DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted for the Degree of Master of Science to the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination to any other University.

_____day of _____2012

ABSTRACT

Sufficient energy availability and utilization lie at the core of not only the mining industry but also the economic growth of South Africa. The mining industry is one of the major consumers of electricity in South Africa; accounting for approximately 17.4 percent. The focal point of the research project was on New Denmark Colliery; an Anglo American Thermal Coal operation located in the Mpumalanga Province. The main objective of the research project was to analyse energy consumption, economics and management at the mine. The study provides a framework for understanding significant energy uses in a mining operation; electricity costs and some of the mechanisms, tools and initiatives that can be used to manage energy optimally. This provides the mining industry with a platform to become part of the energy solution in South Africa.

The author conducted comparative time series studies to determine energy consumption as a function of production, specific activities at the mine, carbon dioxide emissions, electricity costs; from which the forecasts were made to determine the amount of electricity consumption and costs in the future. It can be submitted from the monthly comparative studies that more electricity is consumed during high demand season (June, July and August); as a result the costs are also very high. It was concluded that mining, ventilation and coal transportation consume relatively more electricity compared to other activities at the mine. It was further submitted that the higher the level of production the higher the quantity of electricity consumption and vice versa.

It was further concluded that although the amount of electricity consumption has been fluctuating over the years, electricity costs have been escalating at an alarming rate due to change in tariff rate, inflation and the structure of the tariff. The cost of power will increase drastically over the next five years, due to uncertainty regarding the magnitude of the pending Eskom tariff increases. It was recommended that mining operations must create energy management models for their mining operations in order to reduce the amount of electricity consumption, minimize the electricity costs and secure long term electricity supply. Models created must be aligned to company vision, organizational structure and also operational practice at the mine.

DEDICATION

This research report is dedicated to my family, Wits School of Mining Engineering and the Mandela Rhodes Foundation; they frequently inspire and empower me to do things I never thought I could.

ACKNOWLEDGEMENT

I wish to express my appreciation to the following organisation and persons who made this project report possible:

1. Dr Hudson Mtegha, my project supervisor for his guidance, encouragement and support.

2. The following company divisions/organizations are gratefully acknowledged for their assistance and provision of data during the course of the study.

- a) Anglo American Energy Department (Global)
- b) Anglo American Global Shared Service
- c) Anglo American Library
- d) Anglo American Thermal Coal Project Services
- e) Anglo Thermal Technical Service
- f) Eskom
- g) New Denmark Colliery (Mining, Finance and Engineering Department)
- h) Goedehoop Colliery (Engineering and Finance Department)
- 3. My family and friends for encouragement and support during the study.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
LIST OF FIGURES	х
LIST OF TABLES	xiii
LIST OF APPENDICES	xiii
LIST OF ACRONYMS/SYMBOLS	xiv
	4
1. INTRODUCTION	T
1.1 Problem Statement	2
1.2 Objectives	3
1.3 Methodology and Scope of Study	4
1.4 Plan of Action (Research Procedure)	5
	6
2. LITERATURE REVIEW	6
2.1 ENERGY OVERVIEW	6
2.2 SOUTH AFRICAN ENERGY SECTOR	9
2.2.1 Introduction	9
2.2.2 South African Power Mix	9
2.2.3 Energy Policies and Strategy	11
2.2.4 Energy Efficiency	12

2.2.5 South African Sectoral Energy Consumption	13
2.2.6 South African Energy Supply Challenge	14
2.2.7 Energy Crisis Introduced a Paradigm Shift	15
2.2.8 Outlook of the Energy Landscape	16
2.3 ESKOM	18
2.3.1 Introduction	18
2.3.2 Generation, Transmission and Distribution of Electricity	21
2.3.3 Structure of the Electricity Supply Industry	22
2.3.4 Challenges Encountered by Eskom	23
2.4 SECURITY OF COAL SUPPLY	25
2.4.1 Coal Producers in South Africa	26
2.4.2 Dependence on Coal	27
2.4.3 Strategic Analysis of South Africa's Coal Mining Industry	28
2.5 ENVIRONMENTAL ECONOMICS	30
2.5.1 Introduction	30
2.5.2 How Energy Generation Causes Environmental Change in SA	30
2.5.3 Climate Change Strategy	32
2.6 ENERGY AND THE MINING INDUSTRY	33
2.6.1 Introduction	33
2.6.2 Mining Industry as part of the Energy Solution	35

|--|

3. AREA OF STUDY	
3.1 Anglo American Thermal Coal	37
3.1.1 Energy Consumption of Anglo American Thermal Coal	39
3.1.2 Anglo American Thermal Coal Energy Strategy	41
3.2 New Denmark Colliery	44
3.2.1 Mine Background and General Information	44
3.2.2 Structure of the Mine	45
3.2.3 New Denmark Colliery and Tutuka Power Station	47
3.2.4 Supply, Transmission and Distribution of Electricity to the Mine	48
3.2.5 Type of Energy Account	50
3.2.6 Electricity Demand Load Profile of New Denmark Colliery	52
3.2.7 Electricity Management at New Denmark Colliery	54
3.3 Summary	
	50
4. ENERGY CONSUMPTION	50
4.1 Introduction	56
4.2 Use of Energy	56
4.3 Factors Influencing and Affecting Electricity Consumption	58
4.4 Electricity Consumption per Geographical Area	60
4.5 Year Electricity Consumption versus Production Rate	61
4.6 Monthly Electricity Consumption	62

35

4.7 Carbon Dioxide Emissions	64
4.8 Future Studies - Electricity Consumption	66
4.9 Summary	67
5. FINANCIAL ECONOMICS OF ENERGY	68
5.1 Introduction	68
5.2 Cost of Energy	68
5.3 Energy Cost Break Down	70
5.4 Yearly Electricity Cost versus Production and Electricity Consumption	71
5.5 Monthly Electricity Cost versus Production and Electricity Consumption	72
5.6 Monthly Electricity Cost Distribution	74
5.7 Tariff	75
5.8 Electricity Cost Forecast	78
5.8.1 Electricity Tariff Forecast for New Denmark Colliery	80
5.8.2 Electricity Cost Forecast for New Denmark Colliery	81
5.9 Summary	
6. SUMMARY OF DISCUSSIONS AND RECOMMENDATIONS (ENERGY MANAGEMENT)	82
6.1 Summary of Discussions	82
6.1.1 Literature Review	82
6.1.2 Area of Study	83
6.1.3 Energy Consumption at New Denmark Colliery	85
6.1.4 Financial Economics of Energy at New Denmark Colliery	86

6.2 Recommendations (Energy Management)	89
6.2.1 Energy Management Standards	90
6.2.2 Management Capacity and Organizational Structure for Energy Management	91
6.2.3 Energy Accounting and Auditing	92
6.2.4 Energy Management Mechanisms	94
6.2.4.1 Metering Energy Consumption and Data Collection	95
6.2.4.2 Finding and Quantifying Opportunities to Save Energy	96
6.2.4.3 Targeting the Opportunities to Save Energy	96
6.2.4.4 Tracking your progress at saving energy	96
6.2.5 Energy Security	97
6.2.6 Educational Programs, Communication and Training	98
6.2.7 Energy Efficient Technology	99
6.2.8 Other Tools (Information System and Investment	99
6.2.9 Energy Policy	100
6.2.10 Benefits of Energy Management	100
7. CONCLUSION	101
8. APPENDICES	104

LIST OF FIGURES

Figure 1: Flow of energy chart	7
Figure 2: Primary energy supply	8
Figure 3: Power mix in South Africa	11
Figure 4: Electricity consumption per sector of the economy	14
Figure 5: Energy gap and capacity reserve of South Africa	15
Figure 6: Short to medium term solutions of the energy crisis	16
Figure 7: Generating capacity of utility companies across the world	18
Figure 8: Relative position of power stations and their ownership in South Africa	19
Figure 9: Electricity generation, transmission and distribution	22
Figure 10: Energy flow through the electricity supply industry	23
Figure 11: Coal production and consumption trends	25
Figure 12: Largest coal producers in South Africa	26
Figure 13: Mining companies supply coal to Eskom	27
Figure 14: Particulate emissions due to power generation at Eskom	31
Figure 15: Electrical energy consumption per sector	33
Figure 16: Electricity consumption in the South African mining industry	34
Figure 17: Production of Anglo American Thermal Coal	38
Figure 18: Energy usage by type at Anglo American Thermal Coal	39
Figure 19: Annual energy consumption of Anglo American Thermal Coal	40
Figure 20: Average energy consumption at Anglo American Themal Coal	41
Figure 21: Electricity cost of Anglo American Thermal Coal	43

Figure 22: Relative position of Tutuka power station and New Denmark Colliery	43
Figure 23: Location of New Denmark Colliery	45
Figure 24: Shafts and sections of New Denmark Colliery	46
Figure 25: Relative position of Tutuka Power Station and New Denmark Colliery	47
Figure 26: Relationship between New Denmark Colliery and Tutuka Power Station	49
Figure 27: Transmission and distribution of energy at New Denmark Colliery	50
Figure 28: Time of Use (TOU) ratings for Megaflex	52
Figure 29: Monthly electricity demand profiles of NDC for the year 2009 and 2010	53
Figure 30: Different forms of energy and their application at New Denmark Colliery.	57
Figure 31: Electricity consumption of Anglo American Thermal Coal collieries	59
Figure 32: Estimated electricity consumption per geographical area	61
Figure 33: Monthly electricity consumption	63
Figure 34: Production versus electricity consumed for the year 2010	64
Figure 35: Anglo American Thermal Coal carbon footprint per operation	65
Figure 36: Electricity consumption projection for New Denmark Colliery	67
Figure 37: Anglo American Thermal Coal electricity cost per operation	69
Figure 38: Electrical energy costs per Anglo American Thermal Coal operation	69
Figure 39: 2010 energy costs breakdown for New Denmark Colliery	70
Figure 40: Yearly average electricity cost for New Denmark Colliery	72
Figure 42: NDC monthly electricity increase between the year 2009 and 2010	73
Figure 41: NDC Electrical power versus cost for the year 2010	74
Figure 43: Cost distribution of average monthly electricity charge rates	75
Figure 44: Algorithm of deriving or calculating the electricity cost	76

Figure 45: NDC hourly electricity charges profile for different season in the year 2010	78
Figure 46: Anglo American Thermal Coal electrical energy cost forecast	79
Figure 47: Anglo American Thermal Coal electricity cost and average cost forecast	79
Figure 48: Energy management tools that can be used by New Denmark Colliery	90
Figure 49: Organisational structure that can be used by NDC	92
Figure 50: Different aspects of energy accounting	93
Figure 51: Types of energy audits	94
Figure 52: Energy management mechanisms that can be used by NDC	95
Figure 53: Demand Side Management (DSM) options	97

LIST OF TABLES

Table 1: Energy statistics of Sub-Saharan countries	10
Table 2: Eskom power stations	
Table 3: Energy sector carbon dioxide emissions, various measures and time frames	32
Table 4: Coal production data of Anglo American Thermal Coal	38
Table 5: Technical details of Tutuka power station	48
Table 6: Eskom contractual range qualities	48
Table 7: Electricity account of New Denmark Colliery	54
Table 8: Forms of energy and quantity used at New Denmark Colliery in the year 2010	58
Table 9: Production data of Anglo American Thermal Coal	60
Table 10: NDC's production and electricity consumption	62
Table 11: Electricity consumed versus CO2 emission for the year 2007 – 2010	66
Table 12: Yearly electricity cost versus power	71
Table 13: NDC electricity monthly charge rate for the year 2008/2009 and 2009/2010	77
Table 14: Electricity tariff forecast	85

LIST OF APPENDICES

Appendix A: South African energy gap and capacity reserve statistics	104
Appendix B: Electricity Demand, Consumption and Cost for the year 2009 and 2010	104
Appendix C: Predicted Eskom tariffs increase for the next five years	105
Appendix D: Electricity Cost Forecast for New Denmark Colliery	106
Appendix E: Financial benefit (savings) of electricity management (reduction) forecasts	107

LIST OF ACRONYMS/SYMBOLS

AATC	: ANGLO American Thermal Coal
c/kWh	: cents per Kilo watt hours
CO ₂	: Carbon Dioxide
CV	: Calorific Value
DE	: Department of Energy
DME	: Depart of Minerals and Energy
DSM	: Demand Side Management
ECS	: Energy Conservation Scheme
EE	: Energy Efficiency
GHG	: Green House Gases
GW	: Gigawatt
IEP	: Integrated Energy Plan
EIA	: Energy Information Administration
GDP	: Gross Domestic Product
GJ	: Giga Joules
1	: Joules
Kg	: Kilogram
km	: Kilometre
Kt	: Kilotonnes
КV	: Kilo Volts
kW	: Kilo Watt
kWh	: Kilo Watt Hour
kWh/t	: Kilo Watt hours per tone
MD	: Maximum Demand
m	: Metre

m ³	: Meter cube
Mtpa	: Million tonnes per annum
MVA	: Mega Volts Amperes
MW	: Mega Watts
NDC	: New Denmark Colliery
NER	: National Electricity Regulator
NERSA	: National Energy Regulator of South Africa
РСР	: Power Conservation Programme
PV	: Present Value
R	: Rand
R/kWh	: Rand per kilowatt hour
Rmil	: Million Rands
R & D	: Research and Development
RTS	: Return to Service
SA	: South Africa
SAPIA	: South African Petroleum Industry Association
SAPP	: Southern African Power Pool
SO ₂	: Sulphur Dioxide
t	: tones
TWh	: Tera Watt Hour
UNFCCC	: United Nations Framework Convention on Climate Change)
USA	: United States of America
V	: Volts
WEC	: World Energy Council
YTD	: Year to Date