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ABSTRACT 

 

Mineral exploration is expensive, logistically challenging and can be detrimental to the 

environment. In addition to the physical disturbed of geological sampling, artisanal miners, charcoal 

burners and poachers follow in the wake of geological exploration teams, resulting in severe 

environmental degradation. The remote sensing of geological features is used in conjunction with 

geophysics to help refine the amount of ground based sampling where the surface geology is exposed 

(e.g. deserts, barren surfaces and rocky outcrops). However, it is not feasible to use these geological 

remote sensing techniques the earth’s surface is covered with vegetation. Studies have shown that 

plants respond to mineral nutrients or conversely toxicities in their growing environment, including 

metal concentrations in the soil, either through the presence or absence of particular species, or by 

exhibiting physiological or phenological changes in response to depleted or elevated substrate metal 

concentrations. The use of plant species composition and foliar elemental contents (methods known 

collectively as phytogeochemical exploration) have been successfully used to detect ore-bodies. 

Visible changes in leaf structure and chemical composition as a result of deficiencies in elemental 

nutrition or toxicities have been well-researched from botanical and soil science aspects, and are 

widely used for agronomic applications, but have yet to be exploited for mineral exploration. 

This study assessed the feasibility of using remotely-sensed spectral reflectance signatures of tree 

foliage to detect changes in substrate elemental concentrations across three geologies on the 

Witwatersrand Basin. The study comprises of an outcropping metal-rich ore body, the Black Reef 

(quartzite), flanked by dolomite to the South East and Ventersdorp Lavas to the North West. The soils 

of these three parent geologies can be expected to exhibit differences in plant nutrient availability, as 

well as deficiencies or toxicities. Each geology on the study site was characterised and classified into 

landscape functional types to account for aspect, position on the catena and soils characteristics, all 

of which could mask, conflict or auto correlate with any observed changes in vegetation stress spectral 

signatures associated with the changing geology. Three tree species with continuous across the study 
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site were selected:  Searsia lancea (L.f.) Moffet (previously Rhus lancea), Euclea crispa (Thunb.) Guerke 

var crispa and Acacia karroo Hayne.  

The study determined how the foliar and substrate elemental concentrations and uptake ratios 

differed between the three tree species, the three geologies and the landscape functional types.  The 

study then related plant spectral response of three tree species to geology, landscape function type 

and to the foliar and substrate elemental content. Soil elemental concentrations were analysed and it 

was found that the three parent geologies could be classified by their relative concentrations of Mn, 

Cr, Ti, Cu Cr, Pb, Ba, Fe, and Zr in the soils. The findings revealed that the plants showed changes in 

physiological status associated with geology which were detectable through the use of vegetation 

indices. The study made use of eight different vegetation indices (NDVI, NDWI, PSRI, Red-edge NDVI, 

red-edge position, red-edge inflection point, and the 725/702 ratio of the first and second derivative), 

derived from handheld hyperspectral data. The three species differed in their spectral response to the 

changes in geology and in their stress response to elevated metal content on the Black Reef (p < 0.05). 

Regression (linear and non-parametric) was used to identify which foliar and substrate elemental 

concentrations most affected spectral response. The A. karroo samples were found to be most 

affected by Mn, Ti, Fe and Sr. The S. lancea samples were found to be most affected by As, Cu, Pb and 

Sn and the E. crispa response was found to be most affected by Cu, Mn, Na, Ni, Rb, Zn, and Zr (p < 

0.01). In order to identify the changes in geology, it was found to be necessary to first classify the 

spectral response of the three species, and then detect spectral variations within each species class, 

as the species-specific spectral responses to changes in geology were significantly different (p< 0.05). 

The study successfully classified the three tree species according to their spectral response through 

the combined use of the eight vegetation indices. However, it was found that a subset of the samples 

which had either much higher or much lower elemental concentrations in the leaves and soils than 

the remaining samples for that species, showed a plant stress response which affected the spectral 

response of the plants sufficiently to result in an incorrect species classification.  
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In conclusion, the finding of this study showed that VIs can be used to detect differences in 

spectral response between trees growing on different geologies. It was found that the combination of 

vegetation indices can be used to determine a “typical” spectral response per species, but that where 

the growing conditions were particularly stressful, the stress response could alter the plant spectral 

response sufficiently to result in a misclassification of the sample by species. Further work is required 

to validate this observation, and to investigate how more sophisticated spectral analysis could be used 

to distinguish between taxonomic and substrate induced spectral variation, before it would be 

possible to scale this work up to a canopy-scale remote sensing tool. 
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 INTRODUCTION 

 General Background 

In recent years the amount of public pressure placed on mining companies to conduct 

environmentally acceptable operations has increased considerably. Historically, trends have shown 

that developing countries tend to have less stringent environmental legislation which allows for 

increased pollution throughout the mining lifecycle [1]. Multinational corporations may take 

advantage of these “pollution havens”, which often offer the added benefit of having access to 

cheaper labour and resources [1]. There is, however, increased public pressure for responsible mining, 

particularly for large multinational corporations which are listed on international stock markets, and 

many governments and companies have realised the benefits of more sustainable and 

environmentally-friendly mining operations [2].  

In South Africa, environmental legislation has become more stringent, and companies are held 

liable for the damage or disturbance caused by their operations [3]. This applies not only to the 

extraction of minerals from the earth, but to the exploration and post-mining stages too. Traditional 

methods of mineral exploration are both labour and energy-intensive and carry a high cost. They 

involve making paths and roads, clearing tracts of land in order to access sampling points, digging of 

soil pits and then drilling to collect samples [4]. Drill pads need to be level and large enough for the rig 

and compressors, which means that vegetation must be cleared for earthworks to be constructed. The 

areas that are cleared for drilling, and for roads to access sites become vulnerable to environmental 

degradation in the forms of erosion, and of colonisation by invasive plant species, and provide 

increased access to what may have been remote and pristine areas, allowing other parties access for 

activities such as hunting, logging and artisanal mining [4], [5]. Exploration activities can therefore 

compromise the availability of renewable natural resources and directly impact on the livelihoods of 

local peoples. 
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Invasion of previously undisturbed natural areas by artisanal miners, illegal access to protected 

resources such as ivory, animal trade, bush meat and rare plants, and trafficking of drugs and arms 

are detrimental impacts [5]–[7]. Forest carbon loss, erosion, local extinctions of flora and fauna may 

result in the loss of potential earning for countries under the new USAID and UN Policy REDD, which 

is designed to pay billions of Euros to those countries that can demonstrate forest conservation as 

opposed to exploitation [5]. In addition to this, conflict over land use has been a major contributing 

factor to a series of wars in Central African countries [8], [9]. By facilitating widespread and diffuse 

disturbance of natural areas through exploration for ore deposits, mining companies in such regions 

therefore expose themselves to the potential abuse of human rights and resources, and that can result 

in the loss of their social and legal license to operate [9]. As a result, for the early stages of mineral 

exploration, which involve the measurement of rocks and soils over vast tracts of remote landscapes, 

it is imperative that non-invasive and low disturbance methods are developed to detect anomalously 

high metal concentrations and reduce the impact of ground-based exploration activities. 

Ground-based phytogeochemical exploration has long been used as a prospecting technique. 

Phytogeochemical exploration is the use of plants as an indicator of the presence of specific elements 

within the substrate. Both the health and distribution of vegetation may be indicative of underlying 

geological features or the presence of mineral ore bodies [10], [11]. Botanists acquire the information 

through the use of direct field observations, followed by chemical analyses [10]. This approach has 

been used successfully to identify the distinctive metallophyte flora associated with localized 

ultramafic outcrops with deposits of nickel, cobalt, copper and platinum group metals in many regions 

– such as the Katanga mining region of the D.R.C., New Caledonia, Australia and New Zealand [12]–

[14]. Phytogeochemical exploration techniques have also been successful for gold prospecting for ore 

bodies at depths of up to 30m in the Tanami desert region of Australia and in Papua New Guinea, 

where the deep colluvial and alluvial cover makes soil sampling an inaccurate measure of underlying 

mineralized rock [15], [16]. However, while phytogeochemical exploration is less labour intensive and 

more efficient than traditional soil sampling techniques, it is still intrusive and dependent on extensive 
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ground-based surveys [16]. It would be more energy and cost-effective to reduce the amount of 

ground-based sampling required through the use of remotely sensed spectral reflectance data, 

associated with a restricted set of ground-truthing surveys for validation [4], [15], [17].  

Currently, both multispectral and hyperspectral remote sensing of the characteristic reflectance 

spectra of minerals within soils and rocks are widely used for mineral exploration, but their utility is 

limited where cloud, mist or vegetation masks the earth’s surface [10], [18]. In cases such as these, 

geologists would have to rely on traditional soil sampling techniques or geophysical surveys, but these 

again have challenges in terms of scale, cost and accessibility [10], [18]. As an alternative, the remote 

sensing of vegetation cover and plant health could be used as an indicator of changes to geology [10], 

[19]. A vast proportion of the Earth’s land surface is covered in vegetation, snow and built up areas, 

and there is only approximately 30% of the Earth’s surface which is suitable for the traditional 

geological remote sensing techniques. There would be value in increasing available exploration 

techniques by creating a deeper understanding the relationship between plant spectral characteristics 

and the underlying substrate conditions, and how to quantify this for a highly heterogeneous 

environment [19]. 

One of the ultimate outcomes of this study would be to develop a means of using remotely sensed 

measures of vegetation health and productivity as an indicator of the status of the underlying 

substrate as an alternative to invasive primary exploration techniques, or as a tool for the refining of 

broader scale exploration targets. 

1.1.1. Plants and Heavy Metals 

Records dating as far back as the early Sanskrit writings have noted that there is a relationship 

between plants and the underlying geology [10]. Over time, studies have expanded on this topic to 

the extent that plants are being considered as reliable indicators not only of the presence of certain 

minerals or elements, but of the relative concentrations of those elements present in the soils too 
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[20], [21]. Plants respond to changes in the geochemistry of the substrata in a number of ways. The 

most readily detectable of these is a taxonomic response: the absence or presence of a certain species, 

such as the Zambian Copper flower, Becium centraliafricanum (B. homblei) found on the copper 

barrens in the Copperbelt of Zambia and the Katanga region of the DRC [11], [22], or the presence of 

natural populations of Senecio coronatus as an indicator of serpentine soils in the Badplaas region of 

South Africa [23]. Plants have specific nutrient requirements, where a range of minerals is required 

for the successful completion of the lifecycle of the plant. These requirements differ between species. 

Plant species that have evolved the ability to tolerate concentrations of elements exceeding the range 

normally required for plant nutrition and which only occur in soils which contain those high 

concentrations are known as metallophytes [24], [25]. Geology has long been noted as a determinant 

of habitat preference in plant species, and certain plant species have been studied to the extent that 

their presence can be used as an indicator of both soils and underlying geology [11], [12], [26], [27]. 

The use of plants to determine information regarding the underlying geology and geochemistry is one 

of the established techniques used in phytogeochemical exploration [10], [12]. However, the field of 

phytogeochemical exploration has gone beyond the use of plant presence as an indicator of geology 

[28]. Plants respond to their growing conditions in a number of ways. A structural response to soil 

geochemistry can be expressed as morphological changes such as dwarfism. Phenological changes 

such as disturbances in the rhythmic patterns of seasonal senescence and flowering can occur. 

Physiological changes such as changes in nutrient allocation and water-use patterns may take place, 

and biochemical processes such as pigment synthesis may be altered [29], [30]. Any one of these 

changes may result in altered spectral responses in the plant [29]. Therefore, changes in pigment 

synthesis, flowering and senescence patterns and the presence or absence of particular plant species 

can all be used as indicators of variation in soil geochemistry [31]–[33]. 

Elemental composition of plants can also be affected by the changes in nutrient availability as a 

result of the substrate geochemistry, and therefore an assay of plant tissue can provide information 

on the elemental composition of the underlying substrata [4], [31], [34]. For example, Brooks et al. 
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(1977) analysed herbarium samples collected from around the world for Nickel, and used the results 

combined with the geographic locations of these samples to pinpoint areas rich in nickeliferous rocks 

([12]. While these techniques still require optimisation, there have been several studies which have 

been successful in putting theory into practice [4], [11], [12], [16], [35]. 

1.1.2. The ability of plants to take up metals 

It is possible to use certain plants to determine characteristics of the underlying geology because 

plants require certain elements for their physiological and metabolic processes. They have therefore 

developed mechanisms of acquiring the elements necessary for their nutrition by solubilising ions in 

the surrounding soils [10], [36], [37]. The uptake of elements is governed by the ionic size and charge 

of the element being taken up, and as a result, the methods of acquiring ions differ depending on the 

plants and elements in question. For example, some elements may be taken up actively, such as the 

divalent cations, Cu2+, Zn2+ and Ni2+, which are actively taken up through root cell membrane proteins, 

in exchange for H+ ions [36]. Other elements may only be taken up through passive diffusion, whilst 

others may be excluded, either through active exclusion or passive barrier mechanisms [38], [39]. 

Elements that have been absorbed through the roots may then be transported to the rest of the plant, 

although the rate at which this occurs is dependent on the presence of root-shoot translocation 

mechanisms, osmotic pressure and transpiration rates [36], [40]. 

While plants need certain concentrations of a variety of metals as macro and micronutrients for 

metabolic processes, some plants exceed the required uptake for these metabolic processes, which 

may result in the plant suffering metal toxicity, especially if the bioavailability of the element is 

increased by anthropogenic activities such as acid mine drainage (AMD) or a wide range of other 

factors [39], [41]. However, there are a select number of plant species which have the ability to 

tolerate exceptionally high concentrations of metals into their biomass without suffering from metal 

toxicity. There are three broad categories of metal tolerant plants.  
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The first category, metal excluders are plants that take up the amount of each metal that they 

require for their metabolic processes and no more. These plants have often evolved on metal rich 

sites, and have developed this adaptation so as to reduce the likelihood of suffering from metal toxicity 

from accumulating high concentrations of metals [39], [42] . 

The second category is the accumulators which have the ability to take up high concentrations of 

metals in their biomass without suffering from metal toxicity. To qualify for this category, the plants 

must be able to continue all stages of the lifecycle without showing signs of plant stress or toxicity. 

The plants manage this by detoxifying the metals as they take them up into the cells [39], [42]. 

Hyperaccumulators are an extreme example of those species, as they are capable of accumulating 

metals to hundreds of times the levels of non-accumulator species, and often to hundreds of times 

the concentrations in the surrounding environment [42], [43]. In some cases this may present a 

problem when hyperaccumulator species are used in mineral exploration, as they may present a false 

indication of the underlying substrata [10]. Alternatively, hyperaccumulators have been used to 

identify very low concentrations of elements which may be difficult or expensive to detect in the soils. 

A third category consists of the indicators, which are plants that have the ability to absorb some 

metals to the same concentrations as they exist in the rhizospheric soil. These plants appear to have 

little control over restricting the uptake of these metals from the soil, so while they may be able to 

take up high concentrations of a metal, they lack sufficient mechanisms for sequestering the metal 

within the cells, and so the plant will often suffer from physiological stress as a result of metal toxicity, 

and the least tolerant of the species will die [21], [42]. Because these plants accumulate metals to 

concentrations similar to those in the soil solution, one can measure the metal content within the 

plant to use as a biomarker of the metal content in the soil solution (although this soluble fraction of 

metal may not always reflect the total metal concentration of a soil). Fortunately for the field of 

phytogeochemical exploration, around 95 % of all plant species fall somewhere between the two 

extreme categories and are capable of accumulating metals to some extent [10], [25] . 
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In order for plants to accumulate metals, the metals must be in a bioavailable form, meaning that 

they are either present in the soil as free metal ions or soluble metal complexes, or they have been 

adsorbed to inorganic soil constituents at ion exchange sites [10], [39]. The bioavailability of metals 

within the soil depends on a number of factors. Foremost, some metals occur more readily in 

bioavailable forms, while others are typically less bioavailable. For example, lead (Pb) occurs as a soil 

precipitate which is not readily bioavailable. However, soil characteristics, pH and Eh in particular, 

affect the bioavailability of metals. The bioavailability of most elements is influenced by the pH of the 

environment that they are in. Many metals become more readily bioavailable in more acidic 

environments. This is due to increased competition with H+ ions for soil binding sites, which causes 

the metal ions to break off into solution [10], [36]. The interactions between plant roots and soil 

microbes can also influence and increase the bioavailability of metals in the rhizosphere. This is 

achieved by the roots secreting protons, organic acids and other compounds which can solubilise 

minerals and mobilise metals and metalloids within the soil, thus enhancing uptake by plant roots. 

Root-colonising bacteria and mycorrhizae have also been known to catalyse redox transformations 

such as Pb2+,Hg2+, Au3+, Te4+, Ag+, increasing the bioavailability of these metals [10], [44]. The hyphae 

of mycorrhizae also increase the root absorption area, which allows for more nutrient uptake [44], 

[45]. However, regardless of the amount of root absorption area, metals cannot be taken up by plants 

without the correct transport proteins, due to the ionic charge of the metals which prevents them 

from moving freely across cellular membranes [36], [39]. This prevents the plant from taking up non-

essential metals, or metals that would be harmful or toxic, although in some cases non-essential 

metals are still taken up in the roots when the transporters do not differentiate between two or 

sometimes more metals. For example, cadmium (Cd) is frequently absorbed instead of calcium (Ca), 

despite the fact that it is highly toxic to most plants [39]. Some plants have mechanisms which inhibit 

the stimulation of transporter activity when there is a high influx of metal ions from the soil, in order 

to prevent an over accumulation of a particular metal [39].  
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Even in plants which can tolerate metals, the increased concentrations of these metals inside the 

plant will affect important functions and processes [10]. Photosynthesis is one of the most metal 

sensitive metabolic processes, and as a result one of the indicators of plant metal stress is leaf chlorosis 

(yellowing of the leaves) due to the reduction of chlorophyll production. This is one of the structural 

changes mentioned above which is most easily measurable as a spectral change when there is a 

change in the geochemistry [10], [29]. 

1.1.3. Basic principles of Spectrometry 

The plant spectral response to the leaf chlorophyll content is one of the most widely used 

measures in the remote sensing of vegetation. When combined with measures of plant water content, 

structure and other pigments, it is possible to derive volumes of information through the use of 

spectrometry [46]. To gain accurate results from spectral analysis, it is important to understand the 

basic principles of spectroscopy. 

 Spectroscopy is the study of the interaction between light and the object with which the light is 

interacting [47]. When light strikes an object, three possible interactions can occur: transmission, 

absorption or reflection [48]. Most remote sensing techniques focus on the fraction of the light that 

is reflected from the surface of an object, whereas for microscopy the absorbed and transmitted light 

are of key importance [49]. However, the absorbance and transmission of light is not disregarded 

completely in remote sensing. Materials such as water tend to absorb light at certain wavelengths. 

This is of particular importance as water vapour is a major constituent of the atmosphere. As incoming 

solar radiation passes through the atmosphere, the energy is scattered by atmospheric constituents. 

Further scattering occurs as light is reflected and this may influence the spectral reflectance of targets 

on the ground [48]–[51]. The wavelength at which light is scattered, absorbed or reflected is key. 
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Remote sensing focuses on measures of reflected light, using peaks and troughs in the reflectance 

spectrum to distinguish between different substances. 

 

The broad range of sensors that are used under the umbrella term of remote sensing encompasses 

a large portion of the electromagnetic spectrum shown in Figure 1-1. Applications for geophysics and 

geological mapping use a wider portion of the electromagnetic spectrum than that which is used for 

remote sensing of vegetation [52]. Remote sensing of vegetation focuses predominantly on the region 

of the electromagnetic spectrum from the blue wavelengths at 0.4 μm (400nm) to the Near Infrared 

(NIR) at 0.8 μm (800nm) where absorption and reflection of plant pigments is most pronounced. 

Water content and structure of plants is mostly detected in the Mid- and Shortwave-infrared bands 

(1200nm-2000nm), and limited use is made of the thermal or long wave length infrared wavelengths 

from 3 μm to 10μm for the purposes of the remote sensing of vegetation [53], [54]. The visible and 

near infrared portions of the electromagnetic spectrum are most commonly used, as this range gives 

sufficient information for basic analysis, and the sensors that are used to capture the light in this range 

are also simpler, cheaper and easier to use when compared to short-wave Infrared and thermal 

sensors [49]. By comparison, geological remote sensing makes extensive use of SWIR and Thermal IR 

data for the detection of geological features, which can also makes the collection of data more 

expensive [18].  

Spectrometry, the actual physical measure of light, can be performed using a number of methods. 

Types of sensors that detect reflected light may be handheld devices which record reflected light as 

Figure 1-1 The electromagnetic spectrum (source: Lillesand et al, 2011, p 5) 
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spectral data, or image sensors which capture the information as pixels within an image. These sensors 

can be used at a range of scales [55]. Hand-held devices are usually used at the leaf or canopy scale, 

whilst image sensors are mounted on unmanned aerial vehicles (UAVs), normal aircraft and satellites. 

The type of analysis and resolution required and the available budget will often determine which 

sensor is used [48], [49], [55]. Three types of resolution are particularly significant for remote sensing: 

spatial resolution, which is the size of the pixels in the image; spectral resolution, which is the number 

of spectral bands and the width and position of those bands within the electro-magnetic spectrum; 

and the temporal resolution of the data, which is how frequently the data is collected. For satellite 

imagery, the options are much more limited [48], [55]. The temporal resolution of satellite imagery is 

determined by the revisit schedule for a given satellite and the cloud cover in an area, whereas a UAV 

has nearly unlimited capacity to revisit a site [56].  

Spectral resolution can be broadly divided up into panchromatic, multispectral and hyperspectral 

data. Multispectral data is characterised by having a limited number of bands, each of which cover a 

fairly broad range of wavelengths (usually around 100nm-200nm but sometimes wider). The bands 

are usually for discrete sections of the EM spectrum, as opposed to hyperspectral imagery, which has 

narrow bands (usually between 2nm-10nm) which are contiguous in the range of the EM spectrum 

that is being covered. Panchromatic data covers a broad section of the EM spectrum i.e. from blue to 

red, in one single band [55]. For many years the minimum spatial resolution for satellite imagery was 

limited to 2m for multispectral imagery, and most commercial satellites were built at these 

specifications, which were guided by a legal requirement which stipulated that commercial satellite 

imagery could not be sold at a higher resolution than 2m for multispectral imagery and 50cm for 

panchromatic imagery [57]. A limited number of commercial satellites, such as Worldview 3, now have 

the capabilities to collect multispectral imagery at sub-metre resolution. Now that the regulations 

have changed, this higher resolution imagery comes at a premium price [57]. Non-commercial 

satellites such as LandSat and ESA Sentinel have a lower spatial resolution, but cover much larger areas 

with each pass and can be more easily accessed without cost barriers.  
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1.1.4. The remote sensing of vegetation 

The use of a wide range of remote sensing tools has made it possible to evaluate reflectance 

spectra at a broad range of scales, from single leaves to the canopies of entire forests. The use of 

equipment such as a hand-held spectro-radiometer allows us to measure reflectance values at very 

narrow bands (1-2nm intervals), making it possible to detect small shifts in precise portions of the 

spectral signature for more refined remote sensing work [58]. In contrast, many of the commercial 4-

band (Red, Green, Blue and Near infrared band) multispectral sensors, such as GeoEye, Pleiades, Spot 

6 and Quickbird, collect the basic information required for more generalist remote sensing work where 

differentiating between different land cover surfaces is the main purpose [49]. It is possible to 

differentiate between surfaces such as concrete, bare soils, vegetation and water because they have 

very different spectral signatures, as discussed previously [47]. 

The dominant feature that is used to detect vegetation and distinguish it from other surfaces—such 

as green painted roofs—is the steep slope between the red and Near Infrared (NIR) portions of the 

EM spectrum. Vegetation has this feature due to the absorption of light in the red portion of the EM 

spectrum due to the chlorophyll content in plants, and the internal cellulose structure of the plant 

which reflects light in the NIR bands [54], [59], [60]. This steep slope is known as the Red-edge and is 

one of the most well-studied and well-used features in the remote sensing of vegetation [49]. 

There are numerous additional spectral features which have been associated with foliar structure 

and chemistry. Curran (1989) described the key spectral absorption features from 400nm to 2400nm 

that correspond with specific foliar chemical composition [53]. Table 1-1 provides a summary of the 

absorption features that are used in remote sensing for vegetation. These features can be used as 

indicators for a number of purposes, from differentiating vegetation from other materials, to 

differentiating between plant species and assessing plant health and nutritional status [61]. 
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Table 1-1 Summary of absorption features used in remote sensing to assess vegetation between 400nm to 2400nm 
(after [53]) 

 

There are many techniques which can be used to perform analysis. One of the most commonly used 

techniques is that of Vegetation Indices (VIs). A vegetation index is a type of spectral index, a 

mathematical formula used to derive information from selected bands of spectral data relevant to a 

specific purpose. Vegetation indices are most frequently either a simple band ratio (R 𝐱/R 𝐲) or a 

normalised difference band ratio (R 𝐱 -  R 𝐲 )/(  R 𝐱 +  R 𝒚 ), where R 𝐱  is the reflectance at the given 

wavelength x, but may be calculated from more complex band combinations or derivatives of spectral 

data [61]. One of the most widely used VIs is the Normalised Difference Vegetation Index (NDVI) [61]–

[63]:  

NDVI = 
(𝑹 𝟖𝟎𝟎−𝑹 𝟔𝟖𝟎)

(𝑹 𝟖𝟎𝟎+𝑹 𝟔𝟖𝟎)
 

Chemical 
composition 

Visible colour bands 
(400nm-700nm) 

NIR 
(700nm – 1100nm) 

Mid-IR 
(1200nm – 2000nm) 

SWIR 
(2000nm-2400nm) 

Wavelength: (nm) 400 500 600 700 800 900 1000 1100 1200 1400 1600 1800 2000 2200 

Chlorophyll a 430  660   900         

Chlorophyll b 460  640            

Carotenoids               

Anthocyanins  520             

Proteins      910 1020    
1510, 
1690 

1980 
2060, 
2130, 2180 

2240, 2300, 
2350 

Starch      
970, 
990 

  1200 

1450, 
1530, 
1540, 
1580 

1690 
1780 

1900 
1960 

2000, 
2080, 2100 

2250, 2270, 
2280, 2320 

Oil      970 1040       2310 

Water      970   1200 
1400, 
1450 

    

Lignin        1120 1200 
1420, 
1450 

1690    

Cellulose         1200 
1490, 
1540 

1780 1820  
2100, 2270, 
2280, 2340, 
2350 

Sugar          
1450, 
1490, 
1580, 

1780, 1960 2080, 2270 

Nitrogen          1510, 1690  2060, 2180 2300, 2350 
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This index estimates the slope from the absorption feature present in healthy vegetation in the 

red bands and the reflectance peak in the NIR related to chlorophyll content and leaf structure. 

Vegetation indices such as the NDVI detect plant productivity or stress by determining the relative leaf 

chlorophyll concentration, while the Normalised Difference Water Index, is used to determine plant 

leaf relative water content: 

NDWI = 
(𝑅 𝟖𝟓𝟕−R 𝟏𝟐𝟒𝟏)

(𝑹 𝟖𝟓𝟕+𝑹 𝟏𝟐𝟒𝟏)
 

Plants with low chlorophyll or water content may be showing signs of stress for a wide range of 

reasons, from drought stress or overgrazing to acid mine drainage (AMD) and consequent pH declines 

[64], [65]. Combining a number of vegetation indices (VIs) may provide more detailed information on 

causality. For example, it has been found that trees growing on AMD-polluted ground water at 

Highveld gold mines in South Africa show a high leaf water content (high NDWI) but low chlorophyll 

(low NDVI) content. Pollutants in the ground water are known to impair tree performance [66], [67] 

despite sufficient access to water, and this can be detected by comparing the two vegetation indices 

[68]. However, at higher salt concentrations in the groundwater, tree roots are unable to acquire the 

water due to its high osmotic potential, and thus suffer from `physiological drought’. This would be 

expected to result in a lower leaf water status and NDWI.  

Derived vegetation indices (ratios) such as the Red-edge stress signature have been used to 

identify a number of different stressors in plants, and could be particularly useful in detecting 

vegetation stress related to pollution [64], [69]. These indices may be more sensitive to smaller shifts 

in the spectral signatures of plants than the NDVI, which has been shown not to be highly effective at 

determining exact quantitative assessments of chlorophyll content in plants [70]. Certain stressors, 

such as heavy metals, may cause either a shift of typical leaf signature towards the ultraviolent portion 

of the electromagnetic spectrum, known as a blue shift, or a shift towards the infrared portion of the 

electromagnetic spectrum, known as a red shift [59], [69], [71]. 
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Vegetation indices have been found to be a quick method for collecting data about the 

physiological status of plants from the reflectance spectrometry of plant surfaces [64]. Vegetation 

indices have a broad application as they can be used for both multispectral and hyperspectral data. 

Many of the other techniques used in image and spectral data processing are more specific to either 

multispectral or hyperspectral data. Spectral indices have both the advantage of simplifying large 

amounts of data and only extracting key information, and the disadvantage of limiting the information 

analysed to a very small portion of the electromagnetic spectrum. They are often therefore valuable 

as a ‘first pass’ technique of assessing a scene before selecting more in-depth analytical techniques.  
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 Research problem statement 

The aim of this study was to determine whether it is feasible to use Vegetation Indices (VIs) and 

other spectral analytical techniques derived from reflectance spectrometry of tree leaves to infer 

substrate geochemistry, by assessing the relationship between the relative concentrations of metals 

in the substrate, and the spectral properties of the tree leaves. The study also identified constraints 

towards using this approach for mineral exploration. While this technique would be most applicable 

in ecologically sensitive and inaccessible areas such as the Congo Basin where vegetation cover 

prevents the use of certain other geological remote sensing techniques, it was too costly and 

logistically difficult to perform trials at such a location. This study was therefore based at a well 

characterised site situated on the Witwatersrand Basin. A central hypothesis in this study is that 

substrate geochemistry, in terms of the relative concentrations of heavy metals, results in structural 

and biochemical changes to plant leaves that are detectable from canopy or leaf reflectance 

signatures. The study assessed whether there is a difference in the presence or magnitude of the foliar 

stress response for plants growing on soils which are not metal-enriched and conspecific or congeneric 

plants that have evolved in metal-rich soils at the same locality.  

The study is of value as a non-invasive preliminary mineral exploration tool, for contaminant 

mapping for risk assessment or remediation purposes, and for the identification of conservation 

priority areas such as habitats which may contain metallophyte flora, in order to plan how best to 

mitigate the damage related to mining activities.  
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 Research Objectives 

To test this hypothesis, the objectives that are addressed are as follows: 

(i) To broadly characterise the physical characteristics of the study site in terms of (a) vegetation 

structure, (b) landscape functional types, and (c) soil characteristics, in order to account for 

environmental variables when selecting the study sampling plots. 

(ii) To determine whether plants growing on metal-rich soils at the study site exhibit higher levels 

of foliar stress by comparison with conspecifics or congenerics on adjacent non-metal-enriched soils, 

and determine whether the responses inferred from leaf reflectance signatures and derived spectral 

products can be related to (a) foliar, and (b) substrate, metal concentrations.  
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 Research Approach 

This dissertation is divided into two content chapters structured systematically to address the 

research objectives discussed above. The study involved the collection of field samples and data, 

laboratory measurements and a combination of spatial and non-spatial statistical analysis of data to 

answer the research questions. The field work was completed over the period from January 2012 to 

March 2013. The research questions based on the spectral differences as a result of substrate 

geochemistry could not be answered without first understanding the effects that topography, 

localized vegetation distribution and surface cover may have on the spectral response of vegetation. 

Therefore, part of the first objective, the study site characterization, was completed before the sample 

and data collection for the remainder of the study could be completed. Soil samples that were 

collected were used to further validate the study site characterisation techniques, as well as provide 

background geochemistry information for the study of the plant material through elemental and 

spectral analysis. Chapter 2 further investigates whether the catenal effects play a role in determining 

plant spectral reflectance, or whether the underlying geology and geochemistry plays a stronger role. 

This chapter compared responses from vegetation indices and spectral derivatives to landscape 

function types within geologies and identified significant differences between geologies, but fewer 

differences between landscape functional types within the same geology, which indicates that the 

catenal effects played a lesser role in plant health than the substrate geochemistry.  

Chapter 3 demonstrates how the preliminary findings in the previous chapter are further validated 

through the comparison of the soil elemental contents of the three geologies that have a strong 

influencing effect on the plant spectral response at a leaf level. Elemental ratios which are used as 

indicators of plant nutritional status, plant health, soil fertility and elemental bioavailability are all 

investigated to understand the influence of geology and soil geochemistry on plant metal uptake and 

spectral response. Regression analysis and grouping statistics were used to identify which elements 

accounted for the changes in spectral response most strongly. The concluding chapter summarises the 

findings and discusses the next steps for furthering this work. 
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1.4.1. Background of the Study Area  

The study area is located on the Klerksdorp goldfields in the North West Province of South Africa. 

The physical study site is situated at AngloGold Ashanti Ltd.’s Vaal River Mining Operations near 

Orkney. The region is semi-arid, with the majority of the rain falling from December to March. The 

Mean Annual Precipitation (MAP) is less than 600 mm, and Mean Annual Potential Evapotranspiration 

of more than twice MAP. The Klerksdorp goldfields form the westernmost part of the West Rand 

Group of the Witwatersrand Supergroup located within the Kaapvaal Craton. The Klerksdorp goldfields 

have been an economically important gold-producing area since the late 1880’s and are still being 

actively mined at present [73]. This study area is of interest due to the presence of three distinct 

geologies within a small geographic footprint. The formation of these features occurred between the 

late Archaean and early Proterozoic periods [73], [74]. Around 2714 Ma ago, the collision of the 

Kaapvaal and Zimbabwe cratons triggered the formation of the Ventersdorp Supergroup, which is 

composed of sedimentary rocks of the Witwatersrand Sedimentary Basin and the Lavas which erupted 

in the collision of the two micro-continents [74], [75]. The Ventersdorp Supergroup is the oldest 

formation in the study area. This period was followed by the rifting of the Kaapvaal craton at around 

2650 Ma ago. This resulted in subsidence of the craton to below sea-level, resulting in the flooding 

and deposition within river systems which formed the Black Reef formation, a shallow ore body 

situated between the Ventersdorp Lavas and Malmani Dolomites. The reef is a narrow outcrop at 

surface, but is estimated to be 200-300m in width below the surface. The reef is enriched in S, Fe, Au, 

Co, Mn and U [74]. 

The formation of a shallow inland sea followed, and between 2600 and 2400 Ma ago the Malmani 

dolomites of the Chuniespoort group were formed by the accumulation of dolomite, iron and 

manganese precipitated by oxygen release from Cyano-bacteria [73]–[75]. The outcropping ridge of 

the Black Reef forms the main watershed across the mine site, and also forms the boundary of the 

dolomitic aquifer. The aquifer is relatively shallow, with the depth to ground water averaging 10m-

30m. The vegetation type present on the dolomites, the Vaal Reefs Dolomite Sinkhole woodlands 
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(GH12), is dependent on access to the aquifer through fractures in the surface material. The majority 

of the trees found in this area grow in clusters in sinkholes and dolomitic or chert outcrops [72], [74]. 

Error! Reference source not found. shows the geology of the study site. Alternating bands of c

hert-rich and chert-poor dolomites can be seen over the central and eastern portions of the mine, 

with the narrow outcrop for Black Reef to the west and, the Ventersdorp lavas further west. Alluvial 

deposits are found along the Schoonspruit and Vaal rivers. 

 

  

Study site AOI 

Figure 1-2 Surface Geology for the Vaal Reefs mine and study area shown in yellow. (After: ([74] ) 
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 SITE CHARACTERISATION 

 

 Introduction 

This chapter covers the selection and characterisation of the study site based on geology and 

substrate geochemistry to account for additional variables that may also affect the plant spectral 

response such as catenal effects, soil types and surface roughness, plant species distribution and 

anthropogenic influences on the site such as historical mining. These variables need to be understood, 

in part because of the role that they play in potentially influencing plant spectral response, but also 

because they are in themselves a response to the geological features that are present in the study 

site. While the primary focus of this study is to understand the effects that the changes in soil 

geochemistry across different geologies have on plant spectral reflectance, other factors such a 

topography, plant species distribution, and evidence of historical or small scale mining are clues that 

are often used for the purposes of mineral exploration to differentiate between geologies and identify 

shallow ore bodies.  

 In order to select the site, a broad-brush approach was first used to identify a location with 

strongly contrasting geologies that would be of interest for mineral exploration. Once the location of 

the site had been narrowed down to focus on the Black Reef, an outcropping gold-bearing ore body 

situated between Malmani Dolomites and Ventersdorp Lavas, the next step was to identify a suitable 

location along this outcropping ore body which was relatively free of anthropogenic disturbance, 

assess the vegetation cover and identify the distribution of species across the three geologies. 

Landscape functional analysis (LFA) techniques were then used to characterise the selected site in 

terms of catenal effects and changes to soils and surface structure which may affect plant response.  

These results were used to divide the site up into different landscape functional types within each 

geology. A soils mapping exercise was completed to better understand the soils and account for 

variables such as in-situ versus transported material, anthropogenic contamination and interference 
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(dumping and borrow pits) and soil nutrient status. Soils were analysed for type, and taken to the lab 

for further analysis of Carbon, Nitrogen and Sulphur concentrations, and XRF and ICP-OES for the soil 

elemental content and bioavailability of selected elements. The dominant tree species across all 

landscape functional types were identified, and four phreatophyte tree species with dimorphic rooting 

systems (plant species with deep tap roots which access ground water for their water requirements, 

but obtain many of their nutrients from the surface soils through adventitious roots [67]) were 

selected to be used in the study. Leaf samples and leaf spectral reflectance data were collected from 

the selected trees. 

This information is used for different purposes in this study, but the first stage of the analysis was 

to characterise the site and identify whether position within the catena affected the plant response. 

Basic vegetation indices were used to identify if there was any change to spectral response between 

the different geologies, and between different landscape function types within geologies, and 

whether catenal effects played a stronger role in determining plant spectral reflectance than changes 

to geology. This information was then used to justify the experimental design and analyses for the 

remainder of the study. 

 

2.1.1. Target Plant Species  

The plant species which have been chosen for this study are relatively evenly distributed across 

the different geologies at each study site. Many studies have looked at the presence of a species as an 

indicator of a particular geology [11], [23]. However, from a remote sensing perspective, this could 

limit the applicability to a much smaller suite of species and spatial range. It may be difficult to identify 

accurate indicator species as there are many other factors, such as water availability, topography and 

even habitat competition which may cause localised distributions of plant species [72]. While studies 

have successfully detected differences in spectral signatures between species, and even ecotypes, 
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using airborne hyperspectral remote-sensing, and Worldview 2 data, these techniques requires a 

greater understanding of plant and site-specific influences and extensive ground-truthing before they 

are applied on a broad scale [50], [65], [68], [76]. Using species which are ubiquitous should make it 

possible to detect differences in plant stress response across the study sites. 

Table 2-1: List of species chosen for the study and characteristics of these species [77], [78],[79] 

Species Family Preferred soils Preferred habitat  Characteristics 

Searsia lancea 
(L.f.) Moffet 

Anacardiaceae Lime soils 
associated with 
dolomites, but 
fairly widespread 

Rocky, moist wooded slopes, 
open grasslands and riparian 
areas. Associated with sand-
covered dolomitic sinkholes 
and underground 
watercourses.  

Evergreen phreatophyte with a 
dimorphic rooting system. 
Leaves are rich in tannins 

Ehretia rigida 
(Thunb.) 
Druce 

Boraginaceae Widespread Generalist, grows in exposed 
or sheltered positions in 
woodlands, watercourses, 
rocky ridges 

Deciduous, hardy 

Euclea crispa 
(Thunb.) 
Guerke var 
crispa 

Ebenaceae Widespread Exposed rocky areas and in 
sheltered wooded areas 

Evergreen, hardy. By 
observation, not common on 
chert-poor dolomites. Similar 
observations in Siebert and 
Siebert (2005) where E. crispa 
was only present on Chert-rich 
dolomites. 

Acacia karroo 
Hayne 

Mimosaceae Widespread Generalist,  but often found 
on grassy slopes of hills and 
may be found in rocky ridges 

Deciduous, but may be 
evergreen in favourable 
conditions (as was found at the 
study site). Nitrogen fixing 
bacteria associated with the 
roots of this tree. 

 

The first of the species which has been selected is the Euclea crispa (Thunb.) Guerke var crispa, 

which is part of the Ebenaceae family. The Ebenaceae family includes two genera, Euclea and 

Diospyros, which consist of between 500-600 species [80]. Euclea is a genus of sub-shrubs, shrubs or 

trees whilst Diospyros usually comprises small to medium sized tree species. A study conducted by 

White found 91 species of Diospyros and 12 species of Euclea in Africa [80]. However, Diospyros is far 

more prolific on the Asian continent, and much of the current research in the genus is performed in 

India on species which are found in the Asian tropics. Diospyros melanoxylon is one of the better 

researched species in this family [80]–[82]. It has been found that this species absorbs a number of 

heavy metals, both whilst in the active growth phase [82] and through activated carbon from leaf litter 
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[81].  Studies on the uptake of heavy metals in D. melanoxylon found that there was a strong 

correlation between soil Cu and Al and the Cu and Al content in the stems of the trees, but a negative 

and poor correlation respectively for the leaves. However, for Cr there was a strong correlation 

between soil and leaf Cr content [82]). Deo (2011) also found that the samples of leaves showed 

physiological signs of toxicity such as necrotic spots and leaf chlorosis. One of the first indicators of Fe 

and Mn toxicity is the appearance of necrotic spots on the leaves. Older leaves show the effects of 

toxicity more prominently as they have had longer to accumulate metals [83].  

Ekosse (2008) conducted a study on the spatial distribution of vegetation on an abandoned 

manganese mine by sampling soil Fe content and pH and the Fe content of the leaves of Combretum 

apiculatum, Euclea undulata and Terminalia sericea. These three tree species and a number of Acacia 

species were the dominant tree species on the acidified soils around the mine. The results showed a 

relationship where areas with high soil Fe content and high leaf Fe content overlapped, as did areas 

with low soil Fe content and low leaf Fe content. Whilst the study did not display results for the 

individual species, this indicates that Euclea and Acacia were tolerant to high Fe content and show the 

potential to be used as indicator species for biogeochemical exploration. 

Searsia lancea (L.f.) Moffet (previously included in the genus Rhus) is a common tree species found 

in the Witwatersrand Basin, and most notably in the region surrounding the Vaal River Mining 

operations study site. S. lancea has been found to be capable of withstanding high levels of 

anthropogenic contamination, and is found growing across the three predominant geologies at the 

site. S. lancea was found to take up elevated concentrations of sulphur (S), magnesium (Mg), 

aluminium (Al), iron (Fe), chromium (Cr), vanadium (V), manganese (Mn), zinc (Zn) and uranium (U) 

when growing on contaminated soils, and depressed concentrations of potassium (K) [84]. Similarly, 

the Acacia karroo Hayne which occur across a range of geologies in this region have also shown 

tolerance for anthropogenic contamination, as have several other Searsia and Euclea species [66], 

[85]. In a study of seed fate on contaminated land on the Highveld, the A. karroo showed tolerance 

for acid-rock drainage and the ability to regenerate on contaminated soils. The study also found that 
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Acacia species were some of the most common and dominant on disturbed and contaminated land  

and have shown an inherent tolerance to these conditions [66], [67]. 

2.1.2. Environmental Degradation, Remote Sensing and Vegetation Indices  

It is established that growth in elevated concentrations of metals or metalloids, as well as osmotic 

stressors, results in biochemical and structural changes to leaves [86]. Hyperspectral remote-sensing 

of phreatophyte tree leaves was found to be a quick method for determining plant physiological status 

and the nature of the substrate. Changes in canopy spectral signatures occurred in response to 

seasonal drought, acid mine drainage (AMD), and high osmolality of groundwater [65], [68]. That these 

spectral responses were a consequence of stressful substrate conditions was supported by the 

findings that AMD-contaminated groundwater directly impaired viable seed production – a measure 

of fitness, in a range of phreatophyte species in a dose-dependent fashion [66], [67]. 

Leaves contain light-harvesting and photoprotective pigments that are sensitive indicators of 

growing conditions [87]. Anomalous plant water content is also detectable from the reflectance 

characteristics of foliage [58]. Remotely-sensed indices to estimate leaf water content and stress 

indices were used to determine where trees lacked access to groundwater, and where groundwater 

was contaminated by acid rock drainage (ARD) or acid mine drainage (AMD) resulting in osmotic stress 

[68]. In contrast, tree clusters and elevated leaf water indices in a dolomitic grassland during the dry 

season were used to identify probable dolines where roots access groundwater [88].  

Furthermore, derived VIs can be useful in indicating substrate mineralisation and metal 

contamination by causing a shift in the typical leaf pigment signature towards the ultraviolet portion 

of the electromagnetic spectrum, known as a blue shift [69]. Detection of this shift has potential use 

in geobotanical exploration and has been successfully used in mapping of metal-polluted grasslands 

[89] and, used in combination with the Red-edge stress signature, to discriminate between plants 

grown in differing concentrations of CuSO4 [29], [90]. 
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2.1.3. Landscape functional analysis and landscape functional types 

Remote sensing is a valuable tool because of the ability to collect information about large areas 

through the use of indicators and proxies for environmental conditions. Landscape function analysis 

is a similarly valuable technique, adapted to semi-arid environments, which allows the user to assess 

the functional status of the landscape through the use of selected indicators [91]. The model of 

Landscape function described by Tongway and Ludwig (1996) links terrain, soils and plant processes 

as key controllers in the functioning of a landscape. In order for a landscape to be functional, it needs 

to retain its resources and minimise leakiness of scarce resources such as nutrients and water [92]–

[94]. Factors such as terrain and soil will play a role in determining how nutrients are transferred or 

retained within the landscape. 

The concept of landscape functional types (LFT) was developed by David Tongway for a study of 

the Canberra Nature Parks. Tongway et al (2010) decided that differentiating a large area of land 

needed a coarser scale of assessment than the “hillslope” scale that LFA typically deals with. Nature 

parks and many mined lands are comprised of a number of local water catchments, so that terrain 

shape mixtures and vegetation structure, abundance and composition result in a highly complex 

landscape structure [95]. LFTs were designed to assist in making sense of larger sized natural 

landscapes. Many people are familiar with vegetation associations, which are largely decided with 

species composition and structure: there are well-decided rules about this. More traditional methods 

of delineating landscape patches depend heavily on the species composition and structure of the 

vegetation. LFTs are intended to have a more overt focus on the functional role of the vegetation, as 

well as reflecting geological, land-form and soil type/condition in a single classification (Pers. Comm. 

David Tongway, 16 Sept 2011). An LFT is determined based on soil surface and vegetation structure 

and disturbance factors [95].  

LFTs therefore are in the order of at least hundreds of square metres in area, and differentiated 

from neighbouring LFTs. For example, “rocky grassland” characterised by a high rock cover would be 

distinguished from “grassland” where rocks play very little role in regulating the effect of rain on the 
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surface or in diverting run-off water. Each LFT would have several defining characteristics related to 

landscape function. Once mapped, the LFTs can be assigned sampling strategies based on the purpose 

of the research (Pers. Comm. David Tongway, 16 September 2011).   

2.1.4. Research objectives 

The overarching objective of this study is to determine whether it is possible to use the remote sensing 

of vegetation to distinguish between changes in the underlying geology. The aim of this chapter is to 

characterise the chosen study site to account for the variables which may have an influence on plant 

spectral reflectance and to identify whether position within the catena affected the plant response.  

To address this aim, the following research objectives needed to be met: 

1. Define and characterised the study sites in terms of vegetation patterns and structure, soils, 

and landscape functional types to account for changes in catena; 

2. Identify whether there is any relationship between plant leaf spectral response, geology, 

soil types and landscape functional types.  

Once these research objectives had been met, it was possible to identify whether catenal effects 

played a stronger role in determining plant spectral reflectance than changes to geology, by 

understanding whether there was a more significant change to spectral response between the 

different geologies, or between different landscape function types within geologies. This information 

was then used to justify the experimental design and analyses for the remainder of the study.   
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 Site characterisation methods 

The Vaal River Mining Operations was initially identified as a potential study site as this research 

forms part of a larger research project at the site. The site met with the basic criteria of having strongly 

contrasting geological features with similar vegetation across geologies. In order to narrow down the 

site selection and then to characterise the selected sites, three variables were used: vegetation, soils 

and geology, and landscape functional types.  

2.2.1.  Vegetation characterisation 

Aerial photos and satellite imagery were used to initially characterise the site. Historical aerial 

photos from 1944 through to 2008 were used to visually interpret historical mining activities and 

impacts at the study site, and where there had been historical disturbances (eg. Old tailings storage 

facilities, processing plants and other direct sources of contamination). Land use and vegetation 

mapping data from the Vaal River Mine Environmental Management Plan was also made available for 

the purposes of the initial site characterisation. Visual interpretation of this data, combined with the 

geological and water quality data, was used to narrow down the site to the north western portion of 

the study site. 

Vegetation transects (shown in Figure 2-3) across the proposed study site were walked. Transects 

were walked at 100m intervals across the “potential” study locations. Tree species and signs of 

historical disturbance were identified. The tree species data was used to narrow down the selection 

of the species that were most common across all geologies. The least disturbed portion of the study 

site was then selected as the final study area.  Landscape functional analysis was performed on the 

study site to characterise the site in terms of changes in the landscape and catenal effects which may 

affect the vegetation response. By defining LFTs, it is possible to account for some of the landscape 

variables which could influence the spectral findings. For each LFT (two per geology), four sampling 

blocks of approximately 50m x 50m were selected. One tree of each of the chosen species was 

sampled per block.  At each sampling point spectral reflectance measurements of the leaves of the 
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relevant Searsia, Euclea, Ehretia and Acacia spp., were taken using a hand-held spectro-radiometer 

(Field Spec-Pro, Analytical Spectral Devices (ASD) Inc., Boulder Colorado, U.S.A.) The spectro-

radiometer has a spectral range of 350 nm to 2500 nm at 1.4 nm intervals in the 350-1000 nm range, 

and 2nm intervals at the 1000-2500 nm range. Leafy branches were cut from each tree and placed in 

labelled plastic bags immediately after cutting to reduce water loss, and kept in a cooler bag while 

they were transported to the spectral radiometer to be measured. 

All spectra were collected using the internal halogen light source of the ASD. This ensured that the 

lighting conditions were identical for all samples, and atmospheric conditions did not affect the actual 

readings collected. For each tree (N=4 per species per LFT, total 74 samples), a minimum of 10 spectral 

readings were taken per tree from the abaxial surface of approximately 20 leaves per reading. A new 

selection of leaves was used for each reading, as the internal light source is hot, and in direct contact 

with the leaves, and may potentially damage the leaves, affecting subsequent readings. A white 

reference reading was taken between samples using the Spectralon® 100% reference panel. 

2.2.2. Leaf elemental analysis 

After measurement the sampled leaves were washed in distilled water, then frozen and 

lyophilised in preparation for elemental analysis together with composite site soil samples from the 

tree fine-root zone (0-50 cm) (data shown in Chapter 3).  

2.2.3. Landscape functional types 

The data used during the vegetation classification and vegetation transects was also used to 

understand the landscape in terms of topography and position within the catena. The vegetation 

mapping was used to understand the vegetation structure on a broad scale. The vegetation transect 

lines were used for the initial landscape functional analysis. Basic landscape function analysis 

techniques were used in the initial characterisation of the landscape functional types. At 

approximately 100m intervals along the transects, the following were noted for a 10m x 10m area: 



29 
 

vegetation structure, patch/interpatch zones and percentage vegetation cover, soil cover, potential 

nutrient flows (run off pathways) and disturbance status. Factors such as aspect and slope were also 

noted, but were validated using the LIDAR derived DEM.  

This information was used to qualitatively determine the characteristics of the landscape 

functional types. Once the characteristics of the landscape functional types were determined, the 

boundaries of the landscape functional types were identified in the field and marked out using a GPS.  

2.2.4.  Soil characterisation 

Soil sampling was done for a number of different purposes as part of the site characterisation. 

This included more detailed soils mapping to further the previous broad scale soils mapping work done 

as part of the EMP at the site. Soil samples were then collected and prepared for analysis in the lab.  

In order to do the soil classifications, auger points were dug at the base of each of the selected trees 

used in the study. Where possible, soils were analysed at two depths, +10cm below surface and at 

+50cm below surface. Soil horizon depth and effective rooting depth were measured. Soils were 

analysed to colour, texture, parent material and organic carbon and clay contents. Depth limiting 

material and other relevant characteristics were noted during the fieldwork activities.  This 

information was used to understand any anomalies in the results. 

At each tree sampling location, soils samples were also collected for analysis in the lab. Composite soil 

samples of approximately 1 kg were taken from the upper profile of the soil (0-50 cm depth) after 

removal of surface litter.  All samples were double bagged in plastic zip lock bags and immediately 

placed in a cooler box with ice. Labels were written in carbon pencil on paper and placed on the 

outside of the 2nd bag to avoid contamination of the soils. GPS co-ordinators of each sampling point 

were taken and notes were made on the landscape functional type and the surroundings. Features 

that were noted were approximate soil depth, slope aspect and steepness and position on the catena 

angle, and a broad description of the surrounding vegetation classes and density.  
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Samples were taken back to the laboratory for immediate measurement of pH, EC and Eh. To measure 

pH and EC, a soil paste was made up by mixing 1:2 soil in distilled water solution, stirring with a plastic 

rod until smooth (1 to 3 minutes), then measuring the sample. 

The remaining soil samples were stored in a fridge until they could be analysed. The samples were 

subsampled and analysed as follows: 

a) A representative subsample of +/-100g was dried in the forced-draught (fan) oven at room 

temperature in brown paper bags. This subsample was sent for analysis of organic carbon (C) and 

fertility (N) by LECO auto-analyser; 

b) Another representative subsample of +/-50g was weighed, freeze-dried, weighed a second time 

to measure water content and then passed through a 2mm plastic sieve to remove any pebbles and 

vegetative matter. The samples were then ground using an agate mortar and pestle to break up soil 

aggregates. This subsample was further subsampled; 

c) 10g sub-samples were weighed out, milled and pressed into pellets for analysis by XRF for major 

and trace elements. 

The full list of elements that were analysed for all samples is shown in Table 2-2. 

Table 2-2 Types of analysis used for samples, and elements analysed 

Analysis type  Material No of 
samples 

Elements analysed 

Leco Autoanalyser  Leaves 73 N, C 

Leco Autoanalyser  Soils 73 N, C 

XRF - Majors Soils 57 SiO2, Al2O3, Fe2O3, FeO, MnO, MgO, CaO, Na2O, K2O, TiO2, 
P2O5, Cr2O3, NiO 

XRF trace elements Soils 57 Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Ba, Pb, 
Th, U 

ICP OES* Leaves 64 Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Ti, Zn, 
U 

ICP-MS* Leaves 64 V, Co, As, Ag, Cd, Sn, Sb, Au, Pb, U 

* Shown in chapter 3 
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2.2.5. Analysis of data 

A variety of analytical techniques and software packages were used in the processing of the data. 

Spectral data from the spectro-radiometer was processed using the RS3 software package produced 

by Analytical Spectral Devices. 1st and 2nd derivatives were also calculated using this software. 

Statistical analysis of the data was completed using XLStat (Addinsoft), and spatial analysis was 

completed using ArcGIS 10.4.1 (ESRI). 

2.2.6. Statistical analysis of soil samples 

Descriptive statistics of the results of the XRF analysis of the soil samples by geology and by 

landscape functional type were calculated and interpreted to understand the distribution of the data. 

Data was also tested for normality. Once it was determined that the data was not normally distributed, 

a Kruskal Wallis test with a Dunn’s post-test using a Bonferroni correction [96]–[98] was used to 

analysis the data and test for differences between elemental concentrations in soils per geology and 

elemental concentrations in soils per landscape functional type.  

A further grouping analysis of the soil samples was performed in ArcGIS 10.4.1. The samples were 

plotted using GPS coordinates of the tree locations collected during sample collection.  

The outliers were removed from the data set (e.g. Ash heap sample MMAK67) as the XRF results 

were significantly different from the remaining samples. The Grouping Analysis tool classifies the data 

into natural groupings based on selected attributes fields. The variables are standardised in order to 

compensate for the large variations in the range of the data being analysed. This analysis was 

performed without any spatial constraints. The tool used a K-Means algorithm to classify the data. 

This tool is predominantly used for exploratory analysis as the clustering is highly dependent on the 

combination of variables selected, seed locations and number of classes. Initially, all the elements 

which showed significant differences in the Kruskal Wallis test on the XRF data were used as variables 

in the analysis, and 3 classes were specified for the output. The grouping analysis provides an R2 value 

as one of the outputs. This R2 value represents the amount of the variation in the data retained after 

classifying the samples into groups.  
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The variables with the 10 highest R2 values were selected for a second run of the analysis, using 

the same seed locations. The same analysis was run using 6 classes, and 3 additional seed locations 

which were randomly selected by the software. In addition to the 3 addition classes, an analysis was 

also run to identify the optimal number of classes for the data to be classified into.  

Grouping effectiveness is measured using the Calinski-Harabasz pseudo F-statistic, which is a ratio 

reflecting within-group similarity and between-group difference [99]. The result with the highest 

solution value represents the optimal number of groups to classify your data. Using a higher or lower 

number of groups would indicate that there is either insufficient between group differences or limited 

within group similarity. This is calculated as shown below:  

(
(𝑅2)

𝑛𝑐 − 1)

(
1 − 𝑅2

𝑛 − 𝑛𝑐
)

 

where:  

𝑅2 =  
𝑆𝑆𝑇 − 𝑆𝑆𝐸

𝑆𝑆𝑇
 

and SST is a reflection of between-group differences and SSE reflects within-group 

similarity defined by: 

𝑆𝑆𝑇 =  ∑ ∑ ∑ (𝑉𝑖 𝑘
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𝑛 = the number of features 

𝑛𝑖 = the number of features in group i 

𝑛𝑐 = the number of classes (groups) 

𝑛𝑣 = the number of variables used to group features 

𝑉
𝑖𝑘

𝑗= the value of the kth variable of the jth feature in the ith group 

𝑉𝑘= the mean value of the kth variable 

𝑉𝑖
𝑘 = the mean value of the kth variable in the group i 
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2.2.7. Analysis of spectral data 

Vegetation indices are a rapid method of obtaining quantitative data from spectral data, and 

reducing the dimensionality of the data to only interrogate key spectral features.  Vegetation indices 

were derived from the spectral data collected with the spectro-radiometer. Four vegetation indices 

were calculated for each sample to identify any broad differences in spectral response between the 

geologies or LFTs. The indices that were calculated were selected to assess the changes most likely to 

occur in plants growing in contrasting environmental conditions (underlying substrate or catenal 

effects). The selected indices were derived: 

The Normalised Difference Vegetation Index [62]which estimates relative leaf chlorophyll content: 

NDVI = 
(𝑹 𝟖𝟎𝟎−𝑹 𝟔𝟖𝟎)

(𝑹 𝟖𝟎𝟎+𝑹 𝟔𝟖𝟎)
 , 

the Plant Senescence Reflectance Index [100] calculates a ratio of estimated carotenoid and 

chlorophyll content in plants: 

PSRI = 

 
(𝑹 𝟔𝟖𝟎−𝑹 𝟓𝟎𝟎)

(𝑹 𝟔𝟖𝟎+𝑹 𝟓𝟎𝟎 )
 , 

the Normalised Difference Water Index [101] which estimates relative leaf water content: 

NDWI = (𝑅 𝟖𝟓𝟕−R 𝟏𝟐𝟒𝟏)

(𝑹 𝟖𝟓𝟕+𝑹 𝟏𝟐𝟒𝟏)
 

and the Red-edge NDVI [102] which has been designed for use with narrow band hyperspectral data 

to identify small changes in foliar chlorophyll content and leaf senescence : 

Red-edge = 
 

(𝑹 𝟕𝟓𝟎−𝑹 𝟕𝟎𝟐)

(𝑹 𝟕𝟓𝟎+𝑹 𝟕𝟎𝟐)
 

 In addition to these vegetation indices, a linear interpolation of the Red-edge was used to 

determine the inflection point and Red-edge wavelength[103]. This technique assumes that the Red-

edge occurs around the midpoint of the slope from the absorption feature in the red band around 

670nm and the peak of the Red-edge in the NIR at 780nm. A shift in the wavelength of the Red-edge 
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is indicative of plant stress. This is calculated through a two-step procedure, by first calculating the 

reflectance at the inflexion point (Rre) 

𝑅𝑟𝑒 =
(𝑅670 +  𝑅780)

2
 

where: 

𝑅 = 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 

and then calculating the Red-edge wavelength, also known as the Red-edge position (REP): 

𝑅𝐸𝑃 = 700 + 40 (
𝑅𝑟𝑒 −  𝑅700

𝑅740 −  𝑅700
) 

where 700 and 40 are constants resulting from interpolation in the 700-740 nm interval 

Further analysis was done by calculating the ratio at the double-peak reflectance feature at 702nm 

and 725nm. The 725nm/702nm ratio of the 1st and 2nd order derivatives of the reflectance data were 

used to detect a flattening of the double-peaked reflectance feature at 702nm and 725nm that has 

been associated with metal-related plant stress ([104]). This is one method which has been used 

previously to measure the blue shift of the plant spectrum 

A Kruskal-Wallis non-parametric test with a Dunn’s Post Test with a Bonferroni correction was 

used to detect significant differences between species, initially across the three geologies, and then 

across landscape functional types ([96]–[98] 
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 Results 

2.3.1. The Study Site 

  The study site was narrowed down to a smaller area by selecting an area that contained the 

outcropping Black Reef adjacent to the Ventersdorp Lavas and the Dolomite. It was also necessary for 

the study area to be relatively undisturbed. While there has been mining in the area for over 100 

years, and finding completely undisturbed land is not possible, it was possible to locate a site which 

was not disturbed by recent or large-scale mining activities. There is evidence of historical mining 

activities around the study site such as old adits dug into the Black Reef, a small ash heap and old 

spoils heaps/dump rock, and the remnants of a tram line (shown as anthropogenic disturbance in 

Figure 2-1). Some other examples of anthropogenic disturbance were borrow pits on the dolomites, 

the mining area and Waste Rock Dump, water pumping stations, and on the lower portion of the Black 

Reef outcrop. Some old adits, identified by the Mine Health and Safety department as a potential 

safety risk, were backfilled with waste rock at the same time as this study took place.  

 

Figure 2-1 Landscape features identified during ground-based and aerial imagery investigation. Pollution plume 
modelled during development of EMP (data sourced from AGA, 2011) 
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The study site was intentionally situated up-gradient (i.e. beyond the influence) of the dominant 

groundwater pollution plumes (Figure 2-1), although historical contamination and natural leaching of 

the metalliferous rocks of the Black Reef has resulted in moderately elevated concentrations of certain 

elements in the soils of the study site [74]. The water quality based on borehole monitoring data across 

the full study area showed an acceptable water quality at the selected site, showing a pH range of 

6.95-8.85, a TDS range 695-3293 ppm and a SO4 range 52 – 291 ppm over a 10-year monitoring period 

(2001-2011). 

Figure 2-2 below shows the digital elevation model (DEM) of the study site derived from LIDAR 

data. The ridge that is formed by the outcropping Black Reef Quartzite is visible. The ridge slopes gently 

to the west on the Ventersdorp Lavas, and to the east over the chert-poor Dolomites. There is a gentle 

increase in elevation over the chert-rich dolomites which are more resistant to erosion and soil loss, 

than the chert-poor dolomites. This elevation data combined with the geology, vegetation data, water 

monitoring data and land use data was used to narrow the focus for the ground-based site selection 

work.  

Figure 2-2 Geology and samples per landscape functional type (LFT) shown on a LIDAR based DEM of the study area 
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2.3.2. Vegetation characterisation 

Historical photographs from the 1940’s have shown that there was extensive clearing of trees, 

most likely for use within the mines. There has been a significant recovery of the Vaal Reefs Dolomite 

Sinkhole Woodlands and Klerksdorp Thornveld, which can be seen by comparing historical and recent 

aerial imagery [74]. The main vegetation unit is Vaal Reefs Dolomite Sinkhole Woodlands (Gh12) with 

a small area of Klerksdorp Thornveld (Gh13), rocky outcrops supporting trees and shrubs along the 

Black Reef [72]. The Vaal Reef Dolomite Sinkhole Woodlands are characterised by clumps of 

phreatophyte trees which may indicate dolines or sinkholes [88].  

 

Figure 2-3 Land use and land cover classification based on 2008 imagery, provided by the Ecological Engineering and 
Phytoremediation program (EEPP) and field data. The vegetation transects completed for species identification are 
shown on this map. Collected plant samples are shown by species.  

The aerial imagery and 2008 land cover classification supplied by the Ecological Engineering and 

Phytoremediation program (EEPP) were used to identify broad vegetation communities, and then 

transects were walked to identify dominant tree species found in the area (Figure 2-3). The most 

common species that were identified where Searsia lancea, Euclea crispa and E. undulata, Acacia 

karroo, A. erioloba, A. caffra and Ehretia rigida. It was not possible to identify all species as the 

vegetation transects and initial landscape functional analysis (LFA) fieldwork to define the LFTs was 

performed in winter (July - September 2011). The species that were most consistently and widely 
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spatially distributed (S. lancea, E. crispa, A. karroo and E. Rigida) were chosen to be used in the study. 

The species distribution was not consistent across the study site. The most consistently distributed 

tree species were the S. lancea and A. karroo, although A. caffra was more common on the chert-rich 

dolomites. Similarly, no E. crispa could be found on the chert-rich dolomites.  

2.3.3. Definition of Landscape Functions Types (LFT’s) 

The site was characterised in terms of geological maps and soils, surface run-off pathways, 

vegetation structure, location within the catena, slope and soil characteristics, into the six LFTs. Table 

2-3 below summarises the key characteristics identified within each landscape functional type. 

Vegetation structure and surface cover played a key role in determining the LFTs. Whilst the 

vegetation across the study site was predominantly woodland, there were distinctive differences in 

the structure of the woodlands between the LFTs. For example, on the Black Reef, the high lying 

outcrop (BR1) has dense woodlands, which are fairly continuous. Trees grow in sheltered crevices 

between the rocky outcrops. The trees are usually not large, standing at around 3-4 m, and the 

understory is mostly comprised of small thorny shrubs and very few grasses. Lower on the Black Reef 

(BR2) there was most grassy cover between the slightly more isolated tree clusters. There were small 

rocky outcrops and “boulder fields” comprised of quartzite derived material, which was presumably 

transported from the rocky outcrop.  The transition to the chert-poor dolomites (D1) was visible. The 

first indication of the transition zone was the sparsely vegetated patches with manganese pellets and 

small pebbles at surface, interspersed with isolated dolomitic pinnacles forming outcrops. This 

transition zone was vegetated with grasses and very few trees or shrubs. The manganese pellets 

formed through oxidation which took place during the deposition period when the inland sea was still 

present, and during the formation of the dolomites. Table 2-3 summarises the characteristics that 

describe the chosen LFTs, and Table 2-4 provides a summary of the soil types and soil descriptions.  



 
 

Table 2-3 Summary of key characteristics of each of the identified Landscape Functional types (LFTs) at the study site 

 Ventersdorp Lavas 
Smooth 

Ventersdorp Lavas 
Rocky 

Black Reef 1 Black Reef 2  Dolomite 1 Dolomite 2 

LFT description 
and Position in 
Catena 

Gentle west-facing 
slope, mid-slope, 
grassland with dense 
isolated tree clusters 

West facing upper 
slope, rocky surface, 
regular tree clusters 
and consistent grassy 
cover 

Ridge scarp, large rocky 
outcrops. Trees 
growing between rocky 
outcrops with limited 
undergrowth. Old 
mining adits dug into 
the outcropping reef 
rock at some locations 

South-east facing 
slope, upper slope, 
grassland with isolated 
tree clusters, Isolated 
dolomite pinnacles 
protruding in lower 
portion of LFT. Barren 
patches where 
manganese pellets 
have formed on lower 
slope near dolomite 
pinnacles. Some 
disturbance from 
historical mining 
evident.  

South-east facing 
gentle slope. Large tree 
clusters and dense 
grassy undergrowth. 
Dolomite pinnacles 
evident and small 
mounds have formed 
around some 
pinnacles. Deep, dark 
brown soils evident 
between dolomite 
pinnacles 

South-east facing 
gentle slope. Isolated 
tree clusters, often 
formed around 
collapsed sinkholes or 
deep fractures in the 
rock providing access 
to the aquifer for tree 
roots. Chert rich 
dolomite resulting in 
rockier, shallower soils. 
Some dolomite and 
chert outcrops 
evidence. 

Soil parent 
material 

T2 - quartzite other, T2b - black reef 
quartzite 
 

T2b/T2 - black reef 
quartzite / quartzite 
other, 
 

T2b/T2 - black reef 
quartzite/ quartzite 
other, 
 

L2/S - 
Dolomite/ sand 

L2/T3 - 
dolomite /chert 

Underlying 
geology 

Ventersdorp lavas Black reef quartzite  Dolomite Chert-Rich Dolomite 

Vegetation  Klerksdorp Thornveld Vaal Reefs Dolomite Sinkhole Woodland Vaal Reefs Dolomite Sinkhole Woodland 

Dominant tree 
species 

Searsia lancea, Acacia 
karroo, Euclea Crispa 

Searsia lancea, Acacia 
karroo, Euclea Crispa 

Searsia lancea, Acacia 
karroo, Euclea Crispa 

Searsia lancea Acacia 
karroo, Euclea Crispa, 
Ehretia rigida 

Searsia lancea, Acacia 
karroo 

Searsia lancea, Ehretia 
rigida 

Soil Type (see 
explanation in 
Table 2-4) 

Hu3100 
 

Hu3100, Ms1100 and 
Ms2100 

Ms1100, Ms2100 
 

Hu3100 and Ms1100 
 

Hu3100, Ms1100 
 

Ms1100, Hu3100 and 
Gs 

Slope (degrees) 2 degrees 4 degrees  2-8 degrees 2 degrees 2-4 degrees 2-4 degrees 

 



 
 

Table 2-4 Summary of soil types found at the study site 

Map Unit Soil Forms  Broad Map Unit Description 

Hu3 Hutton, Mispah  Shallow, red, sandy loam soils, flat to gently slopes, 1-
10% exposed surface rock; Dolomite 

Gs Glenrosa, Mispah, 
Hutton 

Shallow, reddish brown stony soils, flat to gently 
slopes, 1- 20% exposed surface stones; Chert rich 
dolomite 

Ms1 Mispah, Glenrosa, 
Clovelly 

Shallow, yellowish brown gravely soils, flat to gently 
slopes, 1-5% exposed surface stone; Andesite 

Ms2 Mispah, Glenrosa, 
Clovelly 

Shallow, yellowish brown stony soils, flat to slightly 
steep slopes, 1-30% exposed surface stone; Black 
Reef. 

2.3.4. Soil characterisation 

The soil characterisation exercise characterised the soils in terms of the soils’ form 

and family, surface features, organic carbon range, effective rooting depth, presence of 

depth limiting materials, parent material and ground roughness. The full table of results 

can be seen in Appendix 2. This exercise was an essential part of characterising the site, 

as the presence of transported materials may mean that soils at surface and underlying 

geology may not correspond. Phytogeochemical exploration studies have shown that it is 

possible to use deeper rooted trees to detect underlying geology through regolith and 

transported materials as their root systems may penetrate deeper than the regolith. The 

results from the soils classification exercise show that there is transported material 

present across the different geologies. For example, Hutton3100 soil form is found across 

the Ventersdorp Lavas, the lower portion of the Black Reef and on the Dolomites, but was 

not found on the upper portion of the Black Reef. Soils on the Rocky Ventersdorp Lava 

show that they were derived from the Black Reef Quartzites, indicating that material has 

been transported off the rocky ridge by erosion (Table 2-3). The effective rooting depth 

of the soils was found to be much shallower on the Black Reef ridge, when compared to 

other areas, which supports the notion that weathered material has been transported 

from the top of the ridge to the lower lying areas. Figure 2-4 shows the effective rooting 
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depth range of each of the LFTs in relation to the terrain profile. The chert-poor dolomites 

(D1) had the deepest soils, where soils had formed between pinnacles. By contrast, the 

chert-rich dolomites were composed of much more rocky material which limited the 

depth of the soils.  

 
LFT VLS VLR BR1 BR2 D1 D2 

Mean of Ranks 59.7 21.5 10.9 40.5 57.4 41.9 

Group C AB A BC C BC 

Figure 2-4 Terrain profile across the study site and effective rooting depth shown in box plots above 
and results of the multiple pairwise comparison using Dunn’s procedure below. 

The clay content in the soils varied significantly (p < 0.0001) between the landscape 

functional types. The Black Reef outcrop (BR1) and the dolomites (D1 and D2) had the 

lowest clay content. The lower-lying Black Reef soils had higher clay content, and the 

Smooth Ventersdorp Lavas had the highest clay content, but also showed a large range in 

terms of clay content values. Clay content of the soils could have a significant effect on 

the soil moisture content and the bioavailability of many elements which could potentially 

be bound to the clays and therefore be less mobile.  
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LFT  BR1 BR2 D1 D2 VLR VLS  

Mean of ranks  26.5 53.667 31.833 16.318 32.333 65.333  

Group  A BC AB A AB C  

Figure 2-5 Estimated clay content of soils. Box plots show range for the full sample and range per 
Landscape Functional type, and the results of the Kruskal Wallis test Pairwise comparisons using the 
Dunn’s procedure are shown below. 

The soil organic carbon range was ranked in terms of range. The most frequent 

category was Medium-high. The Black Reef outcrop (BR1) and Rocky Ventersdorp Lavas 

(VLR) had the highest Soil Organic Carbon results. This could potentially be due to shelter 

from fires in the rocky outcrops allowing longer times for decomposition of organic 

matter, or to the general erosion of soils resulting in higher humic content proportionally 

in the soils. 

 

Figure 2-6  Histogram of the estimated organic carbon range where Medium was < 0.8%, Medium 
high 08% - 1.2%, High 1.3%- 1.7% and Very high was > 1.7%. Results are shown as the full sample and 
range per landscape functional type. 
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2.3.5. Soils sample analysis – pH and soil water content 

This section contains the results obtained for the analysis of the soil water content 

and soil pH which were measured in the lab after sample collection. Table 2-5 shows the 

results of the Kruskal Wallis test and pairwise comparison of the data. There were no 

significant differences identified between either the soil water content or the soil pH 

between the three geologies.  

Table 2-5 Results of the Soil water content and soil pH analysis by the Kruskal Wallis test and 
multiple pairwise comparison using the Dunn's procedure 

Variable 
K 

observed p-value Geology Obs. Min Max 
Sum of 
ranks 

Mean of 
ranks Group 

Soil water 
content (%) 

2.678 0.262 

 Ventersdorp Lava 24 1.080 6.300 972.00 40.500 A 

 Black reef 25 0.980 6.080 778.00 31.120 A 

 Dolomite 23 1.760 6.300 878.00 38.174 A 

Soil pH 5.284 0.071 

 Ventersdorp Lava 24 5.080 7.370 686.50 28.604 A 

 Black reef 25 5.200 7.230 982.50 39.300 A 

 Dolomite 23 5.710 7.500 959.00 41.696 A 

 

The range of the pH for the soils was also within a fairly neutral range of 5- 7.5. It was 

anticipated that the soil pH for the Black Reef would be lower than the other geologies, 

but the results indicated that while there was a broad range of values for the Black Reef, 

no obviously acidification of the soils was observed. 

 

Figure 2-7 Box plots showing the range obtained for the measured soil water content (%) and soil pH 
for the three geologies at the study site 
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While no differences where observed between geologies, analysis per landscape 

functional type showed differences between some of the LFTs for the soil water content, 

as shown in Figure 2-8. The Smooth Ventersdorp Lavas (VLS) showed the highest water 

content and was significantly different to the Black Reef outcrop (BR1) and the Rocky 

Ventersdorp Lavas (VLR) which had the lowest water content in the soils. This result 

follows a similar trend for soil clay content in Section 2.3.4. There were no significant 

differences for the soil pH per landscape functional type, as shown in Figure 2-9. 

 

 Figure 2-8 Soil water content (%) per landscape function type. Box plots show range for the full sample 
and range per Landscape Functional type, and the results of the Kruskal Wallis test Pairwise comparisons 
using the Dunn’s procedure are shown below the box plot. 

 

Figure 2-9 Soil pH per landscape functional type. Box plots show range for the full sample and range 
per Landscape Functional type, and the results of the Kruskal Wallis test. Pairwise comparisons using the 
Dunn’s procedure are shown below the box plot. 

LFT  BR1 BR2 D1 D2 VLR VLS  

         

Mean of ranks  29.154 33.250 41.125 34.955 23.50 57.00  

Group  A AB AB AB A B  

LFT  BR1 BR2 D1 D2 VLR VLS  

Mean of ranks  45.692 32.375 45.167 37.909 24.167 33.042  

Group  A A AB A A A  
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2.3.6. Exploratory analysis of soils sample XRF results  

The descriptive statistics and initial interpretation of the data showed some expected 

trends and also helped to identify certain samples which showed anomalous results which 

were likely as a result of isolated anthropogenic contamination. The results also showed 

that there were overlaps in the ranges of concentrations of many of the elements 

between LFTs on the same geology (Box plots shown in Appendix 3). The majority of the 

elements were not normally distributed, as shown in the Shapiro Wilk test in Appendix 1. 

Results with a p < 0.05 were not normally distributed.   

Al (p =0.1913) and Ga (p =0.9391) were the only two elements which did not have any 

significant differences in the Kruskal-Wallis test of soil elemental content per Geology 

(Table 2-6). For selected elements, such as Ba, Si and Sr, the Dolomites and Ventersdorp 

Lavas samples clustered together whereas the Black Reef samples fell into a separate 

class. Many of the samples formed three distinct classes for Black Reef, Dolomite and 

Ventersdorp lavas (P < 0.05). The analysis of the LFTs did not result in as many distinct 

classes, as for many of the elements there were only two groups. Ca (p = 0.221) was the 

only element for the analysis of soil elemental content per Landscape functional type that 

did not show any significant differences between samples. The element which showed 

the highest number of groups was Pb (p < 0.0001). There was one anomalously high 

sample on the Black Reef (2) which was identified as an ash heap during the soil mapping 

exercise. It is expected that this may account for the separate grouping of the BR2 LFT for 

Pb. This sample showed Pb values of 54.498 ppm compared to a background median of 

17.785 ppm (Appendix 1). Zn values for this sample were 1380.2 ppm which was also a 

full order of magnitude higher than the next highest concentration (100.2 ppm). 



 
 

Table 2-6 Results of Kruskal Wallis test with a Dunn's Post-test on the XRF analysis of the soil samples (N=72) per geology and LFT 

  
Element 

Mean per geology/LFT and Dunn's Post-test grouping       Pairwise comparisons  

Black Reef Quartzite Dolomite Ventersdorp Lava 
chi-

squared 

p-value 
 (geology 

/LFT) 
Df 

Black 
Reef 

Dolomite-Black 
Reef 

Ventersdorp Lava - 
Black Reef 

Ventersdorp Lava - 
Dolomite 

BR1 BR2 D1 D2 VLR VLS 
BR1 - BR2 BR1-D1 BR1-D2 BR1-VLS BR1-VLR D1-VLS D1-VLR 

  BR2 - D1 Br2 - D2 BR2-VLs BR2-VLR D2-VLS D2-VLR 

Al2 

30590.65(a) 30537.72(a) 28209.02(a) 3.3077 0.1913 2,   0.197622 0.345222 0.937944 

27402.937 36804.927 32566.517 25490.605 24901.213 36222.752 
  < 0.0001   0.002 

0.023 0.556 0.000 0.234 0.201 0.001 

AB C BC AB A C 0.453 0.000 0.598 < 0.0001 < 0.0001 0.574 

Ba 

172.57(a) 333.57(b) 162.2(b) 445.8045 0 2,   0 0.892311 0 

156.888 212.248 268.523 598.005 142.473 195.950   < 0.0001   
0.074 

< 0.0001 < 0.0001 0.054 0.364 0.038 < 0.0001 

A AB BC C A AB       0.027 0.000 0.891 0.008 0.000 < 0.0001 

Ca 

964.83(a) 1429.38(b) 1214.98(ab) 11.5113 0.003165 2,   0.002367 0.4159 0.084244 

1715.261 1762.907 1494.897 1331.926 1292.401 1256.667   0.221   
0.015 

0.743 0.388 0.267 0.269 0.443 0.446 

A A A A A A       0.038 0.136 0.192 0.191 0.828 0.832 

Co 

12.68(a) 11.02(b) 14.95(c) 152.1371 0 2,   0 0.000044 0 

13.576 16.834 12.224 9.593 13.484 15.249   0.000   
  

0.468 0.002 0.101 0.865 0.020 0.380 

B B AB A B B       0.482 0.002 0.105 0.861 < 0.0001 0.001 

Cr 

143.26(a) 123.68(b) 90.7(c) 520.6412 0 2, 0.000 0 0 0 

141.905 147.023 127.778 105.339 90.474 91.723   < 0.0001   
  

0.107 0.002 < 0.0001 < 0.0001 0.002 0.000 

C C BC AB A A       0.033 0.000 < 0.0001 < 0.0001 0.107 0.048 

Cr2 

176.18(a) 117.68(b) 99.21(c) 452.0665 0 2, 0.000 0 0 0.0265 

184.313 177.950 123.555 103.004 114.376 95.731   < 0.0001   
  

0.000 < 0.0001 < 0.0001 < 0.0001 0.077 0.585 

B B A A A A       0.003 < 0.0001 < 0.0001 0.000 0.489 0.613 

Cu 

22.14(a) 16.92(b) 28.87(c) 383.3555 0 2, 0.000 0 0 0 

24.866 28.848 18.474 16.280 28.063 31.838   < 0.0001   
  

0.045 0.006 0.016 0.113 < 0.0001 0.000 

ABC BC AB A C C       0.008 0.001 0.097 0.396 < 0.0001 < 0.0001 

Fe 

19199.43(a) 20987.24(b) 24562.84(c) 220.2557 0 2,   0.002011 0 0 

20359.412 20469.032 21492.483 20428.989 23532.909 26402.460   < 0.0001   
0.944 

0.407 0.959 < 0.0001 0.014 0.002 0.109 

A A A A AB B       0.377 0.906 < 0.0001 0.013 0.000 0.021 

 



47 
 

 
Element 

Mean per geology/LFT and Dunn's Post-test grouping 
 
  

chi-
squared 

p-value 
 (geology 

/LFT) Df 

Pairwise comparisons 

Black Reef Quartzite Dolomite Ventersdorp Lava Black Reef Dolomite-Black Reef 
Ventersdorp Lava - 

Black Reef 
Ventersdorp Lava - 

Dolomite 

BR1 BR2 D1 D2 VLR VLS BR1 - BR2 BR1-D1 BR1-D2 BR1-VLS BR1-VLR D1-VLS D1-VLR 

        BR2 - D1 Br2 - D2 BR2-VLs BR2-VLR D2-VLS D2-VLR 

Fe2 

2098.28(a) 2308.11(b) 2727.76(c) 209.7767 0 2,   0.000767 0 0 

2259.684 2273.135 2395.534 2269.955 2605.362 2931.761   0.000   
0.925 

0.341 0.987 < 0.0001 0.019 0.004 0.171 

A A AB A AB B       0.305 0.915 < 0.0001 0.017 0.000 0.025 

Ga 

6.52(a) 6.03(a) 6.44(a) 0.1256 0.9391 2,   0.9946 0.938278 0.969144 

5.833 8.087 7.370 5.696 5.371 7.980   < 0.0001   
0.009 

0.018 0.753 0.001 0.232 0.299 0.000 

AB BC BC AB A C       0.807 0.005 0.427 0.000 0.000 0.403 

K2 

7969.42(a) 6807.21(b) 6226.11(c) 77.7991 0 2,   0 0 0.002122 

6385.754 10951.036 8211.547 4973.341 6122.342 6094.670   < 0.0001   
  

0.004 0.019 0.751 0.739 0.002 0.001 

AB C BC A A A       0.591 < 0.0001 0.000 0.000 0.045 0.047 

Mg 

1386.98(a) 1386.98(b) 1326.68(b) 33.2724 0 2, 0.000 0.923989 0 0.000011 

1373.067 1794.032 1673.425 1217.036 1236.224 1417.135   0.001   
  

0.042 0.110 0.968 0.093 0.051 0.000 

AB AB B A A AB       0.367 0.008 0.294 0.006 0.108 0.967 

Mn 

697.01(a) 3407.61(b) 542.12(c) 487.0272 0 2, 0.000 0 0.000856 0 

583.821 709.919 3401.157 4097.582 471.128 651.835   < 0.0001   
  

< 0.0001 < 0.0001 0.497 0.155 0.001 < 0.0001 

A A B B A A       0.002 0.001 0.735 0.016 0.000 < 0.0001 

Mo 

0.86(a) 1.08(b) 0.72(c) 104.2542 0 2, 0.000 0 0.000011 0 

1.020 0.925 1.160 1.153 0.698 0.781   0.039   
  

0.335 0.478 0.086 0.143 0.009 0.017 

A A A A A A       0.132 0.213 0.262 0.382 0.019 0.036 

Na2 

296.74(a) 148.37(b) 296.74(c) 33.4843 0 2,   0.011022 0.013144 0 

313.863 309.107 98.914 532.788 352.382 426.568   0.000   
0.474 

0.002 0.295 0.216 0.535 < 0.0001 0.013 

B AB A B AB B       0.016 0.086 0.055 0.925 0.874 0.105 

Nb 

6.75(a) 5.62(b) 5.61(b) 150.1868 0 2,   0 0 0.907078 

6.705 7.057 6.180 5.163 6.284 4.975   < 0.0001   
0.412 

0.384 0.001 0.000 0.581 0.005 0.755 

C C ABC AB BC A       0.097 < 0.0001 < 0.0001 0.178 0.747 0.006 

Ni 

28.22(a) 37.99(bc) 43.26(bc) 143.6471 0 2,   0 0 0.005067 

14.386 27.082 43.415 38.758 33.724 39.053   < 0.0001   
< 0.0001 

0.001 0.006 < 0.0001 0.026 0.942 0.031 

A A B BC B BC       0.000 0.012 < 0.0001 0.013 0.006 0.578 
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Element 

Mean per geology/LFT and Dunn's Post-test grouping 

chi-
squared 

p-value 
 (geology 

/LFT) 
Df 

Pairwise comparisons 

Black Reef Quartzite Dolomite Ventersdorp Lava 
Black 
Reef 

Dolomite-Black 
Reef 

Ventersdorp Lava - 
Black Reef 

Ventersdorp Lava 
- Dolomite 

BR1 BR2 D1 D2 VLR VLS BR1 - BR2 BR1-D1 BR1-D2 BR1-VLS BR1-VLR D1-VLS D1-VLR 

       BR2 - D1 Br2 - D2 BR2-VLs BR2-VLR D2-VLS D2-VLR 

Ni 

31.43(a) 33.79(b) 33.79(c) 28.4168 0.00000
1 

2,   0.0001 0 0.685089 

32.432 34.881 27.830 35.347 40.141 48.772   < 0.0001   
  

0.654 1.000 0.143 0.563 0.037 1.000 

AB AB AB AB B C       0.224 1.000 0.002 0.943 0.001 1.000 

P2 

414.6(a) 261.85(b) 305.49(c) 186.1955 0 2, 0.000 0 0 0 

493.490 483.699 261.852 313.429 345.499 312.768   < 0.0001   
  

< 0.0001 0.001 0.005 0.074 0.044 0.003 

C ABC A AB BC ABC       0.006 0.190 0.460 0.789 0.556 0.116 

Pb 

28.35(a) 18.11(b) 10.19(c) 519.7743 0 2, 0.000 0 0 0 

26.178 54.498 19.981 15.136 12.256 7.318   < 0.0001   
  

0.131 0.004 < 0.0001 < 0.0001 < 0.0001 0.013 

CD D BCD ABC AB A       0.032 0.001 < 0.0001 < 0.0001 0.007 0.274 

Rb 

33.87(a) 36.17(b) 31.58(c) 67.8275 0 2, 0.000 0.008789 0 0 

29.708 41.990 41.370 32.089 25.772 36.106   < 0.0001   
  

0.000 0.403 0.025 0.170 0.154 < 
0.0001 

AB C C ABC A BC       0.711 0.018 0.292 < 0.0001 0.185 0.033 

Sc 

8.87(a) 8.31(b) 9(c) 41.2413 0 2,   0.000222 0.051944 0 

8.636 10.095 8.314 7.426 7.894 10.947   0.003   
0.482 

0.763 0.258 0.008 0.472 0.004 0.682 

AB AB AB A A B       0.325 0.074 0.053 0.163 0.000 0.675 

Si 

417068.9(a) 411950.5(b) 416017.1(b) 20.9062 0.00002
9 

2,   0.000622 0.000122 0.9407 

418124.203 408686.211 409387.364 419352.936 418151.770 405904.973   0.000   
0.154 

0.008 0.851 0.001 0.782 0.447 0.004 

B AB AB B B A       0.228 0.121 0.049 0.095 0.001 0.935 

Sr 

17.07(a) 12.31(b) 16.22(bc) 135.9779 0 2,   0 0.7115 0 

19.857 22.749 13.728 13.663 16.124 17.748   0.003   
0.149 

0.002 0.001 0.651 0.111 0.010 0.141 

B AB A A AB AB       0.105 0.065 0.332 0.884 0.005 0.088 

Th 

2.87(a) 3.29(b) 1.8(c) 90.3018 0 2,   0.007122 0 0 

3.095 3.322 4.683 2.676 1.802 2.139   0.002   
  

0.061 0.464 0.221 0.022 0.002 < 
0.0001 

AB AB B AB A A       0.096 0.374 0.169 0.015 0.649 0.139 

Ti 

3471.69(a) 2668.28(b) 3861.57(c) 468.0002 0 2, 0.000 0 0.001056 0 

3762.998 3933.988 2913.107 2516.914 4455.116 3518.193   < 0.0001   
  

0.000 < 0.0001 0.403 0.105 0.003 < 
0.0001 

C BC AB A C C       0.012 0.001 0.647 0.004 < 0.0001 < 
0.0001 
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Element 

Mean per geology/LFT and Dunn's Post-test grouping 

chi-
squared 

p-value 
 ( geology 

/LFT) 
Df 

Pairwise comparisons 

Black Reef Quartzite Dolomite Ventersdorp Lava Black Reef Dolomite-Black 
Reef 

Ventersdorp Lava - 
Black Reef 

Ventersdorp Lava - 
Dolomite BR1 BR2 D1 D2 VLR VLS BR1 - BR2 BR1-D1 BR1-D2 BR1-VLS BR1-VLR D1-VLS D1-VLR 

       BR2 - D1 Br2 - D2 BR2-VLs BR2-VLR D2-VLS D2-VLR 

V 

66.18(a) 69.32(ab) 80.83(b) 83.0575 0 2, 0.000 0.045267 0 0 

62.682 83.572 78.041 64.710 72.273 91.004   < 0.0001   
  

0.002 0.534 < 0.0001 0.049 0.033 0.285 

A ABC BC AB AB C       0.880 0.030 0.022 0.359 < 0.0001 0.202 

Y 

12.88(a) 10.31(b) 13.09(ab) 294.1864 0 2, 0.000 0 0.767344 0 

12.840 13.636 11.018 10.176 12.655 13.459   < 0.0001   
  

0.003 0.000 0.474 0.654 0.000 0.012 

C C AB A BC C       0.001 < 0.0001 0.766 0.399 < 0.0001 0.002 

Zn 

34.86(a) 18.78(b) 25.78(c) 196.6485 0 2,   0 0 0.002411 

39.283 141.654 28.348 27.644 24.795 24.394   0.000   
0.336 

0.001 0.000 0.002 0.009 0.704 0.424 

B AB A A AB A       0.016 0.006 0.042 0.107 0.441 0.238 

Zr 

303.92(a) 256.24(b) 291.69(c) 311.5375 0 2,   0 0 0 

327.150 302.109 251.255 259.687 311.435 257.543   < 0.0001   
0.579 

< 0.0001 < 0.0001 < 0.0001 0.599 0.711 < 0.0001 

B B A A B A       0.000 0.001 0.000 0.977 0.912 0.001 

  



 
 

2.3.1. Grouping analysis of Geology and LFTs from soil XRF results 

The grouping analysis was run using 3 and 6 classes, to determine how the elements 

varied over the different geologies and landscape functional types. The Kruskal Wallis test 

above looked at individual variables per Geology or LFT, whereas the grouping analysis 

compares the elemental data and forms clusters using a K-means test. The grouping 

analysis was first run on all the variables which showed significant differences (p<0.05) in 

the Kruskal Wallis test per geology. The 10 highest R values were then selected for a 

second analysis. As shown in Figure 2-10, the 3 groups classified in the first test fell almost 

exactly within the 3 geologies, with only one sample from the Black Reef falling into the 

incorrect class.  

 

Figure 2-10 Spatially plotted results of the 3-class Grouping analysis of the soil elemental content and 
landscape functional types shown in background for reference purposes 

The one sample for which the group did not match the geology had higher Fe, Fe2, Cu, 

Ti and Zr values than were typically found on the Black Reef, which may indicate an 

anomaly/deviation in the geological features as the element content for this one sample 

more closely resembled the Ventersdorp Lavas in elemental makeup. Overall, the results 

indicated that there is a strong distinction between the elemental contents of the soils, 
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despite possible mixing of transported materials, and anthropogenic disturbance. The 

analysis showed that the variables that accounted for the largest proportion of the 

variance in the data were Mn, Cr and Ti. This relates strongly to the Dunn’s post-test on 

the Kruskal-Wallis test which showed that these elements each fell into a separate class. 

Table 2-7 Results of the grouping analysis for 3 classes based on the 10 variables which accounted for 
the most within class similarity and between class difference (shown by the R2 value 

Variable Mean Std. Dev Min Max R 2 

Mn 1590.616 1605.335 309.7828 6195.656 0.824116 

Cr 115.7925 25.3424 80.51 167.09 0.692591 

Ti 3457.552 760.9244 2113.883 5572.691 0.594537 

Cu 23.92192 7.520388 10.45 50.25 0.577366 

Cr2 131.2747 46.3602 45.84153 248.3653 0.55531 

Pb 17.71385 8.62517 5.42 38.94 0.549092 

Ba 246.9317 164.5889 101.56 1004.21 0.495279 

Fe 21852.73 3411.537 16090.21 29848.51 0.436362 

Fe2 2425.125 379.8165 1818.508 3287.302 0.42714 

Zr 284.9246 48.95138 192.26 462.35 0.235256 

 

 
Figure 2-11 Box plot showing results of the 3-class Grouping analysis of the soil elemental content  

(Class 1 – Blue, Class 2 – Red, Class 3 – Green) 
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Table 2-8 Summary of Grouping Analysis classes (3 class analysis) 

 Ventersdorp Lavas Black Reef Dolomites 

Class 1 0 15 0 

Class 2 19 1 0 

Class 3 0 0 17 

 

The distribution of data and the clustering of the different groups can be seen in Figure 

2-11.  Class 1 appears to be differentiated from Class 2 and Class 3 by higher Zr, Cr, CR2, 

and Pb content. These elements were outside of the upper quartile for the full sample set. 

Class 2 was distinguished by elevated concentrations of Fe2, Fe, Cu and Ti, and lower 

concentration of Cr2, Cr and Pb. Class 3 was distinguished by lower concentrations of Cu, 

Ti and Zr, and elevated concentrations of Ba and Mn. These groups correlated strongly to 

the  geologies, with all Class 1 samples falling within the Black Reef (n=15), the majority of 

the Class 2 samples falling within the Ventersdorp Lavas (n=19) and one sample appearing 

on the Black Reef, and all Class 3 samples appearing on the Dolomites (n=17). 

The next stage of the analysis was to run the grouping analysis for 6 classes, using the 

same variables as defined in the 3 class analysis, and using the same 3 seed locations and 

randomly selecting another 3 seed locations (1 per class is required for the analysis). A 

further analysis tested the optimal number of classes by calculating the Calinski-

Harabasz pseudo F-statistic [99]. The number of groups with the highest resulting 

F-statistic mean value represents the optimal number of groups to describe between 

class variation and within class similarity. The result of the optimal number of classes 

was three (mean = 402.7936). Table 2-10 displays the map of the results for the 6-class 

grouping analysis. The majority of the samples are still clustered into 3 classes which 

follow the three different geologies.  
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Figure 2-12 Spatially plotted results of the 6-class Grouping analysis of the soil elemental content and 

landscape functional types shown in background for reference purposes 

 

Figure 2-13 Box plot showing results of the 6-class Grouping analysis of the soil elemental content  
(Class 1 – Blue, Class 2 – Red, Class 3 – Green, Class 4 – Orange, Class 5 – Purple, Class 6 - Brown) 

Table 2-9 Summary of grouping Analysis (6 classes) per Landscape functional Type per geology 

 VLS VLR BR1 BR2 D1 D2 
Class 1 0 0 3 7 0 0 
Class 2 0 0 2 0 0 0 
Class 3 0 0 0 0 8 8 
Class 4 0 1 4 0 0 0 
Class 5 0 0 0 0 0 1 
Class 6 9 9 0 0 0 0 
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Class 1, 2 and 4 follow a similar distribution as Class 1 of the 3-class grouping analysis, 

with elevated Pb, Cr, Cr2 and Zr values accounting for the majority of the difference from 

the other classes. Class 4 had elevated Ti and Cu values, which were identified as 

characteristics of the Ventersdorp Lavas samples in the 3 class analysis. There is however 

an overlap in range between the Class 1 and Class 2 values of the 3-class analysis which 

accounts for the variation in the 6-class analysis. Class 3 and class 5 are characterised by 

lower Zr, Ti and Cu values and elevated Mn and Ba values, which follows the same trend 

as Class 3 in the 3-class analysis. Class 5 has slightly elevated Fe, Fe2 Mn and Ba 

concentrations when compared to class 3. Class 6 is characterised by elevated 

concentrations of Fe2, Fe, Cu and Ti, and lower concentration of Cr2, Cr and Pb, which 

follows the same trend as Class 2 of the 3-class analysis. .Most of the variation was 

accounted for on the Black Reef outcrop (BR1) which had samples which fell into classes 

1 (n=3), 2 (n=2) and 4 (n=4). All BR2 samples fell into class 1 (n=7). The majority of 

Ventersdorp Lavas samples from both LFTS, VLS (n=9) and VLR (n=9) fell into class 6. As 

with the 3-class analysis, 1 sample from VLR fell into the class 4 which was predominantly 

BR1 samples. All dolomite samples from LFTS D1 (n=8) and D2 (n=8) fell into class 3, expect 

for one sample which fell into class 5. This analysis strongly supported the hypothesis that 

the underlying geology strongly influences the soil elemental content in the rooting zone 

of the plants, and indicated that the underlying geology is not obscured by transported 

materials at the rooting zone  

  



 
 

 

 

Figure 2-14 Map displaying the distribution of species collected during sampling 

 



 
 

2.3.1. Vegetation sampling and leaf spectral analysis 

Vegetation indices were derived from the spectral data collected with the spectro-

radiometer. These spectral derivatives were used to test whether there was variation in 

spectral response per geology, per Landscape function type and per species. Figure 2-14 

shows the locations of the plant samples collected and the distribution of the species. 

Euclea crispa trees were found to be less common on the dolomites, and did not occur 

within the boundaries of the study area on the Chert-rich dolomites (LFT D2). The E. crispa 

that occurred on the chert-poor dolomites were smaller and less vigorous than those 

occurring on the Black Reef and Ventersdorp Lavas. Similarly, the Ehretia rigida samples 

were less common on the Black Reef and Ventersdorp lava, and at the time of sampling, 

they were still dormant. Due to the fact that the Ehretia rigida samples were not 

adequately distributed across the site, these samples were omitted from the final analysis. 

Certain phenological differences were noted whilst performing the sample. The S. lancea 

and A. karroo obtained their first green flush after the dry season earlier on the 

Ventersdorp Lavas than on the Black reef or Dolomites. When sampling, only fully formed 

leaves were collected.  

The ranges obtained for the eight spectral indices per species and for all four species 

combined are shown in Appendix 4. The data was tested for normality and the results of 

all 8 indices were found to be not normally distributed (p < 0.05). Based on this finding, 

the Kruskal-Wallis test with the Dunn post-test and Bonferroni correction were used for 

the analysis of the data.The Kruskal Wallis test for all species (A. karroo, S. lancea and E. 

crispa) combined showed significant differences per geology (p < 0.05) for all 8 spectral 

indices, as shown in Table 2-10 and Table 2-11. The strongest differences were for the 

NDVI, Red-edge NDVI, Red-edge inflection point and the 725/702 ratio of the 1st and 2nd 
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derivatives (Table 2-10). Pairwise comparisons showed that when combining data for the 

three species, only two groups per spectral index were formed. The NDVI, NDWI, Red-

edge inflection point and Red-edge position found that the spectral response of plants on 

dolomites were significantly different to the Black Reef and Ventersdorp Lavas (p < 0.05). 

The Red-edge NDVI and the 725/702 ratios of the 1st and 2nd derivatives found that the 

spectral response of plants on Ventersdorp Lavas were significantly different to the Black 

Reef and Dolomites (p < 0.05), and the PSRI identified the Black Reef as being significantly 

different to the Dolomites and Ventersdorp Lavas (p = 001).  

There were differences found in the results per species. For examples, there were no 

significant differences found between geologies for the NDWI (p = 0.279) and PSRI 

(p=0.447) for the E. crispa samples, and only a weak difference in the Red-edge inflection 

point (p= 0.032). There were significant differences between geologies for all indices for 

A. karroo and S. lancea samples, although in some cases, such as the Red-edge position 

(p= 0.020), the differences were only marginally significant at the 95% confidence interval.  

S. lancea samples also only showed a weak difference between geologies for the NDWI. 

The E. crispa samples had a highly significant result (p < 0001) for the Red-edge position, 

showing a blue shift on the dolomites. This result is in accordance with the observation 

noted that the E. crispa samples growing on dolomites were less vigorous than those 

growing on the Ventersdorp Lavas or Black Reef.  

The indices that distinguished between the three geologies most successfully for the 

A. karroo were the NDVI (p < 0.0001) and the 725/702 ratio of the 1st derivative (p < 0.001), 

while the NDWI, Red-edge NDVI and the 725/702 ratio of the 2nd derivative were 

successful in distinguishing the Black Reef from the other two geologies. For the E. crispa 

samples, the NDVI (p <0001) and Red-edge NDVI were successful in distinguishing 
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between the three geologies. For the S. lancea samples, the Red-edge inflection point and 

725/702 ratio of the 2nd derivative were most successful in distinguishing between the 

three geologies, but the PSRI results were significantly different for the Black Reef 

compared to the Ventersdorp Lavas and Dolomites. The A. karroo and S. lancea samples 

both showed higher NDVI values on the Black reef than on the surrounding geologies, and 

the E. crispa showed higher NDVI values on the Dolomites, despite also showing a blue 

shift, which is typically an indicator of plant stress. The variation in results between 

species has also shown that there is the potential for differences to be muted when 

combining data from all species as the three species respond differently to the changes in 

geology.  

Pairwise comparisons of spectral indices per Landscape Functional type were also 

performed for the three species separately, and as a combined dataset. Table 2-11 shows 

the results of the Dunn’s post test results for the spectral indices per Geology and per 

Landscape Functional Type. The results of the test per geology and the test per LFT have 

been compared to identify whether geology or position within the catena has a stronger 

effect on the plant spectral response. The results of Soil characterisation (sections 2.3.4- 

2.3.1) showed that there are differences in clay content, soil water content and rooting 

depth between the landscape functional types which could all potentially have an effect 

on the spectral response of the plant. The results of the XRF analysis showed that there 

was little difference in the soils elemental content for the landscape functional types 

within geologies (e.g. BR1 vs BR2, or VLS vs VLR). However, factors such as clay content 

could influence the uptake or bio-availability of the elements, which could also influence 

plant spectral response.  



 
 

Table 2-10 Vegetation Indices (VI) for leaves of the three tree species. Data are ranges and mean of ranks and groups from the Dunn’s procedure based on the mean of ranks. Significant 
differences between the three geologies (VL – Ventersdorp Lavas, BR – Black Reef, D – Dolomite) combined are indicated in bold.  P-values and the observed K-value are given. The critical K-
value is 5.991. (Kruskal-Wallis non-parametric test) 
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Combined (n= 682, D.f. = 2) Acacia karroo (n= 223, D.f. = 2) Euclea crispa (n= 209, D.f. = 2) Searsia lancea n= 250, D.f. = 2) 

N
D

V
I 

Black Reef 244 
0.714 - 
0.92 

329.95 
(A)     81 

0.714 - 
0.87 

138.44 
(C)     81 

0.717 - 
0.856 

74.21 
(A)     82 

0.767 - 
0.92 

120.1 
(A)     

Dolomite 202 
0.64 - 
0.909 

411.89 
(B) <0.0001 40.808 80 

0.64 - 
0.863 

109.61 
(B) <0.0001 28.466 42 

0.767 - 
0.873 

163.07 
(C) <0.0001 59.730 80 

0.67 - 
0.909 

151.06 
(B) 0.000 16.032 

Ventersdorp 
Lava 236 

0.642 - 
0.919 

293.19 
(A)     62 

0.642 - 
0.874 

80.53 
(A)     86 

0.68 - 
0.848 

105.64 
(B)     88 

0.674 - 
0.919 

107.3 
(A)     

N
D

W
I 

Black Reef 244 
0.02 - 
0.108 

318.98 
(A)     81 

0.041 - 
0.108 

84.67 
(A)     81 

0.036 - 
0.097 

113.25 
(A)     82 

0.02 - 
0.08 

108.99 
(A)     

Dolomite 202 
0.026 - 
0.112 

386.93 
(B) 0.000 15.408 80 

0.064 - 
0.112 

134.64 
(B) <0.0001 25.016 42 

0.026 - 
0.094 

97.45 
(A) 0.279 2.552 80 

0.027 - 
0.072 

142.41 
(B) 0.013 8.652 

Ventersdorp 
Lava 236 

-0.003 - 
0.154 

325.89 
(A)     62 

0.047 - 
0.125 

118.5 
(B)     86 

0.033 - 
0.121 

100.92 
(A)     88 

-0.003 - 
0.154 

125.51 
(AB)     

P
SR

I 

Black Reef 244 
-0.102 - 
0.129 

378.18 
(B)     81 

-0.102 - 
0.018 

136.58 
(B)     81 

-0.037 - 
0.075 

105.69 
(A)     82 

-0.035 - 
0.129 

159.27 
(B)     

Dolomite 202 
-0.101 - 
0.094 

330.8 
(A) 0.001 14.084 80 

-0.101 - -
0.009 134 (B) <0.0001 75.575 42 

-0.027 - 
0.081 

114.21 
(A) 0.447 1.609 80 

-0.052 - 
0.094 

122.64 
(A) <0.0001 32.027 

Ventersdorp 
Lava 236 

-0.158 - 
0.109 

312.73 
(A)     62 

-0.158 - -
0.04 

51.5 
(A)     86 

-0.113 - 
0.109 

99.85 
(A)     88 

-0.074 - 
0.084 

96.64 
(A)     

R
e

d
-e

d
ge

 N
D

V
I 

Black Reef 244 
0.392 - 
0.717 

368.93 
(B) <0.0001   81 

0.514 - 
0.717 

153.09 
(B) <0.0001   81 

0.392 - 
0.632 

106.7 
(B) <0.0001   82 

0.403 - 
0.704 

117.4 
(A)     

Dolomite 202 
0.419 - 
0.715 

398.79 
(B)   58.237 80 

0.419 - 
0.639 

95.7 
(A)   53.827 42 

0.478 - 
0.648 

149.71 
(C)   35.945 80 

0.482 - 
0.715 

160.78 
(B) <0.0001 30.185 

Ventersdorp 
Lava 236 

0.381 - 
0.704 

264.1 
(A)     62 

0.381 - 
0.642 

79.35 
(A)     86 

0.417 - 
0.597 

81.56 
(A)     88 

0.447 - 
0.704 

100.98 
(A)     
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Combined (n= 682, D.f. = 2) Acacia karroo (n= 223, D.f. = 2) Euclea crispa (n= 209, D.f. = 2) Searsia lancea n= 250, D.f. = 2) 

R
e

d
-e

d
ge

 In
fle

ctio
n

 

p
o

in
t 

Black Reef 244 
0.248 - 
0.416 

313.11 
(A)     81 

0.304 - 
0.416 

111.26 
(AB)     81 

0.253 - 
0.401 

99.26 
(A)     82 

0.248 - 
0.336 

85.38 
(A)     

Dolomite 202 
0.275 - 
0.454 

411.77 
(B) <0.0001 13.502 80 

0.301 - 
0.454 

127.29 
(B) 0.008 7.869 42 

0.275 - 
0.398 

126.88 
(B) 0.032 31.667 80 

0.277 - 
0.38 

164.18 
(C) <0.0001 7.789 

Ventersdorp 
Lava 236 

0.095 - 
0.434 

310.7 
(A)     62 

0.269 - 
0.434 

93.24 
(A)     86 

0.212 - 
0.404 

99.72 
(AB)     88 

0.095 - 
0.389 

127.73 
(B)     
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Black Reef 244 
727.701 - 
736.447 

349.14 
(B)     81 

728.537 - 
734.345 

95.98 
(A)     81 

729.353 - 
736.447 

117.86 
(B)     82 

727.701 - 
735.392 

131.15 
(AB)     

Dolomite 202 
727.495 - 
736.343 

300.65 
(A) 0.001 36.525 80 

729.305 - 
736.343 

121.85 
(B) 0.020 9.743 42 

728.012 - 
731.806 

58.1 
(A) <0.0001 6.883 80 

727.495 - 
734.264 

107.21 
(A) 0.020 48.210 

Ventersdorp 
Lava 236 

727.09 - 
737.818 

368.56 
(B)     62 

729.034 - 
737.818 

120.23 
(AB)     86 

729.22 - 
734.675 

115.79 
(B)     88 

727.09 - 
734.063 

136.86 
(B)     
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Black Reef 244 
0.557 - 
2.087 

385.24 
(B)     81 

0.994 - 
2.087 

160.73 
(C)     81 

0.591 - 
1.524 

118.16 
(B)     82 

0.557 - 
1.723 

116.71 
(A)     

Dolomite 202 
0.643 - 
1.758 

406.27 
(B) <0.0001 95.462 80 

0.873 - 
1.493 

100.08 
(B) <0.0001 83.646 42 

0.643 - 
1.586 

134.33 
(B) <0.0001 30.505 80 

0.879 - 
1.758 

163.44 
(B) <0.0001 34.867 

Ventersdorp 
Lava 236 

0.531 - 
1.558 

240.84 
(A)     62 

0.721 - 
1.378 

63.73 
(A)     86 

0.531 - 
1.388 

78.28 
(A)     88 

0.626 - 
1.558 

99.2 
(A)     
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Black Reef 244 
-21.165 - 
6.386 

391.73 
(B)     81 

-1.981 - -
0.197 

159.7 
(B)     81 

-21.165 - 
6.386 

114.73 
(B)     82 

-4.297 - 
1.201 

125.05 
(B)     

Dolomite 202 
-19.213 - 
-0.352 

367.67 
(B) <0.0001 53.025 80 

-17.146 - -
0.44 

88.39 
(A) <0.0001 70.110 42 

-19.213 - -
0.432 124 (B) 0.001 14.238 80 

-2.168 - -
0.352 

156.28 
(C) <0.0001 27.272 

Ventersdorp 
Lava 236 

-23.568 - 
165.363 

267.16 
(A)     62 

-23.568 - 
37.974 

80.15 
(A)     86 

-20.513 - 
165.363 

86.56 
(A)     88 

-9.335 - -
0.495 

97.94 
(A)     
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Table 2-11 Comparisons between groups obtained using the Dunn’s procedure for the differences between the VIs results across the three geologies (VL – Ventersdorp Lavas, BR – Black 
Reef, D – Dolomite) and for the six landscape functional types (LFTs) for the three tree species. Significant differences between geologies and between LFTs within geologies are shown in bold 
(Kruskal-Wallis non-parametric test) 

Dunn's Post test 
results 

All species combined Acacia Karroo Euclea Crispa Searsia Lancea 

Vegetation 
Index/Spectral 

analysis 
Black Reef Dolomite 

Ventersdorp 
Lava 

Black Reef Dolomite 
Ventersdorp 

Lava 
Black Reef Dolomite 

Ventersdorp 
Lava 

Black Reef Dolomite 
Ventersdorp 

Lava 

 BR1 BR2 D1 D2 VLS VLR BR1 BR2 D1 D2 VLS VLR BR1 BR2 D1 D2 VLS VLR BR1 BR2 D1 D2 VLS VLR 

NDVI  

                                                 

A B A C B A A C B A B A 

AB A BC C A A B A A A A A A B C   B B BC AB C BC ABC A 

NDWI  

                                                 

A B A A B B A A A A B AB 

AB BC C C C A A B B B B A A A A   A A A A A A A A 

PSRI  

                                                 

B A A B B A A A A B A A 

B B B A A AB C B BC BC A A A A A   A A C C BC AB A AB 

Red-edge NDVI  

                                                 

B B A B A A B C A A B A 

B B B B A A B A A A A A A B B   A A AB AB C BC AB A 

Red-edge Position  

                                                 

B A B A B AB B A B AB A B 

ABC BC A AB C ABC A C BC BC C AB D AB A   CD BC AB BC A ABC ABC C 

Red-edge 
Inflection point  

                                                 

A B A AB B A A B AB A C B 

B AB B C B A B B B C BC A A A A   A A AB A CD D BCD BC 

725-702 Ratio of 
the 1st derivative 

                                                 

B B A  C B A B B A A B A 

B B B B A A D CD BC AB A A A B B   A A A A B AB A A 

725-702 Ratio of 
the 2nd  derivative  

                                                 

B B A B A A B B A B C A 

B B B AB A A D CD BC A AB AB AB C BC   A ABC A A B AB A A 
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Table 2-12 P-values for the Kruskal Wallis test for 8 spectral indices for three tree species individually and combined 

Spectral index Combined A. Karroo  S. lancea E. Crispa 

NDVI < 0.0001 < 0.0001 < 0.0001 < 0.0001 

NDWI < 0.0001 < 0.0001 0.055 0.182 

PSRI < 0.0001 < 0.0001 < 0.0001 0.739 

Red-edge NDVI < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Red-edge Inflection point < 0.0001 < 0.0001 < 0.0001 0.132 

Red-edge Position 0.001 < 0.0001 0.000 < 0.0001 

725-702 Ratio of the 1st derivative < 0.0001 < 0.0001 < 0.0001 < 0.0001 

725-702 Ratio of the 2nd  derivative < 0.0001 < 0.0001 < 0.0001 < 0.0001 

 

The first observation to be noted is that the pairwise comparisons of the LFTs (Table 2-11) 

frequently only resulted in 2-3 groups, and that the highest number of significant differences between 

groups was 4, which indicates that none of the spectral index results correlated directly to the LFT 

classifications. The VIs results which had the maximum number of groups for the Dunn’s test were: A. 

karroo results for the 725-702 ratio of the 1st and 2nd derivatives; the Red-edge Position for the E. 

crispa samples; and the Red-edge inflection point for the S. lancea. Samples frequently fell into the 

same class for LFTS within Geologies. For example, with the combined data for the 725-702 Ratio of 

the 1st derivative, where the geologies were classified and Black reef (B), Dolomite (B) and Ventersdorp 

Lavas (A), the LFTS were categorised as BR1 and BR2 (B), D1 and D2 (B) and VLS and VLR (A), meaning 

that there were no differences between LFTs within the same geology. This trend can be seen for the 

725-702 Ratio of the 2nd derivative, the PSRI and the Red-edge NDVI. For the PSRI and Red-edge 

inflection point, D1 and D2 fall into separate groups, and they also showed differences between the 

two Ventersdorp lavas LFTS. In the PSRI, this could be due to the fact that there were no samples for 

the E. crispa on D2 which may skew the results, but in the Red-edge NDVI, the A. karroo samples 

showed the same variation in groupings between the dolomites, which could reflect a plant response 

to the differences in soil characteristics between the Chert-rich and Chert-poor dolomites. In a number 

of cases the LFTs fell into more than one group, where at least one of the groups was the same for 

LFTS within the same geology. 
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For the A. karroo samples, there were frequently differences in the BR1 and BR2 LFTS, as seen for 

the NDVI, NDWI, PSRI and Red-edge NDVI. For the NDWI, the BR1 and VLR fall into group A, where all 

the other samples fall into group B. This could potentially be linked to the soil depth or effective 

rooting depth which was much shallower for these two LFTS. The other two species do not show the 

same trend. Similar results are shown for the Red-edge Position, although the VLR LFT also falls into 

the same group as the Dolomite LFTs. For the Red-edge NDVI, BR1 is the only LFT which is significantly 

different to the other LFTS.  

For the E. crispa samples, a similar result is seen, where the BR1 LFT is significantly different from 

the remaining LFTS. In some cases, there are other LFTS which are also different. For the NDWI, PSRI 

and Red-edge Inflection point, there were no significant differences between LFTs. For the Red-edge 

Position and the 725-702 ratio of the 2nd derivative, there was overlap between groups. For the S. 

lancea samples, there were also a number of spectral indices which showed inconclusive results as 

the LFTs fell into several groups. For the NDVI, Red-edge NDVI, Red-edge inflection point and Red-

edge Position, at least 4 of the 6 LFTS fell into more than one group. This poses a challenge when 

interpreting the data of linking it to trends in the soils and LFT characteristics.  

Overall, the analysis of the spectral indices per geology showed much more distinct results in 

terms of the pairwise comparisons. Some differences were found between LFTs within geologies 

which means that one cannot rule out the role of the position within the catena entirely, but neither 

is it the most dominant factor in determining spectral response.  
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 Discussion  

2.4.1. Landscape functional analysis and soils characterisation 

Landscape functional analysis was used to classify the landscape into function units (Landscape 

Function types) in an objective manner [91], [95], [105]. It is important to have a means of 

characterising or quantifying the environmental variables within the landscape as these will play a role 

in determining plant spectral response. In total, six landscape functional types were defined, with two 

landscape functional types per geology. In the analysis of the soils characteristics, some typical catenal 

effects were observed. The soils on the upper portions of the catena were shallower and rockier than 

the soils of the lower lying areas. The shallowness of the soils in the upper portion of the catena 

indicated that there is erosion and transport of materials down slope. Typically this transport of 

material would include the organic matter which leads to leaching of Soil Organic Carbon (SOC) higher 

in the catenal sequence and enrichment is downslope sediments [106], [107]. However, this was not 

noted in the results of the soils characterisation, where the highest positions in the catenal also 

showed the highest SOC results. It is suggested that the change in surface cover on the Rocky 

Ventersdorp Lavas and Black Reef outcrop, where there is a transition from grassland to woodland, 

and a decrease in understory vegetative cover combined with the increased rocky cover provides 

shelter from fires and allows more organic matter to be collected and broken down into the soils. It is 

well documented that fires, especially very hot or frequent fires will decrease the amount of soil 

organic matter present in the soils [108], [109]. This may account for the lower SOC in the soils lower 

in the catenal sequence which would otherwise have been expected to have higher SOC content than 

the upslope soils. It is not certain whether the SOC is of biogenic or lithogenic origin, but the 

distribution of the SOC indicates it may be of biogenic origin. 
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The differences identified between LFTs for SOC, clay content, soil water content and soil depth 

showed that there were distinct differences in landscape characteristics between the LFTS. These have 

been accounted for and will be considered when comparing results for the plant spectral analysis and 

the plant elemental uptake (leaf elemental content) analysis that will be performed in Chapter 3. 

2.4.2. Analysis of soil elemental content 

The soil elemental content correlated well with the expected values for the three geologies. There 

were a small number of samples which had results that exceeded the expected ranges for that 

geology. It is expected that these sampling sites have been exposed to anthropogenic contamination 

at some point in the past, which may account for the deviation from the expected range. The 

concentrations of Co, Cr, Cu, Pb, Ni and Zn in the soils were similar to the ranges detected in a baseline 

study of these elements in South African soils [110].  

The grouping analysis that was used showed clearly how the soil elemental content was consistent 

across the geologies and did not differ significantly between Landscape function types. This is an 

important finding, as there is potential for the soils to be composed of regolith and transported 

materials and not to be a true reflection of the underlying geology.  

2.4.3. Vegetation indices and spectral analysis  

Significant differences in leaf spectral response to soil metal contents have been found in pot 

trials, with plants grown in varying concentrations of elements which are known to cause plant stress, 

such as As, Pb, Cd, Cu and SO4 [33], [111]. Rathod (2015) used spectral indices such as the NDVI and 

NDWI, to detect changes between different concentrations of As, Pb and Cd at 1-month and 3-months 

after dosing samples. The results of this study showed differences between the geologies for all the 

spectral indices (Appendix 4, p<0.001). The NDVI showed lower median values over the dolomites, 

when the expected result would have been that there were lower values for the Black Reef, which had 
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elevated Pb and Cr values. The NDWI did not differ across LFTs, which suggests that the observed 

stress spectral signature is not related to low water availability or physiological (osmotic) drought. 

There was significant variation in Red-edge inflection point and Red-edge wavelength between 

the geologies (Table 2-10, p < 0.0001). Determining the Red-edge wavelength and inflection point is 

one method of measuring the blue shift, and these features may be used as indicators of plant stress. 

The Red-edge wavelength range for S. lancea growing on the Black Reef indicated a strong blue shift 

when compared to the Dolomite and Ventersdorp Lavas (p < 0.0001). Similar differences have been 

found for S. lancea growing on AMD-polluted versus unpolluted groundwater on the same geology 

(Dolomites) (Govender, 2011), and between ARD-tolerant versus sensitive ecotypes of S. lancea grown 

together in plots on polluted groundwater underlying dolomitic soils (Weiersbye et al., 2006).  

In contrast there were no differences for Euclea sp. between the Black Reef and the Dolomite for 

the Red-edge wavelength calculations and the derivative ratios. Euclea sp. on both these geologies 

were however significantly different to those on the Ventersdorp Lavas. The features most likely to 

influence plant growth on soils derived from Dolomites include their higher Ca and Mg status and 

neutral to slightly basic pH, and on the Black Reef, factors associated with ARD and elevated metal 

concentrations, including lower pH and fertility, and increased osmolarity. However, no differences in 

the NDWI were found to support an osmotic effect which could result in osmotic drought stress.  

It has been established that saline or acidic conditions associated with ARD in the study region 

inhibit nutrient cycling, in particular the mineralisation of nitrogen and phosphorus. A linear decline 

in tree seed production, mass and viability was observed for phreatophyte and riparian tree species 

growing in contaminated sites near the study area (Weiersbye and Witkowski, 2007). There was a 

possibility that similar effects may be observed on the Black Reef, and to confirm this, it would be 

necessary to acquire data and perform analyses relating to leaf pigments, oxidative indices, and 

bioavailability of elements in the soils. More in-depth spectral analysis could also be performed to 

identify possible nutrient deficiencies. However, many of the indices that have been developed for 
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identifying nutritional deficiencies are specific to selected types of crops, and may not be accurate for 

woodland tree species. It would be necessary to validate these indices before using them.  

Both the S. lancea and A. karroo samples growing on the Black Reef, and particularly the Black 

Reef outcrop showed higher PSRI values. When plant leaves are senescent, the chlorophyll content 

degrades faster than the carotenoid content, resulting in a higher carotenoid/chlorophyll ratio. The 

PSRI correlates strongly to the carotenoid/chlorophyll ratio in plants [112]. This may correspond to 

the observation that the plants were experiencing their “green flush” at different times across the 

three geologies. The very young, immature leaves were not collected. On the Black Reef, many of the 

trees did not have mature leaves from the new season’s growth and therefore leaves from the 

previous season were harvested. These were not visibly senescent, as all three species are evergreen/ 

semi-deciduous. None of the three species had lost their leaves over the dry season. The timing of the 

green flush could potentially be used as a valuable clue in delineating between geologies [113].  

Smith et al. (2004) found that the use of the 702/725 ratio of the 2nd derivative was successful in 

detecting where plants were growing in the vicinity of leaks from gas pipelines [104]. However, this 

study found that the 702/725 ratio of the 1st derivative, rather than the 2nd derivative showed greater 

variation between the six LFTs, and supports the findings of Mutanga & Skidmore (2007), where the 

1st derivative of the Red-edge was used to identify nitrogen deficiencies in pasture grasses [114].  

Table 2-11 presents the results of the Dunn’s multiple pairwise comparisons between geologies 

for each test, and between LFTs for each test. By comparing the results between geologies and LFTs 

one can determine how much of the variation in the dataset is due to topographic and landscape 

effects on the leaf spectral reflectance compared to effects as a result of parent geology. The LFTs 

were defined on the basis of physical factors such as shape, slope steepness, aspect, surface 

roughness, landscape heterogeneity and litter flow pathways, whereas the factors associated with 

parent geology would include salinity and osmotic potential, and metal deficiencies or toxicities. Both 

LFTs and geology would incorporate the influence of water availability and soil fertility to varying 
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extents, and factors such as clay content, pH and soil particle size could influence how the plant species 

respond to both landscape and geology, due to changes in elemental mobility and cation exchange 

capacity.  

There were very few significant differences between LFTs within geologies, for all the VIs tested, 

which suggests that the topography (also a product of underlying geology) or physical landscape was 

playing a lesser role in tree spectral reflectance than the factors related to parent geology.   
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 Conclusion 

This chapter of the study focused on understanding the variables that could potentially affect 

plant spectral response. The study firstly characterised the landscape and soils characteristics to 

understand how these differed across the study site. The structure of the landscape is result of 

geomorphological processes which also determine the underlying geology, and as such, it is impossible 

to separate the geology and landscape entirely. There are certain variables however, as a result of 

subsequent processes such as weathering or the soils, transport of materials and biological processes 

that may have changed the soils characteristics in a non-uniform manner across geologies. The study 

needed to characterise these variables, and understand how they may affect spectral response of the 

plants. To do this, the site was divided up into landscape functional types, which were determined 

based of these variables. All subsequent analyses of the soils and spectral responses were performed 

at two levels – geology and landscape functional type.  

Vegetation indices are an established method of detecting changes in plant physiology as a 

consequence of growing conditions. This study demonstrated significant disjunctions in foliar spectral 

data for three native phreatophyte tree species, which link to the changes in parent geology across a 

savannah in a semi-arid region. Whether the differences found in this study are directly related to 

substrate mineralogy and ARD, including changes in nutrient status or toxicities, will be investigated 

further in the next chapter.  

This chapter identified that there are changes in spectral response between geologies, as well as 

selected spectral responses which are specific to a landscape functional type. Therefore it is important 

to incorporate both levels of analysis for the remainder of the study. It has also been observed that it 

is necessary to analyse the spectral data at a species level to gain the best understanding of the 

variables that are being analysed. 
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Further analysis should identify which aspects of the changes in geology account for the changes 

in spectral reflectance. As the plant species respond differently to the changes in the geology, it would 

also be valuable to investigate selected biophysical parameters in the plants such as oxidative indices 

and plant pigments to understand whether the observed responses, such as the red-shift in the E. 

crispa samples on the Black Reef are in fact stress responses with an atypical spectral response. 
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 PLANT SPECTRAL RESPONSE TO SOIL AND LEAF 

ELEMENTAL CONTENT  

 Introduction 

In Chapter 2, there were two key findings which were identified. The soil elemental content could 

be clustered together to classify the underlying geology. Secondly, the spectral response of the leaves 

changed with geology. This chapter demonstrates how the preliminary findings in the previous 

chapter are further validated through the comparison of the substrate and foliar elemental 

concentrations with plant spectral response. Studies have shown that elemental concentrations and 

changes in bioavailability of specific elements can cause a plant stress response which can be detected 

through the a change in the leaf spectral response [111], [115]. Much of the previous work on this 

topic has been performed in controlled environments such as laboratory trials, or in relatively 

homogenous landscapes with low species diversity, such as agricultural fields. These studies have 

successfully detected plant stress responses in elevated concentrations of species elements, such as 

Cu, As, Cd, Pb [111], [115]. There is evidence, however that the changes in geology can cause a 

sufficient shift in plant spectral response to be detectable, even in more heterogeneous environments 

[71], [90].   

This study aimed to quantify how the many variables in a heterogeneous landscape could affect 

plant response, and to identify whether the factors which affected plant spectral response were also 

a factor of the changing geology. It had already been determined that the differences between the 

three geologies had an influencing effect on the plant spectral response at a leaf level. Analysis of soil 

and leaf elemental concentrations, bioconcentration factors and elemental ratios were used as 

indicators of plant nutritional status, plant health and soil fertility and elemental bioavailability. These 

variables were all investigated to understand the influence of geology and soil geochemistry on plant 

metal uptake and spectral response. In order to do this, the leaf elemental concentrations were first 
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compared to global mean concentrations [116] for each of the elements analysed to assess whether 

there were any excessively high or low concentrations found in the plant samples from the study site. 

The samples were then tested for significant differences in the soil, leaf and bioconcentration factors 

(BCF) between geologies, and between landscape functional types (LFTs). The soil, leaf and BCF 

concentrations were then correlated with each other to understand whether the differences in BCF 

between geologies were a product of leaf or soil elemental concentrations, or a combination of both. 

This provided insight in the bioavailability and potential elemental exclusion by the plants to control 

uptake or translocation of the metals to the leaves. The differences between the leaf elemental 

concentration and BCF and leaf and soils elemental ratios were also assessed at a species level to 

understand how the three species differed in their uptake of the elements in the soils, and to give 

more insight into plant nutritional status. 

These analytical procedures provided valuable insight into the differences in soil conditions and 

uptake of elements in the samples. The next stage of the analysis was to understand how these 

differences in soil and leaf elemental concentrations affected plant health, determined by the selected 

set of vegetation indices (VIs). It was important to understand which of the variables caused the 

changes in spectral response so that future analyses can predict the substrate conditions based on the 

changes in spectral response. As it was found that the results differed significantly between species, 

the final step of the analysis tested the use combining VIs to first classify the species, and then look at 

the variation within species classes to assess metal concentrations. This final step of the analysis 

showed that it was possible to classify the majority of samples into their species classes, but that the 

stress response for a subset of samples which were growing in less favourable conditions altered the 

spectral signature significantly. The soil and leaf elemental concentrations of these subset samples 

were compared to the remaining samples and the differences that were detected indicate a strong 

correlation between leaf and substrate elemental concentrations and the plants spectral response.   
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 Background 

3.2.1. Plants and Soil elemental interactions 

Certain elements are considered to be essential for plants to grow. There are seven elements in 

particular which are considered necessary for maintaining life processes in humans, animals and 

plants. These elements are chlorine (Cl), manganese (Mn), iron (Fe), zinc (Zn), boron (B), copper (Cu) 

and molybdenum (Mo). In addition to these elements, there are other elements which particular plant 

species have become dependent on for metabolic processes [117]. For example, Cobalt (Co) is 

essential for nitrogen fixing bacteria which are symbiotic with certain tree species [117]. Furthermore, 

certain plants have adapted to a specific suite of soil conditions. An example is Senecio coronatus 

which  only occurs on serpentine soils [23] which are characterised by low calcium to magnesium 

ratios, a lack of essential nutrients and high concentrations of nickel and chromium. There is usually a 

preferred concentration range of elements in soils for the optimal growth of plants. Deficiencies in 

elements required for plant growth can result in stunted growth, disease, low seed germination or an 

incomplete lifecycle for a plant (inability to flower or produce viable seeds) [67]. Similarly, an excess 

of an element which is considered to be essential for plant growth can be equally detrimental, and 

sometimes extremely toxic [118]. Elements such as arsenic (As), cadmium (Cd), lead (Pb) and mercury 

(Hg) are generally considered to be non-essential elements for plant growth, and even extremely low 

concentrations in the soil can have a harmful effect on plants [117]. Often the mechanisms that are 

developed to take up essential nutrients also allow for the uptake of some non-essential elements 

[40], [118]. Even if the plant is not able to take up an element from the soil, it is possible for the 

element to be detrimental to plant growth by changing the ratios of essential elements available in 

the soils, or by causing osmotic stress, where the concentration of salts in the soil water is too high to 

allow for osmosis to take place at the root [66]. Mobility of the elements in the soils can also play an 
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important role in the effect of elemental concentrations in the soils on plant health. As discussed in 

Chapter 2, factors such as soil particle size and clay content will affect the mobility of certain elements 

in the soils, as will other factors such as porosity and homogeneity [119], [120] . Other critical factors 

to soil elemental mobility are pH and redox potential (eH), mineralogy and surface charge [119]. 

Changes in chemical species strongly influence bioavailability of elements or the compounds that are 

formed in the soils. Elements which form metal-organic complexes are relatively stable around pH 6-

7, and not generally bioavailable [120]. Soil microbial activity and soil organic matter play a critical role 

in maintaining or establishing a healthy soil profile [121], [122]. In certain conditions, soil organic 

matter can have an immobilising effect on elements in the soil [120]. The interactions between plant 

roots and soil microbes may also influence and increase the bioavailability of metals in the 

rhizosphere. This is achieved by the roots secreting protons and organic acids which mobilise heavy 

metals within the soil and enhancing uptake by plant roots [117], [120]. Root-colonising bacteria and 

mycorrhizae have also been known to catalyse redox transformations such as Pb2+, Hg2+, Au3+, Te4+, 

Ag+,  thus increasing the bioavailability of these metals [44]. The hyphae of mycorrhizae also increase 

the root absorption area, which allows for more nutrient uptake [44]. However, regardless of the 

amount of root absorption area, metals cannot be taken up by plants without the correct transport 

proteins. This is due to the ionic charge of the metals which prevents them from moving freely across 

cellular membranes [39]. Transmembrane transporters have specialised binding sites that the metals 

bind to when being taken across the membrane. The binding domain of the transmembrane 

transporters is only receptive to the ions of specific metals and is responsible for transporter 

specificity. This prevents the plant from taking up non-essential metals, or metals that would be 

harmful or toxic. Some plants have mechanisms which inhibit the stimulation of transporter activity 

when there is a high influx of metal ions from the soil, in order to prevent an over-accumulation of a 

particular metal [39], [118]. Despite the specificity of the binding sites on many plants, some non-

essential metals are still taken up in the roots when the transporters do not differentiate between two 
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or sometimes more metals. For example, Cadmium (Cd) is frequently absorbed instead of Calcium 

(Ca), despite the fact that it is highly toxic to most plants [123], [124].  

Not all of the metals that are taken up by these transporter proteins are transported to the rest 

of the plant. Many of the metal ions become bound to the cell walls of the roots, and because they 

are bound, cannot be transported to other parts of the plants. Some metals, such as Pb are 

predominantly bound in the roots as there is very little translocation of Pb to the shoots [39], [125]. 

As with the transport of most nutrients from the root to the shoot, the transportation or 

translocation or metal-containing sap from the roots to the shoot of the plant is dependent on root 

pressure and transpiration, as well as a series of chemical interactions [40]. It is this stage of the uptake 

process that will determine how many metal ions will be bound to the root cell walls, and how many 

will be taken up into the shoots of the plant and sequestered, excreted or volatilised [40].  The vacuole 

is only one of the many sites where metals may be sequestered. The metals which are not bound in 

the vacuole, and are loaded into the xylem instead are transported to the leaves where the metals are 

reabsorbed into the leaf cells [39]. Many metals are distributed to apoplastic structures such as the 

cell wall or the trichone. It is estimated that for most Ni and Zn hyper-accumulating species, 60-70% 

of the metal is sequestered in the cell wall. Ligands and proteins are also largely responsible for the 

detoxification of metals. Complexation with ligands can happen either extra- or intra-cellularly [44], 

[126]. In a certain plant species, T. goesingense, the Ni was rendered inactive by histidine, a 

proteinogenic amino acid, which complexed the Ni is such a way that it was no longer toxic to the 

plant [39], [126]. Metallothioneins and phytochelatins are also responsible for intracellular 

complexation. While metallothioneins are gene-encoded, phytochelatins (PC) are enzyme 

synthesized.  It is thought that PC synthase activities are only stimulated by the presence of metal 

ions. Phytochelatins have been found in a wide range of both higher and lower plants [44]. 

While there are numerous plant species that have evolved mechanisms to survive in high 

concentrations of metals in the soils, either through uptake and binding and rendering the metal inert 
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within the cell, or through the active exclusion of harmful elements, there are still elements which 

have been found to be toxic to all plants [127]. Resistance to metal stress is achieved in plants through 

one of two mechanisms: avoidance, which includes the active exclusion of uptake as one of the 

strategies to externally limit harm from metal stress, and tolerance, which describes internal 

mechanisms for limiting harm from metal stress [128]. Plants which are tolerant to metals still exhibit 

signs of stunted growth and poor productivity compared to congenerics growing in non-contaminated 

conditions. It is suggested that this is due to the energy expenditure required, as there is a high 

metabolic cost associated with the detoxifying harmful elements [25], [128]. Many plants are not fully 

tolerant to elevated metal concentrations, but can withstand slightly elevated concentration in the 

soils. These plants are considered to be associate metal-tolerant species, as opposed to metallophyte 

which are dependent on the elevated concentrations of metals in the soils for their survival [25]. When 

the concentrations in the soil exceed the tolerance limit for the metal tolerant species, toxic effects 

such as growth inhibition and leaf chlorosis are seen. Studies have found that metal toxicity can affect 

stomatal opening, which in turn affects plant respiration [40] Other findings have shown that plants 

growing in toxic conditions have poor root development, which limits nutrient and water uptake [122]. 

Metal toxicity has also been shown to cause oxidative stress, and to damage the photosynthetic 

apparatus [40], [129], [130]. In extreme cases, findings have even shown that the central Mg ion of 

the chlorophyll molecule can be replaced, essentially disabling the photosynthetic ability of that 

chlorophyll molecule [131], [132]. 

Metal toxicity is only one of the harmful effects that is experienced by plants growing in metal rich 

soils. Often, metalliferous soils are also characterised by a number of growth limiting characteristics. 

For example, findings have shown that on Serpentine soils, which are characterised by a low Ca:Mg 

ratio, the low availability of Ca and excess Mg availability which may cause toxicity, and specific 

adaptations to maintain a higher foliar Ca:Mg ratio, were limiting factors to plant health and 

distribution [133]. Serpentine soils also often contain elevated concentrations of elements such as Fe, 

Ni, Co and Cr, all of which have the potential to cause plant stress. However, they are typically also 
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characterised by poor physical characteristics such as steep rocky slopes which have poor nutrient 

holding capacity, and low clay contents which result in poor water holding capacity [25], [34]. These 

factors result in high erosion potential, which in turn reduces the likely of humic matter decomposing 

in the soils to form compost. The added presence of soil organic matter (SOM) can greatly reduce the 

levels of toxicity experienced by plants growing in metal rich soils [34], [120], [122], [133].  

Species which have high tolerance to heavy metals have evolved on sites which either have 

naturally occurring heavy metal in the soils, or have been polluted for a long time [25]. These are often 

ecotypes that differ from the rest of their species in terms of resistance to harmful metals. Because 

only the most resistant of the species would have established themselves on the contaminated site, 

there is limited genetic diversity for some hyperaccumulators [44], [134], [135].  

When investigating plant uptake on metal rich soils, one of the indicators of a hyperaccumulator 

is the percentage of the dry mass of the plant that is made of up a specific element [136]. Alternatively, 

the percentage or ratio of accumulation compared to the background concentrations found in the 

soils can be used [137]. Calculating a ratio between the soil elemental concentrations and the plant 

elemental concentration can also provide insight into the mobility of elements.  This ratio is typically 

known as the bioconcentration factor [120], [137], and is calculated as: 

𝐵𝐶𝐹 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑡

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑜𝑖𝑙
 

The elemental concentration in plant biomass is not usually directly related to the elemental content 

of the soils. The BCF therefore gives a relative indication of mobility in the soils, and/or an indication 

of the plant ‘s ability for uptake of a specific element [120], [137].  
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3.2.2. Reflectance characteristics of plants  

Studies on the use of remote sensing to determine foliar chemistry identified more than 40 

absorption features which have been related to particular foliar chemical concentrations [53], shown 

in Chapter 1, Error! Reference source not found.. While it is possible to detect certain of these f

eatures, such as overall chlorophyll or carotenoid content using less refined data sources such as 

multispectral satellite imagery, airborne hyperspectral sensors and hand-held spectroradiometers, 

which measure from 400nm to 2500nm at 1-2 nm intervals, will obviously detect a more exact spectral 

response [53], [138], [139]. Measuring spectral reflectance at the leaf scale with a hand-held 

spectroradiometer also allows one to eradicate a lot of the variability associated with canopy or 

landscape scale data (such as scattering from atmospheric dust or moisture). Ground-truthing is also 

easier when performed at the leaf/tree scale and this `clean’ data can then be related back to the 

more `noisy’ data acquired at the canopy or landscape scale using airborne or satellite-based sensors 

[58], [33]. Collecting spectral data is also a rapid process, and there is very little post-processing work 

required on the spectra to make them usable, compared to the orthorectification and atmospheric 

correction procedures require for aerial photography and satellite imagery. 

Studies have shown that it is possible to detect the effects of plant stress through the plant 

spectral reflectance [33], [30], [65], [111]. Spectral reflectance values represent the amount of light 

reflected from a surface at a given wavelength. For vegetation, the spectral characteristics are 

determined predominantly by a range of pigments such as chlorophyll A and B, carotenoids and 

anthocyanins and the water, nitrogen, cellulose and lignin content of the plant [53], [111], [140], [141]. 

Green leafy vegetation has a particular spectral signature due to the leaf pigments, which reflect light 

in the visible wavelengths, whilst leaf water content reflects light in the shortwave infrared bands 

(SWIR), as shown in figure 1 [64], [142]. Chlorophyll is present in healthy, productive plants to absorb 

light energy during the photosynthetic process, but declines in concentration quickly when plants are 

under stress or during leaf senescence [69]. Chlorophyll has strong absorption peaks in the blue and 
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red bands. However, carotenoid absorption also peaks in the blue band and for this reason the red 

band is usually used for estimations of chlorophyll content. Carotenoids also dissipate less rapidly than 

chlorophylls when plants suffer stress or during leaf senescence, making carotenoids a useful indicator 

of plant stress [69]. Leaf senescence is one of the first indicators of metal toxicity as the photosynthetic 

process is extremely sensitive to the effects of metal toxicity [10]. This indicates that plants growing 

in metal rich soils will show signs of stress which should be identifiable through the Red-edge stress 

signature. However, as there are many other reasons for leaf senescence there needs to be a further 

indicator for metal specific stress. Studies have found that plants growing in metal rich soils show an 

exaggerated peak in the green (0.5-0.6 µm) wavelengths and depending on the species, a shift in the 

entire plant signature either towards the blue or red regions of the electromagnetic spectrum [33]  

(I.M. Weiersbye, unpublished PhD study). The blue shift is thought to occur as a result of the plant 

increasing the production of blue and UV absorbing pigments, which may have a biochemical 

protective function as antioxidants [143]. 

3.2.3. Methods for the remote sensing of vegetation 

The use of a portable device to test spectral reflectance means that one can choose whether to 

conduct a study in a controlled or uncontrolled environment. It is also possible to collect data within 

a controlled environment, such as in a pot trial and then use that data to help interpret data collected 

in an uncontrolled environment, such as from satellite imagery of a landscape or forest canopy. For 

example [30] conducted pot trials to test the effects of metal contamination on red spruce, sorghum 

and mangroves. Results of this study showed an increase in the reflectance in the green band (0.5-

0.6µm) for the plants growing in metal enriched soils. For the sorghum pot trial, the results showed a 

slight peak between 0.5-0.6µm for the control, an even greater peak in for the pots with a 100 ppm 

dose of CuSO4 and the highest peak for the pots with a 400ppm dose of CuSO4 [30], [115]. There was 

also a visible blue shift in the plants with the highest dose of Cu. Red Spruce, however, showed an 

increase in reflectance at the 0.5-0.6µm bands. There was a much lower peak in the reflectance in the 
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near infra-red (0.75-0.8µm) bands for the plants growing in Cu and Mo. This could be as a result of the 

addition of Mo to the soils as it is highly toxic to plants in higher concentration, resulting in a 

pronounced Red-edge stress signature [30], [115], [144]. Once the reaction of these plant species to 

Cu enriched soils has been established, the data can be used to interpret spectra collected from plants 

growing in natural, uncontrolled field conditions [30].  

 

The Red-edge stress signature has been used to detect gas leakages from underground pipelines. 

Studies found that gas leakages from underground pipes displace soil oxygen which disturbs the 

rhizospheric interactions, resulting in plant stress which is detectable through the use of the Red-edge 

stress signature [104]. The Red-edge and estimations of blue shift have been used on the Highveld 

gold mines to identify seepage plumes through the use of airborne hyperspectral imagery [65]. This 

study used the plant stress signatures to identify the extent of the seepage plumes from tailings 

facilities. The plumes have a high total dissolved solids (TDS) content, and low pH. The use of the 

modified Red-edge NDVI also allowed different ecotypes of different tree species of the same age to 

Figure 3-1 A typical spectral signature for green leafy vegetation and the particular plant structures that control leaf 
reflectance at given wavelengths (Jensen, 2007 
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be discriminated from each-other. The trees are being used for hydraulic control of the seepage 

plumes, as part of a site-species matching phytoremediation trial so the different ecotypes were 

planted in separate replicate plots. It was possible to identify the ecotypes that are more tolerant to 

AMD, which could be very useful for future monitoring programs from contaminated sites, and for 

identifying metallophyte flora.  

Studies have found that the Mg2+ ion in chlorophyll of plants growing in heavy metal contaminated 

environments may be substituted by one of the metals present in the growth media [131], [145]. This 

change in the molecular structure of the chlorophyll affects the productivity of the plants and 

therefore the spectral signature. For metals such as Cu2+, Zn2+, Cd2+ and Ni2+ a spectral shift in the red 

band absorption feature  towards the blue portion of the electromagnetic spectrum has been 

detected. In Mg2+-Chlorophyll, the chlorophyll absorption for Chlorophyll a and b occur at 662nm and 

641nm respectively. However, when the Mg2+ ion was replaced with Cu2+, Zn2+, Cd2+ and Ni2+ there was 

a blue-shift in the absorption feature ranging from 1nm-15nm. When the Mg2+ ion was replaced with 

Hg2+, a red shift was detected [131]. 

Detection of these features was performed on the chlorophyll extracts from plants grown in 

metal-rich growth media, and not on the live leaves of the plants. Destructive methods of determining 

pigment concentrations in leaves, where the plant pigments are extracted from the leaf matter using 

organic solvents and analysed through a spectrophotometric assay are commonly used  [146]. 

However, destructive methods of analysis are not always feasible, and are extremely labour-intensive 

if one is analysing a large sample set, compared to the rapid collection of spectral data [147]. Therefore 

it is preferable to make use of different techniques of hyperspectral analysis based on the spectra 

collected from fresh leaves, and referenced spectra from plants showing stress responses from known 

concentrations of metals. In order to determine the specific concentrations of chlorophyll a and b, and 

carotenoids from the spectral response, it is possible to make use of Ratio analysis of the spectra, 

which is essentially a simplified form of Spectral Unmixing [61], [146] 
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Without specifically separating out the chlorophyll response from the plant spectral reflectance 

spectrum, studies have successfully managed to measure a metal induced blue shift in plants.[111], 

[90] Detection of a blue shift in the electromagnetic spectrum, used in combination with the Red-edge 

stress signature has been successful in detecting contamination of mineral related in pot trials of 

sorghum grown in differing concentrations of CuSO4 [30]. Leaf reflectance indices have been used to 

distinguish between different tree species and ecotypes of the same species planted for a site-species 

matching trial on AMD from adjacent gold mine tailings storage facilities on the Highveld. It was 

possible to differentiate between eight Eucalyptus species and hybrids, and between two Searsia 

lancea ecotypes, due to their varying tolerance to the pollutant-related stress, and possible tolerance 

to salinity [148]. This difference in tolerance within plant taxa may allow for a distinction between 

naturally mineralised substrata and anthropogenically contaminated land. 
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 Research Objectives 

The overarching objective of this study is to determine whether it is possible to use the remote 

sensing of vegetation to distinguish between changes in the underlying geology. The results of the 

previous chapter showed that there are significant differences in the elemental contents of the soils 

for the three geologies in question, but not between landscape functional types. There were 

differences between landscape functional types in landscape characteristics such as effective rooting 

depth, soil clay content, soil organic carbon, and soil moisture content. There were also differences in 

plant spectral response between the geologies and between landscape functional types. The 

differences were more distinct at a species level than for all species combined, as the different species 

responded differently to geology and landscape factors. The aim of this chapter is to further 

characterise the plant spectral response to the changes in elemental content, used as an indicator of 

changes in geology. This chapter will investigate whether specific elements determine the plant 

spectral response, or whether it is a factor of plant elemental uptake, or soil or plant elemental ratios 

which best describes the spectral response. This will give further clues as to the variables relating to 

changes in geology, or combination of variables, that influence plant spectral reflectance most 

strongly.  

To address this aim, the following research objectives needed to be met: 

a. Investigate trends in plant elemental content 

b. Identify whether there are any relationships between plant and soil elemental content, through 

the use of bioconcentration factors  

c. Compare a selected set of soils and leaf elemental ratios which are established indicators of 

nutrient deficiencies, metalliferous soils or plant stress 

d.  Test which factors control for the most variation in the calculated vegetation indices, which are 

used as a relative indicator of plant health 
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The outcome of these analyses will help us to understand how changes in soil elemental 

concentrations, and plant-soil interactions may affect plant spectral reflectance. Based on the 

findings, it may be possible to then further refine spectral analytical techniques to be able to reliably 

identify changes in geology at both a leaf and canopy scale.  
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 Methods 

This analysis builds on the work described in the previous chapter. Many of the same datasets will 

be used for this analysis. Site selection, sample collection and preparation are the same as described 

in Chapter 2. A brief recap of the data acquisition and preparation for analysis is given below for 

reference purposes.  

3.4.1. Data acquisition and sample analysis 

The study site is divided up into three geology types, the Black Reef Quartzites, which is the ore 

body of interest. This is an outcropping sulphide rich, gold-bearing ore body, which forms the catenal 

divide and watershed across the study site. The ore body runs roughly across the site from the north-

east to south-west. To the north-west is the Ventersdorp Lavas and to the South-east are the Malmani 

Dolomites. Each geology was divided into 2 landscape functional types to better understand the 

effects of position within the catena. It was found in Chapter 2 that elemental content in the soils 

typically remained consistent between landscape functional types within geologies. This analysis 

looked at total elemental content using XRF, and did not investigate soil solutions or leachates for 

bioavailability/mobility. Three main tree species were used for this study (Searsia lancea, Euclea crispa 

and Acacia karroo). Four samples for each tree species were collected per landscape functional type. 

Soils samples were collected from the base of each sampled tree, and leaf samples were harvested 

and measured for spectral reflectance before being washed and frozen while waiting for further 

sample prep to take place. 

All samples were processed as described in detail in Chapter 2 and the following analysis was 

performed: 
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Table 3-1 Types of elemental analysis used in this study 

Analysis type  Sample 
type 

No of 
samples 

Elements analysed 

Leco Autoanalyser  Leaf 73 N, C (insufficient leaf material from MMEC43)  

Leco Autoanalyser  Soils 74 N, C 

XRF - Majors Soils 57 SiO2,  Al2O3, Fe2O3, FeO,  MnO, MgO, CaO, Na2O, K2O, TiO2, P2O5, 
Cr2O3, NiO 

XRF trace elements Soils 57 Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Ba, Pb, Th, U 

ICP OES Leaf 70 Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Ti, Zn, U 

ICP-MS Leaf 70 Ag, As, Au, Cd, Co, Pb, Sb, Sn, U, V 

3.4.2. Leaf sample analysis 

Once the spectral readings of each set of leaves had been taken, the leaves were washed in 

distilled water. Excess water was shaken off the leaves and they were weighed and stored frozen in 

Ziploc bags. The samples were then freeze dried and reweighed to calculate water content, and milled 

to a fine powder using an agate mortar and pestle and liquid nitrogen. Samples were extremely 

resinous and needed to be sieved through a plastic “colander” made from a plastic sample weighing 

boat so that they could be discarded after use. This allowed the fines to be kept aside and the fibrous 

matter to be milled further. Samples were subsampled for further analysis and kept frozen. Samples 

were then analysed as follows: 

- A 1g, homogenously ground sample was weighed out for microwave digestion and ICP-OES. 

Elements that were below detection levels for ICP-OES were then analysed using ICP-MS. 

- A 1g sample was weighed out and analysed for Carbon and Nitrogen by LECO Autoanalyser.  

Results of the elemental analysis of the leaf material was analysed at a species level per geology 

and per landscape functional type.  Leaf elemental content was also compared to global average leaf 

elemental concentrations as described in [116]. 
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3.4.3. Leaf and soil elemental ratios 

The bioconcentration factor (BCF) was calculated for the following elements: Al, Ba, C, Ca, Co, Cr, Cu, 

Fe, K, Mg, Mn, N, Na, Ni, P, Pb, Si, Ti, U, and Zn. These were the elements which had elemental data 

available for both the soil samples and the leaf samples.  

A number of elemental ratios were then calculated for the leaf and soil samples separately. 

Ratios between leaf results and soil results were calculated for selected elemental ratios to further 

understand how soil content may affect the leaf ratios.   
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Table 3-2 below shows the list of ratios that were created, the type of ratio and the purpose of 

the ratio. The source or reference that was used to determine the ratio and the purposes is shown in 

the final column.  

Leaf elemental content and leaf and soil elemental ratios and BCF were analysed per species, and 

by geology and landscape functional type. The Kruskal Wallis test was used to initially determine the 

leaf and soil elemental contents and BCF per geology and LFT for each element. Correlations were 

determined between the leaf and soil elemental contents, and the leaf elemental content and BCF 

and soil elemental content and BCF. These correlations were used in conjunction with the Kruskal 

Wallis test data for the leaves, soils and BCF to understand the mobility of the elements in the soils.  

The leaf and soil elemental ratios were calculated, and specific tests were performed for some of the 

elemental ratios, such as the Si:Ti ratio. The Si:Ti ratio was used to detect whether the ratio in leaves 

and soils was similar, as similarity between the two ratios can be an indicator of dust/soil 

contamination on the leaves as plants do not take up the Ti and Si in the same ratios that those 

elements are present in the soils (pers. Comm. I.M. Weiersbye) 
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Table 3-2 Leaf and soil elemental ratios that were used during the study 

Elemental  
ratio 

Leaf/Soil Purpose Reference 

Si:Ti Soil ratio 
Si/Ti is used as a contamination index. Neither element is readily absorbed 
by plants. Plants do however take up small amounts of Si and Ti. Therefore, if 
Si/Ti ratio in the plant material does not differ significantly from that in the 
soil, it indicates that there may be surface contamination on the leaves from 
dust. 

I.M Weiersbye 
(pers.comm.) 

Si:Ti Leaf ratio 

Al:P Leaf ratio 

Al is amphoteric, and in acidic soils (e.g. ARD-impacted, sandstones as Al3+) 
or alkaline soils (e.g. dolomitic) becomes more available for plant uptake. In 
addition, P becomes less available in acidified soils (due to both inhibition of 
P-cycling organisms and to chemical precipitation reactions). This can result 
in Al-toxicity and P-deficiency in plants because Al3+ competes with P for 
uptake at the root membrane.  
Al-toxicity affects root development and P-uptake (as well as other nutrients 
such as Ca), so affects leaf anatomy. P-deficiency results in increased levels 
of foliar anthocyanins which may affect spectral response. 

I.M Weiersbye 
(pers.comm.) 

Ca:Mg Soil ratio 

Ca:Mg  ratio in soils is a useful indicator of a metal rich soil. While this is 
generally used for the analysis of ultramafic soils, it has relevance to the 
Black Reef within a dolomitic matrix in this study. 
Plants on ultramafic soils can suffer from nutrient deficiencies, this is unlikely 
on the dolomitic Ca, Mg-dolomitic rich soils at VR, but there may be a 
marked difference in ratios between the 3 geologies which may result in 
lower chlorophyll response in the vegetation indices. 

I.M Weiersbye 
(pers.comm.), 
[133], [34] 

Ca:Mg Leaf ratio 

Na:K Leaf ratio 

The ratio of an immobile element to a mobile element, is a useful indication 
of membrane damage and leakiness. The Na/K index is used to check 
integrity of red blood cells and plant or other biological tissues. Membrane 
leakiness can result from stresses to the living organism (e.g. heat, acid soils, 
metals, etc.), and from crude preparation of the dead sample (e.g. too slow 
to dry, freeze, etc.). 

I.M Weiersbye 
(pers.comm.) 

Ca:S Leaf ratio 

Ca:S is a ratio of two essential macronutrients, Ca which is immobile and not 
volatilised from the leaf, and the other mobile and volatilised as SOx 
compounds. S likely to be more available along the Black Reef. 

I.M Weiersbye 
(pers.comm.) 

N:P Leaf ratio 

Both N and P are critical for the growth of healthy plants. While the optimal 
ratio between N and P is highly variable between species and types of plants, 
studies have found that on average, plants with an N:P ratio <10 or >20 show 
signs of either N or P-limited biomass production. Often N:P ratios are 
negatively correlated with biomass production. 

[149], [150] 

Si:Mn Soil ratio At high concentrations, Mn is toxic to plants. Mn toxicity can cause growth 
stunting and brown/chlorotic spots on leaves. Elevated Si in soils has been 
shown to alleviate Mn toxicity. 
Increased Si content in the soils can reduce toxicity of Mn in plants. Studies 
have shown that where there is high Si, there is reduced translocation of Mn 
to the shoots of plants 

[151], [152] 
Si:Mn Leaf ratio 

Si:Mn: 
Leaf ratio: 
Soil ratio 

Sr:Ca Soil ratio 
Sr is considered a non-essential element, but it can substitute for Ca I.M Weiersbye 

(pers.comm.) 

Rb:K Soil ratio 

Rb is relatively rare, but has been found to substitute for K in silicate 
minerals. More weathered soils have been observed to have a higher Rb:K 
ratio as the Rb which was bond to the silicate minerals is more available. 

[153] 

Zn:Cd Leaf ratio 

There is often competition between ions for uptake in plants. Studies have 
shown that Cd accumulation can interfere with uptake of Fe and Mg, 
resulting in a decrease in photosynthesis. Cd uptake can be supressed by the 
uptake of divalent cations such as Zn2+, Mn2+,  Si2+and Ca2+. 

[124] 
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C:N Soil ratio 

The ratio of C:N is soils varies between soil types, but a usual range is from 
8:1-to 17:1. When the carbon content in the soils is significantly higher than 
this, it can cause a leaching of the available nitrogen in the soils. The balance 
of the two is essential for plant growth and carbohydrate production. Studies 
have found that soils with high organic carbon content in their SOM may be 
limited in terms of P, N and S. C:N ratio can also be lowered as a result of 
higher temperatures, whilst higher rainfall and increased soil acidity 
increased soil C:N ratios. 

[149], [154], 
[155] 

Mg:Mn Leaf ratio 
Mn2+ has a similar ionic radius to Mg2+ and therefore could substitute Mg in 
plant uptake. As Mg is a critical component of the chlorophyll molecule, Mg 
deficiencies could be detrimental to plant health. Mn is also an essential 
element. Higher Mg content in the plant tissue has also been shown to 
increase Mn tolerance and prevent toxicity. 

[86], [156] 

Mg:Mn Soil ratio 

Ca:Al Leaf ratio Studies have shown that high concentrations of bioavailable Al in the soils 
can inhibit the uptake of Ca to the plant. [157] 

Al:Ca Soil ratio 

N:S Leaf ratio 

In agronomy, the N:S ratio is used extensively to monitor ultimate crop 
production. An optimal ratio is crop plants is from 11:1 to 15:1. Anything 
higher than 15:1 indicates a sulphur deficiency, whereas anything lower than 
11:1 would indicate a nitrogen deficiency in plants. There are many 
interactions between soils elements which can affect this ratio, such as the 
availability of Ca in the soils. This is however a potentially useful indicator of 
Nitrogen deficiency. 

[158]–[160] 

 

3.4.4. Leaf spectral analysis 

Spectral data was collected as described in Chapter 2. The same suite of vegetation indices has 

been used for the analysis in this chapter. In Chapter 2, the Kruskal-Wallis non-parametric test with a 

Dunn’s Post Test with a Bonferroni correction was used to detect significant differences spectral 

response of all three species, across the three geologies, and then across landscape functional types. 

The results showed that there were significant differences between geologies and, to a lesser extent, 

between the landscape function types found for the vegetation indices. The findings showed that the 

spectral response across the geologies differed between species. When combining the data for all 

three species, the results appeared to be obscured by the opposing spectral responses between 

species. For example, where the S. lancea showed a blue shift on the Black Reef, the E. crispa tended 

towards a red shift. Therefore the trend across geologies was not as defined when combining all 

species data.  
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3.4.4.1. Analysis of response of vegetation indices to soil elemental content, leaf elemental 

content and soil and leaf elemental ratios  

Plant spectral response can be driven by a wide range of variables and environmental factors. 

Chapter 2 showed that in some cases, the spectral response between landscape functional types did 

not differ, but that the response between geologies did differ, which indicates that the drivers for 

spectral change related to the geology. In other cases, the response between landscape functional 

types did differ, which indicates that other variables, possibly those relating to the structure of the 

landscape and to position within the catena, may have more influence on the spectral response than 

the geology. The bioavailability of the elements, which may be a factor of the soil characteristics, could 

also influence the spectral response quite strongly.  

To understand which variables had the strongest influence on the vegetation index results, the 

data was analysed at a species level and per element for leaf and soil bioconcentration factor and for 

a range of soil: leaf elemental ratios. As there was a very wide range of variables to be analysed, the 

variables characterisation tool in XLStat was used to reduce the number of variables that would be 

used in the final analysis. The variables characterisation tool uses the correlation co-efficient to 

determine the power that each variable has on the spectral index being tested where the lower the 

p-value, the stronger the relationship between the two variables in question. A Spearman’s correlation 

test was used to perform this analysis as many of the variables were not normally distributed. This 

test was performed for each vegetation index per tree species. This provided a reduced number of 

variables which could then be used for further analysis.  

Following on from the variables characterisation, regression analysis was used to determine the 

relationship between the subset of elemental content data and each vegetation index per species. 

Each of the variables was tested for normality, and if all variables that were pre-selected during the 

variables characterisation for a given spectral index were normally distributed, then linear regression 
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was used. The “best-model” option was used to identify which combination of variables provided the 

best model. 

Where there were variables that were not normally distributed, non-parametric regression was 

used.  This test does not provide the same “best-model” for identifying the best combination of 

variables to use. For each test, to adapt the model to provide the best fit, the variables with the lowest 

correlation p-value were removed, and the test was run again to identify if this improved the R2 value. 

This process was repeated as many times as was necessary to identify the combination of variables 

that resulted in the best model. For all tests, 3 observations were randomly selected to be used as 

validation points.  

By following this process, the number of variables in use was reduced. These were the variables 

that corresponded most strongly to the changes in the spectral response. This gives rise to two further 

questions: 

• How do these elements correspond to the geology, and can the shift in spectral response 

therefore be linked to geology, through the correlation with the elemental content? 

• What are the likely biophysical effects on the plant that could be caused by these 

elements, resulting in the changes in spectral response? 

The first question is addressed in this study, but the second question goes beyond the scope of this 

study as information on plant pigments and oxidative stress indices is not available. 

3.4.5. Grouping of species through the use of vegetation indices 

The optimal final outcome of this work would be to be able to identify changes in geology 

remotely, with limited ground-truthing. If the variation in spectral response between the different 

species can obscure the change in response to geology when looking at all species data together, then 

it may be necessary to use a 2-step approach which first classifies the species, and then looks at within 
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class variations in spectral response to identify geologies. This would be especially important when 

using satellite imagery. There have been a number of studies which have managed to characterise 

tree species using Worldview 2 8-band satellite imagery [161], [162]. While this study is focusing on 

the hand-held spectral data that was collected, it is still possible to investigate the potential for using 

the spectral data for extracting species information. It was noted during a preliminary investigation of 

the data that the differences between VI results between the different species was quite pronounced. 

The spectral response difference between species was further investigated. No single index accounted 

for differences in all three species, and therefore the possibility of using multiple indices to classify 

species was investigated. The grouping analysis in ArcGIS Desktop 10.4.1 was used to delineate the 

spectral results into groups. The analysis was performed using an iterative approach, starting with just 

two indices, the Red-edge position and the PSRI. Different combinations of indices were then tested, 

gradually adding additional indices. The Calinski-Harabasz pseudo F-statistic was used to identify the 

optimal number of groups for each test that was run.    

Elemental content of the leaves and soils and the leaf and soils elemental ratios and BCF were 

then classified by group to further understand the results defined in the grouping analysis. 

  



94 
 

 

 Results 

The results of this study are shown below. The first part of the analysis  looked at the results of 

the leaf elemental content and the bioconcentration factors calculated using the leaf and soil 

elemental content in order to gain a broader understanding of how the plants may be responding to 

the changes in geology.   

3.5.1. Analysis of leaf elemental content compared to global mean leaf elemental 

content 

A comparison of the leaf elemental content to global average leaf elemental content was 

performed to understand how the range of elements analysed compared to data from “normal” 

growing conditions [116]. Figure 3-2 shows three graphs with the range of elements that were 

analysed for in the leaf samples plotted along with the global averages. The max, min and mean values 

for the leaf elemental content are shown as vertical bars, and the global averages are shown as red 

crosses. Gold, uranium, cadmium, silver, selenium, chromium and nickel content are all higher than 

average. Even the lowest values found in the leaf samples for the study site were higher than the 

global average by close to a full order of magnitude. These elements are documented as being present 

in high concentrations on the Black Reef and surrounding soils and therefore this finding seems to be 

in line with expected results for the Black Reef, but indicates a possibility of enrichment of the 

surrounding soils too.  Silica content was found to be lower than the global averages. The ranges for 

the remaining elements overlapped with the global averages.  

The analysis was also performed for each geology independently, but there were only very small 

differences in the ranges found for each geology. These graphs have been included in  for reference 

purposes.  
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Figure 3-2 Graphs displaying the global average leaf elemental content as per Dunn 2007 and the ranges obtained 
for leaf elemental content for all analysed leaf samples. All geologies have been combined as there were very few 
differences between geologies[116]. (a) shows elemental concentrations for Au, U, Ag, Cd, As, Sb, Co, Sn, V & Pb as ppm, 
(b) shows elemental concentrations for Cr, Ni, Ti, Cu, Ba, Zn, Al, Fe, Na and Mn as ppm, and (c) shows concentrations for 
major elements Si, N, K, Ca, S, P Mg, and C as percentage.  
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3.5.2. Relationship between Leaf and soils elemental content and bioconcentration 

factors 

Table 3-3 shows the results of the Dunn’s procedure of the Kruskal Wallis test results for the soil 

elemental content, leaf elemental content and bioconcentration factors per geology and LFT. It also 

shows Spearman’s correlation between the soil elemental concentration and the BCF, leaf elemental 

concentration and BCF, and soil and leaf elemental concentration for each element. Stronger 

correlations between BCF and leaves than the BCF and soils would imply that there is a possible change 

in the bioavailability of the soils, as the soils elemental content does not change significantly but the 

bioconcentration does. Strong correlation to soils and weak correlation to the leaf elemental content 

implies that either the elemental content is not bioavailable, not present in the soil solution or that 

the plants have excluder mechanisms to control the quantity of the element that is taken up. It should 

be noted that there were no significant correlations detected between leaf elemental content and soil 

elemental content. 

While the Dunn’s procedure on the Kruskal-Wallis test identified significant differences (p< 0.05) 

between geologies except for Al, Ca, Mg, Na and Si and for all elements per landscape functional type, 

there were, however, very few significant differences detected between leaf elemental content for 

the different geologies. Ca content on the Black Reef was significantly different to the Ventersdorp 

Lavas and Dolomites in the leaf samples, but not in the soils. There was no direct correlation between 

the leaf and soil element content for Ca. Ca uptake and concentration in plants plays an important 

role in metal tolerance. The fact that the plants growing on the Black Reef had significantly lower Ca 

content could indicate a much higher competition for binding sites and elemental uptake, as Co and 

Ni both had higher concentrations in the Black Reef leaf samples. Co is interesting in that the elemental 

concentration in the soils between the Ventersdorp Lavas and the Black Reef do not differ, and yet 

the leaf elemental content, and the bioconcentration factor was significantly higher on the Black Reef, 

and particularly at the Black Reef outcrop. This implies that the Co on the Black Reef is more 

bioavailable that on the other two geologies. Ni content in the soils is reportedly lower on the Black 
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Reef soils, than in the other two geologies, but was higher in the leaf samples of the Black Reef and 

Ventersdorp lavas, than in the leaf samples on the Dolomites. The bioconcentration factor was higher 

on the Black Reef than on the Dolomites or Ventersdorp Lava.  Mn also showed a trend where there 

is a strong correlation between the leaf elemental content and the Bioconcentration factor (R2 = 0.720) 

and a weaker negative correlation between the soil elemental content and the bioconcentration 

factor (R2 = -0. 573). For Mn, there was a significantly higher concentration of Mn in the dolomitic soils, 

and no differences observed between the Ventersdorp Lavas and the Black Reef soils, and no 

significant differences detected in the leaves, yet a significantly higher BCF in on the Black Reef outcrop 

and the Rocky Ventersdorp Lavas compared to the dolomites. The difference in bioconcentration 

factors between the Ventersdorp lavas and the Black Reef again indicates higher mobility or uptake 

of metals on the Black Reef than on the surrounding soils. 

Pb concentration was significantly higher on the Black Reef soils compared to the other geologies, 

but there was no difference in leaf uptake. Pb is not usually transported to the leaf material, even 

when taken up by plants, and therefore this is not an unusual finding. Pb in the roots or surrounding 

soils could still potentially cause plant stress. 
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Table 3-3 Grouping results of the Kruskal-Wallis tests with a Dunn's procedure and Bonferroni correction for  the soils elemental content, leaf elemental content and 
Bioconcentration factors (BCF) for the leaf samples by element per geology (in small letters) and landscape functional type (in CAPS). Spearmann's correllation between the BCF and 
soils,BCF and leaves and soil and leaf samples are also shown per element. Significant correllation (p < 0.05) are shown in bold.  

Element 

Dunn's Post-test grouping per geology (small letters) & LFT (CAPS) 
Correlations R2 (p < 0.05) 

Soil Leaf Bioconcentration factor 

Ventersdorp 
Lavas 

Black Reef Dolomite 
p-value 

Ventersdorp 
Lavas 

Black Reef Dolomite 
p-value 

Ventersdorp 
Lavas 

Black Reef Dolomite 
p-value 

BCF/ 
Soil 

BCF/ 
Leaf 

Soil/ 
Leaf 

VLR VLS BR1 BR2 D1 D2 VLS VLR BR1 BR2 D1 D2 VLS VLR BR1 BR2 D1 D2 

Al2/Al 

a a 
a 0.844 a a a 

0.396 
a a a 

0.186 

-0.397 0.855 0.119 
A C AB C BC AB < 0.0001 

A A A A A A 0.179 A A A A A A 0.288 

Ba 

a a 
b < 0.0001 b 

ab 
a 

0.011 
b b a 

< 0.0001 

-0.679 0.787 -0.194 
A AB A AB BC C < 0.0001 

B B B AB A AB  0.002 ABC C C BC A AB < 0.0001 

Ca 

a a 
a 0.556 b a b 

0.003 
a a a 

0.361 

-0.678 0.582 0.106 
A A A A A A 0.2211 

A A A A A A  0.034 A A A A A A 0.477 

Co 
b 

b 
a 0.0000 a b a 

< 0.0001 
a b a 

< 0.0001 

-0.419 0.733 0.159 
B B B B AB A 0.0003 

A A B AB A A  0.001 A A B AB A AB 0.000 

Cr 

a c 
b < 0.0001 a a a 

0.183 
c a b 

< 0.0001 

-0.732 0.595 -0.152 
A A C C BC AB < 0.0001 

B AB AB AB AB A 0.058 C C AB A ABC BC < 0.0001 

Cu 

C b 
a < 0.0001 a a a 

1.000 
a a a 

0.004 

-0.505 0.846 0.003 
C C ABC BC AB A < 0.0001 

A A A A A A 0.695 A A A A A A 0.025 

Fe 

b a 
a < 0.0001 A a a 

0.774 
a a a 

0.082 

-0.403 0.901 0.055 
AB B A A A A < 0.0001 

A A A A A A  0.288 A A A A A A 0.103 

K2/K 

a b 
ab 0.0000 A a a 

0.987 
a a a 

0.219 

-0.428 0.804 0.085 
A A AB C BC A < 0.0001 

A A A A A A  0.080 AB AB AB AB A B 0.011 

Mg 

a a 
a 0.178 A a a 

0.939 
a a a 

0.818 

-0.342 0.903 0.010 
A AB AB AB B A 0.0010 

A A A A A A  0.774 A A A A A A 0.283 
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Element 

Dunn's Post-test grouping per geology (small letters) & LFT (CAPS) 
Correlations R2 (p < 0.05) 

Soil Leaf Bioconcentration factor 

Ventersdorp 
Lavas 

Black Reef Dolomite 
p-value 

Ventersdorp 
Lavas 

Black Reef Dolomite 
p-value 

Ventersdorp 
Lavas 

Black Reef Dolomite 
p-value 

BCF/ 
Soil 

BCF/ 
Leaf 

Soil/ 
Leaf 

VLR VLS BR1 BR2 D1 D2 VLS VLR BR1 BR2 D1 D2 VLS VLR BR1 BR2 D1 D2 

Mn 

a a 
b < 0.0001 A a a 

0.065 
b b a 

< 0.0001 

-0.573 0.720 0.062 
A A A A B B < 0.0001 

A A A A A A  0.097 ABC C C BC A AB < 0.0001 

Na2/Na 

a a 
a 0.262 a a a 

0.057 
a a a 

0.244 

-0.898 0.154 0.190 
AB B B AB A B 0.0002 

B AB AB AB A AB  0.011 A AB AB AB B A 0.003 

Ni 

b a 
b 0.000 b b a 

< 0.0001 
a b a 

< 0.0001 

-0.709 0.812 -0.188 
B BC A A B BC < 0.0001 

BC BC C C A AB < 0.0001 A A C B BC A < 0.0001 

P2 

b b 
a < 0.0001 b 

Ab 
A 

0.007 
a a a 

0.043 

-0.660 0.477 0.220 
BC ABC C ABC A AB < 0.0001 

B B AB AB A AB  0.006 A A A A A A 0.062 

Pb 

a c 
b < 0.0001 a a a 

0.083 
b a 

ab 0.003 

-0.532 0.556 0.216 
AB A CD D BCD ABC < 0.0001 

A A A A A A  0.180 B AB A AB AB AB 0.015 

Si 

a a 
a 0.284 

ab 
a b 

0.024 Ab 
a b 

0.027 

-0.084 0.993 -0.086 
B A B AB AB B 0.0002 

A A A A A A  0.040 A A A A A A 0.054 

Ti 

b b 
a < 0.0001 a a a 

0.375 ab 
a b 

0.007 

-0.426 0.867 -0.002 
C C C BC AB A < 0.0001 

A A A A A A  0.845 A A A A A A 0.029 

V 

b a 
ab 

0.005 a a a 
0.583 

a a a 
0.169 

-0.513 0.855 -0.023 
AB C A ABC BC AB < 0.0001 

A A A A A A 0.694 A A A A A A 0.240 

Zn 

a b 
a < 0.0001 a a a 

0.535 
b a b 

0.006 

-0.647 0.679 0.015 AB A B AB A A 0.0005 A A A A A A  0.531 A A A A A A 0.035 

 

  



 
 

3.5.3. Analysis of bioconcentration factors and soil and leaf elemental ratios 

The bioconcentration factors and leaf and soils ratios were calculated and then analysed for 

significant differences and trends between species and geologies. Table 3-3 in the previous 

section showed the correlations between the leaf and soils elemental content and 

bioconcentration factors, and the differences between the three geologies and six LFTS for all 

species combined. This section takes a more in-depth look at the bioconcentration factors and 

soil and leaf ratios at a species level. 

Table 3-4 describes the differences between leaf elemental uptake per species and 

bioconcentration factors per species. The leaf elemental content and the bioconcentration 

factors data was analysed to detected differences in the ranges of concentrations for each 

species to understand the differences in uptake between plant species. Overall, there were 

significant differences for most of the elements analysed for leaf elemental concentrations. 

Elements which did not show any significant differences for leaf elemental uptake were Au, C, 

Cd, N, Na, P, Si and U. Frequently, the S. lancea had the highest concentrations of elements in 

the leaves, and the E. crispa samples showed lower concentrations. Exceptions to this are K, Cr, 

Mg, Mn, Ni, S and Sn. Often A. karroo and S. lancea leaves showed similar concentrations. The 

bioconcentration factors results followed a similar trend to the leaf elemental content data. For 

example, E. crispa samples had significantly lower Ti and Zn, concentrations in the leaves, and a 

significantly lower bioconcentration factor compared to the S. lancea and A. karroo trees. The 

implication of this result is that the bioconcentration factors show a strong link to the leaf 

elemental content for the individual species which may be a result of plant specific abilities to 

take up or exclude specific elements and not purely a factor of the bioavailability of the elements 

in the soil solution. However, the fact that there were no E. crispa species on the chert-rich 

dolomites may skew these results slightly, as there were some differences in soil elemental 
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content (e.g. Mg and Na) on the chert-poor dolomites compared to the chert-poor dolomites, as 

is shown in Table 3-3. 

Table 3-4 Kruskal-Wallis test results and Dunn's post-test procedure for the differences between leaf 
elemental concentration and bioconcentration factors per species 

Element 

Leaf concentration Bioconcentration 

p-value Species 
No of 
Obs 

Sum of 
ranks 

Mean of 
ranks Groups p-value Species 

No of 
obs 

Sum of 
ranks 

Mean of 
ranks Groups 

     Acacia karroo 20 442 22.10 A           
  
  
  

Ag 0.01  Euclea crispa 20 754 37.70 B       
    Searsia lancea 24 884 36.83 B           

  

<0.0001 

 Acacia karroo 20 663 33.15 AB    Acacia karroo 20 721 36.05 B 

Al  Euclea crispa 20 386 19.30 A < 0.0001  Euclea crispa 20 375 18.75 A 

   Searsia lancea 24 1031 42.96 B    Searsia lancea 24 984 41.00 B 

  

<0.0001 

 Acacia karroo 20 778 38.90 B             

As  Euclea crispa 20 322 16.10 A         

   Searsia lancea 24 980 40.83 B             

    Acacia karroo 20 702 35.10 A             

Au 0.27  Euclea crispa 19 500 26.32 A         

    Searsia lancea 24 814 33.92 A             

    Acacia karroo 20 749 37.45 B    Acacia karroo 20 729 36.45 A 

Ba 0.01  Euclea crispa 20 445 22.25 A 0.162  Euclea crispa 20 520 26.00 A 

    Searsia lancea 24 886 36.92 B    Searsia lancea 24 831 34.63 A 

    Acacia karroo 19 494 26.00 A    Acacia karroo 21 511 24.33 A 

C 0.10  Euclea crispa 20 753 37.65 A 0.014  Euclea crispa 20 829 41.45 B 

    Searsia lancea 22 644 29.27 A    Searsia lancea 24 805 33.54 AB 

    Acacia karroo 20 800 40.00 B    Acacia karroo 20 844 42.20 B 

Ca 0.05  Euclea crispa 20 514 25.70 A 0.011  Euclea crispa 20 506 25.30 A 

    Searsia lancea 24 766 31.92 AB    Searsia lancea 24 730 30.42 AB 

    Acacia karroo 20 687 34.35 A             

Cd 0.25  Euclea crispa 20 730 36.50 A         

    Searsia lancea 24 663 27.63 A             

    Acacia karroo 20 745 37.25 B    Acacia karroo 20 864 43.20 B 

Co 0.02  Euclea crispa 20 457 22.85 A < 0.0001  Euclea crispa 20 406 20.30 A 

    Searsia lancea 24 878 36.58 B    Searsia lancea 24 810 33.75 AB 

  
<0.0001 

 Acacia karroo 20 758 37.90 B    Acacia karroo 20 667 33.35 A 

Cr  Euclea crispa 20 868 43.40 B 0.234  Euclea crispa 20 747 37.35 A 

    Searsia lancea 24 454 18.92 A    Searsia lancea 24 666 27.75 A 

    Acacia karroo 20 451 22.55 A 
< 0.0001 

  

 Acacia karroo 20 543 27.15 A 

Cu 
<0.0001 

 Euclea crispa 19 456 24.00 A  Euclea crispa 20 428 21.40 A 

   Searsia lancea 24 1109 46.21 B  Searsia lancea 24 1109 46.21 B 

  

<0.0001 

 Acacia karroo 20 630 31.50 B   
< 0.0001 

  

 Acacia karroo 20 685 34.25 B 

Fe  Euclea crispa 20 310 15.50 A  Euclea crispa 20 298 14.90 A 

   Searsia lancea 24 1140 47.50 C  Searsia lancea 24 1097 45.71 B 

  
 
 Acacia karroo 20 663 33.15 AB    Acacia karroo 20 718 35.90 A 

K 0.05  Euclea crispa 20 793 39.65 B 0.258  Euclea crispa 20 701 35.05 A 

     Searsia lancea 24 624 26.00 A    Searsia lancea 24 661 27.54 A 
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Element 

Leaf concentration Bioconcentration 

p-value Species 
No of 
Obs 

Sum of 
ranks 

Mean of 
ranks Groups p-value Species 

No of 
obs 

Sum of 
ranks 

Mean of 
ranks Groups 

  

  
<0.0001  

 Acacia karroo 20 701 35.05 B 

 <0.0001 

 Acacia karroo 20 786 39.30 B 

Mg  Euclea crispa 20 1032 51.60 C  Euclea crispa 20 932 46.60 B 

   Searsia lancea 24 347 14.46 A  Searsia lancea 24 362 15.08 A 

  

<0.0001  

 Acacia karroo 20 296 14.80 A    Acacia karroo 20 404 20.20 A 

Mn  Euclea crispa 20 1032 51.60 C <0.0001  Euclea crispa 20 959 47.95 B 

   Searsia lancea 24 752 31.33 B    Searsia lancea 24 717 29.88 A 

     Acacia karroo 19 591 31.11 A    Acacia karroo 8 167 20.88 A 

N_ppm 0.75  Euclea crispa 20 663 33.15 A 0.350  Euclea crispa 15 271 18.07 A 

     Searsia lancea 22 637 28.95 A    Searsia lancea 11 157 14.27 A 

     Acacia karroo 20 719 35.95 A    Acacia karroo 20 614 30.70 A 

Na 0.57  Euclea crispa 20 642.5 32.13 A 0.954  Euclea crispa 19 595 31.32 A 

     Searsia lancea 24 718.5 29.94 A    Searsia lancea 23 744 32.35 A 

     Acacia karroo 20 478.5 23.93 A    Acacia karroo 20 615 30.75 A 

Ni 0.00  Euclea crispa 20 899 44.95 B 0.097  Euclea crispa 20 795 39.75 A 

     Searsia lancea 24 702.5 29.27 A    Searsia lancea 24 670 27.92 A 

     Acacia karroo 20 648 32.40 A    Acacia karroo 20 628 31.40 A 

P 0.65  Euclea crispa 20 593 29.65 A 0.688  Euclea crispa 20 610 30.50 A 

     Searsia lancea 24 839 34.96 A    Searsia lancea 24 842 35.08 A 

  

<0.0001  

 Acacia karroo 20 563 28.15 A    Acacia karroo 20 525 26.25 A 

Pb  Euclea crispa 20 433 21.65 A 0.001  Euclea crispa 20 522 26.10 A 

   Searsia lancea 24 1084 45.17 B    Searsia lancea 24 1033 43.04 B 

     Acacia karroo 20 865 43.25 B             

S 0.00  Euclea crispa 20 661 33.05 AB         

     Searsia lancea 24 554 23.08 A             

     Acacia karroo 20 378 18.90 A             

Sb 0.00  Euclea crispa 20 716 35.80 B         

     Searsia lancea 24 986 41.08 B             

     Acacia karroo 20 781 39.05 A    Acacia karroo 20 757 37.85 A 

Si 0.10  Euclea crispa 20 530 26.50 A 0.198  Euclea crispa 20 544 27.20 A 

     Searsia lancea 24 769 32.04 A    Searsia lancea 24 779 32.46 A 

  

  
<0.0001  

 Acacia karroo 20 829 41.45 B             

Sn  Euclea crispa 20 840 42.00 B         

   Searsia lancea 24 411 17.13 A             

     Acacia karroo 19 597.5 31.45 B    Acacia karroo 20 699 34.95 B 

Ti <0.0001  Euclea crispa 18 295.5 16.42 A <0.0001  Euclea crispa 20 348 17.40 A 

     Searsia lancea 24 998 41.58 B    Searsia lancea 24 1033 43.04 B 

     Acacia karroo 20 648 32.40 A             

U 0.06  Euclea crispa 20 508 25.40 A         

     Searsia lancea 24 924 38.50 A             

     Acacia karroo 20 675 33.75 B             

V <0.0001  Euclea crispa 20 289 14.45 A         

     Searsia lancea 24 1116 46.50 B             

     Acacia karroo 20 599 29.95 A    Acacia karroo 20 601 30.05 A 

Zn <0.0001  Euclea crispa 20 366 18.30 A 0.000  Euclea crispa 20 417 20.85 A 

     Searsia lancea 24 1115 46.46 B    Searsia lancea 24 1062 44.25 B 
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Table 3-5 Table showing p-values of the Kruskal Wallis test for the soil and leaf ratios per geology for all three 
tree species. Significant differences shown in bold. Dunn’s post-test results for the significant results are shown 
below.   

Variable 
S. lancea  
p-value 

E. crispa  
p-value 

A. karroo  
p-value 

Si:Ti soil ratio < 0.0001 0.013 < 0.0001 

Si:Ti leaf ratio 0.145 0.859 0.915 

Ca:Mg soil ratio 0.439 0.783 0.560 

Ca:Mg leaf ratio 0.606 0.001 0.023 

Si:Mn Soil Ratio < 0.0001 0.004 < 0.0001 

Si:Mn leaf ratio 0.001 0.263 0.118 

Al:P Leaf ratio 0.989 0.063 0.084 

Sr:Ca soil ratio 0.159 0.056 0.110 

Rb:K soil ratio 0.006 0.359 0.036 

Zn:Cd leaf ratio 0.116 0.048 0.339 

Na:K leaf ratio 0.532 0.446 0.201 

Ca:S leaf ratio 0.191 0.006 0.385 

C:N leaf ratio 0.129 0.010 0.036 

Mg:Mn leaf ratio < 0.0001 0.147 0.326 

Mg:Mn soil ratio < 0.0001 0.003 < 0.0001 

Ca:Al leaf ratio 0.734 0.025 0.913 

Al:Ca soil ratio 0.866 0.723 0.398 

Leaf Ca:Al :soil Al 0.973 0.014 0.475 

Ca BCF: soil Al 0.630 0.074 0.045 

N:P leaf ratio 0.003 0.090 0.229 

N:S leaf ratio 0.003 0.914 0.244 

Mg:Al leaf ratio 0.588 0.327 0.171 

       

 

Table 3-5 shows the results of the Kruskal Wallis test for the soil and leaf elemental ratios per 

geology. The Kruskal-Wallis test with a Dunn’s post-test procedure and Bonferroni correction 

was run individually for each species. The results show that there are differences in the leaf and 

soils ratios between geologies, but that the ratios which showed significant results differed for 

the three tree species. This is particularly evident in the elemental ratios for leaf material. The 

soil elemental ratios for Si:Ti, Si:Mn and Mg:Mn showed significant differences between 

geologies across all three species, whereas the Ca:Mg, Sr:Ca, Al:Ca showed no significant 

differences between geologies for any of the three tree species. The leaf elemental data showed 
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no significant differences for the Si:Ti, Al:P, Na:K and Mg:Al ratios. None of the leaf elemental 

ratios showed significant differences between geologies for all three plant species, and many 

only showed differences in one of the three species, indicating differences in the ways in which 

the plants take up elements from the soils.  

3.5.4. Analysis of soil and leaf ratios 

The results shown in this section cover the analysis of the soil and leaf elemental ratios, and 

compare those as required to the leaf elemental concentrations for each species. The elemental 

ratios are used to give further information relating to the plant’s growing conditions and nutrient 

status. In some cases the elemental ratios also provide further insight into the uptake or 

bioavailability of specific element. 

3.5.4.1. Si:Ti leaf and soils ratios 

One of the recommended checks to ensure that the leaf elemental content results were 

not skewed by the deposition of dust on the leaves was to compare the ratios of Si:Ti in the 

leaves and soils. Both of these elements are typically only taken up in small quantities, despite 

the fact that they are abundant in the environment, and especially abundant in mine tailings 

dust and soils near the study site. The Kolmogorov-Smirnov test was used to determine 

whether the leaf Si:Ti ratio followed the same distribution as the soil Si:Ti ratio. If the leaf 

samples had followed the soil samples, then there was likely to be dust contamination on the 

surface of the leaves. However, the results shown in Table 3-6  and Figure 3-3 showed that the 

two samples followed different distributions (p <0.0001) indicating that the leaves were not 

coated in dust or were sufficiently well cleaned during the sample preparation phase.  
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Table 3-6 Kolmogorov-Smirnoff test results for the Si:Ti ratios in leaves and soils. Results show a significant 
difference in the two distributions 

D p-value Variable Obs. Minimum Maximum Mean Std. deviation 

0.984 < 0.0001 
Si/Ti Soil ratio 65 56.112 206.554 121.914 28.279 

Si/Ti leaf ratio 61 8.200 58.333 21.855 9.602 

 

3.5.4.2. Ca:Mg ratios in leaves and soils  

Ca:Mg ratio in soils is a useful indicator of a metal rich soil. While this is generally used for 

the analysis of ultramafic soils, it has relevance to the Black Reef within a dolomitic matrix in this 

study. While plants on ultramafic soils can suffer from nutrient deficiencies, this is unlikely on 

the dolomitic Ca, Mg-dolomitic rich soils at this study site. However, it was anticipated that there 

may be a difference in ratios between the 3 geologies. Table 3-7Table 3-12 shows the descriptive 

statistics and the Dunn’s Post-test results for the Kruskal-Wallis non-parametric test used to 

differentiate between the Ca: Mg elemental ratio across the three geologies for leaves and soils. 

Overall only the E. crispa showed higher Ca:Mg ratios over the Black Reef and lower Ca:Mg ratios 

on the Ventersdorp Lavas and intermediate values for the dolomites. 
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Table 3-7  Summary statistics and multiple pairwise comparisons using Dunn's procedure for the Ca:Mg ratio 
analysis for leaf and soil samples . The Bonferroni corrected significance level was 0.0167 

Species Variable Geology 
No of 
Obs. 

Min Max Mean Std. dev. Groups 

A
. k

a
rr

o
o

 Soil ratio 

Ventersdorp Lava 6 0.539 1.037 0.782 0.200 A  

Black reef 7 0.451 1.185 0.796 0.310 A  

Dolomite  8 0.451 1.494 0.962 0.377 A  

Leaf ratio 

Ventersdorp Lava 6 3.728 6.684 4.656 1.198 A  

Black reef 7 2.147 4.851 3.027 0.980 A  

Dolomite  8 3.124 7.239 4.740 1.567 A  

S.
 la

n
ce

a
 Soil ratio 

Ventersdorp Lava 8 0.593 1.797 1.082 0.483 A  

Black reef  8 0.379 1.778 0.899 0.593 A  

Dolomite 8 0.464 1.718 1.001 0.497 A  

Leaf ratio 

Ventersdorp Lava 8 3.649 11.935 6.787 2.927 A  

Black reef  8 2.256 7.993 5.208 1.720 A  

Dolomite 8 4.298 6.422 5.341 0.751 A  

E.
 c

ri
sp

a
 Soil ratio 

Ventersdorp Lava 8 0.593 1.778 0.969 0.370 A  

Black reef  8 0.409 1.778 0.940 0.562 A  

Dolomite 4 0.593 1.086 0.902 0.214 A  

Leaf ratio 

Ventersdorp Lava 8 1.688 3.038 2.492 0.537 A  

Black reef  8 1.064 2.144 1.551 0.312 A B 

Dolomite 4 1.583 2.159 1.895 0.278  B 

3.5.4.3. Leaf Al and P content, and Al: P leaf ratios 

Al is amphoteric, and in acidic soils (e.g. ARD-impacted, sandstones as Al3+) or alkaline soils 

(e.g. dolomitic) becomes more available for plant uptake. P however becomes less available in 

acidified soils due to both inhibition of P-cycling organisms and to chemical precipitation 

reactions. This can result in Al-toxicity and P-deficiency in plants because Al3+ competes with P 

for uptake at the root membrane. Table 3-8 shows the descriptive statistics and the Dunn’s Post-

test results for the Kruskal-Wallis non-parametric test used to differentiate between Al and P 

concentrations, and the Al:P elemental ratio in leaves across the three geologies. There were 

differences noted for the P content, with higher P content in S. lancea samples growing on the 

Black Reef, and in the E. crispa samples growing on the Ventersdorp Lavas. There were no 

differences noted between geologies for the Leaf Al content of the Al:P ratios for any of the three 

species. 
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Table 3-8 Summary statistics and multiple pairwise comparisons using Dunn's procedure for the Al:P ratio 
analysis for leaf and soil samples. The Bonferroni corrected significance level was 0.0167 

Species 
Variable Geology 

No of 
Obs. 

Min Max Mean Std. dev. Groups 

A
. k

a
rr

o
o

 

Leaf Al 

Ventersdorp Lava 6 44.287 1417.166 328.364 608.782 A  

Black reef  8 52.400 95.371 67.882 16.512 A  

Dolomite 7 49.202 181.954 100.703 48.362 A  

Leaf P 

Ventersdorp Lava 6 2293.989 5938.124 4747.234 1481.662 A B  

Black reef  7 4186.651 6570.577 5692.333 810.102  B 

Dolomite 8 3261.952 5455.635 4317.831 707.029 A   

Al:P Leaf 
ratio 

Ventersdorp Lava 6 0.009 0.239 0.059 0.101 A  

Black reef  8 0.008 0.019 0.012 0.004 A  

Dolomite 7 0.010 0.049 0.024 0.013 A  

S.
 la

n
ce

a
 

Leaf Al 

Ventersdorp Lava 8 66.580 234.655 116.156 66.146 A  

Black reef  8 65.763 110.644 85.188 16.853 A  

Dolomite 8 58.647 220.212 102.321 55.437 A  

Leaf P 

Ventersdorp Lava 8 3518.593 10233.161 6156.370 2299.899 A  

Black reef  8 4105.148 5862.345 4936.637 589.171 A  

Dolomite 8 4047.049 7717.652 5016.694 1211.516 A  

Al:P Leaf 
ratio 

Ventersdorp Lava 8 0.009 0.058 0.022 0.016 A  

Black reef  8 0.012 0.022 0.017 0.004 A  

Dolomite 8 0.010 0.051 0.022 0.015 A  

E.
 c

ri
sp

a
 

Leaf Al 

Ventersdorp Lava 8 38.269 138.745 61.189 32.642 A  

Black reef  8 37.764 76.018 54.200 12.354 A  

Dolomite 4 51.579 183.007 90.315 62.271 A  

Leaf P 

Ventersdorp Lava 8 4546.363 7623.901 5656.958 925.352  B 

Black reef  8 3013.972 6992.032 4389.831 1211.724 A  

Dolomite 4 2858.856 4732.428 3905.889 867.888 A  

Al:P Leaf 
ratio 

Ventersdorp Lava 8 0.005 0.023 0.011 0.005 A  

Black reef  8 0.006 0.019 0.013 0.005 A  

Dolomite 4 0.016 0.039 0.022 0.011 A  
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3.5.4.4. Leaf Na and K content, and Na:K leaf ratios 

Table 3-9 Summary statistics and multiple pairwise comparisons using Dunn's procedure for the Na:K ratio 
analysis for leaf and soil samples. The Bonferroni corrected significance level was 0.0167 

Species Variable Geology 
No of 
Obs. 

Min Max Mean Std. dev. Groups 

A
. k

a
rr

o
o

 

Leaf Na 

Ventersdorp Lava 6 318.471 1187.625 775.029 333.563 A  

Black reef  7 810.000 936.628 857.609 44.057 A  

Dolomite 8 475.190 1089.129 675.293 240.449 A  

Leaf K 

Ventersdorp Lava 6 6329.618 16007.984 10404.857 3916.681 A  

Black reef  7 10898.966 18395.850 13987.001 2644.186 A  

Dolomite 8 7197.725 21747.805 12268.322 4454.575 A  

Na:K Leaf 
ratio 

Ventersdorp Lava 6 0.050 0.083 0.073 0.013 A  

Black reef  7 0.044 0.078 0.063 0.012 A  

Dolomite 8 0.026 0.080 0.058 0.019 A  

S.
 la

n
ce

a
 

Leaf Na 

Ventersdorp Lava 8 445.535 976.096 763.778 208.911 A  

Black reef  8 424.660 808.061 591.403 130.248 A  

Dolomite 8 563.198 946.215 703.141 134.103 A  

Leaf K 

Ventersdorp Lava 8 7287.085 19860.558 12397.435 5006.872 A  

Black reef  8 6137.904 64925.970 15991.900 19984.587 A  

Dolomite 8 7094.325 14396.965 10196.574 2823.778 A  

Na:K Leaf 
ratio 

Ventersdorp Lava 8 0.048 0.106 0.066 0.020 A  

Black reef  8 0.010 0.104 0.061 0.027 A  

Dolomite 8 0.057 0.093 0.071 0.013 A  

E.
 c

ri
sp

a
 

Leaf Na 

Ventersdorp Lava 8 567.955 1119.552 840.441 187.935 A  

Black reef  8 400.558 727.092 594.558 103.305 A  

Dolomite 4 458.533 1098.243 734.287 274.063 A  

Leaf K 

Ventersdorp Lava 8 11206.552 21335.863 15378.372 3704.391 A  

Black reef  8 3454.473 22785.315 12819.516 5967.093 A  

Dolomite 4 9386.246 23482.428 15148.083 6422.601 A  

Na:K Leaf 
ratio 

Ventersdorp Lava 8 0.047 0.065 0.055 0.006 A  

Black reef  8 0.028 0.158 0.060 0.042 A  

Dolomite 4 0.042 0.065 0.050 0.010 A  

 

The ratio of an immobile element to a mobile element is a useful indication of membrane 

damage The Na/K is used to check integrity of plant cells and other biological tissues. Membrane 

leakiness can result from stresses to the living organism, and from crude preparation of the dead 

sample. Table 3-9 shows the descriptive statistics and the Dunn’s Post-test results for the Kruskal-

Wallis non-parametric test used to differentiate between Na and K concentrations, and the Na:K 



109 
 

elemental ratio in leaves across the three geologies. No significant differences in Leaf Na, Leaf K 

or the Na:K ratios were detected between geologies for any of the three species. The ranges that 

occurred for Na and K in the leaf samples was quite different between species.   

3.5.4.5. Leaf Ca and S content and Ca: S leaf ratio 

Table 3-10 Summary statistics and multiple pairwise comparisons using Dunn's procedure for the Ca:S ratio 
analysis for leaf and soil samples. The Bonferroni corrected significance level was 0.0167 

Species Variable Geology 
No of 
Obs. 

Min Max Mean Std. dev. Groups 

A
. k

a
rr

o
o

 

Leaf Ca 

Ventersdorp Lava 5 4707.404 22814.371 14101.643 6641.021 A  

Black reef  8 6135.092 15403.739 10035.611 3700.352 A  

Dolomite 7 8346.677 23842.315 16221.642 5338.572 A  

Leaf S 

Ventersdorp Lava 5 1247.505 2714.571 1658.430 604.314 A  

Black reef  8 659.472 4047.335 2162.347 1335.504 A  

Dolomite 7 1311.049 3590.637 1969.238 788.534 A  

Ca:S  Leaf 
ratio 

Ventersdorp Lava 5 3.355 18.288 9.195 5.710 A  

Black reef  8 2.523 15.141 6.603 4.778 A  

Dolomite 7 5.071 14.924 8.738 3.200 A  

S.
 la

n
ce

a
 

Leaf Ca 

Ventersdorp Lava 8 7131.474 23860.456 13528.623 6440.079 A  

Black reef  8 4656.275 13262.256 9612.655 3530.592 A  

Dolomite 8 5520.000 13539.169 9858.260 3499.251 A  

Leaf S 

Ventersdorp Lava 8 389.844 2600.638 1519.727 835.991 A  

Black reef  8 458.899 3581.433 1254.675 989.211 A  

Dolomite 8 488.048 1020.817 699.652 200.655 A  

Ca:S  Leaf 
ratio 

Ventersdorp Lava 8 3.103 61.205 15.767 19.358 A  

Black reef  8 3.208 16.213 9.395 3.730 A  

Dolomite 8 5.633 22.510 15.369 6.737 A  

E.
 c

ri
sp

a
 

Leaf Ca 

Ventersdorp Lava 8 9909.326 24201.278 12627.626 4713.791  B 

Black reef  8 4119.171 8320.032 6496.711 1516.590 A  

Dolomite 4 7660.486 13734.506 9814.052 2738.886 A B 

Leaf S 

Ventersdorp Lava 8 770.925 2747.802 1534.874 725.817 A  

Black reef  8 1047.904 2768.924 1441.749 564.744 A  

Dolomite 4 560.448 1345.694 946.018 346.046 A  

Ca:S Leaf 
ratio 

Ventersdorp Lava 8 3.942 14.714 9.626 4.132 A B 

Black reef  8 2.115 7.794 4.919 1.727 A  

Dolomite 4 5.693 17.615 11.694 5.442  B 
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This is a measure of two essential macronutrients: Ca, which is immobile and not volatilised from 

the leaf, and S, which is mobile and volatilised as SOX compounds. Table 3-10 Table 3-9shows the 

descriptive statistics and the Dunn’s Post-test results for the Kruskal-Wallis non-parametric test 

used to differentiate between Ca and S concentrations, and the Ca:S elemental ratio in leaves 

across the three geologies.  S was expected to be more available along the Black Reef. However, 

no differences were found in the Ca:S ratios or leaf Ca or Leaf S content for the A. karroo or S. 

lancea samples. The E. crispa samples were found to have a higher leaf Ca concentration on the 

Ventersdorp Lavas and the lowest leaf Ca content on the Black Reef. Conversely the Ca:S ratio 

was lowest on the Black Reef, and highest on the Dolomites.  

3.5.4.6. Leaf N and P content, and N:P leaf ratios by species 

N and P are both essential elementals and are critical for the growth of healthy plants. 

Studies have found that N and P deficiencies can be identified through the N:P ratio [150]. While 

the optimal ratio between N and P is highly variable between species and types of plants, studies 

have found that on average, plants with an N:P ratio <10 or >20 show signs of either N- or P-

limited biomass production. Often N:P ratios are negatively correlated with biomass production 

[47], [150]. Table 3-11 shows the descriptive statistics and the Dunn’s Post-test results for the 

Kruskal-Wallis non-parametric test used to differentiate between N and P concentrations, and 

the N:P elemental ratio in leaves across the three geologies.  For the A. karroo, the highest N 

concentrations in plant leaves were found on the Black Reef. This is also an interesting finding as 

the soil N concentrations for the A. karroo samples were below detection limits. Ventersdorp 

Lavas had the lowest N concentrations. P concentrations were also highest on the Black Reef. No 

differences in the ratio of N:P was found for the A. karroo samples. There were no differences in 

leaf N or P concentrations between geologies for the S. lancea samples, but there were 

differences between the Ventersdorp Lava and Dolomite samples, with the lowest ratios found 
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on the Ventersdorp Lavas and the highest ratio found on the Dolomites. The E. crispa samples 

were found to have the lowest concentrations of leaf N on the Dolomites and the highest on the 

Black Reef. The samples on the dolomites and Black Reef both had low concentrations of leaf P 

compared to the Ventersdorp Lavas. There were no differences between the geologies for the 

N:P ratio for E. crispa samples. 

Table 3-11 Summary statistics and multiple pairwise comparisons using Dunn's procedure for the N:P ratio 
analysis for leaf and soil samples. The Bonferroni corrected significance level was 0.0167 

Species Variable Geology 
No of 
Obs. 

Min Max Mean Std. dev. Groups 

A
. k

a
rr

o
o

 

Leaf N 

Ventersdorp Lava 6 9721.700 16907.000 12830.450 2702.381 A  

Black reef 7 14666.000 19394.000 17171.857 1610.964  B 

Dolomite 6 9958.400 17876.000 13161.733 3013.605 A B 

Leaf P 

Ventersdorp Lava 6 2293.989 5938.124 4747.234 1481.662 A B 

Black reef 7 4186.651 6570.577 5692.333 810.102  B 

Dolomite 8 3261.952 5455.635 4317.831 707.029 A  

N:P Leaf 
ratio 

Ventersdorp Lava 5 1.891 5.995 2.929 1.731 A  

Black reef 7 2.610 3.971 3.063 0.475 A  

Dolomite 6 2.070 5.480 3.160 1.234 A  

S.
 la

n
ce

a
 

Leaf N 

Ventersdorp Lava 6 9671.400 14676.000 12857.733 1855.515 A  

Black reef 8 11558.000 16697.000 15179.175 1880.451 A  

Dolomite 8 10601.000 21815.000 14849.500 4351.212 A  

Leaf P 

Ventersdorp Lava 8 3518.593 10233.161 6156.370 2299.899 A  

Black reef 8 4105.148 5862.345 4936.637 589.171 A  

Dolomite 8 4047.049 7717.652 5016.694 1211.516 A  

N:P Leaf 
ratio 

Ventersdorp Lava 6 1.434 3.088 2.204 0.561 A   

Black reef 8 2.343 3.833 3.117 0.558 A B 

Dolomite 8 2.368 4.424 2.983 0.696   B 

E.
 c

ri
sp

a
 

Leaf N 

Ventersdorp Lava 8 10549.000 23474.000 15795.250 4208.729 A B 

Black reef 8 14820.000 19734.000 16719.375 1776.950  B 

Dolomite 4 8316.400 13931.000 10541.025 2412.958 A  

Leaf P 

Ventersdorp Lava 8 4546.363 7623.901 5656.958 925.352  B 

Black reef 8 3013.972 6992.032 4389.831 1211.724 A  

Dolomite 4 2858.856 4732.428 3905.889 867.888 A  

N:P Leaf 
ratio 

Ventersdorp Lava 8 1.916 4.777 2.891 1.086 A  

Black reef 8 2.239 5.033 4.001 0.840 A  

Dolomite 4 2.123 3.937 2.790 0.843 A  
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3.5.4.7. Si:Mn ratios in leaves and soils 

At high concentrations, Mn is toxic to plants. Mn toxicity can cause growth stunting and 

brown/chlorotic spots on leaves. Elevated Si in soils has been shown to alleviate Mn toxicity in 

plants by causing a reduction in the translocation of Mn to the shoots of plants.  

Table 3-12  Summary statistics and multiple pairwise comparisons using Dunn's procedure for the Si:Mn ratio 
analysis for leaf and soil samples . The Bonferroni corrected significance level was 0.0167 

Species Variable Geology 
No of 
Obs. 

Min Max Mean Std. dev. Groups 

A
. k

a
rr

o
o

 

Soil ratio 

Ventersdorp Lava 6 572.448 1360.284 908.545 278.782  B 

Black reef 7 544.959 923.152 724.879 149.016  B 

Dolomite  8 92.557 220.446 152.566 47.582 A  

Leaf ratio 

Ventersdorp Lava 5 0.445 2.103 0.915 0.705 A  

Black reef 7 0.187 0.842 0.407 0.231 A  

Dolomite  8 0.264 0.699 0.444 0.132 A  

S.
 la

n
ce

a
 Soil ratio 

Ventersdorp Lava 8 468.366 916.413 753.114 159.655  B 

Black reef  8 497.612 1382.767 696.852 289.238  B 

Dolomite 8 79.842 143.306 108.037 25.149 A  

Leaf ratio 

Ventersdorp Lava 8 0.226 0.677 0.422 0.176  B 

Black reef  8 0.052 0.291 0.112 0.084 A  

Dolomite 8 0.117 0.680 0.260 0.181 A B 

E.
 c

ri
sp

a
 Soil ratio 

Ventersdorp Lava 8 572.448 1095.953 740.483 185.718  B 

Black reef  8 497.612 1331.917 691.754 271.540  B 

Dolomite 4 87.245 138.788 117.228 21.894 A  

Leaf ratio 

Ventersdorp Lava 8 0.021 0.212 0.079 0.071 A  

Black reef  8 0.022 0.122 0.060 0.045 A  

Dolomite 4 0.039 0.372 0.155 0.148 A  

 

Table 3-12 shows the descriptive statistics and the Dunn’s Post-test results for the Kruskal-

Wallis non-parametric test used to differentiate between the Si:Mn elemental ratio across the 

three geologies for leaves and soils. The soil ratios for all three species showed the same trend 

with the Si:Mn content on the dolomites being significantly lower than the Black Reef or 

Ventersdorp Lavas. This trend is due to the significantly higher Mn content for the dolomites 

compared to the other two geologies. Only the S. lancea samples showed any significant 
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differences in the leaf Si:Mn ratio, where the ratio on the Ventersdorp Lavas was significantly 

higher than that on Black Reef.  

3.5.4.8. Leaf Zn and Cd content, and Zn:Cd leaf ratio 

There is often competition between ions for uptake in plants. Studies have shown that Cd 

accumulation can interfere with uptake of Fe and Mg, resulting in a decrease in photosynthesis. 

Cd uptake can be supressed by the uptake of divalent cations such as Zn2+, Mn2+, Si2+and Ca2+. Zn, 

while toxic in high concentrations is an essential element in trace concentrations, while Cd can 

be toxic, even in low concentrations. Table 3-13 shows the descriptive statistics and the Dunn’s 

Post-test results for the Kruskal-Wallis non-parametric test used to differentiate between Zn and 

Cd concentrations, and the Zn:Cd elemental ratio in leaves across the three geologies. For the E. 

crispa and S. lancea samples, there were no differences detected in the leaf uptake of Zn or Cd. 

There were no differences in the Zn:Cd ratios between geologies for either of the three species. 

There were differences in the leaf elemental content for Zn and Cd in the A. karroo samples. Both 

were highest on the Black Reef, and leaf Zn content was lowest on the Ventersdorp Lavas, and 

Cd was lowest on the Dolomites 
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Table 3-13 Summary statistics and multiple pairwise comparisons using Dunn's procedure for the Zn:Cd ratio 
analysis for leaf and soil samples. The Bonferroni corrected significance level was 0.0167 

Species Variable Geology 
No of 
Obs. 

Min Max Mean Std. dev. Groups 

A
. k

a
rr

o
o

 

Leaf Zn 

Ventersdorp Lava 6 10.379 22.691 16.653 4.742 A  

Black reef 7 11.038 19.852 15.004 3.212  B 

Dolomite 6 10.479 15.563 13.018 2.063 A B 

Leaf Cd 

Ventersdorp Lava 6 0.608 1.674 1.219 0.555 A B 

Black reef 7 0.719 3.314 1.793 0.768  B 

Dolomite 8 0.605 1.697 1.139 0.555 A  

Zn:Cd Leaf 
ratio 

Ventersdorp Lava 5 6.795 31.113 16.832 9.795 A  

Black reef 7 4.312 27.626 10.562 7.873 A  

Dolomite 6 6.239 23.720 14.228 7.054 A  

S.
 la

n
ce

a
 

Leaf Zn 

Ventersdorp Lava 6 14.194 36.269 24.087 7.953 A  

Black reef 8 13.484 23.543 19.726 3.420 A  

Dolomite 8 10.354 27.078 18.147 5.235 A  

Leaf Cd 

Ventersdorp Lava 8 0.624 2.243 1.358 0.557 A  

Black reef 8 1.424 1.893 1.574 0.151 A  

Dolomite 8 0.560 1.672 1.070 0.497 A  

Zn:Cd Leaf 
ratio 

Ventersdorp Lava 6 8.868 57.224 21.677 15.370 A   

Black reef 8 8.680 15.791 12.578 2.191 A  

Dolomite 8 7.602 29.779 19.932 8.566 A   

E.
 c

ri
sp

a
 

Leaf Zn 

Ventersdorp Lava 8 8.393 23.662 14.534 4.814 A  

Black reef 8 7.884 14.665 10.127 2.288 A  

Dolomite 4 10.108 11.663 10.787 0.691 A  

Leaf Cd 

Ventersdorp Lava 8 0.635 2.087 1.428 0.497 A  

Black reef 8 1.297 1.769 1.615 0.148 A  

Dolomite 4 0.613 2.534 1.326 0.897 A  

Zn:Cd Leaf 
ratio 

Ventersdorp Lava 8 6.016 19.708 11.202 4.566 A  

Black reef 8 4.906 8.288 6.259 1.180 A  

Dolomite 4 3.989 17.947 11.286 6.474 A  

3.5.4.9.  C:N ratios in leaves and soils 

The ratio of C:N is soils varies between soil types, but a usual range is from 8:1 to 17:1. When 

the carbon content in the soils is significantly higher than this, it can cause a leaching of the 

available nitrogen in the soils. The balance of the two is essential for plant growth and 

carbohydrate production. Studies have found that soils with high organic carbon content in their 

SOM may be limited in terms of P, N and S. C:N ratio can also be lowered as a result of higher 

temperatures, whilst higher rainfall and increased soil acidity increased soil C:N ratios.  
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Table 3-14  Summary statistics and multiple pairwise comparisons using Dunn's procedure for the C:N ratio 
analysis for leaf and soil samples . The Bonferroni corrected significance level was 0.0167 

Species Variable Geology 
No of 
Obs. 

Min Max Mean Std. dev. Groups 

A
. k

a
rr

o
o

 Soil ratio 

Ventersdorp Lava 2 25.897 42.366 34.132 11.646 A  

Black reef 0       

Dolomite  6 19.480 86.438 48.654 22.372 A  

Leaf ratio 

Ventersdorp Lava 6 18.493 49.792 38.195 11.700 A  

Black reef 6 18.493 49.792 38.195 11.700 A  

Dolomite  7 25.326 32.239 28.802 2.409 A  

S.
 la

n
ce

a
 Soil ratio 

Ventersdorp Lava 3 18.557 41.623 26.401 13.185 A  

Black reef  4 15.898 89.705 42.619 33.885 A  

Dolomite 4 18.557 19.866 18.966 0.618 A  

Leaf ratio 

Ventersdorp Lava 6 32.807 49.433 38.406 5.945 A  

Black reef  8 29.514 42.249 33.091 4.644 A  

Dolomite 8 21.121 48.445 35.440 10.350 A  

E.
 c

ri
sp

a
 Soil ratio 

Ventersdorp Lava 6 16.820 62.824 30.599 17.958 A  

Black reef  5 20.508 61.686 35.498 16.180 A  

Dolomite 4 17.612 40.591 26.952 9.938 A  

Leaf ratio 

Ventersdorp Lava 8 20.777 46.059 32.764 8.055 A B 

Black reef  8 26.321 33.262 30.216 2.492 A  

Dolomite 4 36.548 62.616 50.646 10.985  B 

 

Table 3-14 shows the descriptive statistics and the Dunn’s Post-test results for the Kruskal-

Wallis non-parametric test used to differentiate between the C:N elemental ratio across the 

three geologies for leaves and soils.  Results showed that there were numerous Soil N samples 

which were below detection limits, particularly on the Black Reef. No significant differences were 

identified for the soil N content for the samples. It was particularly interesting to note that none 

of the A. karroo samples growing on the Black Reef had detectable levels of N present, despite 

the fact that A. karroo is a nitrogen-fixing tree species.  There were differences identified for the 

E. crispa leaf samples, with a significantly higher leaf C:N ratio on the Dolomites than was found 

for the Black Reef samples.  
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3.5.4.10. Leaf N and S content, and N:S leaf ratios 

In agronomy, the N:S ratio is used extensively to monitor ultimate crop production. An 

optimal ratio in crop plants is between 11:1 and 15:1. Anything higher than 15:1 indicates a 

sulphur deficiency, whereas anything lower than 11:1 would indicate a nitrogen deficiency in 

plants. There are many interactions between soils elements which can affect this ratio, such as 

the availability of Ca in the soils. This is however a potentially useful indicator of Nitrogen 

deficiency.  Table 3-15 shows the descriptive statistics and the Dunn’s Post-test results for the 

Kruskal-Wallis non-parametric test used to differentiate between N and S concentrations, and 

the N:S elemental ratio in leaves across the three geologies. A. karroo and E. crispa samples had 

the highest nitrogen content in their leaf matter, but showed no other differences. The N:S ratio 

for the S. lancea samples showed significant differences between the dolomites and Ventersdorp 

Lavas, with the higher N:S ratios found on the Dolomites. While the S. lancea samples had the 

highest N:S ratio on the dolomites, the A. karroo and E. crispa had the lowest mean values for 

the N:S ratio on the dolomites which is interesting to note from an uptake perspective.  

 

Table 3-15 Summary statistics and multiple pairwise comparisons using Dunn's procedure for the N:S ratio 
analysis for leaf and soil samples. The Bonferroni corrected significance level was 0.0167 

Species Variable Geology 
No of 
Obs. 

Min Max Mean Std. dev. Groups 

A
. k

a
rr

o
o

 

Leaf N 

Ventersdorp Lava 6 9721.700 16907.000 12830.450 2702.381 A  

Black reef 7 14666.000 19394.000 17171.857 1610.964  B 

Dolomite 6 9958.400 17876.000 13161.733 3013.605 A B 

Leaf S 

Ventersdorp Lava 5 1247.505 2714.571 1658.430 604.314 A  

Black reef 8 659.472 4047.335 2162.347 1335.504 A  

Dolomite 7 1311.049 3590.637 1969.238 788.534 A  

N:S  Leaf 
ratio 

Ventersdorp Lava 5 5.343 9.801 7.658 1.812 A  

Black reef 7 3.902 27.663 12.052 8.634 A  

Dolomite 
6 4.422 10.155 6.872 2.181 A 

 

S.
 

la
n

ce
a

 

Leaf N Ventersdorp Lava 6 9671.400 14676.000 12857.733 1855.515 A  
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Species Variable Geology 
No of 
Obs. 

Min Max Mean Std. dev. Groups 

Black reef 8 11558.000 16697.000 15179.175 1880.451 A  

Dolomite 8 10601.000 21815.000 14849.500 4351.212 A  

Leaf S 

Ventersdorp Lava 8 389.844 2600.638 1519.727 835.991 A  

Black reef 8 458.899 3581.433 1254.675 989.211 A  

Dolomite 8 488.048 1020.817 699.652 200.655 A  

N:S  Leaf 
ratio 

Ventersdorp Lava 6 5.168 18.658 9.655 5.476 A  

Black reef 8 4.614 36.096 16.900 9.637 A B 

Dolomite 8 11.283 34.682 22.353 7.454  B 

E.
 c

ri
sp

a
 

Leaf N 

Ventersdorp Lava 8 10549.000 23474.000 15795.250 4208.729 A B 

Black reef 8 14820.000 19734.000 16719.375 1776.950  B 

Dolomite 4 8316.400 13931.000 10541.025 2412.958 A  

Leaf S 

Ventersdorp Lava 8 770.925 2747.802 1534.874 725.817 A  

Black reef 8 1047.904 2768.924 1441.749 564.744 A  

Dolomite 4 560.448 1345.694 946.018 346.046 A  

N:S  Leaf 
ratio 

Ventersdorp Lava 8 5.689 20.530 12.201 5.256 A  

Black reef 8 5.654 16.276 12.756 3.741 A  

Dolomite 4 9.447 17.025 11.873 3.474 A  

3.5.4.11. Mg:Mn ratios in leaves and soils 

While Mn is an essential element in trace concentrations, in high concentrations can be toxic 

to plants. Mn2+ has a similar ionic radius to Mg2+ and therefore could substitute Mg in plant 

uptake. As Mg is a critical component of the chlorophyll molecule, Mg deficiencies could be 

detrimental to plant health. Higher Mg content in the plant tissue has also been shown to 

increase Mn tolerance and prevent toxicity. Table 3-16 shows the descriptive statistics and the 

Dunn’s Post-test results for the Kruskal-Wallis non-parametric test used to differentiate between 

the Mg:Mn elemental ratio across the three geologies for leaves and soils. As seen with the Si:Mn 

ratios in the soils (Table 3-12), there was a significantly higher concentration of Mn in the soils 

on the Dolomites than was found on the other two geologies. There were no differences 

identified between geologies for Mg in Table 3-3. This has contributed in part to the results which 

show that the Ventersdorp and Black Reef had significantly higher soils Mg:Mn ratios than the 

Dolomites for all three species. The only difference for the leaf ratio for Mg:Mn was identified 
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for the S. lancea samples, with the lowest Mg:Mn ratio for the Black Reef. The Mn concentration 

on the S. lancea samples on the Black Reef was higher than on the Ventersdorp Lavas, despite 

soil concentrations being significantly higher on the Dolomites.  

Table 3-16  Summary statistics and multiple pairwise comparisons using Dunn's procedure for the Mg:Mn 
ratio analysis for leaf and soil samples . The Bonferroni corrected significance level was 0.0167 

Species Variable Geology 
No of 
Obs. 

Min Max Mean Std. dev. Groups 

A
. k

a
rr

o
o

 Soil ratio 

Ventersdorp Lava 6 2.225 3.115 2.634 0.355  B 

Black reef 7 1.817 2.985 2.322 0.394  B 

Dolomite 8 0.317 0.561 0.442 0.094 A  

Leaf ratio 

Ventersdorp Lava 5 28.555 166.518 109.485 55.522 A  

Black reef 7 38.742 139.819 66.542 40.783 A  

Dolomite 8 26.861 100.000 65.478 26.298 A  

S.
 la

n
ce

a
 Soil ratio 

Ventersdorp Lava 8 1.990 3.115 2.435 0.330  B 

Black reef 8 1.699 5.353 2.632 1.142  B 

Dolomite 8 0.240 0.519 0.388 0.108 A  

Leaf ratio 

Ventersdorp Lava 8 18.921 51.034 34.140 10.030  B 

Black reef 8 5.576 34.086 11.804 9.250 A  

Dolomite 8 8.865 28.763 18.381 6.439 A B 

E.
 c

ri
sp

a
 

Soil ratio 

Ventersdorp Lava 8 1.990 2.628 2.363 0.232  B 

Black reef 8 1.699 5.353 2.746 1.249  B 

Dolomite 4 0.492 0.566 0.518 0.035 A  

Leaf ratio 

Ventersdorp Lava 8 5.408 46.031 18.132 12.900 A  

Black reef 8 5.744 28.200 14.236 9.942 A  

Dolomite 4 14.630 37.118 26.951 10.589 A  

3.5.4.12. Ca:Al ratios in the leaves and soils 

Studies have shown that high concentrations of bioavailable Al in the soils can inhibit the 

uptake of Ca to the plant. As Ca is an essential element, and the uptake of Ca important for 

tolerance to many elements, the inhibition or competition for uptake could have detrimental 

effects on plant health, particularly if there are very high concentrations of other metals present 

in the soils. Table 3-17 shows the descriptive statistics and the Dunn’s Post-test results for the 

Kruskal-Wallis non-parametric test used to differentiate between the Al:Ca elemental ratio for 

across the three geologies for leaves and soils. There were no differences identified for the total 
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Al:Ca ratio in the soils across the three geologies for any of the three species. There was a 

difference in leaf Ca:Al ratio, where the highest ratio values were found on the Ventersdorp 

Lavas. As shown in Table 3-10, there was a significantly higher concentration of Ca in the leaves 

of plants growing on the Ventersdorp Lavas which accounts for this difference in Ca:Al ratio.  

Table 3-17  Summary statistics and multiple pairwise comparisons using Dunn's procedure for the Al:Ca ratio 
analysis for leaf and soil samples . The Bonferroni corrected significance level was 0.0167 

Species Variable Geology 
No of 
Obs. 

Min Max Mean Std. dev. Groups 

A
. k

a
rr

o
o

 

Soil ratio 
(Al:Ca) 

Ventersdorp Lava 6 0.026 0.050 0.035 0.010 A  

Black reef 7 0.017 0.057 0.036 0.016 A  

Dolomite  8 0.021 0.081 0.049 0.023 A  

Leaf ratio 
(Ca:Al) 

Ventersdorp Lava 5 11.923 437.931 194.513 159.649 A  

Black reef 7 78.920 232.764 153.661 57.474 A  

Dolomite  8 95.533 484.584 193.258 127.511 A  

S.
 la

n
ce

a
 

Soil ratio 
(Al:Ca) 

Ventersdorp Lava 8 0.021 0.091 0.052 0.028 A  

Black reef  8 0.015 0.111 0.049 0.039 A  

Dolomite 8 0.020 0.087 0.050 0.026 A  

Leaf ratio 
(Ca:Al) 

Ventersdorp Lava 8 34.395 265.160 135.732 69.164 A  

Black reef  8 61.872 196.515 117.501 53.215 A  

Dolomite 8 50.068 175.553 108.777 47.067 A  

E.
 c

ri
sp

a
 

Soil ratio 
(Al:Ca) 

Ventersdorp Lava 8 0.027 0.091 0.044 0.021 A  

Black reef  8 0.019 0.111 0.050 0.038 A  

Dolomite 4 0.030 0.063 0.047 0.014 A  

Leaf ratio 
(Ca:Al) 

Ventersdorp Lava 8 77.810 353.869 232.450 81.663  B 

Black reef  8 76.190 169.857 123.077 31.410 A  

Dolomite 4 52.537 266.279 142.923 89.574 A B 

 

Overall, there were relatively few significant differences between the leaf elemental 

concentrations between geologies, even at a species level. There was less evidence to indicate 

that there are severe nutrient limitations on the Black Reef than expected. The ranges observed 

between species differed more than the ranges between geologies for each species. The high 

Mn uptake in the S. lancea leaf samples was interesting to note from a bioavailability perspective. 

The finding that the A. karroo samples had the highest leaf content for N on the Black Reef but 

that the soils on the Black Reef had extremely low N also bears further investigation.  
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3.5.5. Determining the effects of leaf and soil elemental content on spectral 

derivative results 

The Kruskal Wallis test results for each species identified significant differences between the 

geologies for selected vegetation indices. There were some results which showed that even 

when all species data was combined, there were differences between geologies which could be 

identified using the vegetation indices. The PSRI values for plants growing on the Black Reef were 

generally higher (as was also observed for the A. karroo samples on the Black Reef most notably), 

but not all spectral responses were consistent with the geology. Therefore, it is also necessary to 

look at how the spectral response relates to the leaf and soil elemental content, bioavailability 

of the elements and the nutritional status of the plants.  

3.5.5.1. Selecting a subset of significant variables through variables characterisation 

There were a large number of variables to be considered (soil elemental content, leaf 

elemental content, BCFs and soil and leaf elemental ratios), and therefore a variables 

characterisation test was run in XLStat. The variables characterisation tool used the correlation 

coefficient to identify the variables that showed the strongest correlation between the variable 

and the vegetation index. This process was repeated for each vegetation index per species. The 

summarised results of the variables characterisation are shown in Table 3-18. The full table of 

results with correlation coefficients and p-values is included in Appendix 8. For each vegetation 

index, the variables that showed the strongest correlation to the VI results were identified. 

Values which showed the strongest relationships are shown in the table (p < 0.01). The results 

were divided up into the 5 categories, soil elemental content (analysis by XRF), leaf elemental 

content (analysis by ICP-OES/ICP-MS), bioconcentration factors, soil and leaf elemental ratios 

and soil and plant characteristics.  
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Table 3-18 Summarised results of the variables characterisation analysis, per vegetation index and per for 
each individual species, and all species combined. Columns show the variables that showed a significant 
correlation to the vegetation index 

 

There were very few soil elements, or soil or plant characteristics such as soil pH and Leaf 

water content that correlated well with the spectral indices The leaf elemental content, 

bioconcentration factors and leaf and soil element ratios categories had more variables with 

strong correlations with the spectral indices. For the NDWI, PSRI and Red-edge inflection points, 

the E. crispa samples did not show any significant correlations to any of the leaf or soil variables. 

The A. karroo samples also did not show any significant correlations with the variables for the 

725/702 ratio of the 1st derivative. The significant variables differed between the species. There 

was some overlap between variables for the individual species for the different indices, showing 

VI Species 
Soils 
elemental 
content 

Leaf elemental 
content 

Bio-
concentration 
Factors (BCF) 

Soil:leaf ratios 
Soil & plant 
characteristics 

725-702 
Ratio of the 

1st 
Derivative 

A. karroo           

E. crispa Rb     Na:K leaf ratio   

S. lancea   Ba Ti     

NDVI 

A. karroo   Ti Ti     

E. crispa 
Zr Cu, Mn, Ni, S Mn, Ni 

Mg:Mn leaf ratio, Si:Mn leaf:soil 
ratio   

S. lancea   Ba Cu, Zn     

NDWI 

A. karroo   Si Si Leaf  ca: al:ca Soil, Al BCF: Ca BCF   

E. crispa           

S. lancea 
  Ba, Pb Cu, Zn   

Leaf Water 
content % 

PSRI 

A. karroo Cu Mn Fe, Fe2   soil pH 

E. crispa           

S. lancea 
  As     

Leaf Water 
content % 

Red-edge 
NDVI 

A. karroo   Ti Ti Si:Ti leaf:soil ratio,   

E. crispa 
K2, Rb Mn Mn, Na 

Na:K leaf ratio, Mg:Mn leaf ratio, 
Si:Mn leaf:soil ratio   

S. lancea   Ba, Sn Cu     

Red-edge 
position 

A. karroo Sr     Si:Ti leaf:soil ratio   

E. crispa V   Mn, Ni Si:Mn leaf:soil ratio   

S. lancea   Ba, Cu, Zn Zn     

Red-edge 
inflection 

point 

A. karroo   As, Fe, U       

E. crispa           

S. lancea   As, Ba, U Ba, Mn, Zn Si:Mn leaf:soil ratio, Rb:K soil ratio   
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a trend of sensitivity to specific elements. The variables that were identified as having significant 

correlations to the spectral indices for each species were then used for the regression analysis.  

3.5.5.2. Identifying the substrate and foliar constituents with the strongest influence 

on vegetation index results  

In order to be able to achieve the ultimate aim of this research, which would be to predict 

the changes in geology through the use of spectral response of the plants, it is first necessary to 

understand the influence that the changes in soil and foliar constituents have on the spectral 

response. To understand this relationship, a series of regression analyses for each VI and the 

subset of variables selected in section 3.5.5.1. was done.  

The parametric multiple regression using a best model selection option was used when the 

variables that were being analysed were normally distributed. At a species level there were many 

variables that were normally distributed. If any of the variables for a given subset were not 

normally distributed then the non-parametric regression analysis was used. For the non-

parametric tests, if the result of the regression was not significant, the least significant variable 

was removed to test if that improved the model. This process was repeated until the highest R2 

value was obtained for the set of variables thus simulating the best model procedure for the 

parametric test. For all tests, 3 validation samples were randomly selected to test the model.  

For many of the vegetation indices, the regression results were relatively weak. The VIs per 

species which did not have any significant results in the variables characterisation were not 

included in the regression analysis. Only results for VIs with significant results are shown below.  
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3.5.5.3. Regression analysis of vegetation indices and elemental results for A. karroo 

The subset of variables that correlated with the NDVI results for A. karroo were all normally 

distributed, and therefore a best model linear regression was used. The results for the regression 

of the NDVI results for A. karroo against the selected bioconcentration factor for Ti turned out 

to be the variable that generated the best fit model (Table 3-19). The adjusted R2 value for the 

model was 0.158, which is quite low. However, the randomly selected three validation samples 

fitted the model well (Figure 3-4). 

Table 3-19 A. karroo linear regression of variables against NDVI: Summary of the variables selection  

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

1 Ti BCF 0.000 0.214 0.158 1.218 -130.714 -129.168 0.884 

2 Leaf Ti (ppm) / Ti BCF 0.000 0.227 0.108 3.000 -128.980 -126.662 0.979 

The best model for the selected selection criterion is displayed in blue    

 

 

Figure 3-4 A. karroo linear regression of variables against NDVI: Predicted vs actual values 

The variables which correlated with the NDWI for A. karroo were not all normally distributed 

and therefore a non-parametric regression was used. The combination of all variables identified 

in the variables classification did not show any significant trends, and there the lowest 
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correlation variables were removed until a significant result was identified. The final selection of 

variables is shown in Table 3-20 . The R2 value for the relationship between the NDWI and the 

Leaf Si, Si BCF and Al BCF: Ca BCF ratio was low but significant (Table 3-21). The randomly selected 

validation samples followed the model (Figure 3-5).  

Table 3-20 A. karroo non parametric regression results for NDWI: Correlation matrix 

Variables Leaf Si Si BCF  Al BCF : Ca BCF NDWI 

Leaf Si 1.000 0.999 -0.625 -0.471 

Si BCF 0.999 1.000 -0.625 -0.482 

BCF Al:BCF Ca -0.625 -0.625 1.000 0.683 

NDWI -0.471 -0.482 0.683 1.000 

 

Table 3-21 Non-parametric regression of variable NDWI: Goodness of fit statistics 

R² 0.063 

SSE 0.004 

MSE 0.000 

RMSE 0.015 

 

Figure 3-5 A. karroo Non-parametric regression of variables to NDWI: Predicted vs actual values  

The A. karroo shows a fairly strong regression R2 value (R2=0.531) and strong correlations to 

Fe BCF (major and trace readings) and soil pH. All A. karroo PSRI values were found to be 

negative. The lower the PSRI value, the healthier the plant. The predicted values for the 

validation samples did not, however fit the model as well as the observations used to develop 

the model.  
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Table 3-22 A. karroo PSRI non-parametric regression correlation matrix: 

Variables Leaf Mn (ppm) Fe BCF Fe2 BCF Soil pH PSRI 

Leaf Mn (ppm) 1.000 0.491 0.503 0.591 0.659 

Fe BCF 0.491 1.000 0.999 0.656 0.832 

Fe2 BCF 0.503 0.999 1.000 0.655 0.833 

Soil pH 0.591 0.656 0.655 1.000 0.779 

PSRI 0.659 0.832 0.833 0.779 1.000 

      
Table 3-23 Non-parametric regression of variable PSRI: Goodness of fit statistics 

R² 0.531  
SSE 0.005  
MSE 0.000  
RMSE 0.017  

 

 

Figure 3-6 A. karroo Non-parametric regression of variables to PRSI: Predicted vs actual values 

 

The best fit linear regression of Red-edge NDVI for A. karroo selected Ti BCF / Leaf Ti (ppm)*Si 

:Ti leaf/soil ratio as the best combination of variables for the model (Table 3-24). It was 

interesting to note that the variables with the strongest correlation to the Red-edge NDVI were 

linked to Ti uptake by the A. karroo samples. The adjusted R2 value of 0.637 shows a good fit for 
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the model. When plotting the predicted against actual values (Figure 3-7), the validation samples 

also showed a good fit to the model.  

Table 3-24 Summary of the variables selection for the linear regression for the A. karroo Red-edge NDVI 

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

1 Ti BCF 0.001 0.208 0.151 11.543 -104.449 -102.904 0.891 

2 Ti BCF / leaf Ti (ppm)*Si :Ti leaf/soil ratio 0.001 0.686 0.637 -0.654 -117.232 -114.915 0.398 

3 
leaf Ti (ppm)/ Si:Ti leaf/soil ratio / leaf Ti 
(ppm)*Si :Ti leaf/soil ratio 0.001 0.689 0.611 1.240 -115.413 -112.323 0.444 

The best model for the selected selection criterion is displayed in 
blue      

 

 

Figure 3-7 A. karroo linear regression of variables to Red-edge NDVI: Predicted vs actual values 

The linear regression was used for the A. karroo Red-edge position. The best model for the 

regression used the soil Sr content and Si:Ti leaf/soil ratio. An adjusted R2 value of 0.610 was 

obtain which shows a relatively good fit to the model (Table 3-25). The validation samples also 

showed a good fit to the model (Figure 3-8). 

Table 3-25 Summary of the variables selection A. karroo Red-edge Position 

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

1 Soil Sr (ppm) 0.243 0.535 0.502 5.870 -20.749 -19.204 0.523 

2 
Soil Sr (ppm)/ Si:Ti leaf/soil 
ratio 0.191 0.662 0.610 3.000 -23.840 -21.522 0.429 

The best model for the selected selection criterion is displayed in blue  
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Figure 3-8 A. karroo linear regression of variables to Red-edge Position: Predicted vs actual values 

Table 3-26 shows the results for the initial non-parametric regression for the Red-edge 

inflection point (Rre) for A. karroo. The correlation R2 values were low and the regression result 

was poor, thus the variables were removed individually to see which gave the best regression 

result (highest R2). The final test used the linear regression for the Leaf As content which gave a 

R2 value of 0.410 (Error! Reference source not found.). The validation samples fitted the model, 

as shown in Figure 3-9.  

Table 3-26 A. karroo Red-edge inflection point (Rre) – initial non-parametric regression – correlation matrix 

Variables Leaf Fe Leaf U Leaf As Red-edge inflection point 

Leaf Fe 1.000 0.834 0.759 -0.378 

Leaf U 0.834 1.000 0.629 -0.413 

Leaf As 0.759 0.629 1.000 -0.393 

Red-edge inflection point -0.378 -0.413 -0.393 1.000 

 

Table 3-27 Final linear regression for the Red-edge inflection point (Rre): Summary of the variables selection  

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

1 Leaf As (ppm) 0.000 0.447 0.410 2.000 -133.445 -131.778 0.619 

The best model for the selected selection criterion is displayed in blue 
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Figure 3-9 A. karroo linear regression of variables to Red-edge inflection point: Predicted vs actual values 

3.5.5.4.  Regression analysis of Vegetation indices and elemental results for E. crispa 

This section presents the results for the regression analysis of the vegetation indices and 

elemental results for E. crispa. For the E. crispa there were no significant results in the variables 

correlation for the NDWI, PSRI and Red-edge inflection points and therefore no regression 

analysis was done for those vegetation indices. Table 3-19 shows the correlations from the NDVI 

regression results. There were a number of variables which were found to have significant 

correlations, and removing the variables with the lowest correlations did not improve the fit of 

the model. There was a significant result for the model and an R2 value of 0.537 (Table 3-19). The 

predictions for the validation samples were within a similar range of error to the training samples 

(Figure 3-10) 

Table 3-28 E. crispa non-parametric regression for NDVI : Correlation matrix 

Variables Ni BCF 
Mn 
BCF 

Soil Zr 
(ppm) 

Ni2 
BCF Zn BCF 

Leaf Cu 
(ppm) 

Si:Mn leaf/soil 
ratio 

Leaf Ni 
(ppm) NDVI 

Ni BCF 1.000 0.230 0.262 0.565 -0.426 -0.394 -0.350 0.469 -0.489 

Mn BCF 0.230 1.000 0.494 0.384 -0.223 -0.422 -0.536 0.328 -0.558 

Soil Zr (ppm) 0.262 0.494 1.000 0.451 -0.576 -0.409 -0.322 0.311 -0.680 

Ni2 BCF 0.565 0.384 0.451 1.000 -0.240 -0.354 -0.462 0.747 -0.653 
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Zn BCF -0.426 -0.223 -0.576 -0.240 1.000 0.451 0.065 -0.069 0.666 

Leaf Cu (ppm) -0.394 -0.422 -0.409 -0.354 0.451 1.000 0.251 -0.337 0.644 

Si:Mn leaf/soil ratio -0.350 -0.536 -0.322 -0.462 0.065 0.251 1.000 -0.550 0.431 

Leaf Ni (ppm) 0.469 0.328 0.311 0.747 -0.069 -0.337 -0.550 1.000 -0.677 

NDVI -0.489 -0.558 -0.680 -0.653 0.666 0.644 0.431 -0.677 1.000 

          
Table 3-29 E. crispa non-parametric regression of variable NDVI: Goodness of fit statistics: 

R² 0.537 

SSE 0.004 

MSE 0.000 

RMSE 0.016 

 

 

Figure 3-10 E. crispa non-parametric regression of variables to NDVI: Predicted vs actual values 

Similar results were seen for the Red-edge NDVI as for the NDVI results for E. crispa, although 

for different variables. However, the uptake of Mn featured quite strongly as a common element 

between the NDVI and Red-edge NDVI. The Red-edge NDVI model was also not improved 

through the removal of variables in the initial correlation matrix (Table 3-21). The R2 value shown 

in Table 3-22 and predictions plotted in Figure 3-11  showed a moderate fit to the model.   

 

Table 3-30 E. crispa non-parametric regression for Red-edge NDVI : Correlation matrix: 

Variables 
Soil Rb 
(ppm) 

Mn 
BCF 

Leaf Mn 
(ppm) 

Mg:Mn 
leaf ratio Na BCF 

Na:K leaf 
ratio 

Si :Mn 
leaf/soil ratio 

Red-edge 
NDVI 
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0.8

0.81
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Soil Rb (ppm) 1.000 -0.692 -0.438 0.553 0.102 -0.195 0.615 0.648 

Mn BCF -0.692 1.000 0.736 -0.736 -0.273 0.613 -0.464 -0.729 

Leaf Mn (ppm) -0.438 0.736 1.000 -0.844 -0.361 0.338 -0.373 -0.758 

Mg:Mn leaf ratio 0.553 -0.736 -0.844 1.000 0.135 -0.303 0.449 0.636 

Na BCF 0.102 -0.273 -0.361 0.135 1.000 -0.233 0.349 0.487 

Na:K leaf ratio -0.195 0.613 0.338 -0.303 -0.233 1.000 -0.174 -0.366 

Si :Mn leaf/soil ratio 0.615 -0.464 -0.373 0.449 0.349 -0.174 1.000 0.456 

Red-edge NDVI 0.648 -0.729 -0.758 0.636 0.487 -0.366 0.456 1.000 

 

Table 3-31 E. crispa non-parametric regression of variable Red-edge NDVI: Goodness of fit statistics: 

R² 0.469 

SSE 0.016 

MSE 0.001 

RMSE 0.032 

 

Figure 3-11. E. crispa non-parametric regression of variables to Red-edge NDVI: Predicted vs actual values 

The regression for the Red-edge position was done using the non-parametric regression, 

which presented a result with a moderate R2 value of 0.420. Again, the Mn BCF had a strong 

correlation with the Red-edge Position. Ni (trace and major) BCF and the Si:Mn leaf/soil ratio had 

less strong correlations. The overall fit of the model, as shown by the predicted vs actual results 

in Figure 3-12 showed a relatively good fit for more samples. Some of the training samples 

showed higher residuals and did not fit the model adequately.  
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Table 3-32 Initial E. crispa non-parametric regression for Red-edge position (REP): Correlation matrix: 

Variables Mn BCF Ni BCF 
Si:Mn leaf/soil 

ratio Ni2 BCF 
Soil V 
(ppm) REP 

Mn BCF 1.000 0.291 -0.557 0.431 -0.087 0.678 

Ni BCF 0.291 1.000 -0.367 0.492 -0.442 0.433 

Si:Mn leaf/soil ratio -0.557 -0.367 1.000 -0.450 0.224 -0.435 

Ni2 BCF 0.431 0.492 -0.450 1.000 -0.674 0.537 

Soil V (ppm) -0.087 -0.442 0.224 -0.674 1.000 -0.427 

REP  0.678 0.433 -0.435 0.537 -0.427 1.000 

       
 
Table 3-33 E. crispa non-parametric regression of variable Red-edge Position (REP): Goodness of fit statistics: 

R² 0.420 

SSE 9.749 

MSE 0.609 

RMSE 0.781 

  

 

Figure 3-12 E. crispa linear regression of variables to Red-edge position: Predicted vs actual values 

3.5.5.5. Regression analysis of Vegetation indices and elemental results for S. lancea 

For the variables characterisation of S. lancea, most of the VIs had correlations with either 

Ba or Cu leaf concentrations or BCF. Only the NDWI showed correlations with any soil elemental 

contents and the Red-edge inflection point was the only index to have correlations with the soil 

elemental ratios.  
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The best model linear regression was used to determine the relationship between leaf Ba 

and Ti BCF and the 1st derivative 725/702 ratio.  The model had a low R2 value of 0.184 (Table 

3-34) which can also been seen in the poor fit of the predicted vs actual values in Figure 3-13. 

The validation samples, however, did fit within the model fairly well. 

Table 3-34 S. lancea linear regression of the 1st derivative 725nm/702nm ratio: Summary of the variables 
selection  

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

2 Leaf Ba (ppm)/ Ti BCF 0.019 0.270 0.184 3.000 -76.363 -73.376 0.883 

The best model for the chosen selection criterion is displayed in blue   
 

 

Figure 3-13 S. lancea linear regression of variables to 1st derivative 725nm/702nm ratio: Predicted vs actual 
values 

The non-parametric regression did not produce any significant results, despite fairly strong 

correlations between the Cu BCF and Zn BCF with the NDWI (Table 3-35). The process was 

repeated until only the Leaf Pb and Cu BCF remained, and a linear regression was used to 

determine the relationship between these two variables and the NDWI. An R2 value of 0.472 was 

obtained (Table 3-36). Figure 3-14 shows the predicted vs actual values and the validation 

samples which followed a similar distribution to the training samples. 
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Table 3-35  Initial S. lancea non-parametric regression of NDWI- correlation matrix: 

  
Leaf Water 
content (%) 

Leaf Ba 
(ppm) 

Leaf Pb 
(ppm) Cu BCF Zn BCF NDWI 

Leaf Water content (%) 1 0.303 -0.275 -0.309 -0.405 -0.125 

Leaf Ba (ppm) 0.303 1 0.197 -0.468 -0.604 -0.295 

Leaf Pb (ppm) -0.275 0.197 1 0.082 0.096 -0.304 

Cu BCF -0.309 -0.468 0.082 1 0.933 0.602 

Zn BCF -0.405 -0.604 0.096 0.933 1 0.526 

NDWI -0.125 -0.295 -0.304 0.602 0.526 1 

 

Table 3-36 Regression of variable NDWI: Summary of the variables selection NDWI: 

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

2 Leaf Pb (ppm) / Cu BCF 0.000 0.488 0.427 0.356 -225.782 -222.795 0.620 

The best model for the chosen selection criterion is displayed in blue   

 

Figure 3-14 S. lancea linear regression of variables to NDWI: Predicted vs actual values 

All variables identified as having a strong correlation with the S. lancea Red-edge NDVI were 

normally distributed and the best model linear regression was used to determine the relation 

between the selected variables and the Red-edge NDVI. As with the NDVI, there was a strong 

relationship with leaf Ba content, but this model found the best fit by incorporating Cu BCF and 

the leaf Sn content in the model. The resulting Adjusted R2 value was 0.657 (Table 3-37). The 

predicted vs actuals plotted in Figure 3-15 shows a good fit and fairly low residuals for the 

validation samples.  
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Table 3-37 S. lancea linear regression of Red-edge NDVI: Summary of the variables selection 

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

1 Leaf Ba (ppm) 0.000 0.573 0.549 7.695 -156.908 -154.916 0.470 

2 
Leaf Ba (ppm) / Leaf Sn 
(ppm) 0.000 0.688 0.651 3.331 -161.163 -158.176 0.378 

3 
Cu BCF / Leaf Ba (ppm) / 
Leaf Sn (ppm) 0.000 0.712 0.657 4.000 -160.761 -156.778 0.385 

The best model for the selected selection criterion is displayed in blue 

 

 

Figure 3-15 S. lancea linear regression of variables to Red-edge NDVI: Predicted vs actual values 

The results of the PSRI found the best fit for the model using both the leaf water content and 

the Leaf As content. An adjusted R2 value of 0.283 was obtained (Table 3-38) and the weak fit of 

the model is shown by the high residuals for narrow range of data shown in Figure 3-16. 

Table 3-38 S. lancea linear regression of variable PSRI: Summary of the variables selection 

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

1 Leaf water content (%) 0.000 0.221 0.177 4.660 -150.473 -148.482 0.857 

2 
Leaf water content (%)/ 
Leaf As (ppm) 0.000 0.359 0.283 3.000 -152.373 -149.386 0.776 

The best model for the selected selection criterion is displayed in blue 
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Figure 3-16 S. lancea linear regression of variables to PSRI: Predicted vs actual values 

The variables characterisation again identified Leaf Ba, Leaf Cu and Leaf Zn as having a strong 

correlation with a vegetation index for the S. lancea samples. For the Red-edge Position (REP) 

the best model used the Leaf Ba and Leaf Zn contents. The R2 value was 0.345 (Table 3-39). Some 

of the residuals were found to be a bit high within the training samples, but the validation 

samples fitted the model closely (Figure 3-17). 

Table 3-39 S. lancea Regression of variable Red-edge Position (REP): Summary of the variables selection 

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

1 Leaf Ba (ppm) 0.447 0.187 0.142 7.402 -14.222 -12.231 0.894 

2  Leaf Ba (ppm) / Leaf Zn (ppm) 0.341 0.414 0.345 2.879 -18.758 -15.771 0.710 

3 
Leaf Cu (ppm)/ Leaf Ba (ppm) / 
Leaf Zn (ppm) 0.344 0.444 0.340 4.000 -17.827 -13.844 0.741 

The best model for the selected selection criterion is displayed in blue 
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Figure 3-17 S. lancea linear regression of variables to Red-edge Position (REP): Predicted vs actual values 

Table 3-40 S. lancea Regression of variable Red-edge inflection point: Summary of the variables selection  

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

1 Leaf Ba (ppm) 0.000 0.506 0.479 6.910 -167.648 -165.656 0.543 

2 Leaf As (ppm)/ Leaf Ba (ppm) 0.000 0.652 0.612 2.129 -172.667 -169.680 0.421 

3 
Leaf As (ppm) / Leaf Ba (ppm)/ Rb:K 
soil ratio 0.000 0.671 0.609 3.277 -171.752 -167.769 0.439 

4 
Leaf As (ppm) / Leaf Ba (ppm)/ Ba 
BCF / Rb:K soil ratio 0.000 0.677 0.591 5.000 -170.118 -165.140 0.475 

The best model for the selected selection criterion is displayed in blue 
 

 

Figure 3-18 S. lancea linear regression of variables to Red-edge inflection Point (Rre): Predicted vs actual 
values 
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The Red-edge inflection point linear regression found the best fit using the leaf As and leaf 

Ba contents. The adjusted R2 value was 0.612 (Table 3-40). The predicted vs actual values plotted 

well (Figure 3-18) and the validation samples were also found to fit the model well.  

3.5.6. Species classification using vegetation index responses 

The previous chapter showed some differences in vegetation index results between the 

three geologies and six LFTs for the three species. An important observation was that when 

combining the data for all three species to perform the analysis, the differences between 

geologies were obscured as the plants’ spectral responses to changes in geology were not 

consistent across all three species. Therefore is it necessary to differentiate between species 

before attempting to differentiate between geologies, unless the growing conditions are 

extreme enough to cause a stress response, even in species which have adapted to their 

environment.   

It was initially observed that there were certain spectral responses consistent with a 

particular species. For example, on average the PSRI values for A. karroo samples were lower 

than for the E. crispa and S. lancea, and the NDWI and Red-edge inflection point were higher, 

whereas the S. lancea samples showed higher NDVI and Red-edge NDVI results and lower Red-

edge position and Red-edge inflection point. The E. crispa samples showed a lower 725/702 ratio 

of the 1st and 2nd derivatives, as shown in Figure 3-19. None of these spectral indices 

independently classified the species as being different from the other two species, but it was 

possible to use a combination of the vegetation indices to perform a grouping analysis in ArcGIS 

desktop which accounted for the majority of the variation between species.  
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Figure 3-19 Box plots showing the results for all eight vegetation indices per species, and for all species 
combined 
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The grouping analysis tool was run using the results of the vegetation indices. An iterative 

approach was used to test multiple combinations of the vegetation indices. Results were similar 

for various combinations, but a combination of all eight indices produced the best results. Figure 

3-20 shows the box plot using standardised values for the ranges of vegetation indices and the 

values which described each class. As with the soil elemental concentration grouping analysis in 

chapter 2, the Calinski-Harabasz pseudo F-statistic was used to identify the optimal number of 

groups, and the result returned was three.  

 

Figure 3-20 Grouping analysis using all eight vegetation indices. The Pseudo F-statistic identified 3 groups as 
the optimal number of groups (maximum mean F-statistic = 33.0270 (Class 1 – Blue, Class 2 – Red, Class 3 – 
Green). R2 values are shown for each vegetation index in the axis labels.  
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Figure 3-21 Graph showing the distribution of the grouping analysis results by species per geology. Class 1 
accounted for most of the E. crispa samples, class 2 contained only A. karroo and class 3 accounted for the 
majority of the S. lancea samples. Samples which did not fall into the same group as the rest of their species were 
showing higher or lower than average VI results for that species. 

It was observed that the three groups in the grouping analysis result corresponded strongly 

with the three species used in the analysis. Overall, group 1 contained 23 observations, of which 

17 were E. crispa, group 2 contains 16 observations which were all A. karroo and group three 

contained 26 observations, of which 20 were S. lancea. In group 3, four of the observations which 

were not S. lancea occurred on the Black Reef, and two other E. crispa samples from the 

Dolomites also fell into group three. It is possible that these samples were showing stress 

responses which may account for their classification. Group 3 was characterised by a lower Red-

edge Position, which is an indication of a blue shift, higher PSRI, an indicator of high carotenoid 

content and high NDVI and Red-edge NDVI, which are usually indicators of high chlorophyll 

content, and low NDWI. There were four S. lancea samples which fell into group 1, two on the 

Black Reef and two on the Ventersdorp Lavas. Group 1 was characterised by a higher Red-edge 

position, indicating a red shift, but a low Red-edge inflection point, high PSRI and low NDVI and 

Red-edge NDVI results, as well as a lower 1st and 2nd derivative 725/702 ratios. A. karroo samples 

in group 2 were differentiated by low PSRI values, high Red-edge inflection points and high NDWI 

values.  
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These results could provide indications as the variables which control for the more extreme 

spectral responses for each species. To verify this, the elemental data was classified by group 

from the above results, species and geology and descriptive statistics were used to investigate 

the differences between the mean and median values for the species by group. There were 

insufficient replicates to do further statistical analysis but the box plots shown in Figure 3-22 

provided extremely valuable insight. Often the elements that showed marked differences for the 

“outliers” of the grouping analysis were not detected as being significantly different in the 

Kruskal Wallis tests for soils and leaf elemental contents, nor were they detected as having 

significant correlations with the spectral results in the analysis in Section 3.5.4.2. It is possible 

that these results have been obscured in the tests mentioned above as non-parametric tests are 

typically designed to compensate for extreme results by using median values and ranks for the 

analyses.  

Initially, box plots were drawn using only the group result and species. A subset of the 

boxplots are shown in Figure 3-22, and the additional is displayed in Appendix 9. From the box 

plots it would be seen that there were differences in results between the different groups per 

species, particularly the A. karroo samples, where the majority classified into group 2, but three 

of the Black Reef samples classified into group 3, and the two Ventersdorp Lava and single 

dolomite sample fell into group 1. The blue shift in the Red-edge position and the higher PSRI 

values of the A. karroo samples was quite marked. For those samples, there were strong 

differences between the Co content in the Group 3 A. karroo samples compared to group 1 and 

2 A. karroo samples. Group 3 A. karroo samples were found to have a lower soil water content, 

whilst the group 1 S. lancea samples has the lowest leaf water content of all group, but 

particularly compared to other S. lancea samples. Leaf Al content for the Group 1 A. karroo 

samples was an order of magnitude higher than all other samples. This may be a driver of the 

lower NDVI and Red-edge NDVI results of the group 1 A. karroo samples. The soil Cr and Mn 
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samples between group 1 and group 3 E. crispa samples were different, although there were 

some outliers in Group 1 which were similar to Group 3 results. It should be noted that the ranges 

of Mn values in the group 3 A. karroo samples and group 1 S. lancea samples were very small 

compared to their respective remaining groups.  

 

Figure 3-22 Box plots categorised by group and species, showing selected elements with marked differences 
between elemental content between groups for the three species (outliers shown by small black dots) 
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The group 3 A. karroo samples all occurred on the Black Reef, whereas the group 1 S. lancea 

samples and the group 3 E. crispa samples were distributed across the three geologies. As it was 

observed that there were not as many clear differences between groups for the S. lancea and E. 

crispa when categorising the descriptive stats by group and species, further analysis was done to 

differentiate between geology in addition to group and species.  

 

Figure 3-23 Box plots of the E. crispa samples categorised by group and geology. Full results of the descriptive 
statistics are shown in Appendix 5 

Figure 3-23 shows the box plots categorised by group and geology for the S. lancea samples. 

There were differences noted between the group 1 and group 3 E. crispa samples, but these 

differences were more pronounced when the samples were further categorised by geology. 

There were no group 3 E. crispa samples on the Ventersdorp lavas. The group 1 E. crispa samples 
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on the Black Reef had lower soil carbon, and a lower Ca BCF and lower Ca:Mg leaf ratio than the 

group 3 E. crispa samples on the Black Reef. By contrast, the group 1 E. crispa samples on the 

dolomites had higher soil carbon content. Group 1 E. crispa samples on the dolomites show 

similar trends for the Ca BCF and Ca:Mg ratios to the Black Reef samples. The group 3 E. crispa 

samples had the highest concentrations of leaf Al compared to all other groups or subsamples.  

The box plot results for the S. lancea samples are shown in Figure 3-24. The first two plots 

show the soil and leaf concentrations for Co. It is particularly interesting to note that the Group 

1 samples on the Black Reef had the highest Co content in the soils, but the Group 3 samples on 

the Black Reef had the highest leaf Co content. The bioconcentration factor values for Group 3 

were also higher than for group 1 on the Black Reef. While the ranges of the Co content of the 

leaves for the group 1 and group 3 samples on the Black Reef do overlap, this is still an indication 

of the differences in bioavailability of Co on certain parts of the Black Reef, as was observed with 

the A. karroo samples. Soil Fe content for the Group 3 Ventersdorp Lavas samples was higher 

than the Group 1 Ventersdorp lavas samples, whereas the reverse was seen for the Black Reef 

samples. Leaf S content was higher for the Group 1 Black Reef samples. This trend is also seen in 

other results such as the N:S ratios.  

There were a limited number of samples in some of the groups, such as the E. crispa samples 

on the Black reef in Group 3, and the Group 1 S. lancea samples. Therefore this approach would 

benefit from more extensive sampling to validate the approach. However, even with limited 

samples, there are visible differences in the ranges of values obtained for specific elements for 

different groups for each species, which has the potential to describe the main controlling factors 

on spectral response of these three species.  
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Figure 3-24 Box plots of the S. lancea samples categorised by group and geology. Full results of the descriptive 
statistics are shown in Appendix 6 
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 Discussion  

The results of the study showed that plant spectral reflectance is affected by differences in 

soil composition which are indicative of differing geologies. However, the relationship is neither 

simple nor straightforward. Bioavailability of elements in the soils, assessed through the BCF, 

varied between different sampling areas within the same geology, and even within the same 

landscape functional type. This variation in turn affected plant spectral reflectance, meaning that 

the change in spectral response could not be viewed as a graduated or linear change moving 

across geologies, but rather in clustered peaks or dips in spectral response. The spectral response 

between tree species was also significantly different, which further obscures spectral responses 

when grouping results by geology alone 

3.6.1. Analysis of leaf and soil elemental concentrations and bioconcentration 

factors 

To understand the relationship between plants and spectral reflectance, the chapter 2 

characterised the landscape and soils across the study site and used these findings to define 

landscape function types (LFTs), and identified the changes in soil elemental content between 

the geologies and the LFTS. The findings showed that the total elemental content differed 

between geologies, but rarely differed between LFTs within the same geology.  

This chapter investigated the changes in elemental content of the soils and leaves in more 

detail. Initially, the range of concentrations of the elements found in the leaves was compared 

to a global guideline of mean leaf elemental contents which was developed to guide studies on 

biogeochemical exploration [116]. Typically this guide would be used as a reference as to 

whether plants were in exceedance of the normal range for specific elements in order to identify 

good indicator plants for use in phytogeochemical exploration. While there is value in doing that, 

this study also wanted to understand where there may be very high or low concentrations that 
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may influence plant spectral responses. It has been established that saline or acidic conditions 

associated with ARD in the study region inhibit nutrient cycling, in particular the mineralisation 

of nitrogen and phosphorus [163]. A linear decline in tree seed production, mass and viability 

has been observed for phreatophyte and riparian tree species situated on or near ARD, and these 

changes could be expected to affect spectral response [67]. 

The results shown in Figure 3-2 found that Au, U, Ag, Cd, Sn, Cr, Ni and Na content in the 

leaves of all the samples analysed were in exceedance of the global mean sample data, often by 

a full order of magnitude. Si content was found to be an order of magnitude lower than the global 

mean average. As, Co, Pb, Al and Mn had fairly broad ranges which overlap with the global mean 

values, but had ranges that exceeded an order of magnitude over the global mean. While Co, Al, 

Mn, Ni, Na and Si are all known to be essential elements, they can be potentially toxic in high 

concentrations. Cd, Pb and As have no known nutritional benefits and can be detrimental to plant 

health even in low concentrations [117], [23]. The fact that these elements are present in 

relatively high concentrations in certain plants, or all samples in the case of Cd, indicates that 

there may be plant stress that may be detectable in the leaf spectral response. Cd regularly exists 

in soils as Cd2+, which can easily be taken up by plants in place of other divalent cations such as 

Ca2+, Zn2+, or Fe2+.[40]. Si content was lower than the global mean for all samples. Concentrations 

of Si were lower than 0.01% of the plant’s dry mass. Agricultural nutrition guidelines classify 

plants with lower the 0.5% dry mass Si as excluders [164]. The role of Si as a beneficial nutrient 

has not been well defined in plants, but studies have shown that fertilisation with Si can help 

remediate signs of toxicity from other elements such as Mn [151], [165].  

In chapter 2, it was noted that many of the soils were within acceptable ranges for plant 

tolerance. There were some exceptions, for example, the normal range for Zinc in soil is between 

10ppm – 300ppm. Anything above this range can be expected to cause toxicity in plants. All soil 
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samples, except for sample no. MMAK67, which was growing in the ash-heap, were well below 

this level [166]. The range for all other samples was between 14.6ppm-100.8ppm, whereas 

MMAK67 was 1380ppm. This sample was removed from the analysis because the results were 

not reflective of the surrounding geology but were affected by anthropogenic contamination 

which was only detected during the sample analysis.  

The soil elemental content, leaf elemental content and bioconcentration factors were 

analysed to investigate how uptake differed across the three geologies and their respective LFTs. 

To understand the relationships, the Kruskal-Wallis non-parametric tests with Dunn’s post-hoc 

test with a Bonferroni correction was used to determine how the three sets of data grouped by 

geology and LFT. Then correlations between the Leaf and Soil elemental concentrations, leaf 

elemental content and BCF and Soil elemental content and BCF were used to further understand 

the relationships. The results, as shown in Table 3-3, did not pick up any direct significant 

correlations between the leaf and soil elemental content. There are many possible explanations 

for this result. The total soil elemental content, as analysed by XRF is not a good indicator of what 

is present in the soil solution [117], [120]. Sorption of the elemental content of the soils was also 

not specifically tested in this study [117]. In addition to this, the flora of this area may well have 

developed successful excluder (tolerance) mechanisms. Weiersbye et al. (2006) found that local 

ecotypes of the tree species used in mine rehabilitation on contaminated sites surround the 

study site were more tolerant than ecotypes harvested from non-metal enriched environments 

[65], [143]. The Si results support this hypothesis, as the soil Si content changed significantly 

between geologies, but the leaf elemental content and BCF showed no differences. There was a 

strong correlation between the leaf content and BCF, but a non-significant correlation between 

the soil content and BCF. This also supports the literature indicating that plants with lower than 

0.5% Si in their leaf matter are excluders.  
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There were essentially three trends seen with the analysis of the leaf and soil elemental 

content and BCF. Some elements, such as Al, Si, Cu, Fe, Mg and V showed changes in soil 

elemental content which corresponded to the changes in geology, but these differences were 

not reflected in the leaf content or bioconcentration factor, and the BCF correlated to the leaf 

elemental content. In such cases, it is suggested that either the elements were not mobile, or 

were only partly mobile within the soil solution, or that the plants actively excluded them, or did 

not translocate these elements from roots to shoots or finally that there may have been 

competition for other ions which competed for uptake, as is common with Mg [117], [120], [164]. 

The second trend was where the BCF strongly reflected the changes in the elemental content of 

the soils as was seen with Ca, Cr, Pb and Ti. In the case of Ca, it is possible that competition with 

other ions inhibited uptake, or that the plant takes up an optimal amount to maintain an ionic 

balance. Cr, Pb and Ti may be excluded or only taken up in small amounts even when the 

concentrations in the soils are higher. 

The third trend was seen as a balance between the changes in soil elemental content and 

leaf elemental content in the BCF. In these cases there was a significant correlation between 

both soil content and BCF and leaf content and BCF, but that the grouping of the BCF Dunn’s Post 

test results reflected more of a combination of trends from the leaves and the soil elemental 

data, or that the elemental content alone did not describe the uptake well and the BCF showed 

differences in the uptake ratio where no differences were seen in the leaves or soils. This set of 

results, was seen for Co, Mn, Ba, K, Na, Ni, P and Zn. For P, what was observed, was a high soil 

content and high leaf content across one geology, and a low soil content and low leaf content on 

another geology, meaning there was no difference in the BCF between geologies.  For Co, there 

were no differences between the soils contents on the Black Reef and Ventersdorp Lavas, even 

when comparing LFTs, but the leaf uptake was higher on the Black Reef outcrop (BR1). On the 

Black Reef and Ventersdorp Lavas, the BCF reflected the leaf uptake, but on the dolomites, where 
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there was a difference in soil elemental content between the chert-rich and chert-poor 

dolomites this was seen in the BCF as well. For Mn and Ni, there were no differences between 

the soils content between LFTs or for the leaf content between LFTs within the Black Reef, and 

for the Ventersdorp Lavas with the Mn results, but the BCF was different for the Black Reef 

outcrop which indicates a difference in the bioavailability of the elements between the LFTs. 

These differences between LFTs could be related to changes in SOC, Clay content, Redox 

potential and particle size of the soil materials[120], [167]. Other factors which affect tree growth 

such as rooting depth and soil water content may also affect the plant-soil interactions and 

resultant uptake of elements [117]. 

3.6.2. Analysis of leaf and soil elemental ratios 

Elemental ratios are used broadly across geological, biological and ecological studies as rapid 

and easy to analyse indicators of processes [168]. Geological processes such as formation of soils 

and degrees of weathering can be determined through the use of elemental soil elemental and 

isotopic ratios  [169], [170]. Soil elemental ratios have also been used to distinguish between 

natural soil enrichment and contamination of soils by certain elements [169]. Elemental ratios in 

soils and in leaves are used extensively in agriculture as proxy measures for plant performance 

and nutritional status. Many of the leaf ratios used in this study have been derived from 

agricultural practices [151], [164], [171].  Elemental ratios between root and shoot material in 

plants have also been used to determine the nutritional status of plants based on the 

understanding that plants withdraw much of their nutrients to their roots during periods of 

nutrient deprivation [172]. Root to shoot ratios were not assessed in this study however. This 

study assessed a number of soil and leaf elemental ratios to understand nutritional status of the 

plants at the study site and to test indicators of dust contamination and plant stress through 

toxicity caused by high concentrations on potentially toxic elements.  
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Elemental ratios such as the Si:Ti ratio and the Na:K ratios were useful indicators of potential 

weaknesses in the sample preparation. The Si:Ti ratio is used to identify whether there is dust 

contamination on the leaf surface. Often insufficient washing of samples can skew the elemental 

analysis through dust contamination. As Si and Ti will be taken up by the plant in different ratios 

relatively to their concentrations in the soils, comparing the soil and leaf ratios for Si and Ti gives 

an indication of whether there is dust contamination on the leave (Pers. Comm. I.M Weiersbye). 

The results for this study showed that the Si:Ti ratios for leaves and soils were significantly 

different, which confirms that if there was any dust present on the leaf samples, it was 

sufficiently well washed to remove the residue and not affect the analytical results. The Na:K 

ratio can be used to give an indication of whether plants started to degrade before analysis (Pers. 

Comm. I.M Weiersbye).  This could happen if the freeze drying process was too slow or if samples 

were damaged in transport or prior to processing. There were no differences identified for the 

Na:K ratios between samples which indicates that there were no differences between the 

batches of samples that were processed.  

Many of the elemental ratios used to assess plant nutritional status were based on indices 

used for agriculture, and therefore the ranges of fast growing leafy crops may not be the same 

as the ratios for hardy, slow growing trees which have adapted to their environment and are not 

managed and fertilised. Studies have already shown that the ranges of the N:P ratio can vary by 

up to fifty fold for a single species across different sites [150], [173]. While some suggested 

ranges are given, and these ranges were compared to the results obtained for the study, focus 

was placed on the relative values obtained and comparisons between geologies, rather than 

purely on absolute values. N:P is exactly such an example. The suggested ranges of the N:P ratio 

are between 10 and 20, and the literature suggests that any values lower than 10 may indicate 

a nitrogen deficiency [150], [173].  The maximum N:P ratio value that was obtained was 5.480, 

and the mean values for all three species were between two and four, which would suggest that 
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all the trees sampled were suffering nitrogen deficiencies. However, compared to the global 

mean data (Figure 3-2), the mean value observed for nitrogen in these samples was similar to 

the global mean data [116]. It is therefore suggested that it was rather the elevated P 

concentrations which are resulting in the lower N:P ratios found in these plant samples.  

The E. crispa samples showed lower concentrations of many of the elements analysed when 

compared to the A. karroo and S. lancea samples. One of the exceptions was Mn. This was 

interesting to note. The soil elemental concentrations of Mn on the Black Reef and Ventersdorp 

Lavas were significantly lower than the Dolomites.  There were no significant differences Mn 

content in the leaves between geologies. However, when looking at the bioconcentration 

factors, they were lowest on the Dolomites. The highest BCF for all samples were found on the 

VLR and BR1 LFTs. This indicates a possible change in the bioavailability of the Mn found on the 

Black Reef and rocky Ventersdorp Lavas, particularly as there was no elevated uptake associated 

with the high soil concentrations of Mn on the dolomites. The E. crispa that were found on the 

dolomites were small and much less vigorous than the trees growing on the Ventersdorp Lavas 

and Black Reef, and no E. crispa were found on the chert-rich dolomites. A similar trend has been 

noted in research in the Sterkfontein area [79]. This may indicate that the habitat preference 

may be a preference for exposed rocky areas and sheltered wooded areas [77], [78] is not just a 

physical preference, but that there may be specific mineral requirements for E. crispa, including 

the bioavailability of Mn.  

Certain leaf elemental rations were used as indicators of potential ion competition for 

uptake, such as the Zn:Cd ratio and the Ca:Al. There were no differences observed between 

geologies for the Zn:Cd ratios for any of the three species (Table 3-14). The Kruskal Wallis test 

result for the E .crispa samples was slightly significant (p= 0.048), but once the Bonferroni 

correction on the Dunn’s Post-test procedure was applied, there were no significant differences 
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observed. Cd levels for all the plant samples were elevated and Zn concentrations were slightly 

lower than the global average (Figure 3-2). Other studies have shown that the presence of 

bioavailable Zn can reduce the uptake and resultant toxicity of Cd [40]. Only the A. karroo 

samples showed differences between leaf elemental content for either Cd or Zn. The A. karroo 

leaf samples showed higher concentrations of both Zn and Cd on the Black Reef. Soils 

information on the Cd content is not available, but the Zn content of the soils was significantly 

higher on the Black Reef (Table 3-3). It is therefore possible that plants were also exposed to a 

degree of Cadmium-induced plant stress [40]. There was significantly higher Ca uptake for the E. 

crispa samples, but the other two species did not have any differences in Ca uptake. The 

difference in Ca uptake is reflected in the differences in Ca:Al and the Ca:Mg ratios in the leaves, 

where only the E. crispa samples showed differences.  The Black Reef consistently had the lowest 

Ca concentrations and Ca* ratios. There were no differences in Al content in the leaves for any 

of the species. The differences in Al in soil were only detectable at a LFT level as there was quite 

a wide range in Al content for each geology. Studies have shown that for Ca, which also competes 

with Cd for uptake, high concentrations of Ca can reduce the uptake of Cd. In cases where there 

is low Ca availability in the soils, the Cd uptake to the roots is higher, but that uptake to shoots 

does not increase [124]. Essentially this indicates that while there may be competition of ions at 

the root-soil interface, there are additional mechanisms that may prevent translocation to the 

shoots [39], [44], [124]. 

3.6.3. Analysis of plant spectral response to changes in soil and leaf elemental 

contents 

The aim of this chapter was to understand how the elemental concentrations of the soils and 

uptake to plant leaves affected spectral response. The results above have shown that there are 

differences to both the soil elemental content, and to a slightly lesser extent, the leaf elemental 
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content which correlate with geology. The next step was to identify which elements were 

responsible to the changes in leaf spectral response. The results of the initial spectral analysis in 

Chapter 2 showed that there were significant differences in the leaf spectral reflectance between 

geologies. However, there were also differences in the vegetation indices (VIs) between the 

three species. In some cases, the change in VI results to geology was opposite for two species, 

such as the E. crispa samples showing a red shift in the Red-edge inflection point and the S. lancea 

samples showing a blue shift over the Black Reef. It is not clear whether the red shift on the Black 

Reef for the E. crispa samples is a product of healthier plants, or the presence of other pigments 

which may be causing a shift towards the red wavelengths, as has been observed in Amaranthus 

tricolor [69]. However, due to the size and vigour of the E. crispa growing on the Black Reef 

compared to those growing on the Dolomites, it is likely that the Dolomites do not provide a 

hospitable habitat for E. crispa trees.  

There have been a number of studies which have shown strong correlations between 

elemental content in the growth media and the change in spectral response [30], [111], [90], 

[174]. Many of these studies have been performed on pot trials in controlled environments. 

Rathod et al (2015) showed that plant spectral reflectance changed in response to spiking the 

soils with As, Cd and Pb. The individual trials for each element showed a measurable change in 

response, and the trails which combined all three elements showed the strongest response. The 

ratio of the 725/702nm 1st derivative spectrum showed a significant change in response to the 

metal treatments. Another interesting finding of this study is that while As was translocated to 

the shoots, there was very little translocation of Cd or Pb from the soil to the leaves, but there 

was still a detectable change in the spectral response [111]. Smith et al. (2004) found that the 

use of the 702/725 ratio of the 2nd derivative was successful in detecting where plants were 

growing in the vicinity of leaks from gas pipelines, and Mutanga & Skidmore (2007) used the 1st 

derivative of the Red-edge to identify nitrogen deficiencies in pasture grasses [114], [104].  
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These studies all look at a limited number of variables or stressors, whereas this study still 

needed to determine what the actual elements that caused a change in spectral response would 

be, particularly considering that the plants may have adapted to their environment and the 

potentially harmful concentrations of elements such as Pb, Cd, As and U [13], [25], [26]. There 

are many factors, or a combination of factors which could control for the plant spectral response 

across geologies, such as the soil geochemistry, the bioavailability plant uptake and resulting 

toxicity, poor nutritional status of the soils, and the soil biophysical parameters. To identify which 

of these had the most influence over spectral response, a subset of soil and plant characteristics 

and elemental concentrations was selected for each VI using the variables characterisation tool 

in XLStat, which used a Spearman’s correlation co-efficient (p< 0.01) to select the variables which 

corresponded most strongly to the dependant variable, the vegetation index. This process was 

repeated for each vegetation index, per species, as it was previously established that the spectral 

analysis should be performed at a species level.   

The results for the variables helped to reduce the number of variables to those that showed 

a relationship to the vegetation index under investigation. The analysis was not performed using 

geology as a grouping variable, but by directly correlating the soil or leaf characteristics to the 

VI. One of the observations was that there were very few of the soils elemental concentrations 

that were selected. This reiterates the importance of understanding the bioavailability of the 

elements, and presence of elements in the soil solution, rather than only looking at total 

elemental concentrations, as well as factors such as sorption of elemental to SOM [40], [117], 

[120]. Leaf elemental concentration and BCF variables were most frequently selected, and the 

soil and leaf elemental ratios had a number of significant results. Elements which are taken up 

and transported to the leaves are more likely to cause damage to the photosynthetic apparatus, 

so the fact that leaf elemental concentration correlated more strongly with the VI results than 

the soil elemental concentrations makes sense [40]. Very few of the VIs correlated with the leaf 
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or soil water content or soil pH or other physical characteristics. It was noted however, that many 

of the elements that were identified as having significant correlations in the BCF were the same 

elements that described geology through the grouping analysis of the soils in Table 2-7. This does 

indicate a relationship between the soil elemental concentrations and resulting bioconcentration 

factors and the spectral response of the leaves.  

The E. crispa results showed no significant correlations for the NDWI, PSRI and Red-edge 

inflection point. These three indices also showed no significant differences in the case of the 

NDWI (p= 0279) and PSRI (p=0.447), and a very weak significant difference for the Red-edge 

inflection point (p= 0.032) in the Kruskal-Wallis test for differences between geologies (Table 

2-11). The A. karroo results for the 1st derivative 725/702 ratio did not find any significant 

correlations with the variables tested. This index did have a significant difference (p < 0.0001) 

between geologies. This raised a small concern that there may be additional elements or factors 

which affect the response of the A. karroo to geology that may have been overlooked. Regression 

analysis was used to model the relationships between the subsets of variables and the VIs. A 

summary of the results is included in Table 3-41. 

Table 3-41 Summary of the regression analysis results for the Vegetation Indices and leaf and soil elemental 
content and biophysical characteristics 

VI R2 value Species 
Elemental content Bioconcentration 

factors 
Soil:leaf ratios 

Soil & plant 
characteristics Soils Leaves 

725-702 
Ratio of the 

1st 
Derivative 

 A. karroo      

 E. crispa      

0.184 S. lancea  Ba Ti   

NDVI 

0.158 A. karroo   Ti   

0.537 E. crispa Zr Cu, Ni, Mn, Ni, Zn Si:Mn leaf:soil ratio  

 S. lancea      

NDWI 

0.063 A. karroo  Si Si BCF Al: BCF Ca  

 E. crispa      

0.427 S. lancea  Pb Cu   

PSRI 

0.531 A. karroo  Mn Fe, Fe2  soil pH 

 E. crispa      

0.283 S. lancea  As   Leaf Water content % 
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The regression analysis showed some good regression results, and others which were quite 

weak. Mostly there were between two to three variables that provided the best fit for the 

regression model. However, the vegetation indices are quite strongly focused around the leaf 

chlorophyll content and Red-edge characteristics. It was expected that there would be more 

consistency in the variables that related to the VIs, where as many of the variables only occurred 

for one VI for one species. Studies on the change in spectral reflectance with exposure to As, Cd 

and Pb showed similar relationships between multiple VIs including the NDVI, derivative ratios 

and the Red-edge position and Red-edge inflection point [111].  There were some elements 

which occurred multiple times, such as Ti, where the bioconcentration factors, leaf Ti content 

and Si:Ti leaf:soil ratios occurred more than once for A. karroo. Mn also seems to relate strongly 

to the E. crispa samples, and Ba was found to have a significant relationship with spectral 

response for the S. lancea. The results here are not sufficiently conclusive to determine that any 

specific combination of elements explains the variation in spectral response determined through 

vegetation indices. It might be possible to develop this further through factor analysis, or to use 

alternative spectral analytical procedures, such as the use of spectral endmembers for 

hyperspectral data.  

The next stage of the analysis was to look at how combinations of VIs could be used together 

to identify trends that may closely correlate to the changes in geology. It was noted when 

Red-edge 
NDVI 

0.637 A. karroo  Ti Ti Si:Ti leaf:soil ratio,  

0.469 E. crispa Rb Mn Mn, Na 
Na:K leaf ratio,  

Mg:Mn leaf ratio, 
Si:Mn leaf:soil ratio 

 

0.657 S. lancea  Ba, Sn Cu   

Red-edge 
position 

0.610 A. karroo Sr   Si:Ti leaf:soil ratio  

0.420 E. crispa V  Mn, Ni Si:Mn leaf:soil ratio  

0.345 S. lancea  Ba, Zn    

Red-edge 
inflection 

point 

0.410 A. karroo  As, Fe, U    

 E. crispa      

0.612 S. lancea  As, Ba    
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visualising the VI results that there also seemed to be some trends which were specific to 

particular species, such as the PSRI values for the A .karroo samples were all negative, but that 

they increased on the Black Reef. The lower the PSRI value, the healthier the plant [100]. 

Combining the VI results using the grouping analysis tool in ArcGIS produced an unexpected 

result, which was the clustering of the sample data into three groups which mostly described the 

samples by species. Where the clustering did not work for a species was where the plant showed 

an abnormal spectral response compared to the total population. For example, for the A. karroo 

samples, the majority of the samples fell into group 2, and a small subset fell into group 3. The 

samples that fell into group 3 were those which had significantly higher PSRI results, and lower 

Red-edge position. Similar trends were seen for the E. crispa samples and the S. lancea samples. 

These coincided with the Rocky Black Reef (BR1). To investigate this trend further, descriptive 

statistics and box plots were drawn up to visualise the trends in the soil and leaf elemental data 

by species and group number. As some of the species only had 1 sample in a particular group, 

there were not sufficient replicates to do further statistical analyses. However the box plots 

described some strong visible trends, such as with the Co content of the group 2 vs group 3 A. 

karroo samples.   

Even with limited replicates, the fact that the group analyses corresponded with the marked 

differences in soil and leaf elemental concentrations is strong evidence that plants do respond 

to the changes in geology. For example, the soils Co concentration on the Black Reef and 

Ventersdorp lavas was significantly higher than that on the Black Reef (p < 0.0001), and the leaf 

elemental content was also found to be significantly higher on the Black Reef (Table 3-3).The 

group 3 A. karroo samples were found to have very high Co content in the leaves compared to 

all other samples. The range of the group 3 A. karroo samples was higher than even the outliers 

for all other groups. The group 3 samples were characterised by high PSRI values, low Red-edge 

and Red-edge Inflection point values. Overall the A. karroo samples had low PSRI and high Red-
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edge inflection point values. When using the Kruskal Wallis test, designed to normalise non-

parametric data, the outliers, both in terms of the spectral response and in terms of the leaf and 

soils elemental content were not detected as having significant differences. Co was not one of 

the elements that was selected through the variables characterisation, yet the results from the 

descriptive statistics by group and species show a strong relationship to spectral response for A. 

karroo. The group 3 A. karroo samples were also found to have a high soil Cr content, low soil 

Mn concentrations and low soil water content. The Group 3 E. crispa samples also had a high soil 

Cr content when compared to the other samples. The Group 1 A. karroo samples had higher Al 

content compared to all other groups and species, and the Group 1 S. lancea samples on the 

Black Reef had high S content, and overall lower leaf water content and soil Mn content 

compared to other samples. 

While further sampling would be required to investigate these findings and draw full 

conclusions as to the changes in leaf and soils elemental contents that affect plant spectral 

response, these preliminary findings show that there does appear to be a relationship with soil 

and leaf elemental content that affects leaf spectral reflectance, which can be detected through 

the use of vegetation indices. There have been several studies which have demonstrated this 

relationship in controlled laboratory studies [30], [111], [175], [90], and a number of studies 

which have identified metal contamination in relatively homogenous environments in the 

northern hemisphere [104], [176], [177]. There have been many studies which have investigated 

species nutrient deficiencies in pot-trials, grasslands and agricultural fields, but these lack the 

heterogeneity of a mixed savannah/wooded grassland found at the study site [178]. Another 

important finding is that it is not possible to ignore the differences in the spectral response of 

the different species. Cho et al (2012) succeeded in delineating tree species in an African 

savannah using airborne imagery [76]. This study came close to delineating tree species through 

the use of the eight vegetation indices, but identified that the changes in geology cause such a 
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significant shift in the spectral response of the leaves that it resulted in an incorrect species 

classification. While this opens up many opportunities for further understanding of the response 

of vegetation to changes in geology, it also presents a challenge in terms of scaling this technique 

up to airborne or satellite imagery. 
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 Conclusion 

This chapter investigated the changes in elemental content in the leaves and plant uptake of 

minerals from the soils across the three different geologies, and further investigated how leaf 

spectral reflectance is affected by these changes in the soil composition. To achieve this 

objective, the study followed a process of first identifying how soil elemental content, leaf 

element content and the uptake of these elements changed across the three geologies and six 

landscape functional types. The study then investigated how the elemental uptake differed 

between the three plant species being studied. Soil and leaf elemental ratios were used to 

further understand how the nutritional status of the plants differed. Further analysis of the 

spectral indices was done to identify, at a species level, which elements affected plant spectral 

response most strongly. The final part of this chapter explored the differences in spectral 

response between the three species, and how this was consistent except for the most extreme 

plant responses. These outlier responses were found to be associated with either elevated or 

very low concentrations of selected elements in the leaves or soils. These relationships need to 

be investigated further.  

These outlier spectral response groupings for the combined indices were associated with 

elevated concentrations of different elements to those that were correlated with the total 

sample set for the individual vegetation indices for a given species. The reason for this could be 

that within a “normal” range of soil conditions, the spectral response does relate to the variables 

identified through the regression analysis, but that when samples are growing in conditions that 

are not within the normal range, the spectral response pattern and VI results are affected. The 

residuals for the regression analyses were often higher for the highest and lowest results in the 

model which could further substantiate this hypothesis. There were trends in the leaf and soils 
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analysis which linked the elemental results which had relationships for both types of spectral 

analysis to the geology.  

The findings of this chapter suggest that plant spectral response to soil composition as a 

result of parent geology could be used for the purposes of discriminating between different 

geologies, however, due to the fact that the type and nature of the spectral response is complex 

and species dependent, further work will need to be performed in order to develop a 

methodology for the identification of geological features from the spectral response of selected 

tree species. This would need to be applicable to technologies such as airborne hyperspectral 

sensing, or ideally multispectral sensing from satellites as the primary objective is to be able to 

detect changes in geology without having to perform extensive ground sampling in order to 

verify results. 
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 CONCLUSION 

 

The cost of soil sampling for geological exploration is very high, and can be dangerous and 

logistically challenging. Exploration activities also have an impact on the environment, and can 

impact surrounding communities. One of the drivers of this study was the need to develop a tool 

that could be used for non-invasive preliminary mineral exploration in conjunction with 

traditional geophysics and geological remote sensing techniques to refine targets for further 

exploration activities in order to reduce the footprint of sampling that is required on the ground.  

A tool such as this would also have value in identifying habitats which contain metallophyte flora 

which are priority areas for conservation due to the high levels of endemism and specialisation 

of the species that have adapted to those environments. This would be highly valuable in 

mapping potentially contaminated areas from anthropogenic activities for monitoring purposes. 

This study has reported a number of findings which will assist in the development of such a tool. 

The aim of this study was to determine whether it is possible to infer substrate geochemistry 

through the use of vegetation indices, by assessing the relationship between the relative 

concentrations of metals in the leaves and substrate with the leaf spectral properties. The central 

hypothesis in this study is that substrate geochemistry, in terms of the relative concentrations of 

heavy metals, results in structural and biochemical changes to plant leaves that are detectable 

from canopy or leaf reflectance signatures. 

To test this hypothesis and address the aim of the research, there were two broad objectives 

that were met. Firstly, it was necessary to characterise the study site to understand and account 

for any environmental variables that may influence the spectral response and conflict or obscure 

the change in spectral response related to the changes in substrate geochemistry. Broadly, the 

study site was characterised by vegetation structure, landscape form and function and soils 
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characteristics. The differences in spectral response to contrasting geologies was compared to 

the landscape functional types which characterised the landscape form and function. The 

findings indicated that there were changes to spectral response that corresponded to geology, 

but that as the landscape is a product of the underlying geologies, there were features in the 

landscape which also influences spectral response and that these could not be ignored.  

Secondly, it was necessary to determine how the levels of foliar stress differed between 

plants growing on metal-rich soils at the study site compared with conspecifics or congenerics 

on adjacent non-metal-enriched soils, and whether the leaf spectral responses could be related 

to either foliar or substrate, metal concentrations and plant nutritional status. To do this, firstly 

the substrate and foliar elemental concentrations were analysed, and then the relationships 

between these concentrations and the leaf spectral reflectance of the selected sample trees was 

modelled. The findings showed that there are correlations with spectral response to substrate 

geochemistry in terms of total elemental concentrations and to the changes in the bioavailability 

of selected elements, determined through uptake ratios.  

Overall, the key findings of this study were that: 

• There were differences in the soil characteristics such as SOC, soil rooting depth, soil 

water content and clay content which were identifiable between landscape 

functional types. These changes in soil characteristics could be a product of the 

underlying geology, but correlated more strongly to landscape function types than 

geologies. There were no differences between characteristics such as pH which were 

expected as a result of the changes in the parent materials of the different soils. 

• The soil elemental content was significantly different between geologies, and it was 

possible to accurately classify the soils into their respective geologies based on the 

concentrations of Mn, Cr, Ti, Cu Cr, Pb, Ba, Fe, and Zr.  
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• There were significant differences in the bioavailability of certain elements which 

affected the uptake and leaf elemental concentrations, despite there being no 

differences in total elemental concentrations in the soils. These differences in 

bioavailability were often seen between LFTs within the same geologies, and could 

be a result of mineralisation and chemical speciation combined with/linked to 

changes to SOC, Clay content, pH and redox potential.  

• There were significant differences between the three species that were analysed in 

terms of leaf elemental concentrations, bioconcentration factors and uptake ratios, 

and in the spectral response patterns. 

• There were significant differences in the vegetation indices between the three 

geologies. The three species responded differently to the changes in the geologies 

and when combining the three species’ data, the change in response across 

geologies was muted. When combining the data there were still detectable 

significant differences, but where there had been significant differences between all 

three geologies for the individual species, usually only one geology would be 

different from the other two when all species were combined. For example, the PSRI 

values were significantly higher on the Black Reef, compared to the Dolomites and 

Ventersdorp Lavas, and the Red-edge position was significantly lower on the 

Dolomites compared to the Black Reef and Ventersdorp lavas.  

• When analysing the individual species and correlating their VI results to the soils and 

leaf elemental data, the A. karroo samples were found to have the strongest 

relationships with Mn and Ti Leaf content and Fe and Ti BCF, the Si:Ti leaf:Soil ratio 

and Sr content in the soils, the S. lancea samples were found to have the strongest 

relationships with the As, Pb and Sn in the leaves and the Cu BCF. E. crispa showed 
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the strongest relationships with Zr and Rb in the soils, Cu and Ni in the leaves, Mn, 

Na, Ni and Zn BCF and the Si:Mn leaf:soil ratio. 

• The grouping analysis tool was used to test whether combinations of VIs could be 

used to differentiate between geologies. The findings showed that when clustering 

the combination of results for all 8 VIs, the resultant group followed species more 

closely than geology. The samples that did not cluster into the correct group for their 

species were found to have a combination of either or lower VI results than were 

typical for that species. It was found that this altered spectral response can be 

associated with either higher or lower elemental concentrations in the leaves or soils 

than the remaining samples for that species. These elevated concentrations 

corresponded with changes in geology.  

From these findings, it is possible to conclude that the foliar and substrate elemental 

concentrations do influence the spectral response of the leaves of the plants selected for 

analysis. Further to this conclusion, the findings showed that the spectral response to changes in 

geologies differs between species, and that the typical spectral response for a given species may 

also be affected by changes in the substrate geochemistry to the extent that it no longer fits the 

classification criteria for that species. This finding provides a possible reason for the challenges 

that many previous researchers have encountered when attempting to apply remote sensing 

techniques for phytogeochemical exploration in the field, particularly when using airborne or 

satellite imagery with limited ground control data [30].  
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 Recommendations for further research 

This study covered a wide range of analyses in order to characterise the variables that may 

contribute to changes in spectral response across the study site. Based on the finding and the 

identified gaps in the data following on from the analyses of the data there are four main topics 

for further research that are recommended.  

Further analysis of the leaf pigments and oxidative indices would assist in understanding the 

spectral response. This may also assist in understanding some of the metabolic processes which 

are ongoing in the plant samples. For example, there is evidence for heavy metals replacing the 

central Mg ion in the chlorophyll molecule in plants. When this occurs in shady conditions, the 

plant may remain green and the chlorophyll molecule is no longer functioning, but does not 

degrade. There could be an implication for spectral response were this to occur. In some cases, 

the plant response did not follow an expected pattern, such as where the E. crispa samples 

showed a red shift on the Black Reef. It would be valuable to relate these unexpected responses 

to pigment concentrations and oxidative indices to better validate whether this is a genuine 

“healthy” shift in the spectral response, or an altered stress response.  

The BCF and selected soil and leaf elemental ratios were used as proxy indicators for 

bioavailability and changes in soil geochemistry between samples. It would be more valuable to 

use a sequential leaching procedure to better understand the bioavailability of the elements, and 

the concentrations likely to be found in the soil solution, rather than only using the total 

elemental content as measured by XRF and deriving proxies for bioavailability. There is an 

opportunity for comparing the actual bioavailable fraction of the elements to the leaf elemental 

content and spectral response. Similarly, additional information on the elemental content of the 

roots and woody biomass as compared to the leaves may give additional information about the 
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plant status and further explain stress responses identified through the spectral data, and 

potentially through the chlorophyll content and oxidative indices discussed above.  

The finding on the relationship between the grouping analysis results for the VIs and the soil 

and plant elemental concentrations shows the strongest potential correlations between spectral 

response and changes in geology. Additional sampling to acquire sufficient replicates to test 

these findings and draw a more complete conclusion would be desirable.  

Finally, the overarching aim of this research is to develop a tool which would enable non-

invasive remote investigation of the changes in geology and substrate geochemistry, with limited 

ground-based sampling. This would imply that the spectral analyses should be using airborne or 

satellite derived imagery. Based on the findings above, accurate analysis of this data could 

present a challenge without the prior classifications of the species. However, the use of 

vegetation indices is a superficial analysis of the spectral data and there are more sophisticated 

remote sensing techniques that could be applied in order to quantify the variations in species, in 

order to first classify the species, and then analyse for changes within species to identify the 

changes in the substrate.   
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APPENDIX 1. SUMMARY STATISTICS FOR SOIL SAMPLES ANALYSIS BY XRF 

AND TEST OF NORMAL DISTRIBUTION 

 

Statistic No. 
Of 
obs. 

Minimum Maximum 1st 
quartile 

Median 3rd 
quartile 

Mean Variance  
(n-1) 

Standard 
deviation 
(n-1) 

Shapiro-
wilk p-
value 

Si (ppm) 72 378575.61 436631.03 408514.82 413843.58 420083.83 413250.84 101905142.19 10094.81 0.003 

Al2 (ppm) 72 17624.03 53401.33 26237.57 30458.34 34348.33 30591.39 49333729.73 7023.80 0.009 

Fe2 (ppm) 72 1818.51 3287.30 2098.28 2413.02 2727.76 2455.76 154276.88 392.78 0.034 

Fe (ppm) 72 16090.21 29848.51 19199.43 21725.67 24562.84 22113.25 12344973.68 3513.54 0.106 

Mn (ppm) 72 309.78 6195.66 542.12 697.01 2884.85 1603.77 2555997.01 1598.75 < 0.0001 

Mg (ppm) 72 783.95 3316.70 1251.30 1386.98 1567.89 1453.99 187312.30 432.80 < 0.0001 

Ca (ppm) 72 500.28 11935.36 768.29 1143.51 1893.93 1481.00 2034969.26 1426.52 < 0.0001 

Na2 (ppm) 72 0.00 1186.97 148.37 296.74 445.11 335.90 77820.09 278.96 < 0.0001 

K2 (ppm) 72 3569.64 23742.23 5561.99 6433.65 8010.93 7142.73 10124508.86 3181.90 < 0.0001 

Ti (ppm) 72 2113.88 6746.80 3008.55 3454.91 3860.67 3534.03 782265.49 884.46 < 0.0001 

P2 (ppm) 72 174.57 2225.74 261.85 305.49 436.42 370.96 62772.12 250.54 < 0.0001 

Cr2 (ppm) 72 45.84 248.37 107.93 131.37 167.63 134.28 1904.23 43.64 0.423 

Ni (ppm) 72 0.00 73.08 21.22 33.79 39.29 31.74 221.88 14.90 0.050 

Sc (ppm) 72 3.07 17.06 7.06 8.91 10.39 8.90 6.38 2.53 0.024 

V (ppm) 72 51.69 137.57 65.11 72.96 80.88 75.35 267.67 16.36 < 0.0001 

Cr (ppm) 72 80.51 172.26 93.89 123.68 135.72 117.88 653.15 25.56 0.001 

Co (ppm) 72 3.75 40.09 11.01 12.71 15.02 13.55 30.24 5.50 < 0.0001 

Ni (ppm) 72 21.60 60.18 29.83 37.05 41.87 37.21 89.17 9.44 0.044 

Cu (ppm) 72 10.45 56.98 18.18 22.02 29.68 24.85 83.85 9.16 < 0.0001 

Zn (ppm) 72 14.58 1380.21 20.20 26.10 33.89 47.85 25561.43 159.88 < 0.0001 

Ga (ppm) 72 3.73 13.25 5.59 6.36 7.88 6.72 3.19 1.79 < 0.0001 

Rb (ppm) 72 21.54 65.36 27.06 34.65 38.92 34.47 75.93 8.71 0.000 

Sr (ppm) 72 10.64 99.44 12.88 15.26 19.56 17.40 114.44 10.70 < 0.0001 

Y (ppm) 72 7.93 16.96 11.38 12.10 13.46 12.33 3.53 1.88 0.736 

Zr (ppm) 72 192.26 462.35 257.34 288.88 306.62 285.80 2054.87 45.33 < 0.0001 

Nb (ppm) 72 4.08 9.66 5.39 6.11 6.86 6.08 1.27 1.13 0.012 

Mo (ppm) 72 -0.84 2.13 0.72 0.89 1.22 0.95 0.21 0.45 0.001 

Ba (ppm) 72 101.56 1004.21 160.97 193.41 264.22 256.22 31643.09 177.89 < 0.0001 

Pb (ppm) 72 5.42 346.64 11.64 17.79 23.35 22.71 1572.96 39.66 < 0.0001 

Th (ppm) 72 -1.29 7.37 1.78 2.81 3.87 2.96 3.01 1.73 0.051 

 

  



 
 

APPENDIX 2. RESULTS OF THE SOILS CHARACTERISATION BY RED EARTH CC 
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VLS MMRL01 0-30 Hu3100   mh L2 80   sl 1 2 20 80    90   30 f R 2.5YR4/6 a   

VLS MMAK02   Ms1100   h T2 10   r 1 2 10    10   30 f RB 5YR4/4 a   

VLS MMEC03 0-30 Hu3100   mh   60   r 1 2 20 60   60   30 f RB 5YR4/4 wb   

VLS MMEC04 0-90 Hu3100   mh   90   r 1 2 20 90   90   40 m R 2.5YR4/6 wb 
Termite activity. Very hard 

dry consistence 

VLS MMAK05 0-50 Hu3100   m   90   r 1 2 20 90      40 m RB 5YR4/4 wb   

VLS MMRL06   Ms1100   vh T2 10   r 1 2 10    10   20 f DB 7.5YR3/4 a   

VLS MMEC07 0-50 Hu3100   mh   90   r 1 2 20 90   90   40 f RB 5YR4/4 wb Silty 

VLS MMAK08 0-50 Hu3100   mh   90   r 1 2 20 90   90   40 f RB 5YR4/4 wb Silty 

VLS MMRL09 0-50 Hu3100   mh   100   r 1 2 20 100   100   50 f RB 2.5YR3/6 wb   

VLS MMEC10 0-50 Hu3100 <r1 mh   60   r 1 2 10 30   30   30 m YR 5YR4/6 wb 
Variable depth (isolated 

small rocky patch) 

VLS MMRL11 0-50 Hu3100   mh   50   r 1 2 10 50   50   35 m RB 5YR4/4 wb   

VLS MMAK12 0-60 Hu3100   mh   90   r 1 2 10 90   90   40 m RB 5YR4/4 wb   

VLR MMRL13   Hu3100 <r1 mh T2b 10   r 1 4 10    10   25 f RB 5YR5/4 wb   

VLR MMEC14   Hu3100 r1 mh T2b 10   r 1 4 10    10   20 f RB 5YR4/4 wb   

VLR MMAK15   Hu3100 r1 mh T2b 10   r 1 4 10    10   20 f RB 5YR4/4 wb   

VLR MMRL16   Ms1100 r2 h T2b 5   r 2 4 5    5   25 f DB 7.5YR3/4 wb   

VLR MMEC17   Ms1100 r2 h T2b 5   r 2 4 5    5   25 f DB 7.5YR3/4 wb   

VLR MMAK18   Ms1100 r2 h T2b 5   r 2 4 5    5   25 f DB 7.5YR3/4 wb   

VLR MMEC19   Ms2100 <r1-r1 h T2b 5   r 1 4 5    5   16 f B 5YR5/4 a   
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VLR MMRL20   Ms2100 <r1-r1 h T2b 5   r 1 4 5    5   16 f B 5YR5/4 a   

VLR MMAK21   Ms2100 <r1-r1 h T2b 5   r 1 4 5    5   16 f B 5YR5/4 a   

VLR MMRL22   Ms1100 r5 h T2b 2   r 3 4 2    2   16 f DB 7.5YR3/4 a   

VLR MMEC23   Ms1100 r5 h T2b 2   r 3 4 2    2   16 f DB 7.5YR3/4 a   

VLR MMAK24   Ms1100 r6 h T2b 2   r 3 4 2    2   16 f DB 7.5YR3/4 a   

BR2 MMRL25   Ms1100 r1 mh T2b/T2 5   r 1 2 5    5   25 m YR 5YR5/6 a   

BR2 MMEC26   Ms1100 r1 mh T2b/T2 5   r 1 2 5    5   25 m YR 5YR5/6 a   

BR2 MMRL27   Ms1100 r1 vh T2b/T2 10   r 2 2 10    10   20 m DB 7.5YR3/4 a   

BR2 MMEC28   Ms1100 r1 vh T2b/T2 10   r 2 2 10    10   20 m DB 7.5YR3/4 a   

BR1 MMRL29   Ms1100 r6 vh T2b/T2 2   r 4 4 2    2   16 f DB 7.5YR3/4 a Ridge scarp 

BR1 MMEC30   Ms1100 r6 vh T2b/T2 2   r 4 4 2    2   16 f DB 7.5YR3/4 a Ridge scarp 

BR1 MMRL31   Ms1100 r5 vh T2b/T2 2   r 3 2 2    2   16 f DB 7.5YR3/4 a Ridge 

BR1 MMEC32   Ms1100 r5 vh T2b/T2 2   r 3 2 2    2   16 f DB 7.5YR3/4 a Ridge 

BR2 MMRL33   Hu3100 <r1 mh T2b/T2 30   r 1 2 10 30   30   20 f SB 7.5YR4/6 a   

BR2 MMEC34   Hu3100   mh T2b/T2 30   r 1 2 10 30   30   30 m RB 5YR3/4 wb   

BR2 MMRL35   
Hu3100 
and 
Ms1100 

r1 mh T2b/T2 40   r 1 2 10 40   40   30 m SB 7.5YR4/6 a 
Variable depth (Hu and Ms 

soil forms) 

BR2 MMEC36   
Hu3100 
and 
Ms1100 

r1 mh T2b/T2 40   r 1 2 10 40   40   30 m SB 7.5YR4/6 a 
Variable depth (Hu and Ms 

soil forms) 

BR1 MMRL37   Ms1100 r5 vh T2b 5   r 3 2 5    5   20 f DB 7.5YR3/4 a Ridge 

BR1 MMEC38   Ms1100 r5 vh T2b 5   r 3 2 5    5   20 f DB 7.5YR3/4 a Ridge 

BR1 MMEC39   Ms2100 b4r5 vh T2b/T2 1   r 5 8 1    1   16 f B 7.5YR5/4 a Ridge, old workings vicinity 

BR1 MMRL40   Ms2100 b4r5 vh T2b/T2 1   r 5 8 1    1   16 f B 7.5YR5/4 a Ridge, old workings vicinity 
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D1 MMEC41   Hu3100   mh L2 181   r 1 2 20 181      20 f DRB 2.5YR3/4 a   

D1 MMRL42   Hu3100   mh L2 181   r 1 2 20 181      20 f DRB 2.5YR3/4 a   

D1 MMEC43   Hu3100   mh L2 30 80 gl/so 1 2 30  150 120    20 f DRB 2.5YR3/4 a Soil depth 120cm 

D1 MMRL44   Hu3100   mh L2 30 80 gl/so 1 2 30  150 120    20 f DRB 2.5YR3/4 a Soil depth 120cm 

D1 MMEC45   
Hu3100 
and 
Ms1100 

  mh L2 20 60-20 gl/r 1 
2 to 
4 

20   100 100   20 f DRB 2.5YR3/4 a 
Variable depth (Hu and Ms 

soil forms) 

D1 MMRL46   Hu3100   mh L2 20 140 gl/r 1 4 20 120  150 150   16 f DRB 2.5YR3/4 a Soil depth 150cm 

D1 MMRL47   Hu3100 r2s4  mh L2/S 70 90 gl/so 3 4 20 70 130 100    16 m DRB 5YR3/4 a 
Soil depth 100cm. Surface 
rocks deposited by man 

D1 MMAK48   Hu3100 r2s4  mh L2/S 70 90 gl/so 3 4 20 70 130 100    16 m DRB 5YR3/4 a 
Soil depth 100cm. Surface 
rocks deposited by man 

D1 MMAK49 0-60  Hu3100 o1 mh L2 80   r 1 8 30 80   80   16 f DRB 2.5YR3/4 a Very hard dry consistence 

D1 MMAK50   Hu3100   mh L2 30 80 gl/so 1 2 30  150 120    20 f DRB 2.5YR3/4 a Soil depth 120cm 

D1 MMAK51   Hu3100   mh L2 80 110 gl/r 1 2 20 80  120 120   20 f DRB 2.5YR3/4 a Soil depth 120cm 

D1 MMEC52   
Hu3100 
and 
Ms1100 

  mh L2 80   r 1 2 20 80   80   25 f DRB 2.5YR3/4 a 
Variable depth (Hu and Ms 

soil forms) 

D2 MMRL53   Ms1100 o4 mh L2 20   r 2 4 20    20   16 f DRB 5YR3/4 a   

D2 MMRL54   Hu3100 o1 mh L2 30   r 1 2 20 30   30   20 f DRB 5YR3/4 a   

D2 MMER55   Hu3100 o2 mh L2 70   r 1 2 20 70   70   16 f DRB 5YR3/4 a   

D2 MMER56   Gs   mh L2 20 30 lc 1 2 20 30      14 m DRB 5YR3/4 a Next to sinkhole 

D2 MMRL57   Gs   mh L2 20 30 lc 1 2 20 30      14 m DRB 5YR3/4 a Next to sinkhole 

D2 MMRL58   Hu3100   mh L2 60   r 1 2 20 60   60   20 f DRB 2.5YR3/4 a   

D2 MMER59   Hu3100   mh L2 60   r 1 2 20 60   60   20 f DRB 2.5YR3/4 a   

D2 MMAK60   Ms1100   m T3 10   r 1 2 10    10   14 c SB 7.5YR4/6 a   
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D2 MMAK61   Ms1100 r4 vh T3 10   r 1 2 10    10   14 c DYB 10YR3/4 a   

D2 MMAK62   Ms1100 r4 h T3 2   r 3 2 2    2   14 m SB 7.5YR4/6 a   

D2 MMAK63   Ms1100 o4  mh L2 20   r 2 2 20    20   16 f DRB 5YR3/4 a   

BR1 MMER64   Ms1100 r6 m T2b/T2 2   r 4 2 2    2   20 f SB 7.5YR4/6 a Ridge 

BR1 MMER65   Ms1100 r6 m T2b/T2 2   r 4 2 2    2   20 f SB 7.5YR4/6 a Ridge 

BR1 MMER66   Ms1100 r6 m T2b/T2 2   r 4 2 2    2   20 f SB 7.5YR4/6 a Ridge 

BR2 MMAK67   
Wb 
overlying 
Ms1100 

  vh T2b/T2 30   r 1 2 30    30  25 25 m R 2.5YR4/6 a 

Midden (glass, porcelain, 
screws, coal cinder, and 

bones in mainly ash 
matrix) 

BR2 MMAK68   Ms1100 <r1 mh T2b/T2 10   r 1 2 10    10   25 m SB 7.5YR4/6 a   

BR2 MMAK69   Hu3100   mh T2b/T2 25   r 1 2 10 25   25   30 m SB 7.5YR4/6 a   

BR2 MMAK70   Hu3100 <r1 mh T2b/T2 30   r 1 2 10 30   30   35 m DB 7.5YR3/4 a   

BR1 MMAK71   Ms1100 r5 vh T2b/T2 2   r 3 4 2    2   14 f SB 7.5YR4/6 a Ridge scarp 

BR1 MMAK72   Ms1100 b3r3 vh T2b/T2 2   r 4 
2 to 
6 

2    2   16 f DB 7.5YR3/4 a 
Ridge. Square stone 

arrangement 

BR1 MMAK73   Ms1100 r4 vh T2b/T2 2   r 3 2 2    2   25 f SB 7.5YR4/6 a Ridge scarp 

BR1 MMAK74   Ms1100 r3 vh T2b/T2 5   r 2 2 5    5   20 f DB 7.5YR4/4 a 
Ridge. Old workings 

vicinity. Stone cattle kraal 

 



 
 

APPENDIX 3.  BOX PLOTS SHOWING XRF ANALYSIS OF SOIL ELEMENTAL 

CONTENT BY GEOLOGY (LEFT) AND BY LANDSCAPE FUNCTION TYPE 

(RIGHT) PER ELEMENT 
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APPENDIX 4. RANGES OBTAINED FOR VEGETATION INDICES PER TREE SPECIES 

In
d

e
x 

Species 
No. 
of 

obs. 
Minimum Maximum 

1st 
Quartile 

Median 
3rd 

Quartile 
Mean 

Variance 
(n-1) 

Std.  
dev. 
(n-1) 

Shapiro-
Wilk p-
value 

N
D

V
I 

Combined 702 0.528 0.908 0.787 0.815 0.846 0.813 0.002 0.048 

<0.0001 

A. karroo 203 0.634 0.866 0.790 0.815 0.836 0.809 0.001 0.037 

E. rigida 40 0.528 0.822 0.754 0.786 0.807 0.764 0.005 0.070 

E. crispa 209 0.668 0.860 0.768 0.790 0.810 0.787 0.001 0.035 

S. lancea 250 0.660 0.908 0.831 0.853 0.872 0.846 0.001 0.038 

R
e

d
-e

d
ge

 N
D

V
I Combined 702 0.326 0.664 0.470 0.515 0.554 0.512 0.004 0.063 

<0.0001 

A. karroo 203 0.332 0.664 0.483 0.521 0.548 0.518 0.003 0.058 

E. rigida 40 0.326 0.536 0.461 0.483 0.504 0.472 0.002 0.048 

E. crispa 209 0.335 0.583 0.430 0.469 0.507 0.470 0.003 0.052 

S. lancea 250 0.342 0.654 0.515 0.551 0.585 0.547 0.003 0.054 

N
D

W
I 

Combined 702 -0.003 0.154 0.049 0.059 0.072 0.062 0.000 0.019 

0.000 

A. karroo 203 0.041 0.126 0.067 0.081 0.092 0.080 0.000 0.017 

E. rigida 40 0.044 0.087 0.056 0.064 0.075 0.066 0.000 0.011 

E. crispa 209 0.026 0.122 0.048 0.057 0.065 0.057 0.000 0.014 

S. lancea 250 -0.003 0.154 0.040 0.051 0.060 0.050 0.000 0.016 

P
SR

I 

Combined 702 -0.044 0.032 -0.012 -0.001 0.004 -0.004 0.000 0.012 

0.001 

A. karroo 203 -0.044 0.004 -0.021 -0.015 -0.010 -0.016 0.000 0.009 

E. rigida 40 -0.037 0.000 -0.022 -0.017 -0.011 -0.017 0.000 0.009 

E. crispa 209 -0.036 0.026 -0.002 0.002 0.007 0.003 0.000 0.008 

S. lancea 250 -0.022 0.032 -0.001 0.002 0.006 0.003 0.000 0.007 

R
e

d
-e

d
ge

 

In
fl

e
ct

io
n

 p
o

in
t Combined 742 0.095 0.454 0.311 0.335 0.360 0.336 0.001 0.038 

<0.0001 

A. karroo 223 0.269 0.454 0.338 0.364 0.381 0.361 0.001 0.035 

E. rigida 209 0.212 0.404 0.313 0.335 0.351 0.333 0.001 0.033 

E. crispa 60 0.267 0.400 0.315 0.331 0.358 0.334 0.001 0.032 

S. lancea 250 0.095 0.389 0.299 0.317 0.336 0.316 0.001 0.035 

R
ed

-e
d

ge
 

P
o

si
ti

o
n

 

Combined 742 727.090 738.876 729.425 730.385 731.355 730.504 2.617 1.618 

<0.0001 

A. karroo 223 728.537 737.818 730.248 730.966 731.638 731.118 1.858 1.363 

E. rigida 209 728.012 736.447 730.100 730.661 731.682 731.035 1.818 1.348 

E. crispa 60 728.732 738.876 730.280 731.100 731.854 731.374 3.524 1.877 

S. lancea 250 727.090 735.392 728.443 729.119 729.860 729.304 1.576 1.255 

7
2

5
-7

0
2

 R
at

io
 o

f 

th
e

 1
st

 

d
e

ri
va

ti
ve

 

Combined 742 0.531 2.087 0.942 1.107 1.276 1.120 0.063 0.250 

<0.0001 

A. karroo 223 0.721 2.087 1.081 1.226 1.388 1.247 0.062 0.249 

E. rigida 209 0.531 1.586 0.782 0.930 1.094 0.950 0.045 0.213 

E. crispa 60 0.789 1.393 1.002 1.127 1.215 1.110 0.020 0.141 

S. lancea 250 0.557 1.758 1.009 1.120 1.305 1.151 0.049 0.221 

7
2

5
-7

0
2

 R
at

io
 o

f 

th
e

 2
n

d
  d

e
ri

va
ti

ve
 

Combined 742 -23.568 165.363 -1.382 -0.937 -0.681 -1.079 45.648 6.756 

<0.0001 

A. karroo 223 -23.568 37.974 -1.185 -0.768 -0.559 -1.092 11.889 3.448 

E. rigida 209 -21.165 165.363 -2.227 -1.301 -0.895 -1.068 148.791 
12.19

8 

E. crispa 60 -6.923 -0.574 -1.615 -1.097 -0.925 -1.364 0.761 0.872 

S. lancea 250 -9.335 1.201 -1.090 -0.842 -0.650 -1.009 0.747 0.864 
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APPENDIX 5.  DESCRIPTIVE STATISTICS OF THE SPECTRAL INDICES BY SPECIES AND 

BY LANDSCAPE FUNCTIONAL TYPE 
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. d
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n
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N
D

V
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Combined 742 0.531 0.920 0.797 0.824 0.855 0.822 0.002 0.048 

 AK BR1 41 0.794 0.870 0.838 0.850 0.855 0.846 0.000 0.015 

BR2 40 0.714 0.860 0.799 0.818 0.837 0.812 0.001 0.036 

D1 40 0.640 0.863 0.799 0.811 0.833 0.809 0.002 0.039 

D2 40 0.725 0.861 0.808 0.826 0.841 0.823 0.001 0.026 

VLR 41 0.642 0.874 0.773 0.807 0.828 0.798 0.002 0.048 

VLS 21 0.718 0.842 0.792 0.805 0.816 0.800 0.001 0.026 

 EC BR1 40 0.717 0.814 0.750 0.768 0.785 0.767 0.001 0.025 

BR2 41 0.722 0.856 0.785 0.799 0.812 0.796 0.001 0.024 

D1 42 0.767 0.873 0.813 0.826 0.848 0.829 0.001 0.024 

VLR 41 0.740 0.835 0.780 0.794 0.805 0.794 0.000 0.021 

VLS 45 0.680 0.848 0.782 0.815 0.827 0.799 0.002 0.043 

 ER BR1 30 0.651 0.849 0.784 0.796 0.813 0.794 0.001 0.037 

D2 30 0.531 0.836 0.740 0.809 0.819 0.768 0.007 0.082 

 SL BR1 41 0.789 0.920 0.851 0.869 0.883 0.865 0.001 0.028 

BR2 41 0.767 0.898 0.833 0.852 0.875 0.851 0.001 0.028 

D1 40 0.813 0.908 0.858 0.873 0.888 0.873 0.000 0.019 

D2 40 0.670 0.909 0.861 0.870 0.880 0.866 0.001 0.037 

VLR 42 0.761 0.919 0.821 0.863 0.894 0.857 0.002 0.045 

VLS 46 0.674 0.912 0.812 0.847 0.867 0.836 0.002 0.047 

N
D

W
I 

Combined  742 -0.003 0.154 0.049 0.060 0.073 0.062 0.000 0.019 

 AK BR1 41 0.041 0.086 0.053 0.059 0.070 0.062 0.000 0.012 

BR2 40 0.056 0.108 0.072 0.084 0.093 0.083 0.000 0.013 

D1 40 0.064 0.112 0.075 0.087 0.096 0.086 0.000 0.013 

D2 40 0.067 0.107 0.078 0.086 0.094 0.086 0.000 0.013 

VLR 41 0.065 0.125 0.083 0.090 0.104 0.092 0.000 0.014 

VLS 21 0.047 0.090 0.055 0.058 0.069 0.062 0.000 0.011 

 EC BR1 40 0.036 0.092 0.047 0.057 0.065 0.057 0.000 0.013 

BR2 41 0.040 0.097 0.052 0.060 0.067 0.060 0.000 0.011 

D1 42 0.026 0.094 0.046 0.052 0.065 0.056 0.000 0.017 

VLR 41 0.034 0.121 0.047 0.054 0.061 0.054 0.000 0.015 

VLS 45 0.033 0.082 0.050 0.060 0.063 0.057 0.000 0.010 

 ER BR1 30 0.043 0.079 0.056 0.060 0.067 0.062 0.000 0.009 

D2 30 0.050 0.087 0.057 0.070 0.077 0.067 0.000 0.011 

 SL BR1 41 0.020 0.080 0.038 0.049 0.060 0.048 0.000 0.015 

BR2 41 0.024 0.064 0.037 0.047 0.055 0.046 0.000 0.012 

D1 40 0.036 0.072 0.046 0.053 0.058 0.053 0.000 0.009 

D2 40 0.027 0.071 0.047 0.055 0.062 0.053 0.000 0.011 

VLR 42 -0.003 0.154 0.039 0.053 0.069 0.052 0.001 0.027 

VLS 46 0.029 0.066 0.041 0.050 0.056 0.049 0.000 0.010 

Combined 742 -0.158 0.129 -0.055 -0.009 0.017 -0.015 0.002 0.049 
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(n

-
1

) 

S
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. d
ev

. (
n

-1
) 

P
S

R
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 AK BR1 41 -0.102 0.018 -0.069 -0.034 -0.004 -0.037 0.001 0.037 

BR2 40 -0.095 -0.028 -0.076 -0.068 -0.052 -0.065 0.000 0.017 

D1 40 -0.101 -0.017 -0.075 -0.056 -0.034 -0.057 0.001 0.026 

D2 40 -0.093 -0.009 -0.069 -0.056 -0.047 -0.056 0.000 0.017 

VLR 41 -0.132 -0.040 -0.104 -0.096 -0.077 -0.091 0.000 0.021 

VLS 21 -0.158 -0.045 -0.110 -0.098 -0.085 -0.096 0.001 0.023 

 EC BR1 40 -0.033 0.056 -0.003 0.008 0.024 0.010 0.000 0.019 

BR2 41 -0.037 0.075 -0.004 0.007 0.036 0.014 0.001 0.028 

D1 42 -0.027 0.081 -0.004 0.017 0.032 0.016 0.001 0.025 

VLR 41 -0.038 0.109 -0.020 0.007 0.044 0.014 0.002 0.040 

VLS 45 -0.113 0.068 -0.012 0.007 0.026 0.005 0.001 0.034 

 ER BR1 30 -0.093 -0.025 -0.071 -0.059 -0.050 -0.060 0.000 0.017 

D2 30 -0.096 -0.002 -0.072 -0.061 -0.044 -0.055 0.001 0.024 

 SL BR1 41 -0.027 0.118 0.004 0.036 0.066 0.035 0.001 0.038 

BR2 41 -0.035 0.129 0.012 0.030 0.048 0.032 0.001 0.035 

D1 40 -0.012 0.094 0.001 0.021 0.040 0.023 0.001 0.027 

D2 40 -0.052 0.082 -0.009 0.001 0.018 0.006 0.001 0.026 

VLR 42 -0.074 0.037 -0.017 -0.002 0.010 -0.005 0.001 0.024 

VLS 46 -0.069 0.084 -0.017 0.005 0.037 0.009 0.001 0.037 

R
ed

-e
d

g
e 

N
D

V
I 

Combined 742 0.369 0.717 0.534 0.576 0.619 0.574 0.004 0.063 

 AK BR1 41 0.546 0.717 0.608 0.653 0.681 0.645 0.002 0.042 

BR2 40 0.514 0.678 0.565 0.583 0.599 0.583 0.001 0.033 

D1 40 0.419 0.630 0.550 0.575 0.592 0.568 0.002 0.040 

D2 40 0.477 0.639 0.537 0.563 0.587 0.563 0.001 0.037 

VLR 41 0.381 0.642 0.483 0.538 0.590 0.538 0.005 0.068 

VLS 21 0.499 0.613 0.536 0.542 0.577 0.555 0.001 0.029 

 EC BR1 40 0.392 0.588 0.469 0.493 0.529 0.497 0.002 0.045 

BR2 41 0.486 0.632 0.551 0.574 0.594 0.571 0.001 0.034 

D1 42 0.478 0.648 0.546 0.573 0.609 0.574 0.002 0.046 

VLR 41 0.417 0.578 0.481 0.503 0.535 0.506 0.001 0.037 

VLS 45 0.429 0.597 0.491 0.524 0.560 0.524 0.002 0.043 

 ER BR1 30 0.461 0.616 0.540 0.564 0.573 0.557 0.001 0.033 

D2 30 0.369 0.581 0.502 0.536 0.556 0.520 0.003 0.055 

 SL BR1 41 0.538 0.704 0.598 0.623 0.632 0.620 0.001 0.037 

BR2 41 0.403 0.681 0.562 0.617 0.652 0.597 0.004 0.064 

D1 40 0.588 0.715 0.632 0.665 0.681 0.656 0.001 0.035 

D2 40 0.482 0.694 0.605 0.627 0.648 0.624 0.002 0.041 

VLR 42 0.447 0.704 0.551 0.611 0.654 0.601 0.005 0.068 

VLS 46 0.471 0.688 0.566 0.590 0.623 0.592 0.002 0.045 

R
e

d
-

ed g
e 

In
f

le
c

ti
o n
 

p
o

in
t 

Combined 742 0.095 0.454 0.311 0.335 0.360 0.336 0.001 0.038 
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 AK BR1 41 0.304 0.416 0.339 0.364 0.378 0.361 0.001 0.029 

BR2 40 0.322 0.412 0.345 0.363 0.375 0.361 0.000 0.022 

D1 40 0.301 0.402 0.332 0.346 0.370 0.350 0.001 0.026 

D2 40 0.344 0.454 0.373 0.386 0.418 0.391 0.001 0.030 

VLR 41 0.314 0.434 0.347 0.370 0.388 0.370 0.001 0.029 

VLS 21 0.269 0.379 0.293 0.299 0.319 0.305 0.001 0.024 

 EC BR1 40 0.260 0.382 0.312 0.331 0.346 0.328 0.001 0.029 

BR2 41 0.253 0.401 0.317 0.332 0.345 0.330 0.001 0.030 

D1 42 0.275 0.398 0.322 0.343 0.371 0.345 0.001 0.034 

VLR 41 0.276 0.404 0.310 0.330 0.353 0.333 0.001 0.033 

VLS 45 0.212 0.378 0.306 0.333 0.350 0.326 0.001 0.035 

 ER BR1 30 0.267 0.387 0.310 0.328 0.339 0.326 0.001 0.028 

D2 30 0.277 0.400 0.319 0.342 0.371 0.342 0.001 0.034 

 SL BR1 41 0.250 0.336 0.295 0.310 0.318 0.308 0.000 0.020 

BR2 41 0.248 0.328 0.287 0.298 0.310 0.297 0.000 0.017 

D1 40 0.279 0.380 0.318 0.333 0.343 0.330 0.000 0.022 

D2 40 0.277 0.368 0.321 0.335 0.351 0.333 0.001 0.023 

VLR 42 0.095 0.375 0.302 0.322 0.353 0.315 0.003 0.057 

VLS 46 0.174 0.389 0.293 0.312 0.336 0.312 0.001 0.037 

R
ed

-e
d

g
e 

P
o

si
ti

o
n

 

Combined 742 727.090 738.876 729.425 730.385 731.355 730.504 2.617 1.618 

 AK BR1 41 728.537 733.487 729.415 729.997 730.541 730.065 0.871 0.933 

BR2 40 729.738 734.345 730.805 731.319 731.840 731.506 1.088 1.043 

D1 40 729.577 736.343 730.528 730.992 731.568 731.188 1.416 1.190 

D2 40 729.305 733.131 730.644 731.143 731.760 731.216 0.820 0.905 

VLR 41 729.277 737.818 730.393 731.465 732.704 731.914 3.721 1.929 

VLS 21 729.034 732.731 729.916 730.446 731.145 730.557 0.730 0.855 

 EC BR1 40 729.957 736.447 731.309 732.119 732.956 732.265 1.816 1.348 

BR2 41 729.353 732.550 729.995 730.350 730.727 730.401 0.389 0.624 

D1 42 728.012 731.806 729.614 730.007 730.584 730.064 0.606 0.779 

VLR 41 729.838 734.139 730.651 731.346 732.020 731.467 1.243 1.115 

VLS 45 729.220 734.675 729.912 730.602 731.682 731.031 2.114 1.454 

 ER BR1 30 728.732 733.035 730.240 730.675 731.266 730.761 0.916 0.957 

D2 30 729.186 738.876 730.577 731.494 732.474 731.986 5.477 2.340 

 SL BR1 41 727.701 730.960 728.503 728.902 729.376 728.987 0.585 0.765 

BR2 41 727.793 735.392 728.849 729.482 730.169 729.783 2.159 1.469 

D1 40 727.495 730.813 728.149 728.700 729.463 728.818 0.680 0.825 

D2 40 728.052 734.264 728.555 728.981 729.397 729.142 1.075 1.037 

VLR 42 727.090 734.063 727.913 728.906 730.261 729.342 3.127 1.768 

VLS 46 727.886 732.973 729.090 729.521 730.383 729.687 1.224 1.106 

7
2

5
-

7
0

2
 

R
a

ti
o

 
o

f 
th

e 
1

st
 

d
er

iv
a

t
iv
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Combined 742 0.531 2.087 0.942 1.107 1.276 1.120 0.063 0.250 

 AK BR1 41 0.994 2.087 1.333 1.525 1.688 1.527 0.077 0.277 
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BR2 40 1.106 1.851 1.243 1.337 1.462 1.350 0.022 0.150 

D1 40 0.873 1.493 1.138 1.291 1.363 1.246 0.029 0.171 

D2 40 0.874 1.431 1.016 1.159 1.251 1.138 0.020 0.140 

VLR 41 0.721 1.378 0.883 1.076 1.226 1.072 0.038 0.195 

VLS 21 0.852 1.267 0.984 1.062 1.137 1.061 0.012 0.111 

 EC BR1 40 0.591 1.208 0.726 0.861 0.959 0.859 0.025 0.158 

BR2 41 0.688 1.524 0.998 1.133 1.211 1.134 0.034 0.183 

D1 42 0.643 1.586 0.923 1.049 1.209 1.051 0.044 0.209 

VLR 41 0.553 1.116 0.719 0.794 0.904 0.820 0.021 0.143 

VLS 45 0.531 1.388 0.767 0.854 0.989 0.887 0.033 0.182 

 ER BR1 30 0.927 1.393 1.100 1.200 1.276 1.178 0.017 0.130 

D2 30 0.789 1.215 0.963 1.037 1.144 1.041 0.014 0.117 

 SL BR1 41 0.825 1.723 1.014 1.072 1.228 1.148 0.048 0.219 

BR2 41 0.557 1.486 0.897 1.153 1.355 1.111 0.064 0.253 

D1 40 1.006 1.728 1.225 1.363 1.454 1.331 0.030 0.173 

D2 40 0.879 1.758 1.090 1.173 1.272 1.199 0.039 0.199 

VLR 42 0.626 1.558 0.898 1.081 1.234 1.067 0.051 0.225 

VLS 46 0.740 1.385 0.956 1.081 1.148 1.069 0.019 0.137 

7
2

5
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 R
a

ti
o
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n

d
 d
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Combined 742 -23.568 165.363 -1.382 -0.937 -0.681 -1.079 45.648 6.756 

 AK BR1 41 -1.981 -0.197 -0.617 -0.400 -0.327 -0.528 0.112 0.334 

BR2 40 -1.281 -0.242 -0.751 -0.592 -0.508 -0.653 0.055 0.234 

D1 40 -10.427 -0.440 -1.175 -0.700 -0.618 -1.152 2.533 1.591 

D2 40 -17.146 -0.579 -1.697 -1.097 -0.921 -1.941 8.346 2.889 

VLR 41 -23.568 37.974 -2.131 -0.967 -0.641 -1.177 53.918 7.343 

VLS 21 -1.908 -0.738 -1.372 -1.070 -0.887 -1.132 0.090 0.300 

 EC BR1 40 -21.165 6.386 -2.398 -1.492 -0.980 -2.548 20.264 4.502 

BR2 41 -4.818 -0.431 -1.286 -0.965 -0.739 -1.152 0.515 0.717 

D1 42 -19.213 -0.432 -1.504 -1.070 -0.788 -2.129 11.925 3.453 

VLR 41 -20.513 165.363 -3.065 -2.317 -1.254 1.440 715.686 26.752 

VLS 45 -5.963 17.145 -2.380 -1.401 -0.966 -0.969 14.266 3.777 

 ER BR1 30 -1.739 -0.574 -1.192 -0.959 -0.866 -1.037 0.088 0.296 

D2 30 -6.923 -0.762 -1.831 -1.530 -1.047 -1.691 1.239 1.113 

 SL BR1 41 -2.191 -0.357 -1.092 -0.882 -0.679 -0.920 0.162 0.403 

BR2 41 -4.297 1.201 -1.381 -0.775 -0.585 -1.112 0.948 0.974 

D1 40 -1.131 -0.352 -0.758 -0.612 -0.550 -0.670 0.037 0.193 

D2 40 -2.168 -0.357 -0.965 -0.813 -0.712 -0.876 0.128 0.358 

VLR 42 -6.749 -0.495 -1.268 -0.919 -0.754 -1.275 1.325 1.151 

VLS 46 -9.335 -0.552 -1.162 -0.931 -0.824 -1.165 1.572 1.254 
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APPENDIX 6.  LEAF ELEMENTAL CONTENT COMPARED TO GLOBAL MEAN OF PLANT LEAF ELEMENTAL CONTENT 

 

  

Legend: 
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APPENDIX 7. BOX PLOTS OF LEAF ELEMENTAL CONTENT PER SPECIES AND PER GEOLOGY 
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APPENDIX 8. VARIABLES CHARACTERISATION CORELLATION COEFFICIENTS PER VEGETATION INDEX 

VI 
Measure: Elemental 
content/ratio 

AK EC SL Combined 

Element/ ratio 
Correlation 
coefficient 

p-
values Element/ ratio 

Correlation 
coefficient 

p-
values Element/ ratio 

Correlation 
coefficient p-values Element/ ratio 

Correlation 
coefficient 

p-  
values 

7
2

5
-7

0
2

R
at

io
 1

st
 D

er
 

Soils  

      Rb 0.701 0.002       Cr 0.340 0.010 

                  Cu -0.439 0.001 

                  Fe -0.367 0.005 

                  Ti -0.428 0.001 

Leaves 

            Ba -0.577 0.006 Mn -0.437 0.001 

                  Ag -0.376 0.004 

                  Fe 0.343 0.009 

Bioconcentration factors  

            Ti 0.564 0.007 Cr -0.351 0.008 

                  Cu 0.425 0.001 

                  Fe 0.424 0.001 

                  Mn -0.503 < 0.0001 

Soil:leaf ratios  

      Na:K leaf ratio -0.701 0.002       Si:Ti Soil ratio 0.428 0.001 

                  Mg:Mn leaf ratio 0.413 0.002 

                  Mg:Mn soil ratio -0.354 0.007 

                  Si:Mn leaf ratio 0.399 0.002 

                  Si:Mn leaf:soil ratio 0.465 0.000 

N
D

V
I 

Soils        Zr -0.713 0.002             

Leaves  

Ti -0.653 0.004 Cu 0.716 0.002 Ba -0.679 0.001 Cr -0.359 0.006 

      Mn -0.618 0.010       Cu 0.696 < 0.0001 

      Ni -0.669 0.004       Fe 0.592 < 0.0001 

      S -0.620 0.009       Mg -0.598 < 0.0001 

                  Pb 0.399 0.002 

                  Sn -0.531 < 0.0001 

                  V 0.409 0.002 

Bioconcentration factors  

Ti -0.600 0.010 Mn -0.762 0.001 Cu 0.546 0.009 Cu 0.750 < 0.0001 

      Ni1 -0.777 0.000 Zn 0.575 0.006 Fe 0.515 < 0.0001 

      Ni2 -0.706 0.002       Mg -0.563 < 0.0001 

      Zn 0.691 0.003       Zn 0.473 0.000 

Soil: leaf ratios       Mg:Mn leaf ratio 0.615 0.010       Ca:Mg leaf ratio 0.454 0.000 
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VI 
Measure: Elemental 
content/ratio 

AK EC SL Combined 

Element/ ratio 
Correlation 
coefficient 

p-
values Element/ ratio 

Correlation 
coefficient 

p-
values Element/ ratio 

Correlation 
coefficient p-values Element/ ratio 

Correlation 
coefficient 

p-  
values 

      Si:Mn leaf:soil ratio 0.743 0.001       Zn:Cd leaf ratio 0.442 0.001 

N
D

W
I 

Soils                    Sr -0.350 0.008 

Leaves 

Si -0.682 0.002       Ba -0.665 0.001 Mn -0.547 < 0.0001 

            Pb -0.562 0.007 Pb -0.533 < 0.0001 

                  Sb -0.438 0.001 

Bioconcentration factors  

Si -0.701 0.002       Cu 0.548 0.009 Mn -0.408 0.002 

            Zn 0.686 0.001 Pb -0.391 0.003 

Soil: leaf ratios  

(Leaf  ca): (al: ca Soil) 0.628 0.006             Mg:Mn leaf ratio 0.591 < 0.0001 

Al BCF: Ca BCF 0.628 0.006             Si:Mn leaf ratio 0.435 0.001 

Soil: plant  characteristics             Leaf Water content % 0.549 0.009       

P
SR

I 

Soils Cu -0.618 0.007                   

Leaves  

Mn 0.725 0.001       As 0.545 0.010 Mn 0.621 < 0.0001 

                  Pb 0.450 0.000 

                  S -0.349 0.008 

                  Sb 0.356 0.007 

Bioconcentration factors  

Fe 0.662 0.003             Mn 0.397 0.002 

                     

Soil:leaf ratios 

                  Si:Mn leaf ratio -0.488 0.000 

                  Leaf Ca :soil Al -0.372 0.005 

                  Mg:Mn leaf ratio -0.645 < 0.0001 

Soil:plant characteristics soil pH 0.620 0.007       Leaf Water content % -0.608 0.003 soil pH 0.379 0.004 

R
ed

-e
d

ge
 N

D
V

I 

Soils 

      K2 0.639 0.007             

      Rb 0.725 0.001             

Leaves  

Ti -0.664 0.003 Mn -0.669 0.004 Ba -0.609 0.003 Au 0.361 0.006 

            Sn -0.566 0.007 Cu 0.599 < 0.0001 

                 Fe 0.539 < 0.0001 

                  Mg -0.498 < 0.0001 

                  Pb 0.401 0.002 

                  Sn -0.483 0.000 

                  Zn 0.465 0.000 

Bioconcentration factors 

Ti -0.672 0.003 Mn -0.694 0.003       Cu 0.708 < 0.0001 

      Na 0.640 0.007 Cu 0.621 0.003 Fe 0.513 < 0.0001 

                  Mg -0.484 0.000 

                  Mn -0.349 0.008 
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VI 
Measure: Elemental 
content/ratio 

AK EC SL Combined 

Element/ ratio 
Correlation 
coefficient 

p-
values Element/ ratio 

Correlation 
coefficient 

p-
values Element/ ratio 

Correlation 
coefficient p-values Element/ ratio 

Correlation 
coefficient 

p-  
values 

                  Zn 0.356 0.007 

Soil:leaf ratios  

Si:Ti leaf:soil ratio 0.616 0.008 Na:K leaf ratio -0.676 0.004       Ca:Mg leaf ratio 0.364 0.006 

      Mg:Mn leaf ratio 0.652 0.006             

      Si:Mn leaf:soil ratio 0.642 0.007             

R
EP

 =
 7

0
0

 +
 4

0
(R

re
- 

R
7

0
0

:R
7

4
0

-R
7

0
0

) 

Soils Sr -0.606 0.009 V -0.618 0.010             

Leaves 
  

            Ba 0.582 0.005 Cu -0.685 < 0.0001 

            Cu -0.564 0.007 Mg 0.490 0.000 

            Zn -0.614 0.003 Fe -0.539 < 0.0001 

                  Pb -0.401 0.002 

                  Sn 0.538 < 0.0001 

                  Zn -0.550 < 0.0001 

Bioconcentration factors  

      Mn 0.713 0.002 Zn -0.548 0.009 Cu -0.653 < 0.0001 

      Ni1 0.674 0.004       Fe -0.436 0.001 

      Ni2 0.650 0.006       Mg 0.547 < 0.0001 

                 Zn -0.405 0.002 

Soil:leaf ratios  

Si:Ti leaf:soil ratio -0.614 0.008 Si:Mn leaf:soil ratio -0.664 0.005       Zn:Cd leaf ratio -0.368 0.005 

                  Ca:Al Leaf 0.348 0.008 

                  Leaf Ca:Al :Soil al -0.431 0.001 

 R
re

 =
 (

R
6

7
0

 +
 R

7
8

0
):

2
  

Soils                   Sr -0.404 0.002 

Leaves   

As -0.633 0.006       As -0.762 < 0.0001 Ag -0.382 0.004 

Fe -0.713 0.001       Ba -0.730 0.000 Al -0.407 0.002 

U -0.707 0.001       U -0.556 0.008 As -0.384 0.003 

                  Mn -0.423 0.001 

                  Pb -0.459 0.000 

                  Sn 0.370 0.005 

                  Ti -0.359 0.006 

                  U -0.374 0.004 

Bioconcentration factors 

            Ba -0.635 0.002 Mn -0.409 0.002 

            Mn -0.625 0.002 Pb -0.366 0.005 

            Zn 0.605 0.003       

Soil:leaf ratios 

            Si:Mn leaf:soil ratio 0.597 0.004 Mg:Mn leaf ratio 0.489 0.000 

            Rb:K soil ratio 0.583 0.005 Si:Mn leaf:soil ratio 0.353 0.007 

                  Si:Mn leaf ratio 0.353 0.007 
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APPENDIX 9. BOX PLOTS SHOWING  LEAF AND SOIL ELEMENTAL RESULTS BY 

VEGETATION INDEX GROUP AND BY SPECIES 
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