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CHAPTER 3:  IMAGE PROCESSING AND DEPTH ESTIMATION METHODS 

   

Magnetic field data are used for a variety of reasons, the most basic of which is to probe 

the subsurface. Very often, the image derived from the data does not show sufficiently 

detailed structure. This chapter deals with (1) image processing of data with particular 

reference to upward continuation and automatic gain control and (2) depth estimation 

using Euler deconvolution and wavenumber estimation methods. Upward-continuation 

will be used to emphasize long-wavelength anomalies as this helps to compare ground 

magnetic data with aeromagnetic data. The automatic gain control method helps to 

enhance subtle features. Euler deconvolution and wavenumber depth estimation help to 

identify the position and depth of selected features within the area. A discussion of the 

methods and applications to synthetic data is given below. The methods will be used to 

analyse the data in Chapter 4. 

 

3.1   Upward continuation 

 

Upward continuation is a transformation whereby the potential field anomaly is 

calculated at an altitude higher than the measured field. Because of this and because the 

size of dipole magnetic anomalies decreases with the cube of the distance from the 

source, the original data are smoothed. Jacobsen (1987) likened upward continuation to a 

low pass filter because high frequency components are attenuated while low frequency 

components are enhanced.  The mathematical description of upward continuation is 

summarised below. A detailed description can be found in Gibert and Galdeano (1985).  

 

A(x,y,z) is assumed to be a potential field at location x,y,z and to be harmonic outside the 

source. In the absence of a source in the upper half space, A is given by Gibert and 

Galdeano (1985) as 

 

0)],,([ =∆ zyxA  where z 0≥ .       3.1 
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If values of A are known on the surface z = 0, the function can be continued upward in 

the upper half space. By utilizing Green’s integration, A(x,y,z) (z > 0) can be determined 

from A(x,y,0). This is expressed as follows (Schwartz, 1950) 
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Equation 3.2 can be expressed as a product of a convolution, which can be written as 
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where  
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Rewriting Equation 3.3 as a convolution product of the respective Fourier Transforms 

yields 
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Consider a function g(x,y) whose Fourier Transform is defined as follows 
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while the inverse Fourier Transform of g(x,y) is given by 
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where 12 −=i  (Bracewell, 1965).  

 

The above relation allows for simplification of Equation 3.7 and this gives the Fourier 

transform 

 

)2exp(),(
~

zvuPz πρ−=                                                                                      3.8 

 

where 222 vu +=ρ                                                                                          3.9 

 

Substituting Equation 3.9 into Equation 3.5 yields  
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where κ is the wavenumber and z is the continuation height. 

 

Equation 3.2 is also known as the upward continuation equation in the space domain 

while Equation 3.10 is the equivalent in the frequency domain.  

 

FORTRAN codes that calculate upward-continuation of potential fields have been 

published by Gibert and Galdeano (1985). Descriptions of the programs and input data 

format are also given in the paper. 

   

3.1.1    Application of upward-continuation on synthetic data 

 

The effectiveness of the upward-continuation filter was tested on synthetic data (Fig. 3.1) 

before applying to real data (Chapter 4). The synthetic model consisted of two 

rectangular blocks (marked 1 and 2, Fig. 3.1) and a vertical dyke (marked 3). The 
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dimensions, positions, depths and magnetization of the bodies are given in Table 3.1. The 

parameters of the ambient field are: inclination = -63.8 º and declination = -18.6 º. 

 

 

 

 

 

Table 3.1. Geometrical and magnetic parameters of the synthetic sources generating the 

total-field magnetic anomaly of Fig. 3.1.  

 

Source 
Magnetization 

(A/m) 

X range 

(m) 

Y range 

(m) 
Depth range (m) 

1 1 300-800 400-1000 20-1000 

2 3 500-600 550-650 20-50 

3 3 200-800 105-112 10-300 

 

 

Fig. 3.1 shows the response of anomalies with different wavelengths to upward 

continuation to a height of 150 m. The smaller rectangular block (2) and narrow dyke (3) 

do not show visible anomalies in the upward continued map (Fig. 3.1c). This is consistent 

with the upward continuation algorithm as it tends to suppress subtle features at the 

expense of longer wavelength anomalies. Fig. 3.1b is the theoretical magnetic response of 

the model calculated at a height of 150 m. Ideally Figs. 3.1b and 3.1c should be similar. 

However, the shape of the anomaly is not quite the same at the top of the figures, 

probably due to the window size used in the upward continuation (Fig. 3.1c). In general 

the shape of the anomaly in Fig. 3.1c can be controlled by altering the window size. 

Despite the differences in anomaly size in Figs. 3.1b and 3.1c the above exercise 

illustrates that upward continuation can be used successfully to compare ground magnetic 

data with aeromagnetic data.   
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Figure 3.1. Synthetic magnetic data for testing upward-continuation. a) Raw data 

(observation height at 2.5 m), b) magnetic attraction of bodies in (a) calculated at a height 

of 150 m, c) data from (a) upward continued to 150 m. Note that (1-3) are the outlines of 

the sources of the respective anomalies. For example 1 belongs to the larger rectangle.  

 

 

3.2   Automatic gain control (AGC) of map data 

 

Perhaps the most important use of magnetic images is to indicate areas of considerable 

magnetic contrast and to visualize features such as faults and dykes, which are depicted 

as lineaments. Because the amplitude of anomalies depends on magnetic field strength 

and depth of source rocks, lower amplitude anomalies are often suppressed at the expense 

of high amplitude anomalies. Rajagopalan and Milligan (1995) noted that subtle features 
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can be highlighted by increasing their relative amplitudes and by emphasising the 

continuity of the features.   

 

There are many techniques that have been employed to achieve image enhancement. 

Some of the best readily used filters are the horizontal derivative, the vertical derivative, 

and sunshading. Horizontal and vertical gradient filters are used to highlight subtle 

features, as well as accentuate discontinuities and breaks in anomaly trends. In particular, 

vertical gradient maps emphasise short-wavelength features and attenuate long-

wavelength anomalies. Sunshading is a directional filter that is used to enhance features 

in certain directions and suppress those features which are perpendicular to the desired 

direction (Cooper, 2001). It is a combination of the two horizontal gradients. However, it 

is evident that using the sunshading filter, wholesale image enhancement is not possible 

as one has to choose the direction of interest. The image enhancement required here is 

one where both short-wavelength and long-wavelength anomalies must be preserved. 

Therefore, using all of the above mentioned filters is not an optimal exercise.  

To overcome the above dilemma, Rajagopalan (1987) and Rajagopalan and Milligan 

(1995) used automatic gain control (AGC) to enhance the amplitude of short-wavelength 

anomalies without diminishing long-wavelength anomalies.   

 

The AGC for grid data is given by 
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where, 
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OutputAxy =  (Output = Data after AGC operation) 

 

power = p 

 

root = r 

and the window size = 
)12)(12(

1

++ wv
                                                          4.3 

 

xyF  is the input function with dimensions x and y, and v and w are the dimensions of the 

window. Appendix A.2 is the MATLAB implementation of Equation 4.2. 

 

The input waveform, which constitutes multiple amplitudes, is adjusted such that the 

output waveform is of constant amplitude using the following steps. 1) The amplitude of 

the input signal is calculated using the root mean square (RMS) value. 2) The gain 

function of the amplifier (which is taken as inversely proportional to the RMS value 

obtained from the above) is calculated. 3) The last step involves calculating the output 

function, which depends on the window size.  

 

The gain function can be made to be equal to the inverse of the RMS value provided p 

and r are substituted by 2 and 0.5 in Equation 4.2 respectively. Rajagopalan, (1987) and 

Rajagopalan and Milligan (1995) observed that if the input signal is made up of variable 

amplitudes but constant wavelength, by setting the window length to the same value as 

the wavelength, the output signal will have constant amplitude.  

  

3.2.1  Pitfalls in using automatic gain control for the processing of magnetic data 

 

Any geophysical tool used to interrogate magnetic data has its benefit and limitations that 

any user must be cognizant of before one uses it. One such advantage of the AGC method 

is the enhancement of trends and subtle features in magnetic data.  
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However, this method is very sensitive to the length of the window. To illustrate the 

point, a window size that is too small will amplify values to ± 1 and that a window size 

that is too large will results in an output signal that is similar to the input signal 

(Rajagopalan, 1987). This clearly shows that the choice of the window size is critical for 

attaining a good output signal. A number of window sizes should be tested in order to 

produce an output that best enhances the lower amplitude signals (Rajagopalan, 1987; 

Rajagopalan and Milligan, 1995). 

 

Rajagopalan and Milligan (1995) showed that the AGC method works best when applied 

on profile data compared with gridded data. They created two AGC images, the first 

produced from profiles (AGC was applied to each profile separately then stacked together 

to create a map) and the second from gridded data. In the first approach the AGC was 

applied to the total magnetic intensity (TMI) profiles and the grid was created from these 

AGC profiles. The second approach differed from the first approach in that the AGC was 

directly applied to the TMI grid.  

 

They observed that the trends and subtle features were adequately enhanced in the map 

created from AGC profiles than those seen in the map created from gridded data. They 

also found that when the AGC is applied to gridded data, 3-dimensional anomalies were 

well represented compared with those from the other approach. In both cases they also 

observed that the AGC was amplifying noise in the data, particularly when the AGC was 

applied to gridded data. The problem with noise is not so severe so that the effectiveness 

of the method should be in doubt. 

 

The disadvantages with creating AGC images using the first approach (gridding is 

performed on the AGC profiles) include more processing time, and also require a lot of 

computer memory (Rajagopalan and Milligan, 1995). 

 

In the scenario where the user has to apply the AGC method to a large data set is it better 

to use the second approach (directly apply the AGC to gridded data) as this will greatly 

reduce the processing time.  
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The above were taken into account in the applications of the AGC method that will 

follow below. 

 

3.2.2    Application of automatic gain control to synthetic data 

 

The automatic gain control algorithm was applied to synthetic data before applying it to 

real data (Chapter 4). The aim of this exercise was to ascertain the reliability of the 

method, i.e. its effectiveness in identifying hidden features (which can be of different 

dimensions). The synthetic model consisted of five dykes (marked 1-5, Fig. 3.2) and a 

rectangular block (marked 6). The dimensions, positions, depths and magnetization of the 

bodies are given in Table 3.2. The parameters of the ambient field are similar to that used 

in Section 3.1.1. Fig. 3.2 shows the magnetic response of the models given in Table 3.2. 

Note that anomalies of some bodies have smaller amplitude so that it is difficult to see 

them in Fig. 3.2a. 

 

 

Table 3.2. Geometrical and magnetic parameters of the synthetic sources generating the 

total-field magnetic anomaly of Fig. 3.2. Note that the units of the inclination angles of 

the sources are in degrees.  

 

Source 
Magnetiza

tion (A/m) 

Inclination 

of source  

X range 

(m) 

Y range 

(m) 

Depth 

range (m) 

1 3 -63.8 365-372 400-800 10-300 

2 0.5 63.8 400-407 400-800 10-300 

3 0.1 63.8 800-807 400-800 10-300 

4 0.1 -63.8 200-800 212-219 10-300 

5 0.5 -63.8 200-800 30-37 10-300 

6 0.05 -63.8 550-580 550-580 10-300 
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Figs. 3.3 and 3.4 show the applications of AGC along profiles taken from Fig. 3.2. The 

aim of this exercise as stated above is to enhance weak signals in the original data. In Fig. 

3.3a anomalies that correspond to source bodies 2, 3 and 6 are barely visible. However, 

after the application of the AGC filter with window sizes 51 (102 m in ground units, Fig. 

3.3c) and window size 201 (402 m in ground units, Fig. 3.3d) these anomalies are 

enhanced considerably. The distinction between anomaly 1 and 2 is very difficult, this is 

perhaps due to the fact that these two anomalies are separated by a mere 28 meters, which 

is less than the window sizes used for this exercise. A window size of 11 (32 m in ground 

units, Fig. 3.3b) does not yield a favourable results as the shape of the anomalies appear 

to be distorted, which suggests that optimal results are obtained for relatively bigger 

window sizes, i.e. 102 and 402 meters.  

 

In Fig. 3.4 the same results are seen for window size 102 m and 402 yielding reasonable 

results and for window size 32 m with anomalies that appear to be distorted with respect 

to the original data (Fig. 3.4a).  
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Figure 3.2. The total magnetic anomaly due to the synthetic model given in Table 3.2.  

The numbers 1-6 are the source bodies, and the lines A-A’ and B-B’ are the position of 

the profiles used in the AGC analysis (Figs. 3.3 and 3.4). Note that the image was 

“clipped” from -60 nT to 60 nT in order to have a good overall contrast.  



 32 

 

Figure 3.3.  AGC applied to profile A-A’ (Fig. 3.2) (a) for window sizes, b) 32 m, c) 102 

m and d) 402 respectively. The numbers (1, 2, 3 and 6) are the positions of the anomalies 

associated with the bodies in Table 3.2.  

 

 

 

Figure 3.4. AGC applied to profile B-B’ (Fig. 3.2). Figures a–d as in Fig. 3.3. The 

numbers (4 -6) are the positions of the anomalies associated with the bodies in Table 3.2.  
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3.3   Quantitative interpretation of depth sources of potential fields 

 

In this section, two methods for automatic depth interpretation are discussed. The 

methods are applied to synthetic data to assess their reliability and depth estimates are 

compared. The computer programs used for Euler deconvolution were provided by A. 

Galdeano (personal communication, 2005). All programs that involve calculating depth 

using the wavenumber method were coded by the author in MATLAB (Appendix A.2) 

incorporating some code from G. Cooper (personal communication, 2005). These 

programs will be used to calculate depths of a prominent feature along selected profiles in 

Chapter 4. 

 

3.3.1    Local wavenumber 

 

Bracewell (1965) defined f (the local frequency) as the rate of change of the local phase 

(M) with respect to x. Thus f can be expressed mathematically as  
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Defining the local wavenumber in terms of frequency  

 

fπκ 2= .                                                                                                          3.21 

 

substituting Equation 3.20 into Equation 3.21 we get 
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Equation 3.22 is the expression of the local wavenumber for profile data (Thurston and 

Smith, 1997). Note that M must be differentiable at least up to order two. Appendix A.3 

provides the MATLAB algorithm to calculate Equation 3.22. 
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For gridded data it has been shown by Huang and Versnel (2000) that the wavenumber is 

given by  
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By considering a sloping contact, the expressions for the vertical and horizontal gradients 

as defined by Nabighian (1972) are given by 
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 where K is the susceptibility contrast, F is the magnitude of the ambient field, 

α22 sincos1 Ic −= ,  α  is the ambient field declination, I is the inclination of the 

ambient field, d is the angle of dip of the body and h is the depth to the top of the contact.  

 

Substituting Equation 3.24 and Equation 3.25 into Equation 3.23 gives 
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If it is assumed that the peaks coincide with the edges of the bodies, and letting x = 0, 

then the local depth can be written as 

 

κ
1

=h  (Thurston and Smith, 1997).                                                                3.27  

 

Equation 3.27 is the expression used to calculate the local depth over maxima from the 

local wavenumber for profile data. However, for gridded data the maxima are located by 

using the procedure given by Blakely and Simpson (1986) and later modified by Roest et 

al. (1992). An additional feature of the method is that it gives a linearity index, which 

gives the shape of the source body. As an example, Blakely and Simpson (1986) 

concluded that an index of 1 is indicative of a linear feature (e.g. dyke or fault) and that 

an index of 4 corresponds to a circular feature.   

 

3.3.2    Euler deconvolution 

 

The earliest published attempts to use Euler deconvolution as an alternative tool in 

locating depth of sources are given by Thompson (1982) for profile data and Reid et al. 

(1990) for gridded data. Subsequent papers have been published to address a variety of 

issues, including constraining solutions of the source coordinate (e.g. Fairhead et al., 

1994; Barbosa et al., 1999), estimation of the structural index (Barbosa et al., 1999), and 

the use of extended Euler deconvolution to invert for more parameters, such as dip and 

susceptibility of the source body (e.g. Mushayandebvu et al., 2001)  

 

In his treatment of the problem, Thompson (1982), considered a function in a regular 

Cartesian coordinate system, f(x,y,z) such that z is downward, and x and y correspond to 

the east and north directions respectively. Assuming that f(x,y,z) is homogeneous to 

degree n, it has to obey the following relation 
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From the above expression the following equation (known as Euler’s equation) holds 

equally well 
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For potential field data, and assuming a magnetic source, Euler’s equation can be written 

as  
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where ( 0x , 0y , 0z ) are space coordinates of the magnetic source, and (x,y,z) is the 

observation point above the magnetic source. T is the total field, B is the regional field 

and N is the degree of homogeneity, also known as the structural index (Thompson, 

1982). For example, for a point dipole N = 3, for a line of dipoles N= 2, and for a thin 

dyke or pipe N = 1. By introducing an offset, A, (Reid et al., 1990) the above equation 

reduces to  
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The procedures to perform Euler deconvolution through Equations 3.30 and 3.31 on 

profile and gridded data are given below from Reid et al. (1990). 

 

1. The gradients are calculated from measured data or measured directly.  Hence the 

following are known: 

x
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. 

2. A square window of size not less than 3 x 3 grid points is passed over the gradient 

data sets. A trial and error approach is adopted to arrive at a window size which 
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gives reasonable solutions. Reid et al. (1990) found that a 10 x 10 window gives 

reasonable answers. However, quality (better depth estimate, with good 

clustering) can be increased by using smaller window sizes.  

3. Once a structural index is selected (preferably non-zero), then all data points are 

passed through the window and using Euler’s Equation 3.31 to invert for source 

coordinates (x,y,z), the uncertainty in the coordinates and a background  value are 

calculated. The preferred algorithm is the Moore-Penrose inversion (Lawson and 

Hanson, 1974). The depth solutions are kept if the uncertainty in depth is less than 

15 % of the calculated depth (Reid et al., 1990). 

4. The window is moved to the next position and Step 2 is repeated. This procedure 

is repeated for all possible window positions.  

5. The solutions are plotted as maps such that each solution is plotted at its plan (x,y) 

position using a colour proportional to depth z. 

 

3.3.3  The significance of the Euler structural indices 

 

The significance of the Euler structural indices for attaining correct depths solutions over 

magnetic bodies is well known and has been widely discussed by many workers before. 

As an example different geological models were prescribed structural indices ranging 

from 0 to 3 with reasonable success (Thompson, 1982). The significance of specific 

indices for particular geological models was rigorously tested by Reid et al. (1990). They 

observed that when they use a lower index their depth solutions were underestimated and 

when they use a higher index their depth solutions were overestimated. They also found 

that a correct index (theoretical value) does not always yield the desired solutions 

particularly low-index magnetic sources. 

   

The reliance on a single structural index becomes less useful if the data contain anomalies 

from different sources. To overcome this problem, and hence determine the correct index 

for a particular feature, Reid et al (1990) proposed that one should first solve for various 

indices and plot the solutions for each index. The index that gives the best clustering for a 
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particular feature is the correct index. These principles were used to test the Euler 

method.  

 

 

3.3.4   Euler deconvolution and wavenumber method applied to synthetic gridded data 

 

To demonstrate the effectiveness of the methods discussed above, they were applied to 

synthetic data. The model consists of two bodies. The first body is a vertical dyke 

trending in the E-W direction. The magnetization of the dyke is 6 A/m while the depth to 

the top of the dyke is 10 m and the depth to the bottom is 300 m. The second body is a 

vertical rectangular block that with depth to top of body of 20 m and the magnetization of 

this body is 4 A/m. The parameters of the ambient field are: inclination = 63.8 º and 

declination = 18.6 º.  

 

Fig. 3.5 shows the magnetic response due to the synthetic model as well as the horizontal 

and vertical derivatives. The derivatives were calculated in the frequency domain using 

the fast Fourier Transform (FFT). The gridding distance along the easting and northing 

directions is 5 m. 
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Figure 3.5. (a) The total magnetic anomaly due to the synthetic models. (b) Vertical 

derivative of the synthetic model. (c) x-horizontal derivative. (d) y-horizontal derivative. 

The outlines of the respective bodies are shown in white. Profile A-A’ is used for one-

dimensional depth estimates in Section 3.2.4. 
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Fig. 3.6 shows depth solutions using Euler deconvolution for structural indexes 0.25, 0.5, 

1 and 2. The horizontal positions and the depth solutions are depicted by the dots (.) in 

Fig. 3.6.  From the different diagrams in Fig. 3.6 we can see the effect of changing the 

structural index. When the structural index is 0.25 (Fig. 3.6a) the solutions plot on top of 

the bodies and it appears to delineate the two bodies exactly. Increasing the structural 

index to 0.5 (Fig. 3.6b) also has the same effect as for SI = 0.25 but the southern edge of 

rectangular body is not defined at all. For index 1 (Fig. 3.6c) and 2 (Fig. 3.6d) two 

observation can be made. Firstly there are too many solutions, some of which plot exactly 

on the edges of the bodies while the majority of the solutions plots away from the body 

making delineation of the body difficult. Secondly the depths associated with the 

rectangular body (from 30 m to 40 m) and the dyke (from 20 m to 30 m) is overestimated 

with respect to the original depths of 20 m (for the rectangular body) and 10 m for the 

dyke. Due to the non-uniqueness of the method there are a lot of redundant solutions 

mostly seen at the top of Figs. 3.6b-d. From this exercise it appears a that structural index 

of 0.25 (Fig. 3.6a) gives reliable depth estimates (from 18 to 23) for the rectangular body 

while the structural index of 0.5 (Fig. 3.6b) gives reliable depth estimate (from 7 m to 13 

m) for the dyke.  
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Figure 3.6. Depth estimate using a 55 m window size and tolerance of 0.75 for different 

structural indexes (SI). Depth estimates with (a) SI=0.25 (b) SI=0.5 (c) SI=1 and SI=2 

(d). The outlines of the respective bodies are shown in black. The horizontal positions 

and depth solutions are depicted as dots in different colours. The horizontal positions are 

used to delineate the edges of the body while the colours of the dots indicate the range in 

depth estimates. 

 

 

 

The next exercise involves changing the size of the window and to study the effect this 

has on the horizontal positions and depth estimates of the solutions. To get reliable 

solutions, care must be taken in choosing the size of the window. The size of the anomaly 

in question must be used as a guide. A small wavelength anomaly requires a small 

window size and long wavelength anomalies require larger window size. As a rule of 
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thumb, the window size should be at least half the wavelength of the anomaly in question 

(Reid et al., 1990; Bournas et al., 2003). These principles were used to test the Euler 

method.  

 

The structural index used here is 0.25 m as the author believes this gave better results in 

the preceding analysis. Fig. 3.7 shows depth solutions using different window sizes. In 

Fig. 3.7a where the window size is 25 m the solutions plot on the edges of the bodies as 

defined by the black outline. For the rectangular body the depth estimate is in the range 

of 18 to 23 m (the red dots), but the same cannot be said for the dyke as the prevalent 

dots are green and red which correspond to depth ranges of 13 m to 18 m and 18 m to 23 

m respectively.  Increasing the window size to 30 m (Fig. 3.7b) the solutions still plot on 

the edges of the bodies but the depth estimates are now alternating from 13 m to 18 m 

and 18 m to 23 m for the rectangular body and from 7 m to 13 m and 13 m to 18 m for 

the dyke. In Fig. 3.7c where the window size is 50 m the southern edge of the rectangular 

body is not defined but the depth estimate are largely in the acceptable range (18 m to 23 

m). The dyke is fairly well constrained and the depth estimate (7 m to 13 m) is also in the 

acceptable range. The worst result appears in Fig. 3.7d (size of window 70 m). The 

solutions do not appear to plot on top of the edges of the body with respect to the 

rectangular body. There is a spray of solutions far from the rectangular body. This could 

be a problem if one has to apply this to real data. On the other hand the solutions do 

constraint the dyke very well and also give good depth estimates. 

 

The above analyses identify two things: edges of bodies indicated by solution points 

plotting on the edges of the bodies and the depth to the top of the bodies. By adjusting the 

structural index and the window sizes this can be accomplished to a reasonable degree. 
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Figure 3.7. Depth estimate using a structural index SI = 0.25 and tolerance of 0.75 for 

different window sizes. Depth estimates with (a) window size 25 m (b) window size 35 m 

(c) window size 55 m and (d) with window size 75 m. The outlines of the respective 

bodies are shown in black.  

 

 

 

 

The depth estimates were also determined using the local wavenumber method. This 

follows below. Equation 3.23 is utilized to calculate the local wavenumber. The crests of 

the analytical signal magnitude and local wavenumber are positioned over the centres of 

both bodies. To calculate the depth from the local wavenumber, the procedure described 

in the previous section is used. The method utilizes a 3x3 window, and calculates the 

maximum in four directions (horizontal, vertical and the two main diagonals). A 

maximum is calculated if the central value is more than the outlying values. This is tested 
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for all directions, and each time the criterion is satisfied a counter (N) is increased. 

Therefore, N = 0 if no maximum is found, and N = 4 if a maximum is found in all 

directions (Blakely and Simpson, 1986).  

 

The depth solutions using the local wavenumber method are shown in Fig. 3.8. The 

solutions are plotted for all possible values of N. Fig. 3.8a where N is 1 shows an 

abundance of solutions away from the edges of the bodies. Those solutions that plot on 

top of the bodies indicate depth in the range of 7 m to 14 m for the rectangular body and 

1 m to 7 m for the dyke. However, it is extremely difficult for one to be certain on the 

depth solutions as all the dots are practically superimposed on one another. The body 

delineation in Figs. 3.8b to 3.8d is not encouraging, but can still be used.  
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Figure 3.8. Depth estimates using the local wavenumber method. (a) N = 1, (b) N = 2, (c) 

N = 3 and (d) N = 4. Note that the method produces a lot of redundant solutions which 

are not related to any anomaly at all, such as the dots seen all over the place away from 

the true positions of the source bodies.  

 

 

 

The depth estimate from the Euler deconvolution (Figs. 3.6 and 3.7) are more reasonable 

(closer to the depth of the synthetic models) than the depths calculated from the local 

wave number method (Fig. 3.8). This means that the error in depths from the local 

wavenumber is not acceptable. However both methods can be used to delineate the edges 

of causative bodies. Care must be taken in using solutions derived from the local 

wavenumber method.  
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3.3.5   Euler deconvolution and wavenumber method applied to synthetic profile data 

 

The depth estimate from a profile extracted from the gridded data (Fig. 3.5a) is calculated 

in this section using both the local wavenumber method and Euler deconvolution. Fig. 3.9 

shows the depth estimate using the local wavenumber method (Equation 3.27). The depth 

solutions are plotted as dots on the edges of the model bodies. The depths for both bodies 

are slightly overestimated (Fig. 3.9d and Table 3.3).    

 

Figs. 3.10 and 3.11 show the depth solutions using the Euler deconvolution method for 

window lengths of 30 m and 50 m respectively. The estimates of the depth of the bodies 

change as the size of the window is varied from 30 m to 50 m. In Fig. 3.10 where the 

window length is 30 m the solutions are better constrained compared with the larger 

window length (Fig. 3.11) where the solutions are not well clustered. This is only evident 

after certain solutions are rejected. The depth estimates from the Euler deconvolution 

method yield better results compared with the solutions obtained from the local 

wavenumber method (Table 3.3). 
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Figure 3.9. Local wavenumber depth estimates for the synthetic profile extracted from 

Fig. 3.5. (a) Total field anomaly profile extracted from Fig. 3.5. (b) Profiles of the 

vertical and horizontal derivatives of the anomaly. (c) Profiles of the wavenumber and 

local phase response. (d) Depth solutions superimposed on the source bodies. The local 

depth solutions are shown as red asterisks (*). For the dyke (blue) the local depth was 

calculated to be 14.30 m, and for the rectangular block (white) the average local depth 

was calculated as 28.90 m.  

(a

) 

(b
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(c

) 

(d

) 



 48 

 

 Figure 3.10. Standard Euler deconvolution depth solutions for the two bodies using a 

7x7 window size. (a) Total field anomaly profile extracted from Fig. 3.5. (b) Vertical and 

horizontal derivatives of the anomaly. (c) Depth solutions superimposed on the source 

bodies. (d) Depth after rejecting solutions exceeding a tolerance level of 0.15. The depths 

solutions are shown as red asterisks (*). The structural index was SI = 1. 

 

 

(a

(b

(c

(d
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Figure 3.11. Standard Euler deconvolution depth solutions for the two bodies using an 

11x11 window size. (a) Total field anomaly profile extracted from Fig. 3.5. (b) Vertical 

and horizontal derivatives of the anomaly. (c) Depth solutions superimposed on the 

source bodies. (d) Depth after rejecting solutions exceeding a tolerance level of 0.15. The 

depths solutions are shown as red asterisks (*). The structural index was SI = 1.  

   

 

 

Table 3.3. Summary of depth estimates using the local wavenumber (LW) and Euler 

deconvolution (ED) methods for the synthetic profile data. The error is the difference 

between the true value given in the text and the calculated depths from the respective 

methods. 

 

Source LW (m) Error LW (m) ED (m) Error ED (m) 

Dyke 14.30 4.30 13 3 

Contact/rectangular block 28.90 9 19 1 

 

 

 

(a) 

(b) 

(c) 

(d) 
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3.4 Summary 

 

Upward continuation of synthetic data emphasizes long wavelength anomalies while de-

emphasising short wavelength anomalies. The upward continuation method works quite 

well and this will be used in comparing ground magnetic data from this study with 

aeromagnetic data from the same area. Hidden features are revealed by the use of the 

AGC algorithm. This appears to be a suitable method in bringing out subtle features 

while retaining long-wavelength anomalies.  

 

Two depth estimation methods were compared and applied to synthetic data. The 

methods are the local wavenumber and Euler deconvolution. For gridded data, the Euler 

deconvolution method delineates the bodies and gives reliable depth estimates while the 

local wavenumber method does not delineate the bodies that well and the depth estimates 

are underestimated. For Euler deconvolution, a good estimate of depth depends on the 

choice of the structural index, tolerance and size of the window. Depth estimates using 

the local wavenumber are overestimated for both gridded and profile data. However the 

margins of errors are acceptable.  

 

 


