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Executive Summary 

With the increase in complexity of modern software systems, there is a great demand for software 

engineering techniques. Calculation processes are becoming more and more complex, especially in the 

field of machine vision and computational intelligence. A suitable object oriented calculation process 

framework is developed in order to address this problem. To demonstrate the effectiveness of the 

framework, a simple shape classification system is implemented in C#. A suitable method for 

representing shapes of images is developed and it is used for classification by a neural network. Sets of 

real-world images of hands and automobiles are used to test the system. The performance of the object 

oriented system in C# is compared to a functional paradigm system in Matlab and it is found that object 

orientation is well suited to the later stages of machine vision while the functional approach is well suited 

to low level image processing tasks. 

 

Lukasz A. Machowski  Page iii 



Acknowledgements 

I wish to thank the following people for their contributions to this project: 

 

Prof. Tshilidzi Marwala, School of Electrical and Information Engineering, University of the 

Witwatersrand, for being such a motivating supervisor and an inspiring role model. 

 

My Mother and Father, for all their hard work and support throughout the years. They have always 

pushed me to excel in what I do and to enjoy the privilege of studying. Their hard work and devotion to 

their fields has stood as an inspiration for me to persevere in this degree. 

“If you do anything… do it with Passion!” 

 

Robert and Edith, for always being interested in what I do and stimulating my mind with interesting 

discussions. Thank you for accommodating me in your lives. 

 

Aleksandra and Rainer, for helping me through my years as a student. 

 

Bradley van Aardt, for being available to discuss crucial aspects of this research.  

 

Nicola, for all the love and support she has given me throughout this demanding time. 

 

Lukasz A. Machowski  Page iv 



Foreword 

This research report is presented to the University of the Witwatersrand, Johannesburg, South Africa for 

the degree of Master of Science in Engineering. 

 

The research report is entitled “Image Shape Classification using Computational Intelligence and Object 

Orientation”. It is comprised of five chapters. The first introduces the research topic. The second 

describes a suitable method for representing shapes of images so that they can be classified by a neural 

network. The third chapter introduces the design of a calculation process framework for defining and 

performing complex calculations. The fourth chapter links the two concepts together and provides the 

essence of the research. The final chapter summarises the results from the research and combines the 

conclusions from the individual chapters. The appendices present aspects of the work that are not 

covered in great detail in the main document. 

 

Appendix A presents additional work done on neural networks, including background information and 

possible uses. 

 

Appendix B presents additional work done on image registration and optimisation techniques. 

 

Appendix C contains the UML diagrams that detail the design of the system that has been developed. 

 

Appendix D contains the actual source code and implementation of this research. 
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Chapter 1: Introduction 

The purpose of this study is to show that software object orientation is a suitable technique for designing 

and implementing a visual object recognition system using computational intelligence. In particular, an 

object oriented (OO) framework is developed for the later stages of the object recognition process where 

high-level information, such as shape, is used for the classification. The system uses pre-segmented 

images of objects and attempts to recognise which class the objects belong to. An object oriented design 

for the framework is well suited to the later stages of object recognition because they deal with relatively 

abstract concepts which are difficult to represent mathematically on a computer. Also, the complexity of 

the object recognition system at late stages of the recognition process becomes difficult to comprehend, 

manage, maintain and reuse without more advanced software engineering techniques. 

 

Getting a machine vision system to recognize objects from images is a difficult and well studied problem 

and it makes use of many theoretical foundations. These range from highly mathematical techniques that 

rely on image processing, to neural-network-type learning systems. Being able to sense the environment 

using visual information has many applications in the commercial, industrial, medical and military fields. 

 

The complexity of implementing such a system becomes a significant software engineering feat, 

especially when the later stages of object tracking require the use of high level (and possibly abstract) 

concepts which are not native to traditional computational methodologies.  

 

This research investigates whether OO concepts are suitable for the later stages of object recognition, 

which include feature extraction and object classification. The system takes images of simple real-world 

objects as inputs and outputs the class of the object in the image. The sample data is generated by taking 

photographs of human hands showing different finger orientations. Side view images of motor vehicles 

are also used for seeing how the system performs on man-made objects. The system is implemented 

using an OO paradigm and is compared to the functional paradigm prototype. The performance between 

the two systems is compared in order to answer the research question of whether the OO approach is 

suitable for object recognition. 

 

This research has significance for companies that are considering the use of OO for their future object 

recognition systems. It is typically the case that the complexity of their current system makes it extremely 

difficult to comprehend and manage the various aspects of their object recognition process. This research 

provides a starting point for migration from a functional paradigm to an OO paradigm. 

 



 

Lukasz A. Machowski  Page 2 

The implementation language chosen for the implementation is C# which is a relatively new language 

and therefore has few computational intelligence toolboxes. It is also a high level language that has many 

constructs that support good software development techniques.  

 

This report starts by describing a suitable method for shape representation. It then details the design of a 

calculation process framework that allows the creation of calculation objects. Both of these two concepts 

are combined in the last chapter to create an object oriented shape classification system. 

 

From this research, the following papers have been published: 

1. L. Machowski, T. Marwala. “Representing and Classifying 2D Shapes of Real-World Objects 

using Neural Networks”, Proceedings of the IEEE Conference on Systems, Man and Cybernetics, 

The Hague, Netherlands, pp. 6366-6372, 2004. 

2. L. Machowski, T. Marwala. “An Object Oriented Calculation Process Framework”, Submitted for 

IEEE 3rd International Conference on Computational Cybernetics, Mauritius, 2005. 

3. L. Machowski, T. Marwala. “Using an Object Oriented Calculation Process Framework and 

Neural Networks for Classification of Image Shapes”, Submitted for IEEE Transactions on 

Systems, Man, and Cybernetics, Part A: Systems and Humans, Special Issue on "Advances in 

Heterogeneous and Complex System Integration", November, 2005. 
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Chapter 2: Representing and Classifying 2D Shapes of 
Real-World Objects using Neural Networks 

Lukasz A. Machowski 

Abstract – A framework is presented which uses a polar representation of a segmented object for shape 

classification. This method produces a position, rotation and scale invariant representation of the shape. 

An efficient method for extracting multiple contours from the polar representation is used to handle the 

problem of many-to-one mappings in the radial and angular parameters. The contours are used to find 

interesting vertices of the shape. The shape information is mapped to spatial regions on a polar grid and 

fed into a multi-layer perceptron for classification. The framework is tested on manually segmented 

images of people’s hands and on side views of automobiles. The results show that the network can 

achieve approximately 100% generalisation on test data even though the network is under trained. 

1. Introduction 
Getting a machine vision system to recognize objects from images is a difficult and well studied problem 

[1]. The ability of humans to segment, classify and recognize objects with relative ease makes it a sought 

after ability for vision systems. Being able to sense the environment using visual information has many 

applications in the commercial, industrial, medical and military fields.  

 

There are many different features of an image which can be used for classifying objects and these include 

colour, texture, motion, context and shape [1][2][3]. Shape information is used extensively for 

classification of objects in vision systems and is an important visual feature [4][5][6]. There are also 

several methods that can be used for performing the classification of the object and these include 

similarity distance measures, template matching, index calculation, hashing, maximum likelihood, 

clustering and neural network classification [2][7][8]. There are many advantages of using neural 

networks and these include being able to train the system using example images and having superior 

generalisation abilities when compared to other classification techniques. 

 

This paper presents an improvement to the method described in [9] which uses a simple, yet effective 

method for shape representation. The contour points are converted into a normalized polar form with 

respect to the shape centroid [3][9]. This provides a rotation, scale and translation invariant description of 

the shape while still allowing the original shape contour to be retrieved from this representation. The 

problem of multi-value mappings must be addressed because they are common for real-world objects. 

This arises when the shape has concave sections as is shown in Figure 1. The corresponding polar 

representation is shown alongside. 
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Figure 1  A leaf with concave sections and the problematic 
 many-to-one polar representation. 

1.1. Shape 
Feature extraction is used to reduce the amount of information acquired from image data [3][7][8], while 

improving the ability of the vision system to classify the data [4][6][9]. Shape information is often the 

most characteristic visual feature of objects and is therefore used extensively for object recognition [1]. 

The shape of an object contains a large amount of information that is useful when trying to classify real-

world objects. 

 

There are several techniques for representing shape information [3][4][5][6][9][10][11] and many make 

use of the boundary of a segmented object to extract the shape information. The information can then be 

transformed to retrieve shape descriptors for classification of the shape or retrieval from a database 

[2][12]. It is desirable to have a representation that is easily computed and simple to interpret, especially 

if the system is to be implemented as an embedded system for applications such as automatic target 

recognition. 

 

Acquiring the polar representation of a shape with respect to the centroid is an attractive approach 

because it is easily calculated and only requires the boundary information [10]. The major problem with 

this is that the centroid position is affected by noise and occlusion in the boundary information. However, 

the method described in [9] is relatively insensitive to typical variations which can be found in real-world 

objects. The advantage of using this method is that the shape information is position, scale and rotation 

invariant [3][9].  
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Another problem identified in [10] with the polar representation approach is that the function may be 

multi-valued for a certain class of objects. This is especially true for most real world objects, such as the 

leaf shown in Figure 1. The solution presented in [10] is ad hoc and an improvement is presented in this 

paper. 

1.2. Neural Networks 
Neural Networks are interconnections of artificial “neurons” that are greatly simplified versions of the 

biological neurons found in the human brain [13]. On a computer, the neural network is represented by a 

labelled acyclic directed graph with a clearly defined set of inputs and outputs [13][14]. The neural 

network may have any number of hidden units defined in an arbitrary amount of layers. There are several 

different architectures in existence, each one with its own advantages and disadvantages. The aim of the 

neural network is to be able to learn complex input-output relationships based on a source of training 

data, and then be able to make predictions for unseen data [13][14]. The neural network is used for its 

generalisation abilities and there is always a trade-off between generalisation ability and over-fitting [13]. 

It is possible to show that perfect generalisation with a neural network is not possible due to the fact that 

an infinite amount of neurons can produce output that is consistent with the training data [13]. 

 

There are three main regularization tools which can improve the performance of the network by ensuring 

that the network does not over fit the data and that it generalises well [15]. The first is early stopping 

where a sub-sample of the training data is kept separate to be used as test data. The progress of how well 

the network generalises for the test data is monitored while being trained. Typically a sweep is done and 

then the network weights that gave the lowest error for the test data are used for the network. This set of 

weights represents the network that has the best generalisation performance (based on the test data). The 

problem with early stopping is that we need to keep aside a subset of the training data as test data. For 

successful training, we need as many training samples as possible so there is a conflicting situation 

between the number of training inputs and the size of the test data that is used. Typically, a third of the 

training data is used as test data.  

 

The second regularization tool is the weight decay factor in the network [16]. This allows the influence 

of old samples to affect the current weights much less than the current input. The old weight values decay 

over time. This allows the network to adapt to changes in the system that it is modelling. The problem 

with this is that the network could forget important information that it has learnt from the earlier samples.  
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The last tool is the use of noise injection [17]. The performance of the network can be improved for noisy 

and unseen data by training the network with a noise signal imposed on the training inputs or outputs. 

This makes the network more robust when it comes to predicting values for unseen data. The problem 

with this method is that we are artificially corrupting the data and therefore we have to ensure that the 

magnitude of the noise is not too great as to influence our network too much. And also it is not clear 

which probability distribution the noise must follow for a given application. 

Neural networks can be applied to regression or classification problems. Regression involves fitting a 

curve to some sample data. Classification involves assigning labels to the sample data so that each point 

lies in a set of n classes [13][14][18][19].  

 

Neural networks have been successfully applied to image classification [20]. The complexity of the 

classifier grows exponentially with the size of the object and with the number of dimensions [7]. It is 

therefore desirable to keep the number of input dimensions to the neural network as low as possible, 

reducing the curse of dimensionality [7].  Normally the image is down sampled or transformed before it 

is input to the neural network. 

 

More information about neural networks is given in Appendix A. 

2. Method 
A framework for the shape classification system has been developed which follows the modular 

engineering approach for system design.  

2.1. Overview 
The method described is capable of working with multi-valued polar representations of the shape.  

An overview of the shape classification system is shown in Figure 2. 

 

Segment 
Image 

Detect 
Edges 

Find 
Centroid 

Get Polar 
Rep. 

Classified 
Shape 

Neural 
Network 

Get 
Regions 

Find 
Vertices 

Find 
Contours 

Raw 
Image 

 
Figure 2 Overview of the shape classification system. 
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First the image is segmented to extract the object of interest. The boundary of the object is found by 

performing edge detection on the image mask. Next, the centroid of the shape is calculated and each 

point on the boundary of the object is used to get a polar representation of the shape. The polar 

representation is then converted into multiple contours so that important vertices can be found for the 

shape. This aids in the calculation of derivative information which is needed for finding interesting 

vertices. The polar representation is then sub-divided into a coarse grid and every region that contains 

boundary pixels or vertices is marked. The region grid is used as the input to the neural network where 

each segment of the grid is fed into a corresponding input of the network. 

 

The framework is tested on two types of images. The first is a set of side-view images of automobiles 

taken from the first floor of a building. The system must classify the vehicles into three exclusive 

categories, namely: hatch-back, sedan or utility-vehicle. Examples of the three categories are shown in 

Figure 3. 

  

 
Figure 3 Hatch-back, Sedan and Utility vehicle classes. 

 

The second set of samples consists of hand images showing a different count of fingers. The system must 

output which fingers are being held up and this represents a non-exclusive set of outputs. The 

combinations of finger orientations are limited (for practical reasons) to the five shown in Figure 4. 

 

 
Figure 4 The finger orientations classified by the system. 

 

This sample data represents a set of real world images that incorporate several problematic aspects of the 

polar representation method of shape classification.  

 

The method is limited to the representation and classification of the boundaries of 2D shapes or planar 

projections of 3D objects. Although this may seem restrictive, it is intended to be used in a more complex 

classification system where the shape information is just one parameter used to classify and track an 

object in an image. 
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2.2. 

2.3. 

Segment Image 
The work assumes that the object has already been segmented from the background and that a mask 

represents the object to be classified. The actual segmentation process is beyond the scope of this paper 

but there are several techniques that can be used to do this [3]. The sample data in this paper was 

segmented by hand. 

Detect Edges 
In order to find the boundary of the object, one must perform edge detection on the mask image. The 

Canny method finds edges by looking for local maxima of the gradient of the intensity map [21]. The 

gradient is calculated using the derivative of a Gaussian filter. This method is robust and is more likely to 

detect true weak edges than other methods. A simpler (and therefore more computationally efficient) 

method for edge detection can be achieved by using morphological operators to erode the image mask. 

The pixels that are removed are the boundary pixels [3]. The result of the edge detection process is 

shown in Figure 5a.  

 

   
 (a) (b) 

Figure 5 (a) Boundary information of the shape  
              (b) Polar Representation of the shape. 

 

2.4. Find Centroid 
The equation for calculating the centroid of an object [3][9] is given by:  

 ⎟
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where n is the number of pixels on the boundary of the shape in the image; xi and yi are the horizontal 

and vertical pixel positions of the ith boundary pixel. Every pixel in the boundary extracted from the 
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previous step is used to calculate the centroid. An alternate method to get the same centroid position is to 

use all the mask pixels of the object but this generally takes longer because the number of mask pixels is 

more than the boundary pixels. The centroid is what provides position invariance in the method. 

2.5. Get Polar Representation 
The polar representation is well suited to real world objects because they tend to be round and organic. 

The polar representation is able to capture this information conveniently without distorting the shape 

information significantly. The method described in [3] and [9] is used to get the polar representation of 

the shape boundary. The distance and angle of every boundary pixel is calculated with respect to the 

centroid position.  This is shown in the equation below: 

 ⎟
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where ∆xi and ∆yi are the differences between the ith boundary pixel position and the centroid.  

 

Scale invariance is achieved by normalizing the distance information for the extracted shape [9]. The 

phase of the boundary point with maximum radial distance is then used to rotate all subsequent points. 

This creates the rotation invariance in the method [9]. The polar representation of the example is given in 

Figure 5b. The polar representation of the shape is stored as a list of angle and distance pairs. See 

Appendix B for alternate methods for achieving position, rotation and scale invariance. 

 

 

2.6. Find Contours 
The polar representation is converted into a number of contours in order that we can find vertices which 

are representative of the shape. The contours themselves can contain information about sub-shapes which 

make up the overall shape. The advantage of the contour extraction is that each sub-contour can be 

treated as an independent shape and classified separately or used to aid classification of particular 

objects. 

 

To find the contours efficiently, several methods were tried. The most effective method turns out to be 

the most computationally efficient one too. First the polar representation points are sorted with an 

increasing angle parameter. Because the angular information is cyclical, the polar representation is 

duplicated so that we have two revolutions of the shape. This allows us to easily find the contour trend 

across the 2nπ angular position thresholds, for n being any integer.  
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The algorithm starts by adding the first (left most) point into the first contour. It then goes to the next 

point in the list and calculates the distance between the new point and the first point. If it is within some 

threshold (0.1 was used for this paper) then the point is added to the first contour. If not then the new 

point is added to a new contour. The distance of the next vertex is then calculated to the last points of 

each of the existing contours and the process continues until we have made a complete sweep of all the 

boundary points.  

 

There will potentially be many contours that capture the multiple values of the polar representation as 

shown in Figure 6. After the various contours have been extracted a final sweep of the contours should be 

made to se if the ends of individual contours can be joined to make longer contours. This is done by 

checking the distances between starting and ending points of each of the contours. Contours that are 

within the distance threshold are then combined to make longer contours. If the end of one contour is 

near to the beginning of another then the two contours are merely concatenated. If the end of one contour 

is near the end of another then the order of points in the second contour is first reversed before 

concatenating the two contours. This ensures that the combined contour captures the behaviour that is 

illustrated in Figure 6. 

 

D
is

ta
nc

e

End 
Start Start 

End Start 

 Angle

Figure 6 The ends of multiple contours should be combined if they are close to each other. 
 

The method described above performs very well when compared to other more elaborate methods that 

explicitly look for the closest next boundary point. Those methods were tried but abandoned because 

they either take up too much memory or are too computationally expensive and time consuming to 

compute. Figure 7 shows the result of the contouring process on the polar representation.  
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Figure 7 The polar representation after the contouring process. 

 
The algorithm performs very well in regions where there is a low gradient (dR/dθ) such as 2 to 4 radians 

in Figure 7. This is because there is no ambiguity between which contours the points belong to as we 

move from left to right in the polar representation. When there is a high gradient, such as in the -1 to 1 

radian region, there are typically incorrect contours being formed. By performing a similar sweep of the 

points but going from bottom to top (lowest to highest distances), we can build up a complimentary set of 

contours which would capture the behaviour of the contours more accurately in the regions of high 

gradient. They would however perform badly in the regions of low gradient. Further work must be done 

in combining the contours from both contour sweeps and only using the contours which perform well for 

the particular sweep direction. 

2.7. Find Vertices 
A method similar to [9] is used to find significant vertices of the shape. Zero crossings in the first 

derivative of the smoothed polar representation (See Eq. (3)) [9] are used to find these vertices.  
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where θp is the angle for point p; R(θp) is the distance of point p from the centroid; θp-i and θp+i are points 

before and after point p in the contour; n is the smoothing constant. The number of vertices extracted can 

be controlled my varying the smoothing constant. Higher values of n produce fewer vertices in general 

but this is not always the case. Each contour is padded with itself so that Eq. (3) is valid for the starting 

and ending points of the contour. The significant vertices for the example are shown in Figure 8. 
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Figure 8 Significant vertices found using the zero crossings  

of the smoothed polar representation. 
 

2.8. Get Regions 
Once we have the polar representation of the shape with all the contours and vertices, we sub-divide the 

polar grid into a number of segments which represent spatial regions. The choice of region size should be 

tuned to the particular application but it was found that 20 divisions for the distance information and 108 

divisions for the angular information (3.3° angular resolution) is more than sufficient for the two sample 

cases described in this paper. A matrix is used to represent the regions and if a boundary pixel lies in one 

of the regions then a value of 0.75 is written in the matrix at this position. If a vertex lies in a particular 

region then the region gets a value of 1.0. This allows us to give higher importance to the vertices of the 

shape.  

 

The number of regions that are generated are relatively large when a fine resolution in the grid is desired. 

It is therefore important to reduce unnecessary regions in the grid. This is done by performing a logical 

OR operation on all the regions of the training data to get a mask for the sample data. The mask is 

morphologically dilated to remove any holes in the mask [2] and to allow for variation which we expect 

in test data. The overall region mask for the hand data is shown in Figure 9.  
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Figure 9 Overall region mask for all the hand training data  

after applying the dilation operator. 

2.9. Neural Network 
Neural networks are used to perform the shape classification as opposed to the traditional template (or 

distance) matching [7][22]. The polar representation regions that fall within the mask are used as the 

inputs to the neural network classifier. This ensures that the neural network learns the spatial relationship 

between the shape information and the shape classes.  

 

An alternative method was tried where the normalized coordinates of the shape vertices are fed into the 

neural network but this scheme gave very poor results. This can be attributed to the difficulty of getting 

the same vertices into the corresponding inputs of the neural network for each shape. Another difficult 

way is to order the vertices in such a way that each input has the same meaning irrespective of what 

shape we are classifying. Principal Component Analysis (PCA) [16] was also used to reduce the 

dimensionality of the region-inputs. This gave poor results because the network is unable to distinguish 

between the slight changes in the reduced inputs for the various shapes. After performing the PCA, the 

actual values being fed into the network are no longer near-binary values but rather have a spread of 

values from 0.0 to 1.0. The network performs badly when trying to classify using the PCA data. 

 

The major limitation with using neural networks to classify the shapes is that one has to know the 

number of shape classes that exist beforehand. This means that it is difficult to add an additional class 

once the network has already been trained.  

 

The network is trained using the Scaled Conjugate Gradient (SCG) method because it converges quickly 

[16]. The generalisation ability of the network for unseen shapes is highly dependent on the values of the 

network weights at initialization. A subset of the training data is therefore used as (unseen) test data to 

gauge the generalisation ability of the learned network. The network is retrained several times until 

acceptable classification performance is achieved on the test data. This idea is similar to early stopping.  
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The network outputs are rounded off to the nearest integer when comparing the network outputs with the 

actual outputs. The actual values from the output of the neural network can be used as confidence limits 

on the classification of the shape. The closer the value is to either 0.0 or 1.0, the more confident the 

network is of its classification. Values approaching 0.5 mean that the network is uncertain of which class 

the shape is in.  

 

3. Results 

3.1. 

3.2. 

3.3. 

Automobiles 
An MLP with 5 neurons, 894 inputs and 5 outputs was trained on the automobile data. A total of 26 

training inputs were provided covering the various automobile classes. A total of 13 test shapes were 

used to measure the generalisation ability of the network. 

Hands 
An MLP with 5 neurons, 1323 inputs and 5 outputs was trained on the hand data. A total of 23 training 

inputs were provided covering the finger orientations. A total of 12 test shapes were used to measure the 

generalisation ability of the network. 

General 
A classification rate of 100% can be achieved for both data sets (automobiles and hands) if the network is 

retrained sufficiently. On average (without retraining), the network achieves about 90% classification 

depending on the random starting weights. The SCG requires fewer than 100 iterations to converge on a 

stable solution which gives zero error on the outputs after rounding off. 

4. Analysis 
A surprising result from the system performance is that the network achieves near 100% classification 

even though it is severely under trained. A general rule of thumb is to have at least twice as many 

training samples as the number of weights in the network. This is clearly not the case in the above 

training data and yet the network performs the classification very well on unseen data. This behaviour 

can be attributed to the number of inputs that are fed into the network and the near-binary values which 

are used. This representation of shape therefore makes the separation of the various classes for the given 

sample problem very clear. The converse was noticed when using PCA to reduce the number of inputs to 

the network. The values fed into these inputs were no longer near-binary values and the separation of the 

classes was significantly more difficult (only 30% classification was achieved, which approaches the 

performance of random guessing). 



 

Lukasz A. Machowski  Page 15 

 

The above classification rates are misleading and it is expected that the network will have worse 

performance with noisy data.  The disadvantage of the shape normalization method is that it is highly 

dependant on the boundary point with maximum radial distance from the centroid. Noise is able to 

confuse the entire shape representation if it alters the maximum radial distance point substantially. This is 

not a problem for small variations because the neural network is able to generalize sufficiently well for 

slight changes in the shape information. The discrete size of the region grid allows a significant amount 

of variation to actual boundary points without changing the values that are fed into the neural network. 

There is a trade-off between region segment size and the amount of detail that the neural network can 

distinguish. The results from the tests show very promising behaviour from the shape classification 

system. More work must be done to investigate how the system performs with larger data sets and noisier 

data.  

5. Conclusions 
In this paper, we have presented a shape classification framework which gives promising results for 

images of real world objects. The framework converts the boundary of the object into a polar 

representation which is suited to the representation of natural or organic objects. An efficient method is 

presented for finding and processing the multiple contours of the shape. These contours are used to 

extract interesting features from the shape and they are fed, along with the boundary information, into a 

neural network to be classified. The entire framework makes use of only simple arithmetic procedures 

and basic operations. This makes the framework relatively light-weight and suitable for embedded 

systems. Results from tests show impressive classification ability but more work must be done using 

larger datasets with more noise. Overall, the framework provides satisfactory results and should be 

considered for addition into a much larger object recognition system. 
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Chapter 3: An Object Oriented Calculation Process 
Framework 

Lukasz A. Machowski 

Abstract – Modern software applications are relying on increasingly complex calculation processes to 

perform tasks that are required. An object oriented calculation process framework is presented which 

brings calculations into the object oriented world. It does this by making each calculation process into a 

separate object with specific input and output variables. The benefit of this framework over existing ones 

is that the data types for the input or output variables do not have to descend from a framework specific 

data class. The framework still provides data type error checking by using reflection which is an 

advanced feature of .NET. The framework also discovers all sub-processes within the user defined 

process class using the same mechanism of reflection. The framework allows the process developer to 

concentrate on writing clean calculation code instead of wasting time writing error handling and 

process modelling code. 

1. Introduction 
The complexity of modern software projects is perpetually increasing because of the growth in 

computational power available. Modern software engineering techniques allow us to comprehend these 

large software systems [1] and to manage the complex requirements of a user’s application [2]. There is a 

tendency for users to demand more intelligence from their software and this typically requires the 

complexity of the calculation process to be increased. Up to now, software engineering techniques have 

been assisting us in designing, reusing and maintaining the large software systems. What is lacking is the 

focus on developing methods for writing complex calculation processes which are necessary for 

increasing the overall intelligence of the system.  

 

This paper presents a framework which allows engineers and scientists to define complex calculation 

processes which are reusable and maintainable by making them into calculation objects. This aids in the 

effective design and sharing of calculation processes between teams of experts because of the type 

checking and other error-eliminating features of modern compilers. The class definitions required to 

make the calculation objects also ensure that they have precisely defined interfaces and their behaviour is 

predictable.  

 

The remainder of this paper introduces the background of modelling and simulation, followed by the 

object oriented approach to process modelling. The design of the process calculation framework is 
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presented along with the decisions that were important for its development. A brief discussion of the 

framework is given along with recommendations for further work. Final comments about the framework 

are made in the conclusion. 

2. Background 

2.1. 

2.2. 

Modelling and Simulation 
Engineers and Scientists rely on system modelling to understand the characteristics of physical objects 

and predict their responses in the real world [3][4]. Models allow the output of a system to be predicted 

without having to construct the physical system. Simulation allows scenarios to be tested that would 

otherwise be difficult to generate.  

 

Engineers are familiar with solving complex problems by breaking them down into smaller ones and thus 

applying the principle of “Divide and Conquer” [5][6]. The majority of complex problems can be broken 

down into the interconnection of simpler modules which together form a process [7]. The large problem 

is solved by passing the data through the various stages of the process until the solution emerges at the 

end. The fields of Process-and-Control Engineering are built upon this foundation.  

 

Scientists take a mathematical approach to solving problems. They tend to model their systems as 

functions and differential equations. This allows them to apply their vast body of theory to the system 

which they are modelling and fully characterize the output that it is expected to produce. 

Process Models 
A process can be defined as a structured and measured set of events occurring over time to produce a 

specified output [8][9]. From the literature, it becomes evident that the process deals with how the output 

is derived and not what output is derived. This has several implications. The first is that the process is 

made up of smaller units of work that have clearly defined inputs, outputs and behaviours. The second is 

that the order in which each work unit is done is just as important as what work unit is done. The 

relationships that relate and constrain these sub-processes are most important to defining the process 

[8][9].  

 

Reuse is a key issue for handling complexity [1]. Process reuse involves identification, selection, 

understanding and awareness of suitable model-fragments [9] or partial-models [1] to reuse as templates. 

Identifying process templates is usually a tedious and difficult task and often leads to redevelopment of 

the entire process or using the same template for most of the processes [9]. 
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2.3. Software and Modelling Paradigms 
Software development is a process which takes as much skill to perfect as it does patience to endure [2]. 

Part of the problem lies in the fact that the software developer has to solve real world problems with a 

limited set of instructions that the computer understands. The different types of problems have led to 

various software paradigms that assist in solving the problems. A software paradigm is a pattern of how 

to design and develop software. Originally, software developers were mathematicians and scientists 

which were most comfortable using functional or procedural paradigms. Over time, the software systems 

became far too complex for individuals to comprehend and this led to the development of the Object 

Oriented (OO) paradigm. OO models real-world objects by capturing their attributes and behaviours and 

introduces effective mechanisms for ensuring maintainability and reusability within large software 

systems and amongst large groups of people. The functional paradigm was used because scientists were 

familiar with complex mathematical functions. With OO it is more difficult to get this ease of use for 

complex calculation processes because they have to be modelled as methods of objects or static 

functions. The problem with object methods is that they tend to be counter-intuitive when modelling 

mathematical or scientific calculation processes. The problem with static methods is that there is no 

mechanism that verifies when and how the calculations get performed, leaving a substantial burden on 

the programmer and ultimately introducing many possible sources of error. 

 

As with the software paradigms mentioned above, there already exist many modelling paradigms and 

commercial simulation packages [7]. They can roughly be characterized as follows:  

• Graph-based or language-based. 

• Multi-domain or single-domain. 

• Declarative or procedural modelling. 

A modelling paradigm that is particularly useful for software development is the port-based modelling 

paradigm because of the types of calculation processes that are typically performed in software. A port 

defines an intended interaction (in the form of a signal or energy) between a sub-process and its 

environment [7]. A process is made up by connecting the ports of smaller sub-processes together. Signals 

are used for the interactions between processes in a block diagram. The drawback with this is that the 

user is responsible for determining the causality of the model [7]. 

 

Paredis et. al. [7] developed the concept of reconfigurable models which accommodate simulations at 

different levels of detail without the need for remodelling the complete system, thus allowing the process 

models to evolve. 
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2.4. 

2.5. 

Object Oriented Process Modelling 
The Object Oriented Modelling Paradigm was invented by Hilding Elmqvist as part of his PhD 

dissertation [5][10]. This paradigm shares many of the advantages of object oriented programming while 

allowing one to model a-causal systems.  

 

Representing processes as classes enables the modelling of process structures with work breakdown 

(decomposition) and control-flow dependencies (associations) [9]. Associations express how classes can 

be related in building the global system [8]. 

 

The Unified Modelling Language (UML) has officially become the standard for object oriented analysis 

and design [9]. Often, classes and associations are stereotyped as process model primitives. The lack of 

first class process modelling primitives is a major limitation of UML, particularly with associations, 

which have to be implemented by references [8]. The Object Management Group (OMG), who are 

responsible for defining and maintaining UML, are focusing on model driven architectures and are 

showing an interest in model-driven process support [9]. 

 

Object Oriented process models decrease the conceptual gap between process modelling and software 

implementation [9] while demonstrating that OO can be used successfully for modelling software 

processes [8]. 

Existing Languages: 
Most of the general-purpose simulation software on the market such as ACSL, SIMULINK and 

SystemBuild assume that a system can be decomposed into block diagram structures with causal 

interactions [3]. 

 

There have been several attempts to define object oriented languages for physical modelling [1]. Jaccheri 

et. al. [8] focus on associations in their E3 process modelling language [9]. In E3 associations are first 

class primitives that can be defined and specialized just like classes [9]. Using inheritance, the modeller 

is able to create classes and associations at a high level of abstraction without preventing a later 

refinement by specialization [8]. Similarly, using aggregation, the modeller is able to hide the structure of 

the classes, and defer their detailed representation to the moment when the necessary information 

becomes available [8]. 

 

The port-based modelling paradigm builds on object oriented modelling languages such as VHDL-AMS 

and Modelica ([1][4]) [7]. 
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2.6. 

2.7. 

Reflection 
Reflection is an advanced feature of the .NET framework that gives runtime access to the metadata of a 

program so that it can gather information about its types. This includes the ability to get information 

about all the members (fields, properties, methods and custom attributes) of a class. Reflection also 

allows one to build new types at runtime. Reflection is typically used to create typed browsers; for 

finding fields to persist in serialization and for building symbol tables in compilers [11]. Because fields 

and properties are treated differently (properties being more powerful than fields), reflection is also 

useful for finding out which members of a class are fields and which are properties.  

 

Current Problems with Process Modelling 
The language for defining the process model is typically different to the rest of the application language. 

This means that the developer has to learn a completely new language with typically unrelated concepts. 

The process may also have to be implemented on a separate application system which would require 

interfacing to the user’s application. This introduces compatibility problems and often involves licensing 

issues.  

 

What is needed is a framework which allows the developer to define and implement the process in their 

native language of development. This reduces the time to learn how to use the process framework 

because the developer reuses their skills that they know from object oriented programming. What is also 

needed is a way of treating calculation processes as objects, which is not typically the case because 

calculations tend to be object methods or static functions. 

 

The method presented in this paper aims to satisfy both requirements by allowing the definition, creation 

and execution of complex processes by using native C# and the advanced features of the .NET 

framework. 
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3. Method 
This section describes the design and implementation of the process calculation framework developed for 

.NET. Firstly a brief overview is given of the entire framework and its usage. Then details of the most 

important classes are given to elaborate on the design. More UML diagrams are given in Appendix C. 

3.1. Overview and Usage 
The calculation process framework is based on an object oriented process modelling paradigm as 

described in the background section. Currently, the framework uses a simplified version of the port-based 

paradigm by using signals to connect sub-processes together to make a larger process. The current design 

does not use ports, which may model energy flow, but there is nothing stopping it from doing so 

conceptually. The consequence of this is that process developers are required to determine the causality 

of their models themselves. In a port-based paradigm this would not be the case. The reason for this 

design decision is that block-diagram-type processes are sufficient for a large number of calculation 

processes, including the ones that this framework has been designed for. A diagram showing the major 

concepts in the framework is shown in Figure 10. 

 

The signals that flow between sub-processes are transmitted from output-variables and are received by 

input-variables. The different variable categories ensure that data flows in the correct direction between 

sub-processes.  

 

 
Figure 10 Calculation Process made up by connecting variables of sub-processes together. 
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A complete class diagram of the framework is given in Figure 11. The developer defines new processes 

by creating a descendant of the Process class. They then create attributes as they would normally do and 

define them as variables for the process by overriding DefineVariables(...) and using the 

DefineVariable(...) method. They then create any sub-processes by overriding CreateSubProcesses(...); 

the framework automatically discovers all sub-processes that it contains. These sub-processes are then 

connected together by overriding CreateConnections(...) and using the MakeConnection(...) method. The 

developer then performs any pre-processing on the variables by overriding 

PerformCalculationPreSub(...) before the variables get passed to the sub-processes. After the sub-

processes are complete, the developer can do post-processing by overriding 

PerformCalculationPostSub(...). The actual calculation for the process gets performed in this method. An 

atomic process will have no sub-processes and the code for the calculation will be located in the 

PerformCalculationPostSub(...) method. 

 

To use the process, the user creates the process object and assigns all required input values to the actual 

data attributes. They then flag that these process variables are ready by using the Input[“VariableName”] 

collection to set the IsReady property to true. Once all the input variables are ready, the user may call the 

Calculate(...) method to actually perform the calculation process. They may query the success of this 

operation by checking the CalculationSucceeded property. If it is true then the output attributes of the 

process will contain the calculated results and the Output[“VariableName”].IsReady property for each 

output variable will be true. The output variables resulting from the calculation process can be queried 

and used just as any other fields or properties would be used on an object. 

 

More details about how specific aspects of the framework have been designed are given next. 
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Figure 11 Complete class diagram of the Calculation Process Framework. 
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3.2. Variables 
Typical objects in the OO paradigm contain their data in attributes (fields or properties). Variables are 

used to mark specific attributes as signal ports for the processes. The major advantage of this framework 

is that variables wrap arbitrary data types automatically as opposed to having the user manually wrap the 

data with a descendant of a framework-defined parent class. This means that any field or property of an 

object can be used as a variable in the framework without losing the ability to have compile-time and 

runtime type-checking performed on the variables. This flexibility is very attractive because with other 

frameworks, like E3, the process developer has to descend their data class from the framework data class. 

 

A variable is the abstraction that the framework makes for user defined fields and properties. It allows 

the framework to pass signals across sub-processes while still doing type-checking and validating the 

data. The variable class has a Value property that allows the user to access and modify the underlying 

attributes directly. The variable automatically returns the correct value of the underlying attribute (typed 

as an object, which is the parent of all classes in C#) no matter if it is a field or a property of the process 

class. Likewise with setting the value of a variable, the framework automatically checks what type of 

underlying attribute the variable represents and tries to set the value if the data types are compatible. If 

this is not the case then an exception is thrown. 

 

A variable object is always linked to a specific instance of a process and therefore implements the idea of 

a port. In order to assist in finding the causality of a process calculation, each variable has a specific 

directionality assigned to it. Input variables receive data from outside the process. Output variables 

transmit data to other processes. Internal variables are generated within the process (possibly from 

calculations performed on the inputs) and may be used by sub-processes. The process developer is 

responsible for ensuring the causality of processes that depend on internal variables, while the framework 

automatically ensures the correct calculation order for processes that use Input and Output variables.  

 

A variable object is instantiated by passing the Owning Process, the Member Info for the attribute and the 

Directionality of the variable (Input, Internal or Output). The Owning Process links the variable to a 

specific process object. The Member Info is a class defined in the Reflection namespace of the .NET 

framework and it allows the process framework to do type checking on the actual class attributes that are 

marked as variables.  

 

When the process developer calls the DefineVariable(…) method, they pass the attribute name that they 

want to define as a process variable. The method then uses reflection to find any fields or properties in 

the process class with that name. If it is found, then the Member Info for that attribute is extracted and a 
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new variable object is created. This variable is then added to one of three internal lists of the process 

class, depending on the directionality of the variable. This makes retrieving Inputs, Internals and Outputs 

easy for the user because they can get to the variables by accessing collections with the same names. 

 

Another important aspect of the variable class is the property that flags whether the variable’s data is 

ready or not. The user sets the IsReady flag of Input variables that they assign data to. The framework 

automatically checks that all inputs are ready before the calculation process commences. This flag is used 

to determine if the output from the calculation is successful or not. A variable with the IsReady flag set to 

false should be treated as having invalid data stored in it.  

3.3. Connections 
Connections are used to create the associations between sub-processes. These allow one to add control-

flow dependencies between these sub-processes. The signals flowing along the connections can be 

validated and the behaviour of the connections can be changed depending on the value of the data. This 

allows one to develop dynamic-processes which are very powerful and effective if designed carefully. 

 

A connection is simply an object that allows signalling of information from one variable to another. 

When instantiating a connection object, one merely passes the source and destination variables to the 

constructor. The framework then checks to see that destination variable is assignment compatible with 

the source variable. Incorrectly using these connection objects is a common source of errors in most 

process frameworks. Therefore this functionality is abstracted away from the process developer by 

making them use the MakeConnection(…) method to define connections. The process developer merely 

informs the framework of which variables to connect by overriding the CreateConnections(…) method. 

The framework manages and creates the correct connection objects and adds them into the process so 

that the sub-processes can be calculated in sequence. The user may assign a validation handler to the 

connection which allows them to verify the data being passed between sub-processes. If the data is not 

valid (out of range or erroneous) then the data does not get propagated and the destination variable’s 

IsReady flag gets set to false.  

 

The connection objects do not provide a great deal of functionality themselves and are not really intended 

to be accessed by the user. Instead, most of the useful functionality comes from a helper class called 

ConnectionInfo. Each process contains an object of type ConnectionInfo which stores all the structural 

information for connecting sub-processes. This ConnectionInfo class allows one to easily get all the 

connections leaving or going into a particular sub-process or a particular variable. This is used by the 

framework to retrieve and perform the sub-process calculations in the correct order.  
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3.4. Processes 
The Process class is the parent of all user defined processes. A process object provides the ability to 

convert input variables into output variables. The process class contains all the functionality to define 

sub-processes and to actually perform the calculations for the process. This includes the error-checking 

on the variables and inter-process communication. This frees the process developer from having to worry 

about many of the nuances of performing complex calculation processes and allows them to concentrate 

on writing clean calculation code. The biggest paradigm shift in the way of thinking is that the 

calculation developer assumes that all the input variables are valid when they write the calculation code. 

This makes the code significantly cleaner and easier to follow because it is not littered with confusing 

error checking code. All of the error checking is done elsewhere in the framework and it provides space 

for the process developer to write clean error-checking code. This decoupling of error-checking code and 

calculation code is one of the most valuable aspects of this framework.  

 

The framework automatically detects and finds all sub-process objects contained in a process by using 

reflection to add them into an internal process list. This eliminates the need for the process developer to 

register the sub-processes with the framework and therefore makes defining new processes much 

simpler. In Section V, a discussion on how a similar result can be achieved for registering variables is 

conducted. 

 

The order in which sub-processes are calculated is determined at runtime so that the framework can 

support the concept of dynamic processes. To get the first layer of sub-processes to calculate, the 

framework follows all connections leaving the input and internal variables of the parent process. It then 

attempts to perform the calculations on these processes. If a sub-process is successfully calculated then it 

follows the connections leaving its outputs and marks the connected sub-processes for calculation in the 

next layer. It may happen that sub-processes keep failing because of variable dependencies or other 

reasons but the overall calculation only fails if all sub-processes in one layer fail at the same time. This 

means that there is a deadlock situation in the process definition and typically means that the causality of 

sub-processes was badly thought out or there is an error in the sub-process calculation. 

 

4. Analysis 
Our framework improves on systems like E3 because it does not require that the data classes be derived 

from a specified parent class [8]. Any data types can be used as variables and reflection allows the type 

checking to be performed by the framework. 
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Error logging is crucial to the successful development of processes. This is because the process developer 

is seldom able to implement error-free calculation code on the first attempt. Experience from using the 

framework has shown that logical errors in the calculation code can easily be found and corrected if the 

framework reports which sub-process calculations failed, and which variables are not valid. This focuses 

the process developer’s attention directly on the source of the errors and reduces debugging time.  

 

The use of reflection is very important because it ensures a tight coupling between the variable names 

used for processes and the actual attribute names used in the process classes. The framework 

automatically detects if the developer uses variable names that do not exist as attributes in the actual class 

being developed and reports an error. The automatic detection of sub-processes by using reflection also 

means that the user does not have to worry about registering the sub-processes with the framework. 

These are good features because they bring the two domains of process development and process 

implementation closer together.  

 

The major advantage of using a framework like this one is that it removes the calculation specific code 

from the inter-process communication code. This allows process developers to concentrate on writing 

calculation process code, while still giving them extensive error checking and reporting capabilities by 

reusing the framework classes. 

 

5. Further Work 
A very powerful feature of the .NET framework is the ability to provide descriptive metadata about code 

elements in the form of custom attributes [11]. This means that the user can mark fields and properties as 

variables by using a framework defined custom attribute (eg: [Variable(“Input”)]). This would allow the 

framework to automatically find all the variables for a process by using reflection to find all the members 

with the VariableAttribute. This would eliminate the need for the process developer to override 

DefineVariables(...) and register the variables manually. The framework would find all the variables 

automatically just like it does with the sub-processes.  

 

Another improvement to the framework would be to have the concept of parameters [1][3]. These behave 

like inputs to sub-processes except that they stay constant during a calculation. The values can be 

changed between calls to the Calculate(…) method. 

 

 



 

Lukasz A. Machowski  Page 29 

6. Conclusions 
There is a big push in .NET to make everything an object. With this framework, we bring calculations 

into the object oriented paradigm by implementing an object oriented process modelling framework. 

Reflection, which is an advanced feature of .NET, allows a closer coupling between process development 

and process implementation. The framework defines a Process class which is sub-classed to create a new 

process. All of the functionality that is necessary for connecting up sub-processes and calculating them is 

captured within the Process class. This allows the process developer to concentrate on writing clean 

calculation code while separating the data validation code elsewhere. This framework is well suited to 

implementing complex calculation processes while incorporating the main advantages of object 

orientation which are maintainability and reusability. This framework makes it significantly easier for 

large groups of people to develop and maintain complex calculation processes and therefore does the 

same for process development as object orientation did for software development. 
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Chapter 4: Using an Object Oriented Calculation Process 
Framework and Neural Networks for  

Classification of Image Shapes 
Lukasz A. Machowski 

Abstract - Modern software systems are perpetually becoming more complex. Machine vision is a field 

that demonstrates this concept clearly. Shape classification, which is a part of machine vision, has both 

high and low level image processes in it. This paper presents a framework that brings the definition and 

implementation of complex calculation processes into the object oriented paradigm. Defining processes 

in this manner assists in concurrent development by groups of people. The paper describes how the 

shape classification process is implemented in the framework. Results of a C# implementation are 

compared to a procedural implementation in Matlab. The timing requirements for the various stages of 

the shape classification process are evaluated. Conclusions from this are that the object oriented 

framework is well suited to high level machine vision concepts while the procedural paradigm is well 

suited to low level tasks such as edge detection. Poor classification performance is reported for the C# 

implementation but it is attributed to the poor training ability of the neural network toolbox used. The 

C# implementation of the shape classifier demonstrates the maintainability and reusability of the 

framework. It has 26 out of 33 process classes using inheritance for specialization or composition for 

defining sub-processes. This paper shows that the framework is well suited to machine vision processes. 

1. Introduction 
The complexity of modern software projects is perpetually increasing because of the growth in 

computational power available. Modern software engineering techniques allow us to comprehend these 

large software systems and to manage the complex requirements of a user’s application [1]. There is a 

tendency for users to demand more intelligence from their software and this typically requires the 

complexity of the calculation process to be increased. Up to now, software engineering techniques have 

been assisting us in designing, reusing and maintaining the large software systems. What is lacking is the 

focus on developing methods for writing complex calculation processes which are necessary for 

increasing the overall intelligence of the system. An example where this is the case is in the field of 

machine vision. There are many different features of an image which can be used for classifying objects 

and these include colour, texture, motion, context and shape [2][3][4]. Shape information is used 

extensively for classification of objects in vision systems and is an important visual feature [5][6]. There 

are also several methods that can be used for performing the classification of the object and these include 

similarity distance measures, template matching, index calculation, hashing, maximum likelihood, 
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clustering and neural network classification [2][7]. There are many advantages of using neural networks 

and these include being able to train the system using example images and having superior generalization 

abilities when compared to other classification techniques. 

 

This paper presents the design and implementation of a shape classification system in an object oriented 

(OO) calculation framework. It allows engineers and scientists to define complex calculations by making 

them into calculation objects. This aids in the effective design and sharing of calculation processes 

between teams of experts because of the type checking and other error-eliminating features of modern 

compilers. The class definitions required to make the calculation objects also ensure that they have 

precisely defined interfaces and their behaviour is predictable. This framework is then evaluated by 

implementing a shape classification process in an object oriented manner. The implementation is given in 

Appendix D. 

2. Background 

2.1. 

2.2. 

Process Frameworks 
A process can be defined as a structured and measured set of events occurring over time to produce a 

specified output [8][9][10]. From the literature, it becomes evident that the process deals with how the 

output is derived and not what output is derived. This has several implications. The first is that the 

process is made up of smaller units of work that have clearly defined inputs, outputs and behaviours. The 

second is that the order in which each work unit is done is just as important as what work unit is done. 

The relationships that relate and constrain these sub-processes are most important to defining the process 

[8][9]. The role of a process is to convert given inputs into useful outputs [11]. 

 

Reuse is a key issue for handling complexity [1][10]. Process reuse involves identification, selection, 

understanding and awareness of suitable model-fragments [9] or partial-models [1] to reuse as templates. 

Identifying process templates is usually a tedious and difficult task and often leads to redevelopment of 

the entire process or using the same template for most of the processes [9]. 

Object Oriented Modelling and Simulation 
There already exist many modelling paradigms and commercial simulation packages [12][13]. A 

modelling paradigm that is particularly useful for software development is the port-based modelling 

paradigm because of the types of calculation processes that are typically performed in software. A port 

defines an intended interaction (in the form of a signal or energy) between a sub-process and its 

environment [12]. A process is made up by connecting the ports of smaller sub-processes together. 
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Signals are used for the interactions between processes in a block diagram. The drawback with this is that 

the user is responsible for determining the causality of the model [11][12]. 

The Object Oriented Modelling Paradigm was invented by Hilding Elmqvist as part of his PhD 

dissertation [14][15]. This paradigm shares many of the advantages of object oriented programming 

while allowing one to model a-causal systems. Representing processes as classes enables the modelling 

of process structures with work breakdown (decomposition) and control-flow dependencies 

(associations) [9]. Associations express how classes can be related in building the global system [8]. The 

OO modelling and simulation concept has great intuitive appeal because the notion of interacting objects 

is similar to that of real-world experiences [10]. 

 

The Unified Modelling Language (UML) has officially become the standard for object oriented analysis 

and design [9][16]. Often, classes and associations are stereotyped as process model primitives. The lack 

of first class process modelling primitives is a major limitation of UML, particularly with associations, 

which have to be implemented by references [8]. The Object Management Group (OMG), who are 

responsible for defining and maintaining UML, are focusing on model driven architectures and are 

showing an interest in model-driven process support [9]. 

 

Object oriented process models decrease the conceptual gap between process modelling and software 

implementation [9] while demonstrating that OO can be used successfully for modelling software 

processes [8]. 

2.3. 

2.4. 

Reflection 
Reflection is an advanced feature of the .NET framework that gives runtime access to the metadata of a 

program so that it can gather information about its types. This includes the ability to get information 

about all the members (fields, properties, methods and custom attributes) of a class. Reflection also 

allows one to build new types at runtime. Reflection is typically used to create typed browsers; for 

finding fields to persist in serialization and for building symbol tables in compilers [17]. Because fields 

and properties are treated differently (properties being more powerful than fields), reflection is also 

useful for finding out which members of a class are fields and which are properties.  

Machine Vision and Image Processing 
Getting a machine vision system to recognize objects from images is a difficult and well studied problem 

[4]. The ability of humans to segment, classify and recognize objects with relative ease makes it a sought 

after ability for vision systems. Being able to sense the environment using visual information has many 

applications in the commercial, industrial, medical and military fields.  
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Machine Vision is used to understand the content of images while image processing enhances the ability 

to achieve machine vision [18]. Image processing can be partitioned into three levels and each level has a 

specific output [18]: 

• Low-level: an improved image, such as one with reduced noise. 

• Mid-level: a two dimensional data structure, such as the result of edge detection. 

• High-level: a data structure describing the content of the scene. 

 

Machine vision is the computer analysis of images with the intent to discover what information the 

images contain [18]. Recognition of features is the core of machine vision and it relies on finding suitable 

representations in order to find these features. Once an adequate representation has been achieved, 

pattern and feature analysis are employed to analyze the image for information content [18].  

According to Erman and Lesser [19], it is impossible to construct a successful machine vision system 

without careful attention to issues of system engineering. These issues include maintainability and 

configuration control, human engineering, performance analysis, and efficiency. If we include reusability 

in this list then we notice that it resembles the problems faced by software developers before the advent 

of the object oriented software paradigm. 

2.5. Shape Representation 
Representation is the process of determining a description for an object or region [18]. There are several 

techniques for representing shape information [3][5][6][18][20][21][22]  and many make use of the 

boundary of a segmented object to extract the shape information. The information can then be 

transformed to retrieve shape descriptors for classification of the shape or retrieval from a database 

[2][23]. It is desirable to have a representation that is easily computed and simple to interpret, especially 

if the system is to be implemented as an embedded system. 

 

One method of representing shape is the Freeman Chain Coding which encodes the directions taken 

while moving from pixel to pixel around the shape boundary [18]. Problems with this method occur 

when the boundaries are not smooth or when they are fragmented [18]. The advantage is that chain 

coding is an efficient method for storing the shape information. Other methods include fitting line 

segments, B-Spline representation, Fourier descriptors and Autoregressive models [24].  

 

If the pixels of a 2D image representing a shape are processed into a single dimension then we have what 

is known as a signature [18]. The polar representation is an example of a signature [20]. Acquiring the 

polar representation of a shape with respect to the centroid is an attractive approach because it is easily 
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calculated and only requires the boundary information [21]. The major problem with this is that the 

centroid position is affected by noise and occlusion in the boundary information. However, the method 

described in [20] is relatively insensitive to typical variations which can be found in real-world objects. 

The advantage of using this method is that the shape information is position, scale and rotation invariant 

[3][20].  

 

Another problem identified in [21] with the polar representation approach is that the function may be 

multi-valued for a certain class of objects. This is especially true for most real world objects, such as the 

leaf shown in Figure 1. The solution presented in [21] is ad hoc and an improvement is presented in [25]. 

 

Figure 12  A leaf with concave sections and the problematic many-to-one polar representation. 
 

2.6. Neural Networks 
Neural Networks are interconnections of artificial ‘neurons’ that are greatly simplified versions of the 

biological neurons found in the human brain [26][27]. On a computer, the neural network is represented 

by a labelled acyclic directed graph with a clearly defined set of inputs and outputs [26][28]. The neural 

network may have any number of hidden units defined in an arbitrary amount of layers. There are several 

different architectures in existence, each one with its own advantages and disadvantages. The aim of the 

neural network is to be able to learn complex input-output relationships based on a source of training 

data, and then be able to make predictions for unseen data [26][28]. The neural network is used for its 

generalization abilities and there is always a trade-off between generalization ability and over-fitting 

[26][27]. It is possible to show that perfect generalization with a neural network is not possible due to the 

fact that an infinite amount of neurons can produce output that is consistent with the training data [26]. 
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Neural networks can be applied to regression or classification problems. Regression involves fitting a 

curve to some sample data. Classification involves assigning labels to the sample data so that each point 

lies in a set of n classes [26][28][29][30].  

 

Neural networks have been successfully applied to image classification [27][31]. The complexity of the 

classifier grows exponentially with the size of the object and with the number of dimensions [7]. It is 

therefore desirable to keep the number of input dimensions to the neural network as low as possible, 

reducing the curse of dimensionality [7].  Normally the image is down sampled or transformed before it 

is input to the neural network.  

 

The neural network used for the classification stage in this paper is the Multi Layer Perceptron (MLP) 

[27]. This architecture is simple yet sufficient for classifying shapes of real-world objects [25]. 

3. Method 

3.1. Calculation Process Framework 
The calculation process framework is based on an object oriented process modelling paradigm as 

described in [13]. Currently, the framework uses a simplified version of the port-based paradigm by 

using signals to connect sub-processes together to make a larger process. The current design does not use 

ports, which may model energy flow, but there is nothing stopping it from doing so conceptually. The 

consequence of this is that process developers are required to determine the causality of their models 

themselves. In a port-based paradigm this would not be the case. The reason for this design decision is 

that block-diagram-type processes are sufficient for a large number of calculation processes, including 

the ones that this framework has been designed for. A diagram showing the major concepts in the 

framework is shown in Figure 13. 

 

Figure 13 Calculation process made up by connecting variables of sub-processes together [13]. 
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The signals that flow between sub-processes are transmitted from output-variables and are received by 

input-variables. The different variable categories ensure that data flows in the correct direction between 

sub-processes.  

 

A complete class diagram of the framework is given in Figure 14. The developer defines new processes 

by creating a descendant of the Process class. They then create attributes as they would normally do and 

define them as variables for the process by overriding DefineVariables(...) and using the 

DefineVariable(...) method. They then create any sub-processes by overriding CreateSubProcesses(...); 

the framework automatically discovers all sub-processes that it contains using reflection (which is an 

advanced feature of the .NET framework [13]). These sub-processes are then connected together by 

overriding CreateConnections(...) and using the MakeConnection(...) method. The developer then 

performs any pre-processing on the variables by overriding PerformCalculationPreSub(...) before the 

variables get passed to the sub-processes. After the sub-processes are complete, the developer can do 

post-processing by overriding PerformCalculationPostSub(...). The actual calculation for the process gets 

performed in this method. An atomic process will have no sub-processes and the code for the calculation 

will be located in the PerformCalculationPostSub(...) method. 

 

To use the process, the user creates the process object and assigns all required input values to the actual 

data attributes. They then flag that these process variables are ready by using the Input[“VariableName”] 

collection to set the IsReady property to true. Once all the input variables are ready, the user may call the 

Calculate(...) method to actually perform the calculation process. They may query the success of this 

operation by checking the CalculationSucceeded property. If it is true then the output attributes of the 

process will contain the calculated results and the Output[“VariableName”].IsReady property for each 

output variable will be true. The output variables resulting from the calculation process can be queried 

and used just as any other fields or properties would be used on an object. 
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Figure 14 Complete class diagram of the Calculation Process Framework [13]. 
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3.2. Image Shape Classification 
The method described in [25] is capable of classifying multi-valued polar representations of shapes.  

An overview of the shape classification system is shown in Figure 2. 

 

 

Figure 15 Overview of the shape classification system. 
 

First the image is segmented to extract the object of interest. The boundary of the object is found by 

performing edge detection on the image mask. Next, the centroid of the object is calculated by using each 

pixel point of the object and this is used to get a polar representation of the shape. The polar 

representation is then converted into multiple contours so that important vertices can be found for the 

shape. This aids in the calculation of derivative information which is needed for finding interesting 

vertices. The polar representation is then sub-divided into a coarse grid and every region that contains 

boundary pixels or vertices is marked. The region grid is used as the input to the neural network where 

each segment of the grid is fed into a corresponding input of the network. A training set of example 

images can be used to create a region mask which reduces the number of inputs to the neural network. 

Examples of the various stages in the shape classification are shown in Figure 16. More details are found 

in [25]. 

 

Figure 16 Shape classification stages [25]. (a) Raw Image. (b) Segmented Object. (c) Edges. (d) 
Polar Representation. (e) Contours. (f) Polar Representation with Vertices (g) Region Mask. 
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3.3. Object Oriented Approach 

3.3.1. Overview 
In order to create an object orientated implementation of the shape classification system described in 

Figure 16, one has to restructure the various stages of the process as in Figure 17. 

 

Figure 17 Various stages in OO shape classification. 
Stage 1 is responsible for finding the positions of the boundary pixels and also the centroid of the shape. 

Stage 2 uses this information to find the polar representation of the shape. Interesting features in the form 

of vertices are then extracted from the polar representation in stage 3. The polar coordinates and vertices 

are then converted into a form that is understood by a neural network in stage 4. Stage 5 performs the 

actual shape classification. The class diagram of how these processes were implemented in the 

framework is given in Figure 18. More details about the various stages are given next. 

 

Figure 18 Class diagram of stage processes. 



 

Lukasz A. Machowski  Page 40 

3.3.2. Stage 1: Boundary and Centroid Finder 
Segmentation of the object is beyond the scope of this paper so it is assumed that stage 1 receives a 

segmented image as its input. This stage is actually made up of two processes running in parallel. The 

first process is a BoundaryFinder which performs edge detection (EdgeDetector sub-process) on the 

segmented image and then it returns the positions of all the boundary pixels (BoundaryFromEdge sub-

process). This process takes two additional input parameters. The first is the EdgeThreshold, which filters 

out any pixels that are below a specified colour in the segmented image. This is useful for removing 

unwanted noise and other artefacts. The second parameter is the BoundaryThreshold which will not 

return the positions of edge pixels that are below that threshold. In order to implement the 

BoundaryFromEdge sub-process, we extend the calculation framework by creating a process called a 

PixelIterator.  

3.3.3. PixelIterator Class 
This process takes an image as an input and then it runs its sub-processes on each and every one of the 

pixels in the image. The PixelIterator defines two variables, PixelPosition and PixelColor. The process 

automatically connects up the variables to sub-processes that descend from the PixelProcess class, which 

define and register corresponding variables. In this way, we are able to easily define processes that 

operate on all the pixels of an image and have the framework worry about running the processes in the 

correct order. The BoundaryFromEdge class descends from the PixelIterator class and it has two sub-

processes as is shown in Figure 19.  

 

Figure 19 Sub-processes operating on all pixels in the BoundaryFromEdge class. 
 

The PixelFinder process is a simple filter that compares the PixelColor to the BoundaryThreshold. If it 

exceeds the threshold then the PixelPosition is passed on to the ObjectAccumulator which maintains a 

list of all the inputs that it received. The output from the overall process is a list of pixel positions that 
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represent the boundary. The BoundaryFromEdge process illustrates how the framework allows dynamic 

processing because if a valid pixel is not found (in the filter) then the output for the sub-process is not 

valid and the framework will not execute the second sub-process.  

 

The second parallel sub-process of stage 1 is the CentroidFinder. This class also descends from the 

PixelIterator class and it is implemented in a similar fashion to the BoundaryFromEdge process. It 

contains a pixel filter which feeds valid pixels into a sub-process that accumulates and calculates the 

centroid of the list of pixel positions.  

3.3.4. Stage 2: Polar Representation Converter 
This process takes the boundary pixel positions and the centroid found in stage 1 and creates a polar 

representation of the shape. Stage 2 is a descendant of the ListIterator class which is another extension to 

the process framework. It works exactly the same as the PixelIterator class except that it takes any 

arbitrary list (which implements the IList interface) as an input. Every single boundary pixel position is 

fed into a PolarConverter sub-process. This makes use of the centroid position and the algorithm 

described in [25] to find the polar representation. The output of this process is another list containing the 

boundary pixel locations on the polar grid. 

3.3.5. Stage 3: Vertex Finder 
In order to find vertices in the shape we first need to convert the shape representation into contours. The 

algorithm described in [25] is implemented in the ContourMaker process. Stage 3 is a descendant of the 

ListIterator class and it goes through each polar coordinate and feeds it into the ContourMaker sub-

process. This sub-process slowly builds up a list of contour objects as it gets all the polar coordinates. A 

suitable object oriented design would dictate that the vertices should be properties of the contour objects. 

This means that the implementation for finding the vertices is done as a method of the Contour class. It 

should be noted that if calculating the vertices was a very complex process in itself, it would be 

appropriate to use process objects in the implementation of this method. At the end of stage 3, a list of all 

the polar vertices is extracted from the generated contours and this represents all the vertices in the shape. 

3.3.6. Stage 4: Region Maker 

All of the calculated information is useless unless it can be fed into the neural network in a form that it 

would understand. The role of stage 4 is to convert the shape and its features into Regions which allow a 

simple MLP to be able to classify the shape [25]. This stage merely creates a 2-dimensional polar grid 

with the given input dimensions (HorizDiv for the number of angular divisions, and VertDiv for the 

number of radial divisions). Stage 4 fills in values of 0.75 for segments of the polar grid that contain 

boundary pixels and it fills in values of 1.0 for segments that contain vertices. This stage also passes the 



 

Lukasz A. Machowski  Page 42 

data through the region mask which eliminates polar-regions that are not expected to contain data for the 

range of shapes that are possible. This has the effect of reducing the number of inputs to the neural 

network. 

3.3.7. Stage 5: Classifier 
This stage performs the actual classification of the shape using an MLP. Each segment of the Region that 

is not filtered out by the region mask is used as an input to the neural network. The output classes 

represent particular shapes. We make use of Neurobox [32] for implementing the MLP and its built-in 

support for pattern recognition. The Region class contains all the functionality required to represent the 

data in a form that is compatible with the Neurobox network. As can be seen in Figure 18, there is a 

process called Stage5Training. This is a modification to the stage 5 process which assists in training and 

saving networks with example data. Stage5 is designed to be more efficient for classification once a 

network has been trained. 

3.3.8. Shape Classifier 
The calculation framework is designed for reuse, and it makes defining new processes very quick and 

effective. The commonality between processes can easily be extracted and just segments that need to 

change can be slotted into an existing process. Once all 5 stages have been designed and implemented, all 

that remains is to connect up the various stages as is shown in Figure 17. The resulting process is what 

makes the ShapeClassifier. It demonstrates the ability of the framework to model complex processes at 

varying levels of abstraction because they are made up of a recursive set of sub-processes. The 

framework allows the actual implementation of the ShapeClassifier class to be both concise and easy to 

understand because it merely defines how the sub-processes are connected together. This eliminates 

many sources of error and confusion when debugging the code. It also allows various people to work on 

the design and implementation of the complex process independently, thus facilitating multi-developer 

collaboration.  
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4. Results 
The shape classifier is implemented in C# as a collection of process classes. Using the classifier is as 

simple as using any other process of the framework. The sample data consists of a set of hand images 

showing different counts of fingers as in [25]. The performance of the implementation is evaluated in the 

next section.  

4.1. Performance 

4.1.1. Time Required 
The time required to perform each stage of the shape classification is analyzed and compared between a 

C# (object oriented) implementation and a Matlab (functional) implementation. The amount of 

processing required depends on the image data being analyzed. In order to account for this, we evaluated 

the times for all the samples in the data set and present the average results in Figure 20.  

 

 

 

Figure 20 Normalized timing results for each stage of the shape classification. 
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The results clearly show that the stage 1 is implemented in a very inefficient manner in the object 

oriented process framework. This can be attributed to the fact that edge detection is a very low level 

image-process and is well suited to the functional paradigm. Stage 3, on the other hand is more efficient 

in the C# implementation because we are finding contours and vertices, which are easily modelled as 

objects, from the boundary information. This suggests that the process framework is efficient for the 

higher-level processes of machine vision. The poor performance of stage 5 (classification) can be 

attributed to the particular neural network toolbox used [32] and is discussed in the next section. 

4.1.2. Classification Rate 
The neural network toolbox used for classification in the C# implementation is designed in a completely 

object oriented manner [32]. This has the disadvantage of being slow when training the neural network 

on large data sets. The Neurobox toolbox makes use of simple back propagation and this takes a 

substantially long time when the training set exceeds about 20 image shapes. It is also very difficult to 

train the network so that it manages to classify all training shapes correctly. On the other hand, the Netlab 

[33] toolbox for Matlab is more advanced and manages to train quickly and accurately [25]. This can be 

attributed to the more advanced training algorithms (such as Scaled Conjugate Gradient methods) 

implemented in the toolbox. For this reason, it would not be a fair indication of the performance of the 

framework if we looked at the classification rates alone. In order to demonstrate that the framework does 

work, a small data set of 10 sample images was used to train the network. The classification rate is 

evaluated using the ‘leave-out-one’ method [27] which has the effect of eliminating variance due to 

different network weights and it also gives statistically relevant classification results. The network 

architecture had 1356 units in the input layer, 5 neurons in the hidden layer and 5 units in the output 

layer. A classification rate of 68% was achieved for the C# implementation, whereas the Matlab 

implementation (using the Netlab toolbox) achieved 90%. This proves that the overall shape 

classification process works and the timing performance shows that the object oriented process 

framework is feasible for implementing machine vision processes. The poor classification rate is 

attributed to the training mechanism of the Neurobox toolbox and it should not be used as a measure to 

judge the process framework. The outputs from stage 4 in both the C# and Matlab implementations are 

identical, which means that classification rates would be identical if the same neural network toolboxes 

were used.  
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5. Analysis 
The calculation framework is a very effective means for implementing complicated processes. When 

implementing the shape classification system, a total of 33 classes were developed. Twenty six classes 

demonstrated code reuse by either using inheritance to specialize processes or composition to define new 

sub-processes from existing ones. The calculation framework is not meant to force the developer into 

creating software that resembles the procedural way of programming. Instead, they are encouraged to 

design the system in an object orientated manner and use the framework to convert complicated 

calculations (that would typically be implemented in long methods) into sets of inter-connected 

calculation objects.  This capability also makes it possible for multiple software developers to work on 

complex calculation processes concurrently. This would have been more difficult to achieve in a 

functional programming paradigm because the smallest units of code that can be checked out in most 

concurrent source-code versioning systems are individual methods. With this framework, the large 

complex process can be broken down into a number of simpler classes while still giving the benefits of 

object orientation to the developers. The timing results described earlier demonstrate that framework is 

well suited to high level machine vision tasks, particularly when they model things that can be 

represented as objects. The edge detection process (which is very low level) should be reworked. One 

obvious improvement would be to parallelize the processes on each pixel so that the PixelIterator only 

goes through the image once. The reason why this was not done is because edge detection requires 

neighbouring pixels, and these cannot be accessed in the current implementation. The poor classification 

rate of the C# implementation suggests that a better neural network toolbox should be found. A port of 

the Netlab toolbox into C# may be one option.  

 

6. Conclusions 
This paper has demonstrated how a shape classification system, which has both low and high level 

machine vision processes, can be implemented in an object oriented manner. It also introduces a suitable 

framework which allows developers to define object oriented calculation processes. The framework 

allows existing processes to be specialized by using inheritance, and complex processes can be made up 

from simpler sub-processes by using composition. The framework promotes all the concepts behind 

object orientation for calculations that would typically have been implemented in object-methods or 

static-methods. The framework directly supports reusability and maintainability and it brings complex 

calculations into the object oriented world. This paper has shown that a practical shape classification 

system can easily be implemented in the proposed framework. 
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Chapter 5: Conclusions 

From the discussion in this report, it becomes evident that the shape representation method and 

calculation framework are well suited to the shape classification process. The results show that the OO 

paradigm for designing and implementing processes is well suited to the later stages of shape 

recognition. These results are expected to be valid for other stages of object recognition since they are all 

primarily based on abstract concepts that are not always easily represented using mathematics. The 

results also show that the OO paradigm is not well suited to low level image processing. 

 

The research shows that the calculation process framework is an invaluable extension to how complex 

calculations can be implemented. It also demonstrates a very powerful use of the advanced features of the 

.NET framework by using reflection to narrow the divide between process definition and process 

implementation.  

 

By implementing a simple shape classification system, this research has shown that a much larger object 

recognition system can easily be implemented by a number of people while still providing 

maintainability and reusability. The overhead of the OO framework is easily justified by the benefits of 

the conceptual abstractions that can be made while modelling the processes. Once a suitable calculation 

process has been defined, a new and optimised implementation can be generated which executes 

efficiently at runtime. It is therefore worth considering this framework for systems that have a 

significantly complex calculation process or for refactoring existing systems that have become too 

complex to understand. 
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Appendix A: Additional Work on Neural Networks 

This appendix contains one paper that gives more information about neural networks and their uses. 
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Appendix B: Additional Work on Image Registration 

This appendix contains two papers that give more information about image registration. 
 
The second paper was accepted as a Work In Progress for the Fifteenth Annual Symposium of the Pattern 
Recognition Association of South Africa (PRASA 2004). 
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Appendix C: UML Diagrams 

This appendix contains various UML diagrams detailing the design of the process framework. 
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Appendix D: Source Code and Applications 

The source code and applications developed during the course of this Masters can be found on the 
accompanying CD-ROM. 
 
A brief overview of what can be found on the CD is given below: 
 
+---C# The implementation of the system in C#. 
|   +---Processes The calculation process framework. 
|   +---ShapeClassifier The shape classification system and all supporting applications. 
|   |   +---PatternDataMaker Application used for making training sets. 
|   |   +---ShapeClassifier The actual shape classification application. 
|   |   +---ShapeProcesses The various process classes for the system using the framework. 
|   \---NeuroBox.src-2.5-LAM The modified Neurobox Toolbox used for shape classification. 
+---Images The sample images used. 
+---Matlab The Matlab implementation of the shape classification system. 
|   +---Segmentation Code for automatically segmenting the hand images. 
|   \---Shape The shape classification system. 
+---Thesis The electronic version of this document. 
+---Info Papers and other resources used as information for this research. 
\---DotNet The Microsoft .NET framework runtime. 
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