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Abstract An extension of the layer removal technique is presentetatl@avs the residual
stresses within multilayered anisotropic pipes of any wattkness to be determined. The
method inherently satisfies the self-equilibrium requieatrand limits the effects of mea-
surement errors to the region local to the error. The thiskru# each layer that is removed
need not be uniform and is entirely independent of the théskrof each ply of material. Four
example problems are considered. The first three allowtegube compared between the
present method and previous work. The fourth problem detretes the method on a thick
walled anisotropic pipe built up 6f45°/ — 45° plies for which no solution was previously
available.
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1 Introduction

Residual stresses are inherent stress distributionsmirgsenanufactured parts and usu-
ally result from the manufacturing process. These stresmebe associated with premature
failure since they are additive to the applied loading. ltsthhecomes important to know
the residual stresses within a structure, especially wa@enservative safety factor is im-
practical. Although considerable work has been done onitbaigtion of residual stresses,
experimental measurement is often the most practical agbrd’he measurement of resid-
ual stresses can be divided into two techniques, namelydestructive, and destructive.
The two primary non-destructive methods of residual stnesasurement are x-ray diffrac-
tion [1] and neutron diffraction [2]. Both of these methods/é the disadvantage that they
can only be used on crystalline materials [3] (and are carsgty of no use for important
materials such as glass fibre reinforced plastics) and thgyire specialised equipment,
which is not readily accessible. As a consequence, destuneasurement techniques are
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extensively used. A great variety have been developed, afhnthe most widely used in-
clude the layer removal method [4,5], crack compliance ittirg} method [3, 6, 7], contour
method [8, 9], hole drilling method [10,11] and Sachs’ metft2, 13].

In composite materials, the major sources of residual simes the cure shrinkage of
the resin system, differences in the thermal and mechapiiopkrties of the fibre and resin
systems, and those of the different plies resulting fronngea in material and/or fibre ori-
entations. Most of the different destructive measuremettiriiques have been applied to
the measurement of residual stresses in layered compoaitriais. Shokrieh et al. [14]
used the crack compliance method to compare residual egré@sdayered quasi-isotropic
and cross-ply carbon/epoxy laminates with those caladilagéng the classical lamination
theory. Ersoy and Vardar [15] compared the residual striesstalition in a(010/9010)s lam-
inate using the crack compliance and layer removal metrBaieman et al. [16] utilised
finite element analysis to obtain the coefficients used toutate the residual stress distri-
bution in a carbon/epoxy plate based on hole distortioni$.eBal. [17,18] determined the
residual stress distribution in thin-walled compositdrayérs using a slitting type technique
combined with an optical displacement measurement. Kinlaed19] measured the resid-
ual hoop stress in thick-walled carbon fibre pre-preg c@isdusing what they described as
the radial cut cylinder bending method. This method cossitsplitting the pipe with a
radial cut down its length, and measuring changes in straithe inner and outer surfaces
of the pipe due to the release of the residual bending moriiéetresidual stress was cal-
culated using curved beam theory. Akbari et al. [20] utdilee crack compliance method,
using pulse functions and Thikhonov regularization to obtiae residual hoop stress distri-
bution in a layered carbon fibre ring. Chen et al. [21] utdiselayer removal and inherent
strain technique to determine the residual stresses indeygotropic tubes. They compared
the results they obtained to those of Sachs’ method.

The method developed by Sachs [12] relies on boring out therigurface or remov-
ing the outer surface layers of a cylindrical pipe, and solmconsidered a layer removal
method. As originally developed, this approach is limiteddotropic materials. The ap-
proach has the advantage that the axial, circumferentigdlane shear and radial residual
stresses can be found. The method has seen use on bothisateaiprials [22,23,13] and
cylindrically orthotropic materials. The first work appli¢o the latter materials was pre-
sented by Olson and Bert [24] who modified Sachs’ method tblerthe residual stress
distribution in cylindrically orthotropic bars and tubedie determined. Voyiadijis et al. [25]
presented a similar method for measuring residual stresdimdrically orthotropic materi-
als. Voyiadijis et al. [26] later presented an extended ntktifdhis work to obtain residual
stresses in layered cylindrically orthotropic materi&®asty et al. [27] utilised the method
presented by Voyiadjis et al. [25], with a different derieatof the radial and hoop stresses,
to obtain the residual stress distribution present in rarefgade zircaloy-4(R) tubes.

All of the methods presented by Olson et al. [24], Voyiadijiale[25, 26], and Rasty et al. [27],
are limited to orthotropic cylinders and cannot be appl@édrisotropic cylinders. Addition-
ally, they all determine the radial and hoop stresses arfsom radial pressure by using the
plane stress solution of Lekhnitskii [28] for annular piat&he use of the plane stress as-
sumption is not, however, entirely correct for cylindergeTcorrect boundary condition is
that the axial strain is invariant in the radial directio®]2T his permits self-equilibrating ax-
ial stresses to arise from the application of radial prestads. Although these stresses do
not materialize in isotropic cylinders they become inciregly significant in orthotropic and
anisotropic cylinders as the wall thickens. For this reasioe methods of Olson et al. [24],
Voyiadijis et al. [25,26], and Rasty et al. [27] are limiteddomparatively thin-walled or-
thotropic pipes.



Title Suppressed Due to Excessive Length 3

The current paper presents an alternative approach thatradeuffer from these con-
straints. It is based on the exact elastic solution for lat@d anisotropic cylinders and
correctly models the boundary conditions. As a consequéreg¢echnique is not limited
in its use. In its full ramifications this allows the analysisthick-walled, multilayered,
anisotropic cylinders. To the authors’ knowledge, no témpia with this capability has been
published before.

2 Theory
Basis of analysis

The present method of calculating the residual stresseyéared anisotropic pipes is based
on the exact elastic solution for laminated cylindrical gmments presented in the excellent
textbook of Herakovich [29]. This work is based upon thosd ekhnitskii [30], Scher-
rer [31], Reissner [32], Pagano [33], Reissner and Tsiadg8d]Wilson and Orgill [35]. The
laminated pipe under consideration is illustrated in Fig. 1

Fig. 1 Laminated composite pipe

Throughout this text, the term “ply” is reserved for a singdenina within the pipe
laminate, whereas the term “layer” is reserved for matéhnet is removed from the laminate
during the experimental process. Measurement of the ralsstiesses within a ply typically
requires its progressive removal in several layers.

For an orthotropic ply, the elastic constitutive equationthe material coordinate sys-
tem [29] are
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For an orthotropic ply at a fibre angte measured from the axial orientation, the elastic
constitutive equations of Eq. (1) are transformed into ¢hafsa monoclinic material in the
cylindrical coordinate systeitr, ,x) [29]:

Ox Czn @2 @3 0 0 CELG &
O C12C2C3 0 0 Gy | €0
Or | _ |C13C3Cs3 0 0 Cse & @)
Tor 0 0 O (214 C215 0 Yor
Txr 0 0 0GCsgGCs5 O Yar
Txo Ci6C26C3s 0 0 Cop| | Vo
The inter-laminar shear stresses and Ty, can be written as
B
Tor = 2 (3)
C
Ixr = T 4)

whereB andC are constants of integration [29]. Traction continuitybegn layers requires
the inter-laminar shear stresseg and 1y, to be continuous from layer to layer. Since these
shear stresses must be zero at the inner and outer surfattesmpe,B andC are conse-
quently zero [29]. Thus, Eqg. (2) reduces to

Ox C11 C12Cy3 G5 &
Og | _ |C12Co2Co3Cos | | €0 ®)
O C13Cp3 C33 Cge &
Txg Cu16 C26 C36 Co6 | | Yo

At positions remote from edge effects, the displacementieénaxial (u), tangential(v)
and radial(w) directions, at the radial positianand axial positiorx for the k™ ply of an
anisotropic pipe can be written [29] as

uk (x,r) = e2x (6)
VE(x,1) = yPxr (7

WK () = AP 4 A 4 rRedr 4 Q4P 8)
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wheree?, \°, AE andA% are constants determined by the specified boundary andhipadi
conditions. The termaX, I and Q¥ are constant terms dependent on the material proper-

ties of thek!™ ply [29]:
Ck
A=/ & 9)
33

& ck
k_ C12—Cis

P (10)
Cs—Ch
~& _ ock
Q=2 "3 (11)
4C33—Cp
Individual ply strains at the radial positiarfor thek!" ply can be written [29] as
£ =& (12)
gk = Akt (A1) akp (A1) 4 kgD 4 ko (13)
£l = AKAlr (1) ke (A0 4 rke0 4 20Ky (14)
Vo = VOr (15)
The stresses in each ply are determined using Egs. (16) 1¢24P
o = [6[1(14‘ (61(3"'6[1(2) ’_k} &+ [(6[1(24‘26[{3) Qk+6[1<6} yor 16)
* {6[1(2 +A ké[l(s} A1) 4 [61(2 —A ké[l(S} Agr(-2Y)
af = [(-:'[1(2+ c—:2k2+(-:'2k3) ’_k} 5>?+[(62k2+262k3) Qk+62(6} yor @)
+ [52[‘2+)\ "62[(3} Al (A1) [C:/zkz —AkCk } Asr(=2-1)
0 = [Cla+ (Cha+ i) ¥ 60 + [ (Cha+ 2Cha) @+ Ch| yPr .
k_ Ak
+ {62[(34'“63[(3} Ar( 1) 4 [@(3—“63[(3} Agr (-2 1)
Ty = [6[1(6‘*‘ (62[(6""6’3;[(6) ’_k} & + [6[ée+ (62k6+263k6) Qk] yor 19)
k_

[ G Al | Al () + Gl — A*CEe] Alr ()
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For perfectly bonded layers, all displacements must beirmoodis from layer to layer,
as must the radial stress at each ply interface. The radésdssat the inner and outer walls
of the pipe is exactly equal and opposite to the pressureepph the respective surfaces.
These requirements are formulated in Egs. (20) to (25) [@6]ae used to obtain the con-
stantse? andy? and the ply constant& andA¥ [29].

¥ =€ (k=1,..,N) (20)

W=y (k=1,...,N) (21)

WK = WKt (Interface ar k=1,... ,N—1) (22)
ok = gf*t (Interface aty k=1,... ,N—1) (23)
o (R)=-R (24)

o (Ro) = —Po (25)

In the aboveR andP; indicate the pressures acting on the inner and outer sstfeespec-
tively.

2.1 Obtaining residual stresses

The residual stress distribution is determined by progrelsreleasing stress through the
removal of material, and measuring the associated changsgain elsewhere in the pipe.
It is assumed in this work that the removal of material preges inwards from the outside
of the pipe and that the strain is measured on the inner urRemoval of material in the
reverse direction can, however, easily be accommodatesla$bumption is made that the
elimination of a layer of material from the outer surfacelo pipe causes a purely elastic
mechanical response in the remaining pipe section. Padlgtithis means that care must be
taken to ensure that machining loads and heating are mieimis

Strain gauge rosettes are required so that the axial giraimop straireg and in-plane
shear strainyg responses can be determined. Since the const@iaisd ) that arise in the
response to the release of residual stress in the removeddas invariant throughout the
wall thickness & = €2 and g = y°. The measured strains after the removaholayers
allow the calculation of the cumulative residual load thas bbeen released. This load can
be modelled as an axial force and torque applied to the renggiripe ofN plies, as well as
an external pressure applied at the newly exposed outercgui he requirement is that the
application of these loads must result in the same straatsatle measured after the removal
of all mlayers of material from the outside of the pipe. It should beed that the thickness
of each layer removed need not be uniform and is entirelygaddent of the thickness of
each ply.
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Prior to the calculation of the loads applied to the remajnpipe thickness, the con-
stantsA‘i andA'g for each ply in the remaining pipe section are determine@. tmber of
plies remaining is equal tbl which means thal constantsA'{ andN constantsA‘g must
be determined, ori unknowns in total. This is done by utilising Eq. (18) where tadial
stress at the inner surface of the pipe is always zero, an@LBgwhere the measured strain
is analytically expressed in relation to the required camist Additionally, the @N — 1)
equilibrium conditions are simultaneously applied in tbet of Egs. (22) and (23) at each
ply interface, which requires the use of Egs. (8) and (18§ @fuations resulting from this
approach are written in matrix form:

DA=M (26)

The non-zero terms of the square mafdare determined as

1_
D11 — pef

_ s1.(=A1-1)
D12 = 5(;1{ ) Fork=1 27)
D2v1 = I’o )
Al
D22 = r(() Y
Ak
Dokt12k—1 = Bkrﬁ kl)
Y
Doki1,2k = 5kf;(< 1:“
)\ —
Dokt1.2k+1 = —[3k+lf;(< ml)
_ k-1, (—AFFE-1)
Daxi12cr2 = —0¢ry Forl<k<N-1 (28)
Doki22k-1 = Ip )
Dokyoox = I, A »
.
Daciz,oki1 = —p »
_ +!
Doks2.oki2 = — T
where
Bk =Ch;+AKCh, (29)
and
K = Ch3—A"Chs (30)

Eq. (27) relates to the boundary conditions on the innerasetfwhile Eq. (28) relates to
the boundary conditions of continuous radial stress anidlrdisplacement at each ply in-
terface. Equation (28) is only applicable when the numbealies remaining in the pipe is
greater than one.

The terms of vectoA in Eq. (26) are

Ag 1 = A

For1<k<N 31
Azk:A'é} - (1)

The vectoM in Eq. (26) is expressed in terms of the measured ségand constant strain
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termse? andyP.

My = —nted — kyPro

M, = & —FlsQ—Qlyoro} Fork=1 (32)

Mo = —Utfg—OKkvifle
+n el + kK<yPry k< N_
Moo — Tee0r QY02 Fori<k<N-1 (33)
+T k1l + QkH1yPr2
where
nk=Ck+ [62k3+63k3} r« (34)
and
K = [62[(34‘263[(3} Q*+Cig (35)

As with Eq. (28), Eqg. (33) is only applicable to a pipe where ttmaining number of plies
is greater than one.

Once the constamﬂs‘fL andA'§ in each of the plies of the remaining pipe section are found
by solving Eq. (26), the internal stresses and the presgyniesd to the outer surface can be
found using Egs. (16) to (19) while invoking Eq. (25). Thesesses result from the removal
of the outem layers of pipe section and are modelled as externally agjdi@ds acting in
the remaining pipe thickness. The axial forEg,and torqueTy, existing at the ends of the
remaining pipe oN plies are shown in Egs. (36) and (37) respectively.

N
F :/Znaxr dr
o

Nk
=2my /offrdr

A Y

:271% [(6[1(1+ {51(34‘61(2}’_'() & (rﬁ—zrﬁl)

k=1
(e fe o) ()

(CY,+AKCYy) Ak r(/‘k+1) B r(AkH)
A k + 1 k k-1

(6;2 —A ké]fB) Ak <r£’)‘ k+1) _ rlg:i k+1) > } (36)

iy

—Akp1 7
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N
Ty :27‘[/ Teor2 dr
o
N

:27‘[@1(@1‘6—# {6[(26—1— —kG} I'k) &0 <rE —Srf_1>

+ (6([;6+ {6[(26_" Zéake}gk) Y (ré;rﬂl)
n (Chs+AKCho) A (rlgmrz) _ ("k+2)>

K12 Me—1
Ck. — Akck “akg2 “akg2
( Zj)\k+236) AE <r|£ ) _ r|£71 ))] (37)

The loads released by each individual lay&F, andT,™, are found by subtracting the loads
that exist aftem— 1 layers are removed from those that exist aftdayers are removed.

m R (for m=1)
R = { FEM—FM™1 (form> 1) (38)

(39)

X

T " (form=1)
AT T (for m> 1)

The applied pressur®y, is found by using Egs. (18) and (25). After the removahof
layers, the resultant radial stress at the surface is thedauhre radial residual stress that
existed prior to the removal of the outer layers and the t¢alled radial stress that arises
due to the removal of these layers. Since the resultantlrstdéss at the outer surface of the
remaining pipe must vanish, the residual radial stresstialg¢tje negative of the radial stress
calculated using Eq. (18). The applied pressBg is therefore exactly equal to the residual
radial stress. It is apparent from Egs. (38) and (39) thaldhes calculated for layen are
affected only by those calculated for the removal of laye@ndm— 1. This indicates that
errors in stress arising from measurement inaccuracieotipropagate beyond the layer
following on from the erroneous reading.

The stress distributions within the newly removed layemwhich are determined using
Egs. (16) to (19), require knowledge of the four constaktsA,, €0 and y° within this
layer. These unknowns are found making use of the four bayrataditions arising from
the application of the axial and torsional loa#$} andT;", and the known radial residual
stresses that were obtained for the inner and outer surddtieis layer. If the removed layer
contains an interface between two different materials aghgropriate boundary conditions
of Egs. (22) and (23) must be included into the solution.

Accuracy considerations

Residual stresses in the hoop and axial directions mustédaeeo force resultant. Due to
the cylindrical nature of the problem, a zero moment stat@isequired. The overall torque
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must, however, have a zero resultant. The present anabgisees that the loads applied to
the remaining pipe section arise from the release of rebgtussses and that no external
loads are appliedz" andT," must therefore tend to zero asincreases and the pipe tends
to zero wall thickness. Since these loads represent the kygalied to the remaining section
by the removal of the outer layers, the resultant force ofcleulated stress distribution
must therefore tend towards zero. This method thereforergéss stress distributions that
satisfy the self-equilibrium requirement. AdditionalymceF" andT," are defined for the
removal ofm plies, and the individual layer loads calculated using E88) and (39) are
based only on the values Bf", F"1, T and )" respectively, errors do not propagate
through the thickness of the pipe wall. An errorRfl' will cause a corresponding error in
the stress arising frofi". If the value ofF™? is accurate, an opposing errorf** (and

its resultant stress) is required as a consequence of tlearg ho external loading. This
error does not, however, propagate to theH2) layer. There thus exists a built-in system
of self-correction. The same can be saidTgt.

Since the analysis approach is based on an exact elasttiosoline coupling between
the stress components is properly considered. This meatiththtechnique is not limited to
any particular class of problem. It can be applied to any doatton of material type, wall
thickness and lamination sequence. The stress distritsutigthin a multi-layered, thick-
walled, anisotropic pipe can consequently be accurateigroined, as can those of any
simpler configuration.

3 Resultsand discussion

To illustrate the accuracy and capabilities of the methodr €xample problems of increas-
ing complexity are considered. The simplest problem isdhatthick-walled isotropic pipe,
the thin-walled case being trivial. Thin and thick-walledhmtropic pipes are then consid-
ered followed by a layered thick-walled anisotropic pipe.

3.1 Problem 1: Thick-walled isotropic pipe

The pipe under consideration is assumed to have inner déaic20 mm and wall thickness
of 150 mm. This corresponds to a wall-thickness to inneméigr ratio {/d;) of 1.875. The
material properties are those of steel, E = 200 GPavan@.3. It is assumed that material is
removed from the outer surface of the pipe and the strairoresspis measured on the inner
surface. The objective then becomes to determine the @ssthess distribution, given the
variations in measured strain with removed material. Ferghrpose of this exercise, all
three components of the measured strain response are aksuuaey linearly as presented
in Fig. 2. It should be noted, however, that the method isiegple for any variation in
measured strain.

The removal of material from the outer diameter of the pipgsea a strain response in
the remaining material. The three strain components pteden Fig. 2 are directly mea-
sured on the inner wall. This problem only has a single malt¢éype and so only the two
constantl andA} are required. These are found using Eg. (26) which requitesledge
of the measured strains and the material properties. Opamtistantél andA} are known,
they are used with the constant straiziéandyo, to determine the axial load, torque and ex-
ternal pressure applied to the remaining pipe thickneshdyemoved material. These loads
are directly calculated using Egs. (36), (37) and (18),eesyely. If a further thin layer of
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Fig. 2 Assumed linear distribution of strain measurements

material is removed from the outer diameter of the pipe, tkasuared values of the strain
response change, and so new constahtandA} in the smaller pipe are determined. The
loads applied by all the removed material to the slightly kengipe are then found. The
loads that originally existed in the newly removed matemaist be equal to the difference
in the loads applied to these two pipes. The differencesdmvthe axial and torque loads
are consequently applied to a thin walled pipe correspanttirthe removed layer. Addi-
tionally, the negative of the pressure loads acting on thgelaand smaller diameter pipes
are applied on the outer and inner surfaces, respectiveybbundary conditions resulting
from the applied axial load, the applied torque and the predsads on the inner and outer
surfaces allow the calculation of the constatsy?, Al andA} in the newly removed layer.
Egs. (36) and (37) and two applications of Eq. (18), one eacthk pressures on the inner
and outer surfaces, respectively, are used. Once the otsstdhe newly removed layer are
known, the stress distributions within this layer are fousthg Eqgs. (16) to (19).

Results obtained using this technique are compared aghoss of Sachs [12], Voyiad-
jis et al. [25] and Rasty et al. [27]. The axial, and hoopgyg, residual stress distributions
are presented in Figs. 3 and 4, respectively. The radjaland in-plane shear stresgg,
distributions are shown in Fig. 5. It is clear that the resobtained by the present method,
that of Voyiadjis et al. [25] and that of Sachs [12] are inidigishable within the resolu-
tion of the figures. The hoop residual stress obtained usiagriethod of Rasty et al. [27],
however, differs significantly from those of the other methand is erroneous. Equilibrium
considerations dictate that the integral of the hoop stessss the thickness must be equal
to zero if no external pressure is applied and this is cleaotythe case. The method of
Rasty et al. [27] will consequently not be considered anthtrrin this paper.
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Fig. 5 Radial and in-plane shear stress distributions for isatrpipe, ¢/d; = 1.875)

3.2 Problem 2: Thin-walled orthotropic pipe

This problem considers the case of an orthotropic pipe witlinaer diameter of 80 mm
and wall thickness of 1.5 mm, corresponding td; = 0.01875. The material properties are
listed in Table 1. The measured strain distributions areséime as those of Problem 1.

Results obtained from the present method are comparedheisie bf Voyiadjis et al. [25].
The axial, hoop, radial and shear residual stress disimitsiare shown in Figs. 6 and 7. As
was the case for Problem 1, the results from the two methamdistinguishable for all
four stress components within the resolution of the figures.

Table 1 Material properties

Axial modulus,Ex (MPa) 6823
Hoop modulusEg (MPa) 13730
Radial modulusk; (MPa) 8422
Shear modulusGye (MPa) 10186
Shear modulusG,, (MPa) 2718
Shear modulusGg, (MPa) 2575
Poissons ratioyyg 0.445
Poissons ratioyy, 0.280
Poissons ratioyg, 0.895
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3.3 Problem 3: Thick-walled orthotropic pipe

An orthotropic pipe with an inner diameter of 80 mm and waitkiness of 150 mm, cor-
responding td/d; = 1.875, is considered. The material properties are the santigose of
Problem 2 and the measured strain distributions are thoBeolems 1 and 2.

The axial,ayx, and hoopgy, residual stress distributions within the wall of this pgre
shown in Figs. 8 and 9, respectively. In contrast to the tedat the thin-walled pipe, sig-
nificant differences in the axial and hoop stresses are wbddretween the present method
and that of Voyiadjis et al. [25]. It is not possible to idéntany of the stress distributions
as erroneous on the basis of self-equilibrium since theyedi$fy this requirement. For this
reason, a three-dimensional finite element analysis (FEs#s) performed to determine the
residual stress distribution through the wall-thickness.

The finite element analysis approached the problem in aaimidy to the analytical
technique. The residual stresses at a particular diameter fiwund by modelling two pipes.
These pipes had remaining diameters slightly larger agtity}ismaller than the diameter of
interest. An axial force, a torque and an external pressere wdividually applied to each
of the two pipes. In the case of the force and torque, it wasssary to ensure that these
loads were correctly distributed in the radial directiohisTwas achieved by constraining
to zero the axial displacement and the circumferential Emglisplacement at one end of
the pipe while constraining these parameters at the ottietaebe uniform. The boundary
conditions of uniform axial strain and uniform in-plane ahstrain of Egs. (20) and (21)
were thereby satisfied. The unique combination of axial |tadjue and external pressure
that resulted in the measured strains at each of the pipeetiasnwas calculated. A third
pipe was then modelled, corresponding to the thin layer dens making up the differ-
ence in diameter between the first two models. The differebetwveen the axial and torque
loads required to obtain the measured strains of the firstsandnd models was then ap-
plied to the third model. In addition, the negative of thegstae loads found for the larger
and smaller diameter pipes were applied on the outer and sumtaces, respectively. This
loading generated the residual stress distribution withérthin layer of material around the
diameter of interest, allowing each of the stress compartertie determined. It is clear that
the results obtained from this analysis agree extremellwit the axial and hoop stresses
obtained using the present method and that the results ahdjigyet al. [25] are inaccurate
for this thick-walled pipe.

Fig. 10 presents the radial;, and in-plane shearyg, residual stress distributions in the
pipe. Significant differences in the radial residual stees=alculated using the two methods
are evident. This is somewhat expected since the radial aog stresses are related [25]
via the relationshipog = %(rar). Since the hoop stress distribution calculated using the
method of Voyiadijis et al. [25] is inaccurate, the radiaks# distribution must also be in
error. This is confirmed by the results of the FEA. Despitedifferences in normal stresses,
there is good agreement between the residual in-plane stiesses predicted by the present
method and that of Voyiadjis et al.. This is possible becahsee is no coupling between
the normal strains and shear stresses in an orthotropicialate

3.4 Problem 4: Thick-walled, layered anisotropic pipe
The layered, anisotropic pipe under consideration hasraer idiameter of 80 mm and wall

thickness of 15 mm which correspondsta; = 0.1875. The wall thickness is built up of
two layers of equal thickness. The fibres are aligneg4i® and—45° in the inner and outer
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layers, respectively. The material properties, in the nedteoordinate system, are presented
in Table 2. It should be noted that this problem is choseriustilate the power of the present
method and that the method of Voyiadjis et al. [25] is invafidhis case. The problem is
solved in the same manner as the three previous problemptetkee the presence of the
additional layer requires that two extra constaésandA3, must be determined. Eq. (26)
consequently has four rows instead of two during the arabyfsthe outer layer.

Table 2 Material properties

Longitudinal modulusk; (MPa) 40887
Transverse modulug,; = Ez (MPa) 7905
Shear modulusGio = Gi3 (MPa) 2437
Shear modulusG,3 (MPa) 2855
Poissons ratioy1o = vi3 0.298
Poissons ratioy,3 0.384

The calculated residual axiay, and hoopgyg, stresses are shown in Fig. 11. Results us-
ing the present technique are compared against those etifainm FEA since no alternative
exists. It is clear that the two analysis methods are in éxtehgreement. It is interesting
that the stress distributions are discontinuous at thefade of the two plies. Even though
the apparent stiffnesses of the two plies in the axial anghti@ctions are identical, the
coupling terms associated with shear result in differamisses for the same strains.

The corresponding radiat; and in-plane shearyg stress distributions are illustrated in
Fig. 12. As anticipated, the radial stress is continuousifpdy to ply, a requirement of the
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boundary conditions. The in-plane shear stress is, howgigeontinuous at the ply interface
as expected within a layered anisotropic material. Theoditscuity is not symmetrically lo-
cated relative to the line of zero shear stress. This s@naiises because coupling between
the in-plane shear stress and the axial and hoop strainmalctsopposite sense in each ply.

4 Conclusions

A method of residual stress measurement in layered anjgotpipes has been presented.
This method takes full account of the three-dimensionaisstistate that exists throughout
the wall thickness. The method has been shown to have a syéteelf-correction, where
measurement errors do not propagate through the solutidmprdy affect the results in
the region of error. In addition, the calculated residuadsg distributions inherently satisfy
the requirement of self-equilibrium. The present methoolnshexcellent agreement with
the methods of Sachs [12] and Voyiadjis et al. [25] for a thiedled isotropic pipe. The
present method also correlates very closely with that oftkeéhod of Voyiadijis et al. [25]
for thin-walled orthotropic pipes. Results from FEA and present method indicate that
the method of Voyiadijis et al. [25] is less accurate for thacthotropic pipes. The ability of
the present method to calculate the residual stress distibin layered anisotropic pipes
has been shown using a moderately thick-walled pipe buitifup45° and—45° plies. The
method can be applied to any wall thickness and can be usasdofwopic, orthotropic or
anisotropic pipes, whether layered or not.
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