In vitro 5-lipoxygenase and anti-oxidant activities of South African medicinal plants commonly used topically for skin diseases

ABSTRACT

Thirty plant species traditionally used to treat skin pathologies were chosen from the readily available ethnobotanical literature. Four plants (aqueous or methanol extracts) displayed promising 5-lipoxygenase inhibitory activity with IC₅₀ values below 61 ppm. These included *Aloe greatheadii*, *Melianthus comosus*, *Pentanisia prunelloides* and *Warburgia solutaris*. Essential oils generally displayed superior 5-lipoxygenase inhibitory activity with IC₅₀ values between 22 and 75 ppm. These included the essential oils of *Ballota africana*, *Helichrysum odoratissimum*, *Heteropyxis natalensis* and *Lippia javanica*. A large proportion of the plants exhibited dose-dependent DPPH anti-oxidant activity with IC₅₀ values between 5 and 94 ppm for the most active. These included *Halleria lucida*, *Croton sylvaticus*, *Melianthus comosus*, *Lippia javanica* and *Pentanisia prunelloides*. Aqueous extracts of *Melianthus comosus* exhibited the most potent anti-inflammatory and anti-oxidant activity.

The methanol extract of the leaves of *Halleria lucida* was subjected to activity guided fractionation and two anti-oxidant molecules were isolated, namely luteolin-5-*O*-glucoside and verbascoside (acteoside). Isobologram construction resulted in a concentration-dependent additive and antagonistic interaction being recognised between the two isolated compounds.

Warburgia salutaris displayed promising 5-lipoxygenase inhibitory activity. Two isolated compounds, mukadiaal and warburganal were found to partially contribute to the anti-inflammatory activity of the plant. The essential oils of *Helichrysum odoratissimum*, *Heteropyxis natalensis* and *Lippia javanica* were subjected to gas chromatography and major compounds contributing to possible anti-inflammatory effects identified. These included β -caryophyllene, 1,8-cineole, limonene and α -humulene. Enantiomers and racemic mixtures of limonene displayed significantly different 5-lipoxygenase inhibitory activity suggesting stereoselectivity of the enzyme-catalysed reaction. The monoterpene 1,8-cineole appeared to cause partial potentiation of the anti-inflammatory activity displayed by limonene.

These results provide some *in vitro* scientific rationale for their traditional use as dermatological agents.