2	30.2
(b) Latent	CHU/gal	4960 5.5	4120 5.4	4940 6.5	5350 7.0	5530 7.8
(c) Unburnt gases	CHU/gal	*	7	1120 1.5	Ŧ	-
Heat to	CHU/gal	32500	28800	23800	19100	15700
Cooling water		42.8	37.9	31.4	23.2	20.7
Unaccounted for	P	(17.4	(15.8)	9.3	11.0	11.8

FUEL No. 30.

Mixture by volume of :-

20	parts	THYL ALCOHOL
50	Ħ	PETROL
50	H	BENZOL

	Fuel Date				
Composition by weight	zht	Carbon	- 80.	9 🐔	
		Hydrog	en- 12.	1 🐔	
		Oxygen	- 7.	0 %	
Higher Calorific Ve	lue	79,060	C.H.U.	per ge	llon.
		10,060	C.H.U.	per 1	D.
Specific Gravity		.785			
Latent Heat		108 C.	K.U. pel	r 1b.	
Kinematic Viscosity	2		.00682	(1012	4 1-20)
Vapout Pressure	Temperature V.P. in mm.	of Hg		20 C	50 C 180
Distillation	Percent dis Temperature	tilled	10%	50% En	d point

	.30 A	M. Baro	meter-1		Ins He	Dry 1	bu15-4	7.0 F 1.7 F	et bi	Tu-38.	79
ALC: N		Approx. 1 Initial t	oad 38	0 1bs			(-	
	Av.	Time of run min.sec.	Tind	Exh.	Mater	In.mar	-417		¥11eag		10
えいようと	29.0 29.0 28.9 28.8 29.2 29.2 28.9	5-48.9 5-35.2 5-55.4 5-34.7 5-47.6	0.6 2.5 0.6 2.8 0.4 2.4	290 200 290 310 300 210 ont 28	138 135 136 136 136	13.7 13.1 13.5 12.8 13.8 13.1	56	48.19 51.25 54.23 57.3 60.2	51.0	27.0 28.3 28.8 28.1	
1 40 20	37.8 39.2 37.9	4-11.6 4-30.2 4-11.2 4-16.4 4-13.6 pressur as	1.5 3.5 1.5 3.4 1.8 3.1 :- Pro	100 360 41- 77, 400	138 137 140 137 139 126	12.8 12.1 13.0 12.2 13.4 12.2		69.1 71.95 74.99 77.82	68.81 71.75 74.89 77.52 8(.54 83.44	26.3 27.4 28.4 2.2	
N. NONNO	47.5 48.9 46.9 47.2 47.0 43.9	3-8.9 2-59.7 3-6.4 3-0.2 3-11.5 3-7.3 pressures	2.6 4.9 2.7 5.2 2.9 4.5	510 510 540 540 560 560 530 530	142 139 142 139 141 139	12.0 10.7 11.9 11.0		89.38 92.28 95.17		23.6	
0. 2. 0. 2 u.	56.2 56.0 57.0 58.6 57.0 57.1	2-21.7 2-13 2-22 2-13.6 2-24.1 2-14.5	4.9 7.3 4.5 7.0 4.0 6.8	580 570 640 650 650 660	144 1433 143 143 145 145 143	10.5 7.5 10.0 9.0 9.5 8.8	58	04.05 08.94 09.77 12.57	08.36 06.12 09.19 11.9 14.85 17.53	22.1 20.7 21.3 22.8 .1.3	
10 X 03	55.8	1-45.1 1-35.2 1-45.2 1-36 Insut	6.4 9.8 6.8	6901 72/1	149 149 150 150	7.0 4.6 7.5 5.5		24.05	22.95	19.5 17.4 19.5 17.6	
	AC	celeratio	on test	8	-						
-	DI Ad	rection cel. time	in se	conds	N 13.6	S 20.1	N 18.5	S 19.8		-	
-		16	7	-		-				2	

of the sector by the

Manuel Select

10.1.131 (m-1

REAL PROPERTY.

W ALL WORLD

BESL BROOM

Summer States

TABLE 30 E. Summarised Results of Table A.

65.4

6.6 9,9

6.5 30 8 16.1

19.5 17.5

Mean Barometric Pressure corrected for altitude. Ins of M Vapour Pressure of moisture in atmosphere (Average). Ins of M		0.05		-
Contra the of H	8 (+	.162	.)	
car Speed in m.p.h.	29.0	37.8	47.1	56.6
Wind Pressure, N inches of water. 5	0.5	1.5	2.7	4.5
Absolute Wind Velocity in direction of motion, m.p.h.	10.6	6.5	6.8	5.8
Mean Tyre Pressure, 1bs/sq ins	28 5	28.9	29.2	29.6
Yoan Air Temperature OCent.	12.2	13.3	13.9	15.0
Miles per gallon	28.2	27.1 26.5	24.7	22.5
Simple Mean M.P.G.	27.6	26.8	24.2	31.8
Inlet Manifold Pressure, N inches of Hg absolute	9.4	10.0	11.2	13.2

		67.0	20.8	24.2	31.8	18.2	
Inlet Manifold Pressure, Inches of Hg absolute	n S	9.4 10.1	10.0	11.2 12.4	13.2 14.8	16.1 18.4	
Average,		9.7	10.4	11.8	14.0	17.2	
Exhaust Gas Temperature legrers Centigrade. above atmospheric)	N S	340 350	415 44 0	552 587	636 653	678 698	
Avorage,		345	427	569	644	685	
Scoling Water Temperature t entrance to radiator, egrees Wahrenheit.	N S	138 135	139 137	142 139	144 143	150 149	-
Average (converted to Cent.) Temperature Difference.		58.0	58.9	50.3	62.0	65.3	
ater to air. Degrees Cent.		45.8	45.6	46.4	47.0	19.2	
Acceleration Time (seconds)		18.5 20.0		Aver	age:-	19.2	1
Exhaust Gas Analysis 14.5	%C0	2	0.6 %02	0.9	300		
	1000						

0.2 (estimated) 83.8 Ma (by diff)

Remarks :-

d

TABLE 30 C M.P.G. converted to Standard Basis.

29.0	37.8	47.1	56.6	66.4	
27.6	26.5	23.2	21.8	18.4	
3.4		1.0	0.6	0.6	
-	-	-	-		
-	-	-	- 1	~	
2.7	2.6	2.6	8.2	1.8	
-0.3	-0.2	-0.1	0.1	0.1	
5.8	3.4	3.5	2.9	2.5	
29.2	27.8	24.0	22.1	18.9	
	27.6 3.4 - 2.7 -0.3 5.8	27.6 26.5 3.4 .0 2.7 2.6 -0.3 -0.2 5.8 3.4	27.6 26.6 23.2 3.4 .0 1.0 - - - 2.7 2.6 2.6 -0.3 -0.2 -0.1 5.8 3.4 3.5	27.6 26.6 23.2 21.8 3.4 .0 1.0 0.6 - - - 2.7 2.6 2.6 8.2 -0.3 -0.2 -0.1 0.1 5.8 3.4 3.5 2.9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Tatle 30 D Volumetric Mfficiency	5 A.S / 7
Ideal Air/Fuel Ratio	a Air/Fuel Ratio
Average Mclecular Weight	13.15
	75
Mixt Density relative to Air	1.047

Speed in .w.p.h.	29.0	37.8	47.1	56.6	66.4
Compression Temperature ""Pressure Volumetric Officiency Ditto to std Basis Theoretical Air/Fuel Ratio Air/Fuel ratio (exh. anel.)	410 9.5 .222 .210 10.95	396 10.0 .242 .234 11.7	374 11.05 .283 .273 11.9	352 12.7 .346 .337 13.8	333 15.0 .432 .472 14.6
Weight of exhaust gas per gallon of fuel	94	1.30	13.15	116	122.5

Table 30 E Heat Balance

Speed in m.p.h.		29.0	37.6	47.1	56.6	66.4
Heat available from fuel	CHU/gal	79080 100	79080	79080	79050	79050
Peat to tractive effort	CHU/gal	15500	21450 27.1	22450 28.4	249C0 31.4	24800 31.3
Heat to exhaust (a) Sensible	CFU/gal	5250 10.5	11070 14.0	15350 19.4	20200	23000
(b) Latent	CHJ/gal	3930	4180 5-3	4220 5-3	4850 5.1	5120 6.5
(c) Unburnt gases	CHU/gal	7	7	2310 2.9	*	
Heat to Cooling water	CHU/Bal	40850 51.6	33000	25550 32.3	21350 27.0	16800
Inaccounted for	%	(9.6)	(11.9)	11.7	10.0	12.0

AND ADDRESS TO ADDRESS.

the second property in

distances and the second state

Police To a limited of and the second s AND DRY PRASMING THE CONTRACT OF STREET

SOLLINE THE OWNER.

Solution of the Party of the Pa the second

etallists of the lateral

anumint.

deputrice over

-Westing

Designer Total att. Alafontist risters HE DATABASE () ADDIVISION

AND THE PARTY AND A DESCRIPTION OF A DES

Alteriary and Analysis

2 2 VE BARS

-2-14

10

S. de

2

The Bread to Apple

Antis and consigned

WINDOWSKIDS, DRIVE

+ 110234254

digit of lands the

TRATING TO VISION

FUEL Mc. 31.

Mixture by volume o":-

Co

H1

Spe

130

Kin

Vad

<u>D1 s</u>

53

E _ 2 - 2190

Two a service

M. Mill

Status IV Brown

The Artest

Not an Internal

in remain

2.4

10	parts	ETHYL ALCOHOL
50		PETROL
40		BENZOL

Fue: Data

aposition by weigh	ht	Carbon	- 84.	8 🐒		
		Rydrog	m- 11.	7 %		
		Oxygen	- 3.	5 🐒		
ther Calorific Va	100	82,240	C.H.U.	per g	allon	
		10,330	C.H.U.	per 1	b.	
cific Gravity		.796				
ent Heat		97 C.H.	.U. per	15.		
matic Viscosity			.00518	(100	89 T-20))
our Pressure	Temperature V.P. in mm.	of Hg	10 C	20 C	30 C 185	
tillation	Percent dist Trapgrature	illed	10 % 56	50 % R n 74	d point	

8.30 A.	. Baro	mator_P		<u>e 314.</u>					
3.00 P.	. Baro	8	4.649	ns Hr	Dry bul	10-66 79	-0 F	et bul	6-57.9 ¥ 59.9 F
A	pprox. 1	dad 38	0 1bs	100				1	
]	nitial ty	yre pre	ssures	, 1 0s/s	s q ins- 1	ront	27, 0	ack 28	2
	Time of run min.sec.							Mileag End	
N 29.0	4-55.2	2.5	280 270	145	13.2	72	02.97	05.35	23.8
N 29.3	4-55.6	2.3	200	148	14.0		08.77	08.51	25 7 24.1
N 29.2	4-57.1	2.8	290	130 148	14.1		14.53	14.26 16.94	25.9
Tyre I	pressu le	0.4 :- ?rc Bacl		152	13.8		17.4	20.05	26.3
N 28.4	3-38.7 4-16.9	4.1	380 370	149 156	11.8	75		22.55	23.1
N 38.2 S 38.2	3-38.6		430	151	12.0		26.15	25.84 28.47	27.4
N 38.3	3-39	5.0	3 80 44 0	157 154	13.6		32.17	31.84 34.5	27.8
	4-24.7 pressures			158	13.8		35.08	37.89	28.1
N		6.7	570	156		75.5	38.55		21.0
	2-41.3	1.5	270 580	161 158	13.0		41.16 44.12	46.25	26.6
	3-17.5 2.32.3	2.5	520	160 160	12.4		47.08		26.1 20.0 C
	3-16.8 ressures		520 nt 27.	<u>161</u> 5	12.0 0 Sampl	03	52.3	55.5	26.0 @
57.0	2-6.4	7.8	k 28 640	163	7.8	77.5	55.98		20.0
57.0	2-29 2-6.6	4.4	590 845	167 165	10.0		59.76		23.6
57.1	2-26.3	4.8	610 840	168	10.3		64.39 67.25		23.2 20.1
57.5	2-23 ressures	4.8	620 nt 28	166	9.9			72.36	22.8
67.0	1-32.4	Bac 11.2	k 29 720	170	Statements of the local division in which the local division in which the local division is not the local division of the local division in the local divi		75.18		17.2
67.5	1-44.3	7.0	600 700	172 171	8.9 5.5		75.85	77.81	19.6
67.2	1-23.0	7.0 9.6	700 710	174	6.S 6.1		81.47	83.48	20.1 16.0
66.7	1-48.4	7.6	690 nt 30	173			87.15		20.1
yre p	ressures	- FIO	k 31_		THE I				
Accel	erstion '	tests							
				N	S I	4	s .		
Direct Accel	tion time in	n secon	15 20		-	+	9.9		

 $\mathbf{1}$

and the second s

W BE HARTER

DELLISOINSO

Ut strong The

SLADICO.

10.5 mil \$ 109.7 mil

L pttominut?

The minute

A MALESSALE

TABLE 31 E.

.

4 100 100 100

The state of

-

10-1

x -

-

1

.....

.

*

1

-

Summarised Results of Table A.

1

corrected for altitude. Ins a Vapour Pressure of moisture in atmosphere (Average). Ins a		~	25.02 0.373			
Car Speed in m.p.h.		29.2	38.3	47.5	57.1	67.1
Wind Pressure, inches of water.	N S	2.6	4.2	6.3 2.2	7.7	10.1
Absolute wind Velocity in direction of motion, m.p.h.		10.3	12.3	12.3	7.0	5.5
Mean Tyre Pressure, 10s/sq it	18	27.2	27.2	27.6	28.).	29.5
Mean Air Temperature Cent.		22.8	23.9	24.4	25.6	26.1
Miles per gallon	NS	26.0	23. 2 27.8	20.8	20.0 23.2	17.7
Simple Mean M.P.G.		25.0	25.5	23.5	21.6	18.8
Inlet Manifold Pressure, inches of Hg absolute	N S	10.1 9.1	11.2 9.3	12.5	14.9 13.1	18.7 16.4
Average.		9.6	10.2	11.6	14.0	17.5
Exhaust Gas Temperature legrees Centigrade. above atmospheric)	n S	333 318	455 416	585 532	638 610	694 (172
Average.		325	435	558	624	683
Cooling Water Temperature t entrance to radiator, egrees Fahrenheit,	N S	146 151	151 157	158 161	165 166	171 173
Average (converted to Cent.) Temperature Difference,		64.7	67.8	70.8	74.2	77.8
ater to air. Degrees Cent.		41.9	43.9	46.4	48.6	51.7
Acceleration Time (seconds)	N S	20.7		Aver	.8861	20.5

Remarks :-

TABLE 31 C M.P.G. converted to Standard Basis.

Car Speed in m	a.p.h.	29.2	38.3	47.5	57.1	67.1	
Reciprocal Mean M.P.G. of North & South runs.		25.0	25.3	23.2	21.5	18.7	
	a) Wind	3.2	3.7	3.0	0.8	0.6	
Correction for:- b)	b) Weight	-	-		-	-	
	c) Barcaster	-	-	-	-	-	
	d) Air Temp.	-0.9	-1.5	-1.8	-2.4	-2.8	
	a) Tyre Precs.	0.4	0.6	0.5	0.6	0.3	
Total corre		2.7	2.8	1.7	- 1.0	-2.1	
Corrected Kiles	-	25.7	26.0	23.6	21.3	18.3	

 Table
 D
 Volumet
 Fridency & Air/Fuel Ratio

 Ideal Air/Fuel Ratio
 13.65

 Average Molecular Veight
 81

 Mixture Density relative to Air
 1.049

speed IN m.p.n.	29.9	38.3	47.5	57.1	67,1
Compression Temperature	431	418		368	340
Pressure	9.4	9.8	10.65	12.7	15.3
Volumetric Efficiency Ditto to std. Basis	.810	.225	.265	. 331	
Theoretical Air/Fuel Ratio	.205	.220	.860	. 334	.433
Air/Fuel ratio (exh. anal.)	9.2	10.1	10.85	12.75	14.3
Weight of exhaust gas per gallon of fuel	61	88	12.5	109.5	129

1

Table E Heat Balance

state of the state

and which contributions

A REAL POST AND ADDRESS.

the second s

THE ROLL DWINSTON

-

Speed in m.p.h.		29.2	38.3	47.5	57.1	67.1
Heat available from fuel	CHU/gal	82240 100	82240 100	88840 100	82240 100	82240 100
Heat to tractive effort	CHU/gal	16250 19.6	20100 24.4	22100 26.8	23650 28.8	24000 29.2
Heat to exhaust (a) Sensible	OHU/gal	6700 8.1	9550 11.8	14030 17.1	18400 22.3	22700 27.6
(b) Latent	CHU/gal	3280 4.0	3560 4.3	3820 4.6	4430 5.4	4930 6.0
(c) Unburnt gases	CHU/gal	1	7	7900 9.6	1	1
Heat to Cooling water	CHU/gal	52400 39.3	29500 35.8	25100 30.5	91 150 25.7	17300 21.0
Unaccounted for	%	(29.0)	(23.7)	11.4	(17.8)	(16,2)

FUEL No. 32 Mixture by volume of :-

30 parts ETHYL ALCOHOL 60 = PETROL

10 15 BENZOL

Ĺ	Puel Data				
Composition by weight	<u>L</u>	Carbon	- 75	.7 %	
		Hydrog	en- 13	.6 %	
		Oxygen	- 10	.9 %	
Higher Selorific Valu		75,360	C H.U	. per ge	llon
		9,900	C.H.IJ	. per 11).
Specific Gravity		.760			
tetent lieat		118 C.F	I.V. p	er 1b.	
Kinematic Viscosity			.00778	3(1012	8 1-20)
	seperature .P. 1n ma.		10 C 60		50 C 210
	ercent dist: emp e rature		10% 55	50% In 67.5	a point 140

Ditte istract

Ene Aug

1-11-11 VE

HALLS IN I

Fuel No. 32 30% Alcohol-60% Petrol-10% Benzol 14th September P.M.

	Appro	ox. load	490 1	.bs							
	Init	lal tyre	pressur	es, 1b	s/ sq 1	ns- fro	ont :	26.5, 8	eck 28.		
	Av.	Time of	Wind	Exh.	Water	In.men vacuum ins Hg	./11 ter	r np.	W1 leag		-
SNSN	28.7 28.7 28.8 28.5 29.1 28.8	5-17.5 3-0.8 5-26.3 6-3.7 5-23.7 5-23.7 6-5.8	0.4 1.4b 1.2 1.t	290 310 300 290 300 300	150 150 150 153 159 150	13.0 13.5 13.8 13.0 13.5	86	70.49 73.49 76.74 79.68 82.85	79.35 82.55 85.46	25.3 28.8 26.1 28.7 26.1	10
-		pressures	back	nt 28		10.00		80.90	83.88	29.3	-
SNSN	37.9 38.1 37.6 38.2 37.8 37.7	4-27.2	2.4 1.6 3.0 1.7 4.5 2.4	400 390 48 8 420 460	152 151 154 157 159 158	13.0 13.0 11.8 13.5 11.9 13.0	86	82.41 95.54 98.41 01.57	\$1.78 85.17 98.0 01.23 04.1 07.35	27.6 24.4 28.2 25.3	
		ressures	- iron back	t 28 30				03.00	07.00	0.83	
SNSN	47.4 47.3 47.0 47.5 - 47.4	2-51.2 3-7.2 2-56.2 3-11 3.0	4.7 3.5 3.8 3.1 4.0 3.2	520 520 530 520 520 54 J 520	160 157 161 162 161 159	9.8 10.8 11.8 11.0 9.5 11.5	86	07.63 10.74 13.7 16.6 5 19.54 22.46	16.0 19.17 21.8	22.5 24.0 23.0 25.2 22.6 24.9	0 0
	yre p	ressures			0 Samp				~2080	~ 7 . 7	-
N 5	56.9 57.2 57.2	2-17.4 2-6 2-11.5	6.8 4.8 6.7 4.5 6.8 4.7	580 580 610 590 580	160 161 160 163 161 163	6.8 8 9.5 8.8 8.7 8.0 9.5	37	25.48 28,33 31.15 35.96 3 36.85 39.61	30.5 33.15 6.05 38.86	19.1 21.7 20.0 20.9 20.1 22.9	
		essures:	back	31							
S 6 S 6 N 6 N 6	8.0 6.7 7.1 - 8.0 7.5	1-39 1-23.7 1-37.1 1-32.8 1-28.4	9.0 7.2 7.4 8.5 8.0	670 650 670 190 670	167 171 164 167 166 169	4.0 8 7.0 5.8 5.0 8.0	30		65.75 54.71 57.5 60.45	16.8 15.5 18.1 17.5 17.5 16.6	
T	yre pr	essures:-	front back	31.5 32	-						

IN ST LATER

Galffinger Strange

1405_30-70

POPE LINLICE

ALT INTO A

Value ITAN

AND ALL DRIVES AND A

TABLE 32 B.

Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of He 25.06 Yapour Pressure of moisture in atmosphere (Average). Ins of Ma

Vapour Pressure of moisture in atmosphere (Average). Ins	of H						
Car Speed in m.p.h.		1	304	+	+	-1	
Wind Pressure,		28.8	37.9	47.3	57.1	67.6	
inches of water.	NS	1.6	3.3	4.2	6.8	8.2	
Absolute Wind Velocity in direction of motion, m.p.h		3.7	5.1	3.0	5.0	8.1	
Mean Tyre Pressure, 1bs, sq i	18	28	28.7	29.2	+	0.2	-
Mean Air Temperature OCent.		30.0	-		29.7	30.0	
Miles per gallon	N		30.0	30.0	29.4	29.4	
	8	28.1 28.9	24.7 27.9	22.7 24.9	19.7 21.3	17.5	
Simple Nean M.P.G.		27.5	26.3	23.8	20.7	17.0	
inches of Hg absolute	n S	10.0	11.3	12.9	15.4	18.5	
Average.		9.3	10.6	12.4	14.7	17.8	
Exhaust Gas Temperature degrees Gentigrade. (above stmospheric)	N S	546 548	438 417	557 547	600 596	66£ 657	
Average.		347	427	552	598	659	
Cooling Water Temperature at entrance to radiator, legrees Fahrenhett.	N S	151 152	155 155	160 159	160 162	166 169	
Average (convertad to Cent.) Temperature Difference.		66.4	68.3	70.8	71.7	75.3	
ater to air. Degrees Cent.		36.4	38.3	40.8	42.5	45.9	
Acceleration Time (seconds)	N S	22,0 21.5		Aver	age:- 2]	.7	
Exhaust Gas Analysis	\$00		NO2		100		
SAMPLE LOST.	TH2	(estinat	(bo:	-	a (by d:	iff)	

Remarks :-

TABLE SE C M.P.G. converted to Standard Basis.

	A DESCRIPTION OF THE OWNER.		1000			
Car Speed in m.p.h.	28.8	37.9	47.3	57.1	67.6	
Reciprocal Mean M.P.G. of North & South runs.	27.4	26.2	23.8	20.7	17.0	
a) Wind	0.4	0.6	0.2	0.4	-	3
S Correction for:- b) Weight	1.5	1.3	1.1	0.9	0.7	
c) Barcmeter	0.1	0.1	0.1	0.1	0.1	
d) Air Temp.	-3.4	-5.8	-4.1	-4.1	-4.4	
e) Tyre Press.	-	-0.1	-0.1	-0.1	0.2	
Total correction- %	-1.4	-1.9	-2.8	-2.8	-3.4	
Corrected Miles per Gallon	27.0	25.7	23.0	20.2	15.4	

A DESCRIPTION OF A DESC

The Distance for Statistics

strains to mirrore a

and providences, the

miles my self

And a state of the local division of the loc

APAInter of the second

and many other and descent

. Littigadaja arma

and and not account

aleyson and and

A Distance and American

ATLA AND CONTRACTOR

A Distant and America N

(F.).4

a in Aite

12.

tel my upith tel

Table 32 D Volumetric "fficiency & Air/Fuel Ratio Ideal Air/T el Ratio 12.9 Average Molecular Weight 71 Mixture Density relative to Air 1.046 Speed in m.p.h. 28.8 37.9 47.3 57.1 Compression Temperature 438 415 387 362 9 q Pressure 9.5 10.2 11.6 13.3

Volumetric Efficiency .312 .235 .287 . 351 .438 Ditto to std. Basis .215 .239 .295 . 361 .447 Theoretical Air/Fuel Ratio 10.7 11.4 12.7 13.7 13.85 Air/Fuel ratio (exh. anal.) Weight of exhaust gas per 89 94.5 104 112 113 gallon of ruel

67.6

345

15.5

Table 32 E Heat Balance

		-			
	28.8	37.9	47.3	57.1	67.6
CHU/gal	75360 100	75360 100	75360 100	75360 100	75360 100
CHU/gal	17100 22.7	19850 26.4	21500 28.5	22450 29.8	21500 28.6
CHU/gal	7900 10.5	10480	15250 20.3	17950 23.8	20200 26.8
CHU/gal	42.70 8.5	4420 5.9	4870 6.5	5250 7.0	5300 7.0
CHU/gal	?	7	? ?	Ŷ	Ŧ
CHU/gal	28800 38.3	24750 32.8	20900 27.7	16520 32.4	13300 17.7
ž	(23.0)	(21.0)	17.0	17.0	(_9.9)
	CHU/gal CHU/gal CHU/gal CHU/gal CHU/gal CHU/gal	CHU/gal 75360 P 100 CHU/gal 17100 22.7 22.7 CHU/gal 7900 CHU/gal 7900 CHU/gal 7900 CHU/gal 5 CHU/gal 41.70 % 3.5 CHU/gal ? CHU/gal ? CHU/gal ? CHU/gal ? CHU/gal ?	CHU/gal 75360 100 75380 100 CHU/gal 17100 28.7 19850 26.4 CHU/gal 7900 10.5 10480 13.9 CHU/gal 7900 10.5 10480 13.9 CHU/gal 7900 10.5 10480 5.9 CHU/gal 7900 10.5 10480 5.9 CHU/gal 7 4420 5.9 CHU/gal 7 7 CHU/gal 7 7 CHU/gal 7 38.5 5.9 CHU/gal 7 7	CHU/gal 75360 100 75360 100 75360 100 75360 100 CHU/gal 17100 28.7 19850 26.4 21500 28.5 CHU/gal 7900 10.5 10480 13.9 15250 20.3 CHU/gal 7900 10.5 10480 13.9 15250 20.3 CHU/gal 41.70 8.5 4420 5.9 4870 6.5 CHU/gal 7 7 P 7 7 CHU/gal 9 20900 38.3 20900 27.7	CHU/gal 75360 75360 75360 75360 75360 P 100 100 100 100 100 100 CHU/gal 17100 19850 21500 22450 29.8 CHU/gal 17100 19850 21500 22450 29.8 CHU/gal 7900 10480 15250 17950 23.8 CHU/gal 7900 10480 15250 17950 23.8 CHU/gal 4170 4420 4870 5250 23.8 CHU/gal 1 1 1 1 1 1 1 P 1 1 1 1 1 1 1 1 CHU/gal 1

____ neat balance

1. A. A.

PUEL No. 38.

... · [

Lixture by volume of :-

Distances and a state of the second

Matta D We Server

Page al selle

al texesting

ARTA DI LINE

20 parts MAYL ALCOHOL 60 * PETROL 20 " BENZOL

	Fuel Data				
Composition by wei	<u>rht</u>	Carbes	9 - 7	9.8 ≰	
		Hydrog	;en- 1	5.0 %	
		OXY ger	1 - 1	7.2 🐔	
Higher Calorific Va	llue	78,520) C.H.I	J. per e	allon.
		10,190	C.H.1	J. per 1	D-
Specific Gravity		.771			
Latent Heat		107 c.	P.J. p	er 1b.	
Kinematic Viscosity			.0055	8(101	08 1-201
Vapour Pressure	Temperature V.P. in mm.		10 C 61	20 C 135	30 C 215
<u>Distillation</u>	Percent dist Temperature	illed	10% 58	50% Bi 64.5	152 Dint

8.5	0 A.	V. 3ar		Table						
3.0	0 P.				ins He	C Dry	bulb	-59.7	Wet by	110-49.0 1 " 53.2 1
A I:	ppro niti	x. load al Tyre	420 1b	re Pro	nt 29,	back	29,	lbs per	59 ins	
S	peed	Time of run min.sec	press 1nsK2	Exh.	Tater	In.ma	n A1.			
N 31 S 28	4	0-7-2	1.2	310	146	13.7				
N 28		5-51 5-49	2.0	200	144	13.1			2 50.8	25.8
S 28	.4	5-49 8-0.3	1.7	320	146	13.7		54.1	1 56.87	27.6
N 28 S 28	.3	6-0	0.9	280	147	13.0		57.1	5 59.99	
	re	5-57.4		300 ront 30	142	13.9		53.4	66.23	28.3
-			B	ack 30	0.5					
5 39		4-20.2	1.2	350	152	1.8	82	56.49	54.18	28.9
N 38	.9	4-20.5		390 360	149 153	13.0		69.47	72:15	26.8
S 39	•~	4-21.6	3.4	360 360	148	13.5		72.35	75.05	27.0
S 38	9	4-20.7	1.5	350 365	152	13.8		78.28	80-99	27.1
Ty	e p	ressures		ont 30	147	12.9		81.28	84.0	51.5
N 46.		200	Da	ick 31				-		
5 46.	7	2-6.6	3.3	46C 530	154	12.1	81		86.68	24.3
N -		-	- 3.0	520	156	12.0		90.04	89.67	25.0
S 47. N 46.	8	3-8 3-12.5	3.8	560 520	152 156	11.0		92.9	95.6	24.6 3
S 46.	0	3-7.7	5.0	550	152	12.0		95.7	98.2	25.0
Tyr	e pi	ressures	:- PT	ont 30		d Sam	ple 2	•	00000	
N 57.	8	2-22.2	3.9	<u>ck 31</u> 643	.5 161	9.8	82	01.5	03.78	22.8
S 57.	5	2-10.4	7.5	660	160	8.0		04.25	06.33	20.8
7 56. S 57.			4.5	630 680	159 160	10.0			09.3	22.1 21.3
1 57.	0	2-19.7		650	159	9.6		12.63	14.9	22.1
S 56.	3	2-16.3	7.4	86)	180	8.8		15. 0		21.5
Tyre	e pr	essures	- PT	ont 51. sk 30	.5					
67.		1-44.T	6.0	690	165		81	18.81		19.4
68.0		1-36	10.0	730	165	4.5		21.64 24.23		18.1 19.2
66.9			7.0		186	5.2		27.05	28.85	18.0
1 88.5	5	1-41.5	7.7	720	166	5.0		29.9	31.83	19.3
67.3		1-30.5	9.3	700 ont 32	165	6.0		33.09	24.78	16.9
- J. P.	- pr	essures:	Bac	k 33						
AC	cel	eration	tests							
					N	S	N	S	N	s

Distant Street Street

Distant I

MADIST

and the second

the state

ALEKCERT IST

TABLE 33 B. Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of Re Vapou. Pressure of moisture in atmosphere (Average). Ins of Hg

25-12

			-				
Car Speed in m.p.h.		28.4	38.8	46.7	57.1	67.6	
Wind Pressure, inches of water.	NS	1.0	1.3		4.1	7.0	_
Absolute Wind Velocity in direction of motion, m.p.	.b		5.0	4.3	7.1	9.3	
Mean Tyre Pressure, 1bs/sq		3.8	2.8		7.0	4.8	
Mann Adm P		29.6	30.4	30.8	30.9	31.6	
Mean Air Temperature OCent		26.7	27.5	27.5	27.5	27.2	
Miles per gallon	n S	27.9 28.3	27.0		22.3	19.3	
Simple Mean M.P.G.		28.1	27.0	24.5	21.7	18.5	
Inlet Manifold Pressure, inches of Hg absolute	n S	10.4 10.8	10.6		13.5 15.2	17.5 18.3	
Average,		10.6	10.8	11.7	14.3	17.8	
Exhaust Gas Temperature degrees Centigrado. (above atmospheric)	N S	332 365	398 410	526 565	640 655	6 84 590	
Avorage,		348	404	545	647	687	
Cooling Water Temperature at entrance to radiator, legrees Fahrenheit.	N S	146 143	152 148	155 152	160 160	166 165	
Average (converted to Cent.) Temperature Difference,		62.5	65.6	67.5	71.1	74.3	
ater to air, Degrees Cent.		35.8	38.1	40.0	45.6	47.0	
Acceleration Time (seconds)	NS	20.2 21.5		Avera			
Exhaust Gas Analysis 13.	1 5002	-	1.9 40-	0.2 9	co		
	SH2	(estimat	ed) E		by di	ff)	

Pemarks .-

TABLE 33 C M.P.G. converted to Standard Basis.

Car Speet in m.p.h.		28.4	38.2	45.7	57.1	67.5	
Reciprocal Mean of North & South	M.P.G. runs.	28.1	27.0	24.5	21.7	18.4	
	a) Wind	0.4	1.2	0.1	0.8	0.3	
Correction for	b) Weight	J.6	0.5	0.4	0.4	0.3	
	c) Barometer	0.1	0.2	0.3	0.3	0.3	
	d) Air Temp.	-2.3	-2.8	-3.0	-3.2	-3.3	
	e) Tyre Press.	-0.8	-0.8	-0.8	-0.3	-0.2	
Total correct	10n- \$	-2.0	-1.7	-2.8	-2.0	-2.6	
orrected Miles p	er Gallon	27.6	26.6	23.8	21.3	17.9	

1. 25

÷

.....

-×

.

1 a

5

. × 80

÷ a.

. 10

alos... vātā viņ

rest of a sector of the sector

and lot any said.

T

T

A:

We

ga

Stople liver it." at

without all its and

- NOPERTAL

States charactering -72.4THEA

ARTICLES, MARRIED, MARRIED, strates of antital in the second states in the second states and s esteritani ensitemant sata te ala interes mili male tita

Averal same pressions.

6.24 1.0

7 (a) Station of the local division of the

State and the second

Teble 38 D Volumetri Ideal Air/Fuel Hatio Average Molecular Veig Mixture Density relati	ht	13.3	ir/Ivel i	latio	
Speed in m.p.h.	28.4	38.8	46.7	57.1	67.6
Compression Temperature Pressure	414	410	397	368	346
Volumetric Efficiency	10.4	10.45	10.9	12,*	15.6
Ditto to std. Basia Neoretical Air/Fuel Ratio	.245	.248	.270	. 348	
ir/Fuel ratio (exh. anal.)	-	12.2	11.85 14.4	13.55	14.8
eight of exhaust gas per allon of fuel	104	101.5	99	112	121.5

Table 33 E Heat Balance

		-q				
Speed in m.p.h.		28.4	38.8	46.7	57.1	67,6
Heat available from fuel	CHU/gal	78520 100	78520 200	78520 100	78520	78520
Heat to tractive effort	CHU/gal	17450 22.2	20500 26.1	22250 28.2	23700 30.1	23450 29.8
Heat to exhaust (a) Sensible	CHU/gal	9250 11.7	10600	14300 18.2	19600 24.9	22800 28.9
b) Latent	CHU/gal	4350 5.5	4250 5.4	4180 5.3	4680 5.9	5080 6.5
5) Unburnt gases	CHU/gal	7	7	410 0.5	-	-
leat to ooling water	CHU/gal	28900 6.7	25450 32.3	21100 26.8	18450 23.4	15060 19.0
naccounted for	%	(23.9)	(22.8)	21.0	18.7	15.8

TUEL No. 34.

Mixture by volume of :-

10 parts ETHYL ALCOHOL 60 " PETROL 30 " BENZOL

Fuel Data

CONTRACT	61011	U.Y.	METKUR	

Higher Calorific Value

Specific Gravity

Latent Meat

Kinematic Viscosity

Vapour Pressure

Distillation

Carbon - 84.0 % Hydrogen -12.4 Oxygen - 3.6 % 81,680 C.H.U. per gallon. 10,450 C.H.U. per 1b.

98 C.H.U. per 1b. .00593(1-.0076 -20)

 Temperature
 10 C
 20 C
 30 C

 V.P. in ma. of Hg
 62
 115
 220

.783

Percent distilled 10% 50% End point Temperature °C 54 78 141

100.00

ROADANS 141

100 TO 10 10 100

SALA 02 X 127

BOAL IN DA LO

Table 10 anima

DATA DATA DATA DATA

Puel Nr. 34 10% Alcohol-60% Petrol-30% Benzol 24th September P.M.

Table 34A

al tyre : Time of run min.sec. 5-14.7 5-35.5 5-25.5 5-25.5 5-24.1 5-36 pressures 4-5 4-10.8 4-6.6 4-14.2	W1nd press. 1nsH20 1.2 1.4 1.0 1.3 1.0 1.7	Exh. temp. galvo 325 300 310 310 300 320 1t 27.	MAter temp. P 143 143 144 144 144 145 143	In.mon	.Air	74.9 77.75 80.57 83.45	M1 Leng End 77.48 80.44 83.2 86.18	25.8 73.9 2.3
run min.sec. 5-14.7 5-35.5 5-25.5 5-25.5 5-24.1 5-36 pressures 4-5 4-17.8 4-6.6	2.0 2.0 2.0 2.0 2.0	325 300 310 310 320 320 320 320 1227.5	143 143 144 144 145 143	13.1 13.6 13.7 13.8 14.0	F	74.9 77.75 80.57 83.45	End 77.48 80.44 83.2 85.18	ATTX10 25.8 73.9 2.1.3
5-14.7 5-35.5 5-25.5 5-25.5 5-24.1 5-36 pressures 4-5 4-17.8 4-6.6	1.2 1.4 1.0 1.3 1.0 1.7 1 from hack 2.0	325 300 310 310 320 320 11 27.1 28.5	143 143 144 144 145 143	13.1 13.6 13.7 13.8 14.0		74.9 77.75 80.57 83.45	77.48 80.44 83.2 86.18	25.8
5-35.5 5-25.5 5-37.9 5-24.1 5-38 pressures 4-5 4-17.8 4-6.6	1.4 1.0 1.3 1.0 1.7 :- from back 2.0	300 310 310 300 320 11 27.5 28,5	143 144 144 145 143	13.6 13.7 13.8 14.0	6	77.75 80.57 83.45	80.44 83.2 85.18	21.3
5-37.9 5-24.1 5-36 pressures 4-5 4-17.8 4-6.6	1.3 1.0 1.7 1:- from back 2.0	310 310 300 320 11 27.1 28,1	144 144 145 143	13.7 13.8 14.0		80.57	83.2	21.3
5-24.1 5-36 pressures 4-5 4-17.8 4-6.6	1.0 1.7 1:- from back 2.0	300 320 11 27.1 28.1	145 143	13.8 14.0		83.45	86.18	
5-38 pressures 4-5 4-17.8 4-6.6	1.7 :- from back 2.0	320 it 27.5 28,5	143			00 7		6100
4-5 4-10.8 4-6.6	ti- from hack 2.0	it 27.1)	13.3		80.34	88.15	26.1
4-5 4-17.8 4-6.6	2.0	28,8	ń			89.22	91.93	27.1
4-17.8		260	<i>,</i>					
4-6.6	2.4		147	13.8	70	92.11	94.7	25.9
4-14.2	1.7	400	146	13.0		94.94	97.6	26.6
	2.7	380 410	148 147	13.3		97.82	00.43	
4-5.7	1.5	370	149	13.0			03.37	
4-18.6	2.6	395	146	13.0		06.5	09.22	25.9 27.2
pressures							0000	~~~~~
1-58.4			150	11 0	70	A0. 22	11.0	
3-5.8					10			23.0 24.4
	326	570	152	12.0		15.22	17.65	24.3
	4.6					18.07	20.55	24.8
				12.1		26.89	23.34	
ressures		1 29	1 5	ample 2		60.73	20.20	24.5
	beck	30						
			157		75	28.64	28.9	21.5
			157			29.47	24 51	22.1 22.1
			156	3.6	2			22.2
2-20	4.6	655	157	9.8		37.96	40.19	22.3
2-15.8	6.0	660	1.58	9.6		40.78	42.96	21.8
ressures		t 30						
1-20-2			162	6.3	75	43 82	45 80	18.6
								18.8
1-41.7	7.4	700	161	7.5		51.4	53.31	19.1
	9.0	740	162	6.0		54.08		18.0
1-36.8		720	164	7.0		56.96	NU 00	
1-36.8 1-42.6 1-38.4	6.8 8.3	725	164	5.8		59.72		19. 3 18.4
	2-18.9 2-15.8 3-5.9 3-5.9 3-5.9 2-18.9 2-18.9 2-18.9 2-18.9 2-18.3	pressures:- from J-56.4 3.4 3-5.9 3.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 2.8 3-5.9 3.8 0 2-18.9 2-18.9 6.2 2-20 4.6 2-15.8 6.0 ressures:- from back 1-38.3	pressures:- front 28 back 29 J-56.4 3.4 3-5.1 3.8 560 3-5.2 3.8 560 3-5.9 2.8 550 3-5.9 2.8 550 3-5.9 2.8 550 3-5.9 4.8 580 3-5.9 2.8 550 3-5.9 4.8 580 3-5.9 4.8 580 3-5.9 2.8 550 3-5.9 4.8 560 2-18.9 6.2 660 2-18.9 6.2 660 2-18.9 6.2 650 2-20 4.6 655 2-15.8 6.0 660 ressures:- front 30 back 30 1-38.3 8.0 710	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Direction N Accel. time in seconds 19.1 20	0.6 19	.1 19.9)
---	--------	---------	---

ALL TAPADO

ABULT PARTY

2 of these

2 mil tent

the state

AN THURS

of this to be

TABLE 1 B. Summ

.

Summarised Results of Table A.

Mean Barometric Pressure corrected for altitude. Ins of Vapour Pressure of moisture in atmosphere (Average). Ins of		25.040 0.184			
Car Speed in m.p.h.	29.1	38.1	47.5	57.5	67.6
Wind Pressure, N inches of water. S		1.7 2.6	3.3	4.8	7.4
Absolute Wind Velocity in direction of motion, m.p.h.	2.3	3.5	2.5	3.2	2.0
Mean Tyre Pressure, 1bs/sq ins	27.6	28.2	29	29.8	30.6
Mean Air Tempereture Cent.	20.6	21.1	21.7	22.8	23.3
Miles per gallon N S		26.0	24.1 24.6	22.0	19.0 18.4
Simple Mean M.P.G.	26.6	26.4	24.3	55.0	18.7
Inlet Manifold Pressure, N inches of Hg absolute S	1 2 2	9.5 10.1	11.1 11.7	13.2 13.6	16.4 16.7
Average.	9.5	9.8	11.4	13.4	16.5
Exhaust Gas Temperature N degrees Centigrade. S (above atmospheric)	222	410 440	570 585	640 648	6#5 705
Average.	353	425	577	644	656
Cooling Water Temperature N at entrance to radiator, S degrees Fahrenheit.	144 143	148 146	151 150	157 156	162 163
Average (converted to Cent.)	62.0	63.9	65.8	69.1	72.5
Temperature Difference, water to air. Degrees Cent.	41.4	42.8	44.1	46.3	49.2
Acceleration Time (seconds) N S	19.1 20.3		Teva	869:-	19.7
	202 12 (ostimat	- %0; od) 8		%CO 2 (by d	iff)

Remarks :-

TABLE 34 C M.P.G. converted to Standard Basis.

Car Speed in m.p.h.	29.1	38.1	47.5	57.5	67.6	
Reciprocal Mean M.P.G. of North & South runs,	26.6	26.4	24.3	\$5.0	18.7	
a) Wind	0.2	0.2	0.2	0.2	0.1	
Correction for:- b) Weight	-0.3	-0.3	-0.3	~0.2	-0.2	
c) Barometer	-	-	0.1	0.1	0.1	
d) Air Temp.	-0.2	-0.4	-0.6	-1.2	-1.5	
e) Tyre Press.	-0.2	0.1	-		0.1	
Total correction- #	-0.1	-0.4	-0.6	-1.1	-1.4	
Corrected Miles per Gallou	26.6	26.3	24.2	21.8	18.4	

And the providence of the second seco

Widow in Frank un

And the second

Another Real Industry

permittent and amin

ADDRESS TANKS

willing you hallow

Article special sub-suit.

total Manifeld Press

940

-Theresis

enternational enternation Enternational enternation Enternational enternation

-2 2632----B-) DE: DE:

And the state of t

tatsit

- Alternation

2 St Marrie

A state of another the

A Demonstrate One-

 Table
 Mixture
 D
 Volumetric Efficiency & Air/Fuel Ratio

 Ideal Air/Fuel Ratio
 13.8

 Average Molecular Weight
 83

 Mixture Density relative to Air
 1.05

Speed in m.p.h.	29.1	38.1	47.5	57.5	67.6
Compression Temperature	431	425	394	371	340
Pressure Volumetric Efficiency	2.3	9.4	10.7	12.15	14.45
Ditto to std. Basis	.207	.212	.261 .262	.314	.398
Theoretical Air/Fuel Ratio Air/Fuel ratio (exh. anal.)	9.3	20.0	11.1	12.5	13.55
Weight of exhaust gas per gallon of fuel	84.5	86	12.95 94.7	108	114
0					

Tabless E Heat Balance

Speed in m.p.h.	and the second se				1	
		29.1	38.1	47.5	57.5	67.6
Heat available from fuel	CHU/gal	81680 100	S1680 100	816 30 100	81620 100	81680 100
Heat to tractive effort	CHU/gal	16800 20,6	20300 24.8	22600 27.6	24800 29.6	24100 20.5
Esat to exhaust (a) Sensible	CHU/gal	7630 9.3	9470 11.6	14600 17.8	18450 22.5	21700 26.5
(b) Latent	CHU/gal	3550 4.3	3610 4.4	398C 4.9	4460 5.4	4800
(c) Unburnt gases	CHU/gal	?	•	5700	9	Ŧ
Heat to Cooling water	CHU/gal	33100 40.5	29000 35.4	24200 29.6	20350 24.9	16350 20.0
Unaccounted for	16	(26.3)	(23.8)	13.1	(17.6)	(18.1)

Makrise Dutot

AND IN THE PARTY OF

100 - 514	Puel No. 34(1) 10% Alcohol-60% Petrol-30% Benzol Table 24(1) A.
Selic 1	8.30 A.M. Barometer-24.926 ins Hg Dry bulb-57.0 P Met bulb-54.7 P 24.857 " " 67.8 P " 59.6 P
WELEN -	Approximete load 380 lbs.
AL BOARD	Initial ty a pressures:- front 27, back 28 lbs/sq ins.
C. arranges	Av. Time of Tind Exh. Water In.man.Air Wileages:- speed rin press. temp. temp. vacuum temp. mph. min.sec.insH_O galvo F ins Hg F Begin and Diffx10
presenting.	2 29.3 -57 3 2.7 3-0 174 12 61 17.94 20 2
TOR WHAT	N 28.8 1-40.7 2.6 310 176 12.8 61.5 23 P 23.36 34.
antarecourt:	
	tyr: pressures:- front 27 back 29
· Incelant .	S 37.7 4-1.6 1.7 380 101 11.9 65 35.28 37.43 PL.5
States of	N 38.1 3-30 4.3 430 178 11.7 62 41 0 43 22 29 39
Acrite	N 37.7 3-25.4 4.1 410 181 11 7 62 43.69.43.88 21.9
Lakeron .	Tyre pressures:- front 28 49.57 52.14 25.7
and and	S 46.9 3-2.9 2.5 480 10.5 62.5 52.5 54.56 20.5
the second s	N 46.9 2-39.6 5.5 520 161 10.8 62.5 58.15 60 23
ANTA CAN	N 47.4 2-39.6 5.6 510 183 10.5 64 60.87 65.97 21 0
	5 40.8 3-6.2 2.8 500 184 11.0 66.7 69.12 24.2 Tyre pressures:- front 23 back 30 Sample 3. Sample 3. Sample 3.
The Local States	M 56.7 2-28.9 8.0 570 185 8.8 65.5 69.67 71.54 18.7
	N 56.4 2-30.9 8.4 570 185 8.2 66 75.35 77.24 18.3
Cane Ja	N 57.0 2-26.9 9.2 580 187 7.9 66 81.06 62.94 18.8
	<u>5 57.0 2-45.1 4.2 580 189 9.6 85.39 87.63 21.4</u> yre pressures:- front 29 back 30
SERVIC SUPP	N 65.1 1-26.9 12.5 630 190 4.5 67 E8.54 90.11 15.7
	N 68.0 1-25.3 11.9 670 191 4.8 67 94.16 95.77 16.1
NALAT 11.1	S 66.8 1-46.2 6. 580 10 7.1 96.78 98.75 19.7 N 67.2 1-26.3 12.2 630 192 4.2 67 99.57 01.18 16.1
armaic '	<u>5 66.5 1-35.9 5.1 670 193 6.8 02.45 04.22 (17.7)</u> Tyre pressures: - front 30
na Love	back 31
million of the	Acceleration tests
(mm) (parm)	Direction N S Accel. time in seconds 23.0 21.0

TABLE 34(S.B.

Summarised Results of Table A.

1 ··· .

Mean Barometric Freasure corrected for altitude. Ins of H Vapour Pressure of moisture in atmosphere (Average). Ins of H		25.23 0.420			
Car Speed in m.p.h.	29.0	37.0	47.1	56.8	66.7
Wind Pressure, N inches of water. S	2.7	4.1	5.6	8.5	12.2
Absolute Wind Velocity in direction of motion, m.p.h.	9.5	9.0	8.0	9.6	11.7
Mean Tyre Pressure, 1bs/sq ins	27.5	28	29	29.5	30
Moan Air Temperature "Cant.	16.4	16.9	17.2	18.9	19.4
Miles per gallon N	22.5	21.9	20.8	18.9	16.Q 19.6
Simple Mean M.P.G.	23.3	23.7	22.4	20.2	17.8
Inlet Manifold Pressure, N inches of Hg absolute S	10.6	11.6 10.3	12.8	15.2	19.1
Average.	10.3	10.9	12.3	14.5	16.0
Exhaust Gas Temperature N legrees Centigrade. S (above atmospheric)	352 332	44.5 435	532 520	585 560	638 620
Avertee.	348	440	526	572	629
Cooling Water Te merature Na it entrance to radiator, S legrees Fahrenheit,	136 139	139 140	140 142	146 147	151 152
Average (converted to Cent.) Temperature Difference.	58.6	59.7	60.7	63.6	66.4
ater to air, Degrees Cent.	42.2	42.8	43.5	44.7	47.0
Acceleration Time (seconds) N S	23.0 21.0		Aver	age :	22.0
Exhaust Gas Analysis 1313 %CO 0.6	2 - (estimat	^{%0} 2 :ed) 83.		500 2 (by d	

Remarks :-

00

0

* corrected.

TABLE M.P.G. converted to Standard Basis.

Car Speed in	00.0		4				
Reciprocal Me of North & Sou	29.0	37.9 23.6	47.1	56.8 20.1	<u>66.7</u> 17.6	Y	
S Correction f	a) Wind	2.7	2.0	1.3	1.6	1.5	
DOLLOGOTOR I	b) Weight	0.1	0.1	0.1	0.1	-	
	c) Barometer	0.3	0.4	0.5	0.6	0.7	
	d) Air Temp.	1.2	1.2	1.2	0.5	0.3	
	e) Tyte Press.	0.3	0.2	-	0.2	0.2	
Total correction- %		4.6	3.9	3.1	3.0	2.7	
Corrected Miles per Gallon		24.3	24.5	23.0	20.8	18.1	

Andre Service and a service an

Distance in a forgetain, a second downloader, involue af second so involue the second so as anyward as he year to form as forgetained

ARCHITERS.

Antimeters) and and an and a second s

apera no mante

- 1975

Roam Arman

Artist at Annal and

T STAR & STAR TO

- (WI SHILE-HOURS)

Ideal Air/Fuel Ratio 13.8 Average Molecular Feight 83 Mixture Density relative to Air 1.05 Speed in m.p.h. 29.0 37.9 47.1 56.8 66.7 Compression Temperature 405 394 374 355 335 21 31 10.1 10.5 Pressure 11.5 13.15 15.8 Volumetric Efficiency .239 .255 .295 .452 .355 Ditto to std. Basis .246 .229 . 286 . 345 .441 Theoretical Air/Fuel Ratio 10.9 9.9 11.9 13.1 14.7 Air/Fuel ratio (exh. anal.) 12.85 -Weight of exhaust gas per gallon of fuel 85.5 101 110.5 93 123 34(1) E Table Heat Balance 29.0 47.1 56.8 37.9 66.7 Speed in m.p.h. 81680 81680 81680 CHU/gal 81680 51680 Heat available 100 100 100 100 100 from fuel 10 15400 15.5 21500 26.3 23100 23700 18900 CHU/gal Heat to 23.1 tractive effort 36 16750 20.5 7450 9.1 10650 14050 20800 Heat to exhaust CHU/gal 25.4 13.0 17.2 (a) Sensible 5160 3600 3900 164C 4250 (b) Latent CHU/gal 5.2 5.7 6860 CHU/gal (c) Unburnt 8.4 2 2 2 1 gases 10 27000 22600 15150 18600 30900 CHU/gal Heat to (22.7) Cooling water (26.1) (22.8) (20.8 15.3 (29.8) Se. Unaccounted for

Table 34(1) D Volumetric fficience & Air/Fuel Ratio

APPress Orto?

FUEL NO. 35

Mixture by volume of :-

2(0	parts	ETHYL ALCOHOL
70	2	11	PETROL
10)	*1	BENZOL

Fuel Data

Composition by weight	ht	Carton	- 79.	0 4	
		Hydrog	un- 13.	7 🐔	
		oxygen	- 7.	3 %	
Higher Calorific Val	lue	77,960	C.H.U.	per gi	llon
		10,240	C.H.U.	per 1	9.
Specific Gravity		.761			
Latent Heat		105 C.1	H.V. pe	r 10.	
Kinemat c Viscosity			.00690	(1012	0
Yapour Prassure	Temperture V.P. 1n mm.	of Hg	10 C 75	20 C 140	30 C 250
	Percent dist Temperature	illed	10% 52		d point 155

1

80.00

101-10 strt=-107

Fuel No.35. 20% Alcohol-70% Petrol-10% Benzol 23rd September P.M.

A STRATEGY

11/10/2017

ALT WALL

and the second second

A.Lintal

SLIGHTLY.

A. SHOLY

ALL TOTAL

Table	35A.
-------	------

- F

Av spe	ed run	Drass			In. mai	n.Air n tea	D.	Vilear	es:-
	h. min.sec	• 110000	22140	R	ins H	g P	Begin	End	DITIXI
N 29. S 29.	1 5-39.5		290 285	148 155	12.7	03		51.65	
N 28.	8 5-7.1	2.0	280	151	12.8		52.3	55.04	27.4
N 28.	8 5-47.4 8 5-58.7		270 290	158	14.0		58.28	61.06	27.8
5 26.	5-48.2	0.7	275	150 159	12.8		61.21	63.8	
Tyj	re pressur		ront 2 ack 2	3.5			04.1.0	07.00	28.0
N 37.		3.9	380	157	Te	82	67.3	69.35	23.5
S 37.9 N 37.5		1.3	370 440	161	13.7		70.21	72.98	27.7
\$ 38.5	4-19.7	1.9	390	162	12.3		73.24	75.6	23.8
N 38.6		4.5	460	158	12.4		79.3	81.64	23.4
<u>38.5</u>	4-21 pressure	1.6	370 ont 29	162	13.8		32.31	85.1	27.9
		Bac	k 30.						
5 47.0		6.0 2.0	560	163	11.6	83			20.5
N 47.9			550 560	166 165	11.9		88.16 91.1		25.0
S 47.5	3-8.3	3.4	540	166	12.4			96.36	24.6
N 48.9 S 47.8		0.6 2.8	570 560	164	10.9		98.72	98.85	21.3
Tyre	pressures	S:- Pro	nt 30	168	11.8 Sam	ple 3	99.52	02.1	25.8
N 57.3	1-50 8		k 30						
5 57.9		7.8	660 620	170	7.8	8.5	02.5		19.0 22.5
N 58.2	1-57.6	7.7	650	168	8.0		08.1	10.0	19.0
S 58.0	2-19.3	4.7	630	171	9.8		10.94		22.3
N 56.6 S 57.7	2-1.5 2-18.4	9.0 3.8	660 630	170	7.9		13.77		19.1
	pressures	:- Prc	nt 30					2.0.0	
N 67.7	1-25.1	11.7 Da	<u>ck 31.</u> 745	174	4.5	83	19 68	-1.28.	16.0
\$ 67.4	1-43.7	7.3	700	176	6.7		22.24	24.18	19.4
N 87.0	1-27.6	10.0	740	175	4.2		25.14		16.3
S 67.5 N 67.5	1-46.1 1-26.9	11.0	760	176	3.8		27.71		19.9 16.3
S 67.4	1-42.5	8.0	700	178	6.5	83	33.39		19.2
Tyre	pressures		k 32.5						

Mean Barometric Pressure corrected for altitude. Ins of Hg 24.97 Vapour Pre sure of moisture in atmosphere (Average). Ins of Hg 0.376 Car Speed in m.p.N. 28.9 38.1 47.4 57.6 67.4 Wind Pressure, 2.6 N 3.8 1.2 6.0 10.9 inches of water. S 2.7 7.5 Absolute Wind Velocity in direction of motion, m.p.h. 8.3 3.2 9.4 6.2 9.5 Lin Tyre Pressure, 1bs/sq ins 18.2 29.1 29.8 30.2 31.2 Mean A' Temperature Cent. 27.2 28.3 27.8 28.3 28.3 Miles per gallon 24.0 N 23.5 20.9 19.0 16.2 27.7 S 27.8 25.2 22.3 19.5 Simple Mean M.P.G. 25.8 25.6 23.0 20.6 17.8 Inlet Manifold Pressure, 10.3 N 10.7 12.0 15.5 19.2 inch:s of Hg absolute S 9.1 9.6 11.2 Average. 9.7 10.1 11.6 14.5 17.9 Exhaust Gas Temperature N 470 650 627 330 320 37 710 degrees Centigrade. S (above atmospheric) Average. 325 450 571 638 697 Cooling Water Temperature 150 157 N 158 161 164 169 175 at entrance to radiator, S 167 171 degrees Fahrenheit. Average (converted to Cent.) 67.5 70.8 74.2 76.7 50 Temperature Difference, water to air, Degrees Cent. 20.3 43.0 45.9 48.4 51.7 Acc. 'eration Time (se onds) 21.7 N S Average --21.3 %C02 Exhaust Gas Analysis 14.2 \$02 1.6 500 0.3 TH2 (estimated) 84.5 Mg (by diff)

Summarised Results of Table A.

R-mai

TAPLE 35 B.

100 . TON X 100

Stor 13 14

.

1

143

TABLE 35 C M.P.G. converted to Standard Basis.

28.9	38.1	47.4	57.6	67.4		
25.8	25.5	22.3	20.5	17.7		
2.0	1.7	1.5	1.5	0.5	-	
-0.4	-0.3	-0.3	-0.2	-0.2		
-	-	-	-	1		
-2.4	-3.0	-3.4	-3.6	-3.9		
-0.1	-0.3	-0.3	-	-		
-0.9	-1.9	.9 -2.2	-2.3	-3.6		
25.6	25.0	55 #	20.0	17.1		
	2.0 -0.4 - -2.4 -0.1 -0.9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

	Ideal Air/Fuel Ratio Average Molecular Weight Mixture Density relative to Air]	13.5 7 5 .5	
	Density Pelat:	LVA TO AII		1.049	
	Speed in m.p.h.	28.0	38.1	47.1	
	Compression Temperature	436	427	399	
	"Pressure	9.5	9.7	19.8	
	Volumetric Efficiency	.205	.217	. 260	
	Ditto to std. Basis	.210	.221	. 265	
	Theoretical Air/Fuel Ratio	9.9	10.2	11.0	

stations of he collect.

TRACT

ANALYSIS.

Same Prest Press personal solutions

and and a state of a long

A REAL PROPERTY AND INCOME.

S. DT. ADM

a. A

States and income COMPANY OF THE OWNER OF

22.19

1014

27 X.A.

THE NEW PROPERTY AND

1 Ratio

51.6

367

13.15

. 343

. 351

13.2

.

108

67.4

346

15.7

.435

.450

14.5

115

Air/Fuel ratio (exh. anal.))-13.15 Weight of exhaust gas per gallon of fuel 82.7 85 91.2

Table 35 E Heat Balance

Speed in m.p.h. 28.9 38.1 47.4 57.6 67.4 Heat available CHU/gal 77960 77960 77960 77960 77960 from fuel S Heat to CHU/Sal 16200 19300 20900 22200 22400 tractive effort To 20.8 Heat to exhaust OHU/gal 6850 9970 13900 22400 18600 (a) Sensi 23.8 (b) Latent CITU/gal 3850 3960 5.1 4250 503) 5500 2 (c) Unburnt CEJ/gal 1 2440 7 ? 7 gases 10 3.1 CHU/gal Heat to 3086 × 27700 35.9 23550 19750 25.3 16200 Cooling water 10 Unaccounted for % (26.0) (21.8) (14.7) (16.6) (15.9)

Author Schoeman D J **Name of thesis** The Chemical Constitution of the fruit-coat fat from Myrica Cordifiolia - Cape Berry Wax 1946

PUBLISHER: University of the Witwatersrand, Johannesburg ©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.