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Extension of the layer removal technique for the measurement
of residual stresses in layered anisotropic cylinders
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Abstract An extension of the layer removal technique is presented that allows the residual
stresses within multilayered anisotropic pipes of any wallthickness to be determined. The
method inherently satisfies the self-equilibrium requirement and limits the effects of mea-
surement errors to the region local to the error. The thickness of each layer that is removed
need not be uniform and is entirely independent of the thickness of each ply of material. Four
example problems are considered. The first three allow results to be compared between the
present method and previous work. The fourth problem demonstrates the method on a thick
walled anisotropic pipe built up of+45°/−45° plies for which no solution was previously
available.
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1 Introduction

Residual stresses are inherent stress distributions present in manufactured parts and usu-
ally result from the manufacturing process. These stressescan be associated with premature
failure since they are additive to the applied loading. It thus becomes important to know
the residual stresses within a structure, especially wherea conservative safety factor is im-
practical. Although considerable work has been done on the prediction of residual stresses,
experimental measurement is often the most practical approach. The measurement of resid-
ual stresses can be divided into two techniques, namely non-destructive, and destructive.
The two primary non-destructive methods of residual stressmeasurement are x-ray diffrac-
tion [1] and neutron diffraction [2]. Both of these methods have the disadvantage that they
can only be used on crystalline materials [3] (and are consequently of no use for important
materials such as glass fibre reinforced plastics) and they require specialised equipment,
which is not readily accessible. As a consequence, destructive measurement techniques are
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extensively used. A great variety have been developed, of which the most widely used in-
clude the layer removal method [4,5], crack compliance or slitting method [3,6,7], contour
method [8,9], hole drilling method [10,11] and Sachs’ method [12,13].

In composite materials, the major sources of residual stress are the cure shrinkage of
the resin system, differences in the thermal and mechanicalproperties of the fibre and resin
systems, and those of the different plies resulting from changes in material and/or fibre ori-
entations. Most of the different destructive measurement techniques have been applied to
the measurement of residual stresses in layered composite materials. Shokrieh et al. [14]
used the crack compliance method to compare residual stresses in layered quasi-isotropic
and cross-ply carbon/epoxy laminates with those calculated using the classical lamination
theory. Ersoy and Vardar [15] compared the residual stress distribution in a(010/9010)s lam-
inate using the crack compliance and layer removal methods.Bateman et al. [16] utilised
finite element analysis to obtain the coefficients used to calculate the residual stress distri-
bution in a carbon/epoxy plate based on hole distortions. Seif et al. [17,18] determined the
residual stress distribution in thin-walled composite cylinders using a slitting type technique
combined with an optical displacement measurement. Kim andLee [19] measured the resid-
ual hoop stress in thick-walled carbon fibre pre-preg cylinders using what they described as
the radial cut cylinder bending method. This method consists of splitting the pipe with a
radial cut down its length, and measuring changes in strain on the inner and outer surfaces
of the pipe due to the release of the residual bending moment.The residual stress was cal-
culated using curved beam theory. Akbari et al. [20] utilised the crack compliance method,
using pulse functions and Thikhonov regularization to obtain the residual hoop stress distri-
bution in a layered carbon fibre ring. Chen et al. [21] utilised a layer removal and inherent
strain technique to determine the residual stresses in layered isotropic tubes. They compared
the results they obtained to those of Sachs’ method.

The method developed by Sachs [12] relies on boring out the inner surface or remov-
ing the outer surface layers of a cylindrical pipe, and so canbe considered a layer removal
method. As originally developed, this approach is limited to isotropic materials. The ap-
proach has the advantage that the axial, circumferential, in-plane shear and radial residual
stresses can be found. The method has seen use on both isotropic materials [22,23,13] and
cylindrically orthotropic materials. The first work applied to the latter materials was pre-
sented by Olson and Bert [24] who modified Sachs’ method to enable the residual stress
distribution in cylindrically orthotropic bars and tubes to be determined. Voyiadjis et al. [25]
presented a similar method for measuring residual stress incylindrically orthotropic materi-
als. Voyiadjis et al. [26] later presented an extended method of this work to obtain residual
stresses in layered cylindrically orthotropic materials.Rasty et al. [27] utilised the method
presented by Voyiadjis et al. [25], with a different derivation of the radial and hoop stresses,
to obtain the residual stress distribution present in nuclear-grade zircaloy-4(R) tubes.

All of the methods presented by Olson et al. [24], Voyiadjis et al. [25,26], and Rasty et al. [27],
are limited to orthotropic cylinders and cannot be applied to anisotropic cylinders. Addition-
ally, they all determine the radial and hoop stresses arising from radial pressure by using the
plane stress solution of Lekhnitskii [28] for annular plates. The use of the plane stress as-
sumption is not, however, entirely correct for cylinders. The correct boundary condition is
that the axial strain is invariant in the radial direction [29]. This permits self-equilibrating ax-
ial stresses to arise from the application of radial pressure loads. Although these stresses do
not materialize in isotropic cylinders they become increasingly significant in orthotropic and
anisotropic cylinders as the wall thickens. For this reason, the methods of Olson et al. [24],
Voyiadjis et al. [25,26], and Rasty et al. [27] are limited tocomparatively thin-walled or-
thotropic pipes.
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The current paper presents an alternative approach that does not suffer from these con-
straints. It is based on the exact elastic solution for laminated anisotropic cylinders and
correctly models the boundary conditions. As a consequencethe technique is not limited
in its use. In its full ramifications this allows the analysisof thick-walled, multilayered,
anisotropic cylinders. To the authors’ knowledge, no technique with this capability has been
published before.

2 Theory

Basis of analysis

The present method of calculating the residual stresses in layered anisotropic pipes is based
on the exact elastic solution for laminated cylindrical components presented in the excellent
textbook of Herakovich [29]. This work is based upon those ofLekhnitskii [30], Scher-
rer [31], Reissner [32], Pagano [33], Reissner and Tsia [34]and Wilson and Orgill [35]. The
laminated pipe under consideration is illustrated in Fig. 1.

Fig. 1 Laminated composite pipe

Throughout this text, the term “ply” is reserved for a singlelamina within the pipe
laminate, whereas the term “layer” is reserved for materialthat is removed from the laminate
during the experimental process. Measurement of the residual stresses within a ply typically
requires its progressive removal in several layers.

For an orthotropic ply, the elastic constitutive equationsin the material coordinate sys-
tem [29] are



4 H.W. Carpenter et al.

















σ1

σ2

σ3

τ23

τ31

τ12

















=

















C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

































ε1

ε2

ε3

γ23

γ31

γ12

















(1)

For an orthotropic ply at a fibre angleφ measured from the axial orientation, the elastic
constitutive equations of Eq. (1) are transformed into those of a monoclinic material in the
cylindrical coordinate system(r,θ ,x) [29]:
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(2)

The inter-laminar shear stressesτθ r andτxr can be written as

τθ r =
B
r2 (3)

τxr =
C
r

(4)

whereB andC are constants of integration [29]. Traction continuity between layers requires
the inter-laminar shear stressesτθ r andτxr to be continuous from layer to layer. Since these
shear stresses must be zero at the inner and outer surfaces ofthe pipe,B andC are conse-
quently zero [29]. Thus, Eq. (2) reduces to
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(5)

At positions remote from edge effects, the displacements inthe axial(u), tangential(v)
and radial(w) directions, at the radial positionr and axial positionx for the kth ply of an
anisotropic pipe can be written [29] as

uk (x, r) = ε0
x x (6)

vk (x, r) = γ0xr (7)

wk (r) = Ak
1rλ k

+Ak
2r−λ k

+Γ kε0
x r +Ω kγ0r2 (8)
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whereε0
x , γ0, Ak

1 andAk
2 are constants determined by the specified boundary and loading

conditions. The termsλ k, Γ k andΩ k are constant terms dependent on the material proper-
ties of thekth ply [29]:

λ k =

√

C̄k
22

C̄k
33

(9)

Γ k =
C̄k

12−C̄k
13

C̄k
33−C̄k

22

(10)

Ω k =
C̄k

26−2C̄k
36

4C̄k
33−C̄k

22

(11)

Individual ply strains at the radial positionr for thekth ply can be written [29] as

εk
x = ε0

x (12)

εk
θ = Ak

1r(λ k−1) +Ak
2r(−λ k−1) +Γ kε0

x +Ω kγ0r (13)

εk
r = λ kAk

1r(λ k−1)−λ kAk
2r(−λ k−1)+Γ kε0

x +2Ω kγ0r (14)

γk
xθ = γ0r (15)

The stresses in each ply are determined using Eqs. (16) to (19) [29]:

σk
x =

[

C̄k
11+

(

C̄k
13+C̄k

12

)

Γ k
]

ε0
x +
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C̄k
12+2C̄k

13

)

Ω k+C̄k
16

]

γ0r

+
[

C̄k
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]
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(16)

σk
θ =
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C̄k
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)
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]
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)
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τk
xθ =
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For perfectly bonded layers, all displacements must be continuous from layer to layer,
as must the radial stress at each ply interface. The radial stress at the inner and outer walls
of the pipe is exactly equal and opposite to the pressure applied on the respective surfaces.
These requirements are formulated in Eqs. (20) to (25) [29] and are used to obtain the con-
stantsε0

x andγ0 and the ply constantsAk
1 andAk

2 [29].

ε0k
= ε0

x (k= 1, ... ,N) (20)

γ0k
= γ0 (k= 1, ... ,N) (21)

wk = wk+1 (Interface atrk k= 1, ... ,N−1) (22)

σk
r = σk+1

r (Interface atrk k= 1, ... ,N−1) (23)

σr (RI ) = −PI (24)

σr (RO) = −PO (25)

In the above,PI andPO indicate the pressures acting on the inner and outer surfaces, respec-
tively.

2.1 Obtaining residual stresses

The residual stress distribution is determined by progressively releasing stress through the
removal of material, and measuring the associated changes in strain elsewhere in the pipe.
It is assumed in this work that the removal of material progresses inwards from the outside
of the pipe and that the strain is measured on the inner surface. Removal of material in the
reverse direction can, however, easily be accommodated. The assumption is made that the
elimination of a layer of material from the outer surface of the pipe causes a purely elastic
mechanical response in the remaining pipe section. Practically, this means that care must be
taken to ensure that machining loads and heating are minimised.

Strain gauge rosettes are required so that the axial strainεx, hoop strainεθ and in-plane
shear strainγxθ responses can be determined. Since the constantsε0

x andγ0 that arise in the
response to the release of residual stress in the removed layer are invariant throughout the
wall thickness,εx = ε0

x andγxθ = γ0. The measured strains after the removal ofm layers
allow the calculation of the cumulative residual load that has been released. This load can
be modelled as an axial force and torque applied to the remaining pipe ofN plies, as well as
an external pressure applied at the newly exposed outer surface. The requirement is that the
application of these loads must result in the same strains that are measured after the removal
of all m layers of material from the outside of the pipe. It should be noted that the thickness
of each layer removed need not be uniform and is entirely independent of the thickness of
each ply.
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Prior to the calculation of the loads applied to the remaining pipe thickness, the con-
stantsAk

1 andAk
2 for each ply in the remaining pipe section are determined. The number of

plies remaining is equal toN which means thatN constantsAk
1 andN constantsAk

2 must
be determined, or 2N unknowns in total. This is done by utilising Eq. (18) where the radial
stress at the inner surface of the pipe is always zero, and Eq.(13) where the measured strain
is analytically expressed in relation to the required constants. Additionally, the 2(N− 1)
equilibrium conditions are simultaneously applied in the form of Eqs. (22) and (23) at each
ply interface, which requires the use of Eqs. (8) and (18). The equations resulting from this
approach are written in matrix form:

DDDAAA= MMM (26)

The non-zero terms of the square matrixDDD are determined as

D1,1 = β 1r(λ
1−1)

0

D1,2 = δ 1r(−λ 1−1)
0

D2,1 = r(λ
1−1)

0

D2,2 = r(−λ 1−1)
0























For k= 1 (27)

D2k+1,2k−1 = β kr(λ
k−1)

k

D2k+1,2k = δ kr(−λ k−1)
k

D2k+1,2k+1 = −β k+1r(λ
k+1−1)

k

D2k+1,2k+2 = −δ k+1r(−λ k+1−1)
k

D2k+2,2k−1 = rλ k

k

D2k+2,2k = r−λ k

k

D2k+2,2k+1 = −rλ k+1

k

D2k+2,2k+2 = −r−λ k+1

k































































For 1≤ k≤ N−1 (28)

where

β k = C̄k
23+λ kC̄k

33 (29)

and

δ k = C̄k
23−λ kC̄k

33 (30)

Eq. (27) relates to the boundary conditions on the inner surface, while Eq. (28) relates to
the boundary conditions of continuous radial stress and radial displacement at each ply in-
terface. Equation (28) is only applicable when the number ofplies remaining in the pipe is
greater than one.
The terms of vectorAAA in Eq. (26) are

A2k−1 = Ak
1

A2k = Ak
2

}

For 1≤ k≤ N (31)

The vectorMMM in Eq. (26) is expressed in terms of the measured strainεθ and constant strain
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termsε0
x andγ0.

M1 = −η1ε0
x −κ1γ0r0

M2 = εθ −Γ 1ε0
x −Ω 1γ0r0

}

Fork= 1 (32)

M2k+1 = −ηkε0
x −κkγ0rk

+ηk+1ε0
x +κk+1γ0rk

M2k+2 = −Γ kε0
x rk−Ω kγ0r2

k
+Γ k+1ε0

x rk+Ω k+1γ0r2
k















For 1≤ k≤ N−1 (33)

where

ηk = C̄k
13+

[

C̄k
23+C̄k

33

]

Γ k (34)

and

κk =
[

C̄k
23+2C̄k

33

]

Ω k+C̄k
36 (35)

As with Eq. (28), Eq. (33) is only applicable to a pipe where the remaining number of plies
is greater than one.

Once the constantsAk
1 andAk

2 in each of the plies of the remaining pipe section are found
by solving Eq. (26), the internal stresses and the pressure applied to the outer surface can be
found using Eqs. (16) to (19) while invoking Eq. (25). These stresses result from the removal
of the outerm layers of pipe section and are modelled as externally applied loads acting in
the remaining pipe thickness. The axial force,Fx, and torque,Tx, existing at the ends of the
remaining pipe ofN plies are shown in Eqs. (36) and (37) respectively.

Fx =

rN
∫

r0

2πσxr dr

=2π
N

∑
k=1

rk
∫

rk−1

σk
x r dr

=2π
N

∑
k=1

[

(

C̄k
11+

{

C̄k
13+C̄k

12

}

Γ k
)

ε0
x

(

r2
k − r2

k−1

2

)

+
(

C̄k
16+

{

C̄k
12+2C̄k

13

}

Ω k
)

γ0

(

r3
k − r3

k−1

3

)

+

(

C̄k
12+λ kC̄k

13

)

λ k+1
Ak

1

(

r
(λ k+1)
k − r

(λ k+1)
k−1

)

+

(

C̄k
12−λ kC̄k

13

)

−λ k+1
Ak

2

(

r
(−λ k+1)
k − r

(−λ k+1)
k−1

)]

(36)
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Tx =2π
rN
∫

r0

τxθ r2 dr

=2π
N

∑
k=1

[

(

C̄k
16+

{

C̄k
26+C̄k

36

}

Γ k
)

ε0
x

(

r3
k − r3

k−1

3

)

+
(

C̄k
66+

{

C̄k
26+2C̄k

36

}

Ω k
)

γ0

(

r4
k − r4

k−1

4

)

+

(

C̄k
26+λ kC̄k

36

)

λ k+2
Ak

1

(

r
(λ k+2)
k − r

(λ k+2)
k−1

)

+

(

C̄k
26−λ kC̄k

36

)

−λ k+2
Ak

2

(

r
(−λ k+2)
k − r

(−λ k+2)
k−1

)]

(37)

The loads released by each individual layer,Fm̄
x andTm̄

x , are found by subtracting the loads
that exist afterm−1 layers are removed from those that exist afterm layers are removed.

Fm̄
x =

{

Fm
x (for m= 1)

Fm
x −Fm−1

x (for m> 1)
(38)

Tm̄
x =

{

Tm
x (for m= 1)

Tm
x −Tm−1

x (for m> 1)
(39)

The applied pressure,Pm
O , is found by using Eqs. (18) and (25). After the removal ofm

layers, the resultant radial stress at the surface is the sumof the radial residual stress that
existed prior to the removal of the outer layers and the calculated radial stress that arises
due to the removal of these layers. Since the resultant radial stress at the outer surface of the
remaining pipe must vanish, the residual radial stress is equal the negative of the radial stress
calculated using Eq. (18). The applied pressure,Pm

O , is therefore exactly equal to the residual
radial stress. It is apparent from Eqs. (38) and (39) that theloads calculated for layerm are
affected only by those calculated for the removal of layersm andm−1. This indicates that
errors in stress arising from measurement inaccuracies do not propagate beyond the layer
following on from the erroneous reading.

The stress distributions within the newly removed layerm, which are determined using
Eqs. (16) to (19), require knowledge of the four constantsA1, A2, ε0

x and γ0 within this
layer. These unknowns are found making use of the four boundary conditions arising from
the application of the axial and torsional loads,Fm̄

x andTm̄
x , and the known radial residual

stresses that were obtained for the inner and outer surfacesof this layer. If the removed layer
contains an interface between two different materials, theappropriate boundary conditions
of Eqs. (22) and (23) must be included into the solution.

Accuracy considerations

Residual stresses in the hoop and axial directions must havea zero force resultant. Due to
the cylindrical nature of the problem, a zero moment state isnot required. The overall torque
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must, however, have a zero resultant. The present analysis assumes that the loads applied to
the remaining pipe section arise from the release of residual stresses and that no external
loads are applied.Fm

x andTm
x must therefore tend to zero asm increases and the pipe tends

to zero wall thickness. Since these loads represent the loads applied to the remaining section
by the removal of the outer layers, the resultant force of thecalculated stress distribution
must therefore tend towards zero. This method therefore generates stress distributions that
satisfy the self-equilibrium requirement. Additionally,sinceFm

x andTm
x are defined for the

removal ofm plies, and the individual layer loads calculated using Eqs.(38) and (39) are
based only on the values ofFm

x , Fm−1
x , Tm

x andTm−1
x respectively, errors do not propagate

through the thickness of the pipe wall. An error inFm
x will cause a corresponding error in

the stress arising fromFm̄
x . If the value ofFm+1

x is accurate, an opposing error inFm̄+1
x (and

its resultant stress) is required as a consequence of there being no external loading. This
error does not, however, propagate to the (m+2) layer. There thus exists a built-in system
of self-correction. The same can be said forTm

x .
Since the analysis approach is based on an exact elastic solution, the coupling between

the stress components is properly considered. This means that the technique is not limited to
any particular class of problem. It can be applied to any combination of material type, wall
thickness and lamination sequence. The stress distributions within a multi-layered, thick-
walled, anisotropic pipe can consequently be accurately determined, as can those of any
simpler configuration.

3 Results and discussion

To illustrate the accuracy and capabilities of the method, four example problems of increas-
ing complexity are considered. The simplest problem is thatof a thick-walled isotropic pipe,
the thin-walled case being trivial. Thin and thick-walled orthotropic pipes are then consid-
ered followed by a layered thick-walled anisotropic pipe.

3.1 Problem 1: Thick-walled isotropic pipe

The pipe under consideration is assumed to have inner diameter of 80 mm and wall thickness
of 150 mm. This corresponds to a wall-thickness to inner-diameter ratio (t/di) of 1.875. The
material properties are those of steel, E = 200 GPa andν = 0.3. It is assumed that material is
removed from the outer surface of the pipe and the strain response is measured on the inner
surface. The objective then becomes to determine the residual stress distribution, given the
variations in measured strain with removed material. For the purpose of this exercise, all
three components of the measured strain response are assumed to vary linearly as presented
in Fig. 2. It should be noted, however, that the method is applicable for any variation in
measured strain.

The removal of material from the outer diameter of the pipe causes a strain response in
the remaining material. The three strain components presented in Fig. 2 are directly mea-
sured on the inner wall. This problem only has a single material type and so only the two
constantsA1

1 andA1
2 are required. These are found using Eq. (26) which requires knowledge

of the measured strains and the material properties. Once the constantsA1
1 andA1

2 are known,
they are used with the constant strains,ε0

x andγ0, to determine the axial load, torque and ex-
ternal pressure applied to the remaining pipe thickness by the removed material. These loads
are directly calculated using Eqs. (36), (37) and (18), respectively. If a further thin layer of
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Fig. 2 Assumed linear distribution of strain measurements

material is removed from the outer diameter of the pipe, the measured values of the strain
response change, and so new constantsA1

1 andA1
2 in the smaller pipe are determined. The

loads applied by all the removed material to the slightly smaller pipe are then found. The
loads that originally existed in the newly removed materialmust be equal to the difference
in the loads applied to these two pipes. The differences between the axial and torque loads
are consequently applied to a thin walled pipe corresponding to the removed layer. Addi-
tionally, the negative of the pressure loads acting on the larger and smaller diameter pipes
are applied on the outer and inner surfaces, respectively. The boundary conditions resulting
from the applied axial load, the applied torque and the pressure loads on the inner and outer
surfaces allow the calculation of the constantsε0

x , γ0, A1
1 andA1

2 in the newly removed layer.
Eqs. (36) and (37) and two applications of Eq. (18), one each for the pressures on the inner
and outer surfaces, respectively, are used. Once the constants in the newly removed layer are
known, the stress distributions within this layer are foundusing Eqs. (16) to (19).

Results obtained using this technique are compared againstthose of Sachs [12], Voyiad-
jis et al. [25] and Rasty et al. [27]. The axial,σx, and hoop,σθ , residual stress distributions
are presented in Figs. 3 and 4, respectively. The radial,σr , and in-plane shear stress,τxθ ,
distributions are shown in Fig. 5. It is clear that the results obtained by the present method,
that of Voyiadjis et al. [25] and that of Sachs [12] are indistinguishable within the resolu-
tion of the figures. The hoop residual stress obtained using the method of Rasty et al. [27],
however, differs significantly from those of the other methods and is erroneous. Equilibrium
considerations dictate that the integral of the hoop stressacross the thickness must be equal
to zero if no external pressure is applied and this is clearlynot the case. The method of
Rasty et al. [27] will consequently not be considered any further in this paper.
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Fig. 3 Axial residual stress distribution for isotropic pipe, (t/di = 1.875)

Fig. 4 Hoop residual stress distribution for isotropic pipe, (t/di = 1.875)



Title Suppressed Due to Excessive Length 13

Fig. 5 Radial and in-plane shear stress distributions for isotropic pipe, (t/di = 1.875)

3.2 Problem 2: Thin-walled orthotropic pipe

This problem considers the case of an orthotropic pipe with an inner diameter of 80 mm
and wall thickness of 1.5 mm, corresponding tot/di = 0.01875. The material properties are
listed in Table 1. The measured strain distributions are thesame as those of Problem 1.

Results obtained from the present method are compared with those of Voyiadjis et al. [25].
The axial, hoop, radial and shear residual stress distributions are shown in Figs. 6 and 7. As
was the case for Problem 1, the results from the two methods are indistinguishable for all
four stress components within the resolution of the figures.

Table 1 Material properties

Axial modulus,Ex (MPa) 6823
Hoop modulus,Eθ (MPa) 13730
Radial modulus,Er (MPa) 8422
Shear modulus,Gxθ (MPa) 10186
Shear modulus,Gxr (MPa) 2718
Shear modulus,Gθ r (MPa) 2575
Poissons ratio,νxθ 0.445
Poissons ratio,νxr 0.280
Poissons ratio,νθ r 0.895
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Fig. 6 Axial and hoop residual stress distributions for orthotropic pipe, (t/di = 0.01875)

Fig. 7 Radial and in-plane shear stress distributions for orthotropic pipe, (t/di = 0.01875)
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3.3 Problem 3: Thick-walled orthotropic pipe

An orthotropic pipe with an inner diameter of 80 mm and wall thickness of 150 mm, cor-
responding tot/di = 1.875, is considered. The material properties are the sameas those of
Problem 2 and the measured strain distributions are those ofProblems 1 and 2.

The axial,σx, and hoop,σθ , residual stress distributions within the wall of this pipeare
shown in Figs. 8 and 9, respectively. In contrast to the results for the thin-walled pipe, sig-
nificant differences in the axial and hoop stresses are observed between the present method
and that of Voyiadjis et al. [25]. It is not possible to identify any of the stress distributions
as erroneous on the basis of self-equilibrium since they allsatisfy this requirement. For this
reason, a three-dimensional finite element analysis (FEA) was performed to determine the
residual stress distribution through the wall-thickness.

The finite element analysis approached the problem in a similar way to the analytical
technique. The residual stresses at a particular diameter were found by modelling two pipes.
These pipes had remaining diameters slightly larger and slightly smaller than the diameter of
interest. An axial force, a torque and an external pressure were individually applied to each
of the two pipes. In the case of the force and torque, it was necessary to ensure that these
loads were correctly distributed in the radial direction. This was achieved by constraining
to zero the axial displacement and the circumferential angular displacement at one end of
the pipe while constraining these parameters at the other end to be uniform. The boundary
conditions of uniform axial strain and uniform in-plane shear strain of Eqs. (20) and (21)
were thereby satisfied. The unique combination of axial load, torque and external pressure
that resulted in the measured strains at each of the pipe diameters was calculated. A third
pipe was then modelled, corresponding to the thin layer of material making up the differ-
ence in diameter between the first two models. The differences between the axial and torque
loads required to obtain the measured strains of the first andsecond models was then ap-
plied to the third model. In addition, the negative of the pressure loads found for the larger
and smaller diameter pipes were applied on the outer and inner surfaces, respectively. This
loading generated the residual stress distribution withinthe thin layer of material around the
diameter of interest, allowing each of the stress components to be determined. It is clear that
the results obtained from this analysis agree extremely well with the axial and hoop stresses
obtained using the present method and that the results of Voyiadjis et al. [25] are inaccurate
for this thick-walled pipe.

Fig. 10 presents the radial,σr , and in-plane shear,τxθ , residual stress distributions in the
pipe. Significant differences in the radial residual stresses calculated using the two methods
are evident. This is somewhat expected since the radial and hoop stresses are related [25]
via the relationship:σθ = ∂

∂ r (rσr). Since the hoop stress distribution calculated using the
method of Voyiadjis et al. [25] is inaccurate, the radial stress distribution must also be in
error. This is confirmed by the results of the FEA. Despite thedifferences in normal stresses,
there is good agreement between the residual in-plane shearstresses predicted by the present
method and that of Voyiadjis et al.. This is possible becausethere is no coupling between
the normal strains and shear stresses in an orthotropic material.

3.4 Problem 4: Thick-walled, layered anisotropic pipe

The layered, anisotropic pipe under consideration has an inner diameter of 80 mm and wall
thickness of 15 mm which corresponds tot/di = 0.1875. The wall thickness is built up of
two layers of equal thickness. The fibres are aligned at+45° and−45° in the inner and outer
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Fig. 8 Axial residual stress distribution for orthotropic pipe, (t/d = 1.875)

Fig. 9 Hoop residual stress distribution for orthotropic pipe, (t/d = 1.875)
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Fig. 10 Radial and in-plane shear stress distributions for orthotropic pipe, (t/d = 1.875)

layers, respectively. The material properties, in the material coordinate system, are presented
in Table 2. It should be noted that this problem is chosen to illustrate the power of the present
method and that the method of Voyiadjis et al. [25] is invalidin this case. The problem is
solved in the same manner as the three previous problems except that the presence of the
additional layer requires that two extra constants,A2

1 andA2
2, must be determined. Eq. (26)

consequently has four rows instead of two during the analysis of the outer layer.

Table 2 Material properties

Longitudinal modulus,E1 (MPa) 40887
Transverse modulus,E2 = E3 (MPa) 7905
Shear modulus,G12 = G13 (MPa) 2437
Shear modulus,G23 (MPa) 2855
Poissons ratio,ν12 = ν13 0.298
Poissons ratio,ν23 0.384

The calculated residual axial,σx, and hoop,σθ , stresses are shown in Fig. 11. Results us-
ing the present technique are compared against those obtained from FEA since no alternative
exists. It is clear that the two analysis methods are in excellent agreement. It is interesting
that the stress distributions are discontinuous at the interface of the two plies. Even though
the apparent stiffnesses of the two plies in the axial and hoop directions are identical, the
coupling terms associated with shear result in different stresses for the same strains.
The corresponding radial,σr and in-plane shear,τxθ stress distributions are illustrated in
Fig. 12. As anticipated, the radial stress is continuous from ply to ply, a requirement of the
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Fig. 11 Axial and hoop residual stresses for+45°/−45° anisotropic pipe,t/di = 0.1875

boundary conditions. The in-plane shear stress is, however, discontinuous at the ply interface
as expected within a layered anisotropic material. The discontinuity is not symmetrically lo-
cated relative to the line of zero shear stress. This situation arises because coupling between
the in-plane shear stress and the axial and hoop strains actsin the opposite sense in each ply.

4 Conclusions

A method of residual stress measurement in layered anisotropic pipes has been presented.
This method takes full account of the three-dimensional stress state that exists throughout
the wall thickness. The method has been shown to have a systemof self-correction, where
measurement errors do not propagate through the solution, but only affect the results in
the region of error. In addition, the calculated residual stress distributions inherently satisfy
the requirement of self-equilibrium. The present method shows excellent agreement with
the methods of Sachs [12] and Voyiadjis et al. [25] for a thick-walled isotropic pipe. The
present method also correlates very closely with that of themethod of Voyiadjis et al. [25]
for thin-walled orthotropic pipes. Results from FEA and thepresent method indicate that
the method of Voyiadjis et al. [25] is less accurate for thickorthotropic pipes. The ability of
the present method to calculate the residual stress distribution in layered anisotropic pipes
has been shown using a moderately thick-walled pipe built upof +45° and−45° plies. The
method can be applied to any wall thickness and can be used forisotropic, orthotropic or
anisotropic pipes, whether layered or not.
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Fig. 12 Radial and shear residual stresses for+45°/−45° anisotropic pipe,t/di = 0.1875
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