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Abstract

This dissertation considers the pricing and hedging of contingent claims in a general
semimartingale market. Initially the focus is on a complete market, where it is
possible to price uniquely and hedge perfectly. In this context the two fundamental
theorems of asset pricing are explored. The market is then extended to incorporate
risk that cannot be hedged fully, thereby making it incomplete. Using quadratic
cost criteria, optimal hedging approaches are investigated, leading to the derivations
of the minimal martingale measure and the variance-optimal martingale measure.
These quadratic approaches are then applied to the problem of minimizing the basis
risk that arises when an option on a non-traded asset is hedged with a correlated
asset. Closed-form solutions based on the Black-Scholes equation are derived and
numerical results are compared with those resulting from a utility maximization
approach, with encouraging results.
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Chapter 1

Introduction

In the theory of contingent claim pricing, the primary innovation of Black and
Scholes [6] and Merton [64] was to show that, for European calls or puts, a hedging
portfolio can be constructed with initial value equal to the fair price of the option
and final value equal to its payoff at expiry. Prices determined in this manner are
unique and independent of risk preference. This approach makes explicit use of a no-
arbitrage assumption, but the link between no-arbitrage and equivalent martingale
measures (EMMs) was not yet apparent, nor was it immediately clear that every
contingent claim could be priced in this manner (i.e. that the market is complete).

Since the seminal papers of Harrison and Kreps [39] and Harrison and Pliska
[40, 41], the modern theory of contingent claim valuation has been developed with the
firm mathematical foundation of martingales and stochastic integrals. In these pa-
pers the relationship between no-arbitrage and EMMs was made explicit, as was the
concept of market completeness. It was shown that a market is complete if and only
if its vector price process has a certain martingale representation property. When
a market is complete, every contingent claim has a unique preference-independent
price, due to the existence of a unique EMM and a self-financing trading strategy
which replicates its terminal payoff.

Unfortunately, not many market models are complete; and complete markets,
while useful for producing mathematical results, are nonetheless idealizations which
model reality imperfectly. In attempting to model the complexities of the real market
more closely, it is necessary to consider more complex and necessarily incomplete
models. This means that a hedger cannot create a risk-free hedge portfolio for
a claim, which in turn translates into a market model where the above-mentioned
representation property does not hold and EMMs are not unique. The problem then
becomes one of selecting a strategy that minimizes risk, or equivalently of choosing
an EMM for pricing that is optimal in some sense.

This dissertation reviews the theory of complete markets and then extends this
theory, in a particular direction, to the case where unhedgeable risk is incorporated.
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In this introduction we provide a précis of the work, with an indication of the kind
of applications that have appeared in the literature.

1.1 Stochastic Integrals and Portfolios

The key concept of stochastic integration is fundamental to the analysis of contingent
claims, precisely because of the idea of a replicating portfolio. At inception, an initial
endowment, being the amount charged for the claim, is invested in a portfolio with
a strategy designed to produce a payoff that best reflects the value of the claim at
maturity.

The stochastic integral may be thought of intuitively as the mechanism for calcu-
lating the change in value of the portfolio over time, given a strategy and a number
of instruments in which to invest. As an example, consider a discrete-time scenario,
where an investor is allowed to hold his wealth as an investment in a stock or as
cash1. If at time t he holds ξt shares and an amount ηt in cash, the value of his
portfolio will be given by

Vt = ηt + ξtSt,

where St is the share price. To simplify the example, it will be assumed that the
interest rate is zero, so that the cash portion of the portfolio does not grow in value
between time steps2. After one time step, the portfolio will have changed in value
to

Vt+1 = ηt + ξtSt+1,

as a result of the change in value of the share. The investor may then select a
new portfolio holding of ξt+1 shares and ηt+1 in cash. If we assume that he doesn’t
transfer money to or from his portfolio at any stage and that there are no transaction
costs, then we have the self-financing constraint

ηt + ξtSt+1 = ηt+1 + ξt+1St+1.

This condition implies a relationship between the values of the portfolio at successive
time steps, namely

Vt+1 − Vt = ηt+1 + ξt+1St+1 − (ηt + ξtSt)

= ξt(St+1 − St).
(1.1)

Given that the portfolio starts with an initial value V0, (1.1) allows us to express its
value at time t as

Vt = V0 +
t−1∑

i=0

ξi(Si+1 − Si). (1.2)

1 Short holdings are allowed.
2 Alternatively, one may assume the stock price is discounted.
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The sum in (1.2), which is called the gain for the strategy ξ, may be interpreted
as an integral (in discrete-time) of the portfolio strategy with respect to the sto-
chastic share price. It should be noted that we must insist that the strategy be
non-anticipating. In other words, in formulating his strategy at time t, the investor
should not take into account any information about the price of the stock at any
time later that t. This rules out unfair strategies, such as those which involve insider
trading.

We wish to explore a continuous time version of the integral constructed in this
example. It is not a simple matter to assign meaning to expressions of the form

Vt = V0 +
∫ t

0
ξu dSu,

precisely because we are dealing with stochastic processes which are not of finite
variation and, as a result, the Lebesgue-Stieltjes integral is not well-defined. Ne-
vertheless, it turns out that a theory of integration, initiated by Itô [47, 49, 48], is
possible for processes that have finite quadratic variation. The idea of insisting on
integrands that are non-anticipating (or, more formally, predictable) turns out to be
key to the development of the theory.

In this dissertation, risky assets are represented as semimartingales — the most
general class of processes for which stochastic integration is defined. This class
includes both continuous and discontinuous processes. We keep the exposition ma-
nageable by providing results for only a single risky asset and refer the reader to
the relevant literature for the full vector formulations of the theory. To simplify the
mathematics further, it will be assumed that the price process, denoted by X, is
discounted at the riskless rate.

1.2 Complete Markets

The theory of complete markets is encapsulated in two important results known, as
the fundamental theorems of asset pricing. The first fundamental theorem links the
concept of no-arbitrage to the existence of an equivalent local martingale measure
(ELMM) for the price process X (i.e. an equivalent probability measure under which
X is a local martingale). If a strategy has no chance of making a loss, but there is a
non-zero probability of it making a profit, then it constitutes an arbitrage. Clearly,
if any strategy of this form could be found, then it would be exploited in arbitrarily
large amounts by market participants wishing to make a riskless profit. Any market
allowing this kind of activity cannot be in equilibrium and consequently the market
ensures that strategies of this sort are eliminated. It is relatively easy to show that
if an ELMM for X exists, then arbitrage of this type cannot exist. However, this
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simple definition of no-arbitrage is not sufficient to show the reverse implication —
a more sophisticated notion is required. The ultimate development of this theory
was accomplished by Delbaen and Schachermayer [20, 22], who provided the first
fundamental theorem of asset pricing in its most general form. We shall explore
these concepts in detail.

The second fundamental theorem of asset pricing links market completeness to
the uniqueness of an EMM for X and is intimately connected with the mathematical
theory of martingale representation. In summary, a market is complete if and only
if every contingent claim, represented by an appropriately chosen random variable
H, has a unique representation in terms of X as follows:

H = H0 +
∫ T

0
ξH
s dXs a.s. (1.3)

Here ξH is interpreted as the hedging strategy. If such a representation exists for
every claim, it can be shown that the EMM for X is unique. The properties of ξH

ensure that the stochastic integral in (1.3) is also a martingale under the EMM.
Thus the unique (discounted) fair price of the claim can be computed by taking
expectations on both sides of (1.3):

H0 = EQ [H] ,

where Q is the unique EMM for X.

1.3 Incomplete Markets

Market completeness, though mathematically convenient and extremely useful for
producing closed-form pricing formulae for many derivatives, represents an idealiza-
tion of reality. A market model becomes incomplete when it is expanded to incor-
porate more realistic assumptions, such as trading restrictions, stochastic volatility
and event risk. Contrary to the complete market situation, preference-independent
pricing and hedging becomes impossible. This follows directly from the fact that it is
impossible to find a self-financing strategy whose terminal wealth exactly replicates
the expiry value of the claim.

Another way of stating this is that under any EMM for X, not all martingales
can be represented as stochastic integrals with respect to X. In particular, there
will always be martingales orthogonal to X. This ensures that there is no unique
equivalent martingale measure for X; in fact, there are infinitely many of them.

Now that perfect hedging is impossible, an optimality criterion based on the
market participant’s attitude to risk is required. Following the approach of Föllmer
and Sondermann [33], we shall introduce a cost process C. Due to inexact hedging,
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the intrinsic value3 of the contingent claim and the value of the portfolio may deviate
from each other over time. The cost process allows the modelling of this deviation
and is given by

Ct := Vt −
∫ t

0
ξs dXs,

where ξ is the trading strategy used and V represents the value of the hedging
portfolio. Note that the cost process above should not be confused with the cost of
transactions, which we do not consider here. Instead, it is a way of modelling the
fact that the cost of hedging, which was constant in the complete market situation,
is now a random variable evolving over time. As a result, it will be used as a measure
of the effectiveness of hedging strategies.

In the complete market situation there is no deviation between portfolio value
and intrinsic value, because hedging is perfect. As a result, the cost process is a
constant and equal to H0. In an incomplete market, equation (1.3) now takes the
form

H = CT +
∫ T

0
ξs dXs,

where ξ must be chosen to minimize the risk associated with C, based on some crite-
rion. A quadratic criterion is the natural first choice. Two quadratic strategies lead
to the minimal martingale measure and the variance-optimal martingale measure,
respectively.

The Minimal Martingale Measure

One approach to the problem of hedging under incompleteness is to relax the self-
financing constraint and replace it with a new condition that the hedge portfolio
remains mean self-financing. This corresponds to the hedger continually adding or
removing any deficit or surplus, so that the value of the hedge portfolio is always in
agreement with the intrinsic value of the claim. Under this strategy the cost process
becomes a martingale.

In the simplest case, where X is a martingale under the real-world measure, this
approach corresponds to minimizing the conditional remaining risk, defined by

Rt := E
[
(CT − Ct)2

∣∣Ft

]
,

at every time. It was first proposed by Föllmer and Sondermann [33].
When the price process X is not a martingale under the real-world measure,

then a mean self-financing strategy can be shown to be consistent with minimizing
3 We shall give a formal definition of intrinsic value in later chapters, but for now it can be

interpreted as the best estimate of the value of the claim given current information.
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a quadratic measure of local risk, known as the risk quotient. The risk quotient is a
variational concept introduced by Schweizer [83, 84] — its analogue in discrete-time
is the local conditional risk, which has the form

Rti := E
[
(Cti+1 − Cti)

2
∣∣Fti

]
.

A strategy for which the risk quotient is minimized at every time is called locally
risk-minimizing. In this situation the claim has a unique representation

H = H0 +
∫ T

0
ξH
s dXs + LH

T a.s., (1.4)

where LH is a martingale strongly orthogonal to X and ξH is unique (compare this
with (1.3)). This is known as the Föllmer-Schweizer [32] decomposition of the claim.
The cost process is then given by Ct = H0 + LH

t .
In the set of EMMs for X, there exists a particular measure, denoted by P̂ and

called the minimal martingale measure, which is the unique EMM for X with the
property that every martingale under the real-world measure, strongly orthogonal
to X, is still a martingale under P̂. In particular, LH in (1.4) is a martingale under
P̂. Therefore, a price for the claim can be computed by taking expectations under
P̂ on both sides of (1.4), giving

H0 = EbP [H] .

This price corresponds with the initial value of the locally risk-minimizing strategy
described above.

The Variance-Optimal Martingale Measure

A disadvantage of the previous method is that because the hedging portfolio is not
self-financing, it requires constant readjustment. It is possible to insist on the self-
financing criterion, resulting in a constant cost process Ct = c over the life of the
claim, with a surplus or shortfall occurring at maturity. A strategy that minimizes
the variance of this profit and loss is sought.

The self-financing strategy that minimizes the quadratic functional

R0 = E
[
(CT − C0)2

]
,

produces the combination of the initial endowment c (known as the approximation
price) and strategy ξ for which the variance of the profit and loss is minimized. This
can be reformulated as the strategy that minimizes the expression

R0 = E

[(
H − c−

∫ T

0
ξs dXs

)2
]

,
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over all real numbers c and all trading strategies ξ. This so-called mean-variance
optimal strategy was first proposed in the case where X is a martingale under the
real-world measure by Föllmer and Sondermann [33] and Bouleau and Lamberton [7].
Duffie and Richardson [27] subsequently considered this approach in a diffusion fra-
mework for hedging futures. Their work was extended to incorporate general claims
by Schweizer [87] and Hipp [46]. Finally, mean-variance hedging was investigated
in a semimartingale framework by Schweizer [88, 90], Monat and Striker [67] and
others [21, 76, 70, 37].

It can be shown that associated with the mean-variance optimal strategy there
is a measure, known as the variance-optimal martingale measure P̃, under which
the approximation price can be computed. Under certain conditions, the variance-
optimal measure and the minimal martingale measure coincide.

Other Martingale Measures

Although the dissertation concentrates on quadratic criteria for martingale mea-
sures, it should be noted that there are a number of other strategies that have been
proposed in the literature to deal with market incompleteness. The minimal entropy
martingale measure (see e.g. [34, 38]) and utility-based approaches (see e.g. [56, 16])
offer some alternatives.

1.4 Applications

A number of applications of quadratic criteria for risk minimization to pricing and
hedging have been formulated in the literature. In this section we briefly survey
some of the sources of market incompleteness and discuss some applications of the
theory outlined earlier.

Non-Traded Assets

In certain circumstances a hedger faces a commitment which is contingent on an
asset that is not available for trade. If it is possible to trade in another correlated
asset, a hedging strategy may be constructed that allows the hedger to minimize risk.
This problem was first considered in the context of quadratic criteria by Duffie and
Richardson [27], for the problem of hedging futures and later expanded to general
claims by Schweizer [87].

A similar problem is faced by the hedger of an index option. Here the problem
is the impracticality or impossibility of trading in all the underlying assets. This
application is described in the paper of Lamberton and Lapeyre [60].
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Transaction Costs

With the addition of frictions, such as transaction costs, a market model becomes
incomplete. Although much of the research in this area focuses on the use of uti-
lity functions (see e.g. Davis, Panas and Zaraphopolou [15]), some investigations
have considered quadratic techniques. The papers by Mercurio and Vorst [63] and
Lamberton, Pham and Schweizer [61] are indicative. However, both of these papers
feature discrete-time models; the formulation of this type of problem in continuous-
time is an open problem at this stage (see [71]).

Stochastic Volatility Models

Stochastic volatility is another well-publicized source of market incompleteness.
Market models featuring stochastic volatility are a source of many difficulties. Qua-
dratic techniques have, however, been applied to this problem with promising results.
The papers by Heath, Platen and Schweizer [42, 43, 44] compare the two quadratic
criteria discussed in this dissertation, when applied to pricing and hedging under
stochastic volatility. The paper by Biagini, Guasoni and Pratelli [3] also explores
this area.

1.5 The Structure of the Dissertation

In Chapter 2 the mathematical notation and theory required for the rest of the dis-
sertation is introduced. A brief survey of the general theory of stochastic integration
is provided, along with further sections dealing with quadratic variation and mar-
tingale representation. The emphasis in this chapter is on introducing the concepts
as quickly as possible, while pointing the reader to the literature for a full account.

Chapter 3 introduces the basic market model and provides a survey of the theory
of complete markets. The concepts of trading strategy, numéraire asset and risk-
neutral measure are introduced. Once a formal specification of arbitrage is provided,
the first fundamental theorem of asset pricing is stated. Since a complete proof of
this theorem would require a body of work at least as large as the one being presented
here, we only provide a proof of one of the implications, while referring the reader to
the literature for the complete story. A formal definition of market completeness is
provided next, along with a statement and proof of the second fundamental theorem
of asset pricing. This relates market completeness to martingale representation and
the Jacod-Yor [52] theorem. To make this theory useful, we provide a mechanism for
constructing EMMs. Finally, we demonstrate the use of the mathematical machinery
presented in the chapter, by applying it to the Black-Scholes model. In the process,
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we make use of Lévy’s characterization of Brownian motion and provide a statement
of the Feynman-Kač theorem.

In Chapter 4 we introduce the simplest market that incorporates unhedgeable
risk. In this market the asset price X is a martingale under the real-world measure.
We follow the account of Föllmer and Sondermann [33].

Chapter 5 explores a generalization of the market considered in Chapter 4, to
the case where X is no longer a martingale under the real-world measure. The
idea of local risk minimization is now introduced. The optimal portfolio choice is
shown to possess a martingale representation in terms of the underlying asset and an
orthogonal component. Although there is no unique EMM for X in this setup, there
is a unique EMM with the property that orthogonal martingales remain martingales
under the change of measure. It is known as the minimal martingale measure and
is used for pricing in this situation.

In Chapter 6 we explore the idea of minimizing the terminal variance of the port-
folio, while insisting on the self-financing condition. A Hilbert projection argument
is used to find a mean-variance optimal strategy, which is linked to the previous lo-
cal risk-minimizing approach. The so called variance-optimal martingale measure is
shown to be the measure under which pricing takes place. Under certain conditions
it is possible to show that the minimal martingale measure and variance-optimal
measure coincide.

Finally, in Chapter 7 we apply the theory developed throughout the dissertation
to the problem of hedging basis risk. Here the idea is to hedge an option on an asset
in which trading is restricted, using a closely correlated asset. The risk associated
with this problem is called basis risk. Both the locally risk-minimizing and mean-
variance optimal strategies are applied. Closed-form solutions based on the Black-
Scholes formula are derived and compared with the numerical results obtained by
Monoyios [68], where a utility indifference approach was employed.

Before continuing, a brief comment on the expository style of this dissertation.
One of our aims has been to produce a self-contained document that could be used
by relative newcomers as an introduction to the semimartingale theory of financial
markets in general and to quadratic approaches to incomplete markets in particular.
This has resulted in a style of proof, for example, which a well-informed reader may
find somewhat tedious. (For this we apologize; but our approach has been rather to
include too much detail than too little.)



Chapter 2

Mathematical Preliminaries

In this chapter the mathematical notation and theory required for the rest of the
dissertation is presented. A background in probability theory is assumed, for which a
number of good references are available [10, 50, 92, 95]. A small amount of functional
analysis is also used, for which the accounts of Kreyzig [58] and Luenberger [62] are
useful.

The aim here is to provide a resumé, in the spirit of Jacod and Shiryaev [51], for
stochastic integration and the supplementary results that are needed. The emphasis
will be on the statement of results and the literature will be cited for proofs.

In constructing a theory of stochastic integration, this chapter follows the classi-
cal approach of Jacod and Shiryaev [51], while the section on martingale representa-
tion follows the account of Protter [74]. Although these are our primary references,
other sources [9, 24, 28, 29, 55, 75, 78, 79] have been consulted and have influenced
our definitions and terminology.

The chapter commences with initial sections on stochastic processes, measurabi-
lity, filtrations, stopping times, martingales and finite variation processes. With the
preliminaries under the belt, a summary of the general theory of stochastic integra-
tion is presented. Finally, there are also sections on quadratic variation, changes of
measure and martingale representation.

2.1 Stochastic Processes

In this section we introduce the basic concepts and definitions of stochastic processes.
We start by fixing a probability space (Ω, F ,P) for the remainder of this chapter.
All random variables are assumed to be F -measurable.

Definition 2.1. A stochastic process, denoted by X = (Xt)t∈I , is a family of real-
valued random variables Xt : Ω → R, indexed by t ∈ I, where I is some index
set. The two cases of most interest are when I = N, in which case X is called a
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discrete-time process; and when I is a subinterval of R+, in which case X is called
a continuous-time process.

In this dissertation we are only concerned with continuous-time processes. Note
that this includes the special case of a finite time-horizon, considered later in the
dissertation, where I = [0, T ], for some T ∈ (0,∞). For the remainder of this
chapter, however, we fix I = R+. From the point of view of mathematical finance,
stochastic processes are used to model the time evolution of the prices of financial
instruments.

Definition 2.2. For a fixed sample point ω ∈ Ω, the map t 7→ Xt(ω), for t ∈ R+, is
called a sample path or trajectory of a stochastic process X.

Since we consider general processes, the sample paths may include discontinui-
ties, in the form of jumps.

Definition 2.3. A function x : R+ → R is called RCLL or “right continuous with
left limits”, if the one-sided limits xt+ and xt− exist finitely and xt = xt+, for all
t ∈ R+. Similarly x is called LCRL or “left continuous with right limits”, if the
same one-sided limits exist finitely and xt = xt−, for all t ∈ R+. (Following the
convention of Jacod and Shiryaev [51, p. 3], we set x0− := x0.) A process is called
RCLL (resp. LCRL) if its sample paths are RCLL (resp. LCRL) almost surely.

RCLL (resp. LCRL) processes are also sometimes called R-processes (resp. L-
processes) or càdlàg (resp. càglàd), an acronym from the French “continu à droite
limites à gauche” (resp. “continu à gauche limites à droite”). Other authors describe
them as CORLOL (resp. COLLOR), the acronym for “continuous on the right with
limits on the left” (resp. “continuous on the left with limits on the right”).

Definition 2.4. An RCLL process X may possess finite jump-discontinuities. The
jump process of X, denoted by ∆X, is defined by

∆Xt := Xt −Xt−,

for all t ∈ R+.

Since X0− = X0, we have ∆X0 = 0. It is also clear from this definition that if
X has continuous paths, then ∆X = 0.

2.2 Measurability and Filtrations

In the theory of stochastic processes the idea of the flow of information plays a
central role. This is formalized through the concept of a filtration.
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Definition 2.5. A process X is said to be measurable if the map Ω × R+ → R :
(ω, t) 7→ Xt(ω) is F ⊗B(R+)-measurable. It is said to be progressively measurable
if this map is Ft ⊗B([0, t])-measurable, for each t ∈ R+. The σ-algebra on Ω×R+

generated by all progressively measurable processes, namely

M := σ {X : Ω× R+ → R |X is progressively measurable} ,

is called the progressive σ-algebra.

Definition 2.6. A family of σ-algebras F = (Ft)t∈R+ satisfying Fs ⊆ Ft ⊆ F , for
all s ≤ t ∈ R+, is called a filtration. When we endow the probability space (Ω, F ,P)
with a filtration, we refer to the combined structure (Ω, F ,F,P) as a stochastic basis
or a filtered probability space.

Intuitively, a filtration provides a mechanism for accumulating information over
time.

Definition 2.7. A stochastic basis (Ω, F ,F,P) is called complete if the σ-algebra
F is P-complete1 and F0 contains all the P-null sets of F . A stochastic basis is said
to satisfy the usual conditions if it is complete and the filtration is right continuous;
that is

Ft = Ft+ :=
⋂
t>s

Fs,

for all t ∈ R+.

For the remainder of this chapter we fix a filtration F = (Ft)t∈R+ and assume
that the stochastic basis (Ω, F ,F,P) satisfies the usual conditions.

Definition 2.8. A process X is said to be adapted to F if Xt is Ft-measurable, for
every t ∈ R+. The space of all RCLL adapted processes is denoted by R, while L
denotes the space of all LCRL adapted processes.

Note that from now on it is implicitly assumed that all processes are adapted,
unless specified otherwise. For the next definitions it is useful to think of a stochastic
process as a map Ω×R+ → R, rather than as an indexed family of random variables.

Definition 2.9. The σ-algebra on Ω×R+ generated by the processes in L, namely

P := σ {X : Ω× R+ → R |X ∈ L} ,

is called the predictable σ-algebra. Similarly, the optional σ-algebra is generated by
the processes in R and is denoted by O.

1 Recall that F is P-complete iff A ⊆ B, with B ∈ F such that P(B) = 0, implies that A ∈ F .
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Processes are called predictable or optional if they are measurable with respect to
P or O, respectively. Stochastic intervals, defined in the next section, may be used
to provide alternative formulations of the predictable and optional σ-algebras. It is
easily demonstrated that predictable processes are optional; optional processes are
progressively measurable; and progressively measurable processes are measurable.
In other words, we have the following inclusions of σ-algebras:

P ⊆ O ⊆ M ⊆ F ⊗B(R+)

(see Chung and Williams [9, §3.2, p. 57] for details).

2.3 Stopping times

Definition 2.10. A random variable τ : Ω → R+ is called a stopping time if
{τ ≤ t} ∈ Ft, for all t ∈ R+.

If τ and σ are stopping times and t, c ∈ R+, with c ≥ 1, then it can be shown
that t, σ∧ τ , σ∨ τ , τ +σ and cτ are all stopping times, while τ −σ is not necessarily
a stopping time.

Definition 2.11. Let τ be a stopping time. The stopping time σ-algebra Fτ is the
collection of all events A ∈ F , such that A ∩ {τ ≤ t} ∈ Ft, for all t ∈ R+.

Intuitively, a stopping time σ-algebra can be thought of as the collection of events
that have occurred (or not occurred) up to the stopping time.

Definition 2.12. Given two stopping times σ and τ , with σ ≤ τ a.s., stochastic
intervals may be defined as follows:

[[σ, τ ]] := {(ω, t) ∈ Ω× R+ |σ(ω) ≤ t ≤ τ(ω)} ;

[[σ, τ [[ := {(ω, t) ∈ Ω× R+ |σ(ω) ≤ t < τ(ω)} ;

]]σ, τ ]] := {(ω, t) ∈ Ω× R+ |σ(ω) < t ≤ τ(ω)} ;

]]σ, τ [[ := {(ω, t) ∈ Ω× R+ |σ(ω) < t < τ(ω)} .

The stochastic interval [[τ, τ ]] is often written as [[τ ]] and is called the graph of the
stopping time τ .

For stopping times σ and τ , with σ ≤ τ a.s., the stochastic process 1I]]σ,τ ]] is clearly
a member of L and hence predictable. In fact, an alternative characterization of P

is as the σ-algebra generated by {{0} ×A |A ∈ F0} and the stochastic intervals
]]0, τ ]], for all stopping times τ . This follows from the fact that all LCRL processes
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may be expressed as limits of convergent sequences2 of elementary processes (see
Definition 2.32). These ideas will be formalized later, when we introduce the concept
of stochastic integration.

By a similar characterization of RCLL processes, it may also be shown that O

is the σ-algebra generated by the stochastic intervals [[0, τ [[, for all stopping times τ .
Furthermore, all other stochastic intervals may be constructed from such intervals
using only countable operations3.

Definition 2.13. Given a process X and an a.s. finite stopping time τ , the process
stopped at time τ , denoted by Xτ , is defined by

Xτ
t := Xτ∧t = 1I{t<τ}Xt + 1I{t≥τ}Xτ ,

for all t ∈ R+.

Definition 2.14. Suppose C is a family of processes. A process X is a member of
the corresponding localized family of processes, denoted by Cloc, if there exists an
increasing sequence of stopping times (τn)n∈N, with limn→∞ τn = ∞ a.s., such that
Xτn ∈ C, for each n ∈ N. The sequence of stopping times is called a reducing or
localizing sequence.

2.4 Martingales

The theory of martingales is central to everything we do and consequently we review
the basic concepts.

Definition 2.15. Let p ≥ 1. The family of random variables X : Ω → R, such that

‖X‖Lp := (E [|X|p]) 1
p =

(∫

Ω
|X|p dP

) 1
p

< ∞,

is denoted by L p(Ω,F ,P). A random variable X is called integrable (resp. square
integrable) if X ∈ L 1(Ω, F ,P) (resp. X ∈ L 2(Ω, F ,P)). We define an equivalence
relation on L p(Ω,F ,P), by setting

X ∼ Y iff X = Y a.s.,

for all X, Y ∈ L p(Ω,F ,P). Then Lp(Ω,F ,P) is defined as the corresponding family
of equivalence classes. For convenience, we abbreviate Lp(Ω, F ,P) to Lp(P) or Lp if
the components of the probability triple are clear from the context.

2 With a suitable definition of convergence.
3 For example, ]]σ, τ ]] = (∩n∈N[[0, τ + 1/n[[) ∩ (∩n∈N[[0, σ + 1/n, [[)c.
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Note that ‖ · ‖Lp induces a metric on Lp, defined by dp(X, Y ) := ‖X − Y ‖Lp , for
each X, Y ∈ Lp, where p ≥ 1. It can be shown that (Lp, dp) is a Banach space (see
e.g. [50] or [78, p. 100]).

Definition 2.16. If a process X satisfies the condition

lim
n→∞ sup

t∈R+

∫

{|Xt|≥n}
|Xt| dP = 0,

then it is said to be uniformly integrable.

Definition 2.17. A process M is called a martingale if

1. M is adapted to F;

2. Mt is integrable, for all t ∈ R+; and

3. E [Mt |Fs] = Ms a.s., for all s ≤ t ∈ R+.

The family of all uniformly integrable martingales is denoted by M.

The following useful characterization of martingales is often used in applications
to establish the martingale property for a given process.

Lemma 2.18. Let M be an adapted process such that Mt is integrable, for all
t ∈ R+. Then M is a martingale iff

E [1IAMt] = E [1IAMs] , (2.1)

for all s ≤ t ∈ R+ and all A ∈ Fs.

Proof. (⇒) Suppose M is a martingale; and choose s ≤ t ∈ R+ and A ∈ Fs. Then

E [1IAMt] = E [E [1IAMt |Fs]] = E [1IAE [Mt |Fs]] = E [1IAMs] .

(⇐) Suppose M satisfies (2.1) and choose s ≤ t ∈ R+. Then, by the definition of
conditional expectations (see Jacod and Protter [50, Def. 23.5, p. 200]), E [Mt |Fs]
is the a.s. unique Fs-measurable random variable satisfying

E [1IAE [Mt |Fs]] = E [1IAMt] ,

for all A ∈ Fs. But, by assumption, Ms satisfies this condition as well. Hence
E [Mt |Fs] = Ms. ¥

Definition 2.19. Let M ∈ M. If supt∈R+
E

[
M2

t

]
< ∞, then M is said to belong

to the family of square integrable martingales, denoted by M2.
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Using Definition 2.14, the family of local martingales is denoted by Mloc. Fur-
thermore, the family of all uniformly integrable martingales (resp. local martingales)
null at time zero is denoted by M0 (resp. M0,loc). The same conventions apply to
the family of square integrable martingales. It is easily seen that every martingale is
a local martingale. The converse is not true, however (see Durrett [28, §2.2, p. 41–42]
for counterexamples).

Definition 2.20. A process X is said to admit a terminal variable, denoted by X∞,
if limt→∞Xt =: X∞ exists a.s. and X∞ is integrable.

Theorem 2.21. Let M ∈ M. Then M admits a terminal variable M∞ and Mt →
M∞ in L1 as well as a.s. In this case, Mτ = E [M∞ |Fτ ], for all stopping times τ .
Furthermore, M ∈M2 iff M∞ ∈ L2, in which case Mt → M∞ in L2 as well.

Proof. See Jacod and Shiryaev [51, Prop. 1.42, p. 11]. ¥

The last theorem allows us to characterize M2 as a Hilbert space. Since there
is a bijective correspondence between square integrable martingales M ∈ M2 and
their terminal variables M∞, we can define an inner product ( · , · )H2 and a norm
‖ · ‖H2 on M2, by setting

(M,N)H2 := E [M∞N∞] ; and

‖M‖H2 := ‖M∞‖L2 ,

for all M, N ∈M2.
Finally we state two fundamental theorems for martingales: the optional sam-

pling theorem and Doob’s maximal quadratic inequality. The latter may be used to
show convergence of Cauchy sequences in M2, using the norm defined above (see
Jacod and Shiryaev [51, Lem. 4.7, p. 39] for details).

Theorem 2.22 (Optional Sampling Theorem). Let M ∈M. Then

E [Mτ |Fσ] = Mσ,

for all stopping times σ ≤ τ .

Proof. See Dellacherie and Meyer [24, V§2, p. 6–10]. ¥

Theorem 2.23 (Doob’s Maximal Quadratic Inequality). Let M ∈M2, with termi-
nal variable M∞. Then

E

[
sup
t∈R+

M2
t

]
≤ 4E

[
M2
∞

]
.

Proof. See Dellacherie and Meyer [24, V§24, p. 17]. ¥
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2.5 Finite Variation Processes

The variation (of some order) of a process is defined as the limit of sums of powers
of its increments along a sequence of partitions.

Definition 2.24. Let m ∈ N and a < b ∈ R+. A partition of the interval [a, b] is a
finite ordered set πa,b := {t0, t1, . . . , tm}, such that a = t0 ≤ t1 ≤ · · · ≤ tm = b. For
a partition4 π, the quantity

‖π‖ := sup
0≤i<m

|ti+1 − ti|

is called the mesh of π.

Definition 2.25. Let t ∈ R+. A sequence of partitions (πn
t )n∈N of the interval [0, t],

with πn
t = {tn0 , . . . , tnmn} for each n ∈ N and limn→∞ ‖πn

t ‖ = 0, is called a Riemann
sequence.

Definition 2.26. Let X ∈ R and for each t ∈ R+ choose a Riemann sequence
(πn

t )n∈N. For p > 0, the pth variation of X, for the partition πn
t , is defined by

S(p)(X, πn
t ) :=

mn−1∑

i=0

|Xtni+1
−Xtni

|p.

If, for each t ∈ R+, the limit

lim
n→∞S(p)(X, πn

t ) =: V
(p)
t (X)

exists a.s., then the process V (p)(X) is well-defined and is called the pth variation
of X.

Definition 2.27. A process A ∈ R is called a finite variation process if almost all
its sample paths are of finite first variation on compacts. In other words, we require

∫ t

0
|dA|s := V

(1)
t (A) < ∞ a.s.,

for all t ∈ R+. We denote the family of all finite variation processes (resp. finite
variation processes null at time zero) by V (resp. V0). Processes A ∈ V (resp.
A ∈ V0), such that E

[
V

(1)
∞ (A)

]
< ∞, are called processes of integrable variation

and the family of such processes is denoted by A (resp. A0). (Note that for any
X ∈ R, V (1)(X) is an increasing process. Consequently the a.s. limit V

(1)
∞ (X) :=

limt→∞ V
(1)
t (X) exists.)

4 Note that the one or more of the subscripts of π will be omitted when their values are clear

from the context.
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2.6 Semimartingales and Stochastic Integrals

There are two main approaches to the construction of the stochastic integral. Histo-
rically, the first rigorous account of stochastic integration was published in 1944 by
Itô [47, 49]. In formulating a theory of integration with respect to Wiener processes,
his key insight was to limit the space of integrands to non-anticipating (adapted)
processes. This allowed him to establish the famous Itô isometry, which was central
to providing a well-defined integral. A little later, in 1951, he published the now-
famous Itô formula [49]. In 1953 Doob [26] conjectured that this approach could be
extended, by using the full strength of the independent increments property, to de-
fine integrals with respect to continuous martingales. This programme was realized
by Meyer [65, 66] in 1962–1963, with the proof of the Doob-Meyer decomposition
theorem. As a result, a more systematic treatment of integration with respect to
square integrable martingales was put forward by Courrège [12] in 1963. He also
pioneered the use of the predictable σ-algebra.

The Itô formula for square integrable martingales was derived by Kunita and
Watanabe [59] in 1967. This paper was influential because of its use of the concepts of
orthogonality and quadratic variation. Meyer extended their approach, synthesizing
a number of other concepts available at the time, in a series of papers published
in the Séminaire de Probabilités. This culminated in the classical definition of a
semimartingale as the sum of a locally square integrable martingale and a finite
variation process. Later the square integrability condition was removed. For an
interesting article on the early history of stochastic integration, consult Jarrow and
Protter [54].

The second, more modern, approach to stochastic integration, popularized by
Protter [72, 74], uses the idea of the stochastic integral defined as a “Riemann-type
limit of sums”. This analogy is flawed, however, since the classical Riemann-Stieltjes
construction only works when either the integrator or the integrand is of finite varia-
tion. By considering stochastic integrals of simple predictable processes, semimar-
tingales are defined implicitly as those processes, which when used as integrators,
yield well-defined integrals. These simple integrals are then extended to integrals
of LCRL processes and then further to integrals of general predictable processes.
Finally it is shown, using results from Bichteler [4] and Dellacherie [25], that this
definition of semimartingales is equivalent to the classical definition. We provide
a summary of the classical approach, as presented in the account of Jacod and
Shiryaev [51].

Definition 2.28. A semimartingale is a process X of the form

X = X0 + M + A, (2.2)
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where X0 is finite and F0-measurable; M ∈ M0,loc and A ∈ V0. The family of all
semimartingales is denoted by S.

Definition 2.29. Suppose X ∈ S possesses a decomposition (2.2) such that A is
predictable. Then X is a member of the family of special semimartingales, denoted
by Sp. The decomposition with the above property is necessarily unique and is called
the canonical decomposition of X.

Definition 2.30. Let X ∈ S, with decomposition (2.2). If M ∈ M2
0 and A ∈ V0

satisfies

E

[(∫ ∞

0
|dA|s

)2
]

< ∞,

then X is a member of the family of square integrable semimartingales, denoted
by S2.

Semimartingales with bounded jumps are special (see Jacod and Shiryaev [51,
Lem. 4.24, p. 44]). Square integrable semimartingales are also special (see Dellacherie
and Meyer [24, VII§98, p. 294–297]).

At its heart, the construction of the stochastic integral relies on a convergence
argument. The next definition specifies the mode of convergence.

Definition 2.31. A sequence of processes (φn)n∈N is said to converge uniformly on
compacts in probability (UCP) if

sup
0≤s≤t

|φn
s − φs| → 0

in probability, for all t ∈ R+.

We now define the class of processes used as the building blocks for the construc-
tion of the stochastic integral.

Definition 2.32. A stochastic process φ is called an elementary process if, for some
n ∈ N, there exists a finite sequence of stopping times 0 = τ0 ≤ τ1 ≤ . . . ≤ τn < ∞
and a corresponding sequence of finite-valued Fτi-measurable random variables ξi,
for each i ∈ {0, . . . , n− 1}, such that

φt(ω) = ξ0(ω)1I[[0]](ω, t) +
n−1∑

i=0

ξi(ω)1I]]τi,τi+1]](ω, t), (2.3)

for all (ω, t) ∈ Ω× R+. The class of elementary processes is denoted by E .

Since elementary processes are LCRL, they are also measurable with respect to
P. It is now possible to define the integral of an elementary process with respect
to a semimartingale. This is done by direct analogy to the sum (1.2).
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Definition 2.33. Let X ∈ S and suppose φ ∈ E can be expressed as (2.3). Then

IX(φ) :=
n−1∑

i=0

ξi(Xτi+1 −Xτi)

defines a linear mapping IX : E → S. The process IX(φ) is called the elementary
stochastic integral of φ with respect to X.

Theorem 2.34. Let X ∈ S. The mapping IX : E → S of Definition 2.33 has an
extension from the space of elementary processes to the space of all locally bounded
predictable processes.

Proof. See Jacod and Shiryaev [51, Thm. 4.31, p. 46-51]. ¥

Note that the stochastic integral can be further extend to processes that are
not locally bounded, in which case the class of predictable processes integrable with
respect to X is denoted by L(X) (see Dellacherie and Meyer [24, VIII§69–75, p. 377–
385] for details).

We now outline the four main steps in the proof of Theorem 2.34. We also
employ the suggestive notation

∫ ·
0 φs dXs to indicate the semimartingale IX(φ). For

convenience, we fix a semimartingale X with the decomposition (2.2) and a locally
bounded predictable process φ.

Step 1: Assume that X = A. Then
∫ ·
0 φs dAs is just the Lebesgue-Stieltjes

integral, defined pathwise.
Step 2: Now assume that X = M , where M ∈ M2

0. In order to construct a
stochastic integral with respect to a square integrable martingale, we require some
extra definitions and theorems.

The Doob-Meyer decomposition of a submartingale of class (D) (see [24, VII§8–
9, p. 194–195]) establishes the existence of a finite variation process which, when
subtracted from the original submartingale, yields a martingale. We now present a
special case of the Doob-Meyer decomposition theorem.

Theorem 2.35. Let M, N ∈M2
loc. There exists a unique non-decreasing predictable

process 〈M〉 ∈ V0, such that M2 − 〈M〉 is a local martingale. Furthermore, there
exists a unique predictable process 〈M,N〉 ∈ V0, defined by the polarization identity

〈M, N〉 :=
1
4
(〈M + N〉 − 〈M −N〉),

such that MN − 〈M, N〉 is a local martingale. Furthermore, if M, N ∈ M2, then
〈M, N〉 ∈ A0 and MN − 〈M, N〉 ∈ M.

Proof. See Jacod and Shiryaev [51, Prop. 4.2, p. 38]. ¥
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Let M, N ∈ M2
loc. The process 〈M〉 is called the angle brackets process of M ;

while 〈M, N〉 is called the predictable quadratic covariation of M and N (for reasons
that will become apparent in the next section).

Definition 2.36. Let M ∈ M2
loc. The family of all predictable processes φ, such

that process
∫ ·
0 φ2

s d〈M〉s is integrable (resp. locally integrable), is denoted by L2(M)
(resp. L2

loc(M))

Definition 2.37. Let M ∈ M2. The positive finite measure µM on (Ω × R+, P),
defined by

µM{B} := E
[∫ ∞

0
1IB(ω, t) d〈M〉s(ω)

]
,

for all B ∈ P, is called the Doléans measure.

The Doléans measure5 enables a characterization of L2(M) as a Hilbert space
L2(Ω×R+, P, µM ). This in turn lays the foundation for the following fundamental
result.

Lemma 2.38 (Itô Isometry). Let φ ∈ E, with representation (2.3). Then

E
[
(IX(φ)t)2

]
= E

[(∫ t

0
φs dMs

)2
]

= E
[∫ t

0
φ2

s d〈M〉s
]

,

for all t ∈ R+.

Proof. This follows directly from the fact that

(∫ ·

0
φs dMs

)2

−
∫ ·

0
φ2

s d〈M〉s = 2
n−1∑

i=0

n−1∑

j=0

ξiξj(M τi+1 −M τi)(M τj+1 −M τj )

+
n−1∑

i=0

ξ2
i

[
(M τi+1)2 − 〈M〉τi+1 − (M τi)2 + 〈M〉τi

− 2M τi(M τi+1 −M τi)
]

is a martingale. ¥

Since E is a dense subspace of L2(Ω×R+, P, µM ), the above result allows for a
unique continuous extension of IM to an isometry of L2(Ω × R+, P, µM ) and M2.
This extends the definition of IM to all integrands in L2(M).

Step 3: Suppose X = M , where M ∈ M2
0,loc. The integral

∫ ·
0 φs dMs, for

φ ∈ L2
loc(M), can now be constructed from the integral in step 2 using a localization

procedure.
5 See Chung and Williams [9, p. 33] for a justification of the name.
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Step 4: Finally, remove all restrictions on X. It can be shown that X possesses
at least one decomposition of the form (2.2), with M ∈ M2

0,loc and A ∈ V0 (see
Jacod and Shiryaev [51, Prop. 4.17, p. 42] for details). Consequently, we can define

∫ ·

0
φs dXs :=

∫ ·

0
φs dMs +

∫ ·

0
φs dAs,

where the integrals on the right-hand side are defined as in steps 3 and 1, respectively.
This concludes the brief exposé of the proof of Theorem 2.34. Note that having

defined the stochastic integral with respect to a locally square integrable martingale
as another locally square integrable martingale, it follows from Theorem 2.35 that
the stochastic integral possesses an angle brackets process. The following result
indicates what this process looks like.

Corollary 2.39. Let M,N ∈M2
loc and let φ, ϕ ∈ L2(M), with representation (2.3).

Then 〈∫ ·

0
φs dMs

〉
=

∫ ·

0
φ2

s d〈M〉s.

Furthermore, 〈∫ ·

0
φs dMs,

∫ ·

0
ϕs dNs

〉
=

∫ ·

0
φsϕs d〈M,N〉s.

Proof. The first expression follows as a consequence of the uniqueness of the angle
brackets process, while the second follows from the polarization identity of Theo-
rem 2.35. ¥

The following two theorems provide a number of useful properties of the stochas-
tic integral.

Theorem 2.40. Let M ∈ Mloc and let φ be a locally bounded predictable process.
Then

∫ ·
0 φs dMs ∈M0,loc.

Proof. See Jacod and Shiryaev [51, 4.34, p. 47]. ¥

Theorem 2.41. Let X,Y ∈ S, let φ, ϕ ∈ L(X) and fix α, β ∈ R. Then the stochastic
integral has the following properties:

1.
∫ 0
0 φs dXs = 0;

2. ∆
(∫ ·

0 φs dXs

)
= φ∆X;

3. (linearity)
∫ ·
0(αφs + βϕs) dXs = α

∫ ·
0 φs dXs + β

∫ ·
0 ϕs dXs;

4. (associativity)
∫ ·
0 φu d

(∫ u
0 ϕs dXs

)
=

∫ ·
0 φsϕs dXs; and

5. if φ ∈ L(Y ), then
∫ ·
0 φs d(X + Y )s =

∫ ·
0 φs dXs +

∫ ·
0 φs dYs.
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Proof. For the first four items, see Jacod and Shiryaev [51, p. 47–51]. For the last
item, see Protter [74, Thm. 17, p. 164]. ¥

Finally, we provide a useful result that allows us to approximate the stochastic
integral of an LCRL predictable process with Riemann sums.

Theorem 2.42. Let X ∈ S and fix φ ∈ L. For each t ∈ R+, let (πn
t )n∈N be a

Riemann sequence, with πn
t = {tn0 , . . . , tnmn}, for each n ∈ N. For each n ∈ N, define

In
X(φ), by setting

In
X(φ)t :=

mn−1∑

i=0

φtni
(Xtni+1

−Xtni
),

for each t ∈ R+. Then the Riemann approximations In
X(φ) converge to

∫ ·
0 φs dXs in

UCP.

Proof. See Jacod and Shiryaev [51, Prop. 4.44, p. 51]. ¥

2.7 Quadratic Variation

Definition 2.43. Let X be a semimartingale. The quadratic variation process of
X, denoted by [X], is defined by setting

[X]t := X2
t −X2

0 − 2
∫ t

0
Xs− dXs,

for all t ∈ R+.

It is clear from the definition that [X]0 = 0. Note that since [X] is non-decreasing
(see Theorem 2.44 below), it is a finite variation process (i.e. [X] ∈ V0). The next
result provides an intuitive understanding of quadratic variation, by linking it to
Definition 2.26.

Theorem 2.44. Let X ∈ S. Then V (2)(X) = [X].

Proof. Fix t ∈ R+ and let (πn
t )n∈N be a Riemann sequence, with πn

t = {tn0 , . . . , tnmn},
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for each n ∈ N. Then

V
(2)
t (X) = lim

n→∞S(2)(X,πn
t )

= lim
n→∞

mn−1∑

i=0

(
Xtni+1

−Xtni

)2

= lim
n→∞

mn−1∑

i=0

(
X2

tni+1
− 2Xtni+1

Xtni
+ X2

tni

)

= lim
n→∞

mn−1∑

i=0

(
X2

tni+1
−X2

tni

)
− 2 lim

n→∞

mn−1∑

i=0

Xtni
(Xtni+1

−Xtni
) (2.4)

= X2
t −X2

0 − 2 lim
n→∞ In

X(X−)t

= X2
t −X2

0 − 2
∫ t

0
Xs− dXs

= [X]t,

since the first term in (2.4) is a telescoping sum, together with Theorem 2.42. ¥

Definition 2.45 (Stochastic Integration by Parts). Let X, Y ∈ S. The covariation
of X and Y is the process [X,Y ], defined by

[X, Y ]t := XtYt −X0Y0 −
∫ t

0
Xs− dYs −

∫ t

0
Ys− dXs, (2.5)

for all t ∈ R+.

Let X,Y ∈ S. It is clear from the definition that [X, Y ]0 = 0. Furthermore, the
polarization identity

[X,Y ] =
1
2

([X + Y ]− [X]− [Y ]) ,

relating covariations and quadratic variations, follows from the linearity of stochas-
tic integrals. Hence [X, Y ] is also a finite variation process. A result similar to
Theorem 2.44 relates [X, Y ] to a constructive notion of covariation. The next two
results provide four useful properties of the covariation process.

Proposition 2.46. Let X,Y ∈ S and A ∈ V0. Then

1. ∆[X,Y ] = ∆X∆Y ;

2. [X, A]t =
∑

s≤t ∆Xs∆As, for all t ∈ R+; and

3. if τ is a finite stopping time, then [Xτ , Y ] = [X, Y τ ] = [Xτ , Y τ ] = [X,Y ]τ .

Proof. For the first two items see Jacod and Shiryaev [51, Thm. 4.47 & Prop. 4.49,
p. 52]. For the last item see Protter [74, Thm. 23, p. 68]. ¥
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Lemma 2.47 (Yoeurp). Let M ∈ Mloc and suppose that A ∈ V is predictable.
Then [M,A] is a local martingale. (See also item (2 ) of Proposition 2.46.)

Proof. See Dellacherie and Meyer [24, VII§36, p. 225]. ¥

The next definition and proposition explain the terminology “predictable qua-
dratic covariation” (see the comment after Theorem 2.35).

Definition 2.48. Let A ∈ A0,loc. The unique predictable process Ã ∈ A0,loc, such
that A − Ã ∈ Mloc, is called the compensator of A (see Jacod and Shiryaev [51,
Thm. 3.17, p. 32] for a proof of existence and other properties). It is also known as
the dual predictable projection.

Proposition 2.49. Let M, N ∈ M2
loc. Then [M, N ] ∈ A0,loc and its compensator

is 〈M,N〉. Furthermore, if M,N ∈M2, then MN − [M, N ] ∈M.

Proof. See Jacod and Shiryaev [51, Prop. 4.50, p. 53]. ¥

Suppose M, N ∈ M2
loc. It follows from Definition 2.48 that [M, N ] − 〈M, N〉 ∈

Mloc. In the case where M, N ∈ M2, it follows from Theorem 2.35 and Proposi-
tion 2.49 that [M, N ] − 〈M, N〉 ∈ M. Furthermore, if M and N are continuous,
then [M, N ] = 〈M,N〉. In the case where we only have M, N ∈ Mloc, then 〈M,N〉
(defined as the compensator of [M, N ]) only exists if [M,N ] ∈ A0,loc. A sufficient
condition for this is that the jumps of M are bounded, i.e. |∆M | ≤ c, for some
c ∈ R+ (see Jacod and Shiryaev [51, Thm. 3.14, p. 169] for a justification). Note
that these considerations provide a way of extending the definition of the angle
brackets process to semimartingales, by setting

〈X, Y 〉 := [̃X, Y ]

for X,Y ∈ S, provided this makes sense.
One needs to be cautious when dealing with angle brackets processes, since they

are not invariant under changes of measure (see Protter [74, p. 123]). For this reason
we will use the notation 〈 · , · 〉Q to denote angle brackets under any probability
measure Q ∼ P.

We now provide a property of quadratic covariation which allows us to prove a
useful property that will be used extensively in this dissertation.

Theorem 2.50. Let X,Y ∈ S and let Xc, Y c denote their respective continuous
local martingale parts. Then

[X, Y ]t = [Xc, Y c]t +
∑

0≤s≤t

∆Xs∆Ys

= 〈Xc, Y c〉t +
∑

0≤s≤t

∆Xs∆Ys,
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for all t ∈ R+

Proof. See Jacod and Shiryaev [51, Thm. 4.52, p. 55]. ¥

Theorem 2.51. Let X,Y ∈ S and let φ ∈ L(X). Then
[∫ .

0
φs dXs, Y

]

t

=
∫ t

0
φs d[X, Y ]s,

for all t ∈ R+.

Proof. This follows directly from Theorem 2.50, Corollary 2.39 and property 2 of
Theorem 2.41. ¥

2.8 The Doléans Exponential and the Stochastic

Logarithm

We now focus on a very important class of semimartingales which, as we shall see
in Section 3.4, play the role of density processes (see Section 2.9) for equivalent
martingale measures.

Definition 2.52. Let Y ∈ S. The Doléans exponential or stochastic exponential of
Y , denoted by E (Y ), is the unique strong solution of the SDE

dE (Y )t = E (Y )t− dYt, (2.6)

for all t ∈ [0, T ], with E (Y )0 = 1. It is given explicitly by

E (Y )t = exp
[
Yt − 1

2
〈Y c〉t

] ∏

0≤s≤t

(1 + ∆Ys)e−∆Ys , (2.7)

for all t ∈ [0, T ].

Two properties of the Doléans exponential are of particular interest to us. Firstly,
it is strictly positive if ∆Y > −1 (this follows from the positivity of the exponential
and the fact that the product is always positive). The second property is expressed
by the following result.

Proposition 2.53. If M ∈Mloc, then E (M) is also a local martingale.

Proof. See Jacod and Shiryaev [51, Thm. 4.61, p. 59]. ¥

Although not as widely used as the stochastic exponential, the stochastic loga-
rithm may be defined as the solution of the “inverse” of equation (2.6).
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Definition 2.54. Let X ∈ S and suppose that X and X− do not vanish. Then the
stochastic logarithm of X, denoted by L (X), is the unique strong solution of the
SDE

dL (X)t =
1

Xt−
dXt,

for all t ∈ [0, T ], with L (X)0 = 0.

Note that the stochastic logarithm also possesses an explicit representation, akin
to (2.7); but we will not require it. However, the next two results are sometimes
useful.

Theorem 2.55. Let X ∈ S satisfy the conditions of Definition 2.54, so that L (X)
exists. Then L (X) is the unique semimartingale Y such that X = X0E (Y ) and
Y0 = 0.

Proof. See Jacod and Shiryaev [51, Thm. 8.3, p. 134]. ¥

Corollary 2.56. Let X ∈ S.

1. If X satisfies ∆X 6= 1 identically, then L (E (X)) = X −X0.

2. If X and X− do not vanish, then E (L (X)) = X/X0.

2.9 Changes of Measure

Changes of measure feature prominently if mathematical finance, with equivalent
martingale measures (see Chapter 3) being particularly important.

Definition 2.57. A probability measure Q on (Ω, F ) is said to be absolutely conti-
nuous with respect to P, indicated by Q¿ P, if

P{A} = 0 ⇒ Q{A} = 0,

for all A ∈ F . If P ¿ Q and Q ¿ P, then the measures are said to be equivalent,
indicated by P ∼ Q.

One way of constructing a probability measure on (Ω, F ), absolutely continuous
with respect to P, is to obtain a random variable ζ ≥ 0, satisfying E [ζ] = 1. Then
Q¿ P can be defined as follows:

Q{A} := E [1IAζ] ,

for all A ∈ F . If ζ > 0, then Q ∼ P. The following fundamental result asserts that
in fact all absolutely continuous probability measures can be obtained in this way6.

6 We state the Radon-Nikodým theorem only in the context of probability measures. The result,

of course, has a more general measure-theoretic formulation (see e.g. Cohn [11, Thm. 4.2.2, p. 132]).
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Theorem 2.58 (Radon-Nikodým). Let Q be a probability measure on (Ω, F ). If
Q¿ P, then there exists an a.s. unique random variable ζ ≥ 0 satisfying, E [ζ] = 1,
such that

Q{A} = E [1IAζ] ,

for all A ∈ F . If Q ∼ P, then ζ > 0.

Proof. See Jacod and Protter [50, Thm. 28.3, p. 246]. ¥

Definition 2.59. Let Q be a probability measure on (Ω, F ), such that Q ¿ P.
The random variable ζ in Theorem 2.58 is called the Radon-Nikodým derivative of
Q with respect to P and is often written as dQ

dP := ζ.

Suppose that Q is a probability measure on (Ω,F ) satisfying Q ∼ P. Then
dQ
dP > 0 and so we may perform the following calculation:

P{A} = E [1IA] = E
[
1IA

1
dQ/dP

dQ
dP

]

= EQ
[
1IA

1
dQ/dP

]
,

for all A ∈ F . By the uniqueness of the Radon-Nikodým derivative, we then have

dP
dQ

=
1

dQ/dP
a.s.

Definition 2.60. Let Q be a probability measure on (Ω, F ) satisfying Q¿ P. The
density process of Q with respect to P is the uniformly integrable martingale Z,
defined by

Zt := E
[

dQ
dP

∣∣∣∣Ft

]
,

for all t ∈ R+.

Theorem 2.61 (Bayes’ Rule). Let Q be a probability measure on (Ω, F ) satisfying
Q ∼ P. Denote the density process of Q with respect to P by Z and suppose that
s ≤ t ∈ R+. Then

1
Zs
E [ZtY |Fs] = EQ [Y |Fs] ,

for all Y ∈ L1(Ω, Ft,Q).
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Proof. Let A ∈ Fs. Then

EQ
[
1IA

1
Zs
E [ZtY |Fs]

]
= E

[
1IA

dQ
dP

1
Zs
E [ZtY |Fs]

]

= E
[
E

[
1IA

dQ
dP

1
Zs
E [ZtY |Fs]

∣∣∣∣Fs

]]

= E
[
1IAE

[
dQ
dP

∣∣∣∣Fs

]
1
Zs
E [ZtY |Fs]

]

= E [1IAE [ZtY |Fs]] = E [E [1IAZtY |Fs]]

= E [1IAZtY ] = E
[
1IAE

[
dQ
dP

∣∣∣∣ Ft

]
Y

]

= E
[
E

[
1IA

dQ
dP

Y

∣∣∣∣Ft

]]
= E

[
1IA

dQ
dP

Y

]

= EQ [1IAY ] .

The result now follows from the Q-a.s. uniqueness of EQ [Y |Fs]. ¥

We shall most often make use of Theorem 2.61 in the following forms.

Corollary 2.62. Let Q be a probability measure on (Ω, F ) satisfying Q ∼ P and
suppose that Z is its density process. Then

1. X is a Q-martingale iff XZ is a martingale; and

2. X is a local Q-martingale iff XZ is a local martingale.

Proof. This follows directly from Theorem 2.61. See also Protter [74, Exercise 20,
p. 149]. ¥

2.10 Martingale Representation and the GKW

Decomposition

Recall that it was established in Section 2.4 that M2 has a Hilbert space structure.
The implications of this will play a central role throughout this dissertation. We
examine some of them here.

Definition 2.63. Let M,N ∈M2. Then M and N are said to be weakly orthogonal,
if E [M∞N∞] = M0N0. If MN is a uniformly integrable7 martingale, then M and
N are said to be strongly orthogonal.

7 Actually, it is enough if MN ∈Mloc. With the aid of Doob’s maximal quadratic inequality and

the Cauchy–Schwarz inequality, one can then show that MN ∈M.
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It can be shown that strong orthogonality implies weak orthogonality, but not
vice versa (see Protter [74, p. 179–180] for details). Another characterization of
strong orthogonality is given by the following theorem.

Theorem 2.64. Let M, N ∈ M2. Then M and N are strongly orthogonal iff
[M, N ] ∈M0. Equivalently, they are strongly orthogonal iff 〈M,N〉 = 0 a.s.

Proof. The first statement follows directly from the stochastic integration by parts
rule (2.5). For the second statement, see Jacod and Shiryaev [51, Prop. 4.14, p. 41].

¥

We now focus on martingale representation. It is impossible to give a complete
exposition of this topic and so we only provide the terminology and results necessary
for the rest of the dissertation. The central result in this subject is the celebrated
Jacod-Yor theorem [52]. The reader is referred to Protter [74, §IV.3–5, p. 178–205]
for the complete story and to an informative summary by Davis [18].

Definition 2.65. A set of probability measures P is convex if λQ1 +(1−λ)Q2 ∈ P,
for all Q1,Q2 ∈ P and all 0 ≤ λ ≤ 1.

Definition 2.66. Let P be a convex set of probability measures and 0 ≤ λ ≤ 1.
A probability measure Q ∈ P is said to be an extremal point of P if whenever
Q = λQ1 + (1− λ)Q2, with Q1,Q2 ∈ P and Q1 6= Q2, then λ = 0 or λ = 1.

Definition 2.67. Let A ⊆ M2
0. The set of probability measures Q on (Ω, F )

satisfying

1. Q¿ P;

2. Q = P on F0; and

3. A ⊆M2
0(Q)

is denoted by P(A).

Note that P(A) is a convex set (see Protter [74, p. 182] for details).

Definition 2.68. A closed8 subspace A of M2
0 is called a stable subspace if it is

stable under stopping (i.e. if M ∈ A and τ is a stopping time, then M τ ∈ A).

Definition 2.69. LetA ⊆M2
0. The stable subspace ofM2

0 generated byA, denoted
by S(A), is the intersection of all closed stable subspaces of M2

0 containing A.

8 Closedness here is obviously defined with respect to the metric induced by ‖ · ‖H2 .
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Theorem 2.70. Let n ∈ N and suppose that M1, . . . , Mn ∈ M2
0 are mutually

strongly orthogonal. Then

S(M1, . . . , Mn) =

{
n∑

i=1

∫ ·

0
φi

s dM i
s

∣∣∣∣∣φi ∈ L2(M i), for each i = 1, . . . , n

}
.

Proof. See Protter [74, Thm. 36, p. 180]. ¥

Definition 2.71. Let n ∈ N and M1, . . . , Mn ∈M2
0 and define

I(M1, . . . ,Mn) :=

{
n∑

i=1

∫ ·

0
φi

s dM i
s

∣∣∣∣∣ φi ∈ L2(M i), for each i = 1, . . . , n

}
.

If I(M1, . . . ,Mn) = M2
0, then {M1, . . . , Mn} is said to possess the predictable

representation property.

We now state three crucial theorems which encapsulate the martingale represen-
tation theory required for our purposes.

Theorem 2.72. Let A ⊆M2
0. If S(A) = M2

0, then P is an extremal point of P(A).

Proof. See Protter [74, Thm. 38, p. 183]. ¥

Theorem 2.73. Let A ⊆ M2
0. If P is an extremal point of P(A), then the only

bounded elements of M2
0 strongly orthogonal to A are null.

Proof. See Protter [74, Thm. 39, p. 183]. ¥

Theorem 2.74. Let n ∈ N and suppose that M1, . . . , Mn ∈M2
0 are continuous and

mutually strongly orthogonal. If P is an extremal point of P(M1, . . . , Mn), then

1. every stopping time is accessible;

2. every bounded martingale is continuous;

3. every uniformly integrable martingale is continuous; and

4. {M1, . . . , Mn} possesses the predictable representation property.

Proof. See Protter [74, Thm. 40, p. 184]. ¥

Finally, we state a result, originally due to Kunita and Watanabe [59] and Galt-
chouk [35], that will be central to the our treatment of incomplete markets. It shows
that an L2 random variable can be uniquely decomposed into a stochastic integral
with respect to a given square integrable martingale and another square integrable
martingale orthogonal to the stable subspace generated by the first.
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Proposition 2.75 (GKW Decomposition). Let M ∈ M2
0. Every random variable

H ∈ L2 has a unique representation

H = E [H |F0] +
∫ T

0
µH

s dMs + NH a.s.,

where µH ∈ L2(M) and NH ∈ L2 is orthogonal to the space
{∫ T

0
φs dMs

∣∣∣∣ φ ∈ L2(M)
}

.

Furthermore, N ∈ M2
0, defined by Nt := E[NH |Ft], for all t ∈ R+, is strongly

orthogonal to I(M).

Proof. See Protter [74, Cor. 1, p. 181] (note that this is stated somewhat differently
from our statement of the result). ¥

2.11 A Result Concerning the Doléans Measure

The following result, though an application of elementary measure theory, is used a
number of times in Chapter 4 and Chapter 5. This, together with the fact that it is
repeatedly used in the literature without comment, motivates us to present a proof.

Lemma 2.76. Let M ∈M2 and suppose that φ ∈ L2(M) satisfies
∫ t

0
φs d〈M〉s = 0 a.s., (2.8)

for all t ∈ [0, T ]. Then φ = 0 µM -a.e.

Proof. Firstly, note that

E
[∫ ∞

0
φ2

s d〈M〉s
]

< ∞,

by the definition of L2(M). Hence
∫ ∞

0
φ2

s d〈M〉 < ∞ a.s.

In other words,

φ·(ω) ∈ L2(R+, B(R+), 〈M〉·(ω)) ⊆ L1(R+, B(R+), 〈M〉·(ω)), (2.9)

for a.a. ω ∈ Ω. (We let context determine whether 〈M〉·(ω) refers to a sample
path of the angle bracket process of M , or to the Lebesgue-Stieltjes measure on
(R+, B(R+)) induced by that sample path, for a.a. ω ∈ Ω.)
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Next, fix any ω ∈ Ω satisfying (2.8) and define the measures ν+
ω and ν−ω on

(R+, B(R+)) as follows:

ν+
ω (A) :=

∫

A
φ+

s (ω) d〈M〉s(ω) and ν−ω (A) :=
∫

A
φ−s (ω) d〈M〉s(ω),

for all A ∈ B(R+). Then

ν+
ω (s, t]− ν−ω (s, t] =

∫ t

s
φ+

u (ω) d〈M〉u(ω)−
∫ t

s
φ−u (ω) d〈M〉u(ω)

=
∫ t

s
φu(ω) d〈M〉u(ω)

=
∫ t

0
φu(ω) d〈M〉u(ω)−

∫ s

0
φu(ω) d〈M〉u(ω)

= 0,

for all s ≤ t ∈ R+, according to (2.8). In other words, ν+
ω and ν−ω agree on the

π-system (see Rogers and Williams [78, p. 87])

I := {(s, t] ⊆ R+ | s ≤ t ∈ R+} .

Also, it follows directly from (2.9) that

ν+
ω (R+) =

∫ ∞

0
φ+

s (ω) d〈M〉s(ω) < ∞ and ν−ω (R+) =
∫ ∞

0
φ−s (ω) d〈M〉s(ω) < ∞.

The above observations, together with the fact that B(R+) = σ(I ), allow us to
deduce from Rogers and Williams [78, Lem. 4.6, p. 93] that ν+

ω = ν−ω . In particular,
this means that

∫

A
φs(ω) d〈M〉s(ω) =

∫

A
φ+

s (ω) d〈M〉s(ω)−
∫

A
φ−s (ω) d〈M〉s(ω)

= ν+
ω (A)− ν−ω (A)

= 0,

(2.10)

for all A ∈ B(R+).
Finally, choose ε > 0. Since P ⊆ F⊗B(R+) and φ is predictable, it follows that

φ is F⊗B(R+)-measurable, whence its ω-sections φ·(ω) are B(R+)-measurable, for
a.a. ω ∈ Ω. (The latter is a standard result in any presentation of Fubini’s theorem
— see e.g. Cohn [11, Lem. 5.1.1, p. 155].) Consequently,

{φ > ε} := {(ω, t) ∈ Ω× R+ |φt(ω) > ε} ∈ F ⊗B(R+)

and
{φ·(ω) > ε} := { t ∈ R+ |φt(ω) > ε} ∈ B(R+),
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for a.a. ω ∈ Ω. Thus, by Fubini’s theorem (we only need the version for σ-finite
measure spaces — see e.g. Cohn [11, Prop. 5.2.1, p. 159]),

ε(P⊗ 〈M〉){φ > ε} = ε

∫

Ω×R+

1I{φ>ε}(ω, t) d(P⊗ 〈M〉)(ω, t)

= ε

∫

Ω

∫

R+

1I{φ·(ω)>ε}(t) d〈M〉t(ω) dP(ω)

≤
∫

Ω

∫

R+

1I{φ·(ω)>ε}(t)φt(ω) d〈M〉t(ω) dP(ω)

= 0,

since (2.10) has already established that the inner integral is a.s. zero. It thus follows
that

(P⊗ 〈M〉){φ > 0} = (P⊗ 〈M〉)
( ∞⋃

n=1

{
φ >

1
n

})

≤
∞∑

n=1

(P⊗ 〈M〉)
{

φ >
1
n

}

= 0.

A similar argument works for the set {φ < 0}; hence (P⊗ 〈M〉){φ 6= 0} = 0. Since
µM = P⊗ 〈M〉|P , the result follows. ¥



Chapter 3

Complete Markets

In the introduction we indicated how the concept of stochastic integration is appro-
priate for modelling the behavior of a portfolio of traded assets. In this chapter these
ideas will be developed further, with the presentation of a general semimartingale
model for a simple market. We describe a market formulation with two assets for
investment — one of these is a traded security, while the other is a bank account.
In order to ease the mathematical exposition, the bank account is identified as the
numéraire asset and the traded security is expressed as a numéraire-denominated
price process.

Investment strategies and portfolio choices are discussed next. For theoretical
and practical reasons, we shall limit our attention in this chapter to investment stra-
tegies that are self-financing and satisfy an admissibility condition. These concepts
are introduced and discussed.

It is probably no exaggeration to say that the most fundamental advances in
mathematical finance over the past twenty years have involved the careful analysis
of the relationships between the existence of market equilibria, the non-existence of
arbitrage opportunities and the existence of equivalent martingale measures. These
developments were initiated by Harrison and Kreps [39] and Harrison and Pliska
[40, 41] and culminated with the formulation and proof of the fundamental theorems
of asset pricing.

The first fundamental theorem of asset pricing establishes a relationship between
no-arbitrage and the existence of an equivalent measure under which all numéraire-
denominated self-financing portfolio processes are local martingales. It has been
established in its most general form by Delbaen and Schachermayer [20, 22]. We
shall provide a formal and precise statement of this result.

The concept of market completeness expresses the condition that all contingent
claims can be replicated with self-financing investment strategies. The second funda-
mental theorem of asset pricing provides a relationship between market completeness
and the uniqueness of the equivalent martingale measure for a given numéraire. We
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shall present a proof of a version this theorem, which is essentially a martingale
representation result due to Jacod and Yor [52].

With the fundamental theorems established, we shall concentrate on an approach
to constructing equivalent local martingale measures in the general semimartingale
framework. This will lead to the formulation of the structure condition, which will
be used throughout the rest of the dissertation. The chapter concludes with the
familiar example of the standard Black-Scholes model, which serves to illustrate the
approach outlined above.

3.1 The Market Model

Throughout this chapter we fix a filtered probability space (Ω, F ,F,P), satisfying
the usual conditions. The filtration F = (Ft)t∈[0,T ] is defined over a finite time-
horizon T ∈ (0,∞) and we make the simplifying assumptions that F0 is P-trivial
(i.e. it only contains P-null sets and their compliments) and FT = F . All stochastic
processes are defined on (Ω, F ,F,P) (in particular, they are defined on the time
interval [0, T ]) and are implicitly understood to be adapted to F.

Two processes specify the assets at an investor’s disposal. In order to price
instruments in the market, it is necessary to select one of them as a common standard
of value; this asset is called the numéraire. The natural and usual choice for the
numéraire is the bank account. In keeping with convention this is an adapted finite
variation process B, defined by

Bt := exp
(∫ t

0
rs ds

)
,

for all t ∈ [0, T ], where r is the non-negative adapted instantaneous short rate
process. The other process S is called the stock price process. As opposed to the
case for the bank account, we shall leave the specific dynamics of the stock price
unspecified and assume only that it is a positive semimartingale.

It is convenient to work with price processes denominated in units of the numér-
aire. In the case where the bank account is selected as numéraire, we refer to
numéraire-denominated prices as discounted prices.

Definition 3.1. The process X, defined by

Xt :=
St

Bt
,

for all t ∈ [0, T ], describes the discounted stock price process. We shall refer to it
simply as the price process.
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Given the assets at our disposal, it is now possible to consider trading strategies
and portfolios.

Definition 3.2. A trading strategy is a pair of processes (ξ, η), where ξ ∈ L(X) and
η is adapted. At time t ∈ [0, T ], the component ξt represents the stock-holding or
number of units of stock held in a portfolio, while ηt is the bank account holding or
number of units of the bank account held in the portfolio.

Definition 3.3. Let (ξ, η) be a trading strategy. The process V (ξ, η), defined by

Vt(ξ, η) :=
1
Bt

(ξtSt + ηtBt) = ξtXt + ηt, (3.1)

for all t ∈ [0, T ], describes the discounted value of the strategy. We shall refer to it
simply as the value process (of (ξ, η)).

In the introduction we justified the concept of stochastic integration with a
discrete-time trading example. It is now possible to do the same for continuous-
time trading. We start by defining the process that describes the gain from a trading
strategy.

Definition 3.4. Let (ξ, η) be a trading strategy. The process G(ξ), defined by

Gt(ξ) :=
∫ t

0
ξs dXs, (3.2)

for all t ∈ [0, T ], describes the discounted gain from trade associated with the stra-
tegy. We shall refer to it simply as the gain process (of (ξ, η)).

Often a value or gain process associated with a trading strategy is the main
object of interest, not the strategy itself. In such cases we shall refer to a value
process V or a gain process G, without explicitly indicating the underlying strategy.

An important class of portfolio strategies are those for which, after the initial
endowment, there is no further investment or withdrawal of funds. The example
in the introduction employed a self-financing constraint which required that, at the
instant trading took place, the portfolio weights were adjusted to ensure that no net
capital gain or loss was incurred. An analogous condition may be specified for the
continuous-time case, leading to the definition of a self-financing trading strategy as
one for which changes in value are due only to gains from trading in the market and
are not the result of any inflow or outflow of funds.

Definition 3.5. A trading strategy (ξ, η) is said to be self-financing if the value
process V (ξ, η) satisfies the condition

Vt(ξ, η) = V0(ξ, η) + Gt(ξ), (3.3)

for all t ∈ [0, T ].
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It should be noted that there is a redundancy inherent in the concept of a self-
financing strategy. If the initial capital v of such a strategy (ξ, η) is specified, then
the amount invested in the riskless asset is determined by

ηt = v + Gt(ξ)− ξtXt, (3.4)

for all t ∈ [0, T ]. In other words, the strategy is specified either by the pair (ξ, η), in
which case v = V0(ξ, η) can be calculated from (3.1); or by the pair (ξ, v), in which
case η is determined by (3.4).

The next result establishes that the self-financing property is preserved irres-
pective of whether the portfolio is denominated in terms of the numéraire. This
explains why our decision to work with discounted asset and portfolio values results
in no loss of generality.

Theorem 3.6 (Numéraire Invariance). The self-financing property is not affected
by discounting.

Proof. Let (ξ, η) be a self-financing trading strategy and V its associated value
process. Since B is continuous and of finite variation, the stochastic integration by
parts rule gives

d(BV )t = Bt dVt + Vt− dBt

= Btξt dXt + Vt− dBt

= ξt dSt − ξtXt− dBt + Vt− dBt

= ξt dSt + (Vt− − ξtXt−) dBt

= ξt dSt + (Vt − ξtXt) dBt

= ξt dSt + ηt dBt,

for all t ∈ [0, T ], where the second equality is an expression of the self-financing
condition, the third equality follows from

dSt = d(BX)t = Bt dXt + Xt− dBt,

and the penultimate equality follows from the fact that ∆Vt = ξt∆Xt, since (ξ, η) is
self-financing. Thus the non-discounted portfolio value may be written as

BtVt = V0 +
∫ t

0
ξu dSu +

∫ t

0
ηu dBu, (3.5)

for all t ∈ [0, T ]. This is precisely the self-financing condition for the non-discounted
portfolio1. The reverse implication follows by a similar argument. ¥

1 In other words, the change in value of the non-discounted portfolio is due only to the gain from

trading in the market assets (bank account and stock) — compare (3.5) with (3.3) and (3.2).
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More general versions of the numéraire invariance theorem exist for markets
comprising many assets. It is also possible to denominate portfolios in terms of an
asset with a stochastic component and obtain a similar result (see e.g. [36, 2]).

For practical and theoretical reasons, we wish to eliminate strategies that lead
to certain profit, but possibly incur unbounded interim losses. The classic doubling
strategy and the suicide strategy of Harrison and Pliska [40] are examples of strate-
gies we wish to censure. The concept of portfolio admissibility is introduced for this
reason.

Definition 3.7. A stock-holding process ξ is said to be admissible if there exists
some α ∈ R+ such that Gt(ξ) ≥ −α, for all t ∈ [0, T ]. A trading strategy that
utilizes an admissible stock-holding process will be called admissible.

Admissibility is an economically realistic constraint, since it represents a limited
line of credit. Note that, in general, admissibility is not preserved under a change of
numéraire — it is a requirement that the numéraire be bounded away from zero for
this to be the case. The significance of admissibility is highlighted by the following
theorem, due to Ansel and Stricker.

Theorem 3.8. If M ∈ Mloc and φ is a predictable process such that the integral∫ ·
0 φs dMs is bounded below, then

∫ ·
0 φs dMs is a local martingale.

Proof. See Ansel and Stricker [1, Cor. 3.5, p. 309]. ¥

We now provide a simple lemma that characterizes the integral in the previous
theorem as a supermartingale.

Lemma 3.9. Let M ∈Mloc possess a localizing sequence of stopping times (τn)n∈N
such that

lim
n→∞P{τn = T} = 1. (3.6)

If M is bounded below, then it is a supermartingale.

Proof. Let s ≤ t ∈ [0, T ]. Then

E [Mt |Fs] = E
[

lim
n→∞M τn

t

∣∣∣Fs

]

= E
[
lim inf
n→∞ M τn

t

∣∣∣ Fs

]

≤ lim inf
n→∞ E [M τn

t |Fs]

= lim
n→∞M τn

s = Ms.

The inequality follows from Fatou’s lemma, while the final equality is a consequence
of assumption (3.6) on the localizing sequence. ¥
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The proof of this lemma highlights the fact that when working with a local
martingale on a finite time-horizon one must rule out possible end point pathologies.
This is the point of (3.6), which can also be found in Harrison and Pliska [40, p. 233].
To see how the result can fail if we only assume that M is a local martingale, consider
the following example.

Example 3.10. Define M by setting Mt := 1I{t=T}, for all t ∈ [0, T ]. Then M is
a (deterministic) local martingale — the sequence of (deterministic) stopping times
(τn)n∈N, with τn := T − 1/n, is a localizing sequence. However, M is a strict
submartingale, since E [MT ] = 1 > 0 = E [Mt], for all t ∈ [0, T ).

Note that for any increasing sequence of stopping times (τn)n∈N taking values in
[0, T ],

lim
n→∞P{τn = T} ≤ P

{
lim

n→∞ τn = T
}

. (3.7)

This implies that if the sequence satisfies (3.6), then τn ↑ T a.s. In other words,
(3.6) represents a stronger condition on the localizing sequence of stopping times for
a local martingale than (the conventional) a.s. convergence to T .

We shall not worry about these technicalities anymore. Henceforth we shall take
Lemma 3.9 to say that any bounded below local martingale is a supermartingale (this
is the folk theorem as it repeatedly appears in the literature). It is now possible to
relate the above results to the market, by providing a corollary to Theorem 3.8.

Corollary 3.11. If X ∈ Mloc and (ξ, η) is an admissible self-financing strategy,
then V (ξ, η) is a local martingale and consequently also a supermartingale.

Often the admissibility criterion of Definition 3.7 is difficult to incorporate in a
mathematical formalism — this will certainly be the case when we start to consi-
der market incompleteness. An alternative approach to eliminating pathological
strategies is provided by the following definition (see e.g. [69]).

Definition 3.12. Let Q be a probability measure equivalent to P. A process ξ,
representing a stock-holding, is said to be Q-admissible if G(ξ) is a martingale under
Q. A trading strategy that utilizes a Q-admissible stock-holding process will also be
called Q-admissible.

This definition does not have the same intuitive economic appeal as the notion
of admissibility offered by Definition 3.7. However, it will be seen that portfolios
that satisfy Definition 3.12 form a suitable setting for the first fundamental theorem
of asset pricing. This is the subject of the next section.
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3.2 The First Fundamental Theorem of Asset Pricing

The notion of arbitrage is a key concept and is intrinsically linked to market equili-
brium. Following the description of Kreps [57], in a market in equilibrium it should
not be possible for an agent to purchase, at zero cost, a portfolio that will strictly in-
crease his utility. Such a portfolio would constitute an arbitrage opportunity, since,
in the absence of credit constraints, he would continue to purchase it until either
the price of the portfolio increased or it ceased to increase his utility. The absence
of arbitrage is thus a necessary condition for economic equilibrium.

We shall not explore the idea of market equilibrium further, but instead turn
our attention to another feature of arbitrage. The absence of arbitrage and the
existence of an equivalent probability measure under which discounted asset prices
are local martingales — a so-called risk-neutral measure — are also linked. These
two concepts will now be made more concrete and their relationship explored.

Definition 3.13. Let V be the value process associated with a self-financing trading
strategy. If there exist two stopping times σ and τ , with σ < τ ∈ [0, T ] a.s., for which

P{Vτ ≥ Vσ} = 1 and P{Vτ > Vσ} > 0,

then V is an arbitrage.

In other words, an arbitrage is a portfolio that with certainty grows at least as
fast as the riskless asset over some time interval [σ, τ ] and has a positive probability
of delivering a return in excess of the risk-free rate over that interval. Clearly, the
existence of an arbitrage allows an investor to make an arbitrarily large profit without
assuming any risk. This is achieved by borrowing as much capital as possible,
corresponding to a negative bank account holding, and investing it in the arbitrage
portfolio over the time interval. At the end of the arbitrage period the portfolio
is sold to cover the outstanding bank account liability, returning an excess amount
with non-zero probability.

Definition 3.14. A probability measureQ on (Ω, F ) is called a risk-neutral measure
if Q ∼ P and the price process X is a local martingale under Q. We shall also call
such a measure an equivalent local martingale measure. If X is in fact a martingale
under Q, then we call Q an equivalent martingale measure.

With the definition of arbitrage and risk-neutral measures in place, it is now
possible to present a result which is central to mathematical finance. The first fun-
damental theorem of asset pricing links the concept of no-arbitrage to the existence
of risk-neutral measures. We start by stating an informal version.
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Folk Theorem. A risk-neutral measure exists for the market of Section 3.1 iff no
admissible self-financing strategy yields an arbitrage.

At first the statement of the theorem seems surprising, but it turns out that
necessity is quite easy to prove, as is seen below. The reverse implication is how-
ever remarkably difficult and requires a slightly modified definition of arbitrage, as
well as some sophisticated functional analysis.

Proof of necessity. Assume the existence of a risk-neutral measure Q and let V be
the value process of an admissible self-financing trading strategy. By Corollary 3.11,
V is then a supermartingale under Q. Now suppose that V is an arbitrage. By
assumption we can find stopping times σ < τ ∈ [0, T ], such that

P{Vτ ≥ Vσ} = 1 and P{Vτ > Vσ} > 0.

Then Q ∼ P implies that

Q{Vτ ≥ Vσ} = 1 and Q{Vτ > Vσ} > 0.

The first condition implies that

EQ [Vτ ] = EQ
[
1I{Vτ≥Vσ}Vτ

]
and EQ [Vσ] = EQ

[
1I{Vτ≥Vσ}Vσ

]
,

while from the second condition we get

EQ
[
1I{Vτ >Vσ}Vτ

]
> EQ

[
1I{Vτ >Vσ}Vσ

]
.

Hence,

EQ [Vτ ] = EQ
[
1I{Vτ≥Vσ}Vτ

]

= EQ
[
1I{Vτ=Vσ}Vτ

]
+ EQ

[
1I{Vτ >Vσ}Vτ

]

= EQ
[
1I{Vτ=Vσ}Vσ

]
+ EQ

[
1I{Vτ >Vσ}Vτ

]

> EQ
[
1I{Vτ=Vσ}Vσ

]
+ EQ

[
1I{Vτ >Vσ}Vσ

]

= EQ
[
1I{Vτ≥Vσ}Vσ

]

= EQ [Vσ] .

But this contradicts

EQ [Vτ ] = EQ
[
EQ [Vτ |Fσ]

]
≤ EQ [Vσ] ,

which follows from the supermartingale property of V under Q, together with the
optional sampling theorem. ¥
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Note that the Folk Theorem above — or the first fundamental theorem of asset
pricing, in general — cannot be formulated using the notion of Q-admissibility. This
is due to the fact that one already needs to specify a candidate EMM in order to
define Q-admissibility and, in the event that there are numerous candidates, it is
not clear which one should be used. It is, however, possible to show that no Q-
admissible strategy is an arbitrage. To see this we can follow the proof of necessity
above with the value process of an admissible strategy replaced by the value process
of a Q-admissible strategy (ξ, η). Now, G(ξ) is a martingale under Q and the self-
financing property (Definition 3.5) means that V (ξ, η) is also a martingale under Q
(and hence also a supermartingale). Following the rest of the proof as before yields
the result.

The history of this theorem is rich, with the first versions presented for the
discrete-time case. Inspired by the work of Ross [80] and Cox and Ross [13] (in
this paper the market was modified so that stocks appreciate at the riskless rate
and claims are calculated as expected values), Harrison and Kreps [39] provided
the first proof of the theorem for the case where Ω is finite. Later Dalang, Morton
and Willinger [14] proved the result for arbitrary Ω. Finally, it was proved in the
continuous-time setting in a series of papers by Delbaen and Schachermayer [23, 20,
22].

In order to provide a precise statement of the first fundamental theorem, a more
formal definition of arbitrage is now provided. We start by defining the following
sets (see Delbaen and Schachermayer [20, p. 473] and Björk [5, p. 139]):

K0 = {GT (ξ) | ξ is an admissible stock-holding strategy} ,

K = K0 ∩ L∞,

L∞+ = {x ∈ L∞ |x ≥ 0} ,

C = K − L∞+ =
{

y − x | y ∈ K, x ∈ L∞+
}

.

The set K0 contains the terminal values of all admissible self-financing strategies
starting with zero initial investment. The set K is the subset of these terminal
portfolio values that are also bounded. The elements of C are those non-negative
bounded terminal portfolio values dominated by elements of K. Alternatively, they
may be thought of as the terminal values of all admissible self-financing strategies
starting at zero that lead to a bounded outcome, but may lose money through an
ineffective strategy (for instance by the addition of a suicide strategy).

It should be clear (by Definition 3.13) that any non-negative element of C, with a
non-zero probability of a strictly positive value, constitutes an arbitrage. If arbitrage
is not allowed, then the only non-negative elements of C should be a.s. zero. In other
words, the only non-negative terminal portfolio value reachable by an admissible
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self-financing strategy with zero initial investment should be zero. This leads to the
following definition.

Definition 3.15. The market of Section 3.1 satisfies the conditions of

1. no arbitrage (NA) if C ∩ L∞+ = {0}; and

2. no free lunch with vanishing risk (NFLVR) if C ∩ L∞+ = {0}.
Note that C ⊆ C implies that NFLVR is a stronger condition than NA. Earlier we

demonstrated that the existence of a risk-neutral measure implies NA. The reverse
implication is, however, false — Schachermayer [81, Prop. 4.5] provides a counte-
rexample. This is why we need the strengthened condition of NFLVR. Under various
ancillary assumptions, it is possible to show that NFLVR implies the existence of a
measure under which the price process is (in full generality) a sigma-martingale.

Definition 3.16. X is called a sigma-martingale if there exists a martingale M and
a non negative process φ ∈ L(M), such that

X =
∫ ·

0
φs dMs.

A probability measure Q ∼ P under which X is a sigma-martingale is called an
equivalent sigma-martingale measure.

Note that sigma-martingales are more general objects than local martingales.
While all local martingales are sigma-martingales, it is possible to find sigma-
martingales that are not local martingales — a famous example is due to Emery
[30] (see also [74, p. 176]).

We are now able to summarize the results of Delbaen and Schachermayer [20, 22],
which constitute the most general statement of the first fundamental theorem of asset
pricing (see also [93, VII§2c, p. 655–659]).

Theorem 3.17 (First Fundamental Theorem of Asset Pricing). Let EMM (resp.

ELMM, EσMM ) denote the condition that the price process admits an equivalent
martingale measure (resp. equivalent local martingale measure, equivalent sigma-
martingale measure).

1. If X is a general semimartingale, then

EMM ⇒ ELMM ⇒ EσMM ⇔ NFLVR ⇒ NA.

2. If X is a locally bounded semimartingale, then

EMM ⇒ ELMM ⇔ EσMM ⇔ NFLVR ⇒ NA.

3. If X is a bounded semimartingale, then

EMM ⇔ ELMM ⇔ EσMM ⇔ NFLVR ⇒ NA.
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3.3 The Second Fundamental Theorem of Asset

Pricing

As we have just seen, the first fundamental theorem of asset pricing relates the
concept of no-arbitrage to the existence of an equivalent martingale measure for
X. The second fundamental theorem of asset pricing relates the concept of market
completeness to the uniqueness of such a probability measure. The version of this
theorem presented here considers the case of equivalent martingale measures under
which X is a square integrable martingale. It is not the most general version, but
it is appropriate, since Chapter 4 is devoted to the theory of incomplete markets in
the case where X is a square integrable martingale under P.

We start by generalizing some of the terminology and concepts presented in Sec-
tion 2.10, so that they apply to any measure Q ∼ P, rather than to P exclusively. We
denote by M2(Q) (resp. M2

0(Q)) the class of square integrable Q-martingales (resp.

the class of square integrable Q-martingales with initial value zero); S(Q;A) is the
stable subspace of M2

0(Q) generated by A ⊆ M2
0(Q); and P(Q;A) is the family of

probability measures Q̄ on (Ω, F ) satisfying properties (1)–(3) of Definition 2.67, but
with P replaced by Q and Q replaced by Q̄. We now fix some additional terminology
and notation.

Definition 3.18. Set Pe(X) :=
{
Q ∼ P |X ∈M2(Q)

}
.

From the martingale property of X under elements of Pe(X), it is easily seen
that this set of probability measures is convex. Also note that Pe(X) ⊆ P(X), by
Definition 2.67,

As is standard, a contingent claim is represented by an FT (= F )-measurable
random variable, describing the discounted payoff received by the holder at maturity.

Definition 3.19. Let Q ∈ Pe(X). A contingent claim H ∈ L2(Q) is said to be
Q-attainable if there exists a Q-admissible self-financing strategy (ξ, η), with ξ ∈
L2(X), such that H = VT (ξ, η) Q-a.s.

Definition 3.20. The market is called complete if there exists a probability measure
Q ∈ Pe(X) such that every claim H ∈ L2(Q) is Q-attainable.

We now present a version of the second fundamental theorem of asset pricing,
subject to the condition that X is continuous. This constraint is only really required
for the implication (2⇒ 3), where it is necessary in order to apply Theorem 2.74.
This version is based on Protter [73, p. 189] (see also Davis [18]).

Theorem 3.21 (Second Fundamental Theorem of Asset Pricing). Suppose X is
continuous. Then the following statements are equivalent:
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1. the market is complete;

2. X−X0 possesses the predictable representation property under some probability
measure Q ∈ Pe(X); and

3. |Pe(X)| = 1.

Proof. (1⇒ 2) Let Q ∈ Pe(X) be a probability measure such that every claim
in L2(Q) is Q-attainable and fix M ∈ M2

0(Q). By assumption, there exists a Q-
admissible self-financing strategy (ξ, η), with ξ ∈ L2(X), such that VT (ξ, η) = H :=
MT . Q-admissibility implies that V (ξ, η) is a martingale under Q and so we have

Mt = EQ [MT |Ft] = EQ [VT (ξ, η) |Ft] = Vt(ξ, η) = Gt(ξ),

for all t ∈ [0, T ], where the last step follows from the self-financing condition and
the fact that V0 = EQ [MT ] = 0. So the desired representation for M is given by

Mt =
∫ t

0
ξs dXs =

∫ t

0
ξs d(X −X0)s,

for all t ∈ [0, T ].
(2⇒ 1) Let Q ∈ Pe(X) be a probability measure under which X − X0 enjoys the
predictable representation property and fix an arbitrary claim H ∈ L2(Q). Define a
martingale M ∈M2

0(Q), by setting

Mt := EQ [H |Ft]− EQ [H] ,

for all t ∈ [0, T ]. By assumption, there exists a process φ ∈ L2(X) satisfying

Mt =
∫ t

0
φs d(X −X0)s =

∫ t

0
φs dXs,

for all t ∈ [0, T ]. Now take ξ := φ and define the process η, by setting

ηt := EQ [H] + G(ξ)t − ξtXt,

for all t ∈ [0, T ]. This makes (ξ, η) a self-financing Q-admissible strategy, with
VT (ξ, η) = H a.s. In other words, H is Q-attainable.
(2⇒ 3) Let Q ∈ Pe(X) and suppose that X − X0 possesses the predictable repre-
sentation property under Q. Then by Definition 2.71 and Theorem 2.70 we have
S(Q;X − X0) = M2

0(Q). Consequently, by Theorem 2.72, Q is an extremal point
of P(Q;X − X0). Now suppose that Q̄ ∈ Pe(X) is another equivalent martingale
measure for X. Define the Q-martingale L, by setting

Lt := EQ
[

dQ̄
dQ

∣∣∣∣Ft

]
,
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for all t ∈ [0, T ]. Since Q is extremal in P(Q; X −X0) and L is, by construction, a
uniformly integrable Q-martingale, it follows from item (3) of Theorem 2.74 that L

is continuous. Now fix K > 1 and define the stopping time τK as follows:

τK := inf { t ∈ [0, T ] |Lt > K} .

Let s ≤ t ∈ [0, T ] and choose A ∈ Fs. Then on the event {τK ≤ s}, we have

LτK
t XτK

t = KXτK = LτK
s XτK

s ,

which means that

EQ
[
1I{τK≤s}1IALτK

t XτK
t

]
= EQ

[
1I{τK≤s}1IALτK

s XτK
s

]
. (3.8)

Next, we observe2 that A ∩ {τK > s} ∈ FτK . It then follows that

A ∩ {τK > s} ∈ Fs ∩FτK = FτK∧s ⊆ FτK∧t. (3.9)

Consequently,

EQ
[
1I{τK>s}1IALτK

t XτK
t

]
= EQ

[
1IA∩{τK>s}EQ

[
dQ̄
dQ

∣∣∣∣FτK∧t

]
XτK∧t

]

= EQ
[
EQ

[
1IA∩{τK>s}

dQ̄
dQ

XτK∧t

∣∣∣∣FτK∧t

]]
= EQ

[
1IA∩{τK>s}

dQ̄
dQ

XτK∧t

]

= EQ̄
[
1IA∩{τK>s}X

τK
t

]
= EQ̄

[
1IA∩{τK>s}XτK

s

]

= EQ
[
1IA∩{τK>s}

dQ̄
dQ

XτK∧s

]
= EQ

[
EQ

[
1IA∩{τK>s}

dQ̄
dQ

XτK∧s

∣∣∣∣FτK∧s

]]

= EQ
[
1IA∩{τK>s}EQ

[
dQ̄
dQ

∣∣∣∣ FτK∧s

]
XτK∧s

]
= EQ

[
1I{τK>s}1IALτK

s XτK
s

]
,

(3.10)

where the second and eighth equalities follow from (3.9); and the fifth equality
follows from the fact that XτK is a Q̄-martingale. Putting (3.8) and (3.10) together,
with an application of Lemma 2.18, establishes that LτKXτK is a Q-martingale.

Now, the continuity and non-negativity of L ensure that LτK is a bounded Q-
martingale, whence LτK ∈ M2(Q). It is also clear that XτK ∈ M2(Q). Conse-
quently, LτK and XτK are strongly orthogonal. By Theorem 2.64 and Proposi-
tion 2.46 we have that [LτK , XτK ] = [LτK , X] is a martingale. In other words
LτK − LτK

0 ∈ M2
0(Q) is strongly orthogonal to X −X0. Since Q is extremal point

in P(Q; X − X0), we conclude by Theorem 2.73 that LτK − LτK
0 = 0. Finally,

2 To see this, let u ∈ [0, T ]. Then A ∩ {τK > s} ∩ {τK ≤ u} = ∅ ∈ Fu, if u ≤ s; while, if u > s,

A ∩ {τK > s} ∈ Fs ⊆ Fu and {τK ≤ u} ∈ Fu imply that A ∩ {τK > s} ∩ {τK ≤ u} ∈ Fu as well

(see Definition 2.11).
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the fact that L is a continuous uniformly integrable Q-martingale implies that3

limK→∞ τK = T , Q-a.s. Hence L − L0 = limK→∞(LτK − LτK
0 ) = 0, Q-a.s. The

assumption that F0 is P-trivial (and hence also Q-trivial) implies that L0 = 1; and
so we have LT = dQ̄

dQ = 1, from which it follows that Q̄ = Q.
(3⇒ 2) Suppose Pe(X) = {Q}. Clearly then Q ∈ P(Q;X − X0). Now assume
that Q is not an extremal point of P(Q; X − X0). Then there exist probability
measures Q1,Q2 ∈ P(Q;X − X0), with Q1 6= Q2 and some λ ∈ (0, 1), such that
Q = λQ1 + (1 − λ)Q2. Now fix γ ∈ (0, 1), with γ 6= λ and define the probability
measure Q̄ := γQ1 + (1 − γ)Q2. Clearly Q 6= Q̄. Since P(Q;X − X0) is a convex
set, Q̄ ∈ P(Q;X −X0); so by Definition 2.67 we have Q̄¿ Q. Also, for any A ∈ F

with Q{A} > 0, the positivity of λ and 1− λ, ensure that either Q1{A} > 0 and/or
Q2{A} > 0. This implies that Q̄{A} > 0 whence Q ¿ Q̄. Therefore, Q̄ ∼ Q, from
which it follows that Q̄ ∈ Pe(X); a contradiction. Thus Q is in fact an extremal
point of P(Q;X − X0). Consequently, X − X0 has the predictable representation
property under Q, according to item (4) of Theorem 2.74. ¥

3.4 The Construction of Equivalent Martingale

Measures

In this section we derive two results that provide a mechanism for constructing an
equivalent local martingale measure for the price process. The first result establishes
a relationship between the density process for the local martingale measure and the
canonical decomposition of the price process, under the assumption that the price
process is a special semimartingale. If we assume that the price process has a
certain representation, called the structure condition, then the second result asserts
the existence of an equivalent martingale measure for it.

In order to construct an equivalent local martingale measure for the price process,
the first step is to identify a candidate density process. Here we follow an approach
due to Christopeit and Musiela [8, 69], which relates the density process to the
Doléans exponential of another local martingale.

Proposition 3.22. Suppose that X ∈ Sp, with canonical decomposition X = X0 +
M + A, where X0 is F0-measurable, M ∈ M0,loc with |∆M | ≤ c, for c ∈ R+,
and A ∈ V0 is predictable. If Y ∈ M0,loc satisfies E [E (Y )T ] = 1, ∆Y > −1 and

3 Suppose on the contrary, that A := {limK→∞ τK < T} satisfies Q{A} > 0. Continuity of L

and almost sure convergence to its terminal value mean that limt→T 1IALt = ∞ = 1IALT , Q-a.s.

But then

EQ [|LT |] = EQ [LT ] > EQ [1IALT ] = ∞
contradicts the fact that L ∈ L1(Q).
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A + 〈M, Y 〉 = 0, then E (Y ) is the density process of an equivalent local martingale
measure for X. Conversely, every equivalent local martingale measure for X can be
obtained in this way.

Proof. (⇐) Let Q be an equivalent local martingale measure for X. Its density
process Z is given by

Zt := E
[

dQ
dP

∣∣∣∣Ft

]
,

for all t ∈ [0, T ]. Note that Z is a uniformly integrable martingale, with Z0=1 and
E [ZT ] = 1. Furthermore, due to the equivalence of P and Q, we have

P
{

inf
t∈[0,T ]

Zt > 0
}

= 1, (3.11)

according to Jacod and Shiryaev [51, Prop. 3.5, p. 167]. Consequently, Z is strictly
positive and the process Z−1

− is well-defined. Now define the sequence of stopping
times (τn)n∈N as follows:

τn := inf
{

t ∈ [0, T ]
∣∣∣∣Zt ≤ 1

n

}
,

for all n ∈ N. It follows from (3.11) that for almost all ω ∈ Ω there exists an
N(ω) ∈ N such that Zt(ω) > 1/N(ω), for all t ∈ [0, T ]; whence τN(ω)(ω) = T . Thus
1I{τn=T} ↑ 1 a.s. as n → ∞. A simple application of the monotone convergence
theorem then gives

lim
n→∞P{τn = T} = lim

n→∞E
[
1I{τn=T}

]
= E

[
lim

n→∞ 1I{τn=T}
]

= 1.

According to (3.7), this implies that τn ↑ T a.s. (a fact that we could have deduced
from (3.11) directly). Finally, note that the left continuity of Z−1

− and the definition
of the stopping times ensures that 1/Zτn− ≤ n, for all n ∈ N. In other words, Z−1

−
is locally bounded. Therefore, by Theorem 2.34, the following stochastic integral is
well-defined:

Y :=
∫ ·

0
Z−1

s− dZs. (3.12)

It then follows from the associativity of stochastic integrals (see Theorem 2.41 (4))
that

Zt = Z0 +
∫ t

0
dZs = 1 +

∫ t

0
Zs− dYs,

for all t ∈ [0, T ]. Uniqueness of the solution to (2.6) implies that Z = E (Y ). Note
that Y0 = 0, E [E (Y )T ] = 1 and, since Z is strictly positive, ∆Y > −1.

Next, the stochastic integration by parts formula yields

XtZt = X0Z0 +
∫ t

0
Xs− dZs +

∫ t

0
Zs− dXs + [X,Z]t,
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for all t ∈ [0, T ]. Expanding the second integral in terms of the canonical decompo-
sition of X gives

XtZt = X0 +
∫ t

0
Xs− dZs +

∫ t

0
Zs− dMs +

∫ t

0
Zs− dAs + [X,Z]t

= X0 + Nt + Bt,

(3.13)

for all t ∈ [0, T ]. Here N , given by

Nt :=
∫ t

0
Xs− dZs +

∫ t

0
Zs− dMs,

for all t ∈ [0, T ], is a local martingale by Theorem 2.40; while B is a finite variation
process, given by

Bt :=
∫ t

0
Zs− dAs + [X,Z]t

=
∫ t

0
Zs− dAs +

[
X,

∫ ·

0
Zs−dYs

]

t

=
∫ t

0
Zs− dAs +

∫ t

0
Zs− d[X, Y ]s

=
∫ t

0
Zs− d(A + [X, Y ])s,

(3.14)

for all t ∈ [0, T ]. Here the third equality is an instance Theorem 2.51, while the
fourth follows from item (5) of Theorem 2.41.

Since X ∈ Mloc(Q), it follows that XZ ∈ Mloc, by Corollary 2.62 and so B ∈
M0,loc as well. Rearranging (3.14) (again by associativity of stochastic integrals)
yields ∫ t

0
Z−1

s− dBs = At + [X, Y ]t,

for all t ∈ [0, T ]. Since the left hand side is a local martingale, by Theorem 2.40,
this means that A + [X, Y ] ∈ M0,loc. Another application of the semimartingale
decomposition of X yields

At + [X, Y ]t = At + [M, Y ]t + [A, Y ]t

= At + 〈M,Y 〉t + ([M,Y ]t − 〈M, Y 〉t) +
∑

s≤t

∆As∆Ys,
(3.15)

for all t ∈ [0, T ]. (Note that 〈M, Y 〉 exists, since the jumps of M are bounded —
see the discussion following Theorem 2.49.) Thus the term in brackets is a local
martingale by Definition 2.48, while the final term is a local martingale since A is
predictable (by Lemma 2.47). Consequently, the predictable finite variation part
of (3.15) must be identically zero and we therefore have At + 〈M,Y 〉t = 0, for all
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t ∈ [0, T ].
(⇒) Let Y ∈ M0,loc with E [E (Y )T ] = 1, ∆Y > −1 and A + 〈M, Y 〉 = 0 (as
mentioned before, our assumptions are sufficient to ensure that 〈M,Y 〉 exists) and
set Z := E (Y ). Then Z is strictly positive and Proposition 2.53 informs us that
Z ∈Mloc. By Lemma 3.9, Z is thus a supermartingale and since E [Z0] = E [ZT ] = 1,
it is in fact a martingale. Moreover, it is uniformly integrable by Jacod and Shiryaev
[51, Lem. 1.44, p. 11]. Consequently Z is the density process for a probability
measure Q ∼ P. Using the same reasoning as in the first part of the proof (see
(3.13)), it can be shown that XZ = X0 + N + B, where N is a local martingale and
B is given by (3.14). By the assumptions on Y , we now get

At + [X,Y ]t = At + [M, Y ]t + [A, Y ]t

= At + 〈M, Y 〉t + ([M, Y ]t − 〈M,Y 〉t) +
∑

s≤t

∆As∆Ys,

= ([M,Y ]t − 〈M,Y 〉t) +
∑

s≤t

∆As∆Ys,

for all t ∈ [0, T ]. This implies that A + [X,Y ] ∈M0,loc, whence B ∈M0,loc. It thus
follows that XZ ∈Mloc, which establishes that Q is an equivalent local martingale
measure for X. ¥

The proof of this theorem could also have been derived directly by an application
of Girsanov’s theorem. In fact, it is just a special case of Girsanov’s theorem. Note
that the constraint on the size of the jumps ensures that the Doléans exponential
is a strictly positive process; this is necessary if we wish to produce a probability
measure. If signed martingale measures are allowed, then this constraint may be
relaxed.

We now introduce a representation for the price process known in the literature
as the structure condition (see [86, 89]). If a process satisfies this condition, then,
under an additional assumption on its jump sizes, it admits an equivalent local
martingale measure.

Definition 3.23. Let X ∈ Sp. We say that X satisfies the structure condition if its
canonical decomposition takes the form

Xt = X0 + Mt +
∫ t

0
αs d〈M〉s, (3.16)

for all t ∈ [0, T ], where M ∈M2
0,loc and α ∈ L2

loc(M).

Theorem 3.24. Suppose that the canonical decomposition of X ∈ Sp satisfies (3.16)
and that α∆M < 1. Then X admits an equivalent local martingale measure.
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Proof. Define the process Y , by setting

Yt := −
∫ t

0
αs dMs,

for all t ∈ [0, T ]. Since ∆Y = −α∆M > −1, by assumption and

At + 〈M,Y 〉t =
∫ t

0
αs d〈M〉s −

〈
M,

∫ ·

0
αs dMs

〉

t

=
∫ t

0
αs d〈M〉s −

∫ t

0
αs d〈M〉s

= 0,

for all t ∈ [0, T ], Y defines an equivalent local martingale measure for X, by Theo-
rem 3.22. ¥

We shall see in Chapter 5 that although the structure condition guarantees the
existence of an equivalent local martingale measure for X, it does not imply that
this measure is unique. Uniqueness is only guaranteed in a complete market.

3.5 A First Application: The Black-Scholes Model

We are now in a position to apply the mathematical machinery developed thus far.
We start with a familiar example, by deriving the Black-Scholes partial differential
equation (PDE) (see [6, 64]). Suppose the discounted stock price process X has
dynamics

dXt = (µ− r)Xt dt + σXt dWt, (3.17)

for all t ∈ [0, T ], where W is a standard Brownian motion and µ, σ and r are
constants, with µ > r and σ > 0. Note that we have assumed a constant short rate,
so the bank account process B is given by

Bt = ert,

for all t ∈ [0, T ]. We do not prove it here, but the market described by these two
assets is complete (see e.g. [5, 94]). The canonical decomposition of X is

Xt = X0 + Mt + At,

where

Mt :=
∫ t

0
σXs dWs and At :=

∫ t

0
(µ− r)Xs dt,

for all t ∈ [0, T ]. Since X is continuous, it satisfies the structure condition (3.16),
with the process α featuring there given by

αt :=
µ− r

σ2Xt
,
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for all t ∈ [0, T ]. As a result of Theorem 3.24, we may easily construct a martingale
measure Q for X, with density process

Zt := E
[

dQ
dP

∣∣∣∣Ft

]
= E (Y )t ,

where

Yt := −
∫ t

0
αt dMt = −

∫ t

0

µ− r

σ2Xt
dMt = −µ− r

σ
Wt,

for all t ∈ [0, T ]. Note that the fraction µ−r
σ in the last expression is the familiar

Sharpe ratio, or market price of risk. Now define a new process Ŵ , by setting

Ŵt := Wt +
µ− r

σ
t,

in which case (3.17) becomes
dXt = σXt dŴt, (3.18)

for all t ∈ [0, T ]. We shall next verify that the Ŵ is a Brownian motion under Q,
by appealing to Lévy’s characterization of Brownian motion.

Theorem 3.25 (Lévy). A process M is a Brownian motion iff it is a continuous
local martingale with 〈M〉t = t, for all t ∈ [0, T ].

Proof. See Protter [74, Thm. 39, p. 86]. ¥

Clearly Ŵ is continuous. To see that it is a local Q-martingale, we note that the
stochastic integration by parts rule gives

ŴtZt =
∫ t

0
Ŵs dZt +

∫ t

0
Zs dŴt +

[
Ŵ , Z

]
t

= −
∫ t

0
ŴsZs dYs +

∫ t

0
Zs

(
dWs +

µ− r

σ
ds

)

+
[
W −

∫ ·

0

µ− r

σ
ds ,−

∫ ·

0
Zs dYs

]

t

= −
∫ t

0

µ− r

σ
ŴsZs dWs +

∫ t

0
Zs dWs

+
∫ t

0

µ− r

σ
Zs ds−

∫ t

0

µ− r

σ
Zs d[W ]s

=
∫ t

0

(
1− µ− r

σ
Ŵs

)
Zs dWs,

for all t ∈ [0, T ], which is a local martingale. Since Ŵ and W are continuous, we see
that 〈

Ŵ
〉Q
t

=
[
Ŵ

]
t
=

[
W −

∫ ·

0

µ− r

σ
ds

]

t

= [W ]t = 〈W 〉t = t,
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for all t ∈ [0, T ]. By Theorem 3.25, it follows that Ŵ is a Brownian motion under
Q. It then follows from (3.18) that X is a local Q-martingale. In fact, it is a
Q-martingale (see Protter [74, Example, p. 76–77] for justification).

Now consider a European option on X, with maturity T and discounted payoff
h(XT ), for some Borel-measurable function h : R+ → R+ satisfying h(Xt) ∈ L1,
for all t ∈ [0, T ]. As mentioned earlier, the market is complete, so by the second
fundamental theorem of asset pricing, we know that Q is unique and that there
exists a Q-admissible self-financing strategy (ξ, η), such that

VT (ξ, η) = h(XT ).

The price of this option is then given by

V0 = EQ [h(XT )]

and is unique and preference-independent.
The next result provides a link between the representation of the price of the

claim as an expected value computed under the risk-neutral measure and its repre-
sentation as the solution of a certain PDE.

Theorem 3.26 (Feynman-Kač). Consider the stochastic differential equation

dYt = µ(t, Yt) dt + σ(t, Yt) dWt,

for all t ∈ [0, T ]. Let g : R→ R be a Borel-measurable function satisfying g(Yt) ∈ L1,
for all t ∈ [0, T ]. Define the function G : R+ × R→ R, by setting

G(t, y) := E [g(YT ) |Yt = y] ,

for all (t, y) ∈ R+ × R. Then G satisfies the following PDE:

∂G

∂t
(t, y) + µ(t, y)

∂G

∂y
(t, y) +

1
2
σ2(t, y)

∂2G

∂y2
(t, y) = 0,

for all (t, y) ∈ R+ × R, with the terminal condition G(T, y) = g(y), for all y ∈ R.

Proof. See Shreve [94, Thm. 6.4.1, p. 268]. ¥

The Feynman-Kač theorem facilitates the construction of a PDE representation
for the hedging portfolio, in the case where the underlying asset is driven by a
Brownian motion. We now define a function F : [0, T ]× (0,∞) → R+, by setting

F (t, x) = EQ [h(XT ) |Xt = x] ,

for all (t, x) ∈ [0, T ]× (0,∞). Note that this has the following trivial consequence:

F (T, XT ) = h(XT ). (3.19)
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According to the Feynman-Kač theorem, F satisfies the PDE4

∂F

∂t
(t, x) +

1
2
σ2x2 ∂2F

∂x2
(t, x) = 0, (3.20)

for all (t, x) ∈ [0, T ] × (0,∞), with (3.19) as the appropriate boundary condition.
Applying Itô’s formula to the process (F (t,Xt))t∈[0,T ] yields

h(XT ) = F (T, XT ) = F (0, X0) +
∫ T

0
σXs

∂F

∂x
(s,Xs) dŴs

+
∫ T

0

(
∂F

∂t
(s,Xs) +

1
2
σ2X2

s

∂2F

∂x2
(s,Xs)

)
ds.

In the light of (3.18) and (3.20), this becomes

h(XT ) = F (0, X0) +
∫ T

0

∂F

∂x
(s,Xs) dXs.

Since X is a Q-martingale, we obtain F (0, X0) = EQ [h(XT )] from the above. This
corresponds to the unique price of the claim obtained earlier by martingale methods.
Consequently, the self-financing strategy (ξh, ηh), defined by

(ξh
t , ηh

t ) =
(

∂F

∂x
(t,Xt),EQ [h(XT )] + G(ξh)t − ξh

t Xt

)
,

for all t ∈ [0, T ], hedges the option. The quantity ∂F
∂x (t, x), for all (t, x) ∈ [0, T ] ×

(0,∞), is known as the option delta.
Up to this point, we have only considered the discounted claim and the hedging

portfolio with respect to the discounted asset price. In order to express the problem
in terms of non-discounted quantities, we transform the PDE (3.20). First we define
the function F̄ : [0, T ]× (0,∞) → R+, by setting

F̄ (t, s) := ertF (t, e−rts),

for all (t, s) ∈ [0, T ]× (0,∞). It then follows that

∂F̄

∂s
(t, s) =

∂F

∂x
(t, e−rts);

∂2F̄

∂s2
(t, s) = e−rt ∂

2F

∂x2
(t, e−rts); and

∂F̄

∂t
(t, s) = rertF (t, e−rts) + ert ∂F

∂t
(t, e−rts)− rs

∂F

∂x
(t, e−rts)

= rF̄ (t, s) + ert ∂F

∂t
(t, e−rts)− rs

∂F̄

∂s
(t, s),

4 Note that we are considering the dynamics of X under the measure Q, as determined by (3.18).
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for all (t, s) ∈ [0, T ]× (0,∞). The PDE (3.20) may now be rewritten as

e−rt ∂F̄

∂t
(t, s)− re−rtF̄ (t, s) + re−rts

∂F̄

∂s
(t, s) +

1
2
σ2(e−rts)2ert ∂

2F̄

∂s2
(t, s) = 0,

which may in turn be rearranged to give

∂F̄

∂t
(t, s) + rs

∂F̄

∂s
(t, s) +

1
2
σ2s2 ∂2F̄

∂s2
(t, s) = rF̄ (t, s),

for all (t, s) ∈ [0, T ] × (0,∞). The boundary condition corresponding to (3.19) is
now

F̄ (T, s) = erT F (T, e−rT s) = erT h(e−rT s),

for all s ∈ (0,∞). This is of course the celebrated Black-Scholes PDE. Solving it,
subject to the above boundary condition, yields the familiar Black-Scholes option
pricing formula initially presented in Black and Scholes [6].



Chapter 4

Incomplete Markets: The

Martingale Case

In the previous chapter we considered the pricing and hedging of contingent claims
in a complete market setting and it was shown that a self-financing strategy could
be constructed to price and hedge claims so that no risk was assumed by the writer.
Following the account of Föllmer and Sondermann [33], we shall now incorporate
market incompleteness in the form of unhedgeable or intrinsic risk.

With the introduction of intrinsic risk, the problem now becomes one of finding
a hedging strategy that minimizes risk in a suitable manner. Since incompleteness
imposes a regime where a contingent claim no longer has a unique (risk-free) price,
we introduce a cost process that expresses the difference between the value of the
hedging portfolio and the gains associated with hedging. This process provides a
proxy for the price of the claim and allows us to model the difference between its
intrinsic value (which we take to mean the expected value of the claim, conditional
on all information available at the present time) and its cost. A risk process is then
defined by specifying a quadratic functional of the cost process, thereby providing
a measure of the variance of the cost. Strategies that minimize this variance are
optimal, in the sense that they ensure the least deviation between the hedging
portfolio and the intrinsic value of the claim. In this respect, two approaches to
hedging will be considered — the strategy that minimizes the total risk and the
strategy that minimizes the conditional remaining risk.

In this chapter we consider the simplest case, where the discounted stock price
process is a martingale under the real-world measure. In this setting it turns out
that the same stock-holding is used for both strategies outlined above. The simplest
total risk-minimizing strategy employs a bank account holding corresponding to a
self-financing strategy until maturity, at which time there is a possible shortfall or
surplus; while the strategy that minimizes remaining risk is mean self-financing.
Subsequent chapters will generalize the situation, leading to the minimal martingale
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measure and the variance-optimal martingale measure, respectively. We shall then
see that the corresponding trading strategies are substantially different, due to a
subtlety of the semimartingale representation.

4.1 Market Assumptions

As before, let T ∈ (0,∞) and fix a stochastic basis (Ω, F ,F,P). We suppose that
the filtration F = (Ft)t∈[0,T ] satisfies the usual conditions, that FT = F and that
F0 contains only the null sets of F and their complements. All processes are defined
on the stochastic basis above (in particular, they are defined over the time interval
[0, T ]) and are implicitly assumed to be adapted to F.

We assume the existence of a discounted stock price process X, a bank account
process B and an FT -measurable claim H (maturing at time T ) that we wish to
hedge. For now we consider the situation where X is a square integrable martingale1

and set aside consideration of the more general case where X is only a semimartin-
gale. We assume further that H ∈ L2 (the reason for this will become clear when
we introduce the cost and risk processes).

By the GKW decomposition theorem (Proposition 2.75), H has the following
(unique) representation:

H = H0 +
∫ T

0
ξH
s dXs + LH

T , (4.1)

where H0 = E [H], ξH ∈ L2(X) and LH ∈M2
0 is strongly orthogonal to X.

The economic interpretation of equation (4.1) is that any claim may be decom-
posed into a component that can be hedged using a portfolio containing holdings
of the stock and the bank account and an unhedgeable component. If LH = 0,
then all the risk from H can be hedged and we are back in the complete market
of Chapter 3. However, it is a feature of many practical problems — for example,
hedging a non-traded asset with a correlated asset, hedging under the assumption
of stochastic volatility, hedging an index with a subset of its constituents, etc. —
that LH 6= 0, in which case it is impossible to find a self-financing strategy that
replicates the claim perfectly.

We now introduce the class of feasible strategies2. These are strategies (not
1 The results in this chapter have been generalized to the situation where X is a locally square

integrable martingale [91].
2 Our account deviates from that of Föllmer and Sondermann [33]. What we call feasible strate-

gies correspond to what they call “admissible” strategies. We do this to avoid a clash of terminology

with our definition of admissibility in Chapter 3. Note also that Schweizer [91] calls this class of

strategies RM -strategies.
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necessarily self-financing) that replicate the claim at maturity and possess certain
integrability properties.

Definition 4.1. A strategy (ξ, η) is called feasible if ξ ∈ L2(X), V (ξ, η) is right
continuous with Vt(ξ, η) ∈ L2, for all t ∈ [0, T ] and VT (ξ, η) = H a.s.

Note that since X is a square integrable martingale, the gain process associated
with a feasible strategy is also a square integrable martingale and consequently
every feasible strategy is P-admissible. Therefore, by the reasoning of the discussion
following the Folk Theorem in Chapter 3, we can conclude that no feasible strategy
is an arbitrage. This martingale property of the gain process is important for a
number of proofs in this chapter and is a consequence of the following lemma.

Lemma 4.2. If M ∈M2 and φ ∈ L2(M), then
∫ ·
0 φs dMs ∈M2.

Proof. See Protter [74, p. 171]. ¥

Since Definition 4.1 does not insist on the self-financing constraint, it is always
possible to construct a feasible strategy that replicates the payoff of the claim. The
simplest example is the unhedged strategy, which amounts to doing nothing until
maturity, at which point the value of the bank account is set equal to the payoff.
In detail, this is the feasible strategy (ξ, η), with ξt = 0 and ηt = H1I{t=T}, for all
t ∈ [0, T ]. It is obvious that this strategy incurs significant risk. The task of hedging
in the current incomplete market setting involves finding a feasible trading strategy
that minimizes risk in an appropriate manner.

4.2 Cost and Risk Processes

Since the writer of a claim is exposed to risk when hedging in an incomplete market,
it is appropriate to inquire about his appetite for risk. This is usually expressed
mathematically as a utility function. Here we assume that the writer has a quadratic
utility of wealth. This leads to measures of risk based on the variance of the total
portfolio outcome. Consequently, we define a cost process that models the deviation
of the hedge portfolio from the intrinsic value of the claim and a risk process which
is a quadratic function of the cost.

There are known objections to the use of quadratic utility, since it penalizes both
the losses and the profits associated with bearing risk [87, §1, Remark 3]. However,
it does provide a symmetric pricing mechanism which does not depend on whether
the claim is held long or short. We now introduce the cost process.
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Definition 4.3. The cost process C(ξ, η) associated with a feasible strategy (ξ, η)
is defined by

Ct(ξ, η) := Vt(ξ, η)−Gt(ξ), (4.2)

for all t ∈ [0, T ].

It is important to note that the concept of cost in this definition does not refer to
transaction costs, which we do not model, but rather relates to the cost of hedging
the claim. In the complete market of the previous chapter, the cost of hedging was
just the risk-neutral price, which could be calculated at the inception of the claim.
With the introduction of a cost process, we are now able to incorporate the shortfall
or surplus resulting from imperfect hedging over the life of the claim.

From Definition 4.3 it can be seen that when a feasible strategy (ξ, η) is used,
the claim may be represented as

H = VT (ξ, η) = CT (ξ, η) + GT (ξ) a.s. (4.3)

This generalizes the representation of the claim derived in the previous chapter, with
the complete market characterized by the trivial case where Ct(ξ, η) = V0(ξ, η), for
all t ∈ [0, T ]. Furthermore, by substituting (4.2) into (3.1) we obtain

ηt = Ct(ξ, η) + Gt(ξ)− ξtXt,

for all t ∈ [0, T ]. Comparing this with (3.4), we see that (ξ, η) is self-financing only
if Ct(ξ, η) = V0(ξ, η), for all t ∈ [0, T ].

A number of risk criteria based on the cost process may now be formulated;
the most obvious being quadratic criteria. Schäl [82] has identified three quadratic
functionals of the cost process that we may choose to minimize in a discrete-time
setup. Given the discrete-time price process {Xt | t = 0, 1, . . . , T}, these are3:

1. the local conditional risk E
[
(Ct+1 − Ct)2

∣∣Ft

]
;

2. the conditional remaining risk E
[
(CT − Ct)2

∣∣ Ft

]
; and

3. the total risk E
[
(CT − C0)2

]
.

Analogues of these risk measures exist for continuous-time. In this chapter we
explore continuous-time formulations of the last two criteria. For the general case,
where X is only a semimartingale, it turns out that no continuous-time analogue
for the second criterion can be formulated; however, analogues of the first and third
criteria will be investigated in Chapters 5 and 6, respectively. Motivated by these
considerations, we now define the risk process.

3 As in the previous chapter, the arguments of C(ξ, η) will be dropped when the strategy is clear

from the context or redundant.
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Definition 4.4. The risk process R(ξ, η) associated with a feasible strategy (ξ, η)
is defined by

Rt(ξ, η) := E
[
(CT (ξ, η)− Ct(ξ, η))2

∣∣ Ft

]
,

for all t ∈ [0, T ].

The reason for the square integrability requirements in Definition 4.1 is now
apparent; without them the risk process would not be well-defined.

Note that when the market is complete, all the risk measures above are consistent
with the fact that perfect hedging is possible and no risk is assumed. As mentioned
before, this corresponds to the situation where the cost process is constant through
time and equal to the risk-neutral price. In that case4, R = 0 as well.

In the incomplete market case, two hedging approaches seem obvious: we can
insist on a self-financing strategy and make up the shortfall at maturity; or we can
continually add and remove money from the hedge portfolio to ensure that its value
corresponds at all times with the intrinsic value of the claim.5 The first strategy
corresponds with minimizing the total risk

R0 = E
[
(CT − C0)2

]
.

A feasible trading strategy with this property is known as mean-variance optimal.
In the second case it is natural to insist on minimizing the conditional remaining
risk

Rt = E
[
(CT − Ct)2

∣∣ Ft

]
,

at every time t ∈ [0, T ]. A feasible strategy with this property is called a risk-
minimizing strategy; we will see later that it is also mean self-financing. We now
explore these two approaches in detail.

4.3 Minimizing Total risk

The next result links the representation of the claim to the structure of the mean-
variance optimal portfolio. In particular, it shows that the optimal hedging strategy
is directly related to the stochastic integral in (4.1), while the initial endowment
needed to hedge the claim optimally is given by its intrinsic value at inception; that
is, V0 = H0 = E [H].

Theorem 4.5. A feasible strategy (ξ, η) minimizes total risk iff V0(ξ, η) = H0 and
ξ = ξH ; in which case

R0(ξ, η) = E
[
(CT (ξ, η)−H0)2

]
= E

[
(LH

T )2
]
.

4 As before, arguments of R(ξ, η) will be dropped when the strategy is clear from the context.
5 The intrinsic value of the claim, at time t ∈ [0, T ], is given by E [H |Ft] = H0+

R t

0
ξH

s dXs +LH
t .
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Furthermore, the initial value and stock-holding are unique (in a µX-a.e. sense).

Proof. Let (ξ, η) be a feasible trading strategy, with C and R its associated cost
and risk processes. By (4.1) and (4.3) we have

CT = H −
∫ T

0
ξs dXs = H0 +

∫ T

0
(ξH

s − ξs) dXs + LH
T .

Since LH is strongly orthogonal to X, it follows that

R0 = E

[(
H0 − C0 +

∫ T

0
(ξH

s − ξs) dXs + LH
T

)2
]

= (H0 − C0)2 + E

[(∫ T

0
(ξH

s − ξs) dXs

)2
]

+ E
[
(LH

T )2
]

+ 2(H0 − C0)E
[∫ T

0
(ξH

s − ξs) dXs

]
+ 2(H0 − C0)E

[
LH

T

]

+ 2E
[
LH

T

∫ T

0
(ξH

s − ξs) dXs

]

= (H0 − V0)2 + E
[∫ T

0
(ξH

s − ξs)2 d〈X〉s
]

+ E
[
(LH

T )2
]
,

where the last step follows as a result of the martingale property of the gain process
and LH . This is minimized iff V0 = H0 and ξ = ξH , whence uniqueness of ξH follows
by Lemma 2.76. ¥

Although this theorem specifies the form of the stock-holding ξ, it does not im-
pose conditions on η, other than at the initial and terminal times. These conditions
are as follows: η0 = H0 − ξ0X0, in order that V0 = H0; and ηT = H − ξT XT , to
ensure that the strategy is feasible. It is thus possible to impose the self-financing
constraint to determine η during (0, T ). The resulting shortfall or excess is added
or removed at termination. The resulting strategy (ξ?, η?) is given by

(ξ?
t , η?

t ) := (ξH
t ,H0 + Gt(ξH)− ξH

t Xt + 1I{t=T}LH
T ), (4.4)

for all t ∈ [0, T ]. The consequence of employing a self-financing strategy is that at
maturity there is a random shortfall or profit LH

T .

4.4 Minimizing Conditional Remaining Risk

We now investigate strategies that minimize the conditional remaining risk at each
time t ∈ [0, T ). This corresponds to the idea of letting the past be the past and
continuously adjusting the portfolio choice so that the remaining risk is always ins-
tantaneously minimized.
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Definition 4.6. Let (ξ, η) and
(
ξ̃, η̃

)
be feasible strategies. Then

(
ξ̃, η̃

)
is called a

feasible continuation of (ξ, η) at time t ∈ [0, T ), if ξ̃s = ξs, for s ∈ [0, t] and η̃s = ηs,
for s ∈ [0, t).

Note that the time interval for ξ̃ is closed, while for η̃ it is half-open. In this
respect we follow Schweizer [91] and deviate from the account of Föllmer and Sonder-
mann [33], where half-open intervals are used in the specification of both processes.
As Schweizer points out, the formulation of feasible continuations in Definition 4.6
can be applied in more general settings, for instance in discrete-time and in the
generalization to local risk minimization (which we explore in Chapter 5). It also
ensures that ξ̃ is predictable, while η̃ need only be adapted. This has the following
important consequence (exploited in the proof of Theorem 4.10):

Vt(ξ, η)− Vt

(
ξ̃, η̃

)
= (ξt − ξ̃t)Xt + (ηt − η̃t)

= ηt − η̃t,
(4.5)

at the continuation time t ∈ [0, T ).
It is now possible to define a risk-minimizing strategy by insisting that it mini-

mizes the conditional remaining risk at each time, over all feasible continuations.

Definition 4.7. A feasible strategy (ξ, η) is called risk-minimizing if at every time
t ∈ [0, T ) we have

Rt(ξ, η) ≤ Rt

(
ξ̃, η̃

)
a.s.,

for any feasible continuation
(
ξ̃, η̃

)
of (ξ, η) at time t.

As mentioned previously, we are no longer constrained to use self-financing stra-
tegies. However, it is useful to define a new class of strategies, called mean self-
financing.

Definition 4.8. A strategy is called mean self-financing if its associated cost process
is a martingale.

The optimal risk-minimizing portfolio will be expressed in terms of a process
that represents the intrinsic risk of the claim.

Definition 4.9. The intrinsic risk process RH associated with the contingent claim
H, with representation (4.1), is defined by

RH
t := E

[
(LH

T − LH
t )2

∣∣Ft

]
,

for all t ∈ [0, T ].



4.4 Minimizing Conditional Remaining Risk 64

Theorem 4.10. The strategy (ξ∗, η∗), defined by

(ξ∗t , η∗t ) := (ξH
t ,H0 + Gt(ξH)− ξH

t Xt + LH
t ), (4.6)

for all t ∈ [0, T ], is feasible and risk-minimizing. Its associated risk process R∗ is
given by

R∗
t = RH

t a.s.,

for all t ∈ [0, T ]. Furthermore, this strategy is unique (in a µX-a.s. sense, for the
stock-holding).

Proof. First, we note that

Vt(ξ∗, η∗) = ξ∗t Xt + η∗t = H0 + Gt(ξH) + LH
t , (4.7)

for all t ∈ [0, T ]. It follows from (4.1) that VT (ξ∗, η∗) = H. Furthermore, since
G(ξH), LH ∈ M2, it follows that V (ξ∗, η∗) ∈ M2 as well. In particular, we have
established that (ξ∗, η∗) is feasible.

It follows immediately from (4.7) that the cost process C∗ associated with (ξ∗, η∗)
is determined by

C∗
t = H0 + LH

t , (4.8)

for all t ∈ [0, T ]. Its risk process R∗ is thus given by

R∗
t = E

[
(C∗

T − C∗
t )2

∣∣Ft

]
= E

[
(LH

T − LH
t )2

∣∣Ft

]
= RH

t ,

for all t ∈ [0, T ].
Now let

(
ξ̃, η̃

)
be a feasible continuation of (ξ∗, η∗) at some time t ∈ [0, T ) and

denote its associated cost and risk processes by C̃ and R̃, respectively. Then, using
(4.1), we obtain

C̃T − C̃t = ṼT

(
ξ̃, η̃

)−
∫ T

0
ξ̃s dXs − Vt

(
ξ̃, η̃

)
+

∫ t

0
ξ̃s dXs

= H −
∫ T

t
ξ̃s dXs − Vt

(
ξ̃, η̃

)

= H0 +
∫ T

0
ξH
s dXs + LH

T −
∫ T

t
ξ̃s dXs − Vt

(
ξ̃, η̃

)

= H0 +
∫ t

0
ξH
s dXs + LH

t +
∫ T

t
ξH
s dXs −

∫ T

t
ξ̃s dXs

− Vt

(
ξ̃, η̃

)
+ LH

T − LH
t

=
∫ T

t
(ξH

s − ξ̃s) dXs +
(
Vt(ξ∗, η∗)− Vt

(
ξ̃, η̃

))
+ (LH

T − LH
t )

=
∫ T

t
(ξ∗s − ξ̃s) dXs + (η∗t − η̃t) + (LH

T − LH
t ),
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where the last equality follows from (4.5) and the discussion after Definition 4.6.
Finally,

R̃t = E
[
(C̃T − C̃t)2

∣∣∣Ft

]

= E

[(∫ T

t
(ξ∗s − ξ̃s) dXs

)2
∣∣∣∣∣Ft

]
+ (η∗t − η̃t)2 + E

[
(LH

T − LH
t )2

∣∣ Ft

]

+ 2(η∗t − η̃t)E
[∫ T

t
(ξ∗s − ξ̃s) dXs

∣∣∣∣ Ft

]
+ 2(η∗t − η̃t)E

[
(LH

T − LH
t )

∣∣Ft

]

+ 2E
[
(LH

T − LH
t )

∫ T

t
(ξ∗s − ξ̃s) dXs

∣∣∣∣Ft

]

= E
[∫ T

t
(ξ∗s − ξ̃s)2 d〈X〉s

∣∣∣∣Ft

]
+ (η∗t − η̃t)2 + RH

t

≥ RH
t .

The last equality above follows from the martingale property of
∫ ·
0(ξ

∗
s − ξ̃s) dXs and

LH and the fact that these two martingales are strongly orthogonal. We can now
immediately read off from the above that (ξ∗, η∗) is both risk-minimizing and unique
(by Lemma 2.76), as advertised. ¥

Corollary 4.11. The risk-minimizing strategy is mean self-financing.

Proof. Since LH ∈ M2, it is clear from (4.8) that C∗ is a (square integrable)
martingale, and consequently mean self-financing. ¥

Note that in the original account of Föllmer and Sondermann [33], Theorem 4.10
was proved in two steps: firstly it was shown from first principles (i.e. without
explicitly constructing the strategy) that a risk-minimizing strategy is mean self-
financing; then the portfolio in equation (4.6) was shown to be risk-minimizing by
an argument similar to that of Theorem 4.10. The extra difficulty encountered
results from the way continuations were defined there (see the discussion following
Definition 4.6).

By comparing (4.4) and (4.6), we see that the mean-variance optimal and risk-
minimizing strategies differ only in the bank account holding. Since the risk-
minimizing strategy is mean self-financing, any surplus between the hedging portfolio
and the intrinsic value of the claim is instantaneously withdrawn and any shortfall
is immediately funded.

4.5 The Hedge Ratio

We may now provide a more explicit characterization of the stock-holding component
of the hedging strategies described above. This is done in the risk-minimizing case
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by computing the covariation with respect to the price process on both sides of (4.7).
In the light of the strong orthogonality of LH and X, this gives

〈V ∗, X〉t =
〈∫ t

0
ξH
s dXs, X

〉

t

+
〈
LH , X

〉
t
=

∫ t

0
ξH
s d〈X〉s,

for all t ∈ [0, T ]. Consequently, we may express ξH as the pathwise Radon-Nikodým
derivative of the Lebesgue-Stieltjes measure induced by 〈V ∗, X〉 with respect to the
Lebesgue-Stieltjes measure induced by 〈X〉; i.e.

ξH =
d〈V ∗, X〉

d〈X〉 .

As mentioned previously, ξH is the stock-holding for both the mean-variance and
risk-minimizing strategies. This is easily seen by comparing (4.4) and (4.6). As in
the previous chapter, a PDE representation of the value of the claim is possible if the
price process is driven by a Brownian motion. We do not pursue this here, however.
Once we have explored the more general situation where X is a semimartingale, we
shall revisit the issue of PDE representations.



Chapter 5

Incomplete Markets: Local Risk

Minimization

In this chapter we generalize the idea of a risk-minimizing strategy to the situation
where the price process X is a square integrable semimartingale with a canonical
decomposition. In this more general setting an unfortunate complication arises —
Schweizer [83, 91] showed through counter-examples that a compatibility problem
exists when attempting risk minimization in a semimartingale market; in general
it is not possible to find a risk-minimizing strategy. This problem stems from the
fact that if at each time one computes the optimal strategy over the remaining time
interval, then for s < t ∈ [0, T ], it is possible to find examples where the risk-
minimizing strategy over the interval (s, T ] is inconsistent with the risk-minimizing
strategy over the interval (t, T ]. It is therefore necessary to use another measure of
risk.

Based on the idea of sequential hedging in a discrete-time framework developed
in Föllmer and Schweizer [31], Schweizer [83, 84, 85] introduced the idea of local risk
minimization; thereby providing a new measure of risk, suitable for optimization.
This approach generalizes the second quadratic measure of risk in Schäl’s classifica-
tion (see Section 4.2) to continuous time and corresponds to minimizing the local
conditional risk over an infinitesimal time increment, at each time.

In presenting these ideas, the first task is to provide a precise definition of lo-
cal risk minimization. This is a variational concept involving the definition of a
risk quotient. In an analogous manner to the risk-minimizing strategy of Chapter 4,
where the remaining risk increases over every continuation, the local risk-minimizing
strategy is characterized by a risk quotient that increases over all instantaneous de-
viations (or perturbations) of the strategy. Associated with these definitions we state
a result linking locally risk-minimizing strategies to mean self-financing strategies.

Based on the above result, an alternative characterization of local risk mini-
mization is derived, illustrating the added complication introduced by the finite
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variation component of the price process. It also provides insight into the mea-
sure under which pricing should occur. This is the so-called minimal martingale
measure, which we construct explicitly. Finally, it is shown that pricing under the
minimal martingale measure satisfies the alternative characterization of local risk
minimization mentioned above.

Although we do not provide exhaustive references, it should be noted that our
account borrows heavily from the original papers of Schweizer [83, 84, 85], in terms
of concepts and notation.

5.1 Market Assumptions

As in previous chapters, let T ∈ (0,∞) and fix a stochastic basis (Ω, F ,F,P). We
suppose further that the filtration F = (Ft)t∈[0,T ] satisfies the usual conditions, that
FT = F and that F0 contains only the null sets of F and their complements. All
processes are assumed to be defined on the above stochastic basis (in particular,
they are defined over the finite time interval [0,T]) and are implicitly understood to
be adapted to F.

We assume the existence of a discounted stock price process X, a bank account
process B and an FT -measurable claim H ∈ L2 (maturing at time T ) that we wish
to hedge. However, we now only require that X ∈ S2, with canonical decomposition

Xt = X0 + Mt + At, (5.1)

for all t ∈ [0, T ], where X0 > 0 is F0-measurable, M ∈ M2
0 and A ∈ V0. Fur-

thermore, we assume that X satisfies the structure condition (Definition 3.23), so
that

At =
∫ t

0
αs d〈M〉s, (5.2)

for all t ∈ [0, T ], for some predictable process α. In other words, A ¿ 〈M〉, from
which it follows that α can be written as the pathwise Radon-Nikodým derivative

α =
dA

d〈M〉 .

With an extra condition on α∆M , (5.2) also ensures that an equivalent martingale
measure exists for X, by Theorem 3.24.

We now define a process that is related to the structure condition and is used in
a number of theorems.

Definition 5.1. The mean-variance tradeoff (MVT ) process, denoted by K̂, is
defined by

K̂t :=
∫ t

0
α2

s d〈M〉s,
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for all t ∈ [0, T ].

Since P is no longer a martingale measure for X, we must revisit the concept of
a feasible strategy, to ensure integrability with respect to the semimartingale X.

Definition 5.2. Let Θ denote the family of predictable processes φ, satisfying
G(φ) ∈ S2.

Definition 5.3. A strategy (ξ, η) is called feasible if ξ ∈ Θ; V (ξ, η) is right conti-
nuous with Vt(ξ, η) ∈ L2, for all t ∈ [0, T ]; and VT (ξ, η) = H a.s.

Definition 5.3 is a straightforward refinement of Definition 4.1. Note that, for
a feasible strategy (ξ, η), this definition in combination with (4.2) implies that
Ct(ξ, η) ∈ L2, for all t ∈ [0, T ]. Under an additional assumption that C(ξ, η) is
a martingale, the second part of Theorem 2.21 ensures that C(ξ, η) ∈M2.

5.2 Local Risk Minimization

In the previous chapter we considered ways of hedging an L2 claim in a market
incorporating unhedgeable risk, when the price process X was a martingale. This
relied on the GKW decomposition of the claim. This decomposition was shown to
be related to the risk-minimizing strategy. Since X is now only a semimartingale,
it is impossible to apply the GKW decomposition directly. Furthermore, the notion
of risk minimization is also incompatible with the current setup. As a result, we
introduce a new local risk function, called a risk quotient, based on a variational
approach.

Given a feasible strategy, we may perturb it and inquire whether this increases
or decreases the risk quotient. A locally risk-minimizing strategy is one for which
the risk quotient increases or stays the same under all perturbations. A theorem
relates such an optimal strategy to an orthogonality property of its associated cost
process. This in turn yields a certain decomposition of the claim itself. We start by
defining the small perturbations of a feasible strategy that preserve its feasibility.

Definition 5.4. A strategy (δ, ε) is called a small perturbation if δ ∈ Θ; V (δ, ε) is
right continuous with Vt(δ, ε) ∈ L2, for all t ∈ [0, T ]; δ and

∫ T
0 |δs||dA|s are bounded;

and δT = εT = 0.

Note that a small perturbation (δ, ε) is not feasible, since VT (δ, ε) = 0. However,
for any feasible strategy (ξ, η), it follows that (ξ + δ, η + ε) is again a feasible stra-
tegy. Since

∫ T
0 δs dAs represents the systematic part of trading gains from (δ, ε), the

boundedness condition in Definition 5.4 ensures that these gains are limited. The
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condition δT = εT = 0 also ensures that any restriction of (δ, ε) to a subinterval of
[0, T ] is again a small perturbation.

Definition 5.5. The R-quotient of a feasible strategy (ξ, η) and a small perturbation
(δ, ε) with respect to a partition π = {0 = t0, t1, . . . , tm, tm+1 = T} of [0, T ], is the
following process

rπ[ξ, η; δ, ε] :=
m∑

i=0

Rti(ξ + δ1I]]ti,ti+1]], η + ε1I[[ti,ti+1[[)−Rti(ξ, η)
E

[〈M〉ti+1 − 〈M〉ti
∣∣Fti

] 1I]]ti,ti+1]].

Note that the asymmetry of the time intervals in the restrictions of δ and ε

reflects the fact that ξ + δ should be predictable, while η + ε need only be adapted.

Definition 5.6. A feasible strategy (ξ, η) is called locally risk-minimizing if

lim inf
n→∞ rπn

[ξ, η; δ, ε] ≥ 0 µM -a.e.,

for every small perturbation (δ, ε) and every sequence of partitions (πn)n∈N with the
property limn→∞ ‖πn‖ = 0.

We shall now state a result of Schweizer (see [85, Lem. 2.2, p. 351] and [91,
Thm. 3.3, p. 14]), linking local risk minimization to the mean self-financing condi-
tion. We prepare the way for it with the following technical assumptions.

Assumption 5.7.

1. 〈M〉 is a.s. strictly increasing;

2. A is a.s. continuous; and

3. E
[
K̂T

]
< ∞.

Note that Assumption 5.7 and the assumption that X satisfies the structure
condition are requirements for the result we now state.

Proposition 5.8. Let (ξ, η) be a feasible trading strategy with associated cost process
C. The following statements are equivalent:

1. (ξ, η) is locally risk-minimizing;

2. (ξ, η) is mean self-financing and the (square integrable1) martingale C is stron-
gly orthogonal to M .

Using the above result, it is now possible to show that the existence of a locally
risk-minimizing strategy implies a certain representation property for the claim,
called the Föllmer-Schweizer decomposition.

1 See the discussion following Definition 5.3.
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Definition 5.9. The claim H is said to admit a Föllmer-Schweizer (FS ) decompo-
sition if it can be expressed as

H = H0 +
∫ T

0
ξH
s dXs + LH

T a.s., (5.3)

where H0 ∈ R, ξH ∈ Θ and LH ∈M2
0 is strongly orthogonal to M .

The following result establishes the connection between the FS decomposition
and the existence of locally risk-minimizing strategies (see Schweizer [91, Prop. 3.4,
p. 15]).

Proposition 5.10. There exists a locally risk-minimizing strategy iff H admits an
FS decomposition.

Proof. (⇒) Let (ξ, η) be a locally risk-minimizing strategy with associated cost
process C and value process V . According to (4.2), we have

H = VT = C0 +
∫ T

0
ξs dXs + (CT − C0).

By Proposition 5.8, C − C0 ∈M2
0 is strongly orthogonal to M .

(⇐) Let H be represented by (5.3) and define the feasible strategy (ξ̂, η̂), by setting

(ξ̂t, η̂t) := (ξH
t ,H0 + Gt(ξH)− ξH

t Xt + LH
t ), (5.4)

for all t ∈ [0, T ]. Then by (3.1) and (4.2), the cost process Ĉ of this strategy is given
by

Ĉt = H0 + LH
t ,

for all t ∈ [0, T ]. This is a square integrable martingale strongly orthogonal to M .
Consequently, by Proposition 5.8, (ξ̂, η̂) is locally risk-minimizing. ¥

The importance of the representation (5.3) cannot be overstated. As we shall see
in later chapters, in any application the first task is to provide a characterization of
the claim in terms of it. Thereafter, the price of the claim and the optimal hedging
strategy follow as a consequence of the results presented below.

5.3 An Optimality Condition

We now provide an alternative characterization of a locally risk-minimizing strategy,
in the form of an optimality condition. To start with, let

H = E [H] +
∫ T

0
µH

s dMs + NH
T , (5.5)
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where µH ∈ L2(M) and NH ∈ M2
0 is strongly orthogonal to M , be the GKW

decomposition of H with respect to M . Next, for any feasible strategy (ξ, η), let
∫ T

0
ξs dAs = E

[∫ T

0
ξs dAs

]
+

∫ T

0
µξ·A

s dMs + N ξ·A
T , (5.6)

where µξ·A ∈ L2(M) and N ξ·A ∈ M2
0 is strongly orthogonal to M , be the GKW

decomposition of
∫ T
0 ξs dAs with respect to M . Consequently, by (4.2) and (5.1),

the maturity value of the cost process C associated with (ξ, η) is

CT = H −
∫ T

0
ξs dMs −

∫ T

0
ξs dAs. (5.7)

Combining (5.5), (5.6) and (5.7) yields

CT = C0 +
∫ T

0

(
µH

s − ξs − µξ·A
s

)
dMs + LH

T , (5.8)

where

C0 := E [H]− E
[∫ T

0
ξs dAs

]
and LH := NH −N ξ·A.

A locally risk-minimizing strategy (ξ, η) can now be characterized in terms of
an optimality condition involving the processes µH and µξ·A, defined above (see
Schweizer [85, Thm. 2.4, p. 353]).

Theorem 5.11. A feasible strategy (ξ, η) is locally risk-minimizing iff it is mean
self-financing and the optimality equation

µH − ξ − µξ·A = 0 µM -a.e. (5.9)

is satisfied.

Proof. (⇒) Suppose (ξ, η) is locally risk-minimizing. Then by Theorem 5.8, C is
a square integrable martingale strongly orthogonal to M . Applying the martingale
property of C to (5.8) gives

Ct = E [CT |Ft] = C0 +
∫ t

0

(
µH

s − ξs − µξ·A
s

)
dMs + LH

t , (5.10)

for all t ∈ [0, T ]. From this expression and the strong orthogonality of LH and M ,
it follows that

〈C, M〉t =
∫ t

0

(
µH

s − ξs − µξ·A
s

)
d〈M〉s, (5.11)

for all t ∈ [0, T ]. Since C and M are strongly orthogonal, however, we must have
〈C,M〉 = 0. Applying Lemma 2.76 to (5.11) then yields (5.9).
(⇐) Suppose (ξ, η) is mean self-financing and (5.9) holds. By assumption, the
cost process C associated with (ξ, η) is a (square integrable) martingale; combining
this fact with (5.8) yields (5.10) again. Substituting (5.9) into (5.10) gives C =
C0 + LH , which is strongly orthogonal to M . So by Theorem 5.8, (ξ, η) is locally
risk-minimizing. ¥
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5.4 The Minimal Martingale Measure

Since we do not have a complete market, the set of equivalent martingale measures
for X has infinitely many elements. In this section we characterize a certain subset
of this set of measures. Following Föllmer and Schweizer [32, 85], we also identify
one of the measures in this subset with the additional feature that it preserves the
martingale property of all martingales orthogonal to M . This is the so-called mini-
mal martingale measure. We start with a formal definition of the set of equivalent
martingale measures for X that will be considered here.

Definition 5.12. Let

P2
e(X) :=

{
Q ∈ Pe(X)

∣∣∣∣
dQ
dP

∈ L2

}

denote the set of martingale measures for X equivalent to P and with an L2-density.

We next describe what it means for an element of P2
e(X) to be a minimal martin-

gale measure (see Föllmer and Schweizer [32]). Thereafter we make two structural
assumptions that enable us not only to infer the existence and uniqueness of such a
measure, but also to obtain a concrete description of its density process.

Definition 5.13. A probability measure Q ∈ P2
e(X) is called a minimal martingale

measure (for X) if every square integrable martingale strongly orthogonal to M is
also a Q-martingale; i.e.

L ∈M2 and 〈L,M〉 = 0 ⇒ L is a Q-martingale. (5.12)

Assumption 5.14. There exists a martingale N ∈ M2
0, strongly orthogonal to M

in (5.1), so that

L2 =
{

c +
∫ T

0
µs dMs +

∫ T

0
νs dNs

∣∣∣∣ c ∈ R, µ ∈ L2(M), ν ∈ L2(N)
}

. (5.13)

Note that this assumption ensures that {M, N} possesses the predictable repre-
sentation property for M2

0 and forms what Schweizer [85] calls a P-basis for L2.
Furthermore, the strong orthogonality of M and N ensures that the representations
of elements in L2, given by (5.13), are unique. Assumption 5.14 also means any
martingale L ∈M2, strongly orthogonal to M , may be expressed as follows:

Lt = L0 +
∫ t

0
νs dNs, (5.14)

for all t ∈ [0, T ], where ν ∈ L2(N). To see this, use (5.13) to write

LT = L0 +
∫ T

0
µs dMs +

∫ T

0
νs dNs,
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for some µ ∈ L2(M) and ν ∈ L2(N). The martingale property of L then gives

Lt = E
[
L0 +

∫ T

0
µs dMs +

∫ T

0
νs dNs

∣∣∣∣Ft

]

= L0 +
∫ t

0
µs dMs +

∫ t

0
νs dNs,

for all t ∈ [0, T ] Computing the angle bracket covariation of both sides of this
equation with respect to M , yields

〈L,M〉t =
〈∫ ·

0
µs dMs, M

〉

t

+
〈∫ ·

0
νs dNs,M

〉

t

=
∫ t

0
µs d〈M〉s +

∫ t

0
νs d〈M,N〉s,

for all t ∈ [0, T ]. Since M and N are strongly orthogonal, the second integral above
vanishes. According to Lemma 2.76, this implies that µ = 0 µM -a.e., which in turn
gives (5.14).

Assumption 5.15. There exists a probability measure P̂ ∈ P2
e(X) such that

X, N ∈ M2(P̂) are strongly orthogonal under P̂ (where N is the same process in
Assumption 5.14) and

L2(P̂) =
{

c +
∫ T

0
µ̂s dXs +

∫ T

0
ν̂s dNs

∣∣∣∣ c ∈ R, µ̂ ∈ L2(X), ν̂ ∈ L2(N)
}

.

Again, this assumption ensures that {X −X0, N} possesses the predictable re-
presentation property for M2

0(P̂). It also implies that P2
e(X) 6= ∅, thereby implicitly

ensuring that the market is arbitrage-free.
The next theorem (which is similar to Schweizer [89, Thm. 1, p. 576]) charac-

terizes the probability measures in P2
e(X). Before proving it, we take a moment

formally to defuse the structure condition assumption (5.2). As we see in the sta-
tement of Theorem 5.16, the fact that X satisfies the structure condition is now a
consequence of the two assumptions introduced in this section.

Theorem 5.16. Let Q ∈ P2
e(X). Then X satisfies the structure condition and the

density process Z for Q can be expressed as

Zt := E
[

dQ
dP

∣∣∣∣Ft

]
= E

(
−

∫ ·

0
αs dMs +

∫ ·

0
νs dNs

)

t

, (5.15)

for all t ∈ [0, T ], where α and ν are predictable processes. Furthermore, α is unique
µM -a.e.
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Proof. Firstly, by Assumption 5.14, we know that

ZT = 1 +
∫ T

0
µZ

s dMs +
∫ T

0
νZ

s dNs,

for some µZ ∈ L2(M) and νZ ∈ L2(N). By the definition of a density process,

Zt = E [ZT |Ft] = 1 +
∫ t

0
µZ

s dMs +
∫ t

0
νZ

s dNs, (5.16)

for all t ∈ [0, T ]. Secondly, according to Theorem 3.22 there exists a local martingale
Y ∈M0,loc satisfying the conditions E [E (Y )T ] = 1, ∆Y > −1 and A + 〈M, Y 〉 = 0,
such that Z = E (Y ). It then follows from Corollary 2.56 that

Y = Y − Y0 = L (E (Y )) = L (Z) .

In other words, Y satisfies the SDE

Yt = L (Z)t =
∫ t

0
Z−1

s− dZs, (5.17)

for all t ∈ [0, T ] (see Definition 2.54). Combining (5.16) and (5.17), using the
associativity property of stochastic integrals (Theorem 2.41 (4)), gives

Yt =
∫ t

0
Z−1

s−µZ
s dMs +

∫ t

0
Z−1

s−νZ
s dNs, (5.18)

for all t ∈ [0, T ]. Taking α := Z−1
− µZ and ν := Z−1

− νZ , establishes the representation
(5.15) for Z = E (Y ).

Next, we use the relation A + 〈M, Y 〉 = 0, together with (5.18) and the strong
orthogonality of M and N , to verify the structure condition, as follows:

At = −〈M, Y 〉t = −
〈

M,

∫ .

0
Z−1

s−µZ
s dMs +

∫ .

0
Z−1

s−νZ
s dNs

〉

t

= −
∫ t

0
Z−1

s−µZ
s d〈M〉s −

∫ t

0
Z−1

s−νZ
s d〈M, N〉s

= −
∫ t

0
Z−1

s−µZ
s d〈M〉s =

∫ t

0
αs d〈M〉s,

for all t ∈ [0, T ]. Finally, to see that α is unique, suppose there exists a predictable
process ᾱ satisfying

At =
∫ t

0
ᾱs d〈M〉s,

for all t ∈ [0, T ], as well. Then
∫ t

0
(αs − ᾱs) d〈M〉s = 0,

for all t ∈ [0, T ], from which it follows that α = ᾱ µM -a.e., by Lemma 2.76. ¥
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This theorem illustrates why there is no unique equivalent martingale measure for
X in an incomplete market — the process ν in (5.15) is essentially a free parameter.
We now use Assumption 5.15 and the representation (5.15) to construct the minimal
martingale measure for X.

Theorem 5.17. The density process Z
bP of the probability measure P̂ in Assump-

tion 5.15 is given by

Z
bP
t := E

[
dP̂
dP

∣∣∣∣∣Ft

]
= E

(
−

∫ ·

0
αs dMs

)

t

, (5.19)

for all t ∈ [0, T ]. In particular P̂ is unique. Furthermore, it is the minimal martingale
measure.

Proof. By Theorem 5.16, Z
bP has the representation (5.15) for some predictable

process ν (recall that α in (5.15) is unique). According to Definition 2.52, Z
bP is

then the unique strong solution of the following SDE:

Z
bP
t = 1 +

∫ t

0
Z
bP
s− d

(
−

∫ ·

0
αu dMu +

∫ ·

0
νu dNu

)

s

= 1−
∫ t

0
Z
bP
s−αs dMs +

∫ t

0
Z
bP
s−νs dNs,

(5.20)

for all t ∈ [0, T ]. (The second equality above follows from the associativity property
of stochastic integrals.) The strong orthogonality of M and N then gives

〈
Z
bP, N

〉
t
=

〈
−

∫ ·

0
Z
bP
s−αs dMs, N

〉

t

+
〈∫ ·

0
Z
bP
s−νs dNs, N

〉

t

= −
∫ t

0
Z
bP
s−αs d〈M,N〉s +

∫ t

0
Z
bP
s−νs d〈N〉s

=
∫ t

0
Z
bP
s−νs d〈N〉s,

(5.21)

for all t ∈ [0, T ]. Now, by Assumption 5.15, N is a square integrable martingale
under P̂, which in turn implies that Z

bPN is a martingale (see Corollary 2.62). In
other words, ZbP and N are strongly orthogonal, from which we conclude that (5.21)
must be zero. By Lemma 2.76 and the fact that Z

bP > 0, this implies that ν = 0
µN -a.e.; and so (5.19) follows.

To verify that P̂ is in fact the minimal martingale measure, let L ∈ M2 satisfy
〈L,M〉 = 0. Then there exists a process κ ∈ L2(N) such that2

Lt = L0 +
∫ t

0
κs dNs,

2 See the discussion after Assumption 5.14.
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for all t ∈ [0, T ]. Then, since Z
bP satisfies (5.20) with ν = 0, we have

〈
L, Z

bP
〉

t
=

〈∫ ·

0
κs dNs,−

∫ ·

0
Z
bP
s−αs dMs

〉

t

= −
∫ t

0
Z
bP
s−αsκs d〈M, N〉s

= 0,

for all t ∈ [0, T ], by the strong orthogonality of M and N . Thus L and Z
bP are also

strongly orthogonal; whence LZ
bP is a martingale. By Corollary 2.62, L is thus a

P̂-martingale; which verifies that P̂ is a minimal martingale measure, as described
in Definition 5.13. ¥

5.5 The Optimality of Pricing under the Minimal

Martingale Measure

Now that we have an optimality condition characterizing the locally risk-minimizing
strategy and have constructed the minimal martingale measure, it is possible to
express the locally risk-minimizing strategy explicitly. In this section we show how
it can be obtained from the minimal martingale measure.

Since X is a P̂-martingale, we may consider the GKW decomposition of the
claim H in terms of X under P̂. With some manipulation, a comparison with the
GKW decomposition of H in terms of M under P verifies the optimality condition.
Finally, this leads to the crucial observation that the FS decomposition of H under
P corresponds with the GKW decomposition of H under P̂.

Assumption 5.15 allows us to express the GKW decomposition of H with respect
to X −X0 under P̂ as

H = EbP [H] +
∫ T

0
µ̂H

s d(Xs −X0) +
∫ T

0
ν̂s dNs

= EbP [H] +
∫ T

0
µ̂H

s dXs +
∫ T

0
ν̂s dNs,

(5.22)

for some µ̂H ∈ L2(X) and ν̂ ∈ L2(N). We now show that this decomposition is
related to the local risk-minimizing portfolio, by verifying the optimality condition
(see Schweizer [85, Thm. 3.2, p. 357 ]).

Theorem 5.18. The mean self-financing feasible strategy (ξ, η), with ξ := µ̂H ,
satisfies the optimality condition of Theorem 5.11.

Proof. Using the canonical decomposition of X, we may write (5.22) as

H = EbP [H] +
∫ T

0
ξs dMs +

∫ T

0
ξs dAs +

∫ T

0
ν̂s dNs. (5.23)
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Taking an expectation on both sides yields

E [H] = EbP [H] + E
[∫ T

0
ξs dAs

]
, (5.24)

since M and N are martingales. Next, we expand the second integral in (5.23) in
terms of its GKW decomposition with respect to M , to get

∫ T

0
ξs dAs = E

[∫ T

0
ξs dAs

]
+

∫ T

0
µξ·A

s dMs + LT ,

where µξ·A ∈ L2(M) and L ∈ M2
0 is strongly orthogonal to M . According to the

discussion following Assumption 5.14, there exists a process ν ∈ L2(N) satisfying
(5.14). Thus

∫ T

0
ξs dAs = E

[∫ T

0
ξs dAs

]
+

∫ T

0
µξ·A

s dMs +
∫ T

0
νs dNs. (5.25)

Substituting (5.24) and (5.25) into (5.23) yields

H = E [H] +
∫ T

0

(
ξs + µξ·A

s

)
dMs +

∫ T

0
(ν̂s + νs) dNs.

Comparing this expression with the GKW decomposition of H in (5.5) allows us
conclude that

µH = ξ + µξH·A µM -a.e.,

by the uniqueness of the GKW decomposition. This verifies the optimality condition
(5.9). ¥

We shall now demonstrate that the FS decomposition (5.3) corresponds with the
representation (5.22). Taking expectations under P̂ on both sides of (5.3) gives

EbP [H] = EbP
[
H0 +

∫ T

0
ξH
s dXs + LH

T

]
= H0,

since X is by definition a P̂-martingale and the fact that LH ∈ M2
0 is strongly

orthogonal to M implies that LH is a P̂-martingale, by (5.12). Also, according
to the discussion following Assumption 5.14, LH may be expressed as (5.14), for
some process ν ∈ L2(N). Since X and N are strongly orthogonal under P̂, by
Assumption 5.15, we then obtain

〈LH , X〉bPt =
〈∫ ·

0
νs dNs, X

〉bP

t

=
∫ t

0
νs 〈N, X〉bPs

= 0,
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for all t ∈ [0, T ]. In other words, X and LH are strongly orthogonal under P̂. This
means that the FS decomposition (5.3), which can be rewritten as

H = EbP [H] +
∫ T

0
ξH
s d(Xs −X0) +

∫ T

0
νs dNs,

is nothing other then the GKW decomposition (5.22) under P̂ (by the uniqueness of
the GKW decomposition). The uniqueness of the GKW decomposition also allows
us to conclude that the FS decomposition is unique and that ξH = µ̂H .

5.6 The Hedge Ratio

In a manner analogous to the previous chapter, we now define the hedge ratio for
the locally risk-minimizing portfolio in terms of the intrinsic value of the claim.

Definition 5.19. The intrinsic value of H is the process V̂ , defined by

V̂t := EbP [H |Ft] = H0 + Gt(ξH) + LH
t , (5.26)

for all t ∈ [0, T ].

Using the intrinsic value process and (5.4), it is now possible to express the
locally risk-minimizing portfolio (ξ̂, η̂) as

(ξ̂t, η̂t) := (ξH
t , V̂t − ξH

t Xt),

for all t ∈ [0, T ]. Taking the angle brackets covariation under P̂ with respect to X

on both sides of (5.26) gives

〈V̂ , X〉bPt =
〈∫ ·

0
ξ̂s dXs, X

〉bP

t

+
〈
LH , X

〉bP
t

=
∫ t

0
ξ̂s d〈X〉bPs ,

for all t ∈ [0, T ]. Consequently, we may express ξH as the pathwise Radon-Nikodým
derivative of the Lebesgue-Stieltjes measure induced by 〈V̂ , X〉bP with respect to the
Lebesgue-Stieltjes measure induced by 〈X〉bP; i.e.

ξ̂ =
d〈V̂ , X〉bP
d〈X〉bP

.

This expression looks similar to the hedge ratio derived at the end of Chapter 4. Its
form lends itself to PDE representations, which we explore in Chapter 7.



Chapter 6

Incomplete Markets:

Mean-Variance Optimization

The quadratic approach in the previous chapter employed a measure of local risk.
Essentially this entailed the correction of hedge errors at each instant by minimizing
the conditional variance of the cost process and relaxing the self-financing condition.
In contrast, we now focus on quadratic measures of the global risk. While insisting on
the self-financing condition, the goal is to find strategies that minimize the variance
of the difference between the final value of the hedge portfolio and the terminal value
of the claim.

Given an arbitrary fixed initial amount with which to hedge the claim, the first
theorem provides a recursive characterization of the self-financing strategy that mi-
nimizes the variance of the terminal hedging error. Its proof relies on a certain
condition being imposed on the market. In particular, a process, called the exten-
ded mean-variance tradeoff process, is defined. The optimal strategy is determined
under the rather restrictive condition that this process is deterministic.

A natural extension of the above problem is to find the combination of initial
endowment and strategy that minimize the variance of the hedging error. The opti-
mal initial endowment — which is no longer pre-determined, but rather part of the
solution to the problem — is called the approximation price of the claim. We esta-
blish the link between this problem and the so-called variance-optimal martingale
measure, for which a definition is provided. In particular, the approximation price
is determined by computing the expected value of the claim under the variance-
optimal martingale measure. Furthermore, subject to the assumption of a determi-
nistic mean-variance tradeoff process, the variance-optimal martingale measure and
the (possibly signed) minimal martingale measure coincide. When this is the case,
the optimal strategy is the recursively generated strategy of the previous result.

Finally, we cite some results showing that the condition of a deterministic mean-
variance tradeoff process can be relaxed, if we assume that the price process is
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continuous.

6.1 Market Assumptions

In this section we specify an incomplete market very similar to the market prescribed
in the previous chapter (but employing slightly different technical assumptions).
In order to make the current chapter self-contained, we risk being repetitious, by
recalling the setup in Section 5.1.

As before, we assume a fixed finite time-horizon T ∈ (0,∞) and a stochastic
basis (Ω,F ,F,P). The filtration F = (Ft)t∈[0,T ] satisfies the usual conditions,
with FT = F and F0 trivial. Let X be a special semimartingale with canonical
decomposition

Xt = X0 + Mt + At, (6.1)

for all t ∈ [0, T ], where X0 > 0 is F0-measurable, M ∈ M2
0 and A ∈ V0. Again, we

regard X as describing the discounted value of a risky asset. Finally, let H ∈ L2 be
the FT -measurable claim that we wish to hedge.

In the previous two chapters we employed feasible strategies. Here we revert to
self-financing strategies and accept the potential shortfall or excess in the value of the
hedge portfolio at maturity. Since a feasible strategy can be constructed from a self-
financing strategy by making up the hedging error at maturity, we do not consider
feasibility any further. However, we shall require that ξ ∈ Θ (see Definition 5.2), for
any self-financing strategy under consideration. In particular, this means that

E

[∫ T

0
ξ2
s d〈M〉s +

(∫ T

0
|ξs| |dA|s

)2
]

< ∞; (6.2)

a condition that will be verified for the optimal strategy.
As in the previous chapter, we impose the structure condition on X. This means

that

At =
∫ t

0
αs d〈M〉s, (6.3)

for all t ∈ [0, T ], where α is some predictable process. Furthermore, we assume that
the claim admits an FS decomposition. Formally, this is expressed as follows:

Assumption 6.1. The claim H admits an FS decomposition, so that

H = H0 +
∫ T

0
ξH
s dXs + LT ,

where H0 ∈ R, ξH ∈ Θ and L ∈M2
0 is strongly orthogonal to M .
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Note that, in contrast to the previous chapter, we no longer impose continuity on
A. As a result we extend the idea of a MVT process (see Definition 5.1) as follows:

Definition 6.2. The extended mean-variance tradeoff (EMVT ) process, denoted by
K̃, is defined by

K̃t :=
∫ t

0

α2
s

1 + α2
s∆〈M〉s d〈M〉s,

for all t ∈ [0, T ].

It should be noted that when A (or X) has continuous paths, then by (6.3) we
have α∆〈M〉 = 0. In this case the EMVT process coincides with the MVT process
of Definition 5.1.

6.2 Mean-Variance Hedging

Given an initial endowment with which to hedge the claim, it is reasonable to enquire
as to which self-financing strategy offers the best hedging performance, in a quadratic
sense. This question may be posed formally as follows:

Given c ∈ R, minimize E
[
(H − c−GT (ξ))2

]
, over all ξ ∈ Θ. (6.4)

This problem was originally considered by Duffie and Richardson [27] and Schweizer
[87], in the case where X is a geometric Brownian motion. Later Schweizer [88]
(whose account we follow closely) and Monat and Stricker [67] extended the analysis
to a general semimartingale framework.

According to the next result, problem (6.4) can be solved if we impose a rather
strong condition on the EMVT process. The resulting optimal stock-holding strategy
is specified by a recursive relation (see Schweizer [88, Thm. 3, p. 1543]).

Theorem 6.3. Suppose K̃ is deterministic. Then problem (6.4) has a solution
ξ(c) ∈ Θ, determined in feedback form by

ξ
(c)
t = ξH

t + α̃t

(
V̂t− − c−Gt−

(
ξ(c)

))
, (6.5)

for all t ∈ [0, T ]. Here α̃ is defined by

α̃t :=
αt

1 + α2
t ∆〈M〉t

, (6.6)

for all t ∈ [0, T ] and V̂ is the intrinsic value of the claim, given by

V̂t := H0 +
∫ t

0
ξH
s dXs + LH

t ,

for all t ∈ [0, T ] (see also Definition 5.19).
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Before proving this theorem, we should check that (6.5) determines a well-defined
strategy, in the sense that ξ(c) ∈ Θ. This is the subject of the next lemma; the proof
of which relies on the repeated use of four inequalities which we now provide.

Note that since α2∆〈M〉 ≥ 0, it follows from (6.6) that |α̃| ≤ |α|. Consequently,
for any predictable process φ, we have

∫ t

0
α̃2

sφ
2
s d〈M〉s ≤

∫ t

0
|α̃s||αs|φ2

s d〈M〉s

=
∫ t

0
α̃sαsφ

2
s d〈M〉s =

∫ t

0
φ2

s dK̃s (6.7)

≤
(

sup
s∈[0,T ]

φ2
s

)∫ T

0
dK̃s =

(
sup

s∈[0,T ]
φ2

s

)
K̃T , (6.8)

for t ∈ [0, T ], where the last inequality follows since K̃ is increasing. We also have
(∫ t

0
α̃sφs dAs

)2

≤
(∫ t

0
|α̃sφs| |dA|s

)2

=
(∫ t

0
α̃sαs|φs| d〈M〉s

)2

=
(∫ t

0
|φs| dK̃s

)2

≤
(∫ t

0
|φs|2 dK̃s

) (∫ t

0
dK̃s

)
≤ K̃T

∫ t

0
φ2

s dK̃s (6.9)

≤ K̃T

(
sup

s∈[0,T ]
φ2

s

)∫ T

0
dK̃s =

(
sup

s∈[0,T ]
φ2

s

)
K̃2

T (6.10)

for all t ∈ [0, T ], where the second inequality is an instance of the Cauchy-Schwartz
inequality. Note that the right-hand sides of the inequalities are not necessarily
finite — however, we can ensure that they are finite by choosing φ appropriately.

Lemma 6.4. If K̃ is deterministic, then there exists a ξ(c) ∈ Θ such that

ξ
(c)
t = ξH

t + α̃t

(
V̂t− − c−Gt−

(
ξ(c)

))
,

for all t ∈ [0, T ] (with equality µM -a.e.).

Proof. Since K̃T < ∞, inequalities (6.8) and (6.10), with φ := 1, imply that

E

[∫ T

0
α̃2

s d〈M〉s +
(∫ T

0
|α̃s||dA|s

)2
]

< ∞.

Thus α̃ ∈ Θ. Now define the processes Z and Y , by setting

Zt := −
∫ t

0
α̃s dXs; and (6.11)

Yt :=
∫ t

0

(
ξH
s + α̃s

(
V̂s− − c

))
dXs, (6.12)
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for all t ∈ [0, T ]. Since α̃ ∈ Θ, we have supt∈[0,T ] E
[
Z2

t

]
< ∞. We now verify that

supt∈[0,T ] E
[
Y 2

t

]
< ∞. Iterated applications of the inequality

(a + b)2 ≤ (a + b)2 + (a− b)2 = 2a2 + 2b2 (6.13)

to (6.12) give

Y 2
t ≤ 2

(∫ t

0
ξH
s dXs

)2

+ 4
(∫ t

0
α̃s

(
V̂s− − c

)
dMs

)2

+ 4
(∫ t

0
α̃s

(
V̂s− − c

)
dAs

)2

,

for all t ∈ [0, T ]. Therefore

sup
t∈[0,T ]

E
[
Y 2

t

] ≤ 2 sup
t∈[0,T ]

E

[(∫ t

0
ξH
s dXs

)2
]

+ 4 sup
t∈[0,T ]

E
[∫ t

0
α̃2

s

(
V̂s− − c

)2
d〈M〉s

]

+ 4 sup
t∈[0,T ]

E

[(∫ t

0
α̃s

(
V̂s− − c

)
dAs

)2
]

≤ 2E

[
sup

t∈[0,T ]

(∫ t

0
ξH
s dXs

)2
]

+ 4
(
K̃T + K̃2

T

)
E

[
sup

t∈[0,T ]

(
V̂t − c

)2

]
,

where the second inequality follows from (6.8) and (6.10). Since ξH ∈ Θ, K̃T < ∞
and supt∈[0,T ]

∣∣V̂t − c
∣∣ ∈ L2, we conclude that

sup
t∈[0,T ]

E
[
Y 2

t

]
< ∞. (6.14)

Now, the process U , given by

Ut := Yt +
∫ t

0
Us− dZs, (6.15)

for all t ∈ [0, T ], has a unique strong solution which is a semimartingale, according
to Protter [74, Thm. V.7, p. 253]. Once again, by iterated applications of (6.13), we
obtain

E
[
U2

t−
] ≤ 2E

[
Y 2

t−
]
+ 4E

[∫ t−

0
α̃2

sU
2
s− d〈M〉s

]
+ 4E

[(∫ t−

0
α̃sUs− dAs

)2
]

≤ 2E
[
Y 2

t−
]
+ 4E

[∫ t−

0
U2

s−dK̃s

]
+ 4K̃TE

[∫ t−

0
U2

s−dK̃s

]

≤ 2E
[
Y 2

t−
]
+ 4

(
1 + K̃T

) ∫ t

0
E

[
U2

s−
]
dK̃s

≤ 2 exp
(
4
(
1 + K̃T

)
K̃T

)
sup

s∈[0,t]
E

[
Y 2

s−
]

< ∞,

(6.16)

for all t ∈ [0, T ]. The second inequality above follows from (6.9); the third inequality
follows by an application of Fubini’s theorem and the fact that K̃ is deterministic;
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the penultimate inequality is an application of Gronwall’s inequality; and finally the
last inequality follows by (6.14).

Next, define the predictable process ϑ by setting

ϑt := α̃t

(
V̂t− − c− Ut−

)
,

for all t ∈ [0, T ]. Then, another application of (6.13) yields

E
[∫ T

0
ϑ2

s d〈M〉s
]
≤ 2E

[∫ T

0
α̃2

s

(
V̂s− − c

)2
d〈M〉s +

∫ T

0
α̃2

sU
2
s− d〈M〉s

]

≤ 2K̃TE

[
sup

t∈[0,T ]

(
V̂t − c

)2

]
+ 2

∫ T

0
E

[
U2

s−
]

dK̃s

≤ 2K̃TE

[
sup

t∈[0,T ]

(
V̂t − c

)2

]
+ 2K̃T sup

t∈[0,T ]
E

[
U2

t−
]

< ∞.

Here the second inequality follows from (6.7), (6.8) and Fubini’s theorem; while
the final inequality follows from (6.16) and the fact that supt∈[0,T ]

∣∣V̂t − c
∣∣ ∈ L2.

Similarly, by the triangle inequality and (6.13), it follows that

E

[(∫ T

0
|ϑs| |dA|s

)2
]
≤ 2E

[(∫ T

0

∣∣α̃s

(
V̂s− − c

)∣∣ |dA|s
)2

+
(∫ T

0
|α̃sUs−| |dA|s

)2
]

≤ 2K̃2
TE

[
sup

t∈[0,T ]

(
V̂t − c

)2

]
+ 2K̃T

∫ T

0
E

[
U2

s−
]

dK̃s

≤ 2K̃2
TE

[
sup

t∈[0,T ]

(
V̂t − c

)2

]
+ 2K̃2

T sup
t∈[0,T ]

E
[
U2

t−
]

< ∞.

Again, the second inequality follows from (6.9), (6.10) and Fubini’s theorem; while
the final inequality follows from (6.16) and the fact that supt∈[0,T ]

∣∣V̂t − c
∣∣ ∈ L2.

Consequently, ϑ ∈ Θ, by (6.2).
Now define the strategy ξ(c) ∈ Θ, by setting

ξ
(c)
t := ξH

t + ϑt = ξH
t + α̃t

(
V̂t− − c− Ut−

)
,

for all t ∈ [0, T ]. Then by (6.11), (6.12) and (6.15) we have

Gt

(
ξ(c)

)
= Yt +

∫ t

0
Us− dZs = Ut a.s.,

for all t ∈ [0, T ]. Therefore, G
(
ξ(c)

)
satisfies

Gt

(
ξ(c)

)
= Yt +

∫ t

0
Gs−

(
ξ(c)

)
dZs

= Gt

(
ξH

)
+

∫ t

0
α̃s

(
V̂s− − c−Gs−

(
ξ(c)

))
dXs,
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for all t ∈ [0, T ]. Consequently
∫ t

0

(
ξ(c)
s − ξH

s − α̃s

(
V̂s− − c−Gs−

(
ξ(c)

)))
dXs = 0

for all t ∈ [0, T ]. The result now follows from the uniqueness of the stochastic
integral. ¥

In order to simplify the proof Theorem 6.3, we provide the following lemma.

Lemma 6.5. Let ϕ, ϑ ∈ Θ. Then

E
[
[G(ϕ), G(ϑ)]t

]
= E

[∫ t

0
ϕsϑs(1 + α2

s∆〈M〉s) d〈M〉s
]

,

for all t ∈ [0, T ].

Proof. Using the bilinearity of the covariation process and the decomposition of X

in (6.1), we have

[G(ϕ), G(ϑ)]t =
[∫ ·

0
ϕs dMs,

∫ ·

0
ϑs dMs

]

t

+
[∫ ·

0
ϕs dAs,

∫ ·

0
ϑs dAs

]

t

+
[∫ ·

0
ϕs dMs,

∫ ·

0
ϑs dAs

]

t

+
[∫ ·

0
ϕs dAs,

∫ ·

0
ϑs dMs

]

t

(6.17)

for all t ∈ [0, T ]. Now,
[∫ ·

0
ϕs dMs,

∫ ·

0
ϑs dMs

]

t

=
([∫ ·

0
ϕs dMs,

∫ ·

0
ϑs dMs

]

t

−
〈∫ ·

0
ϕs dMs,

∫ ·

0
ϑs dMs

〉

t

)
+

∫ t

0
ϕsϑs d〈M〉s,

(6.18)

for all t ∈ [0, T ]. Next we note that
[∫ ·

0
ϕs dAs,

∫ ·

0
ϑs dAs

]

t

=
∑

0<s≤t

∆
(∫ ·

0
ϕs dAs

)

t

∆
(∫ ·

0
ϑs dA

)

t

=
∑

0<s≤t

ϕsϑs(∆As)2

=
∑

0<s≤t

ϕsϑsα
2
s(∆〈M〉s)2

=
∫ t

0
ϕsϑsα

2
s∆〈M〉s d〈M〉s,

(6.19)

for all t ∈ [0, T ]. Note that the term in brackets in (6.18) is a martingale by
Proposition 2.49 (see also the discussion thereafter) while the last two terms in
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(6.17) are martingales by Lemma 2.47. Finally, substituting (6.18) and (6.19) into
(6.17) we get

E
[
[G(ϕ), G(ϑ)]t

]
= E

[∫ t

0
ϕsϑs(1 + α2

s∆〈M〉s) d〈M〉s
]

,

for all t ∈ [0, T ]. ¥

Proof of Theorem 6.3. In order to prove optimality, we show that

E
[(

H − c−GT

(
ξ(c)

))
GT (ϑ)

]
= 0, (6.20)

for all ϑ ∈ Θ and then appeal to the Hilbert projection theorem (see Luenberger
[62, Thms. 1&2, p. 50]). We start by defining the function f : [0, T ] → R, by setting

f(t) := E
[(

V̂t − c−Gt

(
ξ(c)

))
Gt(ϑ)

]
,

for all t ∈ [0, T ] (note that f(T ) is equal to the left-hand side of (6.20)). Using the
stochastic integration by parts rule we obtain

d
{(

V̂t − c−Gt

(
ξ(c)

))
Gt(ϑ)

}

=
(
V̂t− − c−Gt−

(
ξ(c)

))
dGt(ϑ) + Gt−(ϑ) dV̂t −Gt−(ϑ) dGt

(
ξ(c)

)

+ d
[
H0 + G

(
ξH

)
+ L− c−G

(
ξ(c)

)
, G(ϑ)

]
t

=
(
V̂t− − c−Gt−

(
ξ(c)

))
ϑt dXt +

(
ξH
t − ξ

(c)
t

)
Gt−(ϑ) dXt

+ Gt−(ϑ) dLt + d
[
G

(
ξH − ξ(c)

)
, G(ϑ)

]
t
,

for all t ∈ [0, T ]. Integrating, using the decomposition of X in (6.1), taking expec-
tations and using Lemma 6.5, yields

f(t) = E
[∫ t

0

(
V̂s− − c−Gs−

(
ξ(c)

))
ϑs dAs +

∫ t

0

(
ξH
s − ξ(c)

s

)
Gs−(ϑ) dAs

+
∫ t

0

(
ξH
s − ξ(c)

s

)
ϑs(1 + α2

s∆〈M〉s) d〈M〉s
]

,

for all t ∈ [0, T ]. Substituting the expression for ξ(c) in (6.5) into the last two terms
of the above equation gives

f(t) = E
[∫ t

0

(
V̂s− − c−Gs−

(
ξ(c)

))
ϑsαs d〈M〉s

−
∫ t

0

(
V̂s− − c−Gs−

(
ξ(c)

))
Gs−(ϑ)α̃sαs d〈M〉s

−
∫ t

0

(
V̂s− − c−Gs−

(
ξ(c)

))
ϑsαs d〈M〉s

]
,
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for all t ∈ [0, T ]. The first and third terms cancel and the definition of K̃ yields

f(t) = E
[∫ t

0

(
V̂s− − c−Gs−

(
ξ(c)

))
Gs−(ϑ) dK̃s

]

=
∫ t

0
E

[(
V̂s− − c−Gs−

(
ξ(c)

))
Gs−(ϑ)

]
dK̃s

=
∫ t

0
f(s−) dK̃s,

for all t ∈ [0, T ]. Here the second equality follows from Fubini’s theorem and the
fact that K̃ is deterministic. Consequently, since f(0) = 0, Gronwall’s lemma [75,
p. 543] indicates that f(t) = 0 for all t ∈ [0, T ]. This verifies (6.20). ¥

6.3 The Variance-Optimal Martingale Measure

In the previous section we provided the strategy ξ(c) associated with a given initial
endowment c. We now pose a related optimization problem: what combination of
c and ξ ∈ Θ minimizes the variance of the hedging error at maturity? This section
follows the structure of Schweizer [90] closely. Mathematically, the problem may be
formulated as:

Minimize E
[
(H − c−GT (ξ))2

]
, over all (c, ξ) ∈ R×Θ. (6.21)

Definition 6.6. If a solution (v, ξ̃) to problem (6.21) exists, with v ∈ R and ξ̃ ∈ Θ,
then v is called the approximation price for H.

Note that if the EMVT process of X is deterministic and the approximation
price of the claim is known, then ξ̃ = ξ(v) by Theorem 6.3.

As in Chapter 5, where we showed that local risk minimization corresponded
to pricing the claim under the minimal martingale measure for X, we now show
that a solution to the optimization problem (6.21) corresponds to pricing under the
so-called variance-optimal martingale measure for X. In contrast to the previous
chapter, we now consider signed martingale measures for X, for which we provide
the following definition1:

Definition 6.7. A signed L2-martingale measure for X is a signed measure on
(Ω, F ) satisfying Q{Ω} = 1, Q¿ P with dQ

dP ∈ L2 and

E
[

dQ
dP

(Xt −Xs)
∣∣∣∣ Fs

]
= 0 a.s.,

1 We have deviated slightly from the account of Schweizer in our definition of signed martingale

measures. There the set of measures Ps(Θ) is used; but later it is shown that Ps(Θ) = P2
s (X), if

the structure condition holds and X ∈ S2(P) (see [90, Lem. 12, p. 222]).
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for all s ≤ t ∈ [0, T ]. The convex set of all signed L2-martingale measures for X is
denoted P2

s (X).

Assumption 6.8. The set P2
s (X) contains at least one element.

This assumption ensures that no feasible strategies are arbitrages, in the light of
the discussion following the Folk Theorem in Chapter 3.

Definition 6.9. A signed measure in P2
s (X) is called variance-optimal if it mini-

mizes

Var
[
dQ
dP

]
= E

[(
dQ
dP

− 1
)2

]
= E

[(
dQ
dP

)2
]
− 1,

over all Q ∈ P2
s (X).

Questions of the existence of the variance-optimal martingale measure are defer-
red to the next section, where we shall construct it explicitly. For the remainder of
this section we prove a couple of results, conditional upon its existence. We start
by deriving an alternative characterization of this measure, used in the subsequent
theorem which shows how the approximation price of the claim can be computed
(see Schweizer [90, Lem. 1, p. 210]).

Lemma 6.10. Let P̃ ∈ P2
s (X) be variance-optimal. Then

E

[
dP̃
dP

(
dP̃
dP

− dQ
dP

)]
= 0,

for all Q ∈ P2
s (X).

Proof. Let
D :=

{
dQ
dP

∣∣∣∣Q ∈ P2
s (X)

}

be the family of densities of the measures in P2
s (X). To start with, let x ∈ R and

D1, D2 ∈ D . Then
xD1 + (1− x)D2 =: D̄ ∈ D . (6.22)

This follows by verifying the four properties of Definition 6.7. To do this, letQ1,Q2 ∈
P2

s (X) be the measures associated with D1 and D2 respectively and define the signed
measure Q̄ on (Ω,F ), by setting Q̄{A} := E

[
D̄A

]
, for all A ∈ F . Then

1. Q̄{Ω} = xQ1{Ω}+ (1− x)Q2{Ω} = x + (1− x) = 1;

2. Let A ∈ F with P{A} = 0. Then Q̄{A} = xQ1{A} + (1 − x)Q2{A} = 0.
Consequently Q̄¿ P;

3. Since D1, D2 ∈ L2, we have D̄ ∈ L2; and
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4. Let s ≤ t ∈ [0, T ]. Then

E
[
D̄(Xt −Xs)

∣∣ Fs

]
= xE [D1(Xt −Xs) |Fs]

+ (1− x)E [D2(Xt −Xs) |Fs] = 0.

Now, for any x ∈ R \ {0}, define the map ϕx : D \ {D̃} → D \ {D̃}, where D̃ := deP
dP ,

by setting
ϕx(D) := xD + (1− x)D̃.

By (6.22), ϕx is well-defined. Next, define the map φx : D \ {D̃} → D \ {D̃}, by
setting

φx(D) :=
1
x

D +
(

1− 1
x

)
D̃,

for all D ∈ D \ {D̃}. Again, it follows from (6.22) that φx is well defined and the
following calculations establish the surjectivity of ϕx:

ϕx(φx(D)) = x

(
1
x

D − 1− x

x
D̃

)
+ (1− x)D̃

= D − (1− x)D̃ + (1− x)D̃

= D.

Note that ϕx is also injective, since for D1, D2 ∈ D \ {D̃}, we have

ϕx(D1) = ϕx(D2)

⇒ xD1 + (1− x)D̃ = xD2 + (1− x)D̃

⇒ D1 = D2.

Thus ϕx is a bijection. Finally, for any x ∈ R \ {0} and any D ∈ D \ {D̃}, we have

E
[
ϕx(D)2

]
= E

[
(xD + (1− x)D̃)2

]
= E

[
(D̃ + x(D − D̃))2

]

= E
[
D̃2

]
+ 2xE

[
D̃(D − D̃)

]
+ x2E

[
(D − D̃)2

]
.

Therefore,

x2E
[
(D − D̃)2

]
+ 2xE

[
D̃(D − D̃)

]
= E

[
ϕx(D)2

]− E[
D̃2

] ≥ 0, (6.23)

since P̃ is variance-optimal. It follows that the coefficient of x in the left-hand side of
(6.23) must be zero; otherwise a prudent choice of x would contradict the inequality
(6.23)2. Thus E

[
D̃(D − D̃)

]
= 0, for all D ∈ D , as required. ¥

2 To see this, note that the left-hand side of (6.23) is a parabola of the form y(x) = ax2 + bx,

with a ≥ 0. To ensure that y(x) ≥ 0, for all x ∈ R \ {0}, we require that the discriminant satisfies

b2 ≤ 0 which in turn implies that b = 0.
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We are now ready to establish the relationship between the variance-optimal
martingale measure for X and the approximation price for H (see Schweizer [90,
Prop. 2, p. 211]).

Theorem 6.11. Suppose that GT (Θ) ⊆ L2 is a linear space, that the solution
(v, ξ̃) to problem (6.21) exists and that P̃ ∈ P2

s (X) is variance-optimal. Then the
approximation price for H is v = EeP [H].

Proof. Since (v, ξ̃) is the solution to problem (6.21), by the projection theorem we
have that

E
[(

H − c−GT

(
ξ̃
))

GT (ϑ)
]

= 0, (6.24)

for every ϑ ∈ Θ and
E

[
H − v −GT

(
ξ̃
)]

= 0. (6.25)

The last equation follows since R × GT (Θ) is a linear space and therefore we can
find ψ ∈ Θ with GT (ψ) = H − c − GT

(
ξ̃
)
. Consequently, E

[
GT (ψ)2

]
= 0 and by

the properties of the L2-norm, this implies that E [GT (ψ)] = 0 (see Luenberger [62,
Lem. 2, p. 48]).

We now construct a new measure Q on (Ω,F ), by setting

dQ
dP

:=
dP̃
dP

+ H − v −GT

(
ξ̃
)
. (6.26)

To verify that Q ∈ P2
s (X), we show that it obeys the three properties of Defini-

tion 6.7. Note that

Q{A} = EQ [1IA] = E
[
dQ
dP

1IA

]
= E

[
dP̃
dP

1IA

]
+ E

[(
H − v −GT

(
ξ̃
))

1IA
]
,

for all A ∈ F . Consequently, by (6.25) we have Q{Ω} = 1. We also have Q{A} = 0
for all A ∈ F such that P{A} = 0 = P̃{A}, which implies that Q ¿ P. Now let
s ≤ t ∈ [0, T ] and define ϑ ∈ Θ, by setting ϑ := 1I[s,t]; then GT (ϑ) = Xt − Xs.
Consequently, by (6.26) we have

E
[

dQ
dP

(Xt −Xs)
∣∣∣∣ Fs

]

= E

[
dP̃
dP

(Xt −Xs)

∣∣∣∣∣Fs

]
+ E

[(
H − v −GT

(
ξ̃
))

GT (ϑ)
∣∣∣ Fs

]

= E

[
dP̃
dP

(Xt −Xs)

∣∣∣∣∣Fs

]
+ E

[(
H − v −GT

(
ξ̃
))

GT (ϑ)
]

= 0,

where the second equality follows by the fact that Gu(ϑ) = 0, for all u ∈ [0, s] (which
means the right hand term is independant of Fs); and the final equality follows by
virtue of P̃ ∈ P2

s (X) and (6.24). Therefore Q ∈ P2
s (X).
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Multiplying (6.26) by deP
dP and taking expectations, yields

E

[
dQ
dP

dP̃
dP

]
= E

[(
dP̃
dP

)2
]

+ E

[
dP̃
dP

(
H − v −GT

(
ξ̃
))

]
,

which, according to Lemma 6.10, implies that

0 = E

[
dQ
dP

dP̃
dP

]
− E

[(
dP̃
dP

)2
]

= E

[
dP̃
dP

(
H − v −GT

(
ξ̃
))

]
= EeP [H]− v,

yielding the result. ¥

6.4 The Variance-Optimal Measure for a Deterministic

MVT Process

In Section 6.2 we assumed that the EMVT process was deterministic in order to
find the optimal portfolio. With the assumption of a deterministic MVT process we
now show that it is possible to characterize the variance-optimal measure as being
the same as the minimal martingale measure.

We start by providing a result that shows the relationship between a (possibly
signed) martingale density for X and a certain stochastic differential equation. This
is essentially a generalization of Theorem 5.16. Then we state and prove the main
result, which is essentially Schweizer [89, Thm. 8, p. 589].

Proposition 6.12. Let Z ∈ M2. Then Z is a density function for Q ∈ P2
s (X) iff

it satisfies the SDE

Zt = 1−
∫ t

0
αsZs− dMs + Lt, (6.27)

for all t ∈ [0, T ] and for some L ∈M2
0, strongly orthogonal to M .

Proof. (⇒) Let Q ∈ P2
s (X). Suppose Z ∈ M2 is its associated density function

and define L ∈M2
0 by

Lt := Zt − 1 +
∫ t

0
αsZs− dMs,

for all t ∈ [0, T ]. Then, using the stochastic integration by parts rule, we have

d(XZ)t = Xt− dZt + Zt− dMt + Zt− dAt + d[M, Z]t + d[A,Z]t

= Xt− dZt + Zt− dMt + αtZt− d〈M〉t + d[M,Z]t + ∆At∆Zt

= Xt− dZt + Zt− dMt + αtZt−(d〈M〉t − d[M ]t) + ∆At∆Zt

+ αtZt− d[M ]t + d[M, Z]t

= Xt− dZt + Zt− dMt + αtZt−(d〈M〉t − d[M ]t) + ∆At∆Zt + d[L,M ]t,
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for all t ∈ [0, T ]. Note that all the terms in this expression are martingales except the
last (by Theorem 4.2, Proposition 2.49 and Lemma 2.47). Since XZ is a martingale
by assumption, we require the last term above to be a martingale, which implies
that L is strongly orthogonal to M , yielding the representation (6.27).
(⇐) Suppose that Z satisfies (6.27). Then using the stochastic integration by parts
rule we have

d(XZ)t = Xt− dZt + Zt− dMt + Zt− dAt + d[M, Z]t + d[A,Z]t

= Xt− dZt + Zt− dMt + αtZt−(d〈M〉t − d[M ]t) + ∆At∆Zt,

for all t ∈ [0, T ], which shows that XZ is a martingale in which case Z is a density
function associated with some Q ∈ P2

s (X). ¥

Theorem 6.13. Suppose K̂ is deterministic. Then the minimal martingale measure
and the variance-optimal martingale measure coincide.

In order to prove this result, we need a result pertaining to the Doléans expo-
nential, which we provide as a lemma.

Lemma 6.14. Suppose K̂ is deterministic and let V ∈ S. Then the solution of the
SDE

Ut = Vt +
∫ t

0
Us− dK̂s, (6.28)

is given by

Ut = E
(
K̂

)
t

(
V0 +

∫ t

0

1

E
(
K̂

)
s

dVs

)

for all t ∈ [0, T ].

Proof. Following Protter [74, Thm. V.52, p. 322] and Jacod [53, Thm. 6.8]3, we
assume that the solution to this equation is of the form

U = E
(
K̂

)
C, (6.29)

for some process C. Then the stochastic integration by parts rule gives

dUt = Ct− dE
(
K̂

)
t
+ E

(
K̂

)
t− dCt + d

[
C, E

(
K̂

)]
t

= Ct−E
(
K̂

)
t− dK̂t + E

(
K̂

)
t− dCt + E

(
K̂

)
t− d

[
C, K̂

]
t

= Ut− dK̂t + E
(
K̂

)
t−(1 + ∆K̂t) dCt

= Ut− dK̂t + E
(
K̂

)
t
dCt,

(6.30)

3 Protter treats a less general case than is necessary for this application, while Jacod considers a

more general case.
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for all t ∈ [0, T ]. (The penultimate line follows from the fact that K̂ is deterministic
and hence of finite variation.) Comparing the differential form of (6.28) with (6.30)
yields

E
(
K̂

)
t
dCt = dVt,

for all t ∈ [0, T ]. Since K̂ is increasing, we have ∆K̂t ≥ 0 and therefore E
(
K̂

)
t
> 0,

for all t ∈ [0, T ]. Dividing through by E
(
K̂

)
and using (6.29) gives

d

(
Ut

E
(
K̂

)
t

)
=

1

E
(
K̂

)
t

dVt.

The result follows by expressing the above in integral form. ¥

Proof of Theorem 6.13. Let Q ∈ P2
s (X), with density process Z ∈M2, so that

Zt := E
[

dQ
dP

∣∣∣∣Ft

]
,

for all t ∈ [0, T ]. By Proposition 6.12, Z solves the SDE:

Zt = 1−
∫ t

0
Zs−αs dMs + Lt,

for all t ∈ [0, T ] and some L ∈ M2
0, strongly orthogonal to M . As a consequence of

this strong orthogonality we obtain

〈Z〉t =
〈
−

∫ ·

0
Zs−αs dMs

〉

t

+ 〈L〉t

=
∫ t

0
Z2

s−α2
s d〈Ms〉s + 〈L〉t

=
∫ t

0
Z2

s− dK̂s + 〈L〉t,

for all t ∈ [0, T ]. Since Z2 − 〈Z〉 is a martingale and Z0 = 1, we get

E
[
Z2

t

]
= 1 + E [〈Z〉t]

= 1 + E [〈L〉t] +
∫ t

0
E

[
Z2

s−
]

dK̂s,
(6.31)

for all t ∈ [0, T ], where the last line follows by an application of Fubini’s theorem,
since K̂ is deterministic. Now define two new processes U and V , by setting

Ut := E
[
Z2

t

]
and Vt := 1 + E [〈L〉t] ,

for all t ∈ [0, T ]. This allows (6.31) to be rewritten as

Ut = Vt +
∫ t

0
Us− dK̂s,
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for all t ∈ [0, T ]. Then by Lemma 6.14,

E
[
Z2

t

]
= Ut = E

(
K̂

)
t

(
1 +

∫ t

0

1

E
(
K̂

)
s

dVs

)
, (6.32)

for all t ∈ [0, T ].
Now, in the case of the minimal martingale measure P̂, L = 0, by Theorem 5.17

and therefore V = 1. Consequently,

E
[(

Z
bP
t

)2
]

= E
(
K̂

)
t
,

for all t ∈ [0, T ], according to (6.32). Finally, since K̂ and V are increasing and
non-negative, we have

E




(
dP̂
dP

− 1

)2

 = E

(
K̂

)
T
− 1 ≤ E

(
K̂

)
T

+
∫ T

0

E
(
K̂

)
T

E
(
K̂

)
s

dVs − 1 = E

[(
dQ
dP

− 1
)2

]
.

Since Q was chosen arbitrarily, this establishes that P̃ is variance-optimal, by Defi-
nition 6.9. ¥

6.5 Mean-Variance Hedging for Continuous Processes

For completeness, we summarize a few results that generalize Theorem 6.3, without
providing any detailed proofs. For a full account, consult the survey of Schweizer
[91] and the original references [76, 37, 70, 77].

Firstly, under the assumption of a continuous price process X (note that pro-
cesses orthogonal to X need not be continuous), the mean-variance optimal strategy
can be determined without the requirement of a deterministic EMVT process. This
can be derived using the so-called weighted norm inequalities (see [19]).

The next two results provide representation properties for the variance-optimal
measure. Note that all results are stated under the assumptions that X is continuous
and that P2

e(X) 6= ∅.

Theorem 6.15. P̃ ∈ P2
e(X).

Proof. See Delbaen and Schachermayer [21, Thm. 1.3]. ¥

In the light of Theorem 6.15, the density process Z
eP for the variance-optimal

martingale measure, defined by

Z
eP
t := E

[
dP̃
dP

∣∣∣∣∣Ft

]
,
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for all t ∈ [0, T ], is strictly positive. Now define a new process Z̃, by setting

Z̃t := EeP
[

dP̃
dP

∣∣∣∣∣Ft

]
=

1

Z
eP
t

E
[(

Z
eP
T

)2
∣∣∣∣Ft

]
,

for all t ∈ [0, T ] (the equality follows from Theorem 2.61). The following lemma
provides a representation for Z̃.

Lemma 6.16. There exists a process ζ̃ ∈ Θ such that

Z̃t = Z̃0 +
∫ t

0
ζ̃s dXs,

for all t ∈ [0, T ].

Proof. See Delbaen and Schachermayer [21, Lem. 2.2]. ¥

Under the standing assumptions of this section, the next result provides the
recipe for mean-variance optimal hedging.

Theorem 6.17. Write the GKW decomposition of H with respect to X under P̃ as

H = EeP [H] +
∫ T

0
ξ̃H
s dXs + L̃H

T ,

where ξ̃H ∈ L2(X) and LH ∈ M2
0(P̃) is strongly orthogonal to X under P̃. Now

define the process Ṽ , by setting

Ṽ H
t := EeP [H |Ft] = EeP [H] +

∫ t

0
ξ̃H
s dXs + L̃H

t ,

for all t ∈ [0, T ]. Then the mean-variance optimal strategy for H is given in feedback
form by

ξ̃t = ξ̃H
t − ζ̃t

Z̃t

(
Ṽ H

t− − EeP [H]−Gt

(
ξ̃
))

,

for all t ∈ [0, T ]. Furthermore, the approximation price of the claim is given by
v = EeP [H].

Proof. See Schweizer [91, Thm. 4.6, p. 567]. ¥

Finally, if we again assume that the MVT process is deterministic then of course
Theorem 6.13 ensures that the minimal martingale measure and the variance-optimal
measure coincide. The following theorem summarizes the results relating to conti-
nuous processes.
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Theorem 6.18. If K̂T is deterministic, then P̃ = P̂ and

Z
eP
t = Z

bP
t = E

(
−

∫ ·

0
α dM

)

t

;

Z̃t = e
bKT Z

eP
t ;

ζ̃t = −e
bKT Z

eP
t αt = −Z̃tαt; and

Z
eP
t

Z̃t

= e−( bKT− bKt),

for all t ∈ [0, T ].

Proof. See Schweizer [91, Lem. 4.7, p. 569]. ¥

The condition of a deterministic MVT process in Theorem 6.18 ensures that the
mean-variance optimal strategy can be easily determined once the minimal martin-
gale measure is constructed. If this condition is met (as is the case for our basis risk
application in Chapter 7), then the strategy may be derived merely by inspection.
If not, however, then any application of the mean-variance optimal strategy faces si-
gnificant hurdles (see e.g. Heath, Platen and Schweizer [42, 43, 44], where quadratic
approaches are applied to a stochastic volatility model).



Chapter 7

An Application to Basis Risk

In previous chapters the theory of quadratic hedging was developed, with local risk
minimization and mean-variance hedging being the two approaches explored. We
now apply this theory to the practical problem of hedging basis risk.

When a contingent claim is written on an underlying asset in which trading is not
possible, it is natural to enquire about the effectiveness of hedging with a correlated
asset. In this situation the market is incomplete and the risk that arises as a result
of imperfect hedging is known as basis risk. Examples include weather derivatives,
real options, options on illiquid stocks and options on very large baskets of stocks.

A simple basis risk model comprising two correlated assets is specified in the
first section. We assume that it is not possible to trade in the asset on which the
option is written; we do, however, require that the price of this non-traded asset is
observable. The second asset is available for trade and will be used as a proxy to
hedge the option. Since the theory in the previous chapters was developed in terms
of discounted assets, we specify the discounted dynamics of these assets as geometric
Brownian motions.

The FS decomposition of a claim is derived in the second section. This is achieved
by expressing the non-traded asset in terms of the traded asset and an orthogonal
process. By using a drift-adjusted representation of the non-traded asset, it is pos-
sible to construct the minimal martingale measure and employ the Feynman-Kač
theorem to express the discounted claim price as the solution of a PDE boundary-
value problem.

In Section 3 we present the hedging strategies for the two quadratic approaches.
The FS decomposition makes it easy to specify the locally risk-minimizing strategy,
with prices determined by taking expectations under the minimal martingale mea-
sure. Furthermore, since the mean-variance tradeoff process is deterministic under
the chosen model assumptions, the minimal martingale measure and the variance-
optimal martingale measure coincide. The mean-variance optimal self-financing stra-
tegy is thus easily constructed.
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Having obtained a PDE representation of the price of the claim and its hedge
parameters in discounted terms in Section 2, the fourth section does the same in non-
discounted terms, by employing a simple transformation of variables. Remarkably,
the PDE that emerges, for both local risk minimization and mean-variance optimi-
zation, is the familiar Black-Scholes equation. Consequently, both approaches yield
classical closed-form derivative pricing formulas (which is a boon, from a computa-
tional point of view). What do change, however, are the hedge ratios — reflecting
the different attitudes to hedging risk implied by the two quadratic criteria.

Finally, in Section 5 we conduct some numerical experiments to demonstrate
the efficacy of the quadratic hedging approaches and compare these results with
those obtained using a utility indifference approach. Utility indifference pricing and
hedging has been explored by a number of authors (see e.g. [17, 96, 45, 68]). In
particular, Monoyios [68] has developed a hedging algorithm based on perturbation
expansions. A series of Monte Carlo experiments compare the numerical efficiency
of this approach to that of the quadratic approaches.

7.1 Market Assumptions

We fix a finite time-horizon T ∈ (0,∞) and a stochastic basis (Ω, F ,F,P), which
supports two orthogonal Brownian motions W 1 and W 2. All processes are defined
on the above stochastic basis (in particular, they exist over the time interval [0, T ])
and are adapted to the filtration F = (Ft)t∈[0,T ], which we take to be the augmenta-
tion of the filtration generated by W 1 and W 2 and consequently satisfies the usual
conditions.

We specify a bank account process B, as follows:

Bt = ert,

for all t ∈ [0, T ], where r > 0 is a constant short rate. Two processes U and S

represent the risky assets at our disposal; U is not traded, while (the correlated
asset) S is available for trade. Now consider a European option on U , with maturity
T and payoff h(UT ), for some Borel-measurable function h : R+ → R+ satisfying
h(Ut) ∈ L1, for all t ∈ [0, T ]. The objective is to hedge this instrument using the
traded asset S, in such a way that the basis risk1 is minimized.

Since the analysis in the previous chapters was carried out using the discounted
assets, we introduce two discounted assets — U representing the discounted non-

1 The risk that offsetting investments in a hedging strategy will not experience price changes in

entirely opposite directions from each other. This imperfect correlation between the two investments

creates the potential for excess gains or losses in a hedging strategy, thus adding risk to the position.

(Source: www.investopedia.com.)
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traded asset and X representing the discounted traded asset — by setting

U t :=
Ut

Bt
and Xt :=

St

Bt
,

for all t ∈ [0, T ]. Furthermore, we assume that the discounted assets are driven by
the Brownian motions W 1 and W 2, as follows:

dU t = (µu − r)U t dt + σuU t(ρ dW 1
t +

√
1− ρ2 dW 2

t ), (7.1)

dXt = (µ− r)Xt dt + σXt dW 1
t (7.2)

for all t ∈ [0, T ], where σu, σ > 0, µu, µ > r and −1 ≤ ρ ≤ 1 are constants. We now
wish to hedge the discounted European claim h̄(UT ), where h̄ : R+ → R+ is defined
by

h̄(x) = e−rT h(erT x),

for all x ∈ R+, using the correlated asset X.
For convenience, we define the market prices of risk for the non-traded and traded

assets by
λu :=

µu − r

σu

and λ :=
µ− r

σ
,

respectively.
In the case where the assets are perfectly correlated (i.e. ρ = 1), it is well known

(see e.g. [17]) that the absence of arbitrage implies that their market prices of risk
should be equal (i.e. λu = λ). Under this condition, the (non-discounted) price of a
European call or put on the non-traded asset, given that its (non-discounted) value
is s at time t ∈ [0, T ], is determined by the standard Black-Scholes formula

BS(t, s, q, σ) := δ
(
se−q(T−t)N(δd1)−Ke−r(T−t)N(δd2)

)
,

with

d1 :=
ln(s/K) + (r − q + σ2/2)(T − t)

σ
√

T − t
and d2 := d1 −

√
T − t.

Here δ = 1 for a call and δ = −1 for a put, while K > 0 is the strike price and q > 0
is the dividend yield of the non-traded asset2. Then,

∆BS(t, s, q, σ) := δe−q(t−T )N(δd1)

is the usual Black-Scholes delta and perfect hedging is achieved by holding

σuUt

σSt
∆BS(t, Ut, 0, σu) (7.3)

units of the traded asset S. It will be shown that the quadratic hedging approaches
are consistent with this limiting regime.

2 Note that we have not modelled dividend yield in our basis risk model. We will however require

this general Black-Scholes formula later.
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7.2 The Föllmer-Schweizer Decomposition

To start with, note that X satisfies the structure condition, since its canonical
decomposition takes the form

Xt = X0 + Mt +
∫ t

0
αs d〈M〉s, (7.4)

with

Mt :=
∫ t

0
σXs dW 1

s and αt :=
µ− r

σ2Xt
, (7.5)

for all t ∈ [0, T ].
Our task in this section is to find the FS decomposition of the discounted claim,

which has the form

h̄(UT ) =: H = H0 +
∫ T

0
ξH
s dXs + LH

T (7.6)

for some ξH ∈ L(U) and LH ∈M2
0, strongly orthogonal to M . Having done so, it is

a simple matter to identify the price and the hedging parameters for both the local
risk-minimizing and the mean-variance optimal strategies, by inspection. (Note that
the approach taken is similar to that of Schweizer [87].)

By rearranging (7.2), we get

dW 1
t =

dXt

σXt
− λ dt,

for all t ∈ [0, T ]. Substituting this into (7.1) yields

dU t

U t

= (µu − r − ρσuλ) dt + σu

(
ρ

σXt
dXt +

√
1− ρ2 dW 2

t

)
, (7.7)

for all t ∈ [0, T ]. We now specify the drift-adjusted process Ũ as the unique strong
solution of the SDE

dŨt = Ũt

(
dU t

U t

+ γ dt

)
,

for all t ∈ [0, T ], with
γ := σu (ρλ− λu) (7.8)

and subject to the terminal condition ŨT = UT . A simple calculation shows that

Ũt = e−γ(T−t)U t,

for all t ∈ [0, T ]; which, when substituted into (7.7), yields

dŨt = σuŨt

(
ρ

σXt
dXt +

√
1− ρ2 dW 2

t

)
, (7.9)
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for all t ∈ [0, T ].
We now construct the minimal martingale measure for X. By Theorem 5.17 and

the canonical decomposition (7.4), the density process for the minimal martingale
measure P̂ is given by

Ẑt := E

[
dP̂
dP

∣∣∣∣∣Ft

]
= E

(
−

∫ ·

0
αs dMs

)

t

= E
(−λW 1

)
t
,

for all t ∈ [0, T ]. Since X is a martingale under P̂, we can define a new process Ŵ

as follows:
dŴt = dW 1

t + λ dt,

for all t ∈ [0, T ]. Since Ŵ Ẑ is a martingale and
〈
Ŵ

〉bP
t

=
[
Ŵ

]
t
= t, for all t ∈ [0, T ],

Lévy’s characterization of Brownian motion (Theorem 3.25) informs us that Ŵ is a
Brownian motion under P̂. Rewriting (7.2) and (7.9) in terms of Ŵ gives

dXt = σXt dŴt

and
dŨt = σuŨt

(
ρ dŴt +

√
1− ρ2 dW 2

t

)
, (7.10)

for all t ∈ [0, T ]. Note that W 2 is strongly orthogonal to M which means that
its martingale property is preserved under the minimal martingale measure (see
Definition 5.13); and 〈U〉bPt = [U ]t = t. Then U is a Brownian motion under P̂,
again by Lévy’s characterization of Brownian motion, which in turn means that the
expression in brackets in (7.10) is a Brownian motion under P̂.

We now use the Feynman-Kač theorem (Theorem 3.26) to infer a PDE repre-
sentation for the claim. Define F : [0, T ]× (0,∞) → R+, by setting

F (t, x) := EbP
[
h̄(ŨT )

∣∣∣ Ũt = x
]
,

for all (t, x) ∈ [0, T ]× (0,∞). Obviously we then have

F (T, x) = h̄(x), (7.11)

for all x ∈ (0,∞). According to the Feynman-Kač theorem, F satisfies the following
PDE:

∂F

∂t
(t, x) +

1
2
σ2

u x2 ∂2F

∂x2
(t, x) = 0, (7.12)

for all (t, x) ∈ [0, T ]× (0,∞), with terminal condition (7.11). Applying Itô’s formula
to the process (F (t, Ũt))t∈[0,T ] yields

h̄(UT ) = h̄(ŨT ) = F (T, ŨT ) = F (0, Ũ0) +
∫ T

0

∂F

∂x
(t, Ũs) dŨs

+
∫ T

0

(
∂F

∂t
(s, Ũs) +

1
2
σ2

u Ũ2
s

∂2F

∂x2
(s, Ũt)

)
ds.
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Substituting (7.9) and (7.12) into this expression gives

h̄(UT ) = F (0, Ũ0) +
∫ T

0

ρσuŨs

σXs

∂F

∂x
(s, Ũs) dXs +

∫ T

0
σuŨs

√
1− ρ2

∂F

∂x
(s, Ũs) dW 2

s .

This is the FS decomposition we have been looking for. Comparing terms with (7.6),
we obtain

H0 = F (0, Ũ0) = EbP
[
h̄(ŨT )

]
;

ξH
t =

ρσuŨt

σXt

∂F

∂x
(t, Ũt); and

LH
t =

∫ t

0
σuŨs

√
1− ρ2

∂F

∂x
(s, Ũs) dW 2

s ,

(7.13)

for all t ∈ [0, T ].

7.3 Hedging Strategies

Now that we have the FS decomposition, it is an easy matter to determine the locally
risk-minimizing strategy. By Proposition 5.10 it is the mean self-financing strategy
(ξ̂, η̂) determined by

(ξ̂t, η̂t) :=
(
ξH
t , V̂t − ξH

t Xt

)
,

where ξH is given by (7.13) and

V̂t := EbP
[
h̄(ŨT )

∣∣∣Ft

]
= F (t, Ũt),

for t ∈ [0, T ]. (Here ξ̂ specifies the holding in the discounted traded asset X and η̂

is the bank account holding.)
It is also an easy matter to find the mean-variance optimal strategy. Since X

satisfies the structure condition, we can use (7.5) to obtain the mean-variance trade-
off process K̂ as follows:

K̂t =
∫ t

0
α2

sd〈M〉s =
∫ t

0

(
µ− r

σ

)2

ds = λ2t,

for all t ∈ [0, T ]. This is a deterministic quantity and thus by Theorem 6.3, Theo-
rem 6.11 and Theorem 6.13, we can express the self-financing mean-variance optimal
strategy (ξ̃, η̃) as follows:

(ξ̃t, η̃t) :=
(
ξ
(v)
t , v + Gt

(
ξ(v)

)− ξ
(v)
t Xt

)
,

where

v := EbP
[
h̄(ŨT )

]
= F (0, Ũ0) and ξ

(v)
t := ξH

t + αt

(
V̂t − v −Gt

(
ξ(v)

))
,

for all t ∈ [0, T ]. (Here G
(
ξ(v)

)
is the gain from trading the discounted asset X,

using ξ(v).)
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7.4 Closed-Form Expressions for Pricing and Hedging

In the previous two sections we manipulated the discounted assets to obtain the
FS decomposition of the discounted claim and the hedge portfolios (in terms of
the discounted assets) for the two quadratic approaches. Now, by transforming
variables, we consider the situation without discounting. It is interesting to note
that (7.12) looks similar to the discounted Black-Scholes PDE of Section 3.5. By
performing a similar transformation of variables as was utilized there, an expression
for the non-discounted intrinsic value of the claim can be derived.

Define the function V : [0, T ]× (0,∞) → R+, by setting

V (t, s) := ertF (t, e−rtse−γ(T−t)),

for all (t, s) ∈ [0, T ]× (0,∞). Then

∂V

∂s
(t, s) = e−γ(T−t) ∂F

∂x

(
t, e−rtse−γ(T−t)

)

∂2V

∂s2
(t, s) = e−2γ(T−t)e−rt ∂

2F

∂x2

(
t, e−rtse−γ(T−t)

)

∂V

∂t
(t, s) = rertF

(
t, e−rtse−γ(T−t)

)
+ ert ∂F

∂t

(
t, e−rtse−γ(T−t)

)

+ (γ − r)se−γ(T−t) ∂F

∂x

(
t, e−rtse−γ(T−t)

)

= rV (t, s) + ert ∂F

∂t

(
t, e−rtse−γ(T−t)

)
+ (γ − r)s

∂V

∂s
(t, s),

for all (t, x) ∈ [0, T ]× (0,∞). The PDE (7.12) may now be rewritten as

e−rt ∂V

∂t
(t, s)− re−rtV (t, s) + (r − γ)e−rts

∂V

∂s
(t, s)

+
1
2
σ2

u (e−rtse−γ(T−t))2e2γ(T−t)ert ∂
2V

∂s2
(t, s) = 0,

which may in turn be rearranged to give

rV (t, s) =
∂V

∂t
(t, s) + (r − γ)s

∂V

∂s
(t, s) +

1
2
σ2

u s2 ∂2V

∂s2
(t, s),

for all (t, x) ∈ [0, T ]× (0,∞). The boundary condition corresponding to (7.11) is

V (T, s) = h(s)

for all s ∈ (0,∞).
When h(s) is the payoff of a put or a call, then the solution of this PDE is given

by the Black-Scholes option pricing formula for a stock with a continuous dividend
yield γ; i.e. V (t, s) = BS(t, s, γ, σu). Then, with the relevant substitutions, we are
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able to calculate the hedge parameters for the optimal strategies. For the local
risk-minimizing strategy we have

ξ̂t =
ρσuUt

σSt

∂V

∂s
(t, Ut) =

ρσuUt

σSt
∆BS(t, Ut, γ, σu), (7.14)

for all t ∈ [0, T ]; and for the mean-variance optimal strategy we get

ξ̃t = ξ̂t +
µ− r

σ2e−rtSt

(
V̂t − v −Gt

(
ξ̃
))

= ξ̂t +
µ− r

σ2e−rtSt

(
V̂t − v −

∫ t

0
ξ̃u d

(
e−ruSu

))
,

(7.15)

with

V̂t = e−rtV (t, Ut) and v = V (0, U0)

= e−rtBS(t, Ut, γ, σu) = BS(0, U0, γ, σu).

for all t ∈ [0, T ]. (Recall that v in this context is interpreted as the approximation
price of the claim.)

When U and S are perfectly correlated (i.e. when ρ = 1), arbitrage considera-
tions ensure that their respective market prices of risk are equal. Consequently, by
(7.8) we have γ = 0, which implies that (7.14) is the same as (7.3); thereby demons-
trating that the local risk minimization approach is consistent with the standard
Black-Scholes hedge for a complete market.

7.5 Hedge Simulation Results

To evaluate the effectiveness of hedging using the quadratic techniques, we now ana-
lyze the results of some hedge simulations. Initially, a comparison of the quadratic
techniques with the numerical results obtained by Monoyios [68]3 was undertaken
for a European put option. The put was written on the non-traded asset U and the
risk was hedged by trading in S. Table 7.1 lists the model parameters that were
chosen.

A Monte Carlo experiment was undertaken to test hedging performance. Ten-
thousand paths for U and S were generated and rebalancing was allowed to take
place 200 times, at equal intervals, over the life of the option. At the end of the
period a profit or loss was recorded as the difference between the accumulated gain
from hedging and the expiry value of the option. The approximation price of the
option was used as the initial endowment.

3 Monoyios applies a utility maximization approach to the problem of hedging. We do not present

his approach here, but refer the reader to [68] for full details and the hedging algorithm.
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U0 S0 K r µu σu µ σ T

100 100 100 5% 0.12 0.30 0.10 0.25 1 year

Tab. 7.1: Model Parameters employed by the hedge simulations (for purposes of
comparison, these are the same parameter values as in Monoyios [68]).

Four strategies were used to compute the hedge parameters. These were a naive
strategy (as suggested by Monoyios [68]), which simply employs the standard Black-
Scholes hedge ratio (7.3); the local risk-minimizing hedge ratio (7.14); the mean-
variance optimal hedge ratio (7.15); and the hedge ratio proposed by Monoyios [68,
§4.1.1, p. 250]. The algorithm of Monoyios employs a risk-aversion constant4. For
the purposes of our simulations, we set the value of this parameter to rac = 0.001.

Two values for ρ were used, namely 0.65 and 0.85. Histograms of the resulting
simulated hedge errors are given in Figure 7.1, with Tables 7.2 and 7.3 providing
summary statistics.

Strategy Max Min Mean SD Median

Naive 38.55 -53.53 -0.8492 10.7644 0.4715
Local risk 27.12 -45.11 -0.0149 9.4936 2.6151
Mean variance 30.62 -52.48 0.0014 9.3690 2.4631
Monoyios 27.15 -45.11 -0.0184 9.4933 2.6004

Tab. 7.2: Summary statistics for ρ = 0.65

Strategy Max Min Mean SD Median

Naive 30.69 -39.99 -0.4004 7.0660 0.1125
Local risk 26.00 -33.37 -0.0200 6.6839 1.1064
Mean variance 28.74 -36.91 -0.0092 6.5943 1.0149
Monoyios 26.03 -33.36 -0.0222 6.6837 1.0958

Tab. 7.3: Summary statistics for ρ = 0.85

The results are encouraging, with the local risk-minimizing strategy performing
almost as well as Monoyios’ algorithm. This is not surprising, since his algorithm is
based on a utility maximization paradigm for which expectations are taken under
the minimal martingale measure. The mean-variance optimal strategy performed

4 Note that the risk aversion constant in Monoyios [68] is represented by γ — this should not be

confused with our use of the constant γ.
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Fig. 7.1: Histograms of the hedging errors for the put option, based on 10000
sample paths. The approximation prices were 8.2324 and 8.6564, cor-
responding to correlation coefficients of 0.65 and 0.85, respectively.

slightly better than the other two, with a standard deviation that was 1%–2% lower.
(This can be seen as an enhanced peak around the mean in the relevant histograms.)
One slight drawback of this method is that its largest losses exceeded the largest
losses of the other methods; but in general, it did perform better.

It should be noted that due to a constraint in his utility maximization formula-
tion, the algorithm proposed by Monoyios [68] cannot be used directly for pricing
and hedging a call option. To overcome this shortcoming, Henderson and Hobson
[45, p. 74] suggest modelling the call using a static hedge consisting of put options.
In contrast, our approach is applicable for both puts and calls, without modification.

Table 7.4 shows the approximation prices for various values of the correlation
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ρ Put Call

-0.95 5.3127 23.7315
-0.75 5.6321 22.6965
-0.50 6.0493 21.4435
-0.25 6.4870 20.2358
0 6.9451 19.0730
0.25 7.4238 17.9549
0.50 7.9231 16.8812
0.75 8.4428 15.8514
0.95 8.8733 15.0588
1 9.3542 14.2312

Tab. 7.4: Put and call option approximation prices for various values of ρ. (When
ρ = 1, they are the standard Black-Scholes prices.)

coefficient, for both put and call options, based on the parameters presented in
Table 7.1. It is interesting to note that the approximation prices for the put are
lower than the Black-Scholes prices, while the converse is true for the call. One
should not interpret these prices as being the premiums charged for the options,
since not all risk is hedged due, to incompleteness. It is therefore necessary to
estimate the standard deviation (SD) of the hedging error, so that the option writer
can charge an appropriate risk premium. Figure 7.2 shows the approximation prices
and the standard deviations of the hedging errors for the put, using both the local
risk-minimizing and mean-variance optimal hedging strategies. Figure 7.3 shows
the same results for a call. The standard deviations were estimated based on Monte
Carlo samples of 10000 paths.

7.6 Conclusions

Although the performance of the quadratic techniques is at least as good as that
achieved with the utility approach, it should be noted that the hedging algorithms
are considerably simpler. This is a pleasant consequence of having access to closed-
form formulas. In contrast, the utility indifference approach requires perturbation
expansions to solve the relevant PDEs which are originally derived using a “distor-
tion” technique.

There is scope for further research. It would be nice to obtain an estimate
of the variance of the hedging error, expressed in terms of the parameters of the
model. This would allow one to estimate the risk premium that should be charged
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(over and above the approximation price) and may perhaps lead to a quantile-based
formulation of the claim price.
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Fig. 7.2: Approximation price and standard deviation of hedging error vs correla-
tion, for the put option with parameters given by Table 7.1.
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Fig. 7.3: Approximation price and standard deviation of hedging error vs correla-
tion, for the call option with parameters given by Table 7.1.



Appendix A

Matlab Code for Chapter 7

A.1 BasisHist.m
%

% Program to produce Figure 7.1 and generate data for Table 7.2 and Table 7.3.

% This program calls BasisRisk.m to generate the histogram data

%

rho=0.85

BasisRisk;

rmPnLs85=rmPnLs;

mvPnLs85=mvPnLs;

nvPnLs85=nvPnLs;

monPnLs85=monPnLs;

rho=0.65

BasisRisk;

rmPnLs65=rmPnLs;

mvPnLs65=mvPnLs;

nvPnLs65=nvPnLs;

monPnLs65=monPnLs;

maxPnL85=max([rmPnLs85 mvPnLs85 nvPnLs85 monPnLs85]);

minPnL85=min([rmPnLs85 mvPnLs85 nvPnLs85 monPnLs85]);

maxPnL65=max([rmPnLs65 mvPnLs65 nvPnLs65 monPnLs65]);

minPnL65=min([rmPnLs65 mvPnLs65 nvPnLs65 monPnLs65]);

deltaPnL85=(maxPnL85-minPnL85)/nbins;

deltaPnL65=(maxPnL65-minPnL65)/nbins;

subplot(4,2,1)

hist(nvPnLs65,[minPnL65:deltaPnL65:maxPnL65]);

set(gca,’TickDir’,’out’,’FontSize’,8,’Box’,’off’)

title ’Naive (\rho=0.65)’;

axis([-60 60 0 2000]);

ylabel(’Frequency’,’FontSize’,8);

set(get(gca,’Title’),’FontWeight’,’bold’)

line([-60,60],[2000,2000],’Color’,’k’);

line([60,60],[0,2000],’Color’,’k’);

subplot(4,2,2)

hist(nvPnLs85,[minPnL85:deltaPnL85:maxPnL85]);

set(gca,’TickDir’,’out’,’FontSize’,8,’Box’,’off’);

set(gca,’xTick’,[-40:10:40]);

title ’Naive (\rho=0.85)’;

axis([-40 40 0 2000]);

set(get(gca,’Title’),’FontWeight’,’bold’)

line([-40,40],[2000,2000],’Color’,’k’);

line([40,40],[0,2000],’Color’,’k’);

subplot(4,2,3)

hist(rmPnLs65,[minPnL65:deltaPnL65:maxPnL65]);

set(gca,’TickDir’,’out’,’FontSize’,8,’Box’,’off’)

title ’Local risk (\rho=0.65)’;

axis([-60 60 0 2000]);

ylabel(’Frequency’,’FontSize’,8);

set(get(gca,’Title’),’FontWeight’,’bold’)

line([-60,60],[2000,2000],’Color’,’k’);

line([60,60],[0,2000],’Color’,’k’);

subplot(4,2,4)

hist(rmPnLs85,[minPnL85:deltaPnL85:maxPnL85]);

set(gca,’TickDir’,’out’,’FontSize’,8,’Box’,’off’)

set(gca,’xTick’,[-40:10:40]);

title ’Local risk (\rho=0.85)’;

axis([-40 40 0 2000]);

set(get(gca,’Title’),’FontWeight’,’bold’)
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line([-40,40],[2000,2000],’Color’,’k’);

line([40,40],[0,2000],’Color’,’k’);

subplot(4,2,5)

hist(mvPnLs65,[minPnL65:deltaPnL65:maxPnL65]);

set(gca,’TickDir’,’out’,’FontSize’,8,’Box’,’off’)

title ’Mean-variance (\rho=0.65)’;

axis([-60 60 0 2000]);

ylabel(’Frequency’,’FontSize’,8);

set(get(gca,’Title’),’FontWeight’,’bold’)

line([-60,60],[2000,2000],’Color’,’k’);

line([60,60],[0,2000],’Color’,’k’);

subplot(4,2,6)

hist(mvPnLs85,[minPnL85:deltaPnL85:maxPnL85]);

set(gca,’TickDir’,’out’,’FontSize’,8,’Box’,’off’)

set(gca,’xTick’,[-40:10:40]);

title ’Mean-variance (\rho=0.85)’;

axis([-40 40 0 2000]);

set(get(gca,’Title’),’FontWeight’,’bold’)

line([-40,40],[2000,2000],’Color’,’k’);

line([40,40],[0,2000],’Color’,’k’);

subplot(4,2,7)

hist(monPnLs65,[minPnL65:deltaPnL65:maxPnL65]);

set(gca,’TickDir’,’out’,’FontSize’,8,’Box’,’off’)

title ’Monoyios (\rho=0.65, \gamma=0.001)’;

axis([-60 60 0 2000]);

xlabel(’Terminal hedging error’,’FontSize’,8);

ylabel(’Frequency’,’FontSize’,8);

set(get(gca,’Title’),’FontWeight’,’bold’)

line([-60,60],[2000,2000],’Color’,’k’);

line([60,60],[0,2000],’Color’,’k’);

subplot(4,2,8)

hist(monPnLs85,[minPnL85:deltaPnL85:maxPnL85]);

set(gca,’TickDir’,’out’,’FontSize’,8,’Box’,’off’)

set(gca,’xTick’,[-40:10:40]);

title ’Monoyios (\rho=0.85, \gamma=0.001)’;

axis([-40 40 0 2000]);

xlabel(’Terminal hedging error’,’FontSize’,8);

set(get(gca,’Title’),’FontWeight’,’bold’);

line([-40,40],[2000,2000],’Color’,’k’);

line([40,40],[0,2000],’Color’,’k’);

A.2 BasisRisk.m
%

% Program to produce histogram data

%

tic;

% Initialize constants

Y0=100; % Initial stock price of untraded stock

X0=100; % Initial stock price of traded stock

mux=0.10; % drift rate of untraded stock

muy=0.12; % drift rate of traded stock

sigmax=0.25; % volatility of untraded stock

sigmay=0.30; % volatility of traded stock

r=0.05; % NACC rate

%rho=?; % correlation constant set by BasisHist.m

eps=sqrt(1-rho^2);

eta=-1; % 1 for calls, -1 for puts

T=1; % maturity of the call in years

K=100; % Strike price

Kprime=K*exp(-r*T); % Discounted strike price

n=200; % number of rebalance points

ntrials=10000; % number of trials

nbins=40; % number of bins for the histogram

rac=0.001; % Risk aversion constant for Monoyios algorithm

randn(’state’,10); % Initialize the random seed (for deterministic results)

%

% Calculate some reusable constants and arrays

%

deltaT=T/n;

tau=[T:-deltaT:deltaT];

cumt=[0:deltaT:T];

driftx=(mux-r-0.5*sigmax^2)*cumt; % Discounted drift per unit time

drifty=(muy-r-0.5*sigmay^2)*cumt;

varx=sigmax*sqrt(deltaT); % Variance per unit time
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vary=sigmay*sqrt(deltaT);

gamma=rho*sigmay*(mux-r)/sigmax-(muy-r); % Calculate BS delta multiplier for RM strategy

%deltamult=exp(tau.*-gamma).*rho.*sigmay./sigmax;

deltamult=rho.*sigmay./sigmax;

gammafact=exp(tau.*-gamma);

d1bs=0.5*sigmay^2.*tau; % d1 constants

d1lrm=(0.5*sigmay^2-gamma).*tau;

s=sigmay.*sqrt(tau);

lambda=(mux-r)/sigmax; % Calculate constants and arrays for Monoyios algorithm

q=r-(muy-sigmay*rho*lambda);

d1mon=(r-q+0.5*sigmay^2).*tau; % discounted d1 constant

My2term=exp((2*(r-q)+sigmay^2).*tau); % Reusable arrays

My3term=exp(3*(r-q+sigmay^2).*tau);

My4term=exp(2*(2*(r-q)+3*sigmay^2).*tau);

dMy1term=exp((r-q+sigmay^2).*tau);

dMy2term=exp((2*(r-q)+3*sigmay^2).*tau);

dMy3term=exp(3*(r-q+2*sigmay^2).*tau);

erq=exp((r-q).*tau);

beta=exp(r.*tau);

%

% Calculate Black-Scholes price

%

d1=(log(Y0/K)+(r+0.5*sigmay^2)*T)/(sigmay*sqrt(T));

d2=d1-sigmay*sqrt(T);

BSprice=eta*(Y0*cnd(eta*d1)-K*exp(-r*T)*cnd(eta*d2))

%

% Calculate LRM price

%

d1=(log(Y0/K)+(r-gamma+0.5*sigmay^2)*T)/(sigmay*sqrt(T));

d2=d1-sigmay*sqrt(T);

H0=eta*(Y0*exp(-gamma*T)*cnd(eta*d1)-K*exp(-r*T)*cnd(eta*d2))

endow=H0; % Initial endowment

%

% Perform numerical experiment

%

nvPnLs=[];

rmPnLs=[];

mvPnLs=[];

monPnLs=[];

for loop=1:ntrials

zx=[0 randn(n,1).’]; % Calculate discounted stock price paths

zy=rho*zx+eps.*[0 randn(n,1).’];

x=X0*exp(driftx+varx*cumsum(zx));

y=Y0*exp(drifty+vary*cumsum(zy));

d1=(log(y(1:n)./Kprime)+d1bs)./s; % Calculate BS deltas

delta=eta*cnd(eta*d1);

nvstrat=delta.*sigmay.*y(1:n)./(sigmax.*x(1:n)); % Calculate naive hedge ratios

banknv=endow+sum(([0 nvstrat(1:(n-1))]-nvstrat).*x(1:n)); % Calculate portfolio gain for naive strategy

d1=(log(y(1:n)./Kprime)+d1lrm)./s; % Calculate Local Risk Minimization deltas

d2=d1-s;

delta=eta*gammafact.*cnd(eta*d1);

intrinsic=y(1:n).*delta-eta*Kprime.*cnd(eta*d2); % Calculate discounted Intrinsic values

rmstrat=delta.*y(1:n).*deltamult./x(1:n); % Calculate local risk minimizing hedge ratios

bankrm=endow+sum(([0 rmstrat(1:(n-1))]-rmstrat).*x(1:n)); % Calculate portfolio gain for rm strategy

bankmv=endow; % Calculate portfolio gain for mv strategy

prevdeltamv=0;

for t=1:n

newdeltamv=rmstrat(t)+(intrinsic(t)-H0-(bankmv+prevdeltamv*x(t)-endow))*(mux-r)/(sigmax^2*x(t));

bankmv=bankmv+(prevdeltamv-newdeltamv)*x(t);

prevdeltamv=newdeltamv;

end

%

% Now compute hedging strategy for Monoyios algorithm

%

y1=exp(r*cumt(1:n)).*y(1:n); % Calculate components of Monoyios expansion

y2=y1.*y1;

y3=y2.*y1;
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y4=y3.*y1;

d1=(log(y1./K)+d1mon)./s;

Nd1=cnd(-d1); % Calculate cumulative normal functions

Nd1ps=cnd(-d1+s);

Nd1ms=cnd(-d1-s);

Nd1m2s=cnd(-d1-2*s);

Nd1m3s=cnd(-d1-3*s);

M1=K*Nd1ps-y1.*erq.*Nd1;

M2=K^2.*Nd1ps-2*K*y1.*erq.*Nd1+y2.*My2term.*Nd1ms;

M3=K^3*Nd1ps-3*K^2*y1.*erq.*Nd1+3*K*y2.*My2term.*Nd1ms-y3.*My3term.*Nd1m2s;

M4=K^4*Nd1ps-4*K^3*y1.*erq.*Nd1+6*K^2*y2.*My2term.*Nd1ms-4*K*y3.*My3term.*Nd1m2s+y4.*My4term.*Nd1m3s;

dM1=-erq.*Nd1;

dM2=-2*erq.*(K*Nd1-y1.*dMy1term.*Nd1ms);

dM3=-3*erq.*(K^2*Nd1-2*K*y1.*dMy1term.*Nd1ms+y2.*dMy2term.*Nd1m2s);

dM4=-4*erq.*(K^3*Nd1-3*K^2*y1.*dMy1term.*Nd1ms+3*K*y2.*dMy2term.*Nd1m2s-y3.*dMy3term.*Nd1m3s);

monstrat=dM1+rac*eps^2/2*(dM2-2*M1.*dM1)+rac^2*eps^4/6*(dM3-3*M2.*dM1-3*M1.*dM2+6*M1.^2.*dM1);

monstrat=monstrat+rac^3*eps^6/24*(dM4-6*M2.*dM2+12*M1.^2.*dM2+24*M1.*M2.*dM1-4*M1.*dM3-4*M3.*dM1-24*M1.^3.*dM1);

monstrat=(rho*sigmay/sigmax.*y(1:n)./x(1:n)).*(monstrat./beta);

bankmon=endow+sum(([0 monstrat(1:(n-1))]-monstrat).*x(1:n)); % Calculate portfolio gain for Monoyios strategy

%

% Calculate profit and Loss for strategies

%

nvPnL=exp(r*T)*(banknv+nvstrat(n)*x(n+1)-max(eta*(y(n+1)-Kprime),0));

nvPnLs=[nvPnLs nvPnL];

rmPnL=exp(r*T)*(bankrm+rmstrat(n)*x(n+1)-max(eta*(y(n+1)-Kprime),0));

rmPnLs=[rmPnLs rmPnL];

mvPnL=exp(r*T)*(bankmv+prevdeltamv*x(n+1)-max(eta*(y(n+1)-Kprime),0));

mvPnLs=[mvPnLs mvPnL];

monPnL=exp(r*T)*(bankmon+monstrat(n)*x(n+1)-max(eta*(y(n+1)-Kprime),0));

monPnLs=[monPnLs monPnL];

end

toc;

%

% Print out summary stats

%

disp(sprintf(’Strategy Max Min Mean SD Median’))

disp(sprintf(’Naive %4.2f %4.2f %2.4f %2.4f %2.4f’,max(nvPnLs),min(nvPnLs),mean(nvPnLs),std(nvPnLs,1),

median(nvPnLs)))

disp(sprintf(’Local Risk %4.2f %4.2f %2.4f %2.4f %2.4f’,max(rmPnLs),min(rmPnLs),mean(rmPnLs),std(rmPnLs,1),

median(rmPnLs)))

disp(sprintf(’Mean variance %4.2f %4.2f %2.4f %2.4f %2.4f’,max(mvPnLs),min(mvPnLs),mean(mvPnLs),std(mvPnLs,1),

median(mvPnLs)))

disp(sprintf(’Monoyios %4.2f %4.2f %2.4f %2.4f %2.4f’,max(monPnLs),min(monPnLs),mean(monPnLs),std(monPnLs,1),

median(monPnLs)))

return

A.3 ApproximationPrice.m
%

% Program to generate data for Table 7.4 and produce Figure 7.2 and Figure 7.3.

% This program calls QuadraticMethods.m to generate the data for the graphs.

%

tic;

% Initialize constants

Y0=100; % Initial stock price of untraded stock

X0=100; % Initial stock price of traded stock

mux=0.10; % drift rate of untraded stock

muy=0.12; % drift rate of traded stock

sigmax=0.25; % volatility of untraded stock

sigmay=0.30; % volatility of traded stock

r=0.05; % NACC rate

eta=-1; % 1 for calls, -1 for puts

T=1; % maturity of the call in years

K=100; % Strike price

%

% Calculate approximation price vs correlation constant

%

rhoarray=[-0.95 -0.75:0.25:0.75 0.95]

ap=[];
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for loop=1:length(rhoarray)

gamma=rhoarray(loop)*sigmay*(mux-r)/sigmax-(muy-r);

d1=(log(Y0/K)+(r-gamma+0.5*sigmay^2)*T)/(sigmay*sqrt(T));

d2=d1-sigmay*sqrt(T);

ap=[ap eta*(Y0*exp(-gamma*T)*cnd(eta*d1)-K*exp(-r*T)*cnd(eta*d2))];

end

ap

%

% Calculate approximation price and SDs for quadratic methods vs rho

%

cc=[];

ap=[];

for rho=-0.99:0.01:0.99

cc=[cc rho];

gamma=rho*sigmay*(mux-r)/sigmax-(muy-r);

d1=(log(Y0/K)+(r-gamma+0.5*sigmay^2)*T)/(sigmay*sqrt(T));

d2=d1-sigmay*sqrt(T);

ap=[ap eta*(Y0*exp(-gamma*T)*cnd(eta*d1)-K*exp(-r*T)*cnd(eta*d2))];

end

rhoarray=[-0.99 -0.975 -0.95 -0.875:0.125:0.875 0.95 0.975 0.99];

stdrm=[];

stdmv=[];

for loop=1:length(rhoarray)

rho=rhoarray(loop)

QuadraticMethods;

stdrm=[stdrm std(rmPnLs)];

stdmv=[stdmv std(mvPnLs)];

end

%

% Produce graph

%

plot(cc,ap,’k’,’Linewidth’,1.5);

hold

plot(rhoarray,stdmv,’r’,’LineStyle’,’-.’);

plot(rhoarray,stdrm,’b’);

set(gca,’TickDir’,’out’,’Box’,’off’)

title(’Approximation price and SD of P&Ls vs correlation coefficient’);

set(get(gca,’Title’),’FontWeight’,’bold’)

xlabel(’\rho’);

legend(’Approximation Price’,’SD for local risk-minimization’,’SD for mean-variance’,3);

A.4 QuadraticMethods.m
%

% Program to compare the local risk minimizing stratey with the mean-variance optimal strategy

% and produce a histogram showing the distribution of profits and losses incured.

%

tic;

% Initialize constants

eps=sqrt(1-rho^2);

Kprime=K*exp(-r*T); % Discounted strike price

n=200; % number of rebalance points

ntrials=10000; % number of trials

randn(’state’,10); % Initialize the random seed (for deterministic results)

%

% Calculate some reusable constants and arrays

%

deltaT=T/n;

tau=[T:-deltaT:deltaT];

cumt=[0:deltaT:T];

driftx=(mux-r-0.5*sigmax^2)*cumt; % Discounted drift per unit time

drifty=(muy-r-0.5*sigmay^2)*cumt;

varx=sigmax*sqrt(deltaT); % Variance per unit time

vary=sigmay*sqrt(deltaT);

gamma=rho*sigmay*(mux-r)/sigmax-(muy-r); % Calculate BS delta multiplier for RM strategy

deltamult=rho.*sigmay./sigmax;

gammafact=exp(tau.*-gamma);

d1lrm=(0.5*sigmay^2-gamma).*tau; % d1 constants

s=sigmay.*sqrt(tau);
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%

% Calculate Black-Scholes price

%

d1=(log(Y0/K)+(r+0.5*sigmay^2)*T)/(sigmay*sqrt(T));

d2=d1-sigmay*sqrt(T);

BSprice=eta*(Y0*cnd(eta*d1)-K*exp(-r*T)*cnd(eta*d2))

%

% Calculate LRM price

%

d1=(log(Y0/K)+(r-gamma+0.5*sigmay^2)*T)/(sigmay*sqrt(T));

d2=d1-sigmay*sqrt(T);

H0=eta*(Y0*exp(-gamma*T)*cnd(eta*d1)-K*exp(-r*T)*cnd(eta*d2))

endow=BSprice; % Initial endowment

%

% Perform numerical experiment

%

rmPnLs=[];

mvPnLs=[];

monPnLs=[];

for loop=1:ntrials

zx=[0 randn(n,1).’]; % Calculate discounted stock price paths

zy=rho*zx+eps.*[0 randn(n,1).’];

x=X0*exp(driftx+varx*cumsum(zx));

y=Y0*exp(drifty+vary*cumsum(zy));

d1=(log(y(1:n)./Kprime)+d1lrm)./s; % Calculate Local Risk Minimization deltas

d2=d1-s;

delta=eta*gammafact.*cnd(eta*d1);

intrinsic=y(1:n).*delta-eta*Kprime.*cnd(eta*d2); % Calculate discounted Intrinsic values

rmstrat=delta.*y(1:n).*deltamult./x(1:n); % Calculate local risk minimizing hedge ratios

bankrm=endow+sum(([0 rmstrat(1:(n-1))]-rmstrat).*x(1:n)); % Calculate portfolio gain for rm strategy

bankmv=endow; % Calculate portfolio gain for mv strategy

prevdeltamv=0;

for t=1:n

newdeltamv=rmstrat(t)+(intrinsic(t)-H0-(bankmv+prevdeltamv*x(t)-endow))*(mux-r)/(sigmax^2*x(t));

bankmv=bankmv+(prevdeltamv-newdeltamv)*x(t);

prevdeltamv=newdeltamv;

end

%

% Calculate profit and Loss for strategies

%

rmPnL=exp(r*T)*(bankrm+rmstrat(n)*x(n+1)-max(eta*(y(n+1)-Kprime),0));

rmPnLs=[rmPnLs rmPnL];

mvPnL=exp(r*T)*(bankmv+prevdeltamv*x(n+1)-max(eta*(y(n+1)-Kprime),0));

mvPnLs=[mvPnLs mvPnL];

end

toc;

return
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[67] P. Monat and C. Stricker, Föllmer-Schweizer decomposition and mean-variance
hedging for general claims, Annals of Probability 23 (1995), no. 2, 605–628.

[68] M. Monoyios, Performance of utility-based strategies for hedging basis risk,
Quantitative Finance 4 (2004), no. 3, 245–255.

[69] M. Musiela and M. Rutkowski, Martingale Methods in Financial Modelling,
Springer-Verlag, 1997.

[70] H. Pham, T. Rheinländer, and M. Schweizer, Mean-variance hedging for conti-
nuous processes: New proofs and examples, Finance and Stochastics 2 (1998),
no. 2, 173–198.

[71] H Pham, On quadratic hedging in continuous time, Mathematical Methods of
Operations Research 51 (2000), no. 2, 315–339.

[72] P. Protter, Stochastic integration without tears (with apology to P. A. Meyer),
Stochastics 16 (1986), no. 3-4, 295–325.

[73] , A partial introduction to financial asset pricing theory, Stochastic Pro-
cesses and Their Applications 91 (2001), no. 2, 169–203.

[74] , Stochastic Integration and Differential Equations, 2nd ed., Springer-
Verlag, 2004.

[75] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd ed.,
Springer-Verlag, 1999.



Bibliography 121

[76] T. Rheinländer and M. Schweizer, On L2-projections on a space of stochastic
integrals, Annals of Probability 25 (1997), no. 4, 1810–1831.

[77] T. Rheinländer, Optimal Martingale Measures and Their Applications in Ma-
thematical Finance, Ph.D. thesis, Technische Universität Berlin, 1999.

[78] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and Martin-
gales, 2nd ed., vol. 1, Cambridge University Press, 1994.

[79] , Diffusions, Markov Processes and Martingales, 2nd ed., vol. 2, Cam-
bridge University Press, 1994.

[80] S. A. Ross, The arbitrage theory of capital asset pricing, Journal of Economic
Theory 13 (1976), no. 3, 341–360.

[81] W. Schachermayer, Introduction to the mathematics of financial markets, Lec-
tures on Probability Theory and Statistics, Saint-Flour Summer School 2000
(P. Bernard, ed.), Lecture Notes in Mathematics, vol. 1816, Springer-Verlag,
2003, pp. 111–177.

[82] M. Schäl, On quadratic cost criteria for option hedging, Mathematics of Ope-
rations Research 19 (1994), no. 1, 121–131.

[83] M. Schweizer, Hedging of Options in a General Semimartingale Model, Ph.D.
thesis (8615), ETH Zürich, 1988.
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