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Abstract

In this thesis we explore certain limits of the AdS/CFT correspondence for

integrability. This is done by calculating the action of the dilatation operator

on operators known as restricted Schur polynomials, which are AdS/CFT

dual to D3-branes known as giant gravitons. We focus on operators in N =

4 super-Yang-Mills theory, which is dual to type IIB string theory on an

AdS5×S5 background. We find that, in various cases, this theory is integrable

in a large N non-planar limit.



2

Declaration

I declare that this thesis is my own, unaided work. It is being submitted for

the Degree of Doctor of Philosophy at the University of the Witwatersrand,

Johannesburg. It has not been submitted before for any degree or examina-

tion at any other University.

Stephanie Smith

Date



3

Acknowledgements

I would like to thank Garreth James Kemp and Badr Awad Elseid Mo-

hammed for their collaboration, and Robert de Mello Koch for being an

excellent supervisor.



4

Contents

1 Introduction 7

1.1 The AdS/CFT Correspondence . . . . . . . . . . . . . . . . . 8

1.2 N = 4 Super Yang-Mills Theory . . . . . . . . . . . . . . . . . 11

1.3 The Large N and Planar Limits . . . . . . . . . . . . . . . . . 13

1.3.1 The Large N Limit . . . . . . . . . . . . . . . . . . . . 13

1.3.2 The Planar Limit . . . . . . . . . . . . . . . . . . . . . 18

2 Introduction to Group Theory 23

2.1 Some Sn Group Representation Theory . . . . . . . . . . . . . 23

2.1.1 Sn and Young Diagrams . . . . . . . . . . . . . . . . . 23

2.1.2 Basis Construction and Young’s Orthogonal Represen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Removing Boxes . . . . . . . . . . . . . . . . . . . . . 29

2.2 Constructing Restricted Schur Polynomials . . . . . . . . . . . 31

2.2.1 The Labeling R, (r, s, )jk . . . . . . . . . . . . . . . . . 32

2.2.2 χR,(r,s)jk(σ): The Restricted Character . . . . . . . . . 33

2.2.3 Y and Z Fields . . . . . . . . . . . . . . . . . . . . . . 34

2.3 U(p) Representation Theory . . . . . . . . . . . . . . . . . . . 35

2.3.1 Lie Algebra . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 u(p) Irreducible Representations . . . . . . . . . . . . . 36

2.3.3 Relating Young Diagrams to Gelfand-Tsetlin Patterns . 40

2.4 Constructing PR→(r,s)jk . . . . . . . . . . . . . . . . . . . . . . 42

3 Action of the Dilatation Operator 50

3.1 The Dilatation Operator . . . . . . . . . . . . . . . . . . . . . 52



5

3.1.1 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.2 One-Loop Dilatation Operator . . . . . . . . . . . . . . 54

3.2 Calculating the Action of the Dilatation Operator . . . . . . . 59

3.2.1 General Trace Evaluation . . . . . . . . . . . . . . . . 59

3.2.2 Two Graviton System . . . . . . . . . . . . . . . . . . . 61

3.3 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.1 The Continuum Limit . . . . . . . . . . . . . . . . . . 70

3.4 Gauss Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Non Planar Integrability: Beyond the SU(2) Sector 77

4.1 Action of the Dilatation Operator . . . . . . . . . . . . . . . . 79

4.2 Projection Operators . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Two Rows . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Two Columns . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Evaluation of the Dilatation Operator . . . . . . . . . . . . . . 94

4.4 Diagonalization of the Dilatation Operator . . . . . . . . . . . 101

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 From Large N Nonplanar Anomalous Dimensions to Open

Spring Theory 107

5.1 Nonplanar Dilatation Operator . . . . . . . . . . . . . . . . . 109

5.2 Strings between 2 giants . . . . . . . . . . . . . . . . . . . . . 112

5.3 Strings between 3 giants . . . . . . . . . . . . . . . . . . . . . 116

5.4 Strings between 4 giants . . . . . . . . . . . . . . . . . . . . . 121



6

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Nonplanar Integrability at Two Loops 124

6.1 Introduction and Questions . . . . . . . . . . . . . . . . . . . 124

6.2 Two Loop Dilatation Operator . . . . . . . . . . . . . . . . . . 128

6.3 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Summary and Answers . . . . . . . . . . . . . . . . . . . . . . 141

7 Conclusions 144

A Appendix: Computational details supporting Chapter 3 150

A.1 Intertwiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.2 Calculating Traces . . . . . . . . . . . . . . . . . . . . . . . . 151

A.3 The Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B Computational details supporting Chapter 4 156

B.1 Example Projector . . . . . . . . . . . . . . . . . . . . . . . . 156

B.2 The Space L(Ωm,p) . . . . . . . . . . . . . . . . . . . . . . . . 158

B.3 Explicit Evaluation of the Dilatation Operator for m = p = 2

and Numerical Spectrum . . . . . . . . . . . . . . . . . . . . . 162

C Computational details supporting Chapter 6 164

C.1 ∆(2)
ij as an element of u(p) . . . . . . . . . . . . . . . . . . . . 164

C.2 Simplifications of the m� n limit . . . . . . . . . . . . . . . . 166

C.3 On the action of the Dilatation Operator . . . . . . . . . . . . 168



7

1 Introduction

The AdS/CFT correspondence describes an equivalence between theories

with gravity in d+1 dimensions and theories without gravity in d dimensions.

The duality was motivated by the study of D-branes, which are extended ob-

jects in string theory on which open strings can end. The correspondence

provides a concrete non-perturbative definition of quantum gravity, the the-

ory that unifies quantum field theory and general relativity into a single

consistent framework. In this work we study this duality, focusing on the

duality between N = 4 super Yang-Mills (SYM) theory and type IIB string

theory on an AdS5 × S5 background.

Our primary goal is to look for signals that there are limits of the theory

in which it is integrable. For a system to be integrable, it needs to posses as

many conserved quantities as the number of its degrees of freedom. The dy-

namics of an integrable system simplifies dramatically and hence such limits

would provide important instances in which we can hope to gather detailed

information about the AdS/CFT duality.

It has previously been shown that N = 4 SYM is integrable in the planar

limit. Initial studies of non-planar corrections lead to claims that integra-

bility is a property only of the planar limit. This has proved to be false

[17]. Indeed, certain large N but non-planar limits of the su(2) sector of the

theory seem to enjoy integrability1. A major goal of this work is to further
1We do not disagree with the results of [17]. The study of [17] considered non-planar

diagrams that provide the first sub-leading corrections to the large N limit. The non-
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our understanding of non-planar integrability by both extending it to other

sectors and to higher loops. In the following sections we shall present the

background information and tools needed to do this.

1.1 The AdS/CFT Correspondence

In [15] Maldacena conjectured the existence of a correspondence between

string theories in a bulk Anti de Sitter space and conformally invariant field

theories on the boundary of the Anti-de Sitter space. The correspondence

claims that gauge theories at strong coupling behave like weakly coupled

string theories and that string theories at strong coupling correspond to

weakly coupled gauge theories. The duality thus gives us the tools to do

difficult calculations in gravity theories by looking at their corresponding

conformal field theories, and vice versa. This provides a framework to study

strongly coupled theories which cannot be solved perturbatively. An example

of a calculation that can be performed to check the AdS/CFT correspondence

is the calculation of correlation functions in the field theory. From this two

point function we obtain a scaling ‘dimension’, which should match the en-

ergy of the dual state in the string theory.

As mentioned, if the theory enjoys integrability, it is possible to perform

detailed and general studies and checks of the correspondence. There are

powerful theorems which forbid integrability in 3 + 1 dimensional quantum

field theories. Here, when we talk of integrability in N = 4 super-Yang-Mills

planar diagrams we consider contribute at the leading order of the large N expansion.
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theory, we are referring to the fact that the planar dilatation operator can

be identified with the Hamiltonian of an integrable system. This will be

discussed in detail later on. The fact that such a map exists allows us to

compute the planar scaling dimensions to all loops.

In this work we focus on this version of integrability in the N = 4 super

Yang-Mills (SYM) theory in four dimensional Minkowski space. As a con-

sequence of the fact that this gauge theory is AdS/CFT dual to type IIB

string theory on the AdS5 × S5 background, our studies may shed light on

quantum gravity in a negatively curved space-time. Concretely we will focus

on operators whose bare dimension grows as N in the large N limit. To

capture the large N limit for these operators, we need to sum many non-

planar diagrams, which corresponds to non-perturbative physics in the dual

string theory. The particular set of gauge invariant operators that we focus

on are known as restricted Schur polynomials. They are AdS/CFT dual to

D3 branes with a spherical world volume, known as giant gravitons.

Giant gravitons are branes extended in either the AdS5 or S5 space of an

AdS5×S5 background. They expand with a radius that is proportional to the

square root of their angular momentum, with a maximum angular momen-

tum proportional to N . They are classically stable due to the Lorentz-like

force which grows with angular momentum, balancing their world-volume

tension. Giant gravitons which wrap around an S3 in AdS5 or S5 are known

as AdS and sphere gravitons respectively. The sphere branes have a maxi-

mum size governed by the size of S5. This translates into an upper bound
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for their angular momentum.

One of the reasons why the correspondence between N = 4 SYM and

IIB string theory on AdS5 × S5 is so simple, is that this gravity-gauge pair

enjoys invariance under a large collection of symmetries. These include super-

symmetry, R-symmetry and of course conformal symmetry. Supersymmetry

transformations are generated by super charges QI
α and Q† Iα̇ . It describes a

symmetry between fermions and bosons, and also Poincare invariance. Con-

formal symmetry consists of Poincare transformations, dilatations (scaling

transformations), and special conformal transformations, which consist of

an inversion followed by a translation and another inversion. Finally, R-

symmetry is a global symmetry which is generated by R-charge and rotates

superspace coordinates. The theory also has a local U(N) gauge invariance.

The bulk AdS5 space is a maximally symmetric solution to the Einstein

equations with a negative cosmological constant. The isometry group of this

space is the same as the conformal symmetry group of N = 4 SYM. Ac-

cording to the AdS/CFT correspondence, the N = 4 SYM ‘lives’ on the

conformal boundary of the bulk.

The metric of AdS5 is given by

ds2 = r2

R2

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+ R2

r2 dr
2 (1.1)

R is the radius of curvature of the space. As r →∞, the conformal boundary

of the space is reached. The geometry of the conformal boundary is described

by a collection of Minkowski metrics all related by conformal rescalings. The
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fact that the space-time is negatively curved has dramatic consequences. Any

particle released with any velocity, from the center of the space, will follow

a geodesic which returns again to the center (r = 0) of the space. A crude

but useful way to state things is that we are studying gravity in a box.

1.2 N = 4 Super Yang-Mills Theory

N = 4 super Yang-Mills theory is a gauge invariant supersymmetric confor-

mal field theory. We will study the theory with gauge group U(N). This

theory enjoys the maximum possible supersymmetry allowed for a quan-

tum field theory in 3 + 1 dimensions. Since in addition this theory has an

AdS/CFT dual, it is a simple toy model of strongly coupled field theory.

As a consequence of the conformal invariance enjoyed by the theory, the

S-matix is not a good observable. We can still, however, compute correlation

functions. These define scaling dimensions which can be observed. Indeed,

the scaling dimensions are among the central observables of interest to us in

this theory.

The Lagrangian of N = 4 SYM is as follows

L = −1
4Tr(F

µνFµν)−
1
2Tr(D

µφiDµφi)

−1
4g

2
YMTr

([
φi, φj

]
[φi, φj]

)
+ Tr(ψ̇aα̇σα̇βµ Dµψβa)

−igYM2 Tr(ψαaσabi εαβ
[
φi, ψβb

]
)− igYM

2 Tr(ψ̇aα̇σiabεα̇β̇
[
φi, ψ̇

b
β̇

]
)(1.2)

Present in this Lagrangian are Lorentz scalar fields, φi, gauge fields, Aµ
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and fermion fields ψ and ψ̇. The indices α, α̇, β, β̇ = 1, 2 are left and right

handed spinor indices which run over the fermion states. i, j = 1 . . . 6 run

over the six scalar fields in the gauge theory. The scalar fields are N × N

matrices, transforming in the adjoint representation of U(N). We can obtain

N = 4 SYM theory as the dimensional reduction of N = 1 SYM theory

in ten dimensions. In the ten dimensional string theory, the index µ runs

over space-time indices 0 to 3, and i and j run over the remaining six space

dimensions, on which we reduce.

Physical observables in a gauge theory of matrix fields include the gauge

invariant operators made up of products of traces of the fields. A basis for

these gauge invariant operators that is particularly useful for the study of

this thesis is provided by the restricted Schur polynomials. Restricted Schur

polynomials are built out of the six real scalar fields φi of N = 4 SYM. They

are labelled by representations of both U(N) the unitary group and Sn, the

group of permutations, or the symmetric group. The unitary and symmetric

groups are related by Schur-Weyl duality, which implies that Young diagrams

label irreducible representations of both groups and further, that their char-

acters can be related. This relation between their characters is the Schur

polynomial. Schur-Weyl duality will play an important role in what follows.

In this work, the spectrum of mass scaling dimensions of restricted Schur

polynomials will be studied, allowing us to determine whether integrability

is present. Remarkably, we find the anomalous dimensions of these compli-

cated operators are determined by a set of decoupled oscillators.
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1.3 The Large N and Planar Limits

1.3.1 The Large N Limit

The large N limit refers to the limit of U(N) gauge theories where N →∞.

In [1], ’t Hooft proposed that quantum fluctuations in matrix field theories

should be of order O( 1
N2 ). In standard quantum field theories ~ can be traded

for the coupling constant which runs as the scale of the quantum field theory

is changed. In contrast to this, 1
N2 does not run. When N is taken to be

large, the fluctuations approach zero and we are left with a classical theory.

The large N limit of N = 4 SYM is, according to AdS/CFT, the classical IIB

string theory on the AdS5 × S5 background. ~ corrections in the quantum

gravity are dual to 1
N2 corrections in the gauge theory.

The coupling parameters of IIB string theory and N = 4 SYM are given

by gs and gYM respectively. The relation between the string coupling and

the Yang-Mills coupling is summarized by the following relations
(
R

ls

)4
= 4πg2

YMN = 4πgsN (1.3)

Here R is the radius of curvature of the bulk AdS5 × S5 space and ls is the

string length.

The t’Hooft coupling is given by

λ = g2
YMN (1.4)
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Expansions can simultaneously be performed in both λ and 1
N

, which means

we have a theory with two expansion parameters. In the gauge theory, a

small value for λ indicates a weak coupling and a large value indicates strong

coupling. For small gYM , N →∞ and λ→∞ is known as the low energy or

decoupling limit of the gravity theory. In this limit, open and closed strings

decouple from each other, closed strings are non-interacting and branes are

a boundary condition for open strings. A remarkable consequence of the

AdS/CFT correspondence is that, by studying a classical string theory, we

can learn about strongly coupled gauge theories that cannot be subjected to

perturbative approximations.

An extremely important feature of the large N limit, as we explain below,

is that it allows us to equate the expectation value of a product of operators

to the product of the expectation values of the operators. This is a key idea.

Suppose we have a field theory containing some matrix field X. At large

N , for a collection of n operators Oi, each built from X’s, the following

relation can be shown

< O1O2 . . .On >=< O1 >< O2 > . . . < On > (1.5)

Here it is assumed that n is of order one and the number of matrix fields

X in each operator is also of order one. We will return to this assumption

below and see what the consequences of relaxing it are.

The equation quoted above arises from evaluating the expectation value

of products of operators, each of which is a trace of a product of matrices X.
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The expectation value of an operator can be rewritten as

< O1 >=
∑
i

µiO1(i) (1.6)

Here i is the index running over possible values of the field X = X(i), µi
is the probability that X has the value X(i) and O1(i) is the value of oper-

atorO1 when X = X(i). We also have the normalization condition∑i µi = 1.

The correlation function of this operator can be calculated using the path

integral method of QFT as follows

< O >=
∫

[dX]O e−S (1.7)

The integration measure is given by

[dX] =
N∏
i=1

dXii

∏
i<j

d<e(Xij)d=m(Xij) (1.8)

The first product represents the integrals over diagonal elements of matrix

X, and the second and third represent the integrals over the real and imag-

inary parts of the upper right triangular matrix elements. We do not need

to include those elements below the diagonal in the lower left triangle of the

matrix since we have a hermitian matrix, X = X†. There are N diagonal

elements, and N(N−1)
2 complex upper diagonal elements, giving a total of N2

integrals contained in [dX].

In this example, we shall use the action S = 1
2tr(X

2). This allows us

to exploit Gaussian integration methods in order to evaluate < O >. As a

simple example, suppose we have < O >=< tr(X2) >

< tr(X2) > =
∫

[dX]XijXjie
− 1

2 tr(X
2)∫

[dX] e− 1
2 tr(X2)
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= d

dJji

d

dJij
I [J ]

∣∣∣∣
J=0

(1.9)

I [J ] is the generating function given by

I [J ] =
∫

[dX] e− 1
2 tr(X

2)etr(JX)∫
[dX] e− 1

2 tr(X2)
(1.10)

J is a source coupled to the field X. To evaluate I we use the method of

completing the square and then integrate∫
[dX] e− 1

2 tr(X
2) =

√
2πN2∫

[dX] e− 1
2 tr(X

2)etr(JX) = e
1
2 tr(J

2)√2πN2 (1.11)

We have

I [J ] = e
1
2 tr(J

2)

This factor of
√

2πN2 cancels with the normalization factor in the original

correlator, so we are left with the following calculation for the expectation

value

< tr(X2) > = d

dJji

d

dJij
I [J ]

∣∣∣∣
J=0

= d

dJji

d

dJij

[
e

1
2 tr(J

2)
] ∣∣∣∣
J=0

= d

dJji

[
Jjie

1
2 tr(J

2)
] ∣∣∣∣
J=0

= δjjδii

= N2 (1.12)

If we repeat the process for < tr(X2)tr(X2) >, we find that

< tr(X2)tr(X2) >= N4 + 2N2 (1.13)
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In general, in quantum field theory, the value of a correlation function is

the classical value of the operator with quantum fluctuations added on. This

is given by something of the form∫
[dX]Oe−S = OClassical + (#)~ + · · · (1.14)

When we say that the large N limit is a classical limit with 1
N2 playing the

role of ~, we mean∫
[dX]Oe−S = OClassical + (#) 1

N2 + · · · (1.15)

If the equation for < tr(X2)tr(X2) > is factorized in this way, we have

< tr(X2)tr(X2) >= N4(1 + 2
N2 )

Set N to be large, so that we only need the leading term

< tr(X2)tr(X2) >∼ N4

We compare this to the previous result:

< tr(X2) >< tr(X2) >= N4 =< tr(X2)tr(X2) > (1.16)

In general one can check that, at the leading order at large N
∑
i

µiO1(i)O2(i) · · · On(i) =
∑
i1

µi1O1(i1)
∑
i2

µi2O2(i2) · · ·
∑
in

µinOn(in)

(1.17)

As mentioned, this formula assumes that n is O(1) and the number of X’s

in each operator is O(1). This equation is only satisfied if we set one of the

probabilities, for example µi∗ equal to 1, implying that µi = 0 for all i , i∗.

This means that we have X = X(i∗) with a probability of 1, so we know the

state of the field X. Only one X configuration contributes to the expectation

value, implying that the system is in a classical limit.
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1.3.2 The Planar Limit

In matrix field theories, Feynman diagrams are drawn by joining pairs of par-

allel lines whose end points are labelled by matrix indices. These are known

as ribbons. In order for these diagrams to reproduce correlators calculated

using the path integral method in a particular theory, they must adhere to

a specific set of rules. Suppose we look at the propagator of some theory

of matrices: < MijMkl >= cδilδjk. Here c is a factor associated with the

propagator as calculated using the path integral method outlined in the pre-

vious section. For instance, if we had S = ω
2 tr(X

2), where ω is a constant

parameter, after normalization we would have c = ω. Of course, the δ’s

quoted above also arise from the Gaussian integral calculation, and complete

the Feynman rule for the propagator. We construct a Feynman diagram for

this propagator by drawing two labelled dots for each matrix, then joining

the dots with a ribbon:

This two point correlator is not physical since the operator is not con-

structed from a trace of a product of fields. Considering a gauge invari-

ant product of operators, constructed from traces of products of fields, to

compute a correlator we repeat the above process, joining like indices and

joining ribbon ends to ribbon ends. In U(N) and SU(N) gauge theories,

the ribbons must not twist. For example, consider the following correla-

tor: < tr(M2) >= MijMji = cδiiδjj. Here i and j are summed over, so

< tr(M2) >= cN2, where N is again the rank of the gauge group. In graph
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form this is:

It must be noted that all the different diagrams that can be formed by

connecting ribbons in different ways must be summed. To do this, draw the

dots labeling the matrices, connect the like indices to indicate a trace, and

then connect ribbons in all possible ways in which they don’t twist. This

allows loop corrections to be added to the value of the correlation function.

Diagrams that can be drawn on topologically planar surfaces, such as spheres,

with no ribbons crossing are known as planar diagrams. For example, the

diagram above can be drawn on a planar surface without any ribbons cross-

ing each other. The planar diagrams come with the largest powers of N .

Sub-leading diagrams do have ribbons crossing when they are drawn on a

sphere. When this arises the diagrams are drawn on surfaces which have

handles, such as toruses, and are known as nonplanar diagrams. On these

new surfaces, the ribbons do not cross.

The relation between N and the surface on which the ribbon graph is

drawn to ensure no ribbons cross is simple. We will develop this relation

in the next few paragraphs. We count the number of closed loops in the

diagram, and this gives us the order in N . Diagrams of leading order in

N correspond to planar diagrams, and corrections which are not of leading

order in N correspond to nonplanar diagrams. In the above planar diagram,
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the only contribution to < tr(M2) >, there is a factor of N2 and the diagram

consists of two closed loops. Here is an example of a nonplanar diagram

This is a sub-leading term in the large N expansion, of order N , con-

tributing to the correlator < tr(M4) >. This diagram can be drawn on a

torus with a single hole.

Each Feynman diagram of the matrix model is a triangulation on some

such surface. The order in 1
N2 is related to the topology of the surface that

the ribbon graph triangulates, and performing a loop expansion corresponds

to performing a 1
N2 expansion. The surfaces associated to the diagrams are

very naturally interpreted as the world sheet of a string.

Each propagator in the gauge theory is represented by a pair of lines

corresponding to indices of the fields represented. Whenever an index loop

closes, the ribbon diagram picks up a factor of N from summing over the

values each index can take. It is possible to show the relation between the

large N expansion and the topological expansion of the surface on which the

ribbon diagram is found by using Euler’s theorem for polyhedrons [3]. This

relates the number of vertices, edges and faces to the genus of the surface on

which the polyhedron is drawn.
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Consider a theory that has both cubic and quartic interactions. For a

general diagram, there are P propagators, V vertices and I index loops.

There are V3 three point vertices, V4 four point vertices, such that the total

number of vertices is given by

V = V3 + V4

We will focus on vacuum diagrams. In this case each end of a ribbon must

connect to a vertex so that

2P =
∑
n

nVn (1.18)

If we then attach a small surface to every index loop in the diagram in such

a way that it resembles a polyhedron, we can use Euler’s theorem, which

states

I − P + V = 2− 2H (1.19)

is a topological invariant of the resulting surface. Here H is the number of

handles, or genus, of the surface on which the polyhedron is drawn. A sphere

or plane has a value of H = 0, a torus has H = 1 etc.

It is now possible to show that diagrams with leading order in N corre-

spond to planar diagrams, or diagrams drawn on surfaces with genus H = 0.

Set each three point vertex to have a coupling factor of g, and each four point

vertex to have a factor of g2. Each index loop has a factor of N , giving us

gV3g2V4N I = g2P−2VN I = (g2N)F+2H−2N2−2H (1.20)

If we send N → ∞ and keep g2N fixed, it can be seen that the order in

N associated to the diagram is given by N2−2H . This means that diagrams
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that are drawn on surfaces with genus H = 0 provide the leading order in

N , which is N2.

Nonplanar corrections in matrix theories are analogous to ~ corrections

in string theories. We can think of surfaces with handles (such as toruses) as

stringy quantum corrections, and each handle on a surface carries a factor of

O( 1
N2 ). The motivation for expansion in the parameter N arose in t’Hooft’s

studies of strongly coupled gauge theories, such as QCD [1], where there

is no possibility for a perturbative expansion of the theory. He proposed

this expansion in terms of the number of colors -or rank of the gauge group-

as an alternative to expanding in terms of the coupling constant of the theory.

It was thought that the planar and large N limits coincide. In the case of

operators with dimension of order one, sub-leading terms in N and nonplanar

diagrams are suppressed in the same way, and the two do indeed coincide.

It has more recently been shown [18] that the large N and planar limits

are not necessarily the same. The correlation functions of operators with

bare dimension O(
√
N) or larger, have combinatoric factors associated with

quantum corrections so large that the sub-leading diagrams are no longer

suppressed. In the case of these operators, the classical limit that is obtained

is now a large N but non-planar limit.
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2 Introduction to Group Theory

In this chapter we will discuss some important group theoretical concepts

that will be needed to understand the rest of this work. The concept of

Schur-Weyl duality will play a central role in what follows. The Schur-Weyl

duality is the duality between two subgroups of the general linear group on

(Cp)⊗n, namely the group action of the unitary group U(p) and the canonical

representation of the symmetric group Sn. It describes a one-to-one associa-

tion between irreducible representations of U(p) and Sn. In order to exploit

the Schur-Weyl duality, we need an understanding of some Sn and U(p) rep-

resentation theory. Much of the theory presented in both chapters two and

three was developed in [27], [22], [23], [25], [51], [13] and [14].

2.1 Some Sn Group Representation Theory

2.1.1 Sn and Young Diagrams

The symmetric group, Sn is the group isomorphic to permutations of n ob-

jects. This group contains n! elements, one for each possible permutation of

n objects. These elements can further be partitioned into conjugacy classes.

For example, the group S3 has the following elements:

S3 = {1, (12), (23), (13), (123), (132)}

The full expression of a group element includes cycles of all lengths, in-

cluding one cycles, for example (12) = (12)(3). For simplicity the one cycles

are excluded. The notation (123) indicates that the positions of the numbers
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are swapped as follows:

1→ 2→ 3→ 1

(12), (23), (13) fall into the conjugacy class consisting of a one-cycle and a

two-cycle. Elements in the same conjugacy class have identical cycle struc-

ture, that is, they have the same number of one cycles, two cycles, etc.

The complete set of irreducible representations of Sn can be labelled by

Young diagrams with n boxes. Valid Young diagrams must strictly have the

following properties:

• The left borders of all rows must be aligned with each other.

• The top borders of all columns must be aligned.

• Each row may not be longer than the one above,

• Each column may not be longer than the one to its left.

As stated above elements that have the same cycle structure, for example

(123) and (132), belong to the same conjugacy classes. The cycle structure

can be thought of as a partition of n. These different partitions of n are also

represented by Young diagrams, with partitions of n corresponding to row

structures. Thus, Young diagrams can be used to label both conjugacy classes

and irreducible representations. Consider the group S3. Denote (1, 1, 1) as

three one cycles, or the identity, (2, 1) as the product of a two cycle and a one

cycle and (3) as a three cycle. These partitions correspond to the following

Young diagrams

(1, 1, 1)→
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(2, 1)→

(3)→

In general, we can write down the number of boxes in each row of the

diagram using the notation (r1, r2, . . . , rp). The shape of each diagram with

some integer number of boxes n gives us a particular partition of n. In terms

of the row lengths

n =
p∑
i=1

ri (2.1)

Young diagrams also label irreducible representations of U(N). In this

context, each box in a Young diagram can be labelled with a factor N+ i−j,

known as the weight of the box. i is the column number and j is the row

number of the box. N is the factor associated with the box in the top left

hand corner of the diagram; 1 is added to every box to the right in the

horizontal direction and 1 is subtracted from each box as one moves down

the columns. For example, if N = 3 the factors are

R =
3 4 5 6 7 8 9
2 3 4 5 6

We denote the product of all factors in diagram R by fR.

Another number associated with Young diagrams is the hooks of the

diagram. This plays a role in both Sn and U(N) group theory. To obtain
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the hook length of a given box, draw a line starting from the box towards

the bottom of the page out of the diagram. Draw another line from the

box towards the right of the page until you exit the diagram. The length

of the hook of the particular box is the number of boxes through which the

lines pass. We concentrate on the factor found by taking the product of the

hook lengths of all boxes in a particular diagram, denoted hooksR. For the

diagram above, the hooks would be filled in as follows:

R =
8 7 6 5 4 2 1
5 4 3 2 1

2.1.2 Basis Construction and Young’s Orthogonal Representation

One can construct a basis for the carrier space of representation R of Sn, and

the matrices representing group elements acting on this space, ΓR(σ), using

Young diagrams. The resulting Young-Yamanouchi basis is an orthonormal

basis in which each labeled diagram corresponds to a vector in the basis of

the carrier state. It is constructed by labeling the boxes in a Young diagram

from 1 to n in such a way that if all boxes labelled from 1 to k, k < n are

removed, a valid diagram remains. For example, allowed labels of a particular

S3 representation in this basis are

3 1
2

3 2
1

The labelings

1 2
3 ,

1 3
2 ,

2 1
3 ,

2 3
1
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are not allowed. Note that when a Young diagram is labeled, it is referred

to as a Young tableau.

Before describing how to construct the matrices ΓR(σ), we will introduce

another construction that will be utilized. This is the notion of partially

labelled Young tableaux. This construction is useful when working with

representations of Sn× Sm that have been subduced from representations of

Sn+m. The irreducible representations of Sn × Sm are labeled by two Young

diagrams (r, s), one for Sn and one for Sm. In this basis the m boxes from

Sm are labelled with integers from 1 to m in such a way that removing the

boxes leaves a valid diagram r. The same set of boxes is removed each time.

Every valid labeling of these boxes removed constitutes a state in an Sn×Sm
irreducible representation with r the Young diagram for Sn. For example,

suppose we are working with S3+3. The partially labelled Young tableaux

for a particular representation would be

1
2

3 ,

3
1

2 ,

3
2

1 ,

2
1

3 ,

1
3

2 ,

2
3

1

In general, diagrams with m boxes labelled are a collection of states that give

us the basis for Sn× (S1)m, from which we will build Sn×Sm representations

later on. It is clear that the Young diagrams labeling representations of Sn
are found by removing the labelled boxes.

Young’s orthogonal representation is most easily described by a rule for

constructing matrix representations for Sn elements. The rule can be stated

by giving the action on Young-Yamanouchi states of adjacent two-cycle per-
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mutations, given by (i, i + 1). Only the rule for Sn elements of this form is

stated since these two-cycles generate all other elements in the group. Denote

the factor of a box labelled i in Young-Yamanouchi basis ci and let R̂ be a

Young tableau with the same shape as diagram R. Let R̂ij be the tableau

with boxes i and j swapped around. The action of group elements on this

basis is then

ΓR(i, i+ 1)|R̂ >= 1
ci − ci+1

|R̂ > +
√

1− 1
(ci − ci+1)2 |R̂i,i+1 > (2.2)

A very particular large N limit that we will define shortly allows us to work

with a simplified version of Young’s orthogonal representation. To motivate

the simplification, consider the action of a group element of Sn+m on some

partially labelled Young tableau

ΓR(1, 2)|
1

2 >= 1
c1 − c2

|
1

2 > +
√

1− 1
(c1 − c2)2 |

2
1 >

(2.3)

The simplification occurs for Young diagrams with p rows (p is order 1) with

the total number of boxes given by n + m ∼ O(N). In a general diagram

with long rows, the difference in length between two particular rows is O(N).

In this case, any two boxes i and j not in the same row will have a factor

difference |ci − cj| ∼ O(N). This means that the above equation can be

simplified into two parts, one for states with boxes i and j in the same row

k, denoted |ki, kj >, and one for i and j in different rows k and l denoted

|ki, lj >

ΓR(i, j)|ki, kj >= |ki, kj > (2.4)



29

ΓR(i, j)|ki, lj >= |kj, li > (2.5)

This simplification is a consequence of the fact that the factor 1
ci−cj → 0 at

large N because |ci − cj| → O(N).

2.1.3 Removing Boxes

A single box can be removed from an irreducible representation R of Sn+m

in order to produce an irreducible representation of Sn+m−1, denoted R′i. i

labels the row from which the box is removed. This can be done by removing

any box from R that still leaves a valid Young diagram. For example, suppose

we have

R =

Boxes can be removed from this diagram in three possible ways:

R′1 = R′2 = R′3 =

It is well known that if we restrict representation R to a Sn+m−1 subgroup,

representations R′1, R′2 and R′3 are all subduced with unit multiplicity.

We denote cRR′ as the factor of the box removed from R to obtain R′.

For the example we are considering, the factors are

cRR′1 = N + 4

cRR′2 = N + 2
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cRR′3 = N − 1∑
R′
cRR′ = 3N + 5

We will need to consider the problem of determining which Sn × Sm ir-

reducible representations (r, s) are subduced by a given Sn+m irreducible

representation R. The only representations r that appear are those that can

be obtained by removing boxes from R. There are as many distinct copies

of r as there are valid ways to remove the m boxes from R to obtain r. The

label s is a diagram built from the m boxes removed from R. Since there are

many possible ways to get the label (r, s), we need a multiplicity label.

In the example above, suppose m = 2. Then possible labels (r, s) are

obtained by removing two boxes from R in all possible ways, and arranging

the removed boxes in all possible ways to obtain irreducible representations

of S2. Repeated shapes are distinguished by multiplicity labels. For the

partially labelled Young diagrams

1
2

and

2
1

we can construct the following Sn × Sm states(
,

)
and

(
,

)
.

From the partially labelled Young diagrams

1

2 and

2

1
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we can construct the following Sn × Sm states

(
,

)
and

(
,

)
.

From the partially labelled diagrams

1
2 and

2
1

we can construct the following Sn × Sm states(
,

)
and

(
,

)
.

2.2 Constructing Restricted Schur Polynomials

There are now enough tools to explain the construction of the operators that

will be used in all calculations of the action of the dilatation operator in this

work. The operators are called restricted Schur polynomials.

We will study restricted Schur polynomials built out of the six scalar fields

which take values in the u(N) adjoint representation of N = 4 SYM. These

scalars are denoted φi, where i = 1, . . . , 6. These six Hermittean matrix

scalars are arranged into three complex valued fields as follows

Z = φ1 + iφ2

Y = φ3 + iφ4

X = φ5 + iφ6 (2.6)

In this section, we shall focus on restricted Schur polynomials in the su(2)
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sector, which are made up of the Z and Y fields.

The general form of a restricted Schur polynomial is given by

χR,(r,s,)jk(Z, Y ) = 1
n!m!

∑
σ∈Sn+m

χR,(r,s)jk(σ)Tr
(
σY ⊗mZ⊗n

)
(2.7)

This formula will be broken up into several parts in order to understand

it

2.2.1 The Labeling R, (r, s, )jk

The label R is an irreducible representation of the symmetric group Sn+m in

the form of a Young diagram with n+m boxes. r and s are Young diagrams

with n and m boxes respectively. r is an irreducible representation of the

group Sn and s is an irreducible representation of Sm. The group Sn+m

has a subgroup, Sn × Sm, whose irreducible representations are labelled by

(r, s). An irreducible representation of Sn+m, R, can subduce many different

representations of Sn × Sm. For a particular R, one such example follows

R → (r, s)

→ ( , )

(2.8)

j and k label the multiplicity of (r, s). Since a particular representation

of Sn × Sm can be subduced from R more than once, it is necessary to keep

track of different copies of (r, s).
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Finally, note that restricted Schur polynomials labelled by Young dia-

grams with long columns correspond to sphere giant gravitons, and long

rows correspond to AdS giants.

2.2.2 χR,(r,s)jk(σ): The Restricted Character

The character of a group element is the trace over the matrix representation

of the element. If ΓR(σ) is the matrix representing a symmetric group element

σ in representation R, the character of the element σ in this representation

is

χR(σ) = Tr(ΓR(σ)) (2.9)

χR,(r,s)jk(σ) is known as the restricted character. It is given by

χR,(r,s)jk(σ) = Tr(r,s)jk (ΓR(σ)) (2.10)

To compute the restricted character one must trace the row index of ΓR(σ)

over the sub- carrier space associated with the jth copy of (r, s), and trace

the column index over the subspace associated with the kth copy of (r, s). In

performing traces over the carrier space of (r, s), the row and column indices

may come from different copies of (r, s). This is the reason that there are

two multiplicity labels. It is clear that if j , k the trace is not summing di-

agonal elements of the carrier space. The operators constructed by summing

off diagonal elements are part of the basis of local operators, so they must

participate in our discussion.
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The restricted character can be written in terms of a symmetric group

operator PR→(r,s)jk

χR,(r,s)jk(σ) = Tr(r,s)jk (ΓR(σ)) = Tr
(
PR→(r,s)jkΓR(σ)

)
(2.11)

If we concentrate on Young diagrams R with two rows, where there are no

multiplicities, PR→(r,s) is a projection operator. It projects from the carrier

space of R to the subspace which carries (r, s). Note that if the number of

rows p is greater than two, this operator is in general an intertwiner. It is

constructed similarly to a projection operator. It is generally these operators

that makes restricted Schur polynomials rather complicated to work with,

since they are difficult to construct explicitly. One of the goals later in the

work is to show an analytical construction of these operators using a novel

version of the Schur-Weyl duality.

2.2.3 Y and Z Fields

The structure of the trace of products of the Y and Z fields can be described

using symmetric group elements σ which permute the indices of the matrices.

Written explicitly

Tr
(
σY ⊗mZ⊗n

)
= Tr(Y i1

iσ(1)
Y i2
iσ(2)
· · ·Y im

iσ(m)
Z
im+1
iσ(m+1)

· · ·Zim+n
iσ(m+n)

) (2.12)

For example let σ = (2,m+ 1)

Tr((2,m+ 1)Y i1
j1 · · ·Y

im
jm Z

im+1
iσ(m+1)

· · ·Zim+n
iσ(m+n)

) = Tr(ZY )Tr(Z)n−1Tr(Y )m−1

(2.13)
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In general if we wish to write the restricted Schur polynomial for a spe-

cific representation R, (r, s), the sum over σ tells us to sum over all possible

permutations of matrix indices according to the element in Sn+m we have

picked, giving a sum of all allowed trace structures. The position of each

matrix according to its upper index ii will be referred to as its slot. For

example, im denotes the the mth slot. The Y matrices are in the 1st to mth

slots and the Z matrices are in the (m+ 1)th to (m+ n)th slots.

2.3 U(p) Representation Theory

The Schur-Weyl duality between the symmetric group and the unitary group

is studied in order to simplify working with the subspaces employed by re-

stricted Schur polynomials, that are irreducible representations of Sn × Sm.

In this section, we will explore the translation from the symmetric group la-

bels R, (r, s) to U(p) formalism. In order to do so, we first discuss elementary

U(p) representation theory.

2.3.1 Lie Algebra

It is simpler to study the Lie algebra, u(p), of the unitary group than it is to

study the actual group U(p). Many of the results obtained in doing so carry

over to the group. One such example is that the Clebsch-Gordan coefficients

of the two are identical.

Our first task is to construct a basis for the U(p) Lie algebra. Set Eij with
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1 ≤ i, j ≤ p to be a matrix with only one non zero element, (Eij)rs = δirδjs.

A basis for the Lie algebra can then be generated by

iEkk 1 ≤ k ≤ p (2.14)

i(Ek,k−1 + Ek−1,k)

Ek,k−1 − Ek−1,k

 1 < k ≤ p (2.15)

2.3.2 u(p) Irreducible Representations

So far, we have studied Young diagrams as labels for Sn irreducible rep-

resentations and the basis states of their carrier spaces. We now look at

Gelfand-Tsetlin patterns, which provide a set of labels for the states of the

carrier space of u(p) irreducible representations. The carrier spaces of irre-

ducible representations of the general linear group GL(p,C) share a basis

with those of its subgroup, U(p). Further, each irreducible representation

of GL(p,C) always restricts to a unique irreducible representation of U(p).

Labelings for irreducible representations of the Lie algebra gl(p,C) are thus

good labels for irreducible representations of u(p). Exploiting this, we shall

study the construction of irreducible representations of the general linear

group and apply them without modification to the unitary group.

An inequivalent irreducible representation of GL(p,C) is constructed by

specifying a sequence of p integers that satisfies mkp ≥ mk+1,p for 1 ≤ k ≤

p− 1,

m = (m1p,m2p, . . .mpp) (2.16)
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This irreducible representation restricted onto GL(p− 1,C) ⊃ GL(p,C) is a

reducible representation which decomposes into a direct sum of irreducible

representations of GL(p − 1,C) satisfying mkp ≥ mk,p−1 ≥ mk+1,p for 1 ≤

k ≤ p− 1

m′ = (m1,p−1,m2,p−1, . . . ,mp−1,p−1) (2.17)

The carrier spaces of GL(p,C) irreducible representations thus gives rise to

many GL(p − 1,C) carrier spaces after restriction to the subgroup GL(p −

1,C). This process can be repeated up to the subgroup GL(1,C), which has

one dimensional carrier spaces. For each possible choice of the set of mk,p

values we get a distinct basis state. This labeling exploits the sequence of

subgroups of GL(p,C) in order to label the basis states, which when suitably

presented leads to the so called Gelfand-Tsetlin patterns.

The sequences of integers, m,m′ . . ., are referred to as the weights of their

respective irreducible representations. Gelfand-Tsetlin patterns are obtained

by arranging these weights into triangular arrays denoted M, with the struc-

ture
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M =



m1p m2p · · · · · · · · · · · · · · · · · · · · · · · ·mp−1,p mpp

m1,p−1 · · · · · · · · · · · · mp−1,p−1

· · ·

...

m12 m22

m11



(2.18)

The top row of the pattern is the weight specifying the irreducible rep-

resentation of the state. The entries of the lower rows are subject to the

condition mkp ≥ mk,p−1 ≥ mk+1,p for 1 ≤ k ≤ p − 1, and give the sequence

of irreducible representations of the state as we successively restrict from

GL(p,C) to GL(1,C). The dimension of an irreducible representation with

weight m is equal to the number of valid Gelfand-Tsetlin patterns with m in

the top row.

Gelfand-Tsetlin patterns can be used to define ∆ and Σ weights which we

now introduce. These weights are not unique labels for states in the carrier

spaces, as two different Gelfand-Tsetlin patterns may have the same weights.

Define the sum of all integers in a particular row of the Gelfand-Tsetlin

pattern by

σl(M) =
l∑

k=1
mk,l (2.19)
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The sequence of row sums defines the Σ weight of (M)

Σ(M) = (σp(M), σp−1(M), . . . , σ1(M)) (2.20)

The number of states −→v (M) in the carrier space that have the same Σ weight

is called the inner multiplicity, I(Σ), of the state. The inner multiplicity is

used to determine how many restricted Schur polynomials can be defined.

Using the row sums introduced above, the ∆ weights are

∆(M) = (σp(M)− σp−1(M), σp−1(M)− σp−2(M), . . . , σ1(M)− σ0(M))

≡ (δp(M), δp−1(M), . . . , δ1(M)) (2.21)

Note that there is also an inner multiplicity, I(∆), denoting the number of

states with the same ∆ weight. It is not difficult to argue that I(∆) = I(Σ).

In the next section we will argue that the components of the ∆ weight

tell us how many boxes must be removed from each row of R to obtain r.

The number of restricted Schur polynomials that can be constructed is

found by writing all valid Gelfand-Tsetlin patterns for the particular Young

diagram s arranged using the boxes removed from R. Only states with the

correct ∆ weight for the way the boxes were removed from R are kept. The

number of states is thus equal to the inner multiplicity or number of copies

of the label (r, s) subduced from R. In constructing the projector, since we

can use different copies for the row and column labels, the square of this

multiplicity is summed over, to give the total number of projectors and thus

restricted Schur polynomials for the given (r, s).
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2.3.3 Relating Young Diagrams to Gelfand-Tsetlin Patterns

We now translate from Young diagrams R, (r, s) labeling Sn+m irreducible

representations to Young diagrams labeling u(p) irreducible representations,

in order to exploit the duality between the irreducible representations of these

two groups.

We will start by explaining how Young diagrams can be used to label

states in the carrier space of a U(p) irreducible representation. Every Young

diagram with at most p rows, including the diagram with no boxes, uniquely

labels a u(p) irreducible representation. These diagrams are labeled in such

a way that each box contains an integer i, 1 ≤ i ≤ p, with the rules that

each integer label is greater than or equal to the one on its left, and each

number is strictly larger than the one in the box above it. They are referred

to as semi-standard Young tableaux. Basis states of a u(p) irreducible rep-

resentation that are identified by some Young diagram D can be uniquely

labelled by the set of all semi-standard Young tableaux with the same shape

as D. The dimension of the carrier space of D is equal to the number of valid

semi-standard Young tableaux of the same shape.

Every Gelfand-Tsetlin pattern corresponds to a unique semi-standard

Young tableau. Start with the unlabeled Young diagram D. The top row of

the Gelfand-Tsetlin pattern tells you the shape of the Young diagram. For
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example

M =



4 3 1 1

. . . . . . . . .

. . . . . .

. . .


→ D = (2.22)

The last row of the Gelfand-Tsetlin tells us which boxes are labelled with

1. The number in the last row specifies the shape of a Young tableau of 1’s to

be superimposed over the original diagram, D. For example, if we have a 2

in the bottom row, this corresponds to the diagram , which when labelled

and superimposed onto D gives us
1 1

The second last row of the Gelfand-Tsetlin pattern specifies which boxes

of D are labelled with a two. This is superimposed over the previous partially

labelled tableau. We repeat this process until we get to the first row, which

indicates the boxes labelled with p’s (here p = 4).

M =



4 3 1 1

3 2 1

3 2

2


→

1 1

2 2 2
2 2

3 3 3
3 3
3

4 4 4 4
4 4 4
4
4

(2.23)

D =

1 1 2 4
2 2 4
3
4
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The number of boxes in D containing the label l, where 1 ≤ l ≤ p, in

row k of the Young tableau is mkl −mk,l−1. If k > l, mkl = 0. Two Gelfand-

Tsetlin patterns with the same ∆ weight have the same entries arranged in

different ways. The inner multiplicity counts the different ways in which to

arrange a fixed set of entries in the Young tableau. It is also clear that the

ith component of the ∆ weight counts how many boxes in the semi-standard

Young tableau are populated with i.

The Schur-Weyl duality thus allows us to relate irreducible representa-

tions of the symmetric group with irreducible representations of the unitary

group using a corresponding set of labels, the Young diagrams.

2.4 Constructing PR→(r,s)jk

In this section, based on [56], the symmetric group operators, or projection

operators, are calculated analytically for systems with less than five Y fields

and order N Z fields. These operators grow more complicated as the number

of Y ’s increase. As a consequence restricted Schur polynomials are difficult

to work with.

We will overcome this difficulty, providing a simple construction of PR→(r,s)jk

by using the group theory tools outlined earlier in this section. We exam-

ine the subduction from Sn+m representations to Sn× (S1)m representations.

This step simplifies the process of constructing the symmetric group opera-

tors which project from the carrier space of Sn+m representations to that of
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Sn×Sm representations. We start by restricting the carrier space of the Sn+m

irreducible representation, R, to the subgroup Sn × (S1)m. This decomposes

Sn+m into a direct sum of invariant subspaces, each of which is the carrier

space of a particular irreducible representation of Sn × (S1)m.

In order to specify irreducible representations of the subgroup Sn× (S1)m

we need only include r, the irreducible representation of Sn. This is because

there is only one irreducible representation of S1, , so we need not include

labels of the composite subgroup. The only diagrams r subduced by R are

those obtained by removing boxes from R in different ways. The different or-

ders of removing a set of m boxes from R leads to multiple subspaces which

all carry the same irreducible representation r. This multiplicity is easily

resolved by specifying the order of removing boxes from R. These partially

labelled Young-tableaux represent a sub space carrying irreducible represen-

tations of Sn × (S1)m. These diagrams can then be assembled in such a way

that the resulting linear combinations carry an irreducible representation of

Sn × Sm.

We wish to construct operators PR→(r,s) for Young diagrams with number

of rows p ∼ O(1). To do this we will make use of a novel Schur-Weyl dual-

ity, developed in the framework of Young diagrams with p rows containing

(n+m) ∼ O(N) boxes. It is also possible to study the case of diagrams with

long columns. There is a simple transformation that relates the two so that

we need only describe the case of long rows.
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A general diagram consists of rows with length O(N). Suppose m = αN ,

where α << 1. If the m boxes in the partially labelled tableau are labelled

1 ≤ i, j ≤ m such that i and j are in different rows, we have ci− cj ∼ O(N).

This allows us to use the simplified form of Young’s orthogonal representa-

tion, given in equations (2.4) and (2.5).

Consider elements of the Sm subgroup acting on the labelled boxes. A

matrix representation of this action can be obtained by treating the partially

labelled diagrams as Young-Yamanouchi states. For a diagram with p rows

and m boxes labelled in all possible consistent ways, there are pm possible

tableaux. It is possible to associate a p-dimensional vector with every labelled

box, giving m vectors −→v (i). Here i corresponds to the number labeling the

particular box, and of course i = 1 . . .m. The components of the vectors are

denoted −→v (i)n where n = 1 . . . p. If box i is in the jth row, −→v (i)n = δnj.

For every labelled box there is a vector space, Vp. If we take the tensor

product of these spaces, we can trade the set of partially labelled Young

tableaux for a set of pm dimensional vectors

−→v (1)⊗ · · · ⊗ −→v (m) (2.24)

These vectors span a space denoted V ⊗mp . Using the language introduced

above, we say that −→v (i) occupies the ith ‘slot’.

The action of subgroup Sm in the case where boxes i and j occupy different

rows of R in the large N version of Young’s orthogonal representation implies
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the following action on vector space V ⊗mp

σ · (−→v (1)⊗ · · · ⊗ −→v (m)) = −→v (σ(1))⊗ · · · ⊗ −→v (σ(m)) (2.25)

In other words, σ ∈ Sm will move the vector from the ith slot of V ⊗mp into

the slot positioned at σ(i) without changing the actual value of the vector.

We define the matrix action of U(p) on this vector space as follows: if

D(U) is the p×p unitary matrix representation of the element U ∈ U(p), we

have

U · (−→v (1)⊗ · · · ⊗ −→v (m)) = D(U)−→v (1)⊗ · · · ⊗D(U)−→v (m) (2.26)

In this case, the action of U ∈ U(p) is to change the value of the vector

without changing its position. The action of U(p) is exactly the same on

every slot.

Assume that the subgroup referred to by the Gelfand-Tsetlin pattern are

obtained by “freezing” the pth component, and then the (p−1)th component,

and so on. With this assumption it is now clear that the ∆ weight tells us

how to remove boxes from R to obtain r.

It is clear that the actions of Sm and U(p) on V ⊗mp as defined above,

commute. Any two commuting operators can be simultaneously diagonal-

ized. Indeed, suppose A and B are two commuting operators which are

separately diagonalizable. We can write them in terms of their eigenvalues

and projectors

A =
∑
j

λjPj B =
∑
k

ψkQk (2.27)
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where λ and ψ are the eigenvalues and P and Q are the projectors. Since we

have

[A,B] = 0 ⇒ PjQk = QkPj (2.28)

Define Rjk = PjQk which can be shown to be an hermittean projection

operator. We also have

∑
j

Rjk =
∑
j

PjQk = Qk and
∑
k

Rjk =
∑
k

PjQk = Pj (2.29)

Thus

A =
∑
jk

λjRjk B =
∑
jk

ψkRjk (2.30)

By definition, A and B are simultaneously diagonalizable.

Due to this fact and to consequences of the Schur-Weyl duality, we can

organize the vector space in a way that is effective in the construction of

PR,(r,s)jk. Indeed using Schur-Weyl duality we can argue that

V ⊗mp = ⊕sV U(p)
s ⊗ V Sm

s (2.31)

The sum runs over all diagrams s built from m boxes with at most p rows.

The dimension of the vector space can be written as a producet of U(p) and

Sm dimensions as

pm =
∑
s

Dim(s)ds (2.32)

Dim(s) is the dimension of s as an irreducible representation of U(p) and ds
is the dimension of s as an irreducible representation of Sm.
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In this construction, the identification of states with good U(p) labels

implies identifying states with good Sm labels. As a result of Schur-Weyl

duality, the symmetric group operators PR→(r,s)jk have good U(p) labels and

as such can be constructed using U(p) group theory. In order to do this, a

translation from the symmetric group labels R, (r, s) to a set of U(p) labels

is required.

The first label is Young diagram s which labels an irreducible representa-

tion of U(p). It is the exact same diagram that labels the representation of Sm
in the original labels. The second label is r, the irreducible representation of

Sn. The third label is a state labelled by a Gelfand-Tsetlin pattern from the

carrier space of U(p) irreducible representations . It has a ∆ weight that de-

scribes the removal of boxes from R to produce r. From this Gelfand-Tsetlin

pattern we can construct the semi-standard Young tableau that provides a

U(p) irreducible representation.

The following discussion illustrates a detailed example of this third label.

For some Gelfand-Tsetlin pattern M , we know that each row corresponds to

a number in the Young tableau, and a subgroup in the chain U(1) ⊂ U(2) ⊂

· · · ⊂ U(p)

M =


5 4 3

3 2

2

→
3

2

1

→

1 1 2 3 3
2 2 3 3
3 3 3

The numbers labeling this semi-standard tableau can be identified with

the row from which a box has been removed from R. If both the ∆ weight
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and r are known, it is possible to reconstruct the original label R, since the

number of boxes labelled i is the number of boxes removed from row i of R

to produce r, given by δ(i).

Certain multiplicities must be resolved when translating between Sn+m

labels and the new set of labels. For instance, two states in the same U(p)

representation that have the same ∆ weight correspond to the same single

set of labels R, (r, s). This is because when p ≥ 3 it is possible to subduce

the same (r, s) from R more than once. Previously, multiplicity labels j and

k were mentioned. These indices are organized by U(p) representations, and

run from 1 to I(∆(M)), where I(∆(M)) is the inner multiplicity, or number

of states with the same ∆ weights. It must be noted that as a U(p) repre-

sentation, s also has a multiplicity. This is resolved by the states of the Sm
representation s.

Using the new labels, it is simple to define the symmetric group operator

PR→(r,s)jk

PR→(r,s)jk =
ds∑
α=1
|s,M j, α >< s,Mk, α| ⊗ Ir (2.33)

Here, α is the multiplicity for the U(p) states given by s, organized by s

as an irreducible representation of Sm. j and k select states with a particular

∆ weight, and Ir is the identity matrix on the carrier space of r. The final

example of this section demonstrates the relationship between the old labels

and the new labels. Suppose p = 3. The old labels, R, (r, s) are taken to be

R =
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r = s =

The new labels would be

r = s =

with ∆ = (1, 1, 1). This corresponds to one box being removed from each

row of R. The final labels are Gelfand-Tsetlin patterns with the top row

describing the shape of s. There are two of these labels, since it is possible

to find two consistent patterns with the correct ∆ weight:

M1 =


2 1 0

1 1

1

 M2 =


2 1 0

2 0

1



Since we have two multiplicity labels (M1 and M2) we could define four

independent restricted Schur polynomials.
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3 Action of the Dilatation Operator

In this chapter, by studying the action of the dilatation operator, we shall

give insight into integrability in N = 4 SYM. In this way we introduce the

methodology that we use to further explore the problem. In this way we in-

troduce a framework for calculating the spectrum of anomalous dimensions

of restricted Schur polynomials. Our discussion will motivate the problems

that we chose to study later in this work. We look to [56] for mathematical

tools and a general explanation of integrability in terms of restricted Schur

polynomials. The paper [56] contains further background information for the

calculations performed in the following chapters.

The restricted Schur polynomials that we examine are built out of the

scalar fields φi appearing in the Lagrangian of N = 4 SYM. In general, re-

stricted Schur polynomials can also be built out of gauge or fermion fields.

They provide a basis to describe the scalar gauge invariant local operators

of the theory and have duals in asymptotically AdS5 × S5 backgrounds. If

labelled by Young diagrams with order 1 rows or columns of length order N ,

they are identified with objects in the dual gravity theory known as giant

gravitons. Depending on the labeling of the restricted Schur polynomial,

these can be either sphere or AdS giant gravitons.

There are some useful characteristics of the restricted Schur polynomial

operators that make them easy to work with. The restricted Schur basis is

complete; multitrace operators or linear combinations of multitrace operators

can be written as linear combinations of restricted Schur polynomials. The
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two point function of the free theory has been computed exactly in [27]. It is

known exactly as a function of N . Indeed, the computation of [27] sums all

of the free field theory Feynman diagrams, not just the planar ones, allowing

us to go beyond a planar limit. It is noteworthy that the restricted Schur

basis diagonalizes the free two point function, and there is only weak mixing

at the quantum level.

Consider restricted Schur polynomial operators with a classical dimen-

sion of order N . The correlation functions of these large operators generate

large combinatoric factors associated with nonplanar ribbon diagrams. This

means that nonplanar corrections cannot be suppressed as these large factors

enhance these effects to the same order or even larger than the planar con-

tributions. This is why the study of integrability in large N but nonplanar

limits of N = 4 SYM is a non-trivial project.

The study of integrability involves calculating the action of the dilatation

operator. The eigenvalues of the dilatation operator produce the spectrum

of anomalous dimensions of operators. In [14], diagonalization of the one-

loop dilatation operator was performed numerically. The article concentrated

on the action of the dilatation operator in decoupled sectors of the theory

AdS/CFT dual to two sphere giant gravitons. It was shown that the spec-

trum of anomalous dimensions corresponds to a set of decoupled harmonic

oscillators. The harmonic oscillator is a known integrable system; reproduc-

ing its spectrum indicates that the operators in question are integrable.
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In [17] the one-loop dilatation operator acting on a two graviton sys-

tem was diagonalized analytically. It was also shown that it was possible

to compute general symmetric group operators, entering the construction of

restricted Schur polynomials, using spin chains. This provides a feasible way

to deal with systems with a large number of Y fields. In section 2.4, based

on [56], a further simplification of the computation of these symmetric group

operators was described. This used the Schur-Weyl duality, rather than spin

chains, for the construction.

In this section methods for studying the dilatation operator acting on

systems of p > 2 giant gravitons analytically is developed. This will allow

us to construct restricted Schur polynomials corresponding to systems of p

giant gravitons, labelled by Young diagrams with p rows or columns, by using

u(p) representation theory. We will also be able to organize the multiplic-

ity of Sn × Sm representations subduced from a particular Sn+m irreducible

representation by appealing to the inner multiplicity appearing in u(p) rep-

resentation theory. Finally, we shall have a method to evaluate the action of

the dilatation operator using u(p) Clebsch-Gordan coefficients.

3.1 The Dilatation Operator

Now that the symmetric group operator PR→(r,s) has been constructed ex-

plicitly, we can calculate the action of the one loop dilatation operator in the

su(2) sector. Before this can be achieved, it is necessary to explain how the

derivative of a restricted Schur polynomial is taken.
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3.1.1 Derivatives

Calculating the action of the dilatation operator involves taking derivatives

of a restricted Schur polynomial with respect to the Y and Z fields. As an

example, study the the action of an operator tr( d
dY

d
dZ

) on a restricted Schur

polynomial

tr( d

dY

d

dY
)
[
χR,(r,s,)jk(Z, Y )

]
= 1
n!m!

∑
σ∈Sn+m

χR,(r,s)jk(σ) d

dY i
j

d

dZj
i

(Y i1
iσ(1)
· · ·Y im

iσ(m)
Z
im+1
iσ(m+1)

· · ·Zim+n
iσ(m+n)

)

There are m possible fields for the Y derivative to act on and n possible fields

for the Z derivative to act on. Swapping Z’s between slots or Y ’s between

slots is clearly a symmetry of the restricted Schur polynomial. Consequently

we can act with the derivatives on a single Z and a single Y and simply

multiply the result by mn. Thus, we obtain

= 1
(n− 1)!(m− 1)!

∑
σ∈Sn+m

χR,(r,s)jk(σ)

×(δi1j δiiσ(1)Y
i2
iσ(2)
· · ·Y im

iσ(m)
δ
im+1
i δjiσ(m+1)Z

im+2
iσ(m+2)

· · ·Zim+n
iσ(m+n)

)

= 1
(n− 1)!(m− 1)!

∑
σ∈Sn+m

χR,(r,s)jk(σ)

×(δi1iσ(m+1)
δ
im+1
iσ(1)Y

i2
iσ(2)
· · ·Y im

iσ(m)
Z
im+2
iσ(m+2)

· · ·Zim+n
iσ(m+n)

) (3.1)
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3.1.2 One-Loop Dilatation Operator

In [2] and [8] the exact form of the one loop dilatation operator of N = 4

SYM was found to be

D2 = −g2
YM tr [Y, Z] [∂Y , ∂Z ] (3.2)

This multiplies out to four terms, each of which contain a derivative that

acts on a Y field or Z field belonging to the restricted Schur polynomial. The

derivative is taken as shown above. The convention that we adopt here, is

to differentiate the first Y field or the first Z field. Thus, we act on

Y i1
iσ(1)

and Z
im+1
iσ(m+1)

This is purely a convention and does not affect the final result.

We now give a detailed calculation of the action of one of the terms in

the dilatation operator. The remaining terms are evaluated in a very similar

way.

−g2
YM tr(Y Z∂Y ∂Z)χR,(r,s)jk(Y, Z)

= −g2
YM

n!m!
∑

σ∈Sn+m

tr(r,s)jk (ΓR(σ)) (Y Z)ac(∂Y )cd(∂Z)daY i1
iσ(1)

Z
im+1
iσ(m+1)

Y ⊗m−1Z⊗n−1

= −g2
YM

(n− 1)!(m− 1)!
∑

σ∈Sn+m

tr(r,s)jk (ΓR(σ)) (Y Z)im+1
iσ(1)

δi1iσ(m+1)
Y ⊗m−1Z⊗n−1

(3.3)

Make the substitution σ → ψ(1,m + 1) in order to permute indices on

the fields and the δ

(Y Z)im+1
iσ(1)

δi1iσ(m+1)
→ (Y Z)im+1

iψ(m+1)
δi1iψ(1)

(3.4)
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We are left with

−g2
YM

(n− 1)!(m− 1)!
∑

ψ∈Sn+m

tr(r,s)jk(ΓR((1,m+ 1)ψ)δi1iψ(1)Y
i2
iψ(2) · · ·Y

im
iψ(m)

×(Y Z)im+1
iψ(m+1)Z

im+2
iψ(m+2) · · ·Z

im+n
iψ(m+n)) (3.5)

The same process is repeated for all four of the terms of the dilatation

operator. Once all of the terms have been collected, we are left with the

following

DχR,(r,s)jk(Y, Z) =

−g2
YM

(n− 1)!(m− 1)!
∑

ψ∈Sn+m

tr(r,s)jk(ΓR((1,m+ 1)ψ − ψ(m+ 1, 1))×

δi1iψ(1)Y
i2
iψ(2) · · ·Y

im
iψ(m) × (Y Z − ZY )im+1

iψ(m+1)Z
im+2
iψ(m+2) · · ·Z

im+n
iψ(m+n))

(3.6)

This sum runs over permutations of the indices on the fields where 1 =

ψ(1) is fixed. Fixing this element is a restriction to the subgroup Sn+m−1.

To carry out this constrained sum, one sums over cosets of Sn+m−1. An

operator Ôg, which is the sum of all 2-cycles in the group Sg makes a natural

appearance. Indeed, once we have rewritten the sum as a sum over Sm+n−1

we find that we need to evaluate the following character [22].

χR,(r,s)jk(ψ
[
N + Ôn+m − Ôn+m−1

]
) (3.7)

The combination Ôn+m − Ôn+m−1 is known as a Jucys-Murphy element

and it plays an important role in modern approaches to the representation

theory of the symmetric group. The Ôn are Casimirs of Sn with eigenvalue
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Ôn|R >= ((number of row pairs inR)−(number of columnpairs inR))|R >

where row and column pairs are the number of distinct pairs we can form

from the boxes in the row and column respectively and |R > is any state

in the carrier space of irreducible representation R. If we use this result

in χR,(r,s)jk(ψ
[
N + Ôn+m − Ôn+m−1

]
) , we find that N + Ôn+m − Ôn+m−1

evaluates to a definite value on subspaces R′ of R, which are carrier spaces

of Sn+m−1. This value is cRR′ , the weight of the box pulled off of R to obtain

R′. The final result is

χR,(r,s)ij
(
ΓR′(σ)

[
N + Ôn+m − Ôn+m−1

])
=
⊕
R′
Tr(r,s)ij(ΓR′(ψ))cRR′ (3.8)

See [22] for further details. We now have

DχR,(r,s)jk(Y, Z) =

−g2
YM

(n− 1)!(m− 1)!
∑

ψ∈Sn+m−1

∑
R′
cRR′tr(r,s)jk( [ΓR((1,m+ 1), ψ]×

Y i2
iψ(2) · · ·Y

im
iψ(m) × [Y, Z]im+1

iψ(m+1) Z
im+2
iψ(m+2) · · ·Z

im+n
iψ(m+n)) (3.9)

From our result above it is clear that the sum over R′ is over all possible

diagrams that can be obtained by removing a box from R. The permutation

ΓR(1,m+ 1) mixes Y and Z slots.

We now use ψ(1) = 1 and the relation

Y i1
iσ(1)
· · ·Y im

iσ(m)
Z
im+1
iσ(m+1)

· · ·Zim+n
iσ(m+n)

= tr
(
σY ⊗mZ⊗n

)
(3.10)
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This gives

−g2
YM

(n− 1)!(m− 1)!
∑

ψ∈Sn+m−1

∑
R′
cRR′tr(r,s)jk( [ΓR((1,m+ 1), ψ] )×

tr
(
(1,m+ 1)ψ − ψ(1,m+ 1)Y ⊗mZ⊗n

)
(3.11)

The next step exploits the identity found in [51] which expresses a general

multi-trace operator in terms of restricted Schur polynomials

tr
(
σY ⊗mZ⊗n

)
=

∑
T,(t,u)

dTn!m!
dtdu(n+m)!χT,(t,u)(σ−1)χT,(t,u)(Z, Y ) (3.12)

This leads to

DχR,(r,s)jk(Y, Z) =
∑

T,(t,u)lm
MR,(r,s)jk;T,(t,u)lmχT,(t,u)ml(Y, Z) (3.13)

MR,(r,s)jk;T,(t,u)lm =

g2
YM

∑
ψ∈Sn+m−1

∑
R′

cRR′dTn m

dtdu(n+m)

(
×tr(r,s)jk (ΓR(1,m+ 1)ΓR′(ψ)− ΓR′(ψ)ΓR(1,m+ 1))

×tr(t,u)lm
(
ΓT ′(ψ−1)ΓT (1,m+ 1)− ΓT (1,m+ 1)ΓT ′(ψ−1)

) )
(3.14)

To simplify this further, use the fundamental orthogonality relation

∑
ψ∈Sn+m−1

ΓR′(ψ)ΓT ′(ψ−1) = |Sn+m−1|
dR′

δR′T ′ (3.15)

to perform the sum over ψ. In this step we also rewrite the restricted char-

acter in the form given in equation (2.11). The final result is

MR,(r,s)jk;T,(t,u)lm =

g2
YM

∑
R′

cRR′dTn m

dtdu(n+m)
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× tr
([

ΓR(1,m+ 1), PR→(r,s);jk
]
IR′T ′

[
ΓR(1,m+ 1), PT→(t,u);ml

]
IT ′R′

)
(3.16)

Here IR′T ′ is an intertwiner. An intertwiner IAB is the mapping from the car-

rier space of irreducible representation A to the carrier space of irreducible

representation B. A detailed explanation of intertwiners can be found in

Appendix A.1. IR′T ′ is only non-zero if R′ and T ′ have the same shape.

Since the exact two point function of restricted Schur polynomials is

known, we can rewrite restricted Schur polynomials in terms of normalized

operators OR,(r,s)jk(Y, Z). The relation between the restricted Schur polyno-

mials and the operators normalized to have unit two point function is

χR,(r,s)jk(Y, Z) =
√

fRhooksR
hooksrhookss

OR,(r,s)jk(Y, Z) (3.17)

When studying the spectrum of the dilatation operator, it is convenient to

work with the normalized operators. In terms of normalized operators, the

eigenproblem of the dilatation operator becomes

DOR,(r,s)jk(Y, Z) =
∑

T,(t,u)lm
NR,(r,s)jk;T,(t,u)mlOT,(t,u)ml(Y, Z) (3.18)

NR,(r,s)jk;T,(t,u)ml =

−g2
YM

∑
R′

cRR′dTn m

dtdu(n+m)

√
fThooksThooksrhookss
fRhooksRhooksthooksu

×

tr
([

ΓR(1,m+ 1), PR→(r,s);jk
]
IR′T ′

[
ΓR(1,m+ 1), PT→(t,u);ml

]
IT ′R′

)
(3.19)
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3.2 Calculating the Action of the Dilatation Operator

The action of the dilatation operator can now be found by evaluating the

trace of a product of symmetric group operators PR→(r,s)jk and PT→(t,u)ml,

intertwiners and matrix representations of group elements. The constant fac-

tors appearing as the coefficient of the trace can also be simplified. Some

tools for calculating the trace and the simplification of the factors appear

in appendices A.2 and A.3. Using the methods outlined in the appendices

we shall perform a general evaluation of the trace, and apply everything

developed thus far to the example of a two giant graviton system, that is,

restricted Schur polynomials labelled by Young diagrams with two long rows.

The next goal of this chapter is to calculate the spectrum of anomalous

dimensions of the dilatation operator. This is achieved by evaluating and

diagonalizing the general expression for NR,(r,s)jk;T,(t,u)lm. We turn to this

task in the next subsection.

3.2.1 General Trace Evaluation

The general form of the trace that was found in the previous section is given

by

T = tr
([

ΓR(1,m+ 1), PR→(r,s)jk
]
IR′T ′

[
ΓT (1,m+ 1), PT→(t,u)ml

]
IT ′R′

)
(3.20)

This can be rewritten as the product a trace over the m Y slots and one

Z slot, and a trace over the other n−1 Z slots. The n−1 slots are the carrier

space of r′ and t′. Another notation for this r′ is Rm+1, which emphasizes
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the fact that r can be obtained by removing m + 1 boxes from R. If the

m + 1th box is removed from row i, the dimension of this representation is

denoted diRm+1 . Tracing over the remaining n − 1 Z slots gives a factor of

diRm+1 . Tracing over the m Y slots and m+ 1th Z slot is a trace over V m+1
p .

We use the u(p) basis matrices given for the E’s from chapter two in

order to find the action of group element representations ΓR(1,m + 1) on

the intertwiners. The methodology of this is described in detail in Appendix

A.2. Let b be the row of R from which a box is removed to get R′, and let a

be the same for T , such that R′ = T ′. The trace then simplifies to

T =

δabδRT δ(r,s),(t,u)δjmδkld
b
Rm+1

[
trV ⊗mp

(
PR→(r,s)lkE

(1)
bb

)
+ trV ⊗mp

(
PR→(r,s)jmE

(1)
bb

)]
+dbRm+1trV ⊗mp

(
PR→(r,s)lkE

(1)
bb PT→(t,u)lmE

(1)
aa

)
+dbRm+1trV ⊗mp

(
PR→(r,s)lkE

(1)
aa PT→(t,u)lmE

(1)
bb

)
(3.21)

The first term appearing corresponds to the case where R = T and the second

two are the result of the R , T case. It is useful to rewrite the symmetric

group operator or projector in a bra-ket notation

PR→(r,s)ij =
ds∑
a=1
|M i

s, a >< M j
s , a| (3.22)

Here 1 ≥ i, j ≥ I(∆(M)). M i
s and M j

s label states of a U(p) irreducible

representation s with a given ∆ weight. a labels multiplicity and is organized

by said Gelfand-Tsetlin patterns M i
s and M j

s . We can rewrite these states as
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a linear combination of ways of removing a box from s in terms of Clebsch-

Gordan coefficients

|M i
s, a >=

∑
Ms′ ,M10

C
M i
s

Ms′ ,M10 |M10 > ⊗|Ms′ , b > (3.23)

A general U(p) Clebsch-Gordan coefficient in terms of the states labeled

by these Gelfand-Tsetlin patterns is

C
M i
s

Ms′ ,M10 = (< M10⊗ < Ms′ , b|) |M i
s, a > (3.24)

Here b is a multiplicity organized by Gelfand-Tsetlin patterns of the U(p)

irreducible representation s′ .

3.2.2 Two Graviton System

In this work we will explore the two graviton system in depth. For this

reason, in this section, the two graviton case will be discussed in detail and

diagonalized.

A system of two giant gravitons corresponds to a restricted Schur poly-

nomial labelled by a Young diagram R with two rows of length O(N). Long

rows correspond to AdS gravitons; it is also possible to consider the problem

for which R has two long columns, corresponding to sphere gravitons. The

two results are related in a very simple way, as we explain below. A re-

stricted Schur polynomial built out of n Z fields and m Y fields where p = 2

correspond to a system of two giant gravitons with m strings or impurities

attached.
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The new set of labels that was constructed using the Schur-Weyl duality

replaced Young diagram labels s and multiplicity i with Young diagram s and

Gelfand-Tsetlin pattern M . In the case of two gravitons the Gelfand-Tsetlin

patterns label states in the irreducible representations of U(2). The row sum

of the top row in M is equal to m, which is fixed. Both the ∆ weight and s

can be replaced by SU(2) angular momentum labels, j and j3, where

j = 0, 1
2 , 1,

3
2 . . . − j ≤ j3 ≤ j (3.25)

Here, the label j is related to the shape, or number of boxes in each row,

of diagram s such that

j3 is associated with the ∆ weight and describes how the removal of m

boxes from R is performed. Concretely j3 = n1−n2
2 , where n1 and n2 are the

number of boxes removed from row one and row two of R respectively, to get

(r, s). The U(2) state of s can then be relabeled in terms of j and j3

 m12 m22

m11

 →

 m22 + 2j m22

m22 + j + j3

 (3.26)

Note that m is conserved and m = 2(m22 + j). There are four U(2)

Clebsch-Gordan coefficients that will be needed to evaluate the dilatation
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operator

< j − 1
2 , j

3 − 1
2; 1

2 ,
1
2 |j, j

3 >=
√
j + j3

2j (3.27)

< j − 1
2 , j

3 + 1
2; 1

2 ,−
1
2 |j, j

3 >=
√
j − j3

2j (3.28)

< j + 1
2 , j

3 − 1
2; 1

2 ,
1
2 |j, j

3 >= −

√√√√j − j3 + 1
2(j + 1) (3.29)

< j + 1
2 , j

3 + 1
2; 1

2 ,−
1
2 |j, j

3 >=

√√√√j + j3 + 1
2(j + 1) (3.30)

The diagram s can be specified in terms of the number of columns with

two boxes, given by m−2j
2 , and the number of columns with one box, 2j.

When performing the trace in equation (3.21), a factor of ∑s′ ds′ arises. In

the two graviton case, the sum over R′ in (3.19) accounts for two cases: a

box is removed from row one of s or a box removed from row two of s. Our

definition of j3 implies that a box in the top row corresponds to a ‘spin up’

state and a box in the bottom row is a ‘spin down’ state. When removing

boxes from either row, the number of columns containing one box changes.

A box removed from row one produces state with 2j replaced by a value of

2j − 1 and a box removed from row two gives a state with value 2j + 1.

Row 1 Ms′ = |j − 1
2 , j

3 − 1
2 >

Row 2 Ms′ = |j + 1
2 , j

3 − 1
2 >

In terms of SU(2) language we also relabel the Gelfand-Tsetlin patterns in
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the projection operator

Ms → |j, j3 >

M1
10 → |

1
2 ,

1
2 >

M2
10 → |

1
2 ,−

1
2 >

The r labels can also be specified by new numbers: b0 is the number of

columns with two boxes and b1 is the number of columns with one box. Note

that

• The length of the first row in R is R1 = b0 + b1 + n1

• The length of the second row in R is R2 = b0 + n2

• The length of the first row in r is r1 = b0 + b1

• The length of the second row in r is r2 = b0

• m = n1 + n2

• 2j3 = n1 − n2

We can describe our normalized operators using these numbers, that is, we

replace OR,(r,s)jk(Y, Z)→ O(b0, b1; j, j3). The diagonal terms of the dilatation

operator are those for which j is conserved. Nine terms arise when the

dilatation operator acts on O(b0, b1; j, j3). The complete details of the terms

conserving j will be shown. The j − 1 and j + 1 terms quoted in the final

result are found in the same manner so our discussion of these terms will be

schematic. For R = T the matrix element of the dilatation operator is
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−2g2
YM

rj cRR′ m

Rj ds

∑
s′
ds′
[
(CMs

Ms′ ,M
j
10

)2 − (CMs

Ms′ ,M
j
10

)4
]
δjlδim (3.31)

The Clebsch-Gordan coefficients can be written in terms of the states

defined to replace the Gelfand-Tsetlin patterns. The coefficient for a box

removed from row one of s is

CMs

Ms′ ,M
1
10
→< j − 1

2 , j
3 − 1

2; 1
2 ,

1
2 |j, j

3 > (3.32)

In terms of the new labels, the other ingredients in equation (3.31) are

s1 : m
ds′

ds
= hookss
hookss′

= 2j
2j + 1

m+ 2j + 2
2

(3.33)

s2 : m
ds′

ds
= hookss
hookss′

= 2j + 2
2j + 1

m− 2j
2

(3.34)

R1 : cRR′ = (N + b0 + b1 − 1) ∼ (N + b0 + b1)
(

1 +O( n1

N + b0 + b1
)
)

(3.35)

R2 : cRR′ = (N + b0 +−2) ∼ (N + b0)
(

1 +O( n2

N + b0
)
)

(3.36)
r1

R1
= 1 +O( n1

b0 + b1
)

(3.37)
r2

R2
= 1 +O(n2

b0
) (3.38)

Thus for R = T we find the following expression for the matrix element

of the dilatation operator

−g
2
YM

2 (2N + 2b0 + b1)
(
m− (m+ 2)(j3)2

j(j + 1)

)
(3.39)



66

Figure 1: The diagram shows how the factors for the s labels arise when

boxes are removed

When R , T , the dilatation operator matrix element in terms of Clebsch-

Gordan coefficients is

2g2
YM

√
cRR′cTT ′

√
rktl
RkTl

m

ds

∑
s′
ds′(CMs

M̃s′ ,M
2
10

)2(CMs

Ms′ ,M
1
10

)2 (3.40)

When a box is removed from the first row of s, the Clebsch-Gordan coeffi-

cients are given by

(CMs

M̃s′ ,M
2
10

)2(CMs

Ms′ ,M
1
10

)2 =< j−1
2 , j

3−1
2; 1

2 ,
1
2 |j, j

3 >2< j−1
2 , j

3+1
2; 1

2 ,−
1
2 |j, j

3 >2

(3.41)

For a box removed from the second row

(CMs

M̃s′ ,M
2
10

)2(CMs

Ms′ ,M
1
10

)2 =< j+1
2 , j

3−1
2; 1

2 ,
1
2 |j, j

3 >2< j+1
2 , j

3+1
2; 1

2 ,−
1
2 |j, j

3 >2

(3.42)

For a box removed from either row one or row two of R, the other factors

that arise in this evaluation are:

√
cRR′cTT ′ ≈

√
(N + b0 + b1)(N + b0)

√
rktl
RkTl

≈ 1
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mds′
ds

is computed as for the R = T case. In total, the matrix element

evaluates to √
(N + b0 + b1)(N + b0)g2

YM

(
m− (m+ 2)(j3)2

j(j + 1)

)
(3.43)

As far as the b0, b1 labels are concerned, it is useful to introduce

∆O(b0, b1; j, j3) =
√

(N + b0 + b1)(N + b0)
(
O(b0 + 1, b1 − 2; j, j3)

+O(b0 − 1, b1 + 2; j, j3)
)
− (2N + 2b0 + b1)O(b0, b1; j, j3)

(3.44)

Here ∆ is an operator acting only on the r labels of our original restricted

Schur polynomial. Finding the spectrum and eigenstates of this operator is

one of the main goals of the work presented in Chapter 5. The action of this

operator seen in the above equation, was found by labeling the weights of

boxes removed from Young diagrams R and T using b0 and b1. When all nine

terms generated by the acting with the dilatation operator on O(b0, b1; j, j3)

are gathered together, we have

DO(b0, b1; j, j3) =

g2
YM

(
− 1

2

(
m− (m+ 2)(j3)2

j(j + 1)

)
∆O(b0, b1; j, j3)

+

√√√√(m+ 2j + 4)(m− 2j)
(2j + 1)(2j + 3)

(j + j3 + 1)(j − j3 + 1)
2(j + 1) ∆O(b0, b1; j + 1, j3)

+

√√√√(m+ 2j + 2)(m− 2j + 2)
(2j + 1)(2j − 1)

(j + j3)(j − j3)
2j ∆O(b0, b1; j − 1, j3)

)
(3.45)

Note that for the case of two long columns, the action of the dilatation oper-
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ator follows by simply replacing the factors N + bi with N − bi. The number

of rows with two boxes is given by b0 and the number of rows with one box

is b1. In diagram s the number of rows with one box is 2j and the number

of rows with two boxes is m−2j
2 .

To solve for the spectrum of the dilatation operator there are two eigen-

problems to be solved, namely one associated with the r label involving

operator ∆, and one associated to the s label as seen in the above equation.

The ∆ eigenproblem will be studied in depth in Chapter 5.

Our final result, equation (3.45), found using the Schur-Weyl duality, is in

agreement with the equation calculated for the one loop dilatation operator

in [17]. This is a good check of our methods. We are now left with the task

of diagonalizing the dilatation operator.

3.3 Diagonalization

In order to diagonalize the action found for DO(b0, b1; j, j3), we make the

following ansatz for operators with a good scaling dimension

Op,n =
∑
b1

f(b0, b1)Op,j3(b0, b1) =
∑
j,b1

Cp,j3(j)f(b0, b1)Oj,j3(b0, b1) (3.46)

The eigenproblem to solve is

DO(p, n) = κO(p, n) (3.47)

where κ is the one-loop anomalous dimension. In order to solve this equation,

we convert (3.47) into recursion relations for the coefficients Cp,j3(j) and

f(b0, b1). There are two such relations (see [17] for more details)
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•

−αp,j3Cp,j3(j) =

√√√√(m+ 2j + 4)(m− 2j)
(2j + 1)(2j + 3)

(j + j3 + 1)(j − j3 + 1)
2(j + 1) Cp,j3(j + 1)

+

√√√√(m+ 2j + 2)(m− 2j + 2)
(2j + 1)(2j − 1)

(j + j3)(j − j3)
2j Cp,j3(j − 1)

−1
2

(
m− (m+ 2)(j3)2

j(j + 1)

)
Cp,j3(j)

(3.48)

•

κf(b0, b1) =

−αp,j3g2
YM

(√
(N + b0)(N + b− 0 + b1)(f(b0 − 1, b1 + 2) + f(b0 + 1, b1 − 2))

−(2N + 2b0 + b1)f(b0, b1)
)
κf(b0, b1)

(3.49)

[44] illustrates solutions to these recursion relations, in the form of Kravchuk

and Hahn polynomials written in terms of the hypergeometric functions 2F1

and 3F2 respectively. We have

Cp,j3(j) = (−1)m2 −p(m2 )!
√√√√ (2j + 1)

(m2 − j)!(
m
2 + j + 1)!3F2

 |j3| − j, j + |j3|+ 1, −p

|j3| − m
2 , 1

; 1


(3.50)
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and

f(b0, b1) = (−1)n(1
2)N+b0+ b1

2

√√√√√√
 2N + 2b0 + b1

N + b0 + b1


 2N + 2b0 + b1

n


×2F1

 −(N + b0 + b1), n

−(2N + 2b0 + b1)
; 2


(3.51)

Here |j3| ≤ j ≤ m
2 and 0 ≤ p ≤ m

2 −|j
3|. When one solves for the eigenvalues

using these relations, one finds

−αp,j3 = −2p = 0,−2,−4, . . . ,−(m− 2|j3|) (3.52)

and

κ = 4nαp,j3g2
YM = 8png2

YM where n = 0, 1, 2, . . . (3.53)

It is clear that the spectrum of anomalous dimensions described by the

eigenvalues κ is evenly spaced with energy gap set by the coupling constant,

g2
YM .

3.3.1 The Continuum Limit

The systems studied thus far have consisted of objects labelled by Young

diagrams with large row length differences. This allows us to study the

recursion relations previously presented in a continuum limit, in which they

become partial differential equations. In the equation for f(b0, b1), replace

2b1√
N + b0
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with the continuous variable, ρ such that

f(b0, b1)→ f(ρ)

Since b1 << N + b0, the following expansions can be performed:

√
(N + b0 + b1)(N + b0) = (N + b0)

(
1 + 1

2
b1

N + b0
− 1

8
b2

1
(N + b− 0)2 + · · ·

)
(3.54)

f(ρ− 1√
N + b0

) = f(ρ)− 1√
N + b0

∂f

∂ρ
+ 1

2(N + b0)
∂2f

∂ρ2 (3.55)

Using these expressions, we find that the recursion relations describing

the action of the dilatation operator become partial differential equations

κf(ρ) = 2αp,j3g2
YM

[
− ∂2

∂ρ2 + ρ2
]
f(ρ) (3.56)

It is clear that this is the equation for an harmonic oscillator with a frequency

of 2αp,j3g2
YM . This allows us to conclude that in the large N nonplanar limit

of N = 4 SYM theory, the spectrum of anomalous dimensions of local oper-

ators in the form of restricted Schur polynomials, does indeed correspond to

the energy spectrum of an harmonic oscillator. Solutions of the continuum

differential equations and the discrete recursion relations agree with one an-

other, see [17] for some detailed comparisons. The continuum case makes the

assumption that b1 << N + b0, implying that the discrete case is the most

general treatment.
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3.4 Gauss Graphs

Excitations of D-branes such as giant gravitons can be described by attaching

open strings to the branes. Giant gravitons have compact world volumes. A

highly non-trivial consequence of a compact world volume is that states of

the world volume theory must obey the Gauss law. Indeed, this law implies

that the total charge on the world volume must be zero. This constraint

governs the way in which strings can be attached to the gravitons, and the

number of possible excitation states that can be found which obey this con-

straint corresponds to the number of operators found in [21], a fact that was

proved in [78].

In the language of what has been presented in this chapter, excitations

are the m impurities corresponding to Y fields. It is possible to write the

action of the dilatation operators on restricted Schur polynomials and to ex-

plicitly verify the emergence of the Gauss law, a fact that will be explained

below. We now introduce some diagrams, Gauss graphs, that simplify the

translation between excited brane states and gauge theory operators greatly.

To make the discussion concrete, we will consider a specific example. Sup-

pose we have a system of three giant gravitons with ∆ weight ∆ = (1, 1, 1).

This describes a three graviton system with three impurities or open strings

attached. The rule from the Gauss law tells us that the number of strings

entering the graviton must be equal to the number of strings leaving it. We

draw three dots and connect them with three strings in all possible ways

that do not violate this law. The number of rows in the Young diagram R
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labeling the restricted Schur polynomial corresponds to the number of dots

or gravitons.

The ∆ weight tells us how many strings start from each brane. Some

examples are given below.

∆ = (1, 1, 1)

∆ = (2, 1, 0)

∆ = (2, 0, 1)

Since we now have three rows, the operator ∆ given above generalizes to

three different operators. For p rows there would be p(p−1)
2 distinct operators,

one for each pair of the p rows. The equation which generalizes (3.44), for
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the ∆ operator associated to rows i and j is

∆ijO(ri, rj) =
√

(N + ri)(N + rj)
(
O(ri + 1, rj − 1) +O(ri − 1, rj + 1)

)
−(2N + ri + rj)O(ri, rj) (3.57)

In this expression, rl is the length of the lth row of r. We have only explic-

itly displayed the dependence of our operators on rows i and j, suppressing

all other variables. We do not distinguish between ∆ij and ∆ji.

As explained above, we draw a diagram to describe each configuration of

the giant graviton system. The action of the dilatation operator is then sum-

marized by these diagrams. We explain this connection using our example

below.

1. Strings entering and leaving the same graviton:

DO(b1, b2) = 0 (3.58)

2. Strings connecting two gravitons in all possible ways:
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DO(b1, b2) = −2g2
YM∆23O(b1, b2) (3.59)

DO(b1, b2) = −2g2
YM∆31O(b1, b2) (3.60)

DO(b1, b2) = −2g2
YM∆12O(b1, b2) (3.61)

3. Strings connecting three gravitons in all possible ways:

For both configurations we have

DO(b1, b2) = −g2
YM(∆12 + ∆23 + ∆31)O(b1, b2) (3.62)

The full details of this calculation can be found in [56]. It was conjectured in

[56] that the action of the dilatation operator found using the Gauss graph

diagrams in general, is

DO(bi) = −
∑
ij

g2
YMnij∆ijO(bi) (3.63)
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This has been proved in [78].

3.5 Chapter Summary

This chapter showed the explicit calculation of the spectrum of anomalous

dimensions for restricted Schur polynomials dual to systems of two gravitons

and gave the basic framework for a system with p > 2. The article that was

reviewed here, ‘Giant Graviton Oscillators’ [56], showed evidence that these

systems are integrable for restricted Schur polynomials with O(1) long rows

or columns. The main features of this chapter were the use of the Schur-Weyl

duality, and the demonstration that integrability in N = 4 SYM is a feature

of not only the planar limit, but also a particular large N but non-planar

limit.

In the next three chapters, we shall use the results of this chapter in

order to further explore integrability in N = 4 SYM theory. We shall study

the two graviton problem for restricted Schur polynomials beyond the SU(2)

sector, we shall examine the eigenproblem of the ∆ operators that act on the

r labels, and we shall explore whether integrability of these systems holds

beyond one loop.
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4 Non Planar Integrability: Beyond the SU(2)

Sector

In this section we would like to provide further evidence that integrability is

not only a property of the planar limit. Once again we study the large N

limit of a set of operators whose bare dimension is of order N , the restricted

Schur polynomials. For this class of operators, the planar approximation

does not give an accurate description of the large N limit and one is forced

to tackle the problem of summing an infinite number of non-planar correc-

tions. The work presented in this chapter is novel. It was reported in Robert

De Mello Koch, Badr Awad Elseid Mohammed, and Stephanie Smith, Non

Planar Integrability: Beyond the SU(2) Sector Int. J. Mod. Phys. A 26,

4553 (2011).

We will start with a quick review of studies considering related ques-

tions. In [11] BMN operators in an LLM background [12] were considered.

In [13, 14] the spectrum of anomalous dimensions of operators AdS/CFT

dual [15] to giant gravitons [16] was considered. In these cases, the opera-

tors considered all belonged to the SU(2) sector of the theory. The resulting

numerical spectra suggest that the dilatation operator reduces to a set of

decoupled harmonic oscillators. As discussed in Section 3, [17] studied the

class of restricted Schur polynomials with two rows/columns. This allowed

an analytic demonstration that the spectrum of the dilatation operator re-

duces to that of a set of decoupled harmonic oscillators, once again in the

SU(2) sector. This has been extended to operators with any number of rows
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or columns in [56, 78].

The main goal of this chapter is to extend the results of [13, 14, 17] be-

yond the SU(2) sector. We show that the previous results generalize nicely

and we can again give an analytic demonstration that the spectrum of the

dilatation operator reduces to that of a set of decoupled harmonic oscillators.

We begin by deriving an analytic expression for the action of the one loop

dilatation operator on restricted Schur polynomials built using three complex

scalars. This is a new result and generalizes the result for the SU(2) sector

obtained in [14]. In section 4.2 we describe our construction of the projec-

tion operators needed to define the restricted Schur polynomials. Again, we

focus on restricted Schur polynomials labeled by Young diagrams that have

two rows/columns. The relevant projectors project from an irreducible rep-

resentation of Sn+m+p to an irreducible representation of an Sn × Sm × Sp

subgroup. For two rows/columns a given irreducible Sn×Sm×Sp representa-

tion is subduced at most once from a given Sn+m+p irreducible representation.

As discussed in [14] this simplifies the problem of computing the projec-

tors significantly. Our construction trades the problem of constructing the

projector for the eigenproblem of certain Sm × Sp Casimirs. This eigenprob-

lem is then solved by translating it into a spin chain language, significantly

generalizing the construction of [17]. Note that the original article presented

here did not use Schur-Weyl duality in this construction, as discussed in pre-

vious sections of this work. The approach employing Schur-Weyl duality was
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developed after its completion.

4.1 Action of the Dilatation Operator

In this section we will study the action of the one loop dilatation operator on

restricted Schur polynomials built using three complex adjoint scalars. The

main result of this section, which generalizes results known for the SU(2)

sector[14], is the simple formula (4.5) for the action of the dilatation operator.

Our operators are built using the six scalar fields φi, which take values

in the adjoint of u(N) in N = 4 super Yang Mills theory. Assemble these

scalars into the three complex combinations

Z = φ1 + iφ2, Y = φ3 + iφ4, X = φ5 + iφ6 .

The operators we consider are built using O(N) of these complex scalar

fields. These operators have a large R-charge and consequently, non-planar

contributions to the correlation functions of these operators are not sup-

pressed at large N [18]. The computation of the anomalous dimensions of

these operators is then a problem of considerable complexity. This problem

has been effectively handled by new methods which employ group represen-

tation theory[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] allowing one

to sum all diagrams (planar and non-planar) contributing. Indeed, the two

point function of restricted Schur polynomials[21, 22, 23, 25] can be evaluated

exactly in the free field theory limit[27]. The restricted Schur polynomials

provide a basis for the local operators[61] which diagonalize the free two

point function and which have highly constrained mixing at the quantum
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level[23, 25, 13, 14, 17]. For the applications that we have in mind, this basis

is clearly far superior to the trace basis. Mixing between operators in the

trace basis with this large R-charge is completely unconstrained even at the

level of the free theory.

The restricted Schur polynomials are

χR,(r,s,t)(Z⊗n, Y ⊗m, X⊗ p) = 1
n!m!p!

∑
σ∈Sn+m+p

Tr(r,s,t)(ΓR(σ))X i1
iσ(1)
· · ·X ip

iσ(p)

×Y ip+1
iσ(p+1)

· · ·Y ip+m
iσ(p+m)

Z
ip+m+1
iσ(p+m+1)

· · ·Zin+m+p
iσ(n+m+p)

(4.1)

We use n to denote the number of Zs, m to denote the number of Y s and p

to denote the number of Xs. R is a Young diagram with n+m+ p boxes or

equivalently an irreducible representation of Sn+m+p. r is a Young diagram

with n boxes or equivalently an irreducible representation of Sn, s is a Young

diagram with m boxes or equivalently an irreducible representation of Sm
and t is a Young diagram with p boxes or equivalently an irreducible repre-

sentation of Sp. The Sn subgroup acts on m+ p+ 1,m+ p+ 2, ...,m+ p+ n

and therefore permutes indices belonging to the Zs. The Sm subgroup acts

on p + 1, p + 2, ..., p + m and hence permutes indices belonging to the Y s.

The Sp subgroup acts on 1, 2, ..., p and hence permutes indices belonging to

the Xs.

Taken together (r, s, t) specify an irreducible representation of Sn×Sm×

Sp. Tr(r,s,t) is an instruction to trace over the subspace carrying the irre-

ducible representation2 (r, s, t) of Sn × Sm × Sp inside the carrier space for
2In general, because (r, s, t) can be subduced more than once, we should include a
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irreducible representation R of Sn+m+p. This trace is easily realized by in-

cluding a projector PR→(r,s,t) (from the carrier space of R to the carrier space

of (r, s, t)) and tracing over all ofR, i.e. Tr(r,s,t)(ΓR(σ)) = Tr(PR→(r,s,t)ΓR(σ)).

The one loop dilatation operator, when acting on operators composed

from the three complex scalars X, Y, Z, is[33, 34, 35, 36, 4, 37]

D = −g2
YMTr [Y, Z][∂Y , ∂Z ]− g2

YMTr [X,Z][∂X , ∂Z ]− g2
YMTr [Y,X][∂Y , ∂X ].

(4.2)

The action of the dilatation operator on the restricted Schur polynomials

belonging to the SU(2) sector has been worked out in [13, 14]. In what

follows, we will work with operators normalized to give a unit two point

function. The two point functions for restricted Schur polynomials has been

computed in [27]

〈χR,(r,s,t)(Z, Y )χT,(u,v,w)(Z, Y )†〉 = δR,(r,s,t)T,(u,v,w)fR
hooksR

hooksr hookss hookst
(4.3)

In this expression fR is the product of the factors3 in Young diagram R

and hooksR is the product of the hook lengths of Young diagram R. The

normalized operators OR,(r,s,t)(Z, Y ) can be obtained from

χR,(r,s,t)(Z, Y,X) =
√

fR hooksR
hooksr hookss hookst

OR,(r,s,t)(Z, Y,X) . (4.4)

multiplicity index. We will not write or need this index in this article. We will, in the next

section, restrict our attention to restricted Schur polynomials that are labeled by Young

diagrams with two rows or columns. A huge simplification that results is that all possible

representations (r, s, t) are subduced exactly once.
3The term weights is also frequently used. The factor/weight of a box in the ith row

and jth column is N + j − i.
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The computation of the dilatation operator is a simple extension of the anal-

ysis presented in [14] so that we will only quote the final result. In terms of

the normalized operators

DOR,(r,s,t)(Z, Y,X) =
∑

T,(u,v,w)
NR,(r,s,t);T,(u,v,w)OT,(u,v,w)(Z, Y,X) (4.5)

NR,(r,s,t);T,(u,v,w) =

−
∑
R′

cRR′g
2
YMdT

dR′dudvdw(n+m+ p)

√
fT hooksT hooksr hooksshookst
fR hooksR hooksu hooksv hooksw

×
[
nmTr

(
[
ΓR((p+m+ 1, p+ 1)), PR→(r,s,t)

]
IR′ T ′

[
ΓT ((p+m+ 1, p+ 1)), PT→(u,v,w)

]
IT ′R′

)
+npTr

([
ΓR((1, p+m+ 1)), PR→(r,s,t)

]
IR′ T ′

[
ΓT ((1, p+m+ 1)), PT→(u,v,w)

]
IT ′R′

)
+ mpTr

([
ΓR((1, p+ 1)), PR→(r,s,t)

]
IR′ T ′

[
ΓT ((1, p+ 1)), PT→(u,v,w)

]
IT ′R′

)]
(4.6)

cRR′ is the factor of the corner box removed from Young diagram R to obtain

diagramR′, and similarly T ′ is a Young diagram obtained from T by removing

a box. This factor arises after using the reduction rule of [80, 22]. The

intertwiner IAB is a map from the carrier space of irreducible representation

A to the carrier space of irreducibe representation B. Consequently, by

Schur’s Lemma, A and B must be Young diagrams of the same shape. The

intertwiner operators relevant for our study have been discussed in detail in

[14].

4.2 Projection Operators

The goal of this section is to construct the projection operators needed to

define the restricted Schur polynomials we study in this article. This con-
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struction clearly defines the class of operators being considered. The approx-

imations being employed in this construction are carefully considered.

The class of operators χR,(r,s,t)(Z, Y,X) we will study in this article are

labeled by Young diagrams that each have 2 rows or columns. We further

take n to be order N and m, p to be αN with α � 1. Thus, there are a

lot more Z fields than there are Y s or Xs. The mixing of these operators

with restricted Schur polynomials that have n , 2 rows or columns (or of

even more general shape) is suppressed at least by a factor of order 1√
N

4.

Thus, at large N the 2 row or column restricted Schur polynomials do not

mix with other operators, which is a huge simplification. This is the analog

of the statement that for operators with a dimension of O(1), different trace

structures do not mix at large N . The fact that the two column restricted

Schur polynomials are a decoupled sector at large N is expected: these op-

erators correspond to a well defined stable semi-classical object in spacetime

(the two giant graviton system).

Note that as a consequence of the fact that there are a lot more Zs than Y s
and Xs, contributions to the dilatation operators coming from interactions
between Zs and Y s or between Zs and Xs will over power the contribution
coming from interactions between Xs and Y s. Consequently we can simplify
the action of the dilatation operator to

NR,(r,s,t);T,(u,v,w) = −
∑
R′

cRR′g
2
YMdTn

dR′dudvdw(n+m+ p)

4Here we are talking about mixing at the quantum level. There is no mixing in the

free theory[27].
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×
√

fT hooksT hooksr hooksshookst
fR hooksR hooksu hooksv hooksw

×
[
mTr

(
(4.7)[

ΓR((p+m+ 1, p+ 1)), PR→(r,s,t)
]
IR′ T ′

[
ΓT ((p+m+ 1, p+ 1)), PT→(u,v,w)

]
IT ′R′

)
+ pTr

([
ΓR((1, p+m+ 1)), PR→(r,s,t)

]
IR′ T ′

[
ΓT ((1, p+m+ 1)), PT→(u,v,w)

]
IT ′R′

)]
.

We will obtain an analytic expression for the above operator in this chapter.

4.2.1 Two Rows

We will make use of Young’s orthogonal representation for the symmetric

group. This representation is most easily defined by considering the action

of adjacent permutations (permutations of the form (i, i+ 1)) on the Young-

Yamonouchi states. The permutation (i, i + 1) when acting on any given

Young-Yamonouchi state will produce a linear combination of the original

state and the state obtained by swapping the positions of i and i+ 1 in the

Young-Yamonouchi symbol. The precise rule is most easily written in terms

of the axial distance between i and i+1. If i appears in row ri and column ci
of the Young-Yamonouchi symbol and i+ 1 appears in row ri+1 and column

ci+1 of the Young-Yamonouchi symbol, then the axial distance between i and

i+ 1 is

di,i+1 = ci − ri − (ci+1 − ri+1) . (4.8)

In terms of this axial distance, the action of (i, i+ 1) is

(i, i+ 1) |state〉 = 1
di,i+1

|state〉+
√√√√1− 1

d2
i,i+1
|swapped state〉 (4.9)

where the Young-Yamonouchi symbol of |swapped state〉 state is obtained

from the Young-Yamonouchi symbol of |state〉 by swapping the positions of
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i and i+ 1. See [39] for more details.

The reason why we use Young’s orthogonal representation is that it sim-

plifies dramatically for the operators we are interested in. To construct the

projectors PR→(r,s,t) we will imagine that we start by removing m + p boxes

from R to produce r. We label the boxes in the order that they are removed.

Of course, after each box is removed we are left with a valid Young diagram;

this is a nontrivial constraint on the allowed numberings. Thus, after labeling

these boxes we have a total of 2m+p partially labeled Young diagrams, each

corresponding to a subspace r of the subgroup Sn × (S1)m+p of the original

Sn+m+p group. We now need to take linear combinations of these subspaces

in such a way that we obtain the correct irreducible representation (s, t) of

the Sm × Sp subgroup that acts on the labeled boxes. For the class of op-

erators that we consider, the number of boxes that we remove (= m + p) is

much less that the number of boxes in R (= m + n + p ≈ n). In the figure

below we show R and the boxes that must be removed from R to obtain r.

It is clear that the axial distance di,i+1 is 1 if the boxes are in the same row

so that

(i, i+ 1) |state〉 = |state〉 for boxes in the same row . (4.10)

It is also clear that di,i+1 is O(N) for boxes in different rows. At large N we

can simply set (di,i+1)−1 = 0 so that

(i, i+ 1) |state〉 = |swapped state〉 for boxes in different rows . (4.11)

The representation that we have obtained is very similar to a representation
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Figure 2: Shown above is the Young diagram R. The boxes that are to be

removed from R to obtain r are colored black.

which has already been studied in the mathematics literature [40]. Moti-
vated by this background, define a map from a labeled Young diagram to a
monomial. Our Young diagram has m + p boxes labeled and the labels are
distributed between the upper and lower rows. Ignore the boxes that appear
in the lower row. For boxes labeled i in the upper row include a factor of
xi in the monomial if 1 ≤ i ≤ p and a factor of yi if p + 1 ≤ i ≤ p + m. If
none of the boxes in the first row are labeled, the Young diagram maps to 1.
Thus, for example, when m = 2 and p = 2

3
4 2 1 ↔ y3

3 2 1
4 ↔ x1x2y3

The symmetric group acts by permuting the labels on the factors in the

monomial. Thus, for example, (12)x1y3 = x2y3. This defines a reducible

representation of the group Sm × Sp. It is clear that the operators5

d1 =
p∑
i=1

∂

∂xi
d2 =

p+m∑
i=p+1

∂

∂yi
(4.12)

commute with the action of the Sm×Sp subgroup. These operators generalize

closely related operators introduced by Dunkl in his study of intertwining

functions [41]. They act on the monomials by producing the sum of terms
5It may be helpful (and it is accurate) for the reader to associate the xi, yj of these

operators with the Xi
σ(i), Y

j
σ(j) appearing in the definition of the restricted Schur polyno-

mials.
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that can be produced by dropping one x factor for d1 or one y factor for d2

at a time. For example

d1(x1x2y3) = x2y3 + x1y3, d2(x1x2y3) = x1x2 .

The adjoint6 produces the sum of monomials that can be obtained by ap-

pending a factor, without repeating any of the factors (this is written for

m = 2 = p impurities but the generalization to any m is obvious)

d†1(y3) = x1y3 + x2y3, d†1(x1y3) = x1x2y3, d†2(x1y3) = x1y3y4 .

The fact that d1 and d2 commute with all elements of Sm × Sp, implies that
d†1 and d†2 will too. Thus, d†1d1 and d†2d2 will also commute with all the
elements of the Sm × Sp subgroup and consequently their eigenspaces will
furnish representations of the subgroup. These eigenspaces are irreducible
representations - consult [40] for useful details and results. This last fact
implies that the problem of computing the projectors needed to define the
restricted Schur polynomials can be replaced by the problem of constructing
projectors onto the eigenspaces of d†1d1 and d†2d2. This amounts to solving
for the eigenvectors and eigenvalues of d†1d1 and d†2d2. This problem is most
easily solved by mapping the labeled Young diagrams into states of a spin
chain. The spin at site i can be in state spin up (+1

2) or state spin down
(−1

2). The spin chain has m+ p sites and the box labeled i tells us the state
of site i. If box i appears in the first row, site i is in state +1

2 ; if it appears
in the second row site i is in state −1

2 . For example,

5 2 1
6 4 3 ↔

∣∣∣∣12 , 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2

〉
6Consult Appendix B.2 for details on the inner product on the space of monomials.
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Both d†1d1 and d†2d2 have a very simple action on this spin chain: Introduce

the states ∣∣∣∣12
〉

=

 1

0

 ∣∣∣∣−1
2

〉
=

 0

1


for the possible states of each site and the operators

σ+ =

 0 1

0 0

 σ− = (σ+)† =

 0 0

1 0


which act on these states

σ+
∣∣∣∣−1

2

〉
=
∣∣∣∣12
〉
, σ+

∣∣∣∣12
〉

= 0, σ−
∣∣∣∣12
〉

=
∣∣∣∣−1

2

〉
, σ−

∣∣∣∣−1
2

〉
= 0 .

We can write any of the states of the spin chain as a tensor product of the

states |12〉 and | − 1
2〉. For example

∣∣∣∣−1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2

〉
=
∣∣∣∣−1

2

〉
⊗
∣∣∣∣−1

2

〉
⊗
∣∣∣∣12
〉
⊗
∣∣∣∣−1

2

〉
⊗
∣∣∣∣12
〉
⊗
∣∣∣∣12
〉

for a system with 6 lattice sites. Label the sites starting from the left, as

site 1, then site 2 and so on till we get to the last site, which is site 6. The

operator σ− acting at the third site (for example) is

σ−3 = 1⊗ 1⊗ σ− ⊗ 1⊗ 1⊗ 1 .

We can then write

d†1d1 =
p∑

α=1

p∑
β=1

σ+
α σ
−
β , (4.13)

d†2d2 =
p+m∑
α=p+1

p+m∑
β=p+1

σ+
α σ
−
β (4.14)
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This is a long ranged spin chain. In terms of the Pauli matrices

σ1 =

 0 1

1 0

 σ2 =

 0 −i

i 0

 σ3 =

 1 0

0 −1

 (4.15)

we define the following “total spins” of the system

J1 =
p∑

α=1

1
2σ

1
α , J

2 =
p∑

α=1

1
2σ

2
α , J

3 =
p∑

α=1

1
2σ

3
α , (4.16)

J2 = J1J1 + J2J2 + J3J3 ,

and

K1 =
p+m∑
α=p+1

1
2σ

1
α , K

2 =
p+m∑
α=p+1

1
2σ

2
α , K

3 =
p+m∑
α=p+1

1
2σ

3
α , (4.17)

K2 = K1K1 +K2K2 +K3K3 .

We use capital letters for operators and little letters for eigenvalues. In terms

of these total spins we have

d†1d1 = J2 − J3(J3 + 1) , d†2d2 = K2 −K3(K3 + 1) .

Thus, eigenspaces of d†1d1 can be labeled by the eigenvalues of J2 and eigenval-

ues of J3, and the eigenspaces of d†2d2 can be labeled by the eigenvalues of K2

and eigenvalues of K3. Consequently, the labels R, (r, s, t) of the restricted

Schur polynomial can be traded for these eigenvalues. Indeed, consider the

restricted Schur polynomial χR,(r,s,t)(Z, Y,X). The K2 = k(k + 1) quantum

number tells you the shape of the Young diagram s that organizes the impu-

rities: if there are N1 boxes in the first row of s and N2 boxes in the second,

then 2k = N1 −N2. The J2 = j(j + 1) quantum number tells you the shape

of the Young diagram t that organizes the impurities: if there are N1 boxes
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in the first row of t and N2 boxes in the second, then 2j = N1 − N2. The

J3 + K3 eigenvalue of the state is always a good quantum number, both in

the basis we start in where each spin has a sharp angular momentum or in

the basis where the states have two sharp “total angular momenta”. The

j3 + k3 quantum number tells you how many boxes must be removed from

each row of R to obtain r. Denote the number of boxes to be removed from

the first row by n1 and the number of boxes to be removed from the second

row by n2. We have 2j3 + 2k3 = n1−n2. This gives a complete construction

of the projection operators we need.

To get some insight into how the construction works, lets count the states

which appear for the example m = p = 4. There are three possible Young

diagram shapes which appear

.

These correspond to a spins of 2, 1, 0 respectively. As irreducible representa-

tions of S4 they have a dimension of 1, 3 and 2 respectively. Coupling four

spins we have
1
2
⊗ 1

2
⊗ 1

2
⊗ 1

2
= 2⊕ 31⊕ 20 .

These results illustrate that each state of a definite spin labels an irreducible

representation of the symmetric group and further that for our 8 spins we
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find the following organization of states

Sm × Sp irrep K irrep J irrep dimension

( , ) k = 2 j = 2 25

( , ) k = 2 j = 1 45

( , ) k = 2 j = 0 10

( , ) k = 1 j = 2 45

( , ) k = 1 j = 1 81

( , ) k = 1 j = 0 18

( , ) k = 0 j = 2 10

( , ) k = 0 j = 1 18

( , ) k = 0 j = 0 4

The last column is obtained by taking a product of the dimension of the

Sm × Sp irreducible representation by the dimension (2k + 1)(2j + 1) of the

associated spin multiplets. Summing the entries in the last column we obtain

256 which is indeed the number of states in the spin chain. For a detailed

example of how the construction works see Appendix B.1.

Summary of the Approximations made:

• We have neglected mixing with restricted Schur polynomials that have

n , 2 rows. These mixing terms are at most O( 1√
N

) so that this

approximation is accurate at large N .
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• The terms arising from an interaction between the Xs and Y s have

been neglected. Since there are a lot more Zs than Xs and Y s the one

loop dilatation operator will be dominated by terms arising from an

interaction between Zs and Xs and between Zs and Y s.

• In simplifying Young’s orthogonal representation for the symmetric

group we have replaced certain factors (di,i+1)−1 = O(N−1) by (di,i+1)−1 =

0. This is valid at large N . The fact that di,i+1 = O(N) is a conse-

quence of the fact that we have Young diagrams with two rows, that we

consider an operator whose bare dimension grows parametrically with

N and that there are a lot more Zs than Xs and Y s. Thus boxes in

different rows, corresponding to Xs and Y s, are always separated by a

large axial distance at large N .

4.2.2 Two Columns

To treat the case of two columns, we need to account for the fact that Young’s

orthogonal representation simplifies to

(i, i+ 1) |state〉 = − |state〉 for boxes in the same column , (4.18)

(i, i+ 1) |state〉 = |swapped state〉 for boxes in different columns .

(4.19)

Note the minus sign on the first line above. We can account for this sign,

generalizing [17], by employing a description that uses Grassmann variables.

To describe the first p boxes, introduce the 2p variables x+
i , x

−
i , where i =

1, 2, ..., p. To describe the next m boxes, introduce the 2m variables y−j , y+
j ,

where j = p + 1, p + 2, ..., p + m. Each labeled Young diagram continues to
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have an expression in terms of a monomial. Boxes in the right most column

have a superscript +; boxes in the left most column have a superscript −.

Each monomial is ordered with (i) xs to the left of ys and (ii) within each

type (x or y) of variable, variables with a − superscript to the left of variables

with a + superscript. Finally within a given type and a given superscript

the variables are ordered so that the subscripts increase from left to right.

Thus, for example, when m = 3 = p we have

5
4
1

6
3
2 ↔ x−1 x

+
2 x

+
3 y
−
4 y
−
5 y

+
6 .

If we now allow Sm×Sp to act on the monomials by acting on the subscripts

of each variable without changing the order of the variables, we recover the

correct action on the labeled Young diagrams.

It is a simple matter to show that

d1 =
p∑
i=1

x+
i

∂

∂x−i
, d2 =

p+m∑
i=p+1

y+
i

∂

∂y−i
, (4.20)

both commute with the symmetric group. It is again simple to show that7

d†1 =
p∑
i=1

x−i
∂

∂x+
i

, d†2 =
p+m∑
i=p+1

y−i
∂

∂y+
i

. (4.21)

7Assuming we only consider monomials that are ordered as we described above, the

inner product of two identical monomials is 1 and of two different monomials is 0.
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We can again define two Sm× Sp Casimirs as d†1d1 and d†2d2. In terms of the

spin variables

σ̃in = (σ3
n)nσin(σ3

n)n

we have

d†1d1 = J̃2 − J̃3(J̃3 + 1) , d†2d2 = K̃2 − K̃3(K̃3 + 1) . (4.22)

Thus, the eigenspaces of d†1d1 can be labeled by the eigenvalues of J̃2 and

eigenvalues of J̃3, and the eigenspaces of d†2d2 can be labeled by the eigen-

values of K̃2 and eigenvalues of K̃3. Consequently, the labels R, (r, s, t) of

the restricted Schur polynomial can again be traded for these eigenvalues.

The remaining discussion is now identical to that of two rows and is thus not

repeated.

4.3 Evaluation of the Dilatation Operator

In this section we will argue that all of the factors in the dilatation operator

have a natural interpretation as operators acting on the spin chain. This

allows us to explicitly evaluate the action of the dilatation operator. Our

final formula for the dilatation operator is given as the last formula in this

section.

The bulk of the work involved in evaluating the dilatation operator comes

from evaluating the traces

Tr
([

ΓR((p+m+1, p+1)), PR→(r,s,t)
]
IR′ T ′

[
ΓT ((p+m+1, p+1)), PT→(u,v,w)

]
IT ′R′

)
,

(4.23)
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and

Tr
([

ΓR((1, p+m+ 1)), PR→(r,s,t)
]
IR′ T ′

[
ΓT ((1, p+m+ 1)), PT→(u,v,w)

]
IT ′R′

)
.

(4.24)

When we evaluate the second trace above, the intertwiners can be taken to

act on the first site of the spin chain. This term corresponds to an interaction

between a Z and X field. The first p sites of the spin chain correspond to X

fields so that the intertwiner could have acted on any of the first p sites of

the chain. When we evaluate the first trace above, the intertwiners can be

taken to act on the (p + 1)th site of the spin chain. This term corresponds

to an interaction between a Z and Y field. The last m sites of the spin chain

correspond to Y fields so that the intertwiner could have acted on any of the

last m sites of the chain. Consider an intertwiner which acts on the first site

of the chain. If the box from row i is dropped from R and the box from row

j is dropped from T , the intertwiner becomes

IR′T ′ = Eij ⊗ 1⊗ · · · ⊗ 1 , IT ′R′ = Eji ⊗ 1⊗ · · · ⊗ 1 , (4.25)

where Eij is a 2 × 2 matrix of zeroes except for a 1 in row i and column

j. We will use a simpler notation according to which we suppress all factors

of the 2 × 2 identity matrix and indicate which site a matrix acts on by a

superscript. Thus, for example

IR′T ′ = E
(1)
ij , IT ′R′ = E

(1)
ji . (4.26)

Next, consider ΓR((p+m+1, p+1)) which acts on a slot occupied by a Z and

a slot occupied by a Y and ΓR((1, p+m+1)) which acts on a slot occupied by

a Z and a slot occupied by an X. To allow an action on the Z slot, enlarge
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the spin chain by one extra site (the Z site). The projectors and intertwiners

all have a trivial action on this (m+ p+ 1)th site. ΓR((p+m+ 1, p+ 1)) will

swap the spin in the (m+ p+ 1)th site with the spin in site p+ 1. Thus, we

have

IR′T ′ΓR((p+m+ 1, p+ 1)) =
2∑

k=1
E

(p+1)
ij E

(m+p+1)
kk ΓR((p+m+ 1, p+ 1))

=
2∑

k=1
E

(p+1)
ik E

(m+p+1)
kj ,

ΓR((p+m+ 1, p+ 1))IR′T ′ =
2∑

k=1
E

(p+1)
kj E

(m+p+1)
ik ,

ΓR((p+m+ 1, p+ 1))IR′T ′ΓR((p+m+ 1, p+ 1)) = E
(m+p+1)
ij .

Since ΓR((1, p+m+ 1)) will swap the spin in the (m+ p+ 1)th site with the

spin in site 1, very similar arguments give

IR′T ′ΓR((1, p+m+ 1)) =
2∑

k=1
E

(1)
ik E

(m+p+1)
kj ,

ΓR((1, p+m+ 1))IR′T ′ =
2∑

k=1
E

(1)
kj E

(m+p+1)
ik ,

ΓR((1, p+m+ 1))IR′T ′ΓR((1, p+m+ 1)) = E
(m+p+1)
ij .

Our only task now is to evaluate traces of the form

Tr
(
ΓR((1, p+m+ 1))PR→(r,s,t)IR′ T ′ΓT ((1, p+m+ 1))PT→(u,v,w)IT ′R′

)
=

2∑
k,l=1

Tr
(
E

(1)
ik E

(m+p+1)
kj PR→(r,s,t)E

(1)
jl E

(m+p+1)
li PT→(u,v,w)

)
(4.27)

To perform this final trace, our strategy is always the same two steps. For

the first step, evaluate the trace over the (n + p + 1)th slot. It is clear that

the trace over the p+m+ 1th slot factors out and further that

Tr (E(m+p+1)
kj E

(m+p+1)
li ) = δjlδik (4.28)
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so that we obtain

Tr
(
E

(1)
ii PR→(r,s,t)E

(1)
jj PT→(u,v,w)

)
(4.29)

To evaluate this final trace we will rewrite the projectors a little. Notice that

E
(1)
kk only has a nontrivial action on the first site of the spin chain. Thus, we

rewrite the projector, separating out the first site. As an example, consider

PR→(r,s,t) =
dt∑
α=1

∣∣∣j, j3, α
〉 〈
j, j3, α

∣∣∣⊗ ds∑
β=1

∣∣∣k, k3, β
〉 〈
k, k3, β

∣∣∣ . (4.30)

To make sense of this formula recall that the labels j, k, j3, k3 can be

traded for the r, s, t labels. In going from the LHS of this last equation to

the RHS we have translated labels and we assure you that nothing is lost

in translation. In figure 2 we remind the reader of how the translation is

performed. We will refer to the Young diagram corresponding to spin j,

built with p blocks as spj in what follows. The piece of the projector that acts

on the first p sites is

P→t ≡
dt∑
α=1

∣∣∣j, j3, α
〉 〈
j, j3, α

∣∣∣ . (4.31)

If we couple the spins at sites 2, 3, ..., p together, we obtain the states |j ±
1
2 , j

3± 1
2 , α〉 with the degeneracy label α running from 1 to the dimension of

the irreducible Sp−1 representation associated to spin j± 1
2 . This irreducible

representation is labeled by the Young diagram sp−1
j± 1

2
. The Clebsch-Gordan

coefficients
〈
j − 1

2 , j
3 − 1

2; 1
2 ,

1
2 |j, j

3
〉

=
√
j + j3

2j , (4.32)

〈
j + 1

2 , j
3 − 1

2; 1
2 ,

1
2 |j, j

3
〉

= −

√√√√j − j3 + 1
2(j + 1) , (4.33)
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Figure 3: How to translate between the j, k and the s, t labels.

〈
j − 1

2 , j
3 + 1

2; 1
2 ,−

1
2 |j, j

3
〉

=
√
j − j3

2j , (4.34)

〈
j + 1

2 , j
3 + 1

2; 1
2 ,−

1
2 |j, j

3
〉

=

√√√√j + j3 + 1
2(j + 1) . (4.35)

tell us how to couple the first site with the remaining spins to obtain the

projector (4.31). Thus, we finally have (s1 = sp−1
j− 1

2
, s2 = sp−1

j+ 1
2
)

|φ, α〉 =
√
j + j3

2j

∣∣∣∣12 , 1
2; j − 1

2 , j
3 − 1

2 , α
〉

+
√
j − j3

2j

∣∣∣∣12 ,−1
2; j − 1

2 , j
3 + 1

2 , α
〉
,

(4.36)

|ψ, β〉 = −

√√√√j − j3 + 1
2(j + 1)

∣∣∣∣12 , 1
2; j + 1

2 , j
3 − 1

2 , β
〉

+

√√√√j + j3 + 1
2(j + 1)

∣∣∣∣12 ,−1
2; j + 1

2 , j
3 + 1

2 , β
〉
,

(4.37)
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P→t =
ds1∑
α=1
|φ, α〉 〈φ, α|+ (4.38)

We could of course perform exactly the same manipulations on the projector

P→s that acts on the last m sites of the spin chain. Now, using the obvious

identities

E
(1)
11 |φ, α〉 =

√
j + j3

2j

∣∣∣∣12 , 1
2; j − 1

2 , j
3 − 1

2 , α
〉
,

(4.39)

E
(1)
22 |φ, α〉 =

√
j − j3

2j

∣∣∣∣12 ,−1
2; j − 1

2 , j
3 + 1

2 , α
〉
,

(4.40)

E
(1)
11 |ψ, β〉 = −

√√√√j − j3 + 1
2(j + 1)

∣∣∣∣12 , 1
2; j + 1

2 , j
3 − 1

2 , β
〉
,

(4.41)

E
(1)
22 |ψ, β〉 =

√√√√j + j3 + 1
2(j + 1)

∣∣∣∣12 ,−1
2; j + 1

2 , j
3 + 1

2 , β
〉
,

(4.42)

it becomes a simple matter to evaluate the above traces.

Finally, in the limit that we consider, the coefficients of the traces ap-

pearing in the dilatation operator are easily evaluated using

cRR′dTdr′n

dR′dudvdw(n+m+ p)

√
fThooksThooksrhooksshookst
fRhooksRhooksuhooksvhooksw

=
√
cRR′cTT ′

√
hooksshooksthooksvhooksw

m!p! . (4.43)

In the above expression, r′ is obtained by removing a box from r. The

box that must be removed from R to obtain R′ and the box that must be

removed from r to obtain r′ are both removed from the same row. Putting
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things together we find

DOj,j3(b0, b1) = g2
YM

[
−1

2

(
m− (m+ 2)(j3)2

j(j + 1)

)
∆Oj,j3,k,k3(b0, b1)

+

√√√√(m+ 2j + 4)(m− 2j)
(2j + 1)(2j + 3)

(j + j3 + 1)(j − j3 + 1)
2(j + 1) ∆Oj+1,j3,k,k3(b0, b1)

+

√√√√(m+ 2j + 2)(m− 2j + 2)
(2j + 1)(2j − 1)

(j + j3)(j − j3)
2j ∆Oj−1,j3,k,k3(b0, b1)

−1
2

(
p− (p+ 2)(k3)2

k(k + 1)

)
∆Oj,j3,k,k3(b0, b1)

+

√√√√(p+ 2k + 4)(p− 2k)
(2k + 1)(2k + 3)

(k + k3 + 1)(k − k3 + 1)
2(k + 1) ∆Oj,j3,k+1,k3(b0, b1)

+

√√√√(p+ 2k + 2)(p− 2k + 2)
(2k + 1)(2k − 1)

(k + k3)(k − k3)
2k ∆Oj,j3,k−1,k3(b0, b1)


(4.44)

where

∆O(b0, b1) =
√

(N + b0)(N + b0 + b1)(O(b0 + 1, b1 − 2) +O(b0 − 1, b1 + 2))

−(2N + 2b0 + b1)O(b0, b1). (4.45)

Above, we have explicitly carried out the discussion for two long rows. To

obtain the result for two long columns, replace
√

(N + b0)(N + b0 + b1)→
√

(N − b0)(N − b0 − b1),

(2N + 2b0 + b1)→ (2N − 2b0 − b1)

in the expression for ∆O(b0, b1). This completes our evaluation of the dilata-

tion operator.
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4.4 Diagonalization of the Dilatation Operator

In this section we reduce the eigenvalue problem for the dilatation operator to

the problem of solving a five term recursion relation. The explicit solution of

this recursion relation allows us to argue that the dilatation operator reduces

to a set of decoupled oscillators. Thus, the problem we are studying is indeed

integrable.

We make the following ansatz for the operators of good scaling dimension

∑
b1

f(b0, b1)Opq,j3,k3(b0, b1) =
∑
j,k,b1

Cpq,j3,k3(j, k) f(b0, b1)Oj,j3,k,k3(b0, b1) .

(4.46)

Inserting this ansatz into (4.44) we find that the Opq,j3,k3(b0, b1)’s satisfy the

recursion relation

−αrq,j3,k3Crq,j3,k3(j, k) =

√√√√(m+ 2j + 4)(m− 2j)
(2j + 1)(2j + 3)

(j + j3 + 1)(j − j3 + 1)
2(j + 1) Crq,j3,k3(j + 1, k)

+

√√√√(m+ 2j + 2)(m− 2j + 2)
(2j + 1)(2j − 1)

(j + j3)(j − j3)
2j Crq,j3,k3(j − 1, k)

−1
2

(
m− (m+ 2)(j3)2

j(j + 1)

)
Crq,j3,k3(j, k)

+

√√√√(p+ 2k + 4)(p− 2k)
(2k + 1)(2k + 3)

(k + k3 + 1)(k − k3 + 1)
2(k + 1) Crq,j3,k3(j, k + 1)

+

√√√√(p+ 2k + 2)(p− 2k + 2)
(2k + 1)(2k − 1)

(k + k3)(k − k3)
2k Crq,j3,k3(j, k − 1)

−1
2

(
p− (p+ 2)(k3)2

k(k + 1)

)
Crq,j3,k3(j, k) .

(4.47)
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Exploiting the j3 → −j3 and k3 → −k3 symmetries of this equation, we need

only solve for the j3 ≥ 0 and k3 ≥ 0 cases. The ranges for j and k are

0 ≤ |j3| ≤ j ≤ m

2 0 ≤ |k3| ≤ k ≤ p

2 .

From the form of the recursion relation, it is natural to make the “separation

of variables” ansatz

Crq,j3,k3(j, k) = Cr,j3(j)Cq,k3(k) . (4.48)

Our five term recurrence relation now reduces to two three term recurrence

relations

−αr,j3Cp,j3(j, ) =

√√√√(m+ 2j + 4)(m− 2j)
(2j + 1)(2j + 3)

(j + j3 + 1)(j − j3 + 1)
2(j + 1) Cr,j3(j + 1)

+

√√√√(m+ 2j + 2)(m− 2j + 2)
(2j + 1)(2j − 1)

(j + j3)(j − j3)
2j Cr,j3(j − 1)

−1
2

(
m− (m+ 2)(j3)2

j(j + 1)

)
Cr,j3(j) , (4.49)

−αq,k3Cq,k3(k) =

√√√√(p+ 2k + 4)(p− 2k)
(2k + 1)(2k + 3)

(k + k3 + 1)(k − k3 + 1)
2(k + 1) Cq,k3(k + 1)

+

√√√√(p+ 2k + 2)(p− 2k + 2)
(2k + 1)(2k − 1)

(k + k3)(k − k3)
2k Cq,k3(k − 1)

−1
2

(
p− (p+ 2)(k3)2

k(k + 1)

)
Cq,k3(k) (4.50)
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These are identical to the three term recursion relations that appear in [17].

To solve these recurrence relations, introduce the Hahn polynomial[42]

Qn(x;α, β,N) ≡ 3F2
(
−n,n+α+β+1,−x
α+1,−N

∣∣∣1) (4.51)

From the recurrence relation obeyed by Hahn polynomials (see equation
(1.5.3) in [42]) we have

r 3F2
(
|j3|−j,j+1+|j3|,−r
1,|j3|−m2

∣∣∣1) =

(j + j3 + 1)(j − j3 + 1)(m− 2j)
2(j + 1)(2j + 1) 3F2

(
−1+|j3|−j,j+2+|j3|,−r
1,|j3|−m2

∣∣∣1)
−
(
m

2 −
(m+ 2)(j3)2

2j(j + 1)

)
3F2

(
|j3|−j,j+1+|j3|,−r
1,|j3|−m2

∣∣∣1)
+(j + j3)(j − j3)(m+ 2j + 2)

2j(2j + 1) 3F2
(

1+|j3|−j,j+|j3|,−r
1,|j3|−m2

∣∣∣1)
Consequently, our recursion relation is solved by

Cr,j3(j) = (−1)m2 −p
(
m

2

)
!
√√√√ (2j + 1)(

m
2 − j

)
!
(
m
2 + j + 1

)
!
3F2

(
|j3|−j,j+|j3|+1,−r
|j3|−m2 ,1

∣∣∣1)
(4.52)

|j3| ≤ j ≤ m

2 , 0 ≤ r ≤ m

2 − |j
3|

and

Cq,k3(k) = (−1)
p
2−q

(
p

2

)
!
√√√√ (2k + 1)(

p
2 − k

)
!
(
p
2 + k + 1

)
!
3F2

(
|k3|−k,k+|k3|+1,−q
|k3|− p2 ,1

∣∣∣1)
(4.53)

|k3| ≤ k ≤ p

2 , 0 ≤ q ≤ p

2 − |k
3| .

The associated eigenvalues are

−αrq,j3,k3 = −2(r + q) = 0,−2,−4, ...,−(m− 2|j3|+ p− 2|k3|) . (4.54)
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Our eigenfunctions are essentially the Hahn polynomials. It is a well known

fact that the Hahn polynomials are closely related to the Clebsch-Gordan

coefficients of SU(2) [43].

The eigenproblem of the dilatation operator now reduces to solving

λ
∑
b1

f(b0, b1)Orq,j3,k3(b0, b1) = −αrq,j3,k3
∑
b1

f(b0, b1) ∆Orq,j3,k3(b0, b1) .

(4.55)

This eigenproblem implies f(b0, b1) satisfy the recursion relation

−αrq,j3,k3g2
YM [

√
(N + b0)(N + b0 + b1)(f(b0 − 1, b1 + 2) + f(b0 + 1, b1 − 2))

−(2N + 2b0 + b1)f(b0, b1)] = λf(b0, b1) (4.56)

Since we work at large N , we can replace (4.56) by

λf(b0, b1) = −αrq,j3,k3g2
YM [

√
(N + b0)(N + b0 + b1 + 1)f(b0 − 1, b1 + 2)

+
√

(N + b0 + 1)(N + b0 + b1)f(b0 + 1, b1 − 2)− (2N + 2b0 + b1)f(b1, b1)]

(4.57)

This recursion relation is precisely the recursion relation of the finite oscillator

[44]! In the continuum limit (which corresponds to the large N limit) we

recover the usual description of the harmonic oscillator, demonstrating rather

explicitly that the eigenproblem of the dilatation operator reduces to solving

a set of decoupled harmonic oscillators. The solution to (4.56) is [44]

f(b0, b1) = (−1)n(1
2)N+b0+ b1

2

√(
2N+2b0+b1
N+b0+b1

)
(2N+2b0+b1

n )2F1(−n,−(N+b0+b1)
−(2N+2b0+b1)

∣∣∣2) .

(4.58)

These solutions are closely related to the symmetric Kravchuk polynomial

Kn(x, 1/q, p) defined by

2F1
(
−n,−x
−p ; q

)
= Kn(x, 1/q, p) . (4.59)
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The corresponding eigenvalue is λ = 2nαrq,j3,k3g2
YM . Recall that b1 ≥ 0

so that only half of the wavefunctions are selected (those that vanish when

b1 = 0) and consequently the eigenvalue λ level spacing is 4αrq,j3,k3g2
YM =

8(p+ q)g2
YM .

4.5 Summary

In this chapter we have studied the action of the dilatation operator on re-

stricted Schur polynomials χR,(r,s,t)(Z, Y,X), built from three complex scalars

X, Y and Z and labeled by Young diagrams with at most two rows or two

columns. The operators have O(N) fields of each of the three flavors, but

there are many many more Zs than Xs or Y s. Our main result is that the

dilatation operator reduces to a set of decoupled oscillators and is hence an

integrable system. If we have m Y s and p Xs with p,m both even, we obtain

a set of oscillators with frequency ωij and degeneracy dij given by

ωij = 8(i+ j)g2
YM , dij = (2(m− i) + 1) (2(p− j) + 1) , (4.60)

i = 0, 1, ...,m, j = 0, 1, ..., p .

If p is even and m is odd we have

ωij = 8(i+ j)g2
YM , dij = 2 (m− i+ 1) (2(p− j) + 1) , (4.61)

i = 0, 1, ...,m, j = 0, 1, ..., p .

If m is even and p is odd we have

ωij = 8(i+ j)g2
YM , dij = 2 (2(m− i) + 1) (p− j + 1) , (4.62)

i = 0, 1, ...,m, j = 0, 1, ..., p .
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If both p and m are odd we have

ωij = 8(i+ j)g2
YM , dij = 4 (m− i+ 1) (p− j + 1) , (4.63)

i = 0, 1, ...,m, j = 0, 1, ..., p .

4.6 Discussion

The oscillators corresponding to a zero frequency are BPS operators built

using three complex scalars X, Y and Z.

The form of the dilatation operator (4.44) is intriguing: it looks like the

sum of two of the dilatation operators computed in [17], with one acting on

the Y s (with quantum numbers k, k3) and one acting on the Xs (with quan-

tum numbers j, j3). With the benefit of hindsight, could we have anticipated

this structure? The bulk of our effort involved evaluating traces like this one

Tr
([

ΓR((p+m+1, p+1)), PR→(r,s,t)
]
IR′ T ′

[
ΓT ((p+m+1, p+1)), PT→(u,v,w)

]
IT ′R′

)
.

Notice that both ΓR((p + m + 1, p + 1)) and IR′ T ′ do not act on the first

p sites of the spin chain. Further, our projector factorizes into a projector

acting on the first p sites times a projector acting on the remaining m sites.

Consequently, the trace over the first p sites gives δtwdw. The trace that

remains is exactly of the form considered in [17], explaining our final answer

(4.44).
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5 From Large N Nonplanar Anomalous Di-

mensions to Open Spring Theory

The results presented in this chapter are novel and were first reported in

Robert de Mello Koch, Garreth Kemp, Stephanie Smith. From Large N

Nonplanar Anomalous Dimensions to Open Spring Theory Phys.Lett. B711

(2012) 398-403

In this chapter we will consider the diagonalization of the one loop dilata-

tion operator when acting on restricted Schur polynomials χR,(r,s)(Z, Y ) built

from n Z fields and m Y fields, with m � n and m,n both order N , as in

[56]. For a system of p sphere giant gravitons, R is a Young diagram with p

columns and m+n boxes, r is a Young diagram with p columns and n boxes

and s is a Young diagram with at most p columns. After diagonalizing on the

s label, [56] finds that the resulting equations for the action of the dilatation

operator can be labeled by configurations of open strings that are consistent

with the Gauss Law, as well as labels specifying the Young diagram r, as

defined in Figure 4. Using these configurations we now diagonalize on the r

label.

For the configuration C with nij open strings stretching between branes

i and j the one loop dilatation operator is given by

DOC({si}) = −g2
YM

∑
αβ

nαβ∆αβ OC({si}) (5.1)

where the operator ∆ij acts as follows (∆ij only changes the values of si
and sj so that these are the only two variables that we display in the next
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equation)

∆ijOC(si, sj) = −(ci+cj)OC(si, sj)+
√
cicj(OC(si+1, sj−1)+OC(si−1, sj+1)) .

(5.2)

In this last equation ca is the factor of the last box in column a. Recall that

a box in row i and column j has a factor N − i+ j. The primary goal of this

article is to explain how to diagonalize (5.1). This is achieved by mapping

the operators OC(si, sj) into states in the carrier space of a specific U(N)

irreducible representation. The dilatation operator is mapped into a u(n)

valued operator and, as a result, can easily be diagonalized. We then go on

to show that the resulting spectrum is reproduced by a classical model of

springs between masses.
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Figure 4: Definition of the bis and sis in terms of a Young diagram for c = 4

columns. The relation between the si and the bi is easily read from the figure.

For example, s2 = b0 + b1 + b2. Columns are ordered so that column length

increases. They are then numbered starting from 0. For the Young diagram

shown, the right most column is column 0 and the left most is column 3.

The generalization to any c should be obvious.

5.1 Nonplanar Dilatation Operator

To start we will review a few elementary facts, familiar from angular mo-

mentum in quantum mechanics, that will play an important role later. The

fundamental representation of u(N) represents the elements of the Lie alge-
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bra as N ×N matrices. The generators can be taken as

(Ekl)ab = δakδbl, k, l, a, b = 1, 2, ..., N . (5.3)

We will study the operators (the labeling is such that i > j i.e. Qij is not

defined if i < j)

Qij = Eii − Ejj
2 , Q+

ij = Eij, Q−ij = Eji , (5.4)

which obey the familiar algebra of angular momentum raising and lowering

operators

[Qij, Q
+
ij] = Q+

ij, [Qij, Q
−
ij] = −Q−ij, [Q+

ij, Q
−
ij] = 2Qij . (5.5)

Although these commutators have been computed making use of the fun-

damental representation, we know that they would be the same if they had

been computed in any representation and they define the representation in-

dependent Lie algebra.

General representations of these su(2) subalgebras can be labeled with

the eigenvalue of

L2
ij ≡ Q−ijQ

+
ij +Q2

ij +Qij = Q+
ijQ
−
ij +Q2

ij −Qij (5.6)

and states in the representation are labeled by the eigenvalue of Qij

Qij|λ,Λ〉 = λ|λ,Λ〉 , L2
ij|λ,Λ〉 = (Λ2 + Λ)|λ,Λ〉 , −Λ ≤ λ ≤ Λ .

(5.7)

Recall that

Q+
ij|λ,Λ〉 = c+|λ+ 1,Λ〉 , c+ =

√
(Λ + λ+ 1)(Λ− λ) (5.8)
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and

Q−ij|λ,Λ〉 = c−|λ− 1,Λ〉 , c− =
√

(Λ + λ)(Λ− λ+ 1) (5.9)

The N operators Eii commute so that we can always choose a basis

in which they are simultaneously diagonal. Recall the definition of bi i =

0, 1, ..., c − 1 for a Young diagram with c columns, given in Figure 4. The

restricted Schur polynomials labeled by the Young diagram shown is iden-

tified with the state with Eii = 2(N − si ) . The advantage of identifying

the restricted Schur polynomials with states of a U(N) representation is that

we can now write the dilatation operator as a u(N) valued operator. In

particular, the operators ∆ij are

∆ij = −1
2(Eii + Ejj) +Q−ij +Q+

ij . (5.10)

For simplicity we will now focus on the case c = 2. In this case, identify

c− =
√

(N − b0)(N − b0 − b1 + 1), c+ =
√

(N − b0 + 1)(N − b0 − b1)

(5.11)

so that

Λ = 1
2b1,max, λ = 1

2b1 .

We will focus on b1,max even, so that Λ is integer. Not all states of the

irreducible representation participate: because b1 ≥ 0 we have λ ≥ 0. Thus,

of the 2b1,max + 1 states, only b1,max + 1 of them remain. Finally, we are

interested in the limit b1,max ∼
√
N with N → ∞. It is only in this limit

that (5.1) holds. Away from this limit (5.1) picks up corrections of order

1/b1,max[56]. There is an obvious extension of this discussion for c > 2.



112

5.2 Strings between 2 giants

Consider a system of p-giants with p arbitrary except that we fix it to be

O(1). The Young diagrams relevant for these states have p columns. Consider

the situation for which we have 2nij strings stretching between giants i and

j. See Figure 5 for an example of the label C when p = 6 and 2nij = 4.

The results of this section are also directly applicable to the case that pairs

of mutually distinct branes have strings stretching between them. In this

case, the action of the dilatation operator is given by a sum of terms which

commute and can each be diagonalized using the same method.

Figure 5: The label C for a system of 6 giants. 2n12 = 4 strings stretch

between branes 1 and 2. There is one more string attached to brane 2. Two

strings are attached to brane 3, 3 strings to brane 5 and a single string to

brane 6. The dilatation operator action depends only on the strings stretch-

ing between different branes[56].

Construction of Creation and Annihilation Operators: In this case

D = −2nijg2
YM∆ij . (5.12)
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For a creation operator we want

[D,A†] = αA† (5.13)

with α > 0. Make the ansatz

A† = aEii + bEjj + cEij + dEji . (5.14)

It is straight forward to verify that (5.13) implies

A† = 1
2(Eii − Ejj) + 1

2Eij −
1
2Eji (5.15)

and α = 4nijg2
YM . To implement the condition b1 > 0 we need to require

that the oscillator wave function has a node at the origin - thus only odd

parity (i.e. odd under b1 → −b1) states are kept. This implies that half the

states are kept so that we land up with a frequency of 8nijg2
YM . For nij = 1

this is in complete agreement with spectrum computed in [13, 54]. Thus, the

spectrum of the dilatation operator is

λ = (8nijg2
YM)n (5.16)

with n a not negative integer. This is in complete agreement with the spec-

trum computed in [17]. There is a simple algebra obeyed by the creation and

annihilation operators of this oscillator

[A,A†] = 1
2(Eii+Ejj)+∆ij = 2N−2b0−b1−

D

2g2
YM

= b1,max−
D

2g2
YM

. (5.17)

If we introduce the oscillators A =
√
b1,maxa we find, for any state of finite

energy in the b1,max →∞ limit

[a, a†] = 1− D

2b1,maxg2
YM

= 1 . (5.18)
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Connection to Continuum Limit: We can ask how this compares to the

frequencies computed after we have taken the continuum limit of the ∆ij,

described in appendix H of [56]. From that appendix, we find

D = −2g2
YMnijMab

(
∂

∂xa

∂

∂xb
− xaxb

4

)
(5.19)

with

M11 = M22 = 1, Mij = Mji = −1.

The two frequencies are 4nijg2
YM and 0. The zero frequency corresponds

to the motion of the center of mass (xcm ∝ xi + xj). Fix this center of

mass motion because the system of giants is fixed. The nonzero frequency

reproduces what we found above, again after dropping half the states. Clearly

then, the continuum limit catches the complete large b1,max dynamics.

Classical Model: The operators we study are nearly supersymmetric so

that it is natural to expect that they correspond to fast moving strings on

the D-brane. It is thus natural to associate them with null trajectories in

AdS5×S5 that are contained in the D-brane worldvolume. This analysis

has been performed in [58]. See [59, 60] for additional relevant and useful

discussion. The resulting null trajectory leads to a pp-wave and the light

cone Hamiltonian is related to the anomalous dimension

Hlight cone = 1
P+H⊥ = ∆− nZ − nY = D (5.20)

where H⊥ describes string oscillations in the perpendicular (to string motion)

directions and nZ(nY ) are the number of Zs (Y s) in the operator. See also

[85] which is relevant to our discussion. What should we use for H⊥? When

we change the number of Z’s in the giant we change the radius of the circle
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on which it is orbiting; this corresponds to the direction transverse to the gi-

ants direction of motion - i.e. the oscillator that we have diagonalized above

is describing oscillations in the perpendicular (to string motion) directions.

The Gauss Law picture of [56] suggests that the configuration we study

consists of 2n12 strings stretching between the two giants. Each string is a

single Y - so these are short strings that we will model as two endpoints.

The spring constant for springs connected in parallel is the sum of the indi-

vidual spring constants. Thus, the configuration we study will have k ∝ n12.

The scale of the anomalous dimension is set by g2
YM . Under AdS/CFT the

anomalous dimension maps to an energy, so that g2
YM naturally sets the en-

ergy scale. To ensure that the scale of the potential energy is set by g2
YM we

will choose the spring constant k ∝ g2
YM . Making a choice of a constant that

will prove to be convenient below, we set k = 4g2
YMn12. Adding a kinetic

energy for the string endpoints, the Lagrangian describing this system is

L⊥ = 1
2 ẋ

2
i + 1

2 ẋ
2
j −

1
2(4g2

YMnij)(xi − xj)2 . (5.21)

The equations of motion (assuming the center of mass is at rest at the origin)

are solved by

xi = −xj = A sin(
√

8g2
YMnijt+ φ0) . (5.22)

The energy of this solution is given by

E⊥ = 1
2 ẋ

2
i + 1

2 ẋ
2
j + 1

2(4g2
YMnij)(xi − xj)2 = A2(8g2

YMnij) (5.23)

which matches the anomalous dimensions.
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5.3 Strings between 3 giants

In this section we consider the situation for which we have nij strings stretch-

ing between giants i and j, njk strings stretching between giants j and k and

nik strings stretching between giants i and k. See Figure 6 for an example

of the label C when p = 5 and nij = 4, njk = 2 and nik = 0. The re-

sults of this section are also directly applicable to the case that any number

of pairs and/or triples of mutually distinct branes have strings stretching

between them. Just like in the last section, in this case the action of the

dilatation operator is given by a sum of terms which commute and can each

be diagonalized using the same method.

Figure 6: The label C for a system of 5 giants. n12 = 4 strings stretch

between branes 1 and 2 and n23 = 2 strings stretching between branes 2 and

3. A string is attached to brane 4 and two strings are attached to brane 5.
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Construction of Creation and Annihilation Operators: In this case,

to be general, we should introduce the parameters nij, nik and njk (repeated

indices are not summed)

D = −g2
YM(nij∆ij + nik∆ik + njk∆jk) . (5.24)

For any label C, the Gauss Law implies that nij + nik is even, nij + njk is

even and nik + njk is even. For a creation operator we again want (5.13).

Make the ansatz

A† = aEii + bEij + cEik + dEji + eEjj + fEjk + gEki + hEkj + iEkk . (5.25)

Then (5.13) gives 3 A†s. There is a nice analytic formula for the frequencies

of these operators Ωi = 2g2
YMωi where

ω1 = 2γ, ω2 = nik + nij + njk + γ, ω3 = nik + nij + njk − γ, (5.26)

where

γ =
√
n2
ij + n2

ik + n2
jk − nijnik − njknik − nijnjk . (5.27)

This proves that the spectrum of three giant system is indeed that of a set

of oscillators. For the frequency ω1 we find

A1 = N1
[
(nij − nik)(nik − nij − γ)Eii

+ ((nik − nij)(nik − nij − γ) + (nik − njk)(nik − njk − γ))Eij
−(nik − γ − njk)(nik − njk)Eik − (nij − njk + γ)(nij − njk)Eji
+(nij − nik + γ)(nij − njk)Ejj + (nij − njk)(nik − njk)Ejk
+ ((njk − nij)(njk − nij − γ) + (nik − nij)(nik − nij − γ))Eki
−((nij − nik)(nij − nik + 2γ) + γ2)Ekj
−(nij − nik + γ)(nik − njk)Ekk

]
(5.28)



118

where

N−2
1 =

(nij − nik)2(nik − nij − γ)2 + ((nik − nij)(nik − nij − γ)

+(nik − njk)(nik − njk − γ))2 + (−nik + njk + γ)2(nik − njk)2

+(−nij + njk − γ)2(nij − njk)2 + (nij − nik + γ)2(nij − njk)2

+(nij − njk)2(nik − njk)2 + ((njk − nij)(−nij + njk − γ)

+(nik − nij)(nik − nij − γ))2 + (−(nij − nik)(nij − nik + 2γ)− γ2)2

+(nik − nij − γ)2(nik − njk)2

(5.29)

For the frequency ω2 we find

A2 = N2
(
(njk − nij − γ)(Eii + Eji + Eki) + (nij − nik + γ)(Eij + Ejj + Ekj)

+(nik − njk)(Eik + Ejk + Ekk)
)

(5.30)

where

N−1
2 =

√
6γ(2γ + 2nij − njk − nik) . (5.31)

For the frequency ω3 we find

A3 = N3
(
(njk − nij + γ)(Eii + Eji + Eki) + (nij − nik − γ)(Eij + Ejj + Ekj)

+(nik − njk)(Eik + Ejk + Ekk)
)

(5.32)

where

N−1
3 =

√
6γ(2γ − 2nij + njk + nik) . (5.33)

These oscillators close the following algebra

[A2, A
†
2] = 4

3 (3N − 3b0 − 2b1 − b2) + 1
3(∆ij + ∆ik + ∆jk)− P2,
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[A2, A
†
3] = −A1

[A2, A
†
1] = A3,

[A2, A3] = 0 = [A1, A2]

[A3, A
†
3] = 4

3 (3N − 3b0 − 2b1 − b2) + 1
3(∆ij + ∆ik + ∆jk)− P3

[A3, A1] = A2

[A3, A
†
1] = 0,

[A1, A
†
1] = P3 − P2 , (5.34)

where

(4γ2 − 2γ(njk + nik − 2nij)P2 = (nij − njk + γ)2 Eii + (nij − nik + γ)2 Ejj

+ (njk − nik) (nij − njk + γ) (Eik+Eki)+(njk − nij − γ) (nij − nik + γ) (Eji+Eij)

+ (nij − nik + γ) (nik − njk) (Ejk + Ekj) + (nik − njk)2 Ekk

and

(4γ2 + 2γ(njk + nik − 2nij)P3 = (nij − njk − γ)2 Eii + (nij − nik − γ)2 Ejj

+ (nij − nik − γ) (njk − nij + γ) (Eij+Eji)+(njk − nik) (−njk + nij − γ) (Eik+Eki)

+ (nik − njk) (nij − nik − γ) (Ejk + Ekj) + (nik − njk)2 Ekk .

Note also that

[A2, A
†
2] = [A3, A

†
3] + [A1, A

†
1]

[P2, A
†
2] = A†2, [P3, A

†
3] = A†3 . (5.35)

Thus, if we set

A1 =
√

3N − 3b0 − 2b1 − b2

√
4
3a1, A2 =

√
3N − 3b0 − 2b1 − b2

√
4
3a2,
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A3 =
√

3N − 3b0 − 2b1 − b2

√
4
3a3 (5.36)

and consider the limit in which
√

3N − 3b0 − 2b1 − b2 ∼
√
N →∞ we find

[a1, a
†
1] = 0, [a2, a

†
2] = 1, [a3, a

†
3] = 1

and all other commutators vanish. Thus, we only have 2 oscillators. After

keeping only the states that have a node at b1 = 0, we find that these

oscillators have a frequency 4g2
YMω2 and 4g2

YMω3.

Connection to Continuum Limit: We can again ask how this compares

to the frequencies computed after we have taken the continuum limit of the

∆ij, described in appendix H of [56]. From that appendix, we find

D = −g2
YMMab

(
∂

∂xa

∂

∂xb
− xaxb

4

)
(5.37)

with

M =


nij + nik −nij −nik
−nij nij + njk −njk
−nik −njk nik + njk

 . (5.38)

The three frequencies are Λi = 2g2
YMλi, where

λ1 = 0, λ2 = nik + nij + njk + γ, λ3 = nik + nij + njk − γ, (5.39)

and γ is defined as above. The zero frequency again corresponds to the center

of mass, which we fix. Only the states with a node at b1 = 0 will be retained,

which doubles the above frequencies. Notice that the continuum limit has

caught the full large b1 spectrum.

Classical Model: Arguing exactly as we did in the last section leads to

L⊥ = 1
2 ẋ

2
i + 1

2 ẋ
2
j + 1

2 ẋ
2
k −

1
2(2g2

YMnij)(xi − xj)2



121

−1
2(4g2

YMnik)(xi − xk)2 − 1
2(2g2

YMnjk)(xj − xk)2 . (5.40)

The equations of motion are

d2xi
dt2

= −2g2
YMnij(xi − xj)− 2g2

YMnik(xi − xk) , (5.41)

d2xj
dt2

= 2g2
YMnij(xi − xj)− 2g2

YMnjk(xj − xk) , (5.42)

Again, fix the center of mass motion (the giant system is not moving any-

where). It is easy to solve these equations; there are two normal modes. The

energy of the solution with both modes excited, with amplitudes A1 and A2,

is given by

E⊥ = A2
18g2

YM(nik + nij + njk + γ) + A2
28g2

YM(nik + nij + njk − γ) (5.43)

which again matches the anomalous dimensions.

5.4 Strings between 4 giants

The methods that we have outlined above work generally for any configura-

tion C of open strings. However, not surprisingly, it becomes increasingly

difficult to obtain simple analytic expressions. Obviously its a simple matter

to get explicit numerical results for any C. In this section we will simply

write the equations one needs to obtain in the case that strings stretch in an

arbitrary way between four giant gravitons.

Construction of Creation and Annihilation Operators: In this case,

to be general, we should introduce the parameters nij, nik, nil, njk, njl and

nkl

D = −g2
YM(nij∆ij + nik∆ik + nil∆il + njk∆jk + njl∆jl + nkl∆kl) (5.44)
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For any C, nij + nik + nil is even, nij + njk + njl is even, nik + njk + nkl

is even and nil + njl + nkl is even. For a creation operator we again want

(5.13). This leads us to the eigenproblem of a 16×16 matrix. For general

parameters we get 6 A†s. Only three of these survive in the large b1,max limit.

The frequencies of the oscillators which survive are roots of

x3 − 2(nij + njl + nik + njk + nkl + nil)x2

+(3niknkl + 4nijnkl + 3nijnil + 3niknil + 3niknjk
+3nilnjl + 3nklnil + 4niknjl + 4njknil
+3njknjl + 3nklnjl + 3nijnjk + 3nijnjl + 3nijnik + 3njknkl)x

−4nijnklnjl − 4nijnjknkl − 4nijniknkl − 4nijnklnil − 4njkniknkl
−4njkniknil − 4njkniknjl − 4njlniknkl − 4njlniknil − 4njknklnil − 4nijnjknil
−4nijnjknjl − 4nijniknjl − 4nijniknil − 4njlnjknil − 4njlnklnil = 0 .

(5.45)

It is now straight forward to construct the algebra of the resulting oscillators

as well as their large b1 limit. We again find that this result is consistent

with both the continuum limit of D (as outlined in appendix H of [56]) and

the classical model of masses and springs. This computation (as well as the

extension to situations in which strings interconnect more than 4 giants) is

straight forward but a little tedious.

5.5 Summary

In summary, two things have been achieved in this chapter. The continuum

limit of the dilatation operator was obtained in appendix H of [56]. What
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is the relation between the study of [56] and our result here? In [56] the

large b1,max limit was taken and the resulting eigenvalue problem was solved.

Here we have first solved the eigenvalue problem and have then taken the

large b1,max limit. Our result is in perfect agreement with the continuum

limit obtained in [56], and justifies the use of the simple Harmonic oscillator

Hamiltonian obtained there. In particular, in the continuum limit the vari-

ables si become continuous coordinates and the operators of a good scaling

dimension are obtained by summing restricted Schur polynomials with coef-

ficients given by the harmonic oscillator wave functions. The second thing

we have achieved is that the values of the anomalous dimensions have been

reproduced by the normal mode frequencies of a coupled system of open

strings. This provides non-trivial support for their interpretation in the dual

theory as excited giant gravitons.
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6 Nonplanar Integrability at Two Loops

6.1 Introduction and Questions

The work of this chapter is novel and first appeared in Robert de Mello Koch,

Garreth Kemp, Badr Awad Elseid Mohammed, Stephanie Smith Nonplanar

integrability at two loops JHEP 1210 (2012) 144]. In this chapter we will

study the large N limit of the two loop anomalous dimensions of restricted

Schur polynomials [21, 27]. Here, we will use the representation theory of

symmetric and unitary groups developed earlier in this thesis. In the half-

BPS sector a complete set of operators is given by the Schur polynomials

χR(Z)[71]. They are labeled with Young diagrams R. As mentioned, opera-

tors with R having order one rows of length order N or order one columns of

length order N are dual to giant gravitons[72, 73, 74]. If R has O(N2) boxes

the corresponding operator is dual to an LLM geometry [12]. The problem

of diagonalizing the free field inner product for multi-matrix operators, while

preserving global symmetries, was solved in [75, 76].

In this section our focus will be on restricted Schur polynomials and on

the su(2) sector of the theory. In the su(2) sector one considers a restricted

Schur polynomial built mainly from one type of matrix field Z, doped with

impurities Y . Recall the restricted Schur polynomial in the SU(2) sector is

given by

χR,(r,s)αβ(Z, Y ) = 1
n!m!

∑
σ∈Sn+m

Tr(r,s)αβ
(
Γ(R)(σ)

)
Tr(σZ⊗n ⊗ Y ⊗m) (6.1)

Study of this chapter was motivated by the work on the nonplanar limit and
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the diagonalization of the dilatation operator as outlined below.

Initial numerical studies showed, remarkably, that the spectrum of the

dilatation operator is that of a set of decoupled oscillators. Early studies

computed the exact action of the dilatation operator and then took the large

N limit as a final step. These computations are quite involved and it is not

easy to obtain general results. Indeed, [13] focused on two impurities while

[14] considered 3 or 4 impurities. By working in the displaced corners ap-

proximation, [17] was able to directly implement the simplifications of the

large N limit allowing the computation of results for an arbitrary number of

impurities but under the constraint that R, r, s have at most two columns or

rows.

This was then extended beyond the su(2) sector in [55] and to an arbi-

trary number of rows in [56]. This extension used a novel Schur-Weyl duality

[56, 77] that emerges at large N in the displaced corners approximation. Us-

ing this novel Schur-Weyl duality, the states |s µ1 ; i〉 appearing in (B.1) are

states of a U(p) representation where p is the number of rows or columns of

the restricted Schur polynomial. This allows us to trade the pair s µ1 for a

Gelfand-Tsetlin pattern if we wish. These results have a direct application

to the sl(2) sector[70]. In the displaced corners approximation the action of

the dilatation operator has an interesting structure. The eigenproblem of the

anomalous dimensions factors into a product of two problems, one for the

Zs involving Young diagram r and one for the Y s involving Young diagram

s. In [56], based on numerical results, a conjecture for the solution to the
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eigenproblem involving the s label was given. This conjecture has now been

proven in [78].

The starting point of [78] is a proof that the number of excited giant

graviton states as constrained by the Gauss Law, matches the number of

restricted Schur polynomials in the gauge theory. The proof proceeds by

associating excited giant graviton states to elements of a double coset in-

volving permutation groups. Making heavy use of the ideas and methods of

[75, 76], Fourier transformation on the double coset suggests an ansatz for

the operators of a good scaling dimension. The operators obtained in this

way, denoted OR,r(σ), are labeled by an element of a double coset σ and by

the Young diagrams R and r.

In [78] it was proven that this ansatz indeed provides the conjectured

diagonalization. Further, since the double coset structure is determined en-

tirely by the Gauss Law which holds at all loops, these results suggest that

the operators constructed in [78], may be relevant at higher loops. This is an

issue we will manage to probe in this chapter. The eigenproblem on the r la-

bel has been considered in [79]. It is written in terms of a difference operator.

The basic observation of [79] is to realize that this difference operator is an

element of the Lie algebra of U(p) when r has p rows or columns. Exploiting

this insight [79] argued that the eigenproblem on the r label is related to a

system of p particles in a line with 2-body harmonic oscillator interactions.

We can now give the set of questions that motivated this study. As
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just discussed, the dilatation operator of N = 4 super Yang-Mills theory is

integrable in the large N displaced corners approximation of the su(2) sector

at one loop[17, 56, 78]. The first question we wish to address is

1 Is the dilatation operator integrable in the large N displaced

corners approximation at higher loops?

Although we are not able to give a complete answer to this question, we

will test integrability at two loops. We can sharpen the above question.

As described above, the action of the dilatation operator factorizes into an

action on the Young diagram associated with the Zs and an action on the

Young diagram associated with the Y s. The eigenproblem associated with

the Y s appears (see [78]) to be determined by the Gauss Law constraint,

which should hold at all higher loops. This motivates the question

2 Do the OR,r(σ) of [78] continue to solve the Y eigenproblem at

higher loops?

The Z eigenproblem was solved in [79] by mapping it to a system of p particles

in a line with 2-body harmonic oscillator interactions. The basic observation

was to show that the operator to be diagonalized is an element of the Lie

algebra of U(p) when r has p rows or columns. Our third question is

3 Can the two loop Z eigenproblem be mapped to a system of

p particles, again using the Lie algebra of U(p)?

The one loop spectrum of anomalous dimensions has some interesting fea-

tures. One would have expected the eigenvalues of the one loop dilatation

operator to be a function of the ’t Hooft coupling. We find they are given
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by an integer times g2
YM . It is not completely clear how this should be inter-

preted. By computing the two loop correction to the anomalous dimension

and requiring that it is small compared to the leading term, we hope to gain

insight into both the interpretation of our results and in the precise limit that

should be taken to get a sensible perturbative expansion. This motivates our

fourth question

4 Does the two loop correction to the anomalous dimension de-

termine the precise limit that should be taken to get a sensible

perturbative expansion?

These questions are all answered in the discussion section. We will find that

this limit of the theory continues to be integrable at two loops, that the one

loop operators with a good scaling dimension are not modified at two loops

and finally, that our perturbative expansion is sensible in the conventional ’t

Hooft limit.

6.2 Two Loop Dilatation Operator

Our goal is to evaluate the action of the two loop dilatation operator[8]

D4 = − 2g2 : Tr
([

[Y, Z] , ∂
∂Z

] [[
∂

∂Y
,
∂

∂Z

]
, Z

])
:

− 2g2 : Tr
([

[Y, Z] , ∂
∂Y

] [[
∂

∂Y
,
∂

∂Z

]
, Y

])
:

− 2g2 : Tr
(

[[Y, Z] , T a]
[[

∂

∂Y
,
∂

∂Z

]
, T a

])
: (6.2)

g = g2
YM

16π2 (6.3)
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on restricted Schur polynomials. The normal ordering symbols here indicate

that derivatives within the normal ordering symbols do not act on fields inside

the normal ordering symbols. For the operators we study, n� m so that only

the first term in D4 will contribute. We have in mind a systematic expansion

in two parameters: 1
N

and m
n

. In Appenidx C.2 we show that keeping only

the first term in D4 corresponds to the computation of the leading term in

this double expansion. The evaluation of the action of the one loop dilatation

operator was carried out in [14]. The two loop computation uses many of

the same techniques but there are a number of subtle points that must be

treated correctly. The computation can be split into the evaluation of two

types of terms, one having all derivatives adjacent to each other (for example

Tr(ZY Z∂Z∂Y ∂Z)) and one in which only two of the derivatives are adjacent

(for example Tr(Y Z∂ZZ∂Y ∂Z)). We will deal with an example of each term

paying special attention to points that must be treated with care.

First Term: Start by allowing the derivatives to act on the restricted Schur

polynomial

Tr(ZY Z∂Z∂Y ∂Z)χR,(r,s)αβ(Z, Y ) =

mn(n− 1)
n!m!

∑
ψ∈Sn+m

Tr(r,s)αβ(Γ(R)((1,m+ 2)ψ(m+ 1,m+ 2)))

×δi1iψ(1)
Y i2
iψ(2)
· · ·Y im

iψ(m)
(ZY Z)im+1

iψ(m+1)
δ
im+2
iψ(m+2)

Z
im+3
iψ(m+3)

· · ·Zim+n
iψ(m+n)

(6.4)

The two delta functions will reduce the sum over Sn+m to a sum over an

Sn+m−2 subgroup. This sum is most easily evaluated using the reduction

rule of [80, 22]. The reduction rule rewrites the sum over Sn+m as a sum
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over Sn+m−2 and its cosets. This is most easily done by making use of Jucys-

Murphy elements whose action is easily evaluated. To employ the same

strategy in the current computation, the action of the Jucys-Murphy element

will only be the simple one if we swap the delta function from slot m+ 2 to

slot 2. This gives

mn(n− 1)
n!m!

∑
ψ∈Sn+m−2

Tr(r,s)αβ(Γ(R)((1,m+ 2)(2,m+ 2)ψ(2,m+ 2)Ĉ(m+ 1,m+ 2))

×Y i3
iψ(3)
· · ·Y im

iψ(m)
(ZY Z)im+1

iψ(m+1)
Y
im+2
iψ(m+2)

Z
im+3
iψ(m+3)

· · ·Zim+n
iψ(m+n)

(6.5)

where Ĉ = (N + J2)(N + J3) with Ji a Jucys-Murphy element

Ji =
n+m∑
k=i

(i− 1, k) (6.6)

Since we sum over the Sn+m−2 subgroup, we can decompose R ` m+n into a

direct sum of terms which involve the irreps R′′ ` m+n−2 of the subgroup8.

As usual [80, 22], for each term in the sum, Ĉ is equal to the product of the

factors of the boxes that must be removed from R to obtain R′′. To rewrite

the result in terms of restricted Schur polynomials, note that

Y i3
iψ(3)

· · ·Y im
iψ(m)

(ZY Z)im+1
iψ(m+1)

Y
im+2
iψ(m+2)

Z
im+3
iψ(m+3)

· · ·Zim+n
iψ(m+n)

= Tr
(
ψ(2,m+ 1, 1)Y ⊗ Z ⊗ Y ⊗m−2 ⊗ Z ⊗ Y ⊗ Z⊗n−2

)
= Tr

(
(2,m+ 2)ψ(2,m+ 1, 1)(2,m+ 2)Y ⊗m ⊗ Z⊗n

)
(6.7)

8In general if R denotes a Young diagram, then R′ denotes a Young diagram that

can be obtained from R by removing one box, R′′ denotes a Young diagram that can be

obtained from R by removing two boxes etc.
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and make use of the identity[61]

Tr(σZ⊗n ⊗ Y ⊗m) =
∑

T,(t,u)βα

dTn!m!
dtdu(n+m)!Tr(t,u)αβ(Γ(T )(σ−1))χT,(t,u)βα(Z, Y )

(6.8)

After this rewriting the sum over Sn+m−2 can be carried out using the fun-

damental orthogonality relation. The result is

∑
T,(t,u)γδ

∑
R′′,T ′′

dTn(n− 1)m
dtdudR′′(n+m)(n+m− 1)cRR

′cR′R′′ χT,(t,u)γδ(Z, Y )

×Tr
(
IT ′′R′′(2,m+ 2,m+ 1)PR,(r,s)αβ(1,m+ 2, 2)IR′′T ′′

×(2,m+ 2)PT,(t,u)δγ(m+ 2, 2, 1,m+ 1)
)

(6.9)

The intertwiner IR′′ T ′′ is a map (see Appendix D of [56] for details on its

properties) from irrep R′′ to irrep T ′′. It is only non-zero if R′′ and T ′′ have

the same shape. Thus, to get a non-zero result R and T must differ at most,

by the placement of two boxes. We make further comments relevant for this

trace before equation (6.10) below.

Second Term: Evaluation of the second term is very similar. In this case

however, taking the derivatives produces a single delta function, which will

reduce the sum over Sn+m to a sum over Sn+m−1. The delta function should

be in slot 1. The reader wanting to check an example may find it useful to

verify that

: Tr(Y Z∂ZZ∂Y ∂Z) : χR,(r,s)αβ(Z, Y ) =

∑
T,(t,u)γδ

∑
R′,T ′

dTn(n− 1)m
dtdudR′(n+m)cRR

′



132

×Tr(IT ′R′(1,m+ 2,m+ 1)PR,(r,s)αβIR′T ′(1,m+ 1)PT,(t,u)δγ)χT,(t,u)γδ(Z, Y )

(6.10)

The intertwiner IR′ T ′ is a map from irrep R′ to irrep T ′. It is only non-zero if

R′ and T ′ have the same shape. Thus, to get a non-zero result R and T must

differ at most, by the placement of a single box. It is perhaps useful to spell

out explicitely the meaning of the trace above. The above trace is taken over

the reducible Sn+m representation R⊕ T . In addition, the projectors within

the trace allow us to rewrite the permutations appearing in the trace as

Tr
(
IT ′R′Γ(R)

(
(1,m+ 2,m+ 1)

)
PR,(r,s)αβIR′T ′Γ(T )

(
(1,m+ 1)

)
PT,(t,u)δγ

)
(6.11)

The final result for the action of the dilatation operator is (this includes

only the first term in (6.2) since n� m)

D4χR,(r,s)αβ(Z, Y ) =

−2g2 ∑
T,(t,u)γδ

∑
R′ T ′

dTn(n− 1)mcRR′
dtdudR′(n+m) M

(b)
R,(r,s)αβ T,(t,u)γδχT,(t,u)δγ(Z, Y )

−2g2 ∑
T,(t,u)γδ

∑
R′′ T ′′

dTn(n− 1)mcRR′cR′R′′
dtdudR′′(n+m)(n+m− 1)M

(a)
R,(r,s)αβ T,(t,u)γδχT,(t,u)δγ(Z, Y )

(6.12)

where

M
(a)
R,(r,s)αβ T,(t,u)γδ = Tr

(
IT ′′R′′(2,m+ 2)PR,(r,s)αβC1IR′′T ′′(2,m+ 2)PT,(t,u)γδC1

)

+Tr
(
IT ′′R′′C2PR,(r,s)αβ(2,m+ 2)IR′′T ′′C2PT,(t,u)γδ(2,m+ 2)

)
(6.13)

C1 = [(m+ 2, 2, 1), (1,m+ 1)] C2 = −CT
1 = [(m+ 2, 1, 2), (1,m+ 1)]

(6.14)
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and

M
(b)
R,(r,s)αβ T,(t,u)γδ = Tr

(
IT ′R′C3IR′T ′ [(1,m+ 1), PT,(t,u)γδ]

)
+Tr

(
IT ′R′C4IR′T ′ [(1,m+ 1), PT,(t,u)γδ]

)
(6.15)

C3 = [(1,m+2,m+1), PR,(r,s)αβ] C4 = [(1,m+1,m+2), PR,(r,s)αβ] (6.16)

This formula is correct to all orders in 1/N . Denote the number of rows in

the Young diagram R labeling the restricted Schur polynomial by p. This

implies that, since R subduces Sn × Sm representation (r, s) and n � m

that r has p rows and s has at most p rows. Now we will make use of

the displaced corners approximation. To see how this works, recall that to

subduce r ` n from R ` m + n we remove m boxes from R. Each removed

box is associated with a vector in a p dimensional vector space Vp. Thus,

the m removed boxes associated with the Y s define a vector in V ⊗mp . In

the displaced corners approximation, the trace over R ⊕ T factorizes into a

trace over r ⊕ t and a trace over V ⊗mp . The structure of the projector (B.1)

makes it clear that the bulk of the work is in evaluating the trace over V ⊗mp .

This trace can be evaluated using the methods developed in [56]. Introduce

a basis for the fundamental representation of the Lie algebra u(p) given by

(Eij)ab = δiaδjb. Recall the product rule

EijEkl = δjkEil (6.17)

which we use extensively below. If a box is removed from row i it is associated

to a vector vi which is an eigenstate of Eii with eigenvalue 1. The intertwining

maps can be written in terms of the Eij. For example, if we remove two boxes

from row i of R and two boxes from row j of T , assuming that R′′ and T ′′
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have the same shape, we have

IT ′′R′′ = E
(1)
ji E

(2)
ji (6.18)

A big advantage of realizing the intertwiners in this way is that it is simple

to evaluate the product of symmetric group elements with the intertwiners.

For example, using the identification (for background, see for example [81])

(1, 2,m+ 1) = Tr(E(1)E(2)E(m+1)) (6.19)

we easily find

(1, 2,m+ 1)IT ′′R′′ = E
(1)
kl E

(2)
lmE

(m+1)
mk E

(1)
ji E

(2)
ji = E

(1)
ki E

(2)
ji E

(m+1)
jk (6.20)

This is now enough to evaluate the traces appearing in (6.13) and (6.15).

We will consider the action of the dilatation operator on normalized re-

stricted Schur polynomials. The two point function for restricted Schur poly-

nomials is [27]

〈χR,(r,s)αβ(Z, Y )χT,(t,u)γδ(Z, Y )†〉 = δR,(r,s)T,(t,u)δαγδβδ fR
hooksR

hooksr hookss

where fR is the product of the factors in Young diagram R and hooksR is the

product of the hook lengths of Young diagram R. The normalized operators

are thus given by

χR,(r,s)(Z, Y ) =
√

fR hooksR
hooksr hookss

OR,(r,s)(Z, Y ) .

The components mi of the vector ~m(R) record the number of boxes removed

from row i of R to produce r. In the su(2) sector, both the one loop dilatation

operator[56] and the two loop dilatation operator conserve ~m(R), recorded in
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the factor δ~m(R)~m(T ) in (6.21) below. In terms of these normalized operators

the dilatation operator takes the form

D4OR,(r,s)µ1µ2 = −2g2 ∑
u ν1 ν2

δ~m(R)~m(T )M
(ij)
sµ1µ2 ;uν1ν2

(
∆(1)
ij + ∆(2)

ij

)
OR,(r,u)ν1ν2

(6.21)

where

M (ij)
sµ1µ2 ;uν1ν2 =

m√
duds

(〈
~m, s, µ2 ; a|E(1)

ii |~m, u, ν2 ; b
〉 〈

~m, u, ν1 ; b|E(1)
jj |~m, s, µ2 ; a

〉
+
〈
~m, s, µ2 ; a|E(1)

jj |~m, u, ν2 ; b
〉 〈

~m, u, ν1 ; b|E(1)
ii |~m, s, µ2 ; a

〉)
(6.22)

To spell out the action of the operators ∆(1)
ij and ∆(2)

ij we will need a little

more notation. Denote the row lengths of r by ri. The Young diagram r+
ij is

obtained by deleting a box from row j and adding it to row i. The Young

diagram r−ij is obtained by deleting a box from row i and adding it to row j.

In terms of these Young diagrams define

∆0
ijOR,(r,s)µ1µ2 = −(2N + ri + rj)OR,(r,s)µ1µ2 (6.23)

∆+
ijOR,(r,s)µ1µ2 =

√
(N + ri)(N + rj)OR+

ij ,(r
+
ij ,s)µ1µ2

(6.24)

∆−ijOR,(r,s)µ1µ2 =
√

(N + ri)(N + rj)OR−ij ,(r
−
ij ,s)µ1µ2

(6.25)

We can now write

∆(1)
ij = n(∆+

ij + ∆0
ij + ∆−ij) (6.26)

∆(2)
ij = (∆+

ij)2 + ∆0
ij∆+

ij + 2∆+
ij∆−ij + ∆0

ij∆−ij + (∆−ij)2 (6.27)
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This completes the evaluation of the dilatation operator.

Our result for ∆(2)
ij deserves a comment. The intertwiners IT ′′R′′ appearing

in (6.13) only force the shapes of T and R to agree when two boxes have been

removed from each. One might imagine removing a box from rows i, j of R

to obtain R′′ and from rows k, l of T to obtain T ′′, implying that in total

four rows could participate. We see from ∆(2)
ij that this is not the case -

the mixing is much more constrained with only two rows participating. We

discuss this point further in Appendix C.3.

6.3 Spectrum

An interesting feature of the result (6.21) is that the action of the dilatation

operator has factored into the product of two actions: ∆(1)
ij + ∆(2)

ij acts only

on Young diagram r i.e. on the Zs, while M (ij)
sµ1µ2 ;uν1ν2 acts only on Young

diagram s, i.e. on the Y s. This factored form, which also arises at one

loop, implies that we can diagonalize on the sµ1µ2;uν1ν2 and the R, r;T, t

labels separately. The diagonalization on the sµ1µ2;uν1ν2 labels is identical

to the diagonalization problem which arises at one loop. The solution was

obtained analytically for two rows in [17] and then in general in [78]. Each

possible open string configuration consistent with the Gauss Law constraint

can be identified with an element of a double coset. A very natural basis

of functions, constructed from representation theory, is suggested by Fourier

transformation applied to this double coset. In this way [78] constructed an

explicit formula for the wave function which solves the sµ1µ2;uν1ν2 diago-

nalization. The resulting Gauss graph operators are labeled by elements of
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the double coset. The explicit solution obtained in [78] is

OR,r(σ) = |H|√
m!

∑
j,k

∑
s`m

∑
µ1,µ2

√
dsΓ(s)

jk (σ)Bs→1H
jµ1 Bs→1H

kµ2 OR,(r,s)µ1µ2 (6.28)

where the group H = Sm1 × Sm2 × · · · × Smp and the branching coefficients

Bs→1H
jµ1 provide a resolution of the projector from irrep s of Sm onto the trivial

representation of H

1
|H|

∑
σ∈H

Γ(s)
ik (σ) =

∑
µ

Bs→1H
iµ Bs→1H

kµ (6.29)

The action of the dilatation operator on the Gauss graph operator is

D4OR,r(σ) = −2g2∑
i<j

nij(σ)
(
∆(1)
ij + ∆(2)

ij

)
OR,r(σ) (6.30)

The numbers nij(σ) can be read off of the element of the double coset σ.

Each possible Gauss operator is given by a set of m open strings stretched

between p different giant graviton branes. As an example, consider p = 4

with m = 5. Two possible configurations are shown in Figure 7. Label the

open strings with integers from 1 to m = 5 for our example. The double

coset element can then be read straight from the open string configuration

by recording how the open strings are ordered as closed circuits in the graph

are traversed. For the graphs shown, (a) corresponds to σ = (1245)(3) and

(b) corresponds to σ = (12)(34)(5). The numbers nij(σ) tell us how many

strings stetch between branes i and j. The branes themselves are numbered

with integers from 1 to p, as shown in Figure 8 for our example. Thus, for

(a) the non-zero nij are n12 = 1, n23 = 1, n34 = 1, and n14 = 1. Notice

that we don’t record strings that emanate and terminate on the same brane

- string 3 in (a) or string 5 in (b), in this example. For (b) the non-zero nij
are n12 = 2 and n34 = 2. For the details, see [78].



138

Figure 7: Two possible configurations for operators with p = 4 and m = 5.

Figure 8: Labeling of the giant graviton branes.

To obtain the anomalous dimensions, inspection of (6.30) shows that we

now have to solve the eigenproblem of ∆(1)
ij and ∆(2)

ij . The operator ∆(1)
ij is

simply a scaled version of the operator which plays a role in the one loop

dilatation operator. The corresponding operator which participates at one

loop was identified as an element of u(p) [79]. It is related to a system of p

particles in a line with 2-body harmonic oscillator interactions[79]. The oper-

ator ∆(2)
ij is new. Following [79], a useful approach is to study the continuum

limit of ∆(1)
ij and ∆(2)

ij . Towards this end, introduce the variables

yj = rj+1 − r1√
N + r1

, j = 1, 2, 3, ..., p− 1 (6.31)

which become continuous variables in the large N limit. We have numbered
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rows so that r1 < r2 < · · · < rp. In the continuum limit our Gauss graph

operators become functions of yi

OR,r(σ) ≡ O ~m(R)(σ, r1, r2, · · · , rp)→ O ~m(R)(r1, y1, · · · , yp−1) (6.32)

Using the expansions√
(N + ri)(N + rj) = N+r1 + yi + yj

2

√
N + r1−

(yi − yj)2

8 +O

(
1√

N + r1

)
(6.33)

and

O ~m(R) (r1, y1, · · · , yi + 1√
N + r1

, · · · , yj −
1√

N + r1
, · · · , yp−1) =

O ~m(R)(r1, y1, · · · , yp−1) + 1√
N + r1

∂

∂yi
O ~m(R)(r1, y1, · · · , yp−1)

− 1√
N + r1

∂

∂yj
O ~m(R)(r1, y1, · · · , yp−1)

+ 1
2(N + r1)

(
∂

∂yi
− ∂

∂yj

)2

O ~m(R)(r1, y1, · · · , yp−1) (6.34)

we find that in the continuum limit

∆(1)
i+1 j+1OR,r(σ)→ n

( ∂

∂yi
− ∂

∂yj

)2

− (yi − yj)2

4

O ~m(R)(r1, y1, · · · , yp−1)

(6.35)

∆(1)
1 i+1OR,r(σ)→ n


2 ∂

∂yi
+
∑
j,i

∂

∂yj

2

− y2
i

4

O ~m(R)(r1, y1, · · · , yp−1)

(6.36)

and

∆(2)
i+1 j+1OR,r(σ)→ 2(N + r1)

[(
∂
∂yi
− ∂

∂yj

)2
− (yi−yj)2

4

]
O ~m(R)(r1, y1, · · · , yp−1)

(6.37)

∆(2)
1 i+1OR,r(σ)→ 2(N+r1)


2 ∂

∂yi
+
∑
j,i

∂

∂yj

2

− y2
i

4

O ~m(R)(r1, y1, · · · , yp−1)

(6.38)
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Remarkably, in the continuum limit both ∆(1)
ij and ∆(2)

ij have reduced to

scaled versions of exactly the same operator that appears in the one loop

problem. In the Appendix C.1 we argue for the same conclusion without

taking a continuum limit. This implies that the operators that have a good

scaling dimension at one loop are uncorrected at two loops.

It is now straight forward to obtain the two loop anomalous dimension

for any operator of interest. An instructive and simple example is provided

by p = 2 with9 n12 = n+
12 + n−12 , 0. In this case, the anomalous dimension

γ(g2) which is the eigenvalue of

D = D2 +D4 (6.39)

with10

D2 = −2g : Tr
(

[Y, Z]
[
∂

∂Y
,
∂

∂Z

])
: (6.40)

and D4 given in (6.2), is

γ = 16qn+
12(g + (2N + 2r1 + n)g2) (6.41)

q = 0, 1, 2, ..,M n12 = 0, 1, 2, ... (6.42)

where the upper cut off M is itself a number of order N . Clearly, if the g2

term is to be a small correction to the leading term, we must hold λg ≡ gN

9The number n+
12 counts the number of open strings stretching from giant graviton 1

to giant graviton 2; the number n−12 counts the number of open strings stretching from

giant graviton 2 to giant graviton 1. The Gauss Law constraint forces n+
12 = n−12. See [78]

for more details.
10The normalization for both D2 and D4 follows [8]. This normalization for D2 is a

factor of 2 larger than the normalization used in [13, 14, 17, 70, 55, 56, 78, 79].
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fixed, which corresponds to the usual ’t Hooft limit. The fact that the usual

’t Hooft scaling leads to a sensible perturbative expansion in this sector of

the theory was already understood in [86]. We then find

γ = 16qn12

N
(λg + (2 + 2r1

N
+ n

N
)λ2

g) (6.43)

For a given open string plus giant system (i.e. a given n12), in the large N

limit, x = q
N

varies continuously from 0 to x = M
N

implying that the spectrum

of anomalous dimensions

γ = 16xn12(λg + (2 + 2r1

N
+ n

N
)λ2

g) (6.44)

is itself continuous. At finite N this spectrum is discrete. Notice that since

both n and r1 are of order N , all three terms multiplying λ2
g in (6.44) are of

the same size. Note that the value for γ (6.44) will recieve both 1
N

corrections

and m
n

corrections.

6.4 Summary and Answers

We can now return to the questions we posed in the introduction to this

chapter.

1 Is the dilatation operator integrable in the large N displaced

corners approximation at higher loops?

We don’t know. We have however been able to argue that the dilatation

operator is integrable in the large N displaced corners approximation at two

loops. This requires both sending N → ∞ and keeping m � n to ensure

the validity of the displaced corners approximation. At large N with m ∼ n
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we do not know how to compute the action of the dilatation operator and

hence integrability in this situation is an interesting open problem. It seems

reasonable to hope that integrability will persist in the large N displaced

corners approximation at higher loops.

2 Do the OR,r(σ) of [78] continue to solve the Y eigenproblem at

higher loops?

Yes, the Gauss graph operators do indeed solve the Y eigenproblem at two

loops. The Y eigenproblem at two loops is identical to the Y eigenprob-

lem at one loop, so that even the eigenvalues (given by nij(σ) in (6.30) )

are unchanged. The fact that the Gauss operators continue to solve the Y

eigenproblem does not depend sensitively on the coefficients of the individual

terms in the two loop dilatation operator (see Appendix C).

3 Can the two loop Z eigenproblem be mapped to a system of

p particles, again using the Lie algebra of U(p)?

We have indeed managed to map the Z eigenproblem to the dynamics of

p particles (in the center of mass frame). The two loop problem again has

a very natural phrasing in terms of the Lie algebra of U(p). The one loop

and two loop problems are different: they share the same eigenstates but

have different eigenvalues. The fact that the eigenstates are the same does

depend sensitively on the coefficients of the individual terms in the two loop

dilatation operator (see Appendix C.3).

4 Does the two loop correction to the anomalous dimension de-

termine the precise limit that should be taken to get a sensible

perturbative expansion?
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Yes - requiring that the two loop correction in (6.43) is small compared to

the one loop term clearly implies that we should be taking the standard

’t Hooft limit. Our result then has an interesting consequence: at large N ,

x = q/N becomes a continuous parameter and we recover a continuous energy

spectrum. This is clearly related to [82]. At any finite N the spectrum is

discrete.
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7 Conclusions

In this thesis, we set out to study the AdS/CFT correspondence beyond the

planar limit, through the study of integrability. To do so we exploited the

duality between N = 4 super-Yang-Mills theory and type IIB string theory.

Our study involved calculating the action of the dilatation operator on a

class of operators with bare dimension N , known as restricted Schur poly-

nomials. These operators are AdS/CFT dual to giant gravitons. We found

that in the cases we studied, the anomalous dimensions of the restricted

Schur polynomials corresponded to a set of decoupled harmonic oscillators,

showing that the systems were in fact integrable.

In Chapter 4, we studied the action of the one loop dilatation operator

on restricted Schur polynomials with three fields, X, Y andZ. This was an

extension of [17] in that it studied integrability of operators beyond those in

the SU(2) sector.

An important new feature we have found is that before making approxi-

mations, such as the large row length difference of the Young diagrams label-

ing the restricted Scur polynomials, the spectrum of the dilatation operator

is not equivalent to a collection of harmonic oscillators. This is similar to

what one finds in the sector of operators with a bare dimension of order O(1):

in the large N limit (which in this case is the planar limit) one obtains an

integrable system. Adding 1/N corrections seems to spoil the integrability

[6, 7].



145

Apart from computing the spectrum of the dilatation operator, we have

managed to compute the associated eigenstates. For two giant graviton sys-

tems these states are given in terms of Kravchuk polynomials and Hahn poly-

nomials. The Hahn polynomials are closely related to the wave functions of

the one dimensional harmonic oscillator[44] while the Hahn polynomials are

closely related to the wave functions of the 2d radial oscillator [17]. The ar-

gument of these polynomials are given by j, k or b1, which have a direct link

to the Young diagrams labeling the operators, as summarized for example in

figure 211. Thus, the “space” on which the wave functions are defined comes

from the Young diagram itself.

Based on our experience with the half BPS sector, it is natural to asso-

ciate each one of the rows of the Young diagram with each one of the giant

gravitons. Recalling that Y = φ3 + iφ4 we know that the number of Y s in

each operator tells us the angular momentum of the operator in the 3-4 plane.

Similarly, the number of Xs in each operator tells us the angular momen-

tum of the operator in the 5-6 plane and the number of Xs in each operator

tells us the angular momentum of the operator in the 1-2 plane. Giving an

angular momentum to the giant gravitons will cause them to expand as a

consequence of the Myers effect [45]. Thus, for example, the separation be-

tween the two gravitons in the 3-4 plane will be related to the difference in

angular momenta of the two giants.

11The Young diagram r is not shown in figure 2. The number of columns with a single

box is given by b1.
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Consequently, the quantum number k is acting like a coordinate for the

radial separation between the two giants in the 3-4 plane. Thus, we see

very concretely the emergence of local physics from the system of Young dia-

grams labeling the restricted Schur polynomial. This is strongly reminiscent

of the 1/2 BPS case where the Schur polynomials provide wave functions for

fermions in a harmonic oscillator potential and further, these wave functions

very naturally reproduce features of the geometries and the phase space [12].

For the matrix model we are studying here it is not true that the matrices

Z,Y ,X commute, we can’t simultaneously diagonalize them and there is no

analog of the eigenvalue basis that is so useful for the large N dynamics of

single matrix models. For the subsystem describing the BPS states however

[46] has argued that the matrices might commute in the interacting theory

and hence there may be a description in terms of eigenvalues. The argument

uses the fact that the weak coupling and strong coupling limits of the BPS

sector agree and the fact that at strong coupling we can be confident that the

matrices commute. If this is the case, the eigenvalue dynamics should be the

dynamics in an oscillator potential with repulsions preventing the collision

of eigenvalues.

We have described a part of the BPS sector (as well as non-BPS opera-

tors) among the operators we have studied. We do indeed find the dynamics

of harmonic oscillators. In the case of a single matrix it is possible to as-

sociate the rows of the Young diagram labeling a Schur polynomial with

the eigenvalues of the matrix [47]. This provides a connection between the
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eigenvalue description and the Schur polynomial description for single matrix

models. Our results suggest this might have a generalization to multimatrix

models.

The operators we have considered are dual to giant gravitons. A connec-

tion between the geometry of giant gravitons and harmonic oscillators was

already uncovered in [48, 49, 50]. This work quantizes the moduli space of

Mikhailov’s giant gravitons so that one is capturing a huge space of states.

It is this huge space of states that connects to harmonic oscillators. Our

study is focused on a two giant system. Consequently, the oscillators that

we have found are associated to this two giant system and excitations of it.

It is natural to think that our oscillators arise from the quantization of the

possible excitation modes of a giant graviton.

Chapter 5 consisted of calculating the anomalous dimensions of restricted

Schur polynomials by mapping these polynomials into states of U(N) irre-

ducible representations. In chapter 4, we had concentrated on diagonalizing

the dilatation operator on the Young diagram label s. In chapter five we used

the open string configurations consistent with the Gauss law 3.4 in order to

diagonalize on the r label. In doing so, we managed to find the form of the

∆ operators seen in equation (4.45) in chapter 4.

We found that at one loop, mapping to SU(2) angular momentum op-

erators allowed us to describe the systems of giant gravitons connected by

open strings using creation and annihilation operators. There were two main
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results in this chapter.

The first is that we found agreement with [56]. In [56], the problem was

tackled by taking the large b1,max limit and then solving the eigenvalue prob-

lem related to diagonalization on the r label. We did this the other way

around, first solving the eigenvalue problem and then taking the limit, and

the results were the same.

The second important result is that we found it possible to reproduce

values of anomalous dimensions corresponding to the normal mode frequen-

cies of a coupled system of for systems that were compliant with the Gauss

law, thus allowing us to use Gauss graphs to greatly simplify our calculations.

In Chapter 6 we studied the action of the two loop dilatation operator

on restricted Schur polynomials consisting of two fields. Our discussion has

been developed for operators with a label R that has p long rows, which are

dual to giant gravitons wrapping an S3 ⊂AdS5. Operators labeled by an R

that has p long columns are dual to giant gravitons wrapping an S3 ⊂S5.

The anomalous dimensions for these operators are easily obtained from

our results in this chapter (see section D.6 of [56] for a discussion of this

connection). At two loops, they were found to have additive corrections to

what was found at one loop for these operators, indicating that integrability

in this system is still present when further corrections are included.
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The ∆(1)
ij for this case is obtained by replacing the ri → −ri and rj → −rj

in (6.35) and (6.36), while ∆(2)
ij for this case is obtained by replacing the

ri → −ri and rj → −rj in (6.37) and (6.38). The result (6.30) is unchanged

when written in terms of the new ∆(1)
ij and ∆(2)

ij .

Finally, the fact that our operators are not corrected at two loops is re-

markable. It is natural now to conjecture that they are in fact exact and

will not be corrected at any higher loop. This is somewhat reminiscent of

the BMN operators[11]. In that case it is possible to determine the exact

anomalous dimensions as a function of the ’t Hooft coupling λg[83]. Can we

use similar methods to achieve this for the operators discussed in this thesis?
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A Appendix: Computational details support-

ing Chapter 3

A.1 Intertwiners

Intertwiners are matrices which provide mappings between two isomorphic

spaces. In the case of Sn representation theory, they provide a mapping

between the carrier spaces of irreducible representations. If Sn acts on a

vector space V ⊗n, with n > 1, we have a reducible representation of the

group. Suppose this representation includes irreducible representations of R

and S, and represent the action of an element in Sn using a matrix:

Γ(σ) =


ΓR(σ) 0 · · ·

0 ΓS(σ) · · ·
...

...
. . .

 (A.1)

Restriction to the subgroup Sn−1 subuces a number of irreducible represen-

tations R′ and S ′, for example R→ R′1 and R′2 and S → S ′1 and S ′2.

Γ(σ) =



ΓR′1(σ) 0 0 0 · · ·

0 ΓR′2(σ) 0 0 · · ·

0 0 ΓS′1(σ) 0 · · ·

0 0 0 ΓS′1(σ) · · ·
...

...
...

...
. . .


(A.2)

Suppose R′1 = S ′1. According to the fundamental orthogonality relation
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(equation (3.15) in Chapter 3)

∑
σ∈Sn−1



ΓR′1(σ)

0

0
. . .


ij



0

0

ΓS′1(σ)
. . .


ab

= (n− 1)!
dR′1

δR′1S′1



0 0 1 0 · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·
...

...
...

...
. . .


ib



0 0 0 0 · · ·

0 0 0 0 · · ·

1 0 0 0 · · ·
...

...
...

...
. . .


aj

= (n− 1)!
dR′1

δR′1S′1(IR′1S′1)ib(IS′1R′1)aj (A.3)

It is clear that intertwiners are matrices with the dimension of the carrier

space of R′1.

A.2 Calculating Traces

For the purpose of finding the spectrum of anomalous dimensions, this sec-

tion of the appendix will be dedicated to showing how the traces in equation

(3.14) are evaluated. In order to perform these calculations we shall begin

by studying the action of intertwiners on vector space V ⊗n. The intertwiners

IR′T ′ and IT ′R′ act on the first slot of V , in correspondence with the first box

being removed from R or T .

In general, suppose that R , T . To get R′ and T ′ remove a box from row

i of R and j of T respectively in such a way that R′ = T ′. The intertwiners
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involved in this operation can be written in terms of the basis of the Lie

algebra U(p) as

IR′T ′ = Eij ⊗ 1 · · · ⊗ 1 (A.4)

IT ′R′ = Eji ⊗ 1 · · · ⊗ 1 (A.5)

Here E is in the first slot and there are m− 1 p× p identity matrices in

the 2nd to mth slots. In the case where R = T , boxes must be removed in the

same row of R and T to get R′ = T ′. In this case, intertwiners are written

IR′T ′ = IT ′R′ = Ekk ⊗ 1 · · · ⊗ 1 (A.6)

In the general form of the traces considered in chapter three, the matrices

ΓR(1,m+1) act on intertwiners. This can also be calculated using the known

action of the symmetric group as follows

• Left acting:

ΓR(1,m+ 1)IR′T ′ = ΓR(1,m+ 1)Eij ⊗ 1 · · · ⊗ 1

= ΓR(1,m+ 1)
p∑

k=1
Eij ⊗ 1 · · · ⊗ 1⊗ Ekk

=
∑
k

Ekj ⊗ 1 · · · ⊗ Eik (A.7)

• Right acting:

IR′T ′ΓR(1,m+ 1) = Eij ⊗ 1 · · · ⊗ 1ΓR(1,m+ 1)

=
p∑

k=1
Eij ⊗ 1 · · · ⊗ 1⊗ EkkΓR(1,m+ 1)

=
∑
k

Eik ⊗ 1 · · · ⊗ Ekj (A.8)

• We often streamline our notation as follows
p∑

k=1
Eij ⊗ 1 · · · ⊗ 1⊗ Ekk →

p∑
k=1

E
(1)
ij E

(m+1)
kk

⇒ ΓR(1,m+ 1)E(1)
ij E

(m+1)
kk = E

(1)
kj E

(m+1)
ik (A.9)
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A.3 The Factors

Another step in evaluating the dilatation operator involves simplifying the

constant coefficient that multiplies the traces,

−g2
YM

∑
R′

cRR′dTnm

dR′dtdu(n+m)

√
fThooksThooksrhookss
fRhooksRhooksthooksu

(A.10)

Note that when the trace is evaluated, it produces a factor of dRm+1 which

multiplies this coefficient. The notation Rm+1 refers to Young diagram R

with m + 1 boxes removed, or equivalently diagrams r or t with one box

removed to give us r′ (or equivalently t′, since r′ = t′). Thus, dRm+1 can also

be written dr′ . Ri is the length of row i in diagram R. R and T differ by

the placement of at most one box in a different row. When they do differ we

have

Ri = Ti a , b

Ra = Ta + 1

and

Rb = Tb − 1

R′ = T ′ is the diagram found by pulling one correctly chosen box off of either

R or T .

The product includes the factors

•
dT
dR′

√
hooksT
hooksR

1
n+m

and

n

√
hooksr
hookst

dRm+1

dt
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•
m

ds

This combines with ∑
s′ ds′ from the trace to give us some constants

which combine with Clebsch-Gordan coefficients in the evaluation of

the trace.

•

cRR′

√
fT
fR

= √cRR′cTT ′

since all weights in fT
fR

cancel except for that of the box removed from

each diagram.

•  dT
dR′

√
hooksT
hooksR

1
n+m

n
√
hooksr
hookst

dRm+1

dt



The simplification of the above factors uses the following ideas

•

dR = hooksR
(n+m)!

where (n + m)! is the order of the symmetric group Sn+m whose irre-

ducible representations are labelled by diagram R.
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• After evaluating the trace we learn

ra = ta + 1 and rb = tb − 1

• The lengths of rows in diagrams R, T , r and t are all of order O(N).

As such, the differences between corresponding row lengths in R, r and

T , t is negligible; for instance Ri ∼ ri.

Evaluating
dT
dR′

√
hooksT
hooksR

1
n+m

we have

hooksR′√
hooksThooksR

=
√
hooksR′

hooksR

√
hooksT ′

hooksT

= 1√
RbTa

n

√
hooksr
hookst

dRm+1

dt
= n

√
hooksr
hookst

dr′

dt
=
√
rbta

This leaves a factor of

g2
YM

√
cRR′cTT ′m

√
rbta√

RbTads
(A.11)
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B Computational details supporting Chapter

4

B.1 Example Projector

In the section we will consider the case that m = p = 3. Towards this end,

we couple the states of 3 spin 1
2 -particles to obtain

∣∣∣∣−1
2 ,−

1
2 ,−

1
2

〉
=
∣∣∣∣32 ,−3

2

〉
,
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2 ,−

1
2 ,

1
2

〉
= 1√

2

∣∣∣∣12 ,−1
2

〉A
+ 1√

6

∣∣∣∣12 ,−1
2
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3
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2
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,
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= − 1√
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2
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6
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2
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+ 1√

3
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2

〉
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2
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2
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2

〉B
+ 1√
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2
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∣∣∣∣12 , 1
2
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− 1√
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2
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+ 1√

3
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2
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∣∣∣∣32 , 3

2

〉
The spin 3

2 representation is organized by S3 irreducible representation ,

which is one dimensional, so that the spin 3
2 multiplet is not degenerate. The

spin 1
2 representation is organized by S3 irreducible representation

which is two dimensional. Consequently, the spin 1
2 occurs with degeneracy
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2. A and B label the two multiplets. Thus, picking a particular state, A and

B should label the two states in the S3 irreducible representation which is

labeled by the Young diagram . From the results above we easily find∣∣∣∣12 , 1
2

〉A
= 1√

2

∣∣∣∣12 ,−1
2 ,
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2
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2

〉
Taking the direct product with another such multiplet arising from coupling a

further three spins, we should obtain the four states of the S3×S3 irreducible

representation labeled by the pair of Young diagrams ( , ). These

four states are easily constructed
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|2, 2〉 = 1
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It is rather simple to check that these four states do indeed span the

carrier space of the S3 × S3 representation labeled by ( , ). As an

example, (12) has a matrix representation

Γ(12) =



1
2

√
3

2 0 0
√

3
2 −1

2 0 0

0 0 1
2

√
3

2

0 0
√

3
2 −1

2

 =
 1

2

√
3

2
√

3
2 −1

2

⊗
 1 0

0 1

 = Γ ((12))⊗Γ (1) .

Given a basis of the required carrier space, it is now trivial to construct the

associated projector.

B.2 The Space L(Ωm,p)

In this Appendix we discuss the representation theory relevant for the con-

struction developed in chapter 4. We highly recommend the article [40] for

related background material. Consider the group Sp × Sm. Define

Ωk,l = (Sp/Sp−l × Sl)× (Sm/Sm−k × Sk) (B.1)

to be the space of all pairs of k, l subsets, where the k subsets are subsets of

{1, 2, ..., p} and the l subsets are subsets of {p+1, p+2, ..., p+m}. If p = 2 and
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m = 2 then Ω1,1 = {{1; 3}, {1; 4}, {2; 3}, {2; 4}} and Ω2,2 = {{1, 2; 3, 4}} etc.

You can identify a k, l subset with a monomial. For example, we’d identify

{1; 3} with x1y3 and {1, 2; 4} with x1x2y4. Thus, we can consider Ωk,l to be

the space of distinct monomials in two types of variables (xi and yi) with k+l

factors and no factor repeats. Ordering of the factors is not important so that

x1x2y4 and y4x1x2 are exactly the same element of Ω2,1. Our main interest is

in L(Ωk,l) which is the space of complex valued functions on Ωk,l. The group

Sp × Sm has a very natural action on L(Ωk,l): we can define this action by

defining it on each monomial. The symmetric group Sm ⊂ Sp × Sm acts by

permuting the labels on the xi factors in the monomial and the symmetric

group Sp ⊂ Sp × Sm acts by permuting the labels on the yi factors in the

monomial. Thus, for example, for m = 3 = p

(12)x1x2y4 = x1x2y4 (45)x1x2y4 = x1x2y5 .

There is a natural inner product under which the monomials are orthonormal,

so that, for example

〈x1x2y4, x1x2y4〉 = 1, 〈x1x2y4, x1x3y4〉 = 0 = 〈x1x2y4, x1x2y5〉 .

L(Ωk,l) furnishes a reducible representation of the group Sm × Sp. The rele-

vance of L(Ωk,l) for us here is that the projectors acting in L(Ωk,l) projecting

onto an irreducible representation of Sp× Sm are precisely the projectors we

need to define the restricted Schur polynomials. Consider the operator

d1 =
p∑
i=1

∂

∂xi
. (B.2)

It maps from L(Ωk,l) to L(Ωk−1,l). Further, it commutes with the action of

Sp × Sm. Because of this, elements of the kernel of d1 form an invariant
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Sp × Sm subspace. Similarly,

d2 =
p+m∑
i=p+1

∂

∂yi
, (B.3)

maps L(Ωk,l) to L(Ωk,l−1) and it also commutes with the action of Sp × Sm.

Thus, the elements of the kernel of d2 will also form an invariant Sp × Sm
subspace. Using results from [40] it follows that the intersection of the kernel

of d1, the kernel of d2 and L(Ωk,l) is an irreducible representation of Sp×Sm.

An example will help to make this discussion concrete. For m = 3 = p

the intersection of the kernel of d1, the kernel of d2 and L(Ω1,1) is clearly

spanned by the polynomials

φ1 = x1 − x2√
2

y4 − y5√
2

, φ2 = x1 − x2√
2

y4 + y5 − 2y6√
6

,

φ3 = x1 + x2 − 2x3√
6

y4 − y5√
2

, φ4 = x1 + x2 − 2x3√
6

y4 + y5 − 2y6√
6

.

It is easy to check that

(12)φ1 = −φ1, (12)φ2 = −φ2, (12)φ3 = φ3, (12)φ4 = φ4,

(23)φ1 = 1
2φ1 +

√
3

2 φ3, (23)φ2 = 1
2φ2 +

√
3

2 φ4,

(23)φ3 = −1
2φ3 +

√
3

2 φ1, (23)φ4 = −1
2φ4 +

√
3

2 φ2,

(45)φ1 = −φ1, (45)φ2 = φ2, (45)φ3 = −φ3, (45)φ4 = φ4,

(56)φ1 = 1
2φ1 +

√
3

2 φ2, (56)φ2 = −1
2φ2 +

√
3

2 φ1,

(56)φ3 = 1
2φ3 +

√
3

2 φ4, (56)φ4 = −1
2φ4 +

√
3

2 φ3,
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Thus, we have the following group elements

Γ ((12)) =



−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


=

 −1 0

0 1

⊗
 1 0

0 1

 ,

Γ ((23)) =



1
2 0

√
3

2 0

0 1
2 0

√
3

2
√

3
2 0 −1

2 0

0
√

3
2 0 −1

2


=


1
2

√
3

2
√

3
2 −1

2

⊗
 1 0

0 1

 ,

Γ ((45)) =



−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


=

 1 0

0 1

⊗
 −1 0

0 1

 ,

Γ ((56)) =



1
2

√
3

2 0 0
√

3
2 −1

2 0 0
√

3
2 0 1

2

√
3

2

0 0
√

3
2 −1

2


=

 1 0

0 1

⊗


1
2

√
3

2
√

3
2 −1

2

 .

Using these matrices it is possible to compute all elements of the group now,

and then to compute characters. In this way, it is a simple matter to identify

this as the ( , ) irreducible representation of S3 × S3.
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B.3 Explicit Evaluation of the Dilatation Operator for

m = p = 2 and Numerical Spectrum

We have explicitly evaluated the dilatation operator (4.7) for the case m =

p = 2. There are a total of 16 operators that can be defined. Our notation

for these operators is OR,(r,s,t) = Oi(b0, b1). The labels b0 and b1 specifies

the second label of the restricted Schur polynomial: r has b0 rows with two

boxes and b1 rows with a single box. The label i = 1, ..., 16 tells you what the

labels s, t are and it tells you how the boxes are removed from R to obtain

r. These labels are defined as

O1 = O

,

O2 = O

,

O3 = O

,

O4 = O

,

O5 = O

,

O6 = O

,

O7 = O

,

O8 = O

,

O9 = O

,

O10 = O

,

O11 = O

,

O12 = O

,
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O13 = O

,

O14 = O

,

O15 = O

,

O16 = O

,

.

When computing the dilatation operator, we assume that b1 � b0, b0 = O(N)

and b1 = O(N). The spectrum of the dilatation operator that we obtain,

when diagonalized numerically, does not reproduce the spectrum of a set of

decoupled oscillators. We do obtain a set of energy levels that is very well

approximated by a linear spectrum En = ωn with ω given by the average

(over n) of En+1 − En. However, En+1 − En is not exactly equal to 8g2
YM

- it fluctuates around this value. We have also numerically verified that

after invoking the approximations spelled out at the end of section 3.1, we

do indeed obtain equation (4.44) and hence with these approximations the

spectrum of the dilatation operator is again reproduced by a collection of

decoupled oscillators. Thus, it is only after invoking the approximations of

section 3.1 that we definitely obtain an integrable system.

The same conclusion is reached by studying the simpler system m = 2,

p = 1, which involves 8 operators.
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C Computational details supporting Chapter

6

C.1 ∆(2)
ij as an element of u(p)

In this appendix we will argue that, at large N , the eigenstates of ∆(1)
ij are

also eigenstates of ∆(2)
ij . We focus on the case that p = 2. Towards this end

we will recall some details from chapter 5. Recall that in the fundamental

representation of u(N) the generators can be taken as

(Ekl)ab = δakδbl k, l, a, b = 1, 2, ..., N (C.1)

Introduce the operators (the labeling is such that i > j i.e. Qij is not defined

if i < j)

Qij = Eii − Ejj
2 Q+

ij = Eij, Q−ij = Eji (C.2)

which obey the familiar algebra of angular momentum raising and lowering

operators

[Qij, Q
+
ij] = Q+

ij [Qij, Q
−
ij] = −Q−ij [Q+

ij, Q
−
ij] = 2Qij (C.3)

Irreps of these su(2) subalgebras can be labeled with the eigenvalue of

L2
ij ≡ Q−ijQ

+
ij +Q2

ij +Qij = Q+
ijQ
−
ij +Q2

ij −Qij (C.4)

and states in the representation are labeled by the eigenvalue of Qij

Qij|λ,Λ〉 = λ|λ,Λ〉 L2
ij|λ,Λ〉 = (Λ2 + Λ)|λ,Λ〉 − Λ ≤ λ ≤ Λ (C.5)

The restricted Schur polynomials can be identified with particular states in a

definite irrep. The reader may consult chapter 5 for the details. Identifying
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the restricted Schur polynomials with states of a U(p) representation allows

us to write ∆(1)
ij as a u(p) valued operator

∆(1)
ij = n

(
−1

2(Eii + Ejj) +Q−ij +Q+
ij

)
≡ n∆ij (C.6)

Note that

C = Eii + Ejj (C.7)

commutes with all elements (C.2) of the su(2) algebra and hence defines a

Casimir of this algebra. It is simply a constant times the identity in a given

u(p) irrep. It is not difficult to check using chapter 5 that ∆(1)
ij defines a

discrete oscillator with creation operator given by

A† = 1
2(Eii − Ejj) + 1

2Eij −
1
2Eji [∆ij, A

†] = −2A† (C.8)

As pointed out in chapter 5, a correctly normalized creation operator is

given by a† with A† =
√
Ma†, where M is introduced in (6.42). It is straight

forward to verify that ∆(2)
ij is given by

∆(2)
ij = (Q+)2 − C2Q

+ + 2Q+Q− − C2Q
− + (Q−)2 (C.9)

and hence that

[∆(2)
ij , A

†] = −4(∆ij + C4 )A† − 4Q+ − 4Q (C.10)

In terms of a correctly normalized operator at large N we have (the last two

terms in (C.10) can be dropped in the limit)

[∆(2)
ij , a

†] = −4(∆ij + C4 )a† (C.11)
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There are two things worth noting at this point. First, when acting in the

basis of energy eigenstates, it is clear that a† is indeed a creation operator

but, due to the appearance of ∆ij, with a “state dependent frequency”. Said

differently, a† continues to move us to higher eigenstates but the energies of

these states are not equally spaced. Second, we can show that this result is

in perfect agreement with section 6.3. To make a comparison with section

6.3 we need to restrict attention to states for which the eigenvalue of ∆ij is

finite, so that on this subspace we can replace ∆ij + C
4 →

C
4 . Using the value

for C computed in chapter 5, for any state of finite energy, we have

[∆(2)
ij , a

†] = −2 (2N + 2r1) a† (C.12)

in perfect agreement with section 6.3.

C.2 Simplifications of the m� n limit

In this Appendix we will explain why keeping the first term in (6.2) cor-

responds to computing the leading term in a systematic expansion of the

anomalous dimension in a series expansion in 1
N

and m
n

. Notice that the first

term in (6.2) contains two derivatives with respect to Z and one derivative

with respect to Y , whilst the second term contains one derivative with re-

spect to Z and two derivatives with respect to Y . Since the number of Zs

(given by n) is much greater than the number of Y s (given by m) we should

expect the leading contribution to come from the first term in (6.2). In this

Appendix we will demonstrate that this is indeed the case.

It is simplest to consider the expression (6.21). The factor M (ij)
sµ1µ2 ;uν1ν2
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includes
〈
~m, s, µ2 ; a|E(1)

ii |~m, u, ν2 ; b
〉 〈

~m, u, ν1 ; b|E(1)
jj |~m, s, µ2 ; a

〉
+
〈
~m, s, µ2 ; a|E(1)

jj |~m, u, ν2 ; b
〉 〈

~m, u, ν1 ; b|E(1)
ii |~m, s, µ2 ; a

〉
(C.13)

which involves traces over interwiners acting in V ⊗m. It has no dependence on

the representation r of the Zs and hence, has no dependence on n. Thus, all

n dependence comes from the coefficient multiplying the above term (C.13).

We will therefore study the coefficient of this term. As a consequence of the

fact that the first term in (6.2) contains two derivatives with respect to Z

and one derivative with respect to Y , this term will have a coefficient which

includes the factor

dTn(n− 1)mdr′′
dtdudR′′(n+m)(n+m− 1) (C.14)

Recall that r′′ is obtained by removing two boxes from r. The factor of dr′′ is

produced when we take two derivatives with respect to Z. In the limit that

m� n we now find

dTn(n− 1)mdr′′
dtdudR′′(n+m)(n+m− 1) = m

du

[
1 +O

(
m

n

)]
(C.15)

For the second term in (6.2), the corresponding factor is now

dTm(m− 1)ndr′
dtdudR′′(n+m)(n+m− 1) (C.16)

The Young diagram r′ is obtained by removing one box from r. The factor

of dr′ is produced when we take a single derivative with respect to Z. In the

limit that m� n we now find

dTm(m− 1)ndr′
dtdudR′′(n+m)(n+m− 1) = m(m− 1)

ndu

[
1 +O

(
m

n

)]
(C.17)
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Notice that (C.17) is smaller than (C.16) by a factor of m
n

as we expected.

The second term in (6.2) will thus contribute at higher order in a systematic
m
n

expansion.

Finally, performing the sum over the Lie algebra index in the third term

in (6.2) gives a term that is identical to the one loop dilatation operator,

except that it is supressed by a power of N . Thus, it does not contribute to

the leading order in a large N expansion.

Thus, to summarize, keeping only the first term in D4 in (6.2) corre-

sponds to the computation of the leading term in the double expansion in

the parameters 1
N

and m
n

.

C.3 On the action of the Dilatation Operator

In this Appendix we want to discuss how sensitively integrability depends

on the coefficients of the individual terms appearing in D4. We will start by

making a few comments on the structure of ∆(2)
ij that we obtained in (6.27).

Recall that we argued

Tr(ZY Z∂Z∂Y ∂Z)χR,(r,s)αβ(Z, Y )

=
∑

T,(t,u)γδ

∑
R′′,T ′′

dTn(n− 1)m
dtdudR′′(n+m)(n+m− 1)cRR

′cR′R′′ χT,(t,u)γδ(Z, Y )

×Tr(IT ′′R′′(2,m+ 2,m+ 1)PR,(r,s)αβ(1,m+ 2, 2)IR′′T ′′

×(2,m+ 2)PT,(t,u)δγ(m+ 2, 2, 1,m+ 1)) (C.18)

in section 6.2. Focus on the trace appearing in the second line above. Assume

that we obtain R′ from R by dropping a box from row i and that we obtain

R′′ from R′ by dropping a box from row j. Further, assume that we obtain

T ′ from T by dropping a box from row k and that we obtain T ′′ from T ′
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by dropping a box from row l. Clearly then, we are allowing four rows of

the Young diagram to participate when the dilatation operator acts. With

these assumptions, we easily find (see (6.18), (6.19) and (6.20) as well as the

discussion around these equations)

IR′′T ′′ = E
(1)
ik E

(2)
jl IT ′′R′′ = E

(1)
ki E

(2)
lj (C.19)

and

(m+ 2, 2, 1,m+ 1)IT ′′R′′(2,m+ 2,m+ 1) = E
(1)
li E

(m+1)
kj (C.20)

(1,m+ 2, 2)IR′′T ′′(2,m+ 2) = E
(1)
jk E

(m+2)
il (C.21)

In obtaining these results we have made heavy use of the simplifications

in the action of the symmetric group that arise in the displaced corners

approximation. It is now a simple matter to find

Tr(IT ′′R′′(2,m+ 2,m+ 1)PR,(r,s)αβ(1,m+ 2, 2)IR′′T ′′(2,m+ 2)PT,(t,u)δγ(m+ 2, 2, 1,m+ 1))

= Tr(E(1)
li E

(m+1)
kj PR,(r,s)αβE

(1)
jk E

(m+2)
il PT,(t,u)δγ) (C.22)

Since the projectors PR,(r,s)αβ and PT,(t,u)δγ have a trivial action on slots m+1

and m+ 2, the above result is only non-zero when i = l and k = j - so that

only two rows participate.

This reduction from four possible rows participating to two rows partic-

ipating is determined by (C.20) and (C.21). These equations are corrected

when going beyond the displaced corners approximation and, in that case,

all four rows do indeed enter. For all of the terms appearing in the first line
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of D4, we find this reduction to two rows for each term separately. Further,

we find that each trace is individualy proportional to M (ij)
sµ1µ2 ;uν1ν2 defined

in (6.22). This implies that the answer to question 2 that we posed in the

introduction is completely insensitive to the precise coefficients of the terms

appearing in D4
12.

At this point it is natural to ask if the reduction of the dilatation opera-

tor to a set of decoupled oscillators (and thus the observed integrability) is

likewise also insensitive to the detailed coefficients. We will see that this is

not the case - the emergence of an oscillator does depend sensitively on the

precise values of the coefficients of the terms appearing in D4.

Consider equation (6.27). Individual terms appearing in (6.27) can be

traced back to particular terms appearing in D4. For example, the terms

proportional to (∆+
ij)2 and (∆−ij)2 come from the terms Tr(ZZY ∂Z∂Z∂Y ) and

Tr(Y ZZ∂Y ∂Z∂Z). Notice that these two terms are related by daggering. Sim-

ilarly, the terms ∆0
ij∆+

ij and ∆0
ij∆−ij come from the terms Tr(ZY Z∂Z∂Z∂Y )

Tr(ZZY ∂Z∂Y ∂Z), Tr(ZY Z∂Y ∂Z∂Z) and Tr(Y ZZ∂Z∂Y ∂Z) which are again

related by daggering. Changing the relative weights of terms appearing in

D4 will change the relative weight of terms appearing in (6.27).

To explore the effect of these changed coefficients on integrability, imagine

we assign coefficient α to the terms Tr(ZZY ∂Z∂Z∂Y ) and Tr(Y ZZ∂Y ∂Z∂Z)
12If one includes the remaining (subleading) terms in D4 that we have discarded in the

m� n limit, the dilatation operator starts to mix different Gauss graph operators. This

suggests that the integrability we study here is a property of the large N limit and of

the displaced corners approximation (i.e. m << n) and may not survive when subleading

corrections are included.



171

in D4. We now find ∆(2)
ij is replaced by

∆α(2)
ij = α(∆+

ij)2 + ∆0
ij∆+

ij + 2∆+
ij∆−ij + ∆0

ij∆−ij + α(∆−ij)2 (C.23)

It is straight forward to check, using the approach of [79] that this operator

does not admit creation and annihilation operators and hence does not define

an oscillator. A very instructive way to get some insight into what is going

on, is to consider the continuum limit of section 6.3. We find

∆α(2)
ij OR,r(σ)→ 2N2(α− 1)OR,r(σ) + 2(ri + rj)N(α− 1)OR,r(σ) +O(N)

(C.24)

Compare this to (6.37) and (6.38). Even the scaling with N of the eigenvalues

of ∆α(2)
ij and ∆(2)

ij disagree. Indeed, with α = 1 we have a delicate cancelation

of the leading order terms - as we clearly see in (C.24). It is the subleading

terms that combine to produce an oscillator. Note that all of the terms in

(6.27) contribute at the leading order. Thus, the sensitive dependence we

see on the coefficient of the terms Tr(ZZY ∂Z∂Z∂Y ) and Tr(Y ZZ∂Y ∂Z∂Z)

extends to the other terms in D4 too.

This last point deserves explanation. The terms in ∆(2)
ij can be col-

lected into three groups which are each hermittian: (∆+
ij)2 +(∆−ij)2, ∆0

ij∆+
ij +

∆0
ij∆−ij and finally 2∆+

ij∆−ij. The relative coefficients of the terms produc-

ing these pieces is fixed by hermitticity. For example Tr(ZZY ∂Z∂Z∂Y ) +

βTr(Y ZZ∂Y ∂Z∂Z) is only hermittian if β = 1 and in this case the terms sum

to (∆+
ij)2 + (∆−ij)2. The particular coefficients of the terms that appear in

∆(2)
ij ensure that when we take the continuum limit (i) the terms proportional

to N2 cancel, (ii) the terms proportional to (ri + rj)N cancel and (iii) the

surviving terms sum to produce an operator that admits exactly the same
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creation and annihilation operators as the one loop dilatation operator does.

The integrability we have studied here depends on a careful fine tuning of

the terms appearing in D4.
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